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1. Introduction 

 

In a globalized economy, multinational corporations sell their 

products in multiple markets. To secure enough profit in the 

international product market, these firms patent their own 

technologies in many countries. Such phenomenon calls for an 

international patent system. The results of the endeavor were Paris 

convention and TRIPs agreement. In this paper, I focus on one aspect 

of the international patent treaties: National treatment principle. This 

principle stipulates that member states should treat foreign patent 

applicants no less favorable that its own nationals with regard to the 

intellectual property rights. 

However, empirical researches have found out that although 

national treatment is stipulated in principle, it is not upheld in practice 

(Yang 2008; Webster, Jensen, and Palangkaraya 2014; de 

Rassenfosse, Jensen, Julius, Palangkaraya, and Webster 2019; Mai 

and Stoyanov 2019). One anecdotal evidence is a patent war between 

Apple and Samsung in 2010s. While the court of Republic of Korea 

favored Samsung, the US court favored Apple.   

Intuitively, discriminating foreign firms in terms of IP rights bring 

more national welfare. Domestic firms can enjoy some profit by 

engaging in the product market, and consumers also benefit from the 

market competition. On the other hand, such discrimination also 

harms national welfare because foreign firms now have less incentive 

to innovate. If the government wants to maximize the national 

welfare, it decides whether or not to abide by the national treatment 

principle based on such trade-off. The objective of this paper is to 

analyze simple strategic experimentation models that capture two 
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different patent protection environments (national treatment 

environment and home bias environment), and compare the equilibria 

in terms of innovation incentive and national welfare. 

In this paper, I solve strategic experimentation games with 

asymmetric payoffs. I show that in both environments, there is a 

unique Markov perfect equilibrium and the equilibrium strategies can 

be characterized by certain cut-offs. With regard to the innovation 

incentive, the aggregate amount of experimentation is the same for 

both environments. However, the R&D is less intense under home 

bias environment. As for national welfare, I conduct comparative 

statics with regard to the level of product market competition when 

the patent right is violated. The result is that the benefit of one 

environment over the other has non-linear relationship. The net 

benefit of Home bias environment is maximized when the market 

competition is intermediate. 

This paper contributes to three lines of research. First of all, it 

is related to the international patent system literature. Grossman and 

Lai (2004) establishes a macroeconomic model to analyze the role of 

harmonization, which is one another important issue in international 

IPR treaties. Geng and Saggi (2015) uses the framework of 

Grossman and Lai (2004) to analyze the role of NTP on incentivizing 

innovation. This paper is distinctive from these as I adopt a 

microeconomic model to focus on the R&D incentives of individual 

firms under different IPR environments. 

Theoretically, my work contributes to the strategic 

experimentation model. The canonical framework of strategic 

experimentation was proposed by Bolton and Harris (1999) and 

Keller, Rady, and Cripps (2005; henceforth KRC). Besanko and Wu 
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(2013) used the strategic experimentation model with exponential 

bandit following KRC and considered market structure to compare 

R&D competition and cooperation. Das, Klein, and Schmid (2019; 

henceforth DKS) tackles the issue of asymmetric ability between 

players in the strategic experimentation game. Das and Klein (2020) 

takes a further step to consider the effect of the degree of patent 

protection on R&D choices. In this paper, I adopt the strategic 

experimentation framework of KRC and add an asymmetry as DKS. 

However, I solve a game when there is an asymmetry in the payoff 

that each player faces. Moreover, I analyze the role of market 

structure as Besanko and Wu (2013) did.   

This paper is also related to the R&D race literature. The line of 

research was initiated by Loury (1979) and Dasgupta and Stiglitz 

(1980). Choi (1991) and Malueg and Tsutsui (1997) introduced the 

learning aspect into the R&D literature. I follow these papers and use 

multi-armed bandit framework for the R&D game. Unlike them, I 

focus on the payoff asymmetry for a biased patenting environment. 

There are some papers that consider asymmetry between players of 

R&D games. Rosen (1991) examines the role of initial firm size on 

R&D strategy in terms of the amount and the riskiness of investment. 

Fershtman and Markovich (2010) analyzes a multi-stage R&D model 

with an asymmetry on abilities. My work differs from those as I 

consider an asymmetry on payoffs. 

The rest of the paper is organized as follows. Section 2 describes 

the strategic experimentation model with asymmetric payoffs. In 

section 3 and 4, I conduct equilibrium analyses of the strategic 

experimentation games under two environments, respectively. I 

compare the two environments in terms of innovation incentives and 
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national welfare in section 5. Section 6 contains concluding remarks. 

 

 

2. Model 

 

In this model, 2 firms are locked in an R&D race. Firm 1 is a 

domestic firm, while firm 2 is a foreign firm. Both firms have 2 

projects at hand. Following the multi-armed bandit literature, 

projects and arms are used interchangeably. One project is safe (S), 

and the other project is risky (R). The time is continuous. Each firm 

has 1 indivisible unit of input which could be allocated either to the 

safe arm or to the risky arm. At every instance, the firm decides 

whether to put this resource into the risky arm or to the safe arm.  

Let’s denote 𝑘௜  ∈ {0,1} as the amount of input allocated to the risky 

project. Clearly, (1 − 𝑘௜) is the amount of input that is allocated to the 

safe project.  

If a firm pulls the safe arm at period 𝑡, it enjoys a flow payoff of 

𝑠 > 0 for sure. On the other hand, if it pulls the risky arm, the flow 

payoff depends on the state of the world. For simplicity, I assume 

that there are only 2 states of the world; the good state and the bad 

state. Two firms do not observe the state of the world, but know that 

the state is common for both of them. If the state is bad, pulling a 

risky arm brings 0 payoff with probability 1. If the state is good, a 

breakthrough occurs stochastically. When a breakthrough occurs, 

firm 𝑖 earns some positive flow payoff of 𝜋௜
௝ at every instant from 

then on. Here 𝜋௜
௝ means a flow payoff that firm 𝑖 can earn when firm 

𝑗 makes a breakthrough. The arrival time of the breakthrough follows 

an exponential distribution with parameter 𝜆.  
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In this paper, I consider and compare two environments where 

the structure of 𝜋௜
௝  differ. The first environment is the National 

treatment environment (henceforth NT environment), where firm 1 

and firm 2 are treated equally in terms of patent protection. In this 

case, 𝜋௜
௝ = 𝜋ெ if 𝑖 = 𝑗 and 𝜋௜

௝ = 0 if 𝑖 ≠ 𝑗 . This means a strong level of 

patent protection for both the domestic and foreign firms so that the 

firm which made a breakthrough can safely earn a monopoly profit in 

the product market while the other firm can never infringe on it. 

