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Abstract 

 
Over the past few decades, understanding of ice mass changes in Antarctica has 

been greatly improved by advances in satellite observation and geophysical 

modeling techniques. Satellite observations have clearly shown evidence of ongoing 

Antarctic ice mass loss, and numerical models have quantitatively estimated future 

ice mass loss. Both observation and modeling have found that Antarctic ice mass 

loss is accelerating and this would continue in the future. Within this century, 

Antarctica is expected to be the most important contributor to sea-level rise. To 

accurately predict Antarctic ice mass loss, continuous Antarctic observation is 

required, and the cause of Antarctic ice mass loss should be understood. 

Ice mass variations over Antarctic glaciers are determined by many factors, and 

their magnitudes differ significantly from glaciers to glaciers. Understanding ice 

mass variations at individual glaciers are important to project future Antarctic ice 

mass losses and subsequent sea level rise. Because glacier mass balances are affected 

by different physical mechanisms associated with atmospheric and oceanic 

circulations and solid earth deformation, multidisciplinary studies have been 

required for the accurate understanding of the interaction between Antarctic Ice 

Sheet (AIS) and the entire Earth system.  

In this dissertation, three studies are carried out using multiple climate models 

and remote sensing data to understand the current status of glacier mass balance in 

AIS. The first study examines the role of precipitation in AIS ice mass changes, 

identifying the interaction between atmosphere and cryosphere. It is found that the 

precipitation accounts for most of the inter-annual ice mass variability in recent 

decades and about 30% of the acceleration in contemporary ice mass loss can be 

explained by precipitation decrease. EOF analysis suggests that such precipitation 

variability is closely related to periodic climate change in the high altitude of the 

Southern Hemisphere, named Southern Annular Mode (SAM). After removing 

effects associated with precipitation decrease, Antarctic ice mass loss associated with 
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glacier dynamics can be obtained. 

The second study is to develop a new method to improve the spatial resolution 

of the Antarctic ice mass change by combining two different satellite observations. 

Antarctic ice mass change in higher resolution can be estimated by a new linear 

inversion technique using satellite altimetry and gravimetry observations together. 

The new method provides monthly ice mass changes (2003-2016) for all Antarctic 

glaciers with a spatial resolution of 27 km. The high-resolution ice mass data agree 

better with the ice mass change from the Input-Output method than data 

conventionally obtained either from gravimetry or altimetry satellite.  

The third study estimates the Glacial Isostatic Adjustment (GIA) effect beneath 

the Antarctic glaciers. This aims to minimize the GIA error in ice mass observations. 

By comparing the high-resolution mass estimates with multiple climate models, the 

GIA effect beneath the Kamb Ice Stream (which is located near the Ross Ice Shelf 

in West Antarctica) is estimated. The estimated GIA effect is then compared with 

many GIA models. It is found that most of the GIA models overestimate the GIA 

effect at the Kamb Ice Stream. Given that a number of models simulate the highest 

GIA rate beneath the Kamb Ice Stream within Antarctic glaciers, this finding has 

significant implications to improve the accuracy of Antarctic ice mass change by 

reducing the GIA uncertainty.  

Lastly, we aggregate the results of the three studies to project the future mass 

loss of Antarctic glaciers. This result is distinct from previous studies in that it 

provides glacial-scale projections of ice mass changes based on ice dynamic effects 

after removing effects of precipitation and solid earth deformation from glacial-scale 

ice mass observations. 

 

 

 

Keyword : Antarctica, Ice Mass Balance, Sea-Level Change, Satellite 

Remote Sensing, Joint Inversion, Glacial Isostatic Adjustment 
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Chapter 1. Introduction 

 

 Over the past few decades, rapid ice mass loss in the Earth's cryosphere 

under a warming climate has contributed significantly to global sea-level rise (Slater 

et al., 2021). Sustained sea-level rise will, in turn, lead to economic, social, and 

biological damages to humanity in the future. Accurate prediction of future sea-level 

rise is essential for humanity to establish appropriate control policies against 

imminent danger. As part of the Coupled Model Intercomparison Project (CMIP), 

dozens of numerical simulations have been developed by multiple countries, which 

have estimated sea-level changes over the next few hundred years. According to the 

special report prepared by Intergovernmental Panel on Climate Change (IPCC) 

(Oppenheimer et al., 2019), the models predict that the global mean sea-level will be 

about +0.84 m from the present at the end of this century, under the current rate of 

climate change. However, the prediction also shows a high variance of 0.61-1.10 m 

due to different model sensitivities. To further constrain such diverse predictions, it 

is necessary to improve our understanding of ongoing global change including ice 

mass loss over polar ice sheets due to climate warming. 

 Antarctic Ice Sheet (AIS) is the largest ice reservoir in the Earth's cryosphere. 

If all of the ice in AIS melts, it will cause a sea-level rise of about 58 m, at which 

time most metropolitan cities on the Earth will sink below sea-level. Recent 

observations from satellite remote-sensing suggest that the mass loss in AIS's 

glaciers is the second largest contributor to sea-level rise, following Greenland Ice 

Sheet. The mass loss rate in Antarctic glaciers measured by multiple remote sensing 

(1992-2017) is about 105 Gtons (giga-tons) per year, equivalent to global sea-level 

rise of about 0.29 mm yr-1 (IMBIE team, 2018). Several studies have also suggested 

that the rate of AIS’ mass loss is accelerating (Chen et al., 2009; Seo et al., 2015; 

Velicogna et al., 2014), which may lead to more rapid sea-level rise in the future. 

Even though the mechanisms leading to the acceleration are not yet clear, the current 

acceleration rate implies that AIS would be the first contributor to sea-level rise 
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within this century. 

 The mass loss rates from AIS glaciers evidently differ from each other. 

During the satellite observation period (since 1979), significant mass loss has been 

concentrated in the glaciers located in West Antarctica and Antarctic Peninsula. Pine 

Island and Thwaites Glaciers account for most mass loss in West Antarctica and are 

expected to be the largest sea-level rise contributors in the near future. In Antarctic 

Peninsula, the mass loss is evident near Graham Land, located at the northern tip of 

the Antarctic Peninsula (Rignot et al., 2019). In contrast, there have been ice mass 

increases in most East Antarctica during the same period, particularly over the 

Dronning Maud Land located at 20°W - 60°E (Boening et al., 2012). Uniquely, an 

apparent mass loss, about -15 Gton yr-1, has been found in the Totten Glacier (located 

at the Wilkes Land) among East Antarctic glaciers (Mohajerani et al., 2018). Various 

physical mechanisms, such as atmospheric (Boening et al., 2012) and ocean 

circulations (Dutrieux et al., 2014), subglacial hydrology (Alley et al., 1994), and 

solid earth response (Whitehouse et al., 2019) would explain such non-uniform 

distribution of ice mass change at different Antarctic sectors. In contrast, the present-

day AIS mass prediction models do not implement all of these complex mechanisms, 

leading to high uncertainties in future sea-level variability (Kopp et al., 2017). 

 There are two major issues to improve the prediction accuracy of future 

Antarctic ice mass variability. The first is, as noted above, to understand causes of 

ice mass change. Recent studies suggested increasing water temperatures in 

Antarctic coastal regions as the major cause of the ice mass loss and its acceleration 

over the past several decades (e.g., Dutrieux et al. (2014); Spence et al. (2017)). This 

is based on the mechanism that ice-shelf thinning caused by ocean warming weakens 

the buttressing for inland ice flow, thereby increases ice discharge. Both observations 

and ice dynamics modeling support this mechanism, but there are still many debates 

about the ocean forcing as the main cause of ice mass loss. For example, Seo et al. 

(2015) reported that Antarctic snowfall changes during 2003-2013 could explain the 

acceleration of ice mass loss by about 56%. This is different from that most 
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acceleration is caused by increased ice discharge from ocean warming. Quantifying 

the contribution of the forcing mechanism to ice mass changes would be very useful 

to the future ice dynamics modeling. 

 The second is to propose appropriate initial conditions for the ice dynamics 

modeling by accurately observing Antarctic ice mass change. Over the past few 

decades, spatio-temporal variability of Antarctic ice mass change has been observed 

by both satellite gravimetry and altimetry. However, the observations by each 

technique do not agree with each other due to their own observational limits. For 

example, satellite gravimetry has a spatial resolution of hundreds of kilometers, 

making it difficult to identify the mass change signals occurring at individual glaciers 

which areas are smaller than satellite gravity resolution. In addition, the inaccuracy 

of the model correction for the uplift rate of solid earth (i.e., glacial isostatic 

adjustment (GIA)) results in a large error in estimating the ice mass change (~40 

Gton yr-1 (Shepherd et al., 2012). Satellite altimeters observe changes in ice surface 

elevation at much higher spatial resolutions than satellite gravimetry (within a few 

kilometers), but have significant error sources when converting the measured 

elevations into ice mass variability due mostly to incorrect understanding of firn 

density. Continuous efforts are required to overcome such limitations to understand 

the ongoing Antarctic ice mass change more accurately. 

