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ABSTRACT

Two Issues in Classification:

Fairness and Extremely Imbalanced

Classifications

Sarah Kim

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we deal with two issues that arise when solving

classification problems. The first of which is fairness in artificial

intelligence (AI). As they have a vital effect on social decision-

making, AI algorithms not only should be accurate and but also

should not pose unfairness against certain sensitive groups (e.g.,

non-white, women). Various specially designed AI algorithms to

ensure trained AI models to be fair between sensitive groups have

been developed. On the other hand, individual fairness emerged

because an AI model that is between-group fair can treat in-

dividuals unfairly. However, to find individual-fair algorithms in
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practice, one must first specify metrics between individuals. Un-

fortunately, this can be vague and hard to understand in most

tasks. In this thesis, we introduce a better guide to between-group

fairness, so-called within-group fairness, which requires that AI

models be fair for those in a same sensitive group and those in

different sensitive groups. Within-group fairness leads to training

an AI model that satisfies between-group fairness and individ-

ual fairness in the same sensitive group. We materialize the con-

cept of within-group fairness by proposing corresponding mathe-

matical definitions and developing learning algorithms to control

within-group fairness and between-group fairness simultaneously.

Numerical studies show that the proposed learning algorithms im-

prove within-group fairness without sacrificing accuracy as well as

between-group fairness.

The second is the classification problem when the imbalance

between classes is severe. Imbalanced machine learning problem

widely studies in various areas, including fraud detection, medical

diagnosis, etc. If there is an imbalance between the classes in the

data set, the machine learning algorithm learns with more weights

for classes with many examples and fewer weights for classes with

few examples. Intuitive and easy-to-use sampling methods such

as random oversampling (ROS) have been studied to resolve the

imbalance problem. However, simple ROS does not help learn a

classifier with better performance, especially in extremely imbal-

anced problems. In this thesis, we propose a new data augmenta-

tion procedure MixupROS motivated by Mixup and classification
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algorithms based on a supervised anomaly detection method. Mix-

upROS uses information from a major class to generate virtual ex-

amples belonging to a minor class. Meanwhile, data-level method-

ologies have limitations in improving classifier performance when

it is extremely imbalanced. Hence, we develop algorithms that are

extensions of the DeepSAD algorithm for extremely imbalanced

problems. Numerical studies on various imbalanced benchmark

datasets and CIFAR-10 show that our proposed methods outper-

form existing methods.

Keywords: Classification, Fairness in artificial intelligence, Within

group fairness, Imbalanced classification, Data augmentation, Su-

pervised anomaly detection

Student Number: 2014-22358
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Chapter 1

Introduction

Machine learning is a powerful learning method that performs well

in various applications such as image classification, machine trans-

lation, credit score predictions, etc. Machine learning algorithms

have been evolved rapidly over the past decades and offer the best

performance for most applications. However, despite its excellent

performance, there are some challenges with using machine learn-

ing models. This thesis points out two problems when working

with machine learning classification models: (i) fairness artificial

intelligence; (ii) extremely unbalanced classification.

Fairness artificial intelligence (FAI) is an area where research

has recently begun, and several studies have suggested that AI

may impose unfairness on some demographic groups [Kleinberg

et al., 2018; Mehrabi et al., 2019]. For example, in the recidivism

assessment task, AI predicted that blacks would have a higher re-

cidivism rate than whites. Since AI is increasingly being applied to
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social decision-making, AI algorithms should be accurate and not

pose unfairness against certain sensitive groups (e.g., non-whites,

women). However, since AI has been trained on datasets with his-

torical biases, trained AI models tend to bias or injustice.

Various learning algorithms to find a fair classifier have been

proposed. Generally speaking, they are trying to search for a clas-

sifier that is accurate and similar between sensitive groups. For an

example of similarity, Hardt et al. [2016] suggested that a classi-

fier’s true positive rates for each group are similar. Unfortunately,

a fair classifier similar between sensitive groups could be unfair

in a specific sensitive group. For this reason, individual fairness

[Dwork et al., 2012] has been proposed. However, to find indi-

vidual fair algorithms in practice, one must first specify metrics

between individuals, which is a very problematical task.

Chapter 2 introduces a better guide to group fairness, so-called

within-group fairness, which requires fairness between and within

sensitive groups. Within-group fairness leads to training a classi-

fier that meets group fairness and individual fairness in the same

sensitive group. The concept of within-group fairness is materi-

alized by proposing a corresponding mathematical definition and

developing a learning algorithm to control both between-group

and within-group fairness at the same time. Numerical studies

show that the proposed learning algorithm improves within-group

fairness without sacrificing accuracy and between-group fairness.

Another problem with using machine learning classification

models arises when class imbalances exist. Imbalanced machine
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learning problem widely studies in various areas, including fraud

detection, medical diagnosis, etc. [Phua et al., 2010; Warriach and

Tei, 2013]. In general, machine learning models perform poorly

when training data is extremely imbalanced between classes. This

is because the machine learning model’s training process focuses

on the major class, a class with many samples. Hence it is diffi-

cult for the classifier to learn features of the minor class, which

is a class with few samples [Garcia et al., 2007; He and Garcia,

2009; Visa and Ralescu, 2005]. Therefore, it requires additional

techniques to learn information from the minor class. To solve the

imbalance problem, several algorithms have been proposed [John-

son and Khoshgoftaar, 2019; Krawczyk, 2016].

In Chapter 3, we propose a new data augmentation procedure,

MixupROS, motivated by Mixup [Zhang et al., 2018] and classifica-

tion algorithms based on a supervised anomaly detection method

[Ruff et al., 2019]. MixupROS uses the information from the major

class to create a virtual example belonging to the minor class. On

the other hand, data-level methodologies, including oversampling

and data augmentation, have limitations in improving classifier

performance in extremely imbalanced cases. Hence, we develop

algorithms that are extensions of the DeepSAD algorithm [Ruff

et al., 2019] for extremely imbalanced problems. Numerical stud-

ies on various benchmark datasets verify that our proposed meth-

ods outperform existing methods. Concluding remarks follow in

Chapter 4.
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Chapter 2

Within-group fairness:

A guided to better

Between-group fairness

2.1 Introduction

Recently, AI (Artificial Intelligence) is being used as decision-

making tools in various domains such as credit scoring, criminal

risk assessment, education of college admissions [Angwin et al.,

2016]. As AI has a wide range of influences on human social life,

issues of transparency and ethics of AI are emerging. However, it

is widely known that due to the existence of historical bias in data

against ethics or regulatory frameworks for fairness, trained AI

models based on such biased data could also impose bias or un-

fairness against a certain sensitive group (e.g., non-white, women)
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[Kleinberg et al., 2018; Mehrabi et al., 2019]. Therefore, design-

ing an AI algorithm that is accurate and fair simultaneously has

become a crucial research topic.

Demographic disparities due to AI, which refer to socially un-

acceptable bias that an AI model favors certain groups (e.g., white,

men) over other groups (e.g., black, women), have been observed

frequently in many applications of AI such as COMPAS recidi-

vism risk assessment [Angwin et al., 2016], Amazon’s prime free

same-day delivery [Ingold and Soper, 2016],credit score evaluation

[Dua and Graff, 2017] to name just a few. Many studies have been

done recently to develop AI algorithms that remove or alleviate

such demographic disparities in trained AI models to treat sensi-

tive groups as equally as possible. In general, these methods try to

search AI models that are accurate and similar between sensitive

groups in a certain sense [Zafar et al., 2019]. From now on, cri-

teria of fairness requiring similarity between sensitive groups are

referred to as between-groups fairness (BGF).

However, BGF may be unfair at the individual level, as it can

be satisfied with simple statistical parity (e.g., positive rates) be-

tween sensitive groups. For example, if one enforces BGF, an un-

qualified individual can inadvertently result in positive outcomes,

while a more qualified individual can result in negative outcomes.

These concerns bring about a concept of individual fairness [Dwork

et al., 2012]: ‘similar’ people are treated similarly in classification

outcomes. Various studies [Dwork et al., 2012; Lahoti et al., 2019;

Yona and Rothblum, 2018] have proposed individual-level fairness
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metrics under a task-specific metric for the similarity between indi-

viduals and their learning algorithms. But, in practice, calculating

task-specific metrics between individuals is unclear and difficult to

understand, making it socially unacceptable. In this sense, BGF

is a more appealing concept for fairness AI, although it ignores

individual unfairness.

This thesis considers a better guide to BGF, so-called within-

group fairness (WGF), which conceptualizes individual unfairness

in the same sensitive group when trying to enforce BGF into

AI algorithms. Generally speaking, within-group unfairness occurs

when an individual is positively treated compared to others in the

same sensitive group by an AI model trained without BGF con-

straints but becomes negatively treated by an AI model trained

with BGF constraints.

For an illustrative example of WGF, consider a college admis-

sion problem where gender (men vs. women) is a sensitive variable.

Let X and Y ∈ {0, 1} be the input vector and the corresponding

output label where X represents the information of a candidate

student such as GPA at high school, SAT score, etc., and Y is the

admission result where 0 and 1 mean the rejection and acceptance

of the college admission, respectively. The Bayes classifier accepts

a student with X = x when Pr(Y = 1|X = x) > 1/2. Suppose that

there are two women ‘A’ and ‘B’ with the input vectors xA and xB,

respectively and the AI model trained without BGF constraints

estimates Pr(Y = 1|X = xB) > Pr(Y = 1|X = xA). Then, within-

group unfairness occurs when an AI model trained with BGF con-
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straints results in Pr(Y = 1|X = xA) > Pr(Y = 1|X = xB). In

this situation, which is illustrated in the left panel of Figure 3.1,

‘B’ could claim that the AI model trained with BGF constraints

mistreats her and so it is unfair. We will show in Section 2.5 that

there exists non-negligible within-group unfairness in AI models

trained on real data with BGF constraints.

Within-group unfairness arises because most existing learn-

ing algorithms for BGF force certain statistics (e.g., rate of pos-

itive prediction, misclassification error rate, etc.) of a trained AI

model being similar across sensitive groups but do not care about

what happens to individuals in the same sensitive group at all.

For within-group fairness, a desirable AI model is expected at

least to preserve the ranks between Pr(Y = 1|X = xA) and

Pr(Y = 1|X = xB) regardless of estimating Pr(Y = 1|X = x)

with or without BGF constraints, which is depicted in the right

panel of Figure 3.1. Thus, in the same sensitive group, it ensures

that more qualified individuals get positive outcomes than less

qualified individuals. In this sense, within-group fairness helps to

find AI models that are not only between-group fair but also in-

dividually fair in the same sensitive group.

Our contributions are three folds. We first define the concept of

WGF rigorously. Then we develop learning algorithms that com-

promise BGF and WGF, as well as accuracy. Finally, we show

empirically that the proposed learning algorithms improve WGF

while maintaining accuracy and BGF.

7



Estimated
score

Unconstrained
BGF

constrained

0.5

Within-group unfair

Unconstrained
BGF

constrained

0.5

Within-group fair

men women rank preserved rank changed

Figure 2.1: A toy example of within-group unfairness: The left

panel: without BGF constraints, there exists unfairness against the

women sensitive group, but with BGF constraints, the scores of

the two women become reversed and thus within-group unfairness

occurs. The right panel: the scores of the two women increase

together to achieve BGF without within-group unfairness.

Remark. One may argue that training data are prone to bias due

to historical prejudices and discriminations, and hence a trained

AI model is also biased and socially unacceptable. On the other

hand, a trained AI model with BGF constraints does not have

such bias and is socially acceptable. Therefore, it would be by

no means reasonable to claim unfairness based on discrepancies

between socially unacceptable and acceptable AI models. However,

note that historical bias in training data is about bias between

sensitive groups but not for individuals in the same sensitive group.
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For WGF, we implicitly assume that no historical bias among

individuals in the same sensitive group exists in training data,

which is not too absurd, and thus there is no reason for a trained

AI model without BGF constraints to treat individuals in the same

sensitive group unfairly. This assumption, of course, needs more

debates which we leave as future work.

In Section 2.2, we briefly review methods for BGF, and in

Sections 2.3 and 2.4, we propose mathematical definitions of WGF

and develop corresponding learning algorithms for classifiers and

score functions, respectively. The results of numerical studies are

presented in Section 2.5, and remarks about reflecting WGF to

pre- and post-processing algorithms for BGF are given in Section

2.6.