Hence when a breakthrough occurs, the other firm returns to the safe 

arm to earn 𝑠 from then on.  

The second environment under consideration is the Home bias 

environment (henceforth HB environment). Here the domestic firm 

and the foreign firm are treated differently. To be specific, the 

foreign firm (firm 2)’s invention is not well protected while firm 

1’s invention is still well protected. In short, 𝜋ଵ
ଵ = 𝜋ெ, 𝜋ଶ

ଵ = 0 

following firm 1’s breakthrough, but 𝜋ଵ
ଶ = 𝜋ଶ

ଶ = 𝜋஽ if firm 2 makes 

the breakthrough first. 𝜋஽ is a duopoly profit in the product market. 

If firm 1 makes a breakthrough, it is obvious that firm 2 returns to 

the safe project.  

To see only the interesting cases, we assume that 𝑠 < 𝜋஽.  It’s 

also not unusual to assume that 𝜋ெ ≥ 2𝜋஽  as if otherwise, the 

monopoly firm can easily mimic the duopoly market outcome for more 

profit.  

Each firm cares about its expected dynamic sum of payoffs. I 

assume that both firms have a common discount rate 𝑟 . For an 

expositional reason, I assume that 𝑟 ≤ 𝜆.  

Lastly, I assume that the two firms share a common prior 𝑝଴, and 

the past actions and the outcomes are commonly observable to both 
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firms. These assumptions guarantee that firm 1 and firm 2 also share 

a common posterior 𝑝௧. As there is no breakthrough in the bad state, 

one occurence of a breakthrough makes 𝑝௧ = 1. In the absence of a 

breakthrough, the posterior belief follows the following law of motion: 

𝑑𝑝௧ = −𝜆(𝑘ଵ,௧ + 𝑘ଶ,௧)𝑝௧(1 − 𝑝௧)𝑑𝑡 

Following the previous literature, the equilibrium concept I adopt 

here is Markov perfect equilibrium (henceforth MPE). In particular, I 

focus on Markov strategies where the posterior belief 𝑝௧ is used as a 

state variable. A Markov strategy for firm 𝑖 is defined as a left-

continuous function 𝑘௜: [0,1] → {0,1}. I rule out strategies with infinite 

switches. If the continuous time model is interpreted as an 

asymptotics of a discrete time model as in Heidhues, Rady, and 

Strack (2015), such behavior surely cannot happen. A plausible 

assumption that there is an infinitesimal switching cost also justifies 

the restriction. 

 

 

3. National Treatment Environment 

 

I first consider the National treatment environment where both 

the domestic and foreign firms enjoy the symmetric level of patent 

protection.  

 

3.1. Best Responses 

 

Firm 𝑖’s average value function is written as 
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𝑣௜(𝑝) = 𝑚𝑎𝑥
௞೔∈{଴,ଵ}

{(1 − 𝑘௜)𝑟𝑠𝑑𝑡 + 𝑘௜𝑟𝜆𝑝𝜋ெ𝑑𝑡 + 𝑒ି௥ௗ௧𝐸[𝑣(𝑝 + 𝑑𝑝)|𝑝, 𝑘ଵ, 𝑘ଶ]} 

By rearranging terms, one can derive the following Bellman 

equation: 

 𝑣௜ = 𝑠 + 𝑘௝𝑏ௌ(𝑝, 𝑣௜) + 𝑚𝑎𝑥
௞೔∈{బ,భ}

𝑘௜{𝑏ெ(𝑝, 𝑣௜) − 𝑐ெ(𝑝)} (1) 

The first term 𝑠 in the right hand-side of the equation is the 

average payoff that firm 𝑖 can guarantee by always pulling the safe 

arm. The second term 𝑏ௌ(𝑝, 𝑣௜) = 𝜆𝑝(𝑠 − 𝑣௜ − (1 − 𝑝)𝑣௜′)/𝑟  is the 

expected marginal benefit when firm 𝑗 pulls the risky arm. When firm 

𝑗 pulls the risky arm, it affects firm 𝑖 in two ways. Firstly, if it makes 

a breakthrough, firm 𝑖 automatically has to return to the safe arm. 

Secondly, if there is no news, it sends a signal to the firms that it is 

less likely that the state is good. The third term (𝑏ெ(𝑝, 𝑣௜) − 𝑐ெ(𝑝)) is 

the net expected marginal payoff from firm 𝑖’s pulling the risky arm 

itself. 𝑏ெ(𝑝, 𝑣௜) = 𝜆𝑝(𝜋ெ − 𝑣௜ − (1 − 𝑝)𝑣௜′)/𝑟  is the marginal benefit 

while 𝑐ெ(𝑝) = 𝑠 − 𝜆𝑝𝜋ெ is the immediate marginal opportunity cost. 

Similar to the marginal benefit of firm 𝑗’s experimentation, firm 𝑖’s 

experimentation has two effects. If any good news arrives, its value 

immediately rises to the monopoly profit 𝜋ெ. On the other hand, if 

pulling the risky arm does not bring any news, it is a signal that the 

state might be bad. Unlike firm 𝑗′𝑠  experimenting, own 

experimentation incurs an immediate opportunity cost. At time 𝑡, if 

firm 𝑖 inputs its resource to the R&D investment, it can earn 𝜋ெ with 

probability 𝜆𝑝. At the same time, it cannot pull the safe arm which 

surely gives an instant payoff of 𝑠.    

Following KRC, the characterization of the best responses of the 

firms makes the equilibrium analysis tractable. By the Bellman 

equation (1), it is immediate that firm 𝑖 chooses 𝑘௜ = 1 if 𝑏ெ(𝑝, 𝑣௜) ≥
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𝑐ெ(𝑝), and 𝑘௜ = 0 if 𝑏ெ(𝑝, 𝑣௜) ≤ 𝑐(𝑝). By adding and subtracting some 

terms, one can obtain an alternative representation of the best 

responses: 

 

𝑘௜ ቐ

= 1          𝑖𝑓 𝑣௜(𝑝) > 𝐷௜൫𝑝; 𝑘௝൯

∈ {0,1}   𝑖𝑓 𝑣௜(𝑝) = 𝐷௜(𝑝; 𝑘௝)

= 0         𝑖𝑓 𝑣௜(𝑝) < 𝐷௜(𝑝; 𝑘௝)

 

  

This relationship means that player 𝑖’s best response depends on 

whether the 𝑣௜  function in the (𝑝, 𝑣௜)-plane is above or below the 

affine function  

𝐷௜൫𝑝; 𝑘௝൯ = 𝑠 + 𝑘௝𝑐ெ(𝑝) −
1

𝜇
(𝜋ெ − 𝑠)𝑘௝𝑝 

When 𝑘௝ = 0, 𝐷௜(𝑝, 0) is simply a constant function 𝑠. When 𝑘௝ = 0, 

𝐷௜(𝑝, 1) is a decreasing affine function which passes through a point 

(𝑝, 𝑣) = (
ఓ௦

(ଵା௥)గಾି௦
, 𝑠) . Let’s define 𝑝̄ =

ఓ௦

(ଵା௥)గಾି௦
. Note that this 

posterior belief is exactly the point where a firm would stop 

experimenting if it was the only participant in the R&D race. One 

additional remark is that because of the assumption 𝜇 ≤ 1, and 𝜋ெ >

2𝑠, 𝑝̄ is strictly smaller than 1. 