Therefore, this dissertation (1) examines precipitation effect to on-going AIS 

mass loss, (2) develops a new method for accurate AIS mass changes by combining 

different satellite observations and (3) reduces uncertainty in AIS mass loss estimate 

associated with GIA effect. Chapter 3 presents a study on the contribution of 

Antarctic snowfall to ice mass changes. Previous studies have reported that post-

industrial climate warming has increased Antarctic snowfall over the past 200 years. 

However, precipitation over the past 40 years has not shown this increasing trend. 

This study investigates the underlying causes of snowfall variability during 1979-

2017 and quantitatively analyzes its impact on Antarctic ice mass change. In Chapter 

4, linear inversion scheme is developed by merging two types of data observed from 



 

 ４ 

satellite gravimetry and altimetry. An unprecedented high-resolution Antarctic ice 

mass change is estimated and cross-validated by estimates from other method (Input-

Output Method). Chapter 5 is a study of estimating the solid earth’s uplift rate (GIA) 

beneath the Antarctic glaciers. Geophysical models poorly constrain the present-day 

GIA effect in AIS. By comparing satellite observations and climate models, this 

study effectively isolates the mass change induced by GIA under Kamb Ice Stream 

(KIS), where showing the highest uplift rates in multiple numerical GIA models. The 

three studies are expected to contribute for accurate projection of sea-level rise by 

extending our understanding of Antarctic ice mass change (Chapter 6). The 

concluding remarks are presented in Chapter 7. 
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Chapter 2. Backgrounds 

2.1. Satellite gravimetry 

2.1.1 Overview & Principle 

 Since May 2002, the time-varying gravity field caused by the mass re-

distribution on the Earth's surface has been observed by the GRACE. The GRACE 

mission was terminated in 2017, and the new satellite mission, GRACE Follow-On 

(GFO) (2018-present) has continued gravity observations. GRACE and GFO 

consists of twin satellites in the along-track direction, orbiting around the earth along 

the equi-geopotential surface at an altitude of about 500km from the surface. Varying 

gravitational potential modulates the distance between the two satellites, which is 

continuously observed by microwave interferometry mounted on each satellite body. 

After sensor calibration, GRACE provides accurate range rate data. An inversion 

using range-rate data and other auxiliary observations yields gravitational fields of 

the Earth including static components due to solid earth and time-varying 

components. The time-varying gravitational fields are caused by the mass 

distribution associated with atmospheric pressure, ocean bottom pressure, terrestrial 

water storage (TWS), ice mass change, and mantle creeping. Among these, the 

atmospheric and oceanic effects are well understood by the development of 

numerical model (e.g., Atmosphere and Ocean De-Aliasing (AOD) product) and thus 

removed from the gravitational fields. GRACE and GFO have provided the 

gravitational fields represented by spherical harmonic (SH) coefficients, usually with 

monthly time intervals.  

Despite the low spatial resolution (hundreds of kilometers), GRACE's high 

accuracy (~ 2 mm water thickness (Wahr et al., 1998)) has allowed effective 

detection of global- and regional- scale mass variabilities. At the global scale, 

GRACE observations have been used to estimate the rate of global sea-level rise 

induced by the land water inflow. GRACE also has been used to investigate Earth's 

dynamic processes such as geocenter variations (Swenson et al., 2008) and polar 



 

 ６ 

motion (Seo et al., 2021). At the regional scale, GRACE observations have been 

applied to observe the geophysical phenomena such as river and groundwater storage 

variability (e.g., Eom et al. (2017); Rodell et al. (2009)), the mass balance of ice 

sheet and glaciers (e.g., Seo et al. (2015); Velicogna and Wahr (2013)), co-seismic 

and post-seismic deformation (e.g., Chen et al., (2007)), and modern sediment 

discharge process (e.g., Mouyen et al. (2018)).    

 

2.1.2. Estimation of surface mass densities from GRACE gravity data 

 The SH coefficients ("!"  and  #!" , in which $ , % are degree and order, 

respectively) provided by GRACE data centers can be converted into the geoid 

(Wahr et al., 1998):  

 

&((, *) 	= 	.	∑ ∑ 01!"(234()	("!"234(%*)	+ #!"467(%*))
!
"#$

%
!#$           (2.1) 

 

where .  is the radius of the Earth, and 01!"  are normalized associated Legendre 

functions. ( and * are colatitude and longitude, respectively. In general, data users 

utilize coefficients of less than degree 60 (7<60) to avoid higher measurement noise 

that increases with higher degrees. The geoid is mostly determined by static 

component of Earth gravitational field. By removing temporal mean values of SH 

coefficients from the original data, we can obtain the time-varying geoid anomalies: 
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 The geoid anomalies, Δ& (indicated as SH coefficients), is caused by the 

gravitational attraction of the surface mass density anomalies, Δ:, and the relation 

between the two is (Wahr et al., 1998): 
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where @&12 is the average density of the Earth (~5517 kg). The elastic earth underlaid 

by mass loads (represented by Δ:) is radially deformed, and such earth deformation 

induces additional geoid perturbation. This effect can be estimated by introducing 

the load Love number, A!, a series of numbers representing geoid perturbation as a 

point mass is applied in an elastic earth: 
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                  (2.4) 

 

The total geoid change caused by the mass load and corresponding solid earth 

deformation is sum of equations (2.3) and (2.4) 
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  Similar to equation (2.2), the surface mass distribution on the Earth's surface 

(Δ:((, *, 9)) can also be expressed by introducing corresponding SH coefficients, 

∆"B!" and ∆#B!": 

 

Δ:((, *, 9) 	= 	.@; 	∑ ∑ 01!"(234()	(∆"B!"234(%*)	+ ∆#B!"467(%*))
!
"#$

%
!#$ (2.6) 

 

where @;  is density of water (1000kg m-3) and is a term to assign a unit 

corresponding to the thickness of the water. Another form of the above equation can 

be obtained from the orthogonality of SH: 
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Using equation (2.3), (2.4), and (2.7), we obtain a relation between SH coefficients 

described above: 

 

C
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Finally, by inserting ∆"B!"  and ∆#B!"  into equation (2.6), we can estimate the 

distribution of surface mass density at a given time using SH coefficients obtained 

by GRACE: 
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2.1.3. Spatial filtering 

 Atmospheric surface pressure and ocean bottom pressure vary with much 

shorter time scale than the GRACE observational epoch (about a month). Such 

pressure fields are corrected in GRACE data by AOD product (numerical model 

output for barometric pressure and ocean bottom pressure), but residual fields remain 

and cause spatial aliasing error (Seo et al., 2008). To reduce GRACE's aliasing errors 

and measurement noise, various types of filtering techniques have been developed 

such as Gaussian spatial filter (Wahr et al., 1998), decorrelation filter (Swenson & 

Wahr, 2006), or their combinations (Kusche, 2007). This chapter briefly introduces 

Gaussian and decorrelation filters, which are most widely used in the post-processing 

of GRACE data. 

 Gaussian filtering is a spatial averaging technique applying different weight 

as determined by Gaussian function for grid points. Let the distribution of the surface 

mass density at a specific time is Δ:((′, *′), and its Gaussian averaging (Δ:F((, *)) 

is calculated by using Gaussian averaging function G (Wahr et al., 1998):   
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where H is angular distance between ((, *) and ((′, *′) on the Earth's surface and I 

is defined by 

 

I =
@!%(-)

(/@A3'(7/&))
.              (2.12) 

 

J  is the distance at which G(H)  drops to half of G(0)  and is referred as the 

averaging radius.  

 In the spherical harmonic domain, the Gaussian weighting operator varies 

depending on the degree ($) of coefficients. The Gaussian averaging functions at each 

degree can be obtained with the following recurrence formula according to Jekeli 

(1981): 

  

G$ =
/
-*

, G/ =
/
-*
[
/.2&'(

/@2&'(
	− 	

/
<
],G!./ = −

-!./
<
G! +G!@/ 	⋯.         (2.13) 

  

Combined with Equation 2.9, the distribution of surface mass density after Gaussian 

spatial filtering is calculated as follows: 

  

Δ:F((, *, 9) 	= 	
-*&+!"#

(
	∑ ∑ G!01!"(234()	

-!./
/.:$

(∆"!"234(%*)	+
!
"#$

%
!#$

∆#!"467(%*)).               (2.14) 

 

 Decorrelation filter is to suppress north-south stripes appearing in observed 

geoid anomalies. The filter utilizes the fact that the GRACE's aliasing errors are 
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correlated in the spectral domain. Swenson and Wahr (2006) found that SH 

coefficients larger than order 8 showed smoothly varying patterns with increasing 

degrees ($) at a fixed order, when the degrees are divided by odd and even numbers. 

And they found that this correlated pattern, spatial aliasing error, produced the north-

south stripes in GRACE observations.  