2.2 Review of between-group fairness

The concept of WGF is a by-product of BGF, and thus it is helpful

to review learning methods for BGF. In this section, we review the

definitions of BGF and related studies.

We let D = {(xi, zi, yi)}ni=1 be a set of training data of size n

which are independent copies of a random vector (X, Z, Y ) defined

on X ×Z ×Y, where X ⊂ Rp. We consider a binary classification

problem, which means Y = {0, 1}, and for notational simplicity,

we let Z = {0, 1}, where Z = 0 refers to the unprivileged group

and Z = 1 refers to the privileged group. Whenever the probability

is mentioned, we mean it by either the probability of (X, Z, Y ) or
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its empirical counterpart unless there is any confusion.

In this thesis, we consider AI algorithms which yield a real-

valued function f : X → R so-called a score function which as-

signs positive labeled instances higher scores than negative labeled

instances. An example of the score function is the conditional

class probability Pr(Y = 1|x = x). In most human-related deci-

sion makings, real-valued score functions are popularly used (e.g.,

scores for credit assessment).

Let F be a given set of score functions, in which we search

an optimal score function in a certain sense (e.g., minimizing the

cross-entropy for classification problems). Examples of F are lin-

ear functions, reproducing kernel Hilbert space and deep neural

networks to name a few. For a given f ∈ F , the corresponding

classifier Cf is defined as Cf (x) = 1(f(x) > 0).

2.2.1 Definition of between-group fairness

For a given score function f and a sensitive group Z = z, we

consider the group performance function of f given as

qz(f) := E(E|E ′, Z = z) (2.1)

for events E and E ′ that might depend on f(X) and Y. The group

performance function qz in (2.1), which is considered by Celis et al.

[2019], includes various performance functions used in fairness AI.

We summarize representative group performance functions having

the form of (2.1) in Table 2.1.

For given group performance functions qz(·), z ∈ {0, 1}, we say

10



Table 2.1: Some group performance functions

Fairness criteria E E ′

Disparate impact [Barocas and Selbst, 2016] 1{Cf (X) = 1} ∅

Equal opportunity [Hardt et al., 2016] 1{Cf (X) = 1} {Y = 1}

Disparate mistreatment w.r.t. Error rate

[Zafar et al., 2019]
1{Cf (X) 6= Y } ∅

Mean score parity [Coston et al., 2019] f(X) ∅

that f satisfies the BGF constraint with respect to qz if q0(f) =

q1(f). A relaxed version of the BGF constraint, so-called the ε-

BGF constraint, is frequently considered, which requires |q0(f)−

q1(f)| < ε for a given ε > 0. Typically, AI algorithms search an

optimal function f among those satisfying the ε-BGF constraint

with respect to given group performance functions qz(·), z ∈ {0, 1}.

2.2.2 Related works

Several learning algorithms have been proposed to find an accurate

model f satisfying a given BGF constraint, which are categorized

into three groups. In this subsection, we review some methods for

each group.

Pre-processing methods: Pre-processing methods remove

bias in training data or find a fair representation with respect to

sensitive variables before the training phase and learn AI models

based on de-biased data or fair representation [Calmon et al., 2017;

11



Dixon et al., 2018; Feldman et al., 2015; Kamiran and Calders,

2012; Webster et al., 2018; Xu et al., 2018; Zemel et al., 2013].

Kamiran and Calders [2012] suggested pre-processing methods to

eliminate bias in training data by use of label changing, reweighing

and sampling. Based on the idea that transformed data should not

be able to predict the sensitive variable, Feldman et al. [2015] pro-

posed a transformation of input variables for eliminating the dis-

parate impact. To find a fair representation, Calmon et al. [2017];

Zemel et al. [2013] proposed a data transformation mapping for

preserving accuracy and alleviating discrimination simultaneously.

Pre-processing methods for fair learning on text data were studied

by Dixon et al. [2018]; Webster et al. [2018].

In-processing methods: In-processing methods generally train

an AI model by minimizing a given cost function (e.g., the cross-

entropy, the sum of squared residuals, the empirical AUC etc.) sub-

ject to a ε-BGF constraint. Most group performance functions qz(·)

are not differentiable, and thus various surrogated group perfor-

mance functions and corresponding ε-BGF constraints have been

proposed [Celis et al., 2019; Cho et al., 2020; Donini et al., 2018;

Goh et al., 2016; Kamishima et al., 2012; Menon and Williamson,

2018; Narasimhan, 2018; Vogel et al., 2020; Zafar et al., 2017,

2019]. Kamishima et al. [2012] used a fairness regularizer which is

an approximation of the mutual information between the sensitive

variable and the target variable. Zafar et al. [2017, 2019] proposed

covariance-type fairness constraints as tractable proxies targeting

12



the disparate impact and the equality of the false positive or neg-

ative rate, and Donini et al. [2018] used a linear surrogated group

performance function for the equalized odds. On the other hand,

Celis et al. [2019]; Menon and Williamson [2018] derived an opti-

mal classifier for a constrained fair classification as a form of an

instance-dependent threshold. Also, for fair score functions, Vogel

et al. [2020] proposed fairness constraints based on ROC curves of

each sensitive group.

Post-processing methods: Post-processing methods first learn

an AI model without any BGF constraint and then transform the

decision boundary or score function of the trained AI model for

each sensitive group to satisfy given BGF criteria [Corbett-Davies

et al., 2017; Fish et al., 2016; Hardt et al., 2016; Jiang et al., 2020;

Kamiran et al., 2012; Pleiss et al., 2017; Wei et al., 2020]. Chzhen

et al. [2019]; Hardt et al. [2016] suggested finding sensitive group

dependent thresholds to get a fair classifier with respect to equal

opportunity. Jiang et al. [2020]; Wei et al. [2020] developed an al-

gorithm to transform the original score function to achieve a BGF

constraint.

2.3 Within-group fairness for classifiers

We assume that there exists a known optimal classifier C? which

could be the Bayes classifier or its estimate. For example, we can

use Cf? for C?, where f? is the unconstrained minimizer of the

cross-entropy on F .
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We mostly focus on in-processing methods for the BGF and

explain how to reflect WGF into a learning procedure. Remarks

about how to reflect WGF to pre- and post-processing methods

are given in Section 2.6.

2.3.1 Definition of within-group fairness

Conceptually, WGF means that the classifier Cf and C? have the

same ranks in each sensitive group. That is, for two individuals

xA and xB in the same sensitive group with C?(xA) > C?(xB),

WGF requires that Cf (xA) ≥ Cf (xB). To materialize this concept

of WGF, we define the WGF constraint as

Pr {C?(X) = 0, Cf (X) = 1|Z = z} = 0

or Pr {C?(X) = 1, Cf (X) = 0|Z = z} = 0
(2.2)

for each z ∈ {0, 1}. Similar to the BGF, we relax the constraint

(2.2) by requiring that either of the two probabilities is small. That

is, we say that f satisfies the δ-WGF constraint for a given δ > 0

if

max
z∈{0,1}

min{a01|z(f), a10|z(f)} < δ, (2.3)

where aij|z(f) = Pr{C?(X) = i, Cf (X) = j|Z = z}.

2.3.2 Directional within-group fairness

Many BGF constraints have their own implicit directions toward

which the classifier is expected to be guided in the training phase.

We can design a special WGF constraint reflecting the implicit

direction of a given BGF constraint, resulting in more desirable
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classifiers (better guided, fairer, and frequently more accurate).

Below, we present two such WGF constraints.

Disparate impact: Note that the disparate impact requires that

Pr{Cf (X) = 1|Z = 0} = Pr{Cf (X) = 1|Z = 1}.

Suppose that Pr{C?(X) = 1|Z = 0} < Pr{C?(X) = 1|Z = 1}.

Then, we expect that a desirable classifier Cf achieves this BGF

constraint by increasing Pr{Cf (X) = 1|Z = 0} from Pr{C?(X) =

1|Z = 0} and decreasing Pr{Cf (X) = 1|Z = 1} from Pr{C?(X) =

1|Z = 1}. To reflect this direction, we can enforce a learning algo-

rithm to search a classifier Cf satisfying Pr{C?(X) = 1|Z = 0} <

Pr{Cf (X) = 1|Z = 0} and Pr{C?(X) = 1|Z = 1} > Pr{Cf (X) =

1|Z = 1}. Based on this argument, we define the directional δ-

WGF constraint for the disparate impact as

max{a10|0(f), a01|1(f)} < δ. (2.4)

Equal opportunity: The equal opportunity constraint is given

as

Pr{Cf (X) = 1|Z = 0, Y = 1} = Pr{Cf (X) = 1|Z = 1, Y = 1}.

Suppose that Pr{C?(X) = 1|Z = 0, Y = 1} < Pr{C?(X) = 1|Z =

1, Y = 1}. A similar argument for the disparate impact leads us to

define the directional δ-WGF constraint for the equal opportunity

as

max{a10|01(f), a01|11(f)} < δ (2.5)

15



and

max
z∈{0,1}

min
{
a10|z0(f), a01|z0(f)

}
< δ, (2.6)

where

aij|zy(f) = Pr{C?(X) = i, Cf (X) = j|Z = z, Y = y}.

2.3.3 Learning with doubly-group fairness constraints

We say that f satisfies the (ε, δ)-doubly-group fairness constraint

if B(f) < ε and W (f) < δ, where B is a given BGF constraint and

W is the corresponding WGF constraint proposed in the previous

two subsections. In this section, we propose a relaxed version of

W (·) for easy computation. As we review in Section 2.2, many

relaxed versions of B(·) have been proposed already.

The WGF constraints considered in Sections 2.3.1 and 2.3.2

are hard to be used as themselves in the training phase since they

are neither convex nor continuous. A standard approach to resolve

this problem is to use a convex surrogated function. For example,

a surrogated version of the WGF constraint (2.3) is Wsurr(f) < δ,

where

Wsurr(f) := max
z∈{0,1}

min
{
E {φ(−f(X))|Z = z, Y ? = 1} p1|z,

E {φ(f(X))|Z = z, Y ? = 0} p0|z
}
,

(2.7)

where Y ? = C?(X), py|z = Pr(C?(X) = y|Z = z) and φ is a con-

vex surrogated function of the indicator function 1(z ≥ 0). In this
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thesis, we use the hinge function given as φhinge(z) = (1 + z)+ as

a convex surrogated function which is popularly used for fair AI

[Donini et al., 2018; Goh et al., 2016; Wu et al., 2018]. The sur-

rogated versions for the other WGF constraints are derived simi-

larly. Finally, we estimate f by f̂ that minimizes the regularized

cost function

L(f) + λBsurr(f) + ηWsurr(f), (2.8)

where L is a given cost function (e.g., the cross-entropy) and Bsurr

and Wsurr are the surrogated constraints of B and W, respectively.

The nonnegative constants λ and η are regularization parameters

which are selected so that f̂ satisfies B(f̂) < ε and W (f̂) < δ.

2.3.4 Related notions with within-group fairness

There are several fairness concepts which are somehow related to

WGF. However, the existing concepts are quite different from our

WGF.

1. Unified fairness: Speicher et al. [2018] used the term ‘within-

group fairness’. However, WGF of Speicher et al. [2018] is

different from our WGF. Speicher et al. [2018] measured

individual-level benefits of a given prediction model and they

defined the model to be WGF if the individual benefits in

each group are similar. They also illustrated that WGF keeps

decreasing as BGF increases. Our WGF is nothing to do with

individual-level benefits. Our WGF can be high even when

individual-level benefits are not similar. Also, our WGF can
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increase even when BGF increases.

2. Slack consistency: Nachum and Jiang [2019] proposed the

‘slack consistency’ which requires that the estimated scores

of each individual should be monotonic with respect to slack

variables used in fairness constraints. Slack consistency does

not guarantee within-group fairness because the ranks of the

estimated scores can change even when they move monoton-

ically.

2.4 Within-group fairness for score functions

Similarly to classifiers, the WGF for score functions requires that

f(xA) > f(xB) when f?(xA) > f?(xB) and vice versa for two

individuals xA and xB in the same sensitive group, where f? is a

known optimal score function such as the conditional class prob-

ability Pr(Y = 1|X) or its estimate. To realize this concept, we

define the WGF constraint for a score function f as τz(f) = 1

for z ∈ {0, 1}, where τz(·) is the Kendall’s τ between f and f?

conditional on Z = z, that is

τz(f) = E(X1,X2)

[
1{(f(X1)−f(X2))(f

?(X1)−f?(X2)) > 0}
∣∣∣Z = z

]
,

where X1 and X2 are independent copies of X. In turn, the δ-WGF

constraint for a score function f is 1− τz(f) < δ, z ∈ {0, 1}.