The next step is to derive explicit solutions for payoff functions.  

 

3.2. Markov Perfect Equilibrium 

 

On intervals of beliefs where the mutual best responses are 

uniquely determined, one can solve for the value function explicitly 

up to a constant. When both firms are pulling the safe arm, obviously 

𝑣௜ (𝑝) = 𝑠. If 𝑘௜ = 1 while 𝑘௝ = 0, then 𝑣௜ satisfies 
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(𝑟 + 𝜆𝑝)𝑣௜ + 𝜆𝑝(1 − 𝑝)𝑣௜

ᇱ = 𝜆𝑝(1 + 𝑟)𝜋ெ. 
(2) 

The solution to the ODE (2) is 

 𝑣௜(𝑝) =
(1 + 𝑟)𝜋ெ

1 + 𝜇
𝑝 + 𝐶Ωଵ(𝑝), (3) 

where Ω௡(𝑝) = (1 − 𝑝) ቀ
ଵି௣

௣
ቁ

ഋ

೙
.  

Secondly, if 𝑘௜ = 0 while 𝑘௝ = 1, 𝑣௜ satisfies the following ODE: 

 (𝑟 + 𝜆𝑝)𝑣௜ + 𝜆𝑝(1 − 𝑝)𝑣௜
ᇱ = (𝑟 + 𝜆𝑝)𝑠, (4) 

whose explicit solution is   

 𝑣௜(𝑝) = 𝑠 + 𝐶Ωଵ(𝑝). (5) 

Finally, when 𝑘௜ = 𝑘௝ = 1, 

 
(𝑟 + 2𝜆𝑝)𝑣௜ + 2𝜆𝑝(1 − 𝑝)𝑣௜

ᇱ = 𝜆𝑝((1 + 𝑟)𝜋ெ + 𝑠). 
(6) 

whose solution is  

 𝑣௜(𝑝) =
(1 + 𝑟)𝜋ெ + 𝑠

2 + 𝜇
+ 𝐶Ωଶ(𝑝). (7) 

I now give a characterization of MPE. It turns out to be in cut-

off strategies and the equilibrium is unique. 

 

Proposition 1. There exists a unique Markov perfect equilibrium in 

cut-off strategies. The MPE is characterized by a cut-off  𝑝̅. Each 

firm experiments until the common posterior belief falls down to  𝑝̅ 

and then simultaneously switched to the safe arm. Firm 𝑖′ s 

equilibrium payoff is given by 

 

𝑣௜(𝑝) =

⎩
⎨

⎧
𝑠                                                          𝑖𝑓 𝑝 ∈ [0, 𝑝̅)

(1 + 𝑟)𝜋ெ + 𝑠

2 + 𝜇
𝑝 + 𝐶௥௥𝛺ଶ(𝑝)      𝑖𝑓 𝑝 ∈ (𝑝̅, 1]

 (8) 

where 𝐶௥௥ =
ଶ௦((ଵା௥)గಾି(ଵାఓ)௦)

(ଶାఓ)ቀ(ଵା௥)గಾି௦ቁఆమ(௣̅)
> 0.  
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Proof. Proving the existence of the proposed equilibrium follows 

from a verification argument. It is enough to show that when firm 

𝑗′s strategy is fixed to the cut-off strategy with cut-off  𝑝̅ , the 

very same strategy is indeed firm 𝑖′s best response.  

     In the range [0, 𝑝̅], if firm 𝑖 pulls the safe arm, then 𝑣௜(𝑝) = 𝑠 =

𝐷௜(𝑝; 0) in that range so that a deviation is not profitable. On the 

other hand, in the range (𝑝̅, 1], if firm 𝑖 pulls the risky arm, then 𝑣௜ 

satisfies the differential equation (6). As 𝐷௜(𝑝; 1) < 𝑠 in that range, 

it is enough to show that 𝑣௜ ≥ 𝑠. 

     First note that from the value matching condition, 𝑣௜(𝑝̅ +) = 𝑠. 

Then from the equation (6), 𝑣௜
ᇱ(𝑝̅ +) = 0. Since 𝑣௜

ᇱᇱ(௣)
= 𝐶Ωଶ′′(𝑝) by 

equation (7) and Ωଶ′′(𝑝) ≥ 0 , showing 𝐶 > 0  implies 𝑣௜  is non-

decreasing in that region and the existence is proved. From the 

value matching condition, 𝐶 = 𝐶௥௥ can be derived as stated in the 

proposition and it is indeed larger than 0 because of the assumption 

that 𝜇 ≤ 1 and 𝜋ெ > 2𝑠. 

     To show uniqueness, first define 𝑝ᇱ = inf {𝑝: ൫𝑘௜, 𝑘௝൯ ≠ (0,0)} . 

Then clearly 𝑣௜(𝑝̅ +) = 𝑠. If 𝑝ᇱ < 𝑝̅, there must exist some 𝑝 < 𝑝′ in 

the right-neighborhood of  𝑝̅ where at least one firm (WLOG, 𝑖) is 

pulling the risky arm. Suppose firm 𝑗 also pulls the risky arm at 𝑝. 

Then as 𝑝 < 𝑝̅, 𝐷௜(𝑝; 1) > 𝑠 . Hence if 𝑝  is sufficiently close to 𝑝′ , 

𝑣௜(𝑝) locates below 𝐷௜(𝑝; 1) so that it is better for firm 𝑖 to pull the 

safe arm at the posterior belief 𝑝. This implies that at most one 

firm should be pulling the risky arm in the right-neighborhood of 

𝑝′. Then in that neighborhood, 𝑣௜ satisfies the differential equation 

(2). As 𝑣௜(𝑝ᇱ) = 𝑠, the assumption that 𝑝ᇱ < 𝑝̅ implies 𝑣௜
ᇱ(𝑝ᇱ +) < 0. 