The coefficient for each order (%) divided by odd and even degrees ($) can be 

approximated by the following P -order polynomial (Swenson & Wahr, 2006): 

 

"Q!" = ∑ R!"
4 $4

>
4#$ ,               (2.15) 

 

where R!"4  are 6th order coefficients of polynomial. R!"4  can be estimated using the 

least-square fit of the polynomial to the observed stokes coefficients: 

 

R!"
4 = ∑ ∑ S4E

@/
7E"%"

!.;/-
%#!@;/-

>
E#$ , S4E =	∑ 747E

!.;/-
%#!@;/- .         (2.16) 

 

Using the above equation, the relationship between "!" and "Q!" can be obtained as 

follows (Swenson & Wahr, 2006): 

 

"Q!" 	= 	∑ Λ!%""%"
!.;/-
%#!@;/- ,              (2.17) 

 

where 7 are even or odd numbers. The decorrelation filter (Λ!%") is defined as: 

 

Λ!%" = ∑ ∑ S4E
@/
7E$4

>
E#$

>
4#$ .             (2.18) 

SH coefficients approximated by the polynomial fitting are assumed to represent the 

aliasing error and are subtracted from GRACE SH coefficients to diminish the effect 

of aliasing error. 
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2.2. Satellite altimetry 

2.2.1. Overview & principle 

 Satellite altimetry was developed in the 1970s to observe the Earth's sea 

level and its changes. Contrary to its original purpose, satellite altimeters were also 

featured in observing surface elevation changes on the ice surface, leading to a leap 

forward in polar geophysics. Antarctica is one of the regions where satellite altimetry 

observations are widely used. Continuous observation of the ice sheet surface 

elevation has been used to understand the spatial pattern of the anomalous ice volume 

changes and determine their mechanical causes (e.g., Shepherd et al. (2019)). On 

smaller spatial scales, satellite altimetry has also been used to detect ice dynamical 

phenomena such as subglacial lake's activities (e.g., Smith et al. (2009)), grounding 

line retreat (e.g., Konrad et al. (2018)), and basal melt rates beneath ice shelves (e.g., 

Pritchard et al. (2012)). Multiple altimetry missions (ERS-1 mission (1991-2000), 

Topex/Poseidon (1992-2016), ERS-2 (1995-2003), ENVISAT (2002-2012), ICESat 

(2003-2009)) have been used for Antarctic researches. More recently, the Cryosat-2 

(2010-) and ICESat-2 (2018-) missions have been launched, providing more precise 

observation data. 

 Satellite altimeters measure two-ways travel time of electromagnetic waves 

emitting from satellites to Earth’s surface and their reflections to the satellites. 

Considering the speed of light (~3.0×105 km s-1), the travel time is converted to the 

distance between the satellites and the surface of the Earth. Surface elevation can be 

estimated from the difference between the measured range and the distance of the 

satellite away from the reference surface (e.g., reference ellipsoid). Despite the 

simple principle of satellite altimetry observation, a number of techniques are 

necessary to obtain higher measurement accuracy. The satellite's position and 

orientation are accurately observed by a ground-based positioning system (e.g., 

Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS)) and a 

star-tracker. The arrival time of the reflected wave is delayed as it passes through the 

neutral atmosphere and ionosphere, which is corrected by observation or climate 
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reanalysis. The solar and lunar tide vertically deforms the ocean and solid Earth's 

surface at an hour to monthly time scales, which makes periodic variations in 

observed elevation change ranging from several tens of centimeters to several meters. 

Tide models (e.g., FES2004; Lyard et al. (2006)) are used correct this effect. 

 

2.2.2. Laser & radar Altimetry 

 Satellite altimeters are classified into radar and laser altimeters according to 

the type of sensor used. In general, radar altimeters use microwaves with a 

wavelength of 2.2cm (~13.5 GHz, e.g., ERS-1 & 2, ENVISAT, and Cryosat-2), and 

laser altimeters use visible light with a wavelength of 1064 nm (e.g., ICESat). 

Because the two sensors use very different wavelengths, their own strength and 

limitation are apparently distinct. First, radar altimetry using longer wavelengths 

requires less power for pulse generation. This allows radar altimetry to have wide 

spatial coverage and to observe elevations in a study area at a higher sampling rate. 

On the other hand, laser altimeters require more power for pulse generation because 

it uses shorter wavelength. Since satellites are powered by solar energy, the limited 

power supply to the laser pulse system requiring much energy makes it difficult to 

observe the elevation change continuously. To obtain high observational efficiency 

under the limited power supply, the laser altimeter observes intermittently only 

during laser operational periods named 'campaigns'. For example, the ICESat-1 

mission had been carried out for 596 days in 18 campaigns during 2003-2009 

(National Snow & Ice Data Center). Since intermittent observations would induce 

bias in elevation observations between one campaign and another (inter-campaign 

bias), additional corrections based on field observations or physical assumptions are 

required (e.g., Hofton et al. (2013)). 

 The different wavelengths used for those altimetry also determines their 

sensitivity to weather conditions. Since the laser wavelength is similar to the size of 

the cloud particle, the incident wave (with a wavelength of 1064nm) is rapidly 

dissipated by scattering when it propagates into the cloud layer. If the target area is 
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covered by cloud, laser altimeters would not observe reflected waves from the 

Earth’s surface. As a result, the observations of laser altimetry are restricted by 

weather condition. On the other hand, microwaves used in radar altimeters pass 

through the cloud layer and are not affected by weather conditions. Accordingly, it 

is possible to estimate the elevation change of the target area with an almost constant 

sampling rate. 

 Despite the shortcomings of laser altimetry described above, needs of the 

laser altimetry missions have been increased. Unlike radar altimetry, which emits 

waves in the radial directions from satellite, laser altimetry projects pulses straight 

onto the ground. The resulting size of the footprint (i.e., spatial resolution) is about 

70m diameters (ICESat-1; Markus et al. (2017)), which is much smaller than the 

maximum spatial resolution that can be achieve by radar-type altimetry (about 200m 

for Cryosat-2 (Wingham et al., 2006)). Moreover, the vertical resolution of the laser 

altimetry on the ice surface is a few centimeters, which is much higher than that of 

the radar altimetry, several tens of centimeters to several meters (which depends on 

the surface topography). By utilizing the high accuracy and precision, laser altimetry 

have been used to observe  alpine regions that are not accessible to radar altimetry 

(e.g., Treichler and Kääb (2016)), and to validate radar altimetry observations (Wang 

et al., 2015). Recently the National Aeronautics and Space Administration (NASA)  

launched the new laser altimetry mission (ICESat-2) in 2018. ICESat-2 operates with 

three pairs of high-performance beams arranged along a cross-track direction. Each 

beam has a footprint of about 17m in diameter (Markus et al., 2017), which is useful 

for improving the accuracy of elevation observations. 

 

2.2.3. Data types 

 Typically, satellite altimeter data are classified into five types (Level 0-4) 

according to levels of data processing. Level 0 is primitive observational data such 

as measurement time, navigating system (e.g., operation of DORIS system and star-

trackers), and data quality. This data is managed only by data preprocessing centers 
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and is not distributed to users for scientific purposes. On the other hand, Level 1-4 

data are provided to users after the registration process for permission. Level 1 data 

includes waveforms, satellite position and orientation, and additional geophysical 

correction data. In this case, users have to calculate the surface elevations by 

themselves using the data provided. Level 2 data is estimates of along-track surface 

elevations, named 'point clouds'. Using the point clouds data, ones can estimate the 

elevation change at a resolution suitable for the target area. Users are also able to 

investigate the influence of geophysical correction on the measured elevation 

anomalies. Level 3 data are along-track geophysical data with additional calculations 

(e.g., surface elevation anomaly). Finally, Level 4 data is gridded elevation change 

data calculated from single- or multi-mission satellites (e.g., ice surface elevation 

change data from Schröder et al. (2019)). 