Similar to classifiers, we need a convex surrogated version of

the δ-WGF constraint, and a candidate would be 1 − τφ,z(f) <
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δ, z ∈ {0, 1}, where

τφ,z(f) = 1−E(X1,X2)

[
φ{(f(X1)−f(X2))(f

?(X1)−f?(X2))}
∣∣∣Z = z

]
and φ is a convex surrogated function of 1(z > 0) such as the

φhinge.

However, there are problems in using τφ,z(f) for learning a

WGF score function. The f?, which is perfectly fair (i.e., τz(f
?) =

1), may not be perfectly fair in terms of τφ,z(f) in the sense that

there exists f ∈ F such that f(·) 6≡ f?(·) and τφ,z(f) > τφ,z(f
?).

In fact, if ‖f?‖∞ ≤ 1/2, then and f = αf? for any α > 1 has

a larger value of τφ,z than f?. In addition, a surrogated penalty

of WGF is computed over all pairs of the training data, hence it

requires huge computations.

To resolve these problems, we propose an alternative convex

surrogated version of δ-WGF. Let M be the set of all monoton-

ically increasing functions from R → R. Then any f = m ◦ f?,

m ∈M satisfies τz(f) = 1, z ∈ {0, 1}. Let Fw = {f ∈ F : τz(f) =

1, z ∈ {0, 1}}. For a convex surrogated δ-WGF constraint, we con-

struct a sequence of subsets {Fw,δ, δ ≥ 0} of F satisfying: (i) Fw,δ
is increasing (i.e., Fw,δ1 ⊂ Fw,δ2) for δ1 ≤ δ2, (ii) Fw,0 = Fw and

(iii) Fw,δ is a convex set.

Let J : F → [0,∞) be a measure of complexity of func-

tions in F such that J is convex and f(·) ≡ 0 (almost every-

where) if J(f) = 0. Two examples of J are J(f) = ‖β‖22 if

F = {f(x) = x>β, β ∈ Rp} and J(f) = ‖f‖2HK
when F = HK ,

the reproducing kernel Hilbert space generated by a kernel K. For
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a given complexity measure J, we consider the set

Fw,δ = {m ◦ f?(·) + g(·) : m ∈M, g ∈ F , J(g) ≤ δ}.

We say that f satisfies the (convex surrogated) δ-WGF constraint

if f ∈ Fw,δ.

To learn a (ε, δ)-doubly fair score function, we minimize

L(m ◦ f? + g) + λB(m ◦ f? + g) + ηJ(g) (2.9)

with respect to m ∈ M and g ∈ F , where B(·) is a given BGF

constraint and λ, η are regularization parameters. In the following

two subsections, we explain in detail how to implement the above

learning algorithm for specific choices of F . For f?, we use the

unconstraint minimizer of L(f) on F .

Linear models

Suppose that F is the set of linear functions. It can be shown

that any f ∈ F satisfying τz(f) = 1 can be expressed by f(·) =

a + bf?(·) for some a ∈ R and b ∈ (0,∞). Hence, M is the set

of linear functions with positive trends. For the penalty J , we can

use any penalty function used for the linear models such as Lasso

and ridge penalties. In this thesis, we use the ridge penalty since

computation is easier. Finally, we estimate the score function by

minimizing

L(a+ bf? + gβ) + λ1Bconv(a+ bf? + gβ) + η‖β‖22

with respect to a ∈ R, b ∈ (0,∞) and β ∈ Rp, where gβ(x) = x>β.

Nonparametric regression
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Let F be a set of all measurable functions on Rp satisfying a

certain smoothness condition. For example, suppose that F is the

set of Hölder smooth functions of order r. Then,M includes mono-

tonically increasing functions satisfying the Hölder smoothness of

order s ≥ r.

We propose to estimatem and g based on the modified gradient

descent algorithm given as follows. Let

C(m, g) = Ln(m ◦ f? + g) + λB(m ◦ f? + g) + ηJ(g).

We minimize C(m, g) with respect to m while g is fixed and then

minimize C(m, g) with respect to g with m being fixed. We first

explain how to estimate m while g is fixed. Let mcurr be the current

estimate of m. For given i, let

∇curr
i =

∂C

∂m ◦ f?(xi)

∣∣∣∣
m◦f?(xi)=mcurr◦f?(xi)

.

Then, we update mcurr by m̂ which minimizes

n∑
i=1

{m̂i −m ◦ f?(xi)}2

with respect to m ∈ M, where m̂i = mcurr ◦ f?(xi) − γ∇curr
i for

a given step size γ > 0. If M consists of monotonically increasing

functions having the first derivative, the estimation m̂ obtained

by PAVA (Pool Adjacent Violator algorithm)[Barlow, 1972; Mair

et al., 2009] can be used. For estimation of the monotonically in-

creasing function with smoothness order r > 1, there are several

works based on splines with monotonically increasing constraints

21



[Mammen and Thomas-Agnan, 1999; Pya and Wood, 2015; Wang

and Li, 2008].

Estimation of g with a fixed m can be done by use of appropri-

ate nonparametric regression techniques such as the generalized

additive model [Hastie and Tibshirani, 1990], boosting [Freund,

1995; Friedman, 2001] and deep learning [Goodfellow et al., 2016;

LeCun et al., 2015; Schmidt-Hieber et al., 2020].

2.5 Numerical studies

We investigate the impacts of the WGF constraints on the predic-

tion accuracy as well as the BGF by analyzing real-world datasets.

We consider linear logistic and deep neural network (DNN) mod-

els for F and use the cross-entropy for L. For DNN, fully con-

nected neural networks with one hidden layer and p many hid-

den nodes are used. We train the models by the gradient descent

algorithm [Bottou, 2010] implemented by Python with related li-

braries pytorch, scikit-learn, numpy. The SGD optimizer is

used with momentum 0.9 and a learning rate of either 0.1 or 0.01

depending on the dataset. We use the unconstrained minimizer of

L for f?.

Datasets. We analyze four real world datasets, which are pop-

ularly used in fairness AI research and publicly available: (i) The

Adult Income dataset (Adult, Dua and Graff [2017]); (ii) The Bank

Marketing dataset (Bank, Dua and Graff [2017]); (iii) The Law

School dataset (LSAC, Wightman and Ramsey [1998]); (iv) The
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Compas Propublica Risk Assessment dataset (COMPAS, Larson

et al. [2016]). Except for the dataset Adult, we split the training

and test datasets randomly by 8:2 ratio and repeat 5 times train-

ing/test splits for performance evaluation.

2.5.1 Within-group fair classifiers

We consider following group performance functions for the BGF:

the disparate impact (DI) [Barocas and Selbst, 2016] and the dis-

parate mistreatment w.r.t. error rate [Zafar et al., 2019], which are

defined as

DI(f) = |Pr(Cf (X) = 1|Z = 1)− Pr(Cf (X) = 1|Z = 0)|

ME(f) = |Pr(Cf (X) 6= Y |Z = 0)− Pr(Cf (X) 6= Y |Z = 1)|.

Note that the DI is directional while the ME is not. For the sur-

rogated BGF constraints, we replace the indicator function with

the hinge function in calculating the BGF constraints as is done

by Goh et al. [2016]; Wu et al. [2018]. We name the corresponding

BGF constraints by Hinge-DI and Hinge-ME respectively. The re-

sults for other surrogated constraints such as the covariance type

constraints proposed by Zafar et al. [2017, 2019] and the linear

surrogated functions considered in Padala and Gujar [2020] are

presented in the Appendix. In addition, the results for the equal

opportunity constraint are summarized in the Appendix.

For investigating the impacts of WGF on trained classifiers,

we first fix the ε for each BGF constraint, and we choose the regu-

larization parameters λ and η to make the classifier f̂ minimizing
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the regularized cost function (2.8) satisfy the ε-BGF constraint.

Then, we assess the prediction accuracy and the degree of WGF

of f̂ .

2.5.1.1 Targeting for disparate impact

Table 2.2 presents the three 2× 2 tables comparing the results of

the unconstrained DNN classifier (Ŷ ?) and three DNN classifiers

(Ŷ ) trained on the dataset Adult : (i) only with the DI constraint,

(ii) with the DI and WGF constraints and (iii) with the DI and

directional WGF (dWGF) constraints. We let ε be around 0.03.

The numbers marked in red are subjects treated unfairly with

respect to the dWGF. Note that the numbers of unfairly treated

subjects are reduced much with the WGF and dWGF constraints

and the dWGF constraint is more effective. We report that the

accuracies of the three classifiers on the test data are 0.837, 0.840

and 0.839, respectively, which indicates that the WGF and dWGF

constraints improve the WGF without hampering the accuracy.

Compared to the dWGF, the WGF constraint is less effective,

which is observed consistently for different datasets when a BGF

constraint is directional. See Table A.2 in the Appendix for the

corresponding numerical results. Thus, hereafter we consider the

dWGF only for the DI which has an implicit direction.

Table 2.3 summarizes the performances of the three classifiers

- C? and the two classifiers trained with the DI constraint and the

DI and dWGF constraints (doubly-fair, DF), respectively. In Table

2.3, we report the accuracies as well as the values of DI and dWGF
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terms (i.e., DI(f̂) and max{a10|0(f̂), a01|1(f̂)}, respectively). We

observe that the DF classifier improves the dWGF while keep-

ing that the DI values and accuracies are favorably comparable

to those of the BGF classifier. For reference, the performances

with the WGF constraint are summarized in the Supplementary

material.

To investigate the sensitivity of the accuracy to the degree of

WGF, the scatter plots between various dWGF values and the cor-

responding accuracies for the DF linear logistic model are given

in Figure 2.2, where the DI value is fixed around 0.03. The ac-

curacies are not sensitive to the dWGF values. Moreover, for the

datasets Adult, Bank and LSAC, the accuracies keep increasing as

the dWGF value decreases.

While we analyzed the datasets Bank and LSAC, we found

an undesirable aspect of the learning algorithm only with the DI

constraint. The corresponding classifiers improve the DI by de-

creasing (or increasing) the probabilities P (Ŷ = 1|Z = 0) and

P (Ŷ = 1|Z = 1) simultaneously compared to P (Y ? = 1|Z = 0)

and P (Y ? = 1|Z = 1). A better way to improve the DI would be

to increase P (Ŷ = 1|Z = 0) and decrease P (Ŷ = 1|Z = 1) when

P (Y ? = 1|Z = 0) < P (Y ? = 1|Z = 1). Figures 2.3 show that

this undesirable aspect disappears when the dWGF constraint is

considered.
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2.5.1.2 Targeting for disparate mistreatment

The results of the performances of the DF classifier with the ME

as a BGF constraint are presented in Table 2.4. Since the ME has

no implicit direction, we use the undirectional WGF constraint.

The overall conclusions are similar to those for the DI and dWGF

constraints. That is, the undirectional WGF constraint also works

well.

2.5.2 Within-group fair for score function

In this section, we examine the WGF constraint for score func-

tions. We choose AUC (area under the ROC) as evaluation metrics

for prediction accuracy. For the BGF, we consider the mean score

parity (MSP, Coston et al. [2019]):

MSP(f) = |E(σ(f(X))|Z = 1)− E(σ(f(X))|Z = 0)| ,

where σ : x 7→ 1/(1 + e−x) is the sigmoid function. To check

how much the estimated score function f̂ is within-group fair,

we calculate Kendall’s τ between f̂ and the ground-truth score

function f? on the test data for each sensitive group, and then we

average them, which is denoted by τ̄ in Table 2.5. We choose the

regularization parameters λ and η such that τ̄ of f̂ is as close to 1

as possible while maintaining the MSP value around 0.03.

Table 2.5 amply shows that the DF score function always im-

proves the degree of WGF (measured by τ̄) and the accuracy in

terms of AUC simultaneously while keeping the degree of BGF at

a reasonable level. Here, we consider the DF score function with
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the surrogated penalty for Kendall’s τ , denoted by DF-Surr, and

the DF score function in (2.9), denoted by DF-Mono.