Then it is optimal for firm 𝑖  to pull the safe arm in the right 
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neighborhood of 𝑝′. Therefore, 𝑝ᇱ ≥ 𝑝̅ should be met and both firms 

must pull the safe arm at every 𝑝 ≤ 𝑝̅ in equilibrium.  

     For the posterior beliefs 𝑝 ∈ (𝑝̅, 1], first note that  𝑝̅ is the very 

same cut-off of the single-agent optimal stationary Markovian 

decision. Then it is clear that 𝑝ᇱ = 𝑝̅, since otherwise, each firm 

faces a single-agent problem so that conducting an 

experimentation is optimal. From a similar argument, ൫𝑘௜, 𝑘௝൯ = (0,0) 

can be ruled out in this range. Next, we can show that both firms 

must be pulling the risky arm in the right-neighborhood of 𝑝̅. If 

firm 𝑖  is pulling the safe arm in that neighborhood while firm 𝑗 

isn’t, 𝑣௜ = 𝑠 > 𝐷௜(𝑝; 1). Hence it is profitable for firm 𝑖 to deviate to 

the risky arm. On the other hand, both firms pulling the risky arm 

is a mutual best response. This implies that 𝑣௜ is increasing and 

convex in the right-neighborhood of 𝑝̅. 

    Now suppose that there is some 𝑝 > 𝑝̅  where ൫𝑘௜, 𝑘௝൯ = (0,1) 

happens in equilibrium. Then as 𝐷௜(𝑝; 1) < 𝑠 at that belief, 𝑣௜(𝑝) ≤

𝐷௜(𝑝; 1) < 𝑠 should hold as well. As 𝑣௜ ≥ 𝑠 in the right-neighborhood 

of 𝑝̅, there must exist some  𝑝̂ ∈ (𝑝̅, p) such that 𝑣௜(௣ො) = 𝑠 and 𝑣௜
ᇱ(𝑝̂) ≤

0. From equation (2), (4), and (6), ቀ𝑘௜(𝑝̂), 𝑘௝(𝑝̂)ቁ = (0,1) is the only 

consistent action. Then it means that in some left-neighborhood of 

𝑝̂ , (0,1) is played in equilibrium. However, 𝑣௜
ᇱ(𝑝̂) ≤ 0 implies that 

𝑣௜ ≥ 𝑠 > 𝐷(𝑝; 1) in such neighborhood, meaning that pulling the risky 

arm is optimal for firm 𝑖 . Therefore, only (1,1)  can happen in 

equilibrium for 𝑝 ∈ (𝑝̅, 1], establishing the uniqueness of MPE. □   
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Figure 1 illustrates the equilibrium value function on the (𝑝, 𝑣)-

plane. The parameters for this example are (𝑠,  𝜋ெ, 𝜋஽, 𝑟, 𝜆) =

(0.16, 1, 0.44, 0.1, 0.2). There is a remark to be made here. The strategy 

that each firm takes in the unique equilibrium coincides with the 

single-agent decision and the optimal decision when firms form a 

cartel. This result is analogous to the counterpart of Das and Klein 

(2020) and that of Besanko and Wu (2013) with no payoff 

externality. A few twists in the model can alter the result. For 

instance, if the duration of patent protection is finite, then the firm 

who failed to make a breakthrough can still benefit from the 

opponent’s invention once the patent is expired. Then there is some 

positive payoff externality. In addition, the value of the safe project 

might deteriorate. One can think of a cellular phone that was replaced 

by smartphone. In this case, one firm’s experimentation brings a 

negative payoff externality. Then the equilibrium can be different as 

Figure 1. Equilibrium value function under NT environment 
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well.  

 

 

4. Home Bias Environment 

 

Now I turn to the home bias environment where the regulator 

ignores national treatment principle and favors the domestic firms 

against the foreign firms. The foreign firm’s patent is not well 

enforced under this environment. The infringement by the domestic 

firm is not punished, and the firms engage in an oligopolistic product 

market competition. The domestic firm’s patent is well enforced so 

that the domestic firm can safely reap the monopoly profit if it makes 

a breakthrough. 

 

4.1. Best Responses 

 

In this environment, the domestic firm (firm 1)’s Bellman 

equation of the value function is given as, 

 𝑣ଵ = 𝑠 + 𝑘ଶ𝑏஽(𝑝, 𝑣) + max
௞భ∈{଴,ଵ}

{𝑘ଵ(𝑏ெ(𝑝, 𝑣) − 𝑐ெ(𝑝))}. (9) 

Likewise, the foreign firm (firm 2)’s Bellman equation of the 

value function is given as, 

 𝑣ଶ = 𝑠 + 𝑘ଵ𝑏ௌ(𝑝, 𝑣) + max
௞మ∈{଴,ଵ}

{𝑘ଶ(𝑏஽(𝑝, 𝑣) − 𝑐஽(𝑝))}. (10) 

New terms 𝑏஽(𝑝, 𝑣)  and 𝑐஽(𝑝)  are defined analogously as the 

counterparts were at section 31. For firm 1, own experimentation 

brings the marginal payoff of 𝑏ெ(𝑝, 𝑣), while at the same time it incurs 

 
1 𝑏஽(𝑝, 𝑣) = 𝜆𝑝(𝜋஽ − 𝑣 − (1 − 𝑝)𝑣ᇱ)/𝑟, 𝑐஽(𝑝) = 𝑠 − 𝜆𝑝𝜋஽. 
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an instant opportunity cost 𝑐ெ(𝑝). Under the HB environment, firm 1 

enjoys the better marginal payoff from firm 2’s experimentation 

(𝑏஽(𝑝, 𝑣)), due to the duopoly profit when firm 2 makes a first 

breakthrough. For firm 2, it enjoys the same benefit from firm 1’s 

experimentation as firm 1 can have the same level of protection as in 

the NT environment. On the other hand, the marginal cost and benefit 

of own experimentation differs from the previous section because it 

can only earn a duopoly profit even if it wins the R&D race. 