 

 

2.3. Least squares inversion 

2.3.1. Simple least squares for linear inverse problem 

 Least squares are widely used in geophysics to estimate model parameters 

(VFGH) to understand complex observational data (WIJG): 

 

WIJG = [?/, ?-, ?(, … , ?K]
L  

VFGH = [%/, %-, %(, … ,%M]
L              (2.19) 

 

where & and Y are the numbers of data and model parameters, respectively. We can 

consider a data kernel Z with a size of & ×Y, which linearly links WIJG and VFGH 

like 

 

WIJG = ZVFGH + [.              (2.20) 

 

[ are prediction errors, typically increasing as observational noise increases and/or 
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model parameters are inaccurately defined. To obtain appropriate model parameters, 

prediction errors should be minimized. At this time, there are various criteria for 

measuring the size of errors. The most widely used criterion is least squares, which 

considers the length of the errors to be the sum of the squares of each anticipated 

error element: 

 

\N =	∑ ]4
-
= [O[ = [WIJG − ZVFGH]

L[WIJG − ZVFGH]
K
4#/ .          (2.21) 

 

Model parameters can be estimated by minimizing Φ/ (e.g., Menke (2012), pp 44-

45): 

 

VFGH = [ZOZ]@/ZOWIJG.                 (2.22) 

 

 Equation (2.22) assumes that each element in WIJG includes the same level 

of uncertainty, which is not true for most cases. Each observation has different 

uncertainty determined by observational conditions. Further, temporal or spatial 

filtering applied to observations induces high correlation between adjacent 

observations, creating correlated noise. To consider different noise levels of 

observational data and their correlation, we can introduce the covariance matrix: 

 

_IJG =	 `

a[(7/ − a[7/])(7/ − a[7/])] ⋯ a[(7/ − a[7/])(7K − a[7K])]

⋮ ⋱ ⋮

a[(7K − a[7P])(7/ − a[7/])] ⋯ a[(7K − a[7K])(7K − a[7K])]

d  

(2.23) 

 

where 7K is the expected noise of the &th element, and a denotes the mean of its 

argument. Model parameters should be obtained by giving more weight to accurate 

observations, and vice versa. In many cases, the weighting factor is assumed to be 

the inverse of the covariance matrix. Accordingly, the minimizing problem given in 

Equation (2.21) is changed to: 



 

 １６ 

 

\Q =	 [WIJG − ZVFGH]
L_IJG

@N
[WIJG − ZVFGH].            (2.24) 

 

The solution to minimize \Q in Equation (2.24) is 

 

VFGH = eZO_IJG
@N
Zf

@/
ZO_IJG

@N
WIJG.            (2.25) 

 

 The term eZO_IJG@N
Zf

@/
ZO_IJG

@N   in Equation (2.25) is called “the generalized 

inverse” [Menke, 2015]. If the observations are uncorrelated and have a uniform 

variance of :3<' (i.e., _IJG = :3<'
- g), Equation (2.25) is equal to Equation (2.22).  

 

2.3.2. Application of least square inversion to GRACE data 

 The least square inversion introduced in the previous chapter can also be 

applied to GRACE observations. Seo et al. (2020) assumed that low-resolution 

surface mass densities observed by GRACE are linearly related to the actual surface 

mass densities. Because low-resolution of surface mass densities of GRACE data is 

mainly caused by the application of the Gaussian filter to suppress noise, the linear 

relationship can be obtained as follows, similar to Equation (2.20): 

 

hR = ZVi + [               (2.23) 

 

where hR  is surface mass densities from GRACE, and Z is Gaussian smoothing 

operator. Vi  is surface mass density (i.e., model parameter) to be estimated. In 

accordance with Equation (2.22), the least square solution to minimize the prediction 

error ([) of the above Equation is: 

 

Vi = [ZOZ]@/ZOhR.               (2.24) 
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 Typically, the solution (Vi ) includes much noise because Equation (2.24) is 

a spatial deconvolution that amplifies the observational noise included in hR. To 

suppress the noise, we can add a constraint to the cost function (Menke, 2012): 

 

\ST = |hR − ZVi |
- +	kl∑ mU(Vi −VV)

:
%#/ l

-           (2.25) 

 

where VV  is a-priori estimate of Vi  which is set to zero here. Typically, mU  are 

matrices that measures the length of solution, but in Seo et al. (2020), they used mU 

as the spatial gradient (i.e., steepness) of Vi  with inverse-distance weighing, by 

considering the spatial characteristic of GRACE data.	k is regularization factor that 

adjust the steepness of the solution For example, mN  consists of the following 

elements: 

 

mN = n

−1/J/- 1/J/-
−1/J/( 0

0 …

1/J/( …

⋮ ⋮

−1/J/: 0

⋱ …

… 1/J/:

q            (2.26) 

 

in which J/%	(7=2, 3, …, k) is the distance between the first and 7th mass load. 

Including steepness constraint, we obtain a new solution that minimizes spatial 

gradients while minimizing prediction error, 

 

Vi = [ZOZ + kr]@/ZOhR               (2.27) 

 

where r = ∑ mU
OmU

W
U#N .  

 Seo et al. (2020) also modified Equation (2.27) to suppress the spatial 

leakage problem of GRACE data. They added another constraint s whose diagonal 

elements are ones for ocean and zeros for all others: 

 

sVi = ℎ               (2.28) 
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in which ℎ is zero vector. Using Equation (2.28), the ocean mass loads in Vi  are 

effectively constrained to zero, and thus the mass densities leaked into the ocean area 

can be recovered to the inland area. By including Equation (2.28) in the cost function, 

we obtain two equations which must be solved simultaneously by combining them 

into the matrix from (Chapter 3.4 in Menke (2012)): 

 

u
%i

7v
w = ;

xLx + kG yL

y 0
=

@/
;
xLYX
ℎ

=            (2.29) 

 

where 7v is null vector. 

Determining the regularization factor, k, plays an important role in the spatial 

resolution and quality of the solution. The most widely used method for selecting an 

appropriate k is to draw an L-curve, which evaluates the geometry of the solution as 

well as the similarity between the observation and solution. The application of L-

curve to the inversion of GRACE observation will be addressed further in Chapter 

4.
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Chapter 3. Surface mass balance contributions to 

Antarctic ice mass change investigated by climate 

models and GRACE gravity data 

 

3.1. Introduction 

A rise in global mean sea level (GMSL) is generally associated with global 

warming, and there is great interest in projecting future changes in GMSL in climate 

forecasts. The rate of GMSL increase is estimated at about 1.9 mm yr-1 during the 

20th century (Jevrejeva et al., 2014), increasing to 3.1 mm yr-1 during the past three 

decades (2018). The increase in GMSL rate in recent decades is mostly attributed to 

water mass inflow from mountain glaciers (0.7 mm yr-1) and from the Greenland Ice 

Sheet (GrIS) (0.5 mm yr-1) (Shepherd et al., 2018). During the same period, the 

Antarctic Ice Sheet (AIS) has contributed about 0.3 mm yr-1 to GMSL, roughly half 

the amount from the GrIS. However, the Ice sheet Mass Balance Inter-comparison 

Exercise 2 (IMBIE2) (Shepherd et al., 2018) reported recently that the rate of AIS 

ice mass loss has evidently increased during the last decade; the rate was estimated 

to about -47 Gton yr-1 during 1992-2006, increasing to -194 Gton yr-1 during 2007-

2017. If such an acceleration of AIS ice mass loss continues, then the AIS would 

soon become a larger contributor to GMSL change than the GrIS. 

AIS ice mass balance is determined by ice discharge (D) and surface mass 

balance (SMB). The latter includes precipitation, sublimation and meltwater runoff, 

but sublimation and runoff are negligible for the AIS (Van Wessem et al., 2014). The 

empirical projection of AIS mass balance and its contribution to GMSL is based on 

the assumption that long-term variations of AIS mass is mostly controlled by D 

which undergoes slow (decadal and longer) variability because significant long-term 

variations have not been seen in AIS precipitation rates during the last a few decades 

(Shepherd et al., 2018). However, the previous study (Seo et al., 2015) based on 
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comparison of GRACE gravity data and a SMB reanalysis model estimated that 

acceleration of ice mass loss in the Amundsen Sea Embayment portion of the AIS 

during 2003-2013 was -13.6 Gton yr-2, and that precipitation decrease during the 

same period explained about 60% of this (-8.2 Gton yr-2). Precipitation effects on 

AIS mass balance (i.e., SMB) should be carefully considered in order to understand 

multi-decadal and longer AIS mass changes, given that precipitation tends to vary 

on relatively long climate oscillation time scales. Therefore, abrupt AIS mass loss 

during the last decade found in IMBIE2 needs to be understood by separating 

contributions of D and SMB.  

The objective of this study is to examine AIS SMB since 1979 using the state-

of-the-art numerical model and its contribution to AIS mass balance. It will be shown 

that inter-annual and longer SMB variations are significant. This study also finds a 

bi-polar SMB pattern associated with a precipitation decrease in the Pacific sector, 

and increases in Atlantic and Indian sectors, which is highly correlated with the 

Southern Annular Mode (SAM). AIS SMB variations produce apparent abrupt AIS 

mass loss, and after correcting for the SMB contribution, AIS mass loss associated 

with D shows a steady increase. 

 

3.2 Data & Methods 

3.2.1 Precipitation models 

To examine AIS SMB, the ERA5 (Hersbach et al., 2019) precipitation, an 

improved version of the previous ERA-Interim (Dee et al., 2011) reanalysis was used. 

ERA-Interim has been known to represent well both sub-annual (Palerme et al., 2017) 

and long-term variability of AIS precipitation (Bromwich et al., 2011). The 

horizontal resolution of ERA5 is notably improved (31km compared to ERA-Interim, 

80km), similar level to existing regional climate models, RACMO (=27km) (Van 

Wessem et al., 2014) or MAR (=35km) (Agosta et al., 2019). AIS precipitation over 

Antarctic drainage basins determined by satellite altimeter observations (Zwally et 

al., 2012) was considered.  
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3.2.2 EOF analysis 

 Geophysical data can be contained in a matrix of dimension of P × 7 (where 

P and 7 are the lengths of discrete spatial and temporal components, respectively). 