With respect to the BCE, the BGF and DF score functions are

similar. The superiority of the DF score function in terms of AUC

compared with the BGF score function is partly because the WGF

constraint shrinks the estimated score toward the ground-truth

score (Uncons. in Table 2.5) which is expected to be most accurate.

Based on these results, we conclude that the WGF constraint is a

useful guide to find a better score function with respect to AUC

as well as the WGF.

2.6 Remarks on within-group fairness for

pre- and post-processing methods

Various pre- and post-processing methods for fair AI have been

proposed. An advantage of these methods compared to constrained

methods is that the methods are simple, computationally efficient

but yet reasonably accurate. In this section, we briefly explain how

to reflect the WGF to pre- and post-processing methods for the

BGF.

2.6.1 Pre-processing methods and within-group fair-

ness

Basically, pre-processing methods transform the training data in a

certain way to be between-group fair and train an AI model on the

transformed data. To reflect the WGF, it suffices to add a WGF
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constraint in the training phase. Let Dtrans be the transformed

training data to be between-group fair and let Ltrans be the cor-

responding cost function. Then, we learn a model by minimizing

Ltrans(f) + ηWconv(f) for η > 0.

Table 2.6 presents the results of the models trained on the pre-

processing training data and a WGF constraint for various values

of η, where the DI is used as the BGF and thus the corresponding

dWGF constraint is used. In this experiment, we use the linear

logistic model and the Massaging [Kamiran and Calders, 2012]

for the pre-processing. Surprisingly we observed that introducing

the dWGF constraint to the pre-processing method helps to im-

prove the BGF and WGF simultaneously without sacrificing the

accuracies much.

2.6.2 Post-processing methods and within-group fair-

ness

For the BGF score functions, Jiang et al. [2020] developed an algo-

rithm to obtain two monotonically nondecreasing transformations

mz, z ∈ {0, 1} such that m0 ◦ f? and m1 ◦ f? are BGF in the sense

that the distributions of m0 ◦ f?(X)|Z = 0 and m1 ◦ f?(X)|Z = 1

are the same. It is easy to check that the transformed score func-

tion mz ◦ f?(x) is a perfectly WGF score function even though it

depends on the sensitivity group variable z. Note that the algo-

rithm in Section 2.4 yields score functions not depending on z.
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Table 2.2: Comparison of the results of the three DNN classifiers

trained (i) only with the BGF constraint, (ii) with the BGF and

WGF constraints and (iii) with the BGF and dWGF constraints

on the dataset Adult. Marked in red represent the numbers of

subjects treated unfairly in a same sensitive group.

Only with the DI constraint

Z = 0 Z = 1

Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

Ŷ ? = 0 4,592 350 Ŷ ? = 0 7,966 86

Ŷ ? = 1 13 466 Ŷ ? = 1 945 1,863

With the DI and WGF constraints

Z = 0 Z = 1

Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

Ŷ ? = 0 4,703 239 Ŷ ? = 0 8,021 31

Ŷ ? = 1 27 452 Ŷ ? = 1 1,156 1,652

With the DI and dWGF constraints

Z = 0 Z = 1

Ŷ = 0 Ŷ = 1 Ŷ = 0 Ŷ = 1

Ŷ ? = 0 4,718 224 Ŷ ? = 0 8,024 28

Ŷ ? = 1 18 461 Ŷ ? = 1 1,178 1,630
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Table 2.3: Results for the DF classifier with the Hinge-DI con-

straint. Except for the dataset Adult, the average performances

are given.

Linear model DNN model

Dataset Method ACC DI dWGF ACC DI dWGF

Adult Uncons. 0.852 0.172 0.000 0.853 0.170 0.000

Hinge-DI 0.833 0.028 0.005 0.837 0.029 0.008

Hinge-DI-DF 0.836 0.028 0.003 0.839 0.026 0.003

Bank Uncons. 0.908 0.195 0.000 0.904 0.236 0.000

Hinge-DI 0.901 0.024 0.018 0.899 0.029 0.033

Hinge-DI-DF 0.904 0.021 0.007 0.905 0.029 0.032

LSAC Uncons. 0.823 0.120 0.000 0.856 0.131 0.000

Hinge-DI 0.809 0.016 0.014 0.816 0.032 0.064

Hinge-DI-DF 0.813 0.018 0.009 0.809 0.029 0.047

COMPAS Uncons. 0.757 0.164 0.000 0.757 0.162 0.000

Hinge-DI 0.641 0.024 0.153 0.639 0.030 0.142

Hinge-DI-DF 0.618 0.025 0.145 0.654 0.033 0.120
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Figure 2.2: Scatter plots of the accuracies and dWGF values for

the DF linear regression model with the DI values around 0.03.

(Topleft) Adult ; (Topright) Bank ; (Bottomleft) LSAC ; (Bottom-

right) COMPAS. Red star points in each figure represent the re-

sults of the BGF classifier.
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Figure 2.3: Comparison of the conditional probabilities of each

group for the datasets Bank (Left) and LSAC (Right).
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Table 2.4: Results for the DF classifier with the Hinge-ME con-

straint. Except for the dataset Adult, average performances are

given.

Linear model DNN model

Dataset Method ACC ME WGF ACC ME WGF

Adult Uncons. 0.852 0.117 0.000 0.853 0.105 0.000

Hinge-ME 0.834 0.060 0.005 0.822 0.025 0.059

Hinge-ME-DF 0.834 0.060 0.005 0.825 0.031 0.026

Bank Uncons. 0.908 0.177 0.000 0.904 0.174 0.000

Hinge-ME 0.740 0.044 0.068 0.902 0.164 0.076

Hinge-ME-DF 0.749 0.045 0.020 0.897 0.165 0.047

LSAC Uncons. 0.823 0.090 0.000 0.856 0.071 0.000

Hinge-ME 0.759 0.028 0.038 0.815 0.044 0.040

Hinge-ME-DF 0.742 0.020 0.017 0.803 0.038 0.001

COMPAS Uncons. 0.757 0.022 0.000 0.757 0.024 0.000

Hinge-ME 0.740 0.020 0.018 0.738 0.016 0.018

Hinge-ME-DF 0.743 0.018 <0.001 0.757 0.017 0.001
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Table 2.5: Results of the DF score functions. Except for the dataset

Adult, averages performances are given.

Linear model DNN model

Dataset Method AUC MSP τ̄ AUC MSP τ̄

Adults Uncons. 0.905 0.173 1.000 0.907 0.177 1.000

BGF 0.874 0.027 0.838 0.878 0.032 0.796

DF-Surr 0.890 0.022 0.944 0.878 0.031 0.847

DF-Mono 0.876 0.027 0.868 0.888 0.032 0.920

Bank Uncons. 0.932 0.217 1.000 0.926 0.238 1.000

BGF 0.899 0.027 0.674 0.922 0.042 0.710

DF-Surr 0.905 0.031 0.697 0.924 0.032 0.742

DF-Mono 0.919 0.031 0.758 0.901 0.033 0.818

LSAC Uncons. 0.732 0.125 1.000 0.831 0.142 1.000

BGF 0.697 0.022 0.641 0.803 0.026 0.637

DF-Surr 0.697 0.023 0.642 0.812 0.028 0.693

DF-Mono 0.712 0.025 0.746 0.771 0.027 0.646

COMPAS Uncons. 0.822 0.122 1.000 0.825 0.119 1.000

BGF 0.738 0.026 0.501 0.756 0.030 0.566

DF-Surr 0.771 0.033 0.617 0.765 0.031 0.598

DF-Mono 0.779 0.033 0.638 0.748 0.029 0.582
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Table 2.6: Comparison of the accuracy and fairnesses of the pre-

processing method with and without the dWGF constraint. The

results are evaluated on the dataset Adult.

Method η Acc DI dWGF

Massaging - 0.837 0.069 0.009

Massaging + dWGF 0.5 0.837 0.048 0.004

1.0 0.836 0.037 0.003
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Chapter 3

Methodologies for

extremely imbalanced

problems

3.1 Introduction

In classification problems, supervised machine learning models

need numerous labeled examples for each class to perform well.

It is well known that if the numbers of instances in each class

are extremely imbalanced, most machine learning methods learned

to focus on classes with relatively more examples [Garcia et al.,

2007; He and Garcia, 2009; Visa and Ralescu, 2005]. Hence a model

learned based on an imbalanced dataset usually has low prediction

power in classes with relatively less instance. Hereafter, we denote

the ‘major’/‘minor’ class as a class with a large/small number of
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objects, respectively.

Imbalanced machine learning methods can be used to diag-

nose diseases like cancer, brain tumor, where the major class is

from healthy patients, and the minor class is from having disease

patients. Also, it can be used for faulty detecting product, fraud

detection, oil-spill detection, etc. [Chan et al., 1999; Kubat et al.,

1998; Phua et al., 2010; Warriach and Tei, 2013]. Since, in many

applications, instances belonging to a minor class are rare or ex-

pensive, a class imbalanced easily occurs, and appropriate analysis

is demanded. In general, when a class imbalance exists in a training

dataset, an analyst may use the random oversampling method to

give sufficient weights to the minor class. Our research shows that

a random oversampling method, a simple replication of instances

belonging to the minor class, does not work in extremely imbal-

anced settings. Therefore, it requires other techniques to learn

information from the minor class.

Methods handling imbalanced datasets are roughly divided

into data-level methods, algorithm-level methods [Johnson and

Khoshgoftaar, 2019; Krawczyk, 2016]. Data level methods use a

sampling approach to reduce the imbalance between classes, and

algorithm-level methods develop a new loss function giving more

weights to the minor classes. Several data-level methods used ran-

dom oversampling (ROS) [Ando and Huang, 2017; Chawla et al.,

2002; Hensman and Masko, 2015; Lee et al., 2016; Nickerson et al.,

2001] that generates new instances in the minor class based on

repetition, interpolation, or extrapolation. Usually, a synthetic in-
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stance is produced by two or more randomly selected from the

minor class so that its corresponding label becomes the same as

the minor class. However, Krawczyk [2016] remarked that ROS

methods, including SMOTE, do little to help improve the classi-

fier’s performance in extremely unbalanced problems. Along with

Krawczyk [2016], our research suggested that generating synthetic

examples based on random samples from only one class didn’t help

much in solving the imbalanced problem.

The other way to solve an extremely imbalanced problem is

anomaly detection. Anomaly detection problems are generally aimed

at classifying whether new test samples are normal or abnormal

based on an anomaly score, assuming that a model trained using

samples only from the normal class [Chalapathy and Chawla, 2019;

Chandola et al., 2009]. For example, one-class classification finds

a hypersphere that contains most of the normal data and predicts

samples that fall outside the hypersphere as abnormal data [Ruff

et al., 2018; Schölkopf et al., 2001; Tax and Duin, 2004]. In con-

trast to the standard anomaly detection setup, supervised anomaly

detection using abnormal samples during the training phase has

been studied [Görnitz et al., 2013; Liu and Zheng, 2006; Ruff et al.,

2019]. These methods can be easily applied to imbalance problems

by considering normal as a major class and abnormal as a minor

class.

In this work, we proposed two novel methods for the imbal-

anced problem: (1) a new data-augmentation method inspired by

mixup [Zhang et al., 2018]; (2) a new algorithm method that trans-
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forms the anomaly detection algorithm. Mixup is originally a regu-

larization technique that trains a neural network using pairs of fea-

tures and label interpolations. There are considerations for adapt-

ing the mixup to an imbalanced problem. First, since classes are

extremely imbalanced, interpolations in which randomly selected

pairs of examples are concentrated on major classes; thus, the

mixup might have an adverse effect on a learning problem. Also,

to mitigate the imbalance in the data set, each support of minor

classes needs to be expanded to learn underlying decision bound-

aries. According to these considerations, we suggest a novel ROS

method conducive to learning decision boundaries when classes

are imbalanced and simple as the mixup.

Meanwhile, we observed that most imbalanced methods fail to

learn an accurate model in extremely imbalanced settings. Hence,

extending anomaly detection, we develop an algorithm to find

compact hyperspheres that contain samples from the major class

and extrude samples from the minor class. We can find compact

hyperspheres by adding a penalty term that pushes minor samples

to the objective function at the center of a hypersphere.