The same method can be used to characterize each firm’s best 

response. For any posterior belief 𝑝, each firm pulls either the safe 

or the risky arm based on the relative position of 𝑣 and some affine 

function 𝐷௜(𝑝; 𝑘௝) . The followings are the representation of two 

firms’ best responses: 

𝑘ଵ
∗ ቐ

= 0              𝑖𝑓 𝑣ଵ(𝑝) < 𝐷ଵ(𝑝; 𝑘ଶ)

∈ {0,1}       𝑖𝑓 𝑣ଵ(𝑝) = 𝐷ଵ(𝑝; 𝑘ଶ)

= 1              𝑖𝑓 𝑣ଵ(𝑝) > 𝐷ଵ(𝑝; 𝑘ଶ)
 

𝑘ଶ
∗ ቐ

= 0              𝑖𝑓 𝑣ଶ(𝑝) < 𝐷ଶ(𝑝; 𝑘ଵ)

∈ {0,1}       𝑖𝑓 𝑣ଶ(𝑝) = 𝐷ଶ(𝑝; 𝑘ଵ)

= 1              𝑖𝑓 𝑣ଶ(𝑝) > 𝐷ଶ(𝑝; 𝑘ଵ).
 

Here, 𝐷ଵ(𝑝; 𝑘ଶ) = 𝑠 + 𝑘ଶ𝑐ெ(𝑝) −
ଵ

ఓ
(𝜋ெ − 𝜋஽)𝑘ଶ𝑝  and 𝐷ଶ(𝑝; 𝑘ଵ) = 𝑠 +

𝑘ଵ𝑐஽(𝑝) −
ଵ

ఓ
(𝜋஽ − 𝑠)𝑘ଵ𝑝. As one can see, 𝐷௜ is a constant function when 

the opponent is pulling the safe arm. On the other hand, it is an affine 

function with a negative slope which passes through a certain point 

(𝑝̅௜ , 𝑠) . From a simple calculation, one can obtain  𝑝̅ଵ =
ఓ௦

(ଵା௥)గಾିగವ 

and  𝑝̅ଶ =
ఓ௦

(ଵା௥)గವି௦
. 

As for  𝑝̅ଵ and 𝑝̅ଶ, note that 𝑝̅ଵ ∈ (0,1) by the assumptions 𝜇 ≤ 1 

and 𝜋ெ > 2𝜋஽ > 2𝑠 . Meanwhile, 𝑝̅ଶ  can be larger than 1. The 

necessary and sufficient condition for 𝑝̅ଶ  to be smaller than 1 is 
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(1 + 𝑟)𝜋஽ > (1 + 𝜇)𝑠. 

 

4.2. Markov Perfect Equilibrium 

 

Before moving on to the characterization of the equilibrium, 

solving for the value functions explicitly can be useful. Unlike section 

3, the value functions vary by the identity of the firm conducting the 

experimentation. When both firms are pulling the safe arm, i.e., 

(𝑘ଵ, 𝑘ଶ) = (0,0) , obviously 𝑣ଵ = 𝑣ଶ = 𝑠 . The followings are the 

differential equations and the explicit solutions for all other cases. 

● (𝑘ଵ, 𝑘ଶ) = (1,0):  

 
(𝑟 + 𝜆𝑝)𝑣ଵ + 𝜆𝑝(1 − 𝑝)𝑣ଵ

ᇱ = 𝜆𝑝(1 + 𝑟)𝜋ெ (11) 

 
𝑣ଵ(𝑝) =

(1 + 𝑟)𝜋ெ

1 + 𝜇
𝑝 + 𝐶Ωଵ(𝑝) (12) 

 
(𝑟 + 𝜆𝑝)𝑣ଶ + 𝜆𝑝(1 − 𝑝)𝑣ଶ

ᇱ = (𝑟 + 𝜆𝑝)𝑠 (13) 

 
𝑣ଶ(𝑝) = 𝑠 + 𝐶Ωଵ(𝑝) (14) 

● (𝑘ଵ, 𝑘ଶ) = (0,1):  

 
(𝑟 + 𝜆𝑝)𝑣ଵ + 𝜆𝑝(1 − 𝑝)𝑣ଵ

ᇱ = 𝑟𝑠 + 𝜆𝑝𝜋ெ (15) 

 
𝑣ଵ(𝑝) = 𝑠 +

𝜋஽ − 𝑠

1 + 𝜇
𝑝 + 𝐶Ωଵ(𝑝) (16) 

 
(𝑟 + 𝜆𝑝)𝑣ଶ + 𝜆𝑝(1 − 𝑝)𝑣ଶ

ᇱ = 𝜆𝑝(1 + 𝑟)𝜋஽ (17) 

 
𝑣ଶ(𝑝) =

(1 + 𝑟)𝜋஽

1 + 𝜇
𝑝 + 𝐶Ωଵ(𝑝) (18) 

● (𝑘ଵ, 𝑘ଶ) = (1,1):  

 
(𝑟 + 2𝜆𝑝)𝑣ଵ + 2𝜆𝑝(1 − 𝑝)𝑣ଵ

ᇱ = 𝜆𝑝{(1 + 𝑟)𝜋ெ + 𝜋஽} (19) 
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𝑣ଵ(𝑝) =

(1 + 𝑟)𝜋ெ + 𝜋஽

2 + 𝜇
𝑝 + 𝐶Ωଶ(𝑝) (20) 

 
(𝑟 + 2𝜆𝑝)𝑣ଶ + 2𝜆𝑝(1 − 𝑝)𝑣ଶ

ᇱ = 𝜆𝑝{(1 + 𝑟)𝜋஽ + 𝑠} (21) 

 
𝑣ଶ(𝑝) =

(1 + 𝑟)𝜋஽ + 𝑠

2 + 𝜇
𝑝 + 𝐶Ωଶ(𝑝) (22) 

Now I characterize the MPEs under HB environment: 

 

Proposition 2. There is a unique Markov perfect equilibrium under 

HB environment. Equilibrium strategies are in cut-off strategies 

where each cut-off coincides with the single-agent cut-off  𝑝̅ 

and  𝑝̅ଶ. Each firm conducts experiment above its cut-off level and 

stops experimenting below the cut-off. If  𝑝̅ଶ > 1, firm 2 never 

enters the R&D race and always play safe. The equilibrium payoff 

for each firm is given by 

 

𝑣ଵ(𝑝) =

⎩
⎪
⎨

⎪
⎧

𝑠                                                             𝑖𝑓 𝑝 ∈ [0, 𝑝̅]

(1 + 𝑟)𝜋ெ

1 + 𝜇
𝑝 + 𝐶ଵ

௥௦𝛺ଵ(𝑝)                  𝑖𝑓 𝑝 ∈ (𝑝̅, 𝑝̅ଶ]

(1 + 𝑟)𝜋ெ + 𝜋஽

2 + 𝜇
𝑝 + 𝐶ଵ

௥௥𝛺ଶ(𝑝)      𝑖𝑓 𝑝 ∈ (𝑝̅ଶ, 1]

 (23) 

and 

 
𝑣ଶ(𝑝) = ቐ

𝑠                                                             𝑖𝑓 𝑝 ∈ [0, 𝑝̅ଶ]

(1 + 𝑟)𝜋஽ + 𝑠

2 + 𝜇
𝑝 + 𝐶ଶ

௥௥𝛺ଶ(𝑝)         𝑖𝑓 𝑝 ∈ (𝑝̅ଶ, 1]
 (24) 

If  𝑝̅ଶ < 1 . If otherwise, last cases of 𝑣ଵ  and 𝑣ଶ  are removed. 