The matrix is separated into several orthogonal modes using singular value 

decomposition (SVD): 

 

ΔSMB = USVL,                 (3.1) 

 

in which U and V are orthogonal matrix with dimension of P × P  and 7 × 7 , 

respectively. The superscript T means matrix transpose. The 6 th column of U 

represents the spatial pattern of the 6th mode, and similarly the 6th column of V 

represents the temporal variation (principal component) of the 6 th mode. S is a 

rectangular matrix with only diagonal components, and each component is a singular 

value of each mode. If the  6th diagonal component of # is ?4, the explained variance 

(EV) of the corresponding mode is: 

 

a� =
5)
'

∑ 5*
'+

*,-
× 	100		(%),                (3.2) 

 

where % is equal to P or 7, whichever is smaller.  

 

3.2.3 REOF analysis 

 Rotated EOF (REOF) analysis is a variant of EOF analysis. Typically, it may 

be difficult to interpret individual EOF modes because they are spatially coupled so 

a specific variation is contained in multiple modes. REOF transforms EOF modes 

into coordinate axes rotated relative to the original. To obtain rotated modes (or axes) 

from the original EOF modes we use a rotation matrix: 

 

           W = U"R                  (3.3) 
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where U" is a P ×% matrix consisting of m column vectors representing selected 

EOF modes. R is a % ×% orthonormal matrix to rotate the EOF modes (U") to new 

modes (W) while keeping their orthogonality during rotation.  

 The rotation matrix R needs to be determined to obtain W in which vector 

columns are uncoupled from one another. The degree of 'uncoupling' for the W can 

be evaluated at a geographic point with a maximum value in a single mode while 

values at the same point are near 0 in other modes. There are various criteria to solve 

such an optimization problem. Here we adopt the VARIMAX approach, the most 

widely used (Harman, 1976; Navarra & Simoncini, 2010). VARIMAX appraises the 

degree of uncoupling for a rotated mode based on maximizing an objective function:  

 

         É(G:) =
/
>
∑ $4,:

)
−

>
4#/

/
>'
e∑ Ñ$4,:

-
Ö

>
4#/ f

-             (3.4) 

 

where $4,: is the value at ith grid-point explained only by the Ath column of W, i.e., 

G:.   

 Practically, the W (and simultaneously R) is determined using an iterative 

scheme. First, a column vector is calculated from the sum over each row of U" and 

then normalized by its vector norm. This is equivalent to W in equation (3.3) when 

using the initial R, R0: the first column in R0 is an % × 1 vector of ones divided by 

its norm, namely Ü1/, and the other columns are all zeros. One seeks a local maximum 

of the objective function (equation (3.4)) by finely tuning Ü1/  iteratively. After 

determined the optimal Ü1/, the second and following columns (Ü1: with A = 2,⋯ ,%) 

are determined in the same manner, but constrained to be orthogonal to all previous 

Ü1% (7 = 1,⋯ , A − 1). Finally, rotated modes W are calculated from equation (3.4) 

with the optimal rotation matrix, R where R = [Ü1/	Ü1- 	⋯	Ü1"].   
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3.3. AIS SMB from 1979 to 2017 

Precipitation rates (1979-2017) of numerical models show common variation 

in sub-annual and annual time scales (Figure 3.1). This may be partly because that 

they are commonly forced by the European Centre for Medium Range Weather 

Forecasts (ECMWF) reanalyses (Agosta et al., 2019; Dee et al., 2011). There are 

minor inter-annual and longer period variations, and long-term trends are not 

statistically significant (Bromwich et al., 2011). The linear trend of precipitation 

rates from ECMWF Reanalysis 5th Generation (ERA5) (Hersbach et al., 2019) is 

estimated to -0.1±0.5 Gton yr-1 with a 95% confidence interval, and other models 

provide similar near-zero rates. As a result, it has been thought that the role of 

precipitation in long-term AIS mass variation can be ignored (Shepherd et al., 2018). 

The most recent state-of-the-art reanalysis, ERA5, was used to investigate this. 

AIS mass change (M) is approximately determined by ice discharge (D) and 

SMB, related by Y = #Yà − â . Precipitation accumulation (time integration of 

precipitation) contributes to AIS mass change in SMB. Small long-term precipitation 

variations will tend to be amplified, while shorter period but larger sub-annual and 

annual fluctuations will tend to be suppressed by integration. A small negative linear 

trend in precipitation rate, for example, can produce a significant acceleration in ice 

mass loss. Figure 3.2a shows accumulation of precipitation (approximately 

equivalent to SMB). A linear trend was removed from accumulated precipitation 

time series, equivalent to removing the mean value in precipitation rate, which is not 

the focus of this study. Detrended SMB (ΔSMB) from ERA5 shows inter-annual and 

longer variations (Wouters et al., 2013), but an acceleration rate in ΔSMB  is minor 

over the entire study period (1979-2017). The acceleration at grid points is estimated 

to obtain acceleration maps in Figure 3.2b. Only statistically significant values (non-

zero within a 95% confidence interval) are plotted. Acceleration rates in most regions 

are significant despite their small spatial average over the entire AIS (-0.3 Gton yr-

2). For example, a positive acceleration of about 2 Gton yr-2 is shown in Atlantic and  
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Figure 3.1. Variations of monthly precipitation rates (1979-2017) in Antarctica: 

ERA5 (black), ERA-interim (blue), RACMO2.3p2 (red) and MARv3.6.4 (green). 

Linear trends (1979-2017) of each model are shown in parentheses. Vertical offsets 

are applied to distinguish each time series.  

 

 

Figure 3.2. (a) Antarctic accumulated precipitation accumulation after removing a 

linear trend (1979-2017) (b) Map of acceleration rate of accumulated precipitation. 
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Indian Sectors while a negative acceleration of about -2 Gton yr-2 is found in the 

Pacific Sector. A spatial pattern of significant acceleration bisects the entire AIS. 

AIS SMB shows significant variability at inter-annual to decadal time-scales as 

indicated in Figure 3.2. Because such variability is important to ongoing AIS ice 

mass change, it is important to understand its underlying causes. Medley and Thomas 

(2018) reviewed the two causes of long-term variations in AIS precipitation rates, 

thermodynamic processes and atmospheric circulation. The first is associated with a 

near exponential increase in water vapor with increasing air temperature (Clausius-

Clapeyron relation) and would induce a long-term positive trend in precipitation rate 

over the past 100 years (Held & Soden, 2006). However, AIS ΔSMB acceleration (-

0.3±0.2 Gton yr-2) is small (implying a near-zero trend in precipitation rate). This 

indicates relatively small thermodynamic process contributions to AIS precipitation 

during this period (1979-2017). 

 SAM and El Ninõ-Southern Oscillation (ENSO), are primary modes of 

atmospheric circulation variability in Southern high latitudes (Bromwich et al., 2000; 

Genthon et al., 2003). For example, SAM modulates low pressures around Antarctica 

and thus alternates warm/moist and cold/dry air advection (Genthon et al., 2003). As 

a result, the previous study (Medley & Thomas, 2018) suggested that a positive trend 

in SAM is a cause of a decrease in AIS net precipitation rate. To examine this, we 

first use ordinary EOF analysis on the area-weighted ΔSMB field determined from 

ERA5 model. Figure 3.3 shows the three leading EOF modes explaining 77% of 

ΔSMB variance. The left panels are the spatial patterns of each mode. Blue lines in 

the right panels show corresponding PCs. Time-integrated SAM and ENSO indices 

can also be compared with ΔSMB (time integration of precipitation rate). Time-

integrated ENSO indices have also been used to examine ENSO effects on ice shelf 

volume changes (Paolo et al., 2018). Red and yellow lines in the right panels show 

time-integrated SAM and ENSO indices after removing linear trends (ΔSAM and 

ΔENSO, respectively) as done for ΔSMB. The first mode PC shows a long-term 

variation similar to ΔSAM and ΔENSO (Figure 3.3b) confirming that Antarctic  
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Figure 3.3. Leading three modes of EOF analysis from AIS ∆SMB (accumulated 

precipitation). Each of red and yellow lines in right panels show ΔSAM (time-

integrated) and ΔENSO (time-integrated), respectively. For clarity, both ΔSAM and 

ΔENSO are displayed reversed in sign. 
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precipitation is affected by SAM and ENSO (Bromwich et al., 2000; Genthon et al., 

2003). However, there is no apparent inter-annual variability in the first PC unlike 

both indices. On the other hand, second and third mode PCs partly show similar 

inter-annual variations as ΔSAM during the latter (2010-2015) and former (1979-

2000) periods, respectively (Figures 3.3d and 3.3f), suggesting that ΔSMB signals 

modulated by ΔSAM are mapped into multiple EOF modes. It is difficult to interpret 

the multiple modes if this is the case. 