We briefly review related works in Section 3.2. We proposed

our data augmentation method, supervised anomaly detection al-

gorithm in Sections 3.3 and 3.4, respectively. To verify our method,

Section 3.4 represents simulation studies of several related works

and compares prediction powers of major, minor classes for each

method with a certain level of imbalance. Especially, we conduct

experiments by varying levels of imbalance for each method to
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perform comparative analysis.

3.2 Related works

3.2.1 Imbalanced classification

Data level methods modified training distribution using a sam-

pling approach to alleviate class imbalance. It includes random

oversampling (ROS), random undersampling (RUS). ROS dupli-

cates random samples from minor classes, and RUS discards ran-

dom samples from major classes [Barandela et al., 2004; He and

Garcia, 2009; He and Ma, 2013; Van Hulse et al., 2007]. In general,

ROS requires more computations because of duplications; mean-

while, RUS may lose some information by reducing the training

dataset.

Oversampling methods can be divided into three different ways:

simple, interpolation, and extrapolation. First, the simple repeti-

tion method is that random samples from a minor class are dupli-

cated. Combining k-nearest neighbors and interpolation approach

is known as SMOTE (Synthetic Minority Over-sampling TEch-

nique, Chawla et al. [2002]). SMOTE is an over-sampling method

that the minority class is over-sampled by creating synthetic ex-

amples for imbalanced classification problems. Further, Ando and

Huang [2017] suggested random-oversampling in an embedding

space based on k-NN. Also, Nickerson et al. [2001] proposed an

oversampling process combined with clustering. Before training a

classifier, a clustering method such as k-means algorithm is fitted
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to be used to identify under-represented clusters with respect to

the largest cluster. Then re-sampling approach is applied.

Several RUS methods have been proposed aimed at reducing

the examples of major classes. Wilson [1972] suggested that first

train a k-Nearest Neighbors (NN) classifier without labels, and

then discard examples where that class label is not the same as

the class label that references the most labels within the nearest

neighbor. Also, Kubat et al. [1997] suggested that discarding major

class examples that are ‘redundant’ or positioned at a ‘border’

line between major and minor classes treated as a noisy example.

After that, Mani and Zhang [2003] chose the major class examples

which closed to minor class examples based on k-NN, Drown et al.

[2009] adopt the genetic algorithm to develop an RUS method.

RUS methods are very attractive in terms of computation but

hardly used for training deep neural networks because of DNNs

complexity.

Moreover, Debowski et al. [2012] proposed dynamic sampling,

which iteratively conducts RUS and ROS based on a pre-defined

performance metric of the validation set. Lee et al. [2016] sug-

gested the two-phase learning method in which a model is first

pre-trained with threshold data, then fine-tuned using all data.

Threshold data are generated by duplicating through noise injec-

tion or simple augmentations, or RUS. Koziarski [2020]; Koziarski

et al. [2017] proposed radial-based oversampling and undersam-

pling, used a radial-based function to estimate the mutual class

distribution, and figured out regions where oversampling or un-
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dersampling should be applied. Data-level methods are usually

applied before training as the data-preprocessing procedure, and

then based on an artificial class-balanced dataset, a model is trained.

Further, we refer Buda et al. [2018]; He and Garcia [2009]; John-

son and Khoshgoftaar [2019] to readers for additional data-level

and algorithm-level methods.

On the other hand, algorithm-level methods for an imbalanced

problem either propose a new loss function that gives more weight

to the minor class or develop class weights that cost differently

for misclassified examples of different labels or adapt an output in

accordance with costs [Buda et al., 2018; Domingos, 1999; Elkan,

2001; Kukar et al., 1998; Zhou and Liu, 2005]. Further, to impose

more weight on minor classes, weighted cross-entropy loss func-

tions are proposed by Wang et al. [2016]. As a special case of

weighted loss functions, Wang et al. [2016] suggested Mean False

Error and its variation, which are based on the average of the

mean squared errors calculated individually in different classes.

Also, in the object detection problem, Lin et al. [2017] proposed

a loss function called focal loss (FL), which reshapes the cross-

entropy loss to reduce the impact that easily classified samples in

total loss. Basically, focal loss down-weights the loss assigned to

well-classified examples and up-weights the loss assigned to poorly

classified examples. After that, Cui et al. [2019] proposed class

weighted loss function using the expected volume of sample for

each class. Xu et al. [2020] proposed the worst case of weighted

risk for imbalanced problem over a set of possible weights, and
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robust class weighted risk suggested including its generalization

risk bound and optimization.

Moreover, based on hard mining [Rowley et al., 1998], class rec-

tification loss (CRL) is proposed by Dong et al. [2017]. For every

minor example in a mini-batch, CRL first searched for hard ex-

amples, each with the same/different labels respectively, and then

learned decision boundaries so that, in a latent space, hard exam-

ples with the same labels are close to each other and hard examples

with different labels are farther apart. Also, Huang et al. [2016,

2019] suggested methods to learn discriminatory deep representa-

tions via quintuple sampling or clustering and loss functions. After

learning deep representation, for classification, they used a k-NN

classifier based on learned representation. Another approach for

cost-sensitive learning is to learn data-adaptive costs in the train-

ing stage without fixing weights in advance [Chung et al., 2016;

Khan et al., 2017].

3.2.2 Mixup

Zhang et al. [2018] proposed a data-augmentation method, so-

called mixup. Mixup regularizes a neural network using convex

combinations of pairs of examples and their labels. Simply, mixup

constructs virtual training examples as follows,

x̃ = λxi + (1− λ)xj , where xi, xj are raw input vectors

ỹ = λyi + (1− λ)yj , where yi, yj are one-hot label encodings

(3.1)
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where (xi, yi) and (xj , yj) are two examples drawn at random, and

λ ∈ [0, 1]. To generating λ for a mixup coefficient, Zhang et al.

[2018] suggested the beta distribution, Beta(α, α) with α > 0.

Mixup is simple and improves generalization in balanced classifica-

tion problems. However, in extremely imbalanced classification, we

show that simple mixup does not improve prediction performance

in minor class, and further, we propose a data-augmentation method

for class-imbalance problems based on the mixup.

3.2.3 Anomaly detection

Literature studies related to anomaly detection are extensive and

are beyond the scope of this thesis, so we refer to Chalapathy

and Chawla [2019]; Chandola et al. [2009] for more comprehen-

sive studies. This thesis focused on supervised anomaly detection

that can be extended/applied to extremely imbalanced problems.

Further, in order to consider anomaly detection in imbalanced clas-

sification problems, normal data is considered to be a sample of

the major class, and abnormal data is considered to be a sample

of a minor class.

First, the one-class classification method finds the smallest hy-

persphere with a center and radius and detects an anomaly if it

leaves the hypersphere [Ruff et al., 2018; Schölkopf et al., 2001;

Tax and Duin, 2004], or uses reconstruction errors as an anomaly

score and detects an anomaly if it has a higher anomaly score than

a certain threshold [An and Cho, 2015; Chen et al., 2017; Hawkins

et al., 2002; Sakurada and Yairi, 2014]. Also, using generative mod-
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els such as kernel density estimation or deep generative models,

Breunig et al. [2000]; Zhai et al. [2016]; Zong et al. [2018] proposed

methods of estimating the distribution with high probability for

the training (normal) data and classifying low-density examples

as ideal in the test phase.

Unlike the one-class classification, which uses only normal data

in the training phase, supervised anomaly detection (SAD) as-

sumes some abnormal data in the training set. Görnitz et al. [2013];

Liu and Zheng [2006]; Ruff et al. [2019] proposed a methodology

for estimating a compact hypersphere of normal data with center

and radius by penalizing abnormal data to deviate from its center.

In fact, semi-supervised settings are used in Görnitz et al. [2013];

Ruff et al. [2019]. They assumed training data composed of un-

labeled data and labeled data and placed unlabeled data within

(slightly off) the hypersphere of normal data.

3.3 Proposed methods

Notations and assumptions

We consider a binary-class classification problem. First, we denote

(xi, yi) as the i-th pair of dataset where xi ∈ X ⊆ Rp is a p-

dimensional feature vector and yi ∈ {0, 1} is the corresponding

label where y = 0 denotes a sample from major class and y = 1

denotes a sample from minor class. Let DM = {(xi, 0)}Ni=1 be the

dataset from major classes and Dm = {(xi, 1)}ni=1 be the dataset

from minor classes, and N , n are the numbers of samples from
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major/minor classes respectively. To consider class-imbalance, we

assume N � n. A model parameterized by θ is denoted as fθ :

X → [0, 1]C .

3.3.1 MixupROS

In extremely imbalanced problems, it is essential to identify sup-

port for each minor class. Our framework, named MixupROS, tries

to generate virtual examples close to minor classes so that supports

could be expanded. To implement this, we generate a synthetic

dataset combining ROS with mixup. Mixup generates virtual ex-

amples between two classes in a mini-batch. Hence, it enforces

to efficiently determine decision boundaries between classes. How-

ever, it can be difficult for extremely imbalanced cases to include

both major and minor class examples in one mini-batch. Even if

some mini-batches contained both major and minor class exam-

ples, a mixup is done, emphasizing examples of major classes.

The difficulties of ROS methods are illustrated in Figure 3.1.

The following experiment was performed as a toy example to com-

pare how well supports of minor classes are extended. We gener-

ate major class examples from N ([1, 1]>, [0.5, 0; 0, 0.5]) and minor

class examples from N ([−2,−2]>, [0.1, 0; 0, 0.1]), and set N = 100,

n = 5. Also, we set a over-sampling size as
⌊
N−n
2

⌋
. We note that

in this example, the level of imbalance is 20 : 1, which is not an

extremely imbalanced case but gives intuitive and straightforward

results.

Figure 3.1 represents examples with the major and minor class
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Figure 3.1: Results of data-augmentation methods for toy example.

Blue circles/orange triangles indicate subjects from major/minor

classes, respectively, and gray stars indicate augmented data which

is used in the training phase.

as a blue circle, orange triangle, and augmented dataset, which

will be used in the training phase as a gray star. We observe ROS-

based interpolation and extrapolation produced augmented data

only around the minor class. On the other hand, our proposed

method, MixupROS, generates augmented data which are located

between classes and close to minor class.

Our oversampling process pre-generates mixup data before train-

ing to generate a sufficiently large amount of synthetic minor class

examples. Also, to give more weight to the minor class when per-

forming mixup, a generalized version of the mixup was used. A

generalized version of mixup changes the beta distribution sam-

pling for the mixup coefficient λ, from Beta(α, α) to Beta(α, β)

where α, β > 0. For example, suppose that (xi, yi) and (xj , yj) are

random samples in training data. If one sample is from major and

47



the other sample is from minor class, then mixup is applied with

λ generated from Beta(1, 5) or Beta(5, 1) so that the weight of the

minor class is larger than that of major class.

For a over-sampling size k > 0, MixupROS performs as the

following steps:

1. Initialize a oversampling dataset Dgen = ∅.

2. Generate over-sampling data using Mixup:

• Randomly select k major samples without replacement,

denote by D̃M , and k minor samples with replacement,

denote by D̃m.

• Generate k data as

Dgen = Dgen ∪ {(x̃ = λxi + (1− λ)xj , ỹ = 1) :

(xi, yi) ∈ D̃M , (xj , yj) ∈ D̃m},

where λ ∼ Beta(α, β) such that Eλ is close to 0.

3. Train a model using DM ,Dm,Dgen.

By oversampling using mixup in the proposed manner, we in-

crease the number of examples with minor classes, thus provide

more information to figure out supports of those. We note that

MixupROS adopts mixup only on feature vectors to generate mi-

nor class examples. Our experimental studies suggest that the orig-

inal mixup, which augments both feature and label, does not give

another gain with respect to accuracy performance.
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Figure 3.2: Framework of DeepSAD. In the latent space, the blue

sphere represents the confidence region for major examples, and

the orange points indicate the embedding vectors of minor exam-

ples.

3.3.2 Extensions of DeepSAD

Most imbalanced methods do not work well for extremely im-

balanced classification problems. Hence, we present extensions of

DeepSAD [Ruff et al., 2019], a supervised anomaly detection al-

gorithm, to develop a new imbalanced classification algorithm in

this section. DeepSAD aims to find an embedding mapping where

the embedding vectors of the major class are near a predetermined

center c, and the embedding vectors of the minor class are far from

the center (see Figure 3.2).