Constants 𝐶ଵ
௥௦ , 𝐶ଵ

௥௥ , and 𝐶ଶ
௥௥  are determined by value matching 

conditions and they are all non-negative. 𝑣ଶ is smooth while 𝑣ଵ has 

a kink at 𝑝 = 𝑝̅ଶ. 

 

Proof. Proving the existence of the proposed equilibrium follows 

from the verification argument. Let’s fix firm 1’s strategy as 
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described in the proposition. In the range [𝑝, 𝑝̅], firm 2 is essentially 

facing the single-agent problem and it is optimal to play safe. In 

the range (𝑝̅, 𝑝̅ଶ], if firm 2 is playing safe, equation (14) with value 

matching condition at  𝑝̅ indicates 𝑣ଶ = 𝑠 in that range. As 𝐷ଶ(𝑝; 1) >

𝑠 in this range, pulling the safe arm is indeed optimal. It means that 

if  𝑝̅ଶ > 1, firm 2 is playing its best response. Finally, in the range 

(𝑝̅ଶ, 1] when  𝑝̅ଶ < 1, equation (22) with value matching condition at 

𝑝 = 𝑝̅ଶ  reveals that 𝐶ଶ
௥௥ ≥ 0 . Equation (21) also reveals that 

𝑣ଶ
ᇱ (𝑝̅ଶ +) = 0. Hence 𝑣ଶ is non-decreasing, convex and smooth in 

that region, implying that it is well above 𝐷ଶ(𝑝; 1) so that pulling the 

risky arm is firm 2’s best response. 

     Now let’s fix firm 2’s strategy as given in the proposition and 

find out if firm 1’s proposed strategy is indeed its best response. 

Analogous to the previous argument, firm 1 is facing a single-agent 

problem in the range [0, 𝑝̅ଶ] so pulling the risky arm if and only if 

𝑝 > 𝑝̅ is the best response. Thus if  𝑝̅ଶ > 1, the proposed strategy 

is firm 1’s best response. The value matching condition at  𝑝 = 𝑝̅ଵ 

yields 𝐶ଵ
௥௦ ≥ 0 and equation (11) leads to  𝑣ଵ

ᇱ (𝑝̅ଵ) = 0. Hence 𝑣ଵ is 

non-decreasing and convex in that range. To see the case where 

𝑝 ∈ (𝑝̅ଶ, 1] when  𝑝̅ଶ < 1, it is enough to show that 𝐶ଵ
௥௥ ≥ 0. The value 

matching condition at 𝑝 = 𝑝̅ଶ leads to 

(1 + 𝑟)𝜋ெ

1 + 𝜇
𝑝̅ଶ + 𝐶ଵ

௥௦Ωଵ(𝑝̅ଶ) =
(1 + 𝑟)𝜋ெ + 𝜋஽

2 + 𝜇
𝑝̅ଶ + 𝐶ଵ

௥௥(𝑝̅ଶ). 

By the assumption 𝜇 ≤ 1, one can easily derive 
(ଵା௥)గಾ

ଵାఓ
≥

(ଵା௥)గಾାగವ

ଶାఓ
. 

Together with the fact that 𝐶ଵ
௥௦ ≥ 0, 𝐶ଵ

௥௥ ≥ 0 also holds. 

     Turning to the uniqueness, it can be easily shown that 

below  𝑝̅ଵ, both firms should be pulling the safe arm. Let’s define 

𝑝ᇱ = inf {𝑝: (𝑘ଵ(𝑝), 𝑘ଶ(𝑝)) ≠ (0,0)} and suppose that 𝑝ᇱ < 𝑝̅ . If (1,1) is 
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played near 𝑝′, 𝑣ଶ  is well below 𝐷ଶ(𝑝, 1) at such belief. Hence it 

could not happen in equilibrium. If only one firm is conducting an 

experimentation in the right-neighborhood of 𝑝′, such firm is facing 

a single-agent problem and it is optimal to opt out.  

     Now it is clear that 𝑝ᇱ = 𝑝̅ since if  𝑝ᇱ > 𝑝̅, firm 1 faces a single-

agent problem at 𝑝′  and has an incentive to extend its 

experimentation below that belief. It can be easily shown that only 

(1,0) can happen in the right-neighborhood of 𝑝̅ in equilibrium. If 

(0,1) is played instead, it can be derived from equation (17) that 

𝑣ଶ
ᇱ (𝑝̅ +) < 0. This implies that firm 2 is willing to deviate to pull the 

safe arm. If (1,1) is played instead, by the value matching condition 

𝑣ଶ is close to 𝑠 so that it locates below 𝐷ଶ(𝑝; 1) near 𝑝̅ implying the 

incentive to pull the safe arm. 

     The above result can be extended to (𝑝̅, 𝑝̅ଶ]. The only possible 

equilibrium behavior in that range is (1,0). Define 𝑝ଶ
ᇱ = inf {𝑝: 𝑘ଶ(𝑝) =

1}. Then regardless of firm 1’s behavior at that belief, 𝑣ଶ(𝑝ଶ
ᇱ ) = 𝑠. 

Suppose 𝑝ଶ
ᇱ < 𝑝̅ଶ . If 𝑘ଵ = 1  in some right-neighborhood of 𝑝ଶ

ᇱ , 𝑣ଶ 

locates below 𝐷ଶ(𝑝; 1) so that it is optimal for firm 2 to play safe. 

Then it contradicts with the definition of 𝑝ଶ
ᇱ . If 𝑘ଵ = 0 in some right-

neighborhood of 𝑝ଶ
ᇱ , the value matching condition together with 

equation (17) leads to 𝑣ଶ
ᇱ (𝑝ଶ

ᇱ ) < 0, implying that pulling the safe arm 

is firm 2’s best response. Thus 𝑝ଶ
ᇱ ≥ 𝑝̅ଶ and firm 2 always pulls the 

safe arm below 𝑝 = 𝑝̅ଶ in equilibrium. Given such result, it is optimal 

for firm 1 to pull the risky arm in (𝑝̅, 𝑝̅ଶ].  