The rotated EOF (REOF) analysis can be applied to map ordinary EOF modes 

into other modes by rotating associated basis functions. If AIS ΔSMB is dominated 

by ΔSAM or ΔENSO (i.e., precipitation rate is dominantly affected by SAM or 

ENSO (Genthon et al., 2003)), the first REOF mode PC should be similar to ΔSAM 

or ΔENSO. The left panel of Figure 3.4 shows the first REOF spatial mode. The blue 

line in the right panel is its temporal variation, and the red and yellow lines show 

ΔSAM and ΔENSO, respectively. The explained variance of the first REOF mode is 

30%. The first REOF mode spatial pattern is similar to that of the first EOF mode 

but the first mode REOF PC shows a very similar variation to ΔSAM (with a 

correlation coefficient of 0.89). ΔENSO also shows similar variations to the REOF 

PC but their correlation (0.62) is lower than for ΔSAM, which is consistent with the 

previous study (Genthon et al., 2003). These results show that since 1979 SMB has 

been mainly modulated by SAM, producing a bi-polar pattern: acceleration of ice 

mass loss in the Pacific Sector and acceleration of gain in Atlantic and Indian Sectors. 

Similar result can also be obtained by regression analysis. ΔSMB modulated by 

ΔSAM can be predicted by a linear regression between the two at each grid point 

during the study period. Figure 3.5 shows the resulting prediction which is very close 

to the spatial pattern and amplitude shown in Figure 3.4a.  
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Figure 3.4. Spatial (a) and temporal (b) patterns of the first REOF mode calculated 

from the leading three EOF modes of AIS ∆SMB. Red line in (b) shows ΔSAM. For 

clarity, ΔSAM and ΔENSO are displayed with reversed sign. 

 

 

 

Figure 3.5. Prediction of ΔSMB modulated by ΔSAM using regression analysis. 
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Figure 3.6 shows total ΔSMB (black) from ERA5 and reconstructed ΔSMB 

modulated by SAM from the first REOF mode (red) over the two AIS regions 

considering the bi-polar pattern in Figure 3.4a. Black (ΔSMB) and red (reconstructed 

ΔSMB from REOF1) show similar multi-decadal variations in both regions. The 

acceleration rate of ΔSMB shown in the top panel is 2.1±0.1Gton yr-2, and that of 

ΔSMB affected by SAM is 1.5±0.1 Gton yr-2, which explains 72% of the multi-

decadal variability. Similarly, in the region with the negative acceleration (bottom 

panel), 67% of the acceleration (-1.6±0.1 Gton yr-2 out of -2.4±0.2 Gton yr-2) is 

explained by SAM. This shows that there are large inter-annual and longer SMB 

variations over AIS, and among them, multi-decadal variations are affected by SAM.  

 

3.4. Observation of AIS SMB 

ERA5 model predictions of SMB variations can be validated using space and 

in-situ observations. ERA5 SMB predictions for 1979-2000 show pronounced multi-

decadal ice mass loss acceleration of -5.7±0.9 Gton yr-2 (Figure 3.2) for the entire 

AIS. Similar evidence has been found in the ice core records (Medley & Thomas, 

2018). A precipitation decrease since 1979 has been found in dozens of ice-cores 

collected throughout Antarctica (Thomas et al., 2017); AIS SMB acceleration due to 

the 1979-2000 precipitation decrease was -2.7±3.8 Gton yr-2. 

Satellite gravimetry (GRACE) observations of monthly surface mass change 

from April 2002 to June 2017, can be directly compared with model-based AIS SMB 

estimates. The previous study (Seo et al., 2015) compared GRACE data with ERA-

Interim SMB over the period 2003-2013. Here we undertake a similar comparison, 

now using ERA5 from January 2003 to June 2017, together with CSR mascon 

solutions (Save et al., 2016). Similar to Figure 3.2a, linear trends from GRACE AIS 

mass change (∆M) was removed, and the resulting time series is in Figure 3.7a. ∆M 

shows higher frequency variability than ∆SMB, due to GRACE noise and possibly 

errors in atmospheric pressure corrections (Seo et al., 2015). The acceleration rate in  
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Figure 3.6. Comparison of ΔSMB (black) and reconstructed ΔSMB (red) for the first 

REOF mode over the Pacific Sector (a) and Atlantic-Indian Sector (b). 
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∆M (-8.6±2.1 Gton yr-2) is also higher than that of ∆SMB (-5.1±1.9 Gton yr-2). This 

is likely because ∆M includes both ∆D (D after linear trend removal) and ∆SMB. 

Satellite remote sensing has shown that acceleration due to increasing D throughout 

Antarctica is about -7.0 Gton yr-2 (Rignot et al., 2019). After subtracting ∆D from 

∆M, a GRACE value for ∆SMB is obtained. This observation (∆M-∆D) is about -

1.6 Gton yr-2, much smaller than the ERA5 estimate of ∆SMB. The disagreement is 

possibly due to atmospheric pressure error. In an earlier GRACE solution (CSR 

RL05), there was an apparent ice mass positive acceleration (Kim et al., 2016; Seo 

et al., 2015) associated with mis-modeled barometric pressure over AIS. CSR 

mascon solutions are also likely to suffer from apparent ice mass positive 

acceleration due to barometric pressure errors, as in previous GRACE data. 

Because the synoptic scale of barometric pressure is distinct from relatively 

smaller spatial scale of ice discharge and SMB, the pressure error can be estimated 

by Empirical Orthogonal Function (EOF) analysis. For the correction of the 

barometric pressure error in ∆M, EOF analysis was applied to the difference between 

∆M and ∆SMB, as in the previous study (Seo et al., 2015). Before EOF analysis, 

both products are smoothed by a 600km Gaussian spatial filter to suppress artifacts 

due to differences in spatial resolution.  

 Figure 3.8 shows spatial patterns and their principal components (PC) of the 

three leading EOF modes. As in the previous study (Seo et al., 2015), mass loss 

acceleration signals appear over West Antarctica and the Antarctic Peninsula in the 

second mode. These are associated with ∆D. In the third mode, a similar signal 

associated with ∆D is observed around Totten glacier (Velicogna et al., 2014; 

Williams et al., 2014). Larger spatial patterns in the second and third modes 

compared to major glacier outlets in AIS are due to the 600km Gaussian smoothing. 

On the other hand, the first mode shows a spatial pattern with a single sign 

throughout Antarctica. Barometric pressure is known to have such a continent-wide 

synoptic spatial scale. We conclude that the continental scale first mode is likely 

associated with errors in barometric pressure. The first mode is subtracted from ∆M  
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Figure 3.7. (a) Comparison between ∆SMB (blue) and GRACE mass estimates ∆M 

(red). (b) Similar to (a) but ∆SMB* is the estimated ∆SMB from ∆M after ice 

discharge and barometric pressure error corrections. 
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Figure 3.8. Spatial patterns (a, c, e) and their PCs (b, d, f) of leading three EOF 

modes calculated from ∆M-∆SMB. 
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to correct this error. 

∆SMB based on GRACE observations (∆SMB*) can be estimated after 

subtracting discharge acceleration rate and correcting for barometric pressure error. 

This	∆SMB* (from GRACE) and the ERA5 estimate of ∆SMB are shown in Figure 

3.7b. They agree well at inter-annual and longer periods, confirming the problem 

with barometric pressure in GRACE estimates, and more importantly indicating that 

∆SMB prediction from numerical models reasonably depicts AIS SMB variations. 

 

 

3.5 Implications of SMB to present-day ice mass loss in AIS 

Recent efforts to understand AIS ice mass change and effects on sea level rise 

are largely based on satellite geodetic observations (Rignot et al., 2019; Schröder et 

al., 2019; Velicogna et al., 2014). We can use those observations to examine AIS 

mass loss associated with ice dynamics, which reflects processes such as ocean 

circulation, basal melting and grounding line migration (Dutrieux et al., 2014; 

Pritchard et al., 2012). Ice-dynamic variation time scales are likely much longer than 

those of SMB, and thus the current state is important in projecting future AIS mass 

loss and resulting sea level rise. Ice discharge (D), as a measure of ice dynamics, can 

be estimated from the difference between ice mass change and SMB. 