Let d be the dimension of embedding space, and let φ(·; Θ) be

an embedding mapping from X ⊂ Rp to embedding space Z ∈ Rd

with parameters Θ. Then the objective function of DeepSAD is to
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minimize

1

N

∑
i∈DM

‖φ(xi; Θ)− c‖2 +
λ1
n

∑
j∈Dm

[‖φ(xj ; Θ)− c‖]−1 ,

where λ1 > 0 is a tuning parameter.

Meanwhile, we have observed that some embeddings of the

minor class are clustered as the left panel in Figure 3.3. Ideally,

the embedding vector of the minor examples should surround a

hypersphere of the major example embedding vectors, but it can

form clustering and degrade the performance of the classification

model. Hence, we consider an additional penalty function for mov-

ing each embedding in the minor class away from the others, so

that maximize the effectiveness of DeepSAD (see the right panel

in Figure 3.3).

Motived by this observation, we propose the objective function

for extensions of DeepSAD as follows:

1

N

∑
i∈DM

‖φ(xi; Θ)− c‖2 +
λ1
n

∑
j∈Dm

[‖φ(xj ; Θ)− c‖]−1

+
λ2

|{j, k : j, k ∈ Dm, j 6= k}|
∑

j,k∈Dm,
j 6=k

[d(φ(xj ; Θ), φ(xk; Θ))]−1 ,

(3.2)

where λ1, λ2 are positive tuning parameters and d(·, ·) is a metric

in the embedding space. Here, λ1 controls how far away the em-

bedding vectors of minor examples should be from the center of

the hypersphere, and λ2 controls how far the embedding vectors

of minor examples are from each other. In this thesis, we consider

d(·, ·) as Euclidean norm or the cosine dissimilarity.
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Figure 3.3: The motivation for extensions of DeepSAD.

3.4 Experiments

To evaluate proposed algorithms, we used the following five datasets

listed in Table 3.1. For CIFAR-10, we randomly selected two classes

among ten classes, set one of them as the major class and the other

as the minor class, and repeated this procedure 30 times. As shown

in Table 3.1, the class imbalance in the dataset is generally not

very severe. After training/validation/test dataset split, we ran-

domly down-sampled minor samples (n) in the training dataset

for extremely imbalanced problem settings. In this experiments,

we consider n ∈ {20, 10, 5}.

We used standard MLP networks on anomaly detection bench-

mark datasets and LeNet-type convolutional neural networks (CNNs)

on CIFAR-10. The model is trained based on logistic loss and

evaluated with the area of the ROC curve (AUC) and sensitivity

with a certain level of specificity. For data-augmentation meth-

ods, we considered random oversampling with interpolation (ROS)

[Chawla et al., 2002], Mixup [Zhang et al., 2018] and MixupROS

where oversampling size is (N−n)/2. In MixupROS, oversampling
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Dataset N n p
Imbalance

ratio

Arrhythmia 386 66 274 6:1

Cardio 1,655 176 21 9:1

Satellite 4,399 2,036 36 2:1

Speech 3,625 61 400 59:1

CIFAR-10 10,000 10,000 3,072 1:1

Table 3.1: Description of datasets.

data is generated using half interpolation and half MixupROS. In-

terpolation parameter λ is generated from beta distribution B(1, 1)

for ROS and Mixup, and for MixupROS λ is generated from beta

distribution B(α, β), and tuning parameters α, β are selected based

on the validation data AUC among the following candidate param-

eter sets: α ∈ {0.01, 0.05, 0.1, 1} and β ∈ {0.5, 1, 5, 10, 20, 50}.

For one-class classification, we considered one-class Deep SVDD

(DeepSVDD) [Ruff et al., 2018]. Also, DeepSAD [Ruff et al., 2019]

which is a semi-supervised anomaly detection method, is applied

for imbalanced classification. DeepSVDD, DeepSAD, and the pro-

posed methods need to predetermine a center c ∈ Rd in the em-

bedding space, so we first train the autoencoder model using only

major samples. Then we estimate c as the mean of major class

embedding vectors and train a classifier by separating only the en-

coder model from the autoencoder model. We note that the weight

parameters of the classifier models are initialized using the weights
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of the encoder model. Also, we fix the tuning parameter for Deep-

SAD and its extensions, λ1, to 1, suggested by the authors of Ruff

et al. [2019]. Finally, for the additional penalty in the extension of

DeepSAD, the weighted average between Euclidean distance and

cosine similarity is considered, and its tuning parameter is chosen

based on the validation data AUC.

Results. Experimental results are shown in Table 3.2-3.6, with

varying the number of minor samples denoted by n. First, we

compare the data-augmentation methods. As the number of mi-

nor samples in the training data decreases, Supervised and Mixup,

those that do not target the imbalance problem, suffer significant

performance degradation. Meanwhile, ROS and MixupROS (pro-

posed), Mixup with directional extrapolation, help learn better

classifiers. We observe that among the data augmentation meth-

ods, MixupROS performs well in all cases, especially it performs

better than other augmentation methods when the number of mi-

nor samples is small.

On the other hand, we observe that our proposed algorithm

(DeepSAD ext.) performs best in all cases, in the deep anomaly

detection methods. DeepSVDD, which trains using only informa-

tion from major samples, has the lowest performance. Meanwhile,

DeepSAD and its extension utilize minor samples to train classi-

fiers with better performance. These numerical studies also show

that we train a classifier with a better predictive performance by

placing the embedding vectors of minor samples farther away than

DeepSAD.
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3.4.1 Comparison of distance functions in the exten-

sion of DeepSAD

Further, we analyze the sensitivity of the choice of distance func-

tion by comparing the extension of DeepSAD using various dis-

tance functions. Euclidean distance can be made large simply by

placing the embedding vector of the main sample away from the

center of the embedding space. Hence, maximizing the Euclidean

distance may not mean finding an embedding mapping where mi-

nor samples can enclose the hypersphere of the major example em-

bedding vectors. Therefore, in this experiment, Euclidean distance,

cosine similarity, and their weighted sum distance are considered.

Also, we fix the tuning parameter λ1 as 1. Figure 3.4 shows that

using the weighted average distance between Euclidean distance

and cosine similarity gives a classifier the best test AUC.
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Table 3.2: Results of arrhythmia dataset with varying n, where n is the number of minor samples in training

set, and its proportions is given. Average (standard deviation) performances over 10 seeds are described. Items

in bold indicates the best method.

Baseline Data augmentation
One-class

Classification
Supervised AD

n

(ratio)
metric

Supervised

Classifier
ROS Mixup

Mixup-

ROS

Deep-

SVDD
DeepSAD

DeepSAD

ext.

20 (8.0 %) AUC 76.1 (4.7) 76.0 (5.6) 78.4 (4.3) 77.9 (5.5) 78.2 (3.9) 84.5 (2.6) 85.9 (4.2)

Sens | Spec=80% 66.7 (6.3) 66.7 (9.6) 67.0 (5.9) 67.0 (7.9) 58.9 (8.3) 75.6 (7.0) 75.2 (11.5)

Sens | Spec=90% 54.4 (9.2) 53.3 (10.1) 57.8 (11.5) 52.6 (9.5) 43.0 (7.0) 61.5 (12.9) 63.3 (13.3)

Sens | Spec=95% 48.1 (13.2) 44.8 (11.6) 46.7 (10.1) 45.9 (9.8) 31.5 (8.2) 45.9 (17.1) 49.6 (16.4)

10 (4.1 %) AUC 66.9 (8.0) 67.2 (8.7) 67.2 (9.1) 69.6 (9.3) 78.2 (3.9) 83.0 (2.9) 83.8 (4.4)

Sens | Spec=80% 56.7 (9.6) 56.3 (9.2) 54.4 (11.8) 60.0 (10.6) 58.9 (8.3) 71.9 (6.1) 75.6 (8.6)

Sens | Spec=90% 46.7 (9.1) 45.2 (9.4) 47.0 (10.5) 46.7 (11.7) 43.0 (7.0) 57.4 (8.4) 57.8 (12.1)

Sens | Spec=95% 34.4 (6.8) 33.3 (7.2) 37.8 (9.4) 37.8 (11.4) 31.5 (8.2) 43.3 (12.7) 43.0 (11.2)

5 (2.1 %) AUC 57.7 (9.6) 58.9 (10.2) 57.8 (8.4) 61.7 (8.5) 78.2 (3.9) 80.6 (3.7) 81.9 (2.9)

Sens | Spec=80% 43.3 (10.8) 43.7 (12.9) 43.3 (11.0) 50.4 (11.2) 58.9 (8.3) 66.7 (7.0) 69.6 (8.5)

Sens | Spec=90% 33.7 (11.0) 36.7 (13.3) 33.7 (10.4) 41.9 (11.7) 43.0 (7.0) 49.6 (10.1) 52.2 (7.1)

Sens | Spec=95% 27.8 (10.4) 28.5 (10.9) 28.1 (11.7) 33.3 (10.6) 31.5 (8.2) 37.0 (8.0) 33.7 (5.4)
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Table 3.3: Results of cardio dataset with varying n, where n is the number of minor samples in training set,

and its proportions is given.. Average (standard deviation) performances over 10 seeds are described. Items in

bold indicates the best method.

Baseline Data augmentation
One-class

Classification
Supervised AD

n

(ratio)
metric

Supervised

Classifier
ROS Mixup

Mixup-

ROS

Deep-

SVDD
DeepSAD

DeepSAD

ext.

20 (2.0 %) AUC 96.4 (1.4) 97.7 (1.6) 95.8 (1.7) 98.2 (1.2) 73.6 (5.4) 97.6 (1.4) 98.2 (0.9)

Sens | Spec=80% 94.8 (3.4) 97.0 (2.2) 93.8 (3.3) 97.2 (1.9) 53.2 (5.9) 97.2 (3.0) 98.5 (1.9)

Sens | Spec=90% 91.0 (4.2) 94.5 (2.4) 89.4 (5.4) 95.5 (3.0) 39.0 (10.3) 94.4 (4.0) 96.1 (4.0)

Sens | Spec=95% 87.0 (4.6) 92.5 (3.3) 85.5 (6.4) 93.9 (2.9) 29.6 (10.0) 90.1 (4.9) 90.4 (4.2)

10 (1.0 %) AUC 90.2 (6.0) 95.8 (3.6) 88.7 (5.8) 96.5 (2.1) 73.6 (5.4) 96.3 (1.3) 97.7 (0.7)

Sens | Spec=80% 83.7 (8.7) 92.8 (8.5) 83.4 (8.6) 94.9 (1.9) 53.2 (5.9) 94.9 (2.5) 97.7 (2.4)

Sens | Spec=90% 78.3 (11.6) 90.3 (9.4) 77.5 (10.3) 92.0 (6.3) 39.0 (10.3) 90.7 (3.9) 93.2 (3.1)

Sens | Spec=95% 73.8 (13.1) 88.3 (11.3) 70.4 (11.4) 86.5 (11.7) 29.6 (10.0) 83.5 (6.3) 88.9 (3.7)

5 (0.5 %) AUC 74.8 (12.7) 86.0 (10.6) 71.4 (13.9) 92.4 (3.7) 73.6 (5.4) 90.6 (4.0) 94.3 (5.1)

Sens | Spec=80% 64.9 (17.3) 77.7 (17.5) 61.4 (17.3) 87.9 (6.6) 53.2 (5.9) 84.8 (8.9) 91.3 (10.1)

Sens | Spec=90% 56.9 (17.0) 74.5 (16.9) 53.5 (17.1) 82.7 (10.4) 39.0 (10.3) 74.2 (10.3) 85.9 (13.8)

Sens | Spec=95% 49.9 (16.7) 71.4 (16.4) 46.2 (14.3) 76.9 (10.8) 29.6 (10.0) 67.2 (9.1) 78.6 (14.2)
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Table 3.4: Results of satellite dataset with varying n, where n is the number of minor samples in training set,

and its proportions is given. Average (standard deviation) performances over 10 seeds are described. Items in

bold indicates the best method.

Baseline Data augmentation
One-class

Classification
Supervised AD

n

(ratio)
metric

Supervised

Classifier
ROS Mixup

Mixup-

ROS

Deep-

SVDD
DeepSAD

DeepSAD

ext.