     The final step is to show that only (1,1) is compatible with the 

equilibrium in (𝑝̅ଶ, 1]. For that, first note that 𝑝ଶ
ᇱ  exactly coincides 

with 𝑝̅ଶ. If not, it should be the case that 𝑘ଵ = 0 along (𝑝̅ଶ, 𝑝ଶ
ᇱ ] since 

otherwise, 𝐷ଶ(𝑝; 1) will locate below 𝑣ଶ = 𝑠 in that range. However, 
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the value matching can never happen for 𝑣ଵ at 𝑝 = 𝑝̅ଶ in this case. 

Therefore, 𝑝ଶ
ᇱ = 𝑝̅ଶ. Moreover, in the right-neighborhood of 𝑝̅ଶ, firm 

1 must be pulling the risky arm because 𝑣ଵ ≥ 𝑠 in that neighborhood 

while 𝐷ଵ(𝑝; 1) < 𝑠 . Given these results, equation (21) and (22) 

combined with the value matching reveals that 𝑣ଶ  is non-

decreasing and convex in the right-neighborhood of 𝑝̅ଶ. 

     Now suppose that (1,0) is played at some belief above 𝑝̅ଶ in 

equilibrium. Then there must be some 𝑝̂ଶ > 𝑝̅ଶ such that 𝑣ଶ(𝑝̂ଶ) = 𝑠 

and 𝑣ଶ
ᇱ (𝑝̂ଶ) ≤ 0. Such characteristics are only consistent with (1,0). 

However, it holds that 𝑣ଶ ≥ 𝑠 > 𝐷ଶ(𝑝; 1) in the left-neighborhood of 

𝑝̂ଶ  so there is a profitable deviation. Next, suppose that (0,1) is 

played at some belief above 𝑝̅ଶ  in equilibrium. Then there must 

exist some 𝑝̂ଵ > 𝑝̅ଶ  such that 𝑣ଵ(𝑝̂ଵ) = 𝑠  and 𝑣ଵ
ᇱ (𝑝̂ଵ) ≤ 0 . Such 

properties are consistent only with (1,0) and the same argument 

leads to the contradiction. Therefore, only (1,1) is consistent with 

the equilibrium behavior in  (𝑝̅ଶ, 1], which completes the proof. □ 

 

Figure 2 gives an example of equilibrium value functions under 

certain parameters. The parameters are the same as those of figure 

1. A discriminatory patent enforcement can have two effects. First, 

the domestic firm may have an incentive to free-ride on the foreign 

firm’s experimentation to earn a duopoly profit without incurring 

any opportunity cost. According to proposition 2, this effect is 

negligible as firm 1 does not free-ride on firm 2’s R&D investment. 

This is because I assumed that 𝜋ெ > 2𝜋஽. The duopoly profit is too 

small to make firm 1 free-ride. To be more specific, the domestic 

firm does not free-ride when 𝑝̅ଵ < 𝑝̅ଶ. Secondly, the foreign firm is 

discouraged from experimenting because it can only earn a small 
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profit flow of 𝜋஽ even if the firm makes the breakthrough. This one 

is effective so that firm 2 stops experimenting at 𝑝̅ଶ > 𝑝̅.   

It is also noteworthy that the equilibrium is unique. Other papers 

such as KRC and DKS describe multiple equilibria, especially the ones 

with switches. In this paper, firm 2 cannot free-ride on firm 1’s 

effort, rendering firm 2 to cease experimenting below 𝑝̅ଶ. As for firm 

1, it has some incentive to free-ride on firm 2’s effort. However, at 

posterior beliefs above 𝑝̅ଶ , firm 1 is too optimistic to stop 

experimenting only for a humble profit 𝜋஽. Just like the remark made 

in section 3, the results might change if the profit flow of the safe 

project deteriorates after a breakthrough.   

The uniqueness results in proposition 1 and 2 together with cut-

off strategy property of the unique MPEs in both environments 

facilitate welfare comparison, which is covered in the next section. 

 

Figure 2. Equilibrium value functions under HB environment 
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5. Welfare Analysis 

 

In this section, I compare the two environments covered in 

section 3 and 4 in terms of R&D behavior and national welfare.  

As in KRC, let’s define the amount of experimentation as  

න 𝐾௧𝑑𝑡 = −
1

𝜆
න

1

𝑝(1 − 𝑝)
𝑑𝑝 =

1

𝜆
[log Ω(𝑝) ]௣బ

௣ᇲ
௣ᇲ

௣బ

ஶ

଴

 

where 𝑝′  is the posterior belief at which every firm ceases to 

experiment. 

As 𝑝ᇱ = 𝑝̅ for both environments, the amount of experimentation 

given no breakthrough is equal. On the other hand, there is a 

difference in the intensity of experimentation between two 

environments. While NT environment shows a bang-bang feature, 

i.e, both firms experiment until the belief falls down to 𝑝̅ and stop 

simultaneously, the foreign firm retreats to the safe arm well before 

the belief becomes 𝑝̅ in HB environment. In the latter environment 

there is a positive measure of beliefs where only the domestic firm 

conducts experimentation. Hence HB environment results in less 

intense R&D behavior. 

From the perspective of the domestic regulator, there are more 

than profits of domestic and foreign firms; consumer surplus must be 

taken into account as in Besanko and Wu (2013). In my model, the 

regulator faces a trade-off when making a decision between the two 

environments. If the domestic firm infringes on the foreign firm’s 

patent, the regulator enjoys a larger static national welfare as the 

domestic firm earns some profit and consumers benefit from the 

lower price. However, such infringement discourages the foreign firm 

from experimenting. If this is the case, the breakthrough comes at a 
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slower rate so that the regulator may have to wait for a long time 

before it can reap the potential surpluses. The relative magnitude of 

the two effects depends on the relative size of the monopoly profit, 

duopoly profit, and consumer surplus, which in turn depends on the 

market structure of the product market. 

Let 𝑐ௌ denote the consumer surplus when the market structure 

is given as 𝑆 (𝑆 ∈ {𝐷, 𝑀}). Likewise, let 𝜋ௌ denote one firm’s profit 

given the market structure 𝑆. Now let’s define the national welfare 

under the market structure 𝑆 as 𝑤ௌ = 𝜋ௌ + 𝑐ௌ. National welfare is the 

sum of the domestic firm’s profit and the consumer surplus.  

The next step is to calculate the expected average welfare under 

the two IPR environments and compare those. For that, I begin with 

calculating the stopping time when no breakthrough is observed. 