A comprehensive AIS mass change estimate using multiple satellite geodetic 

observations and varied processing schemes was examined in IMBIE2 (Shepherd et 

al., 2018). The black line in Figure 3.9a shows that IMBIE2 AIS mass (M) loss has 

abruptly increased since 2007; negative trends are -47±1 Gton yr-1 during 1992-2006 

and -194±4 Gton yr-1 during 2007-2017. The detrended IMBIE2 AIS mass change 

(ΔM) in Figure 3.9b (black line) can be compared with ERA5 ΔSMB variations (blue 

line). Both ΔM and ΔSMB are obtained after removing linear trends in M (from 

IMBIE2) and SMB (from ERA5) during 1992-2017, respectively. The long-term 

ΔSMB variation (blue line) is large enough to be comparable to the detrended 
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IMBIE2 AIS mass change (ΔM). Subtracting the ΔSMB (blue) from ΔM (black), we 

estimate AIS mass change associated with ice discharge, ΔD (red), with the 

assumption that the contribution of inland meltwater to ΔM is negligible (Seo et al., 

2015). A thin red line shows a parabolic fit to ΔD corresponding to an acceleration 

of -8.7±0.3 Gton yr-2. This estimated acceleration rate with small confidence interval 

indicates that since 1992, AIS ice discharge has accelerated at a steady rate, rather 

than abruptly. The sense of the sign is that ice discharge increases every year about 

8.7 Gton. We conclude that the abrupt ice mass loss in 2007 (black line in Figure 

3.9a) is a combined effect of ΔD and ΔSMB. Over the period 1993 to 2006, SMB 

mitigates ice mass loss acceleration due to D, and after that, SMB adds to 

acceleration in D, leading to an apparent abrupt increase in 2007. A similar 

interpretation can be found in ERA5 annual precipitation rate in Antarctica showing 

an increasing trend from 1994 to 2005 and a decreasing trend from 2006 to 2014 

(Figure 3.10). The timing of trend change in precipitation rate (in 2005) is different 

from that of ΔSMB (in 2007) because ΔSMB is the time-integration of precipitation 

rate. 

IMBIE2 reported that the trend in Antarctic ice mass loss during 2007-2017 has 

abruptly increased by ~ 147 Gton yr-1 (which is equivalent to 0.41 mm/yr in global 

sea level change) compared to that during 1992-2006 (i.e., from -47 Gton yr-1 during 

1992-2006 to -194 Gton yr-1 during 2007-2017). In this study, it is found that ~ 39 

Gton yr-1 (about 27%, or global sea level change of 0.11 mm yr-1) out of the 147 Gton 

yr-1 is attributed to SMB variation. Such a SMB effect is more significant in the West 

AIS, showing about 41% of the increase of ice mass loss between the two epochs 

(Figure 3.9c and 3.9d). 

 

3.6 Conclusion 

The long-term AIS SMB (accumulated precipitation) variations for 1979-2017 

was examined using precipitation fields from the ERA5 reanalysis. Even though AIS 

precipitation rates do not exhibit a significant trend, SMB shows strong inter-annual 
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Figure 3.9. (a) AIS ice mass change from IMBIE2 estimates (black). Red lines 

represent linear trend fits before and after 2007. (b) Detrended variability of ice mass 

∆M (black), ∆SMB (blue) and ∆D (red). (c) and (d) are similar to (a) and (b) except 

for West Antarctica. 

 

 

 
Figure 3.10. Changes in Antarctic annual mean precipitation (1979-2017) from 

ERA5 reanalysis.  
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and multi-decadal variations. This study found that multi-decadal SMB variations 

are related to SAM. AIS SMB modulated by SAM shows a distinct bi-polar pattern 

with negative acceleration in the Pacific Sector and positive acceleration in Atlantic 

and Indian Sectors. Model predictions of SMB variations are observed by satellite 

geodetic observation like GRACE. After correcting for SMB, a steady acceleration 

of ice discharge of -8.7±0.3 Gton yr-2 was found for the period 1992-2017. The 

apparent abrupt change in 2007 is not associated with a change in ice dynamics but 

instead with SMB variations mostly in the West AIS.
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Chapter 4. Estimation of high-resolution Antarctic ice 

mass balance using satellite gravimetry and altimetry 

 

 

4.1. Introduction 

Mass loss from the Antarctic Ice Sheet (AIS) is one of the major contributors to 

global sea-level rise. From 1992 to 2017, loss of ~109 Gton yr-1, led to about 0.3 mm 

yr-1 in global sea-level rise (Shepherd et al., 2018). At the same rate, AIS mass loss 

would cause about 23 cm in global sea-level rise by the end of this century.  

Most AIS mass loss is associated with glaciers in the Amundsen and 

Bellingshausen Sea Embayments in West Antarctica. Ice mass increases are found in 

Dronning Maud Land in East Antarctica and the Kamb Ice Stream in West Antarctica 

(Rignot et al., 2019). Mass loss or gain at individual glaciers is associated with varied 

processes in the atmosphere (e.g., Boening et al. (2012)), oceans (e.g., Dutrieux et 

al. (2014)), and in subglacial hydrology (e.g., Alley et al. (1994)). The complexity 

and variety of contributing mechanisms have hindered robust projections of future 

AIS mass changes and corresponding sea-level variations (Kopp et al., 2017). Sparse 

observations of glacier-scale ice mass balance are also a limitation. 

The GRACE mission has provided observations of AIS mass change for nearly 

two decades (Tapley et al., 2019), but with poor spatial resolution (a few hundred 

km). GRACE spatial resolution is limited by spacecraft altitude and intersatellite 

distance, spatial filtering required to suppress noise (Wahr et al., 1998), and 

correlation error (Swenson & Wahr, 2006). These limitations result in smooth 

estimates containing spatial leakage error. An algorithm called forward modeling 

(FM) (e.g., Chen et al., (2015); Chen et al., (2007); Kim et al., (2019)) was developed 

to correct GRACE estimates for leakage error. FM iteratively adjusts an initial mass 

field until an updated field, when smoothed, agrees with low resolution processed 

GRACE data. Another algorithm, constrained linear deconvolution (CLD), can also 
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address the leakage problem (Seo et al., 2020) using well-known techniques 

associated with regularized linear inversion. Both FM and CLD have been used to 

suppress leakage error from land to oceans, but not leakage among terrestrial river 

or glacier basins (Seo et al., 2020).  

Satellite radar and laser altimetry are able to observe ice surface elevation 

changes. While offering much finer spatial resolution than GRACE (Rémy & 

Parouty, 2009) there are limitations related to surface topography roughness, for 

example, in the Antarctic Peninsula (Shepherd et al., 2019). In addition, orbital 

inclinations may prevent observations at high latitudes. However, multi-mission 

altimetry data sets (Schröder et al., 2019) should provide improved results with 

higher spatial resolution to complement GRACE observations. In this study we 

present a revised application of CLD to combine high resolution altimetry 

observations with conventional GRACE estimates to obtain high resolution AIS 

mass changes, and compare the results with independent Input-Output budget 

estimates of glacial scale mass variations.  

 

4.2. Data 

4.2.1 GRACE gravity data 

GRACE gravity data are provided as spherical harmonic (SH) coefficients at 

monthly intervals from April 2002 to July 2017. These are converted to surface mass 

loads at grid points. We estimate surface mass loads over the AIS using Release-06 

GRACE solutions provided by the Center for Space Research (CSR). Degree-1 and 

degree-2, order-0 SH coefficients were replaced by estimates provided by the 

GRACE project as supplementary datasets in GRACE Technical Notes 13 (Landerer, 

2019) and Technical Note 14 (Loomis et al., 2019), respectively. The north-south 

stripes and random noise were removed by a decorrelation filter (Swenson & Wahr, 

2006) and 400km Gaussian smoothing (Wahr et al., 1998). Glacial isostatic 

adjustment (GIA) was removed using the average of multiple models (Caron & Ivins, 

2019; Peltier et al., 2018; Purcell et al., 2016; Whitehouse et al., 2012). The resulting 
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GRACE data include mass changes over land and oceans. Total ocean mass variation 

is the negative of total land mass variation, and the spatial distribution of the ocean 

mass is adjusted by self-attraction and loading (SAL) effect (Adhikari et al., 2019; 

Jeon et al., 2018). We estimated the ocean mass signals using terrestrial mass loads 

obtained from conventional FM (Kim et al., 2019). The estimated ocean mass signal 

(after 400km Gaussian smoothing) was removed from the reduced GRACE data, 

leaving a residual due only to variations on land. The importance of this is described 

in section 4.2. Figure 4.1a shows a linear trend map of AIS mass change for 2003-

2016 from the residual GRACE data. Trend values were sampled on a polar-

stereographic 27 km grid to compare with altimetry data. Figure 4.1a shows that low 

GRACE spatial resolution causes large rates in West Antarctica to leak into the 

oceans. Spatial leakage would occur throughout Antarctica, between basins and from 

land to oceans, preventing an analysis of glacier-scale changes using GRACE data 

alone. 

4.2.2. Satellite altimetry data 

 We used monthly altimetry-based surface elevation changes from Schröder 

et al. (2019). These are merged observations from multi-mission altimeters at 10km 

grid intervals from 1978 to 2017. We used these altimeter data for the 2003-2016 

period of the GRACE data. The merged observations combine ENVISAT (2002-

2012), ICESat (2003-2009), and Cryosat-2 (2010-present) data. ENVISAT and 

ICESat are limited to latitudes below 81 °S and 86 °S, respectively. Cryosat-2 

observes to 88°S. ICESat operated intermittently several times per year due to 

hardware limitations (Schutz et al., 2005). We used temporal interpolation to replace 

missing observations from 81°S - 86°S, creating a potential source of uncertainty. 