20 (0.7 %) AUC 86.2 (3.7) 90.8 (1.5) 85.5 (4.1) 91.1 (1.2) 82.4 (3.2) 91.1 (1.3) 91.9 (1.4)

Sens | Spec=80% 76.7 (7.1) 85.2 (2.6) 75.4 (8.0) 85.7 (2.0) 67.5 (5.8) 84.5 (2.9) 86.1 (3.7)

Sens | Spec=90% 62.3 (8.5) 75.6 (2.1) 60.5 (9.0) 77.0 (1.6) 55.1 (5.4) 73.3 (3.3) 76.6 (4.1)

Sens | Spec=95% 51.7 (7.1) 66.1 (1.6) 51.0 (8.1) 67.6 (1.6) 46.0 (4.3) 64.3 (3.4) 67.7 (2.9)

10 (0.4 %) AUC 74.5 (11.8) 85.9 (10.4) 72.6 (13.0) 88.4 (3.2) 82.4 (3.2) 88.7 (2.5) 90.6 (1.5)

Sens | Spec=80% 59.1 (16.3) 78.6 (12.4) 57.0 (18.4) 81.8 (4.6) 67.5 (5.8) 79.7 (5.3) 83.6 (3.4)

Sens | Spec=90% 44.9 (15.7) 68.1 (12.7) 41.4 (17.3) 73.0 (3.8) 55.1 (5.4) 66.9 (5.8) 72.9 (3.3)

Sens | Spec=95% 33.7 (15.2) 58.0 (12.6) 30.1 (17.2) 64.4 (3.9) 46.0 (4.3) 58.0 (6.4) 63.9 (3.2)

5 (0.2 %) AUC 63.9 (11.6) 76.5 (17.4) 62.3 (12.0) 82.0 (11.3) 82.4 (3.2) 86.0 (2.3) 88.8 (2.0)

Sens | Spec=80% 43.5 (15.7) 64.2 (20.5) 41.7 (15.6) 72.5 (13.6) 67.5 (5.8) 74.4 (5.0) 79.2 (4.1)

Sens | Spec=90% 29.2 (15.2) 54.5 (20.5) 26.5 (14.2) 64.1 (16.2) 55.1 (5.4) 62.0 (5.5) 69.5 (3.7)

Sens | Spec=95% 20.1 (13.5) 46.4 (20.5) 17.8 (12.4) 57.2 (16.6) 46.0 (4.3) 52.4 (5.6) 62.4 (4.8)
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Table 3.5: Results of speech dataset with varying n, where n is the number of minor samples in training set,

and its proportions is given. Average (standard deviation) performances over 10 seeds are described. Items in

bold indicates the best method.

Baseline Data augmentation
One-class

Classification
Supervised AD

n

(ratio)
metric

Supervised

Classifier
ROS Mixup

Mixup-

ROS

Deep-

SVDD
DeepSAD

DeepSAD

ext.

20 (0.9 %) AUC 71.7 (3.7) 69.4 (4.3) 73.4 (5.9) 73.2 (5.8) 55.7 (7.3) 64.7 (5.3) 73.6 (6.6)

Sens | Spec=80% 54.4 (7.6) 52.4 (6.9) 55.2 (8.2) 52.4 (10.7) 26.8 (7.6) 37.6 (5.7) 56.0 (12.5)

Sens | Spec=90% 41.2 (9.2) 42.4 (7.6) 44.0 (7.8) 42.0 (8.9) 16.8 (9.0) 24.0 (7.8) 43.6 (7.2)

Sens | Spec=95% 34.4 (7.8) 34.8 (5.3) 32.4 (7.4) 27.2 (9.9) 8.4 (7.6) 18.0 (8.3) 36.4 (7.4)

10 (0.5 %) AUC 65.0 (6.9) 63.5 (7.3) 66.7 (6.8) 67.7 (4.1) 55.7 (7.3) 61.0 (5.4) 70.2 (5.6)

Sens | Spec=80% 45.6 (10.2) 45.6 (9.8) 44.0 (11.2) 44.8 (9.2) 26.8 (7.6) 30.0 (7.8) 48.4 (9.1)

Sens | Spec=90% 34.8 (10.0) 30.4 (8.7) 33.2 (8.2) 33.2 (8.4) 16.8 (9.0) 17.6 (8.5) 38.4 (9.5)

Sens | Spec=95% 24.4 (7.2) 22.0 (6.6) 26.4 (7.8) 25.2 (5.3) 8.4 (7.6) 12.0 (6.0) 32.4 (9.1)

5 (0.2 %) AUC 59.5 (6.0) 58.4 (5.5) 60.6 (7.3) 61.9 (7.6) 55.7 (7.3) 59.4 (6.7) 64.0 (4.4)

Sens | Spec=80% 37.6 (10.0) 34.8 (10.5) 36.4 (11.7) 37.6 (11.0) 26.8 (7.6) 32.0 (13.7) 38.0 (10.2)

Sens | Spec=90% 25.2 (10.0) 23.6 (10.4) 28.4 (9.9) 25.6 (10.0) 16.8 (9.0) 17.6 (6.3) 23.2 (7.7)

Sens | Spec=95% 16.4 (8.5) 16.0 (6.3) 18.0 (7.4) 20.0 (8.4) 8.4 (7.6) 10.4 (3.4) 16.4 (5.5)
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Table 3.6: Results of CIFAR10 dataset with varying n, where n is the number of minor samples in training

set, and its proportions is given. Average (standard deviation) performances over 5 seeds are described. Items

in bold indicates the best method.

Baseline Data augmentation
One-class

Classification
Supervised AD

n

(ratio)
metric

Supervised

Classifier
ROS Mixup

Mixup-

ROS

Deep-

SVDD
DeepSAD

DeepSAD

ext.

20 (0.4 %) AUC 82.0 (11.3) 80.0 (12.4) 77.6 (11.7) 83.0 (11.1) 66.8 (13.9) 73.7 (12.5) 86.1 (10.9)

Sens | Spec=80% 69.7 (19.5) 66.8 (20.9) 63.1 (19.5) 71.4 (19.4) 44.2 (18.2) 54.3 (19.0) 77.7 (18.9)

Sens | Spec=90% 57.7 (22.7) 54.6 (23.4) 50.8 (21.3) 59.6 (22.6) 28.4 (14.4) 38.9 (17.7) 67.4 (22.7)

Sens | Spec=95% 46.9 (23.2) 44.6 (24.0) 40.8 (20.5) 49.9 (23.5) 16.6 (9.4) 26.7 (14.9) 57.0 (24.2)

10 (0.2 %) AUC 78.2 (12.5) 76.9 (13.9) 73.9 (12.6) 79.5 (11.8) 66.8 (13.9) 71.0 (13.0) 81.5 (12.1)

Sens | Spec=80% 63.6 (21.3) 61.5 (22.6) 56.9 (20.5) 65.8 (20.0) 44.2 (18.2) 50.3 (19.2) 68.7 (20.6)

Sens | Spec=90% 50.7 (22.5) 49.3 (23.6) 44.3 (20.4) 53.9 (22.2) 28.4 (14.4) 34.4 (16.6) 57.3 (22.7)

Sens | Spec=95% 40.1 (21.3) 39.3 (22.9) 33.2 (18.1) 43.3 (22.5) 16.6 (9.4) 22.5 (13.1) 46.9 (23.6)

5 (0.1 %) AUC 73.8 (13.0) 73.7 (14.2) 70.3 (12.9) 75.0 (12.6) 66.8 (13.9) 68.2 (13.6) 72.8 (12.3)

Sens | Spec=80% 56.3 (20.8) 56.9 (22.2) 51.2 (19.2) 58.5 (20.6) 44.2 (18.2) 45.7 (18.7) 53.0 (18.7)

Sens | Spec=90% 43.0 (20.2) 43.8 (21.8) 38.0 (18.2) 45.7 (21.5) 28.4 (14.4) 29.6 (14.8) 37.4 (17.5)

Sens | Spec=95% 31.8 (17.2) 33.9 (20.0) 27.7 (15.7) 34.9 (20.2) 16.6 (9.4) 17.9 (10.6) 26.0 (14.9)
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Figure 3.4: The extensions of DeepSAD sensitive analysis with respect to distance function. We summarize

the average of the test AUC values varying the number of minor samples.
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Chapter 4

Conclusions

In this thesis, we first introduced a better guide to BGF so-called

within-group fairness, which should be considered along with BGF

when fair AI is a concern. Also, we proposed a regularization pro-

cedure to control the degree of WGF of the estimated classifiers

and score functions. By analyzing four real-world datasets, we il-

lustrated that the WGF constraints improve the degree of WGF

without hampering BGF as well as accuracy. Thus, we concluded

that the doubly-fair algorithms find a fair AI model with respect

to BGF and individual fairness in each sensitive group. Moreover,

in many cases, the WGF constraints are helpful to find more ac-

curate prediction models.

A problem in the proposed learning algorithm for WGF is that

using a surrogated constraint for a given WGF constraint is some-

times problematic. The learning algorithm can find a DF model

with a lower surrogated WGF value than a BGF model, but the
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original WGF value is much higher. See Section A.2 of Appendix

for empirical evidence. A better-surrogated WGF constraint to

ensure a lower original WGF value would be useful.

On the other hand, we proposed a new data-augmentation

based on Mixup, named MixupROS, and an extension of DeepSAD

for extremely imbalanced problems. MixupROS generates minor

virtual examples between major and minor classes when oversam-

pling minor samples. The extension of DeepSAD also moves each

minor sample embeddings away from the other to surround the

hypersphere of the major sample embedding while placing minor

sample embeddings outside the hypersphere. Also, the extension

of DeepSAD moves each minor sample embeddings away from the

other to enclose a hypersphere of major sample embeddings. By

considering the extremely imbalanced ratio for various datasets,

our proposed algorithms show superior results compared to other

works.
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Appendix A

Appendix for

Within-group fairness

A.1 Additional numerical studies for WGF

classification

A.1.1 Targeting for disparate impact

First, we investigate the sensitivity of the prediction accuracy to

the degree of dWGF in the DNN model. Figure A.1 shows the

scatter plots between various dWGF values and the corresponding

accuracies for the DF DNN model, where the DI is fixed around

0.03. The accuracies are not very sensitive to the dWGF values like

the DF linear logistic model. Furthermore, for the datasets Adult,

Bank and COMPAS, the DF classifiers have higher accuracies and

lower dWGF values than the BGF classifier.

80



We also investigate how the dWGF constraint performs with

surrogated BGF constraints other than Hinge-DI: (i) the covari-

ance type constraint [Zafar et al., 2017, 2019], named by COV-

DI; and (ii) the linear surrogated function, named by FNNC-DI

[Padala and Gujar, 2020]. Table A.1 presents the results with var-

ious surrogated DI constraints and the dWGF constraint. In most

cases, COV-DI and FNNC-DI give the results similar to Hinge-DI

with or without the dWGF constraint and we consistently observe

that considering the dWGF constraint together with the DI con-

straint helps to alleviate within-group fairness while maintaining

similar levels of the accuracy and the DI. Note that for the dataset

Adult, the DNN model with COV-DI constraint does not achieve

the pre-specified DI value 0.03 regardless of the choice of tuning

parameter. In contrast, the DNN model trained with the DI and

dWGF constraints achieves the DI value 0.03 with a smaller value

of dWGF. This observation is interesting since it implies that the

dWGF constraint is helpful to increase even the BGF.

Next, we compare the dWGF and WGF constraints when tar-

geting the DI with the hinge surrogated function in Table A.2. In

most cases, both the dWGF and WGF constraints are helpful to

improve the WGF, while maintaining a similar level of accuracy

and DI. It is noticeable that the DF classifier with the dWGF

constraint is more accurate than that with the WGF constraint,

which would be mainly because the DI constraint is directional.
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Figure A.1: Scatter plots of the accuracies and dWGF val-

ues for the DF DNN model with the DI values around 0.03.

(Topleft) Adult ; (Topright) Bank ; (Bottomleft) LSAC ; (Bottom-

right) COMPAS. Red star points in each figure represent the re-

sults of the BGF classifier.
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Table A.1: Results for the DF classifier with various surrogated DI

constraints. Except for the dataset Adult, average performances

are described.