Under NT environment, the experimenting time 𝑡∗  satisfies the 

following equation: 

𝑝̅ =
𝑝଴𝑒ିଶఒ௧∗

(1 − 𝑝଴) + 𝑝଴𝑒ିଶఒ௧∗ 

which could be rearranged as 𝑡∗ =
ଵ

ଶఒ
(log ቀ

ଵି௣̅

௣̅
ቁ − log(

ଵି௣బ

௣బ
)) . In this 

environment, both the domestic and the foreign firm experiment for 

𝑡∗ and then simultaneously quit if there has been no breakthrough.  

Under HB environment, both firm experiment for some time 𝑡ଶ
∗ 

and if no firm has made a breakthrough, firm 2 quits and firm 1 

continues to experiment for 𝑡ଵ
∗. If no breakthrough is observed, firm 

1 also quits and pulls the safe arm. By proposition 2, 𝑡ଶ
∗ and 𝑡ଵ

∗ safisfy 

the following equations: 

𝑝̅ଶ =
𝑝଴𝑒ିଶఒ௧మ

∗

(1 − 𝑝଴) + 𝑝଴𝑒ିଶఒ௧మ
∗ 

𝑝̅ =
𝑝̅ଶ𝑒ିఒ௧భ

∗

(1 − 𝑝̅ଶ) + 𝑝̅ଶ𝑒ିఒ௧భ
∗ 
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which could be rearrange as 𝑡ଶ
∗ =

ଵ

ଶఒ
(log ቀ

ଵି௣̅మ

௣̅మ
ቁ − log(

ଵି௣బ

௣బ
))  and 𝑡ଵ

∗ =

ଵ

ఒ
(log ቀ

ଵି௣̅

௣̅
ቁ − log(

ଵି௣̅మ

௣̅మ
)). 

Now every component to calculate the national welfare is ready. 

Let 𝑊௘௡௩  be the expected average welfare under a specific 

environment (𝑒𝑛𝑣 ∈ {𝑁𝑇, 𝐻𝐵}). Then, 

𝑊ே் = 𝑟[𝑝଴ න 𝑒ି௥௧
௧∗

଴

2𝜆𝑒ିଶఒ௧
(𝑤ெ + 𝑐ெ)

2𝑟
𝑑𝑡

+ ൫1 − 𝑝଴ + 𝑝଴𝑒ିଶఒ௧∗
൯ න 𝑒ି௥௧𝑠𝑑𝑡 

ஶ

௧∗
] 

 and 

𝑊ு஻ = 𝑟[𝑝଴ න 𝑒ି௥௧2𝜆𝑒ିଶఒ௧
(𝑤ெ + 𝑤஽)

2𝑟

௧మ
∗

଴

𝑑𝑡

+ 𝑝଴𝑒ିଶఒ௧మ
∗

න 𝑒ି௥ 𝜆𝑒ିఒ(௧ି௧మ
∗) 𝑤ெ

𝑟
𝑑𝑡

௧మ
∗ା௧భ

∗

௧మ
∗

+ ൫1 − 𝑝଴ + 𝑝଴𝑒ିଶఒ௧మ
∗
𝑒ିఒ௧భ

∗
൯ න 𝑒ି௥௧𝑠𝑑𝑡

ஶ

௧మ
∗ା௧భ

∗
 ] 

Finally, I compare the relative size between 𝑊ே் and 𝑊ு஻ and 

see how it differs as the product market structure changes. Here I do 

this by an example. Let’s fix the market demand function to be 𝑄 =

2 − 𝑃. Excluding price discrimination cases, the monopoly price would 

be 1. However, the duopoly price can differ depending on the mode 

of competition. If the two firms engage in a Bertrand competition, the 

price would fall down to 0. On the other hand, the price would be 

close to 1 if two firms can collude. Having this duopoly price as the 

x-axis, I plot the net benefit of HB environment, which is figure 3.  
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Figure 3 shows that the net benefit of HB environment is 

maximized when the duopoly price is intermediate. If the duopoly 

market is too competitive, the foreign firm doesn’t have enough 

incentive to experiment and quit very quickly. Hence the arrival of 

breakthrough is very slow. If the market is collusive, foreign firm 

now has enough incentive to experiment, but consumer do not reap 

much benefit from that.  

 

 

6. Conclusion 

 

In this paper, I characterized the unique Markov perfect 

equilibrium under two different patent protection environments: 

national treatment environment and home bias environment. In both 

environments, all firms use cut-off strategies in equilibrium with 

cut-off which coincides with the cut-off of single-agent decision 

problem. As the minimal posterior belief at which all firms cease to 

Figure 3. Net benefit of HB environment with respect to the duopoly price 
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experiment is identical for both environments, the amount of 

experimentation is also the same. However, the large single-agent 

cut-off for the foreign firm under HB environment results in less 

intensity of aggregate experimentation in HB environment than in NT 

environment.  

I also compared national welfare between the two patent 

protection environments and did comparative statics with respect to 

the level of competition in a duopolistic product market with an 

example. According to this example, having a HB environment is 

much better for the national welfare if the level of product market 

competition is intermediate. If the market is very competitive, the 

foreign firm refrains from doing R&D at the outset so that the speed 

of innovation is very slow. On the other hand, if the market is very 

collusive, consumers enjoy less benefit from the domestic firm’s 

patent infringement.  

The main drawback of this paper is that I considered only the 

domestic market when calculating the payoff. In the real world, firms 

earn profits from the international market and these affects the 

firms’ behavior. One possible future research would be to 

characterize the equilibria of a strategic experimentation game with 

general asymmetric payoff to take into account profits from the 

international market. Analyzing a policy setting game as in Scotchmer 

(2004) between multiple countries also can be a next step.  
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국문초록 

 

본 연구에서는 두 가지의 특허 보호 환경, 외국 출원자에 대한 내국민대우가 

잘 지켜지는 경우와 그렇지 못한 경우를 비교한다. 두 환경 모두에서, 자국 

기업과 타국 기업 사이의 기술개발 경주 게임에는 마르코프 완전 균형이 

유일하게 존재하며, 각 기업은 균형에서 절단전략을 따르는 것을 보인다. 

탐험의 총량은 두 환경 사이에 동일하나, 탐험의 밀도는 내국민대우가 

지켜지는 환경에서 더 높다.  국가 후생 측면에서의 비교 분석을 통해 두 환경 

간의 우열은 제품 시장의 경쟁도에 대해 비선형적인 관계가 있음을 보인다. 

 

주요어 : 전략적 탐험, 멀티 암드 밴딧, 기술개발 경주, 지식재산권, 

내국민대우 
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