Linear model DNN model

Dataset Method ACC DI dWGF ACC DI dWGF

Adult Uncons. 0.852 0.172 0.000 0.853 0.170 0.000

COV-DI 0.837 0.035 0.003 0.845 0.082 0.013

COV-DI-DF 0.837 0.030 0.001 0.840 0.025 0.007

FNNC-DI 0.834 0.023 0.003 0.838 0.023 0.006

FNNC-DI-DF 0.836 0.025 0.001 0.841 0.025 0.004

Bank Uncons. 0.908 0.195 0.000 0.904 0.236 0.000

COV-DI 0.904 0.019 0.009 0.906 0.019 0.036

COV-DI-DF 0.904 0.020 0.007 0.906 0.020 0.033

FNNC-DI 0.903 0.020 0.013 0.901 0.020 0.029

FNNC-DI-DF 0.905 0.020 0.008 0.900 0.010 0.027

LSAC Uncons. 0.823 0.120 0.000 0.856 0.131 0.000

COV-DI 0.808 0.015 0.014 0.859 0.052 0.020

COV-DI-DF 0.811 0.019 0.010 0.860 0.054 0.014

FNNC-DI 0.809 0.020 0.014 0.851 0.025 0.023

FNNC-DI-DF 0.809 0.014 0.010 0.844 0.010 0.019

COMPAS Uncons. 0.757 0.164 0.000 0.757 0.162 0.000

COV-DI 0.640 0.029 0.149 0.661 0.038 0.124

COV-DI-DF 0.620 0.024 0.135 0.650 0.028 0.097

FNNC-DI 0.646 0.037 0.146 0.646 0.032 0.133

FNNC-DI-DF 0.624 0.034 0.143 0.645 0.021 0.117

83



Table A.2: Comparison of the dWGF and WGF constraints based on the linear logistic model. Except for the

dataset Adult, average performances are described.

with the dWGF constraint with the WGF constraint

Dataset Method ACC DI dWGF ACC DI WGF

Adult Hinge-DI 0.833 0.028 0.005 0.833 0.028 0.005

Hinge-DI-DF 0.836 0.028 0.003 0.830 0.012 0.005

Bank Hinge-DI 0.901 0.024 0.018 0.901 0.024 0.003

Hinge-DI-DF 0.904 0.021 0.007 0.898 0.017 0.000

LSAC Hinge-DI 0.809 0.017 0.014 0.809 0.017 0.014

Hinge-DI-DF 0.813 0.018 0.009 0.810 0.016 0.011

COMPAS Hinge-DI 0.641 0.024 0.153 0.641 0.024 0.136

Hinge-DI-DF 0.618 0.025 0.145 0.594 0.018 0.088
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A.1.2 Targeting for equal opportunity

We exam how the dWGF constraint works with the equal oppor-

tunity constraint given as

EOp = |Pr(Ŷ = 1|Y = 1, Z = 1)− Pr(Ŷ = 1|Y = 1, Z = 0)|,

and the results are summarized in Table A.3. For some cases, the

dWGF constraint does not work at all (i.e., the dWGF values of

the BGF and DF classifiers are the sames). This is partly because

the surrogated dWGF constraint does not represent the original

dWGF well, which is discussed in the following section.

A.2 Limitations of surrogated WGF con-

straint

We have seen that the DF classifier does not improve the dWGF

value at all compared to the BGF classifier with respect to the

equal opportunity constraint for some datasets. We found that

these undesirable results would be because the surrogated dWGF

constraint using the hinge function does not represent the original

dWGF constraint. To take a closer look at this problem, we inves-

tigate relations between the dWGF and Wconv evaluated on the

training datasets Bank and LSAC in Figure A.2. We observe that

the DF classifier has lower Wconv values but higher dWGF values

than the BGF classifier. That is, reducing the Wconv value does

not always result in a small value of the original dWGF. Alter-

native surrogated constraints, which resemble the original dWGF
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Table A.3: Results for targeting EOp-dWGF. Except for the

dataset Adult, average performances are described.

Linear model DNN model

Dataset Method ACC EOp dWGF ACC EOp dWGF

Adult Uncons. 0.852 0.070 0.000 0.853 0.076 0.000

Hinge-EOp 0.851 0.011 0.002 0.854 0.012 0.030

Hinge-EOp-DF 0.853 0.016 0.001 0.854 0.015 0.012

FNNC-EOp 0.851 0.013 0.012 0.852 0.004 0.021

FNNC-EOp-DF 0.852 0.007 0.007 0.852 0.006 0.019

Bank Uncons. 0.908 0.099 0.000 0.904 0.082 0.000

Hinge-EOp 0.908 0.027 0.007 0.909 0.031 0.122

Hinge-EOp-DF 0.908 0.027 0.007 0.909 0.031 0.122

FNNC-EOp 0.908 0.027 0.010 0.903 0.037 0.111

FNNC-EOp-DF 0.908 0.030 0.010 0.900 0.028 0.107

LSAC Uncons. 0.823 0.041 0.000 0.856 0.038 0.000

Hinge-EOp 0.820 0.003 0.004 0.852 0.010 0.015

Hinge-EOp-DF 0.820 0.003 0.004 0.851 0.008 0.012

FNNC-EOp 0.822 0.011 0.003 0.859 0.010 0.011

FNNC-EOp-DF 0.822 0.011 0.003 0.858 0.010 0.010

COMPAS Uncons. 0.757 0.074 0.000 0.757 0.075 0.000

Hinge-EOp 0.713 0.042 0.073 0.719 0.029 0.046

Hinge-EOp-DF 0.713 0.042 0.073 0.719 0.029 0.046

FNNC-EOp 0.666 0.039 0.197 0.722 0.031 0.056

FNNC-EOp-DF 0.706 0.031 0.092 0.725 0.035 0.042
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closely but are yet computationally easy, are needed and we leave

this issue for future work.
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Figure A.2: Scatter plots of the dWGF and the within-group fair-

ness penalty (Wconv) values for the DF linear logistic model with

the EOp values around 0.03 evaluated on the training datasets.

(Left) Bank ; (Right) LSAC. Red star points in each figure repre-

sent the results of the BGF classifier.

A.3 Datasets and Preprocessing

Dataset. We conduct our experiments with four real-world datasets,

which are popularly used in fairness AI research and publicly avail-

able:

• Adult [Dua and Graff, 2017]: The Adult Income dataset con-

sists of 32,561 training subjects and 16,281 test subjects with

14 features and a binary target, which indicates whether in-

come exceeds $50k per a year. The sensitive variable is the

sex of the subject, Z = 0 for female and Z = 1 for male.
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• Bank [Dua and Graff, 2017]: The Bank Marketing dataset

contains 41,188 subjects with 20 features (e.g. age, occupa-

tion, marital status) and a binary target indicating whether

or not subjects have subscribed to the product (bank term

deposit). A discrete age is set as a binary sensitive variable

by assigning 0 to subjects aged 25 to 60 years old and 1 to

else.

• LSAC [Wightman and Ramsey, 1998]: The Law School dataset

pre-processed by [Lahoti et al., 2020] contains 26,551 sub-

jects with 10 input variables and a binary target which in-

dicates whether subject passed the bar exam or not. The

sensitive variable is set by 0 for ‘non-white’ subjects and 1

for ‘white’ subjects.

• COMPAS [Larson et al., 2016]: The Compas Propublica Risk

Assessment dataset contains 6,172 subjects to predict recidi-

vism (‘HighScore’ or ‘LowScore’) with 6 variables related to

criminal history and demographic information. We use racial

characteristics as a sensitive variable.

We transform all categorical variables to dummy variables using

one-hot encoding, and standardize to get zero mean and 1 stan-

dard deviation for each variable. Some variables having serious

multicollinearity have been removed in order to obtain stable es-

timation results. The performances of the unconstrained linear

logistic model are summarized in Table A.4.
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Table A.4: Performances of the unconstrained linear logistic model

on the test dataset. Except for Adult, average metrics are de-

scribed.

Model Dataset Acc DI EOp DM

Linear Adult 0.852 0.172 0.070 0.117

Bank 0.908 0.195 0.099 0.176

LSAC 0.823 0.120 0.041 0.090

COMPAS 0.757 0.164 0.074 0.020

DNN Adult 0.853 0.170 0.076 0.105

Bank 0.904 0.236 0.082 0.174

LSAC 0.856 0.131 0.038 0.071

COMPAS 0.757 0.162 0.075 0.024

A.4 Implementation details

For numerical stability, we use the ridge penalty for DNN pa-

rameters with the regularization parameter 10−6. All experiments

are conducted on a GPU server with NVIDIA TITAN Xp GPUs.

Also, for each method, we consider lr ∈ {0.01, 0.1, 1} and epoch ∈

{10000, 20000}, then we choose the best learning rate and epoch.

In addition, we did not use a mini-batch for the gradient descent

approach, i.e., we set the batch size to the sample size. For each

BGF constraint, we choose the corresponding regularization pa-

rameter so that the value of the BGF constraint (e.g., DI, EOp,

MSP) reaches a certain level among the following candidate pa-
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rameters set:

λ ∈ {0, 0.05, 0.1, 0.35, 0.45, 0.6, 0.75, 1, 2, 5}.

The hyper-parameters in the doubly-fair algorithm are set to min-

imize the dWGF (or WGF) value while the BGF level remains

similar to that of the BGF classifier, among the following candi-

date parameters sets:

λ ∈ {0, 0.05, 0.1, 0.35, 0.45, 0.6, 0.75, 1, 2, 5}

η ∈ {0, 0.1, 0.5, 1, 3, 5}.

For the WGF score function, we adopt the surrogated version

of Kendall’s τ as the WGF constraint. However, the surrogated

Kendall’s τ requires huge computation since it should process all

pairs of the training data. To save computing time for calculat-

ing the surrogated Kendall’s τ , we use 50,000 pairs of samples

randomly selected from the training data for each sensitive group.
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국문초록

본 논문에서는 분류문제를 다룰 때 발생할 수 있는 두 가지 이슈

에 대해 논의한다. 먼저 첫 번째 이슈는 인공지능의 공정성으로,

인공지능이 여러 분야에서 뛰어난 성능을 나타내어 사회적 의사

결정 도구에 활용되면서, 인공지능은 정확하면서 특정 민감 그룹

(예. 유색인종, 여성)에 대해 불공정을 내포해서는 안된다. 이를

해결하기 위해, 민감그룹 간 공정한 인공지능을 학습하는 다양한

알고리즘이제안되었다.한편,그룹간에공정한모형이개개인을

불공정하게 대할 수 있는 문제점이 있어 개인간 공정성 개념이

제안되었지만,이개념은개개인간유사도를측정해야하는어려

움때문에실생활에적용하기어렵다.따라서본논문에서는그룹

간 공정성을 학습할 때 그룹 내에서 불공정이 일어나지 않도록

하는 더 나은 방향의 가이드인 그룹 내 공정성을 소개한다. 그리

고 그룹 내 공정성의 수학적 정의를 제안하여 그룹 내 공정성을

개념화하고, 이를 통제할 수 있는 알고리즘을 개발한다. 다양한

실험을 통해 제안한 알고리즘이 정확도와 그룹 간 공정성을 비슷

하게 유지하면서 그룹 내 공정성을 완화시킴을 확인하였다.

둘째로, 클래스 간 자료의 수가 극단적으로 불균형할 때의 분

류문제를고려한다.불균형분류문제는이상거래탐지,의학진단
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등 다양한 분야에서 연구됐으며, 일반적으로 불균형 데이터셋으

로 분류기를 학습할 경우 자료의 수가 더 많은 메이저 클래스에

초점을맞춰자료의수가적은마이너클래스의특성을잘학습하

지못하게된다.이러한불균형성을해결하기위해가장직관적이

고 사용하기 쉬운 오버샘플링이 적용되었지만, 단순하게 마이너

클래스의 샘플을 복제하는 방법은 더 나은 분류기를 학습할 때

큰 도움이 되지 않는다. 이 논문에서는 새로운 데이터 증원법인

MixupROS와딥러닝을활용한이상탐지방법의확장알고리즘을

제안한다. 극단적 불균형을 가정한 여러 데이터셋의 실험 결과를

통해, 제안하는 알고리즘이 기존의 방법들보다 우수한 성능을 가

지는 분류기를 학습함을 확인하였다.

주요어: 분류모형, 분류문제, 공정한 인공지능, 그룹 내 공정성,

불균형 분류문제, 데이터 증원법, 지도 이상 탐지

학 번: 2014-22358
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