 Changes in surface elevations observed by satellite altimetry, y', include 

three different components: 

 

y'(9) = 	y4(9) + yA(9) + y[(9)               (4.1) 
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Figure 4.1. Linear trend maps of Antarctic ice mass change observed by GRACE (a) 

and satellite altimetry (b). 

 

70 oS

80 oS

0o30 oW

60 oW

90 oW

120 oW

150 oW 180 o

30 oE

60 oE

90 oE

120 oE

150 oW

-0.3 0 0.3
m yr -1

70 oS

80 oS

0o30 oW

60 oW

90 oW

120 oW

150 oW 180 o

30 oE

60 oE

90 oE

120 oE

150 oW

-0.3 0 0.3
m yr -1

a b



 

 ４２ 

y4 is elevation change due to ice dynamics, with decadal or longer time-scale 

variability (Rignot et al., 2019; Seo et al., 2015). yA is crustal uplift rate associated 

with glacial isostatic adjustment (GIA) which should be linear in time. y[ denotes 

firn thickness changes that depend primarily on surface air temperature and surface 

mass balance (SMB) (Ligtenberg et al., 2011) varying at sub-annual to inter-annual 

or longer time-scales. Because AIS ice mass balance is determined by ice dynamics 

and surface mass balance (Lenaerts et al., 2019), changes in AIS ice mass load, Y\, 

include the two effects: 

 

	Y\(9) = @4y4(9) + #Yà(9) = 	@4(y'(9) − yA(9) − y[(9)) 	+ #Yà(9)          (4.2) 

 

in which @4  is the density of ice (=917 kg m-3). To estimate y4  from y' , it is 

necessary to remove effects of yA and y[. We used numerical model output for such 

corrections. Surface elevation changes due to GIA, yA , were estimated using the 

same models as in GRACE processing (section 4.2.1). Firn thickness change, y[, 

was obtained from IMAU-FDM (Ligtenberg et al., 2011), an empirical model forced 

by RACMO2.3p2 (Van Wessem et al., 2014). Compared to y', sub-annual to inter-

annual variability in y4  is suppressed after removing y[  from y' , so uncertainty 

from temporal interpolation of altimetry data (described above) is likely minimal. 

Remaining uncertainties associated with altimetry observations and firn thickness 

correction should be further suppressed when GRACE and altimetry data are 

combined in section 4.3. #Yà(9) was taken from RACMO2.3p2, the same model 

used for y[. 

 Altimetry ice mass change was estimated on a 27 km grid, considering 

spatial resolution of SMB and firn thickness models (Ligtenberg et al., 2011; Van 

Wessem et al., 2014). Figure 4.1b shows that the linear trend map of altimeter ice 

mass changes has higher spatial resolution than the GRACE map in Figure 4.1a. In 

West Antarctica, losses in Figure 4.1b are clearly associated with Pine Island and 
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Thwaite Glaciers. A positive mass rate for Siple Coast Ice Streams is not evident in 

Figure 4.1a, probably due to spatial leakage from a region with negative rates at 

higher latitudes. Figure 4.1b shows negative rates near Totten Glacier in East 

Antarctica while, as a result of low spatial resolution, lower rates in Figure 1b 

become distributed over a larger area around the glacier in Figure 4.1a.  

 The satellite altimetry map (Figure 4.1b) includes some regions with 

questionable trends. An example is a positive rate at the northern tip of the Antarctic 

Peninsula. Satellite imagery has shown mass loss in this area due to increased ice 

flow near Larsen A and B Ice Shelves, and West Graham Land (Rignot, 2004; Rignot 

et al., 2019; Scambos et al., 2004), and negative GRACE rates in this region are in 

agreement (Figure 4.1a), albeit with a low spatial resolution. A positive rate in Figure 

4.1b is likely associated with uncertainties in altimetry observations over a region of 

high topographic relief (Schröder et al., 2019; Shepherd et al., 2019). Similar 

problems would be expected in other areas. 

 

4.3. Methods 

4.3.1 Forward Modeling (FM) solution 

 The FM method (e.g., Chen et al., (2015); Chen et al., (2007)) corrects for 

spatial leakage of signals from land into the oceans, but does not improve spatial 

resolution of resulting mass signals on land. However, we obtain an FM solution in 

order to compare it with results from the modified CLD approach in next section. 

 Here, FM is used with much finer spatial resolution relative to earlier 

applications (Chen et al., 2015; Chen et al., 2007). Let YX  be a vector containing 

smooth GRACE surface mass load changes in a given month after GRACE data 

reduction described in section 4.2.1, on a 27 km polar-stereographic grid as adopted 

for the altimetry data. The FM algorithm aims to find a new mass distribution (YK) 

close to YX , after Gaussian smoothing (400 km). The iterative scheme begins with 

an initial mass load, Y/. Y/ is set to on-land values of YX  (Chen et al., 2015). 
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Y/ = S ∘ YX                  (4.3) 

 

in which S is the land function: 

 

S(ã) = å
1, 6É	ã	64	37	$.7?	3J	çJ3é7?]?	62]	

	0	, 6É	ã	64	37	É$3.967ç	62]	3J	32].74	
             (4.4) 

 

where ã is a geographical location on the polar-stereographic grid. The symbol “∘” 

denotes the Hadamard product. S(ã) was obtained using ice surface morphology 

from MODIS optical images as part of the MOA2014 project (Scambos et al., 2007). 

To reduce computational effort, we confine calculations to ocean areas within 800 

km of grounded ice of Antarctica. This is large enough to include leakage into the 

oceans found in YX  (Figure 4.2). This 800km buffer zone is also used with the CLD 

method below.  

 After the first iteration, a misfit (è/) between YX  and Y/  over land was 

evaluated: 

 

è/ = S ∘ (YX − xY/)                            (4.5) 

 

where multiplication by x  approximates convolution associated with 400 km 

Gaussian smoothing (Seo et al., 2020). Using G allows us to implement smoothing 

directly on gridded data instead of using spherical harmonics. 

 We modified the smoothed surface mass load (Y/) by adding the misfit (è/), 

giving the updated mass load, Y- = Y/ + è/ . Proceeding to YK  after the Nth 

iteration  

 

YK = YK@/ + èK@/                 (4.6) 

 

where èK@/ = S ∘ (YX − xYK@/).              (4.7) 



 

 ４５ 

 

 

 

 

 

 
Figure 4.2. Spatial distributions of land (blue) and ocean (light blue) functions used 

in Equation (4.4). The land function is defined as the grounding line and island 

boundaries from the MOA2014 project (Scambos et al., 2007). The ocean function 

includes the 800km buffer zone from land boundaries. 
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The updated surface mass load after smoothing (xYK) converges to YX . In this study, 

we ceased iteration when the sum of misfits (|∑YX − xYK|) over all land grid 

points was less than 0.1 Gton.  

 

4.3.2 Joint estimation using constrained linear deconvolution 

 Our new method for combining GRACE and satellite altimetry data is a 

revised form of constrained linear deconvolution (CLD) (Seo et al., 2020). CLD 

corrects leakage (from land to oceans), using regularized least squares, but without 

iteration as in FM. Similar methods have been used to estimate surface mass 

distribution from gravitational potential (Forsberg et al., 2017) and to obtain 

smoothed mass field (Mu et al., 2017) from GRACE data. 

 We establish a linear relationship between mass loads to be estimated, %i , 

and smoothed mass loads, YX  from GRACE after 400 km Gaussian smoothing: 

 

x%i = YX + 	ê                  (4.8) 

 

in which x is the Gaussian smoothing operator defined in section 4.3.1 and ê is the 

misfit. We follow the procedures developed by Seo et al. (2020) to estimate %i  and 

additionally use a priori mass loads, 〈%〉 , obtained from altimetry observation. 

Including 〈%〉, Equation (4.8) yields: 

 

x(%i − 〈%〉 + 〈%〉) = YX + 	ê                (4.9)  

 

which reduces to 

 

x(%i − 〈%〉) = YX − x〈%〉 + 	ê             (4.10) 

 

 Equation (4.10) represents another linear relation between %i − 〈%〉  and 

YX − x〈%〉 , in place of %i  and YX  in Equation (4.8). Typically, %i − 〈%〉  in 
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Equation (4.10) can be estimated by generalized least squares: 

 

%i − 〈%〉 = (xL0x)@/xL0(YX − x〈%〉)                       (4.11) 

 

in which 0 is a matrix whose diagonal elements are the inverse squares of GRACE’s 

observational error (Section 4.3.3.1). %i − 〈%〉 obtained in Equation (4.11), however, 

includes amplified noise because multiplication by (xL0x)@/xL  is equivalent to 

applying the inverse of a smoothing filter. To suppress the noise, a penalty that 

minimizes spatial gradients (Constable et al. 1987) is included in the cost function 

assuming that noise dominates higher spatial frequencies. A measure of spatial 

gradients (steepness) between the first surface mass load, %i/ , and others 

(%i-, %i(, …%iK), is obtained by multiplying by the â/ matrix: 

 

â/ = n

−1/J/- 1/J/-
−1/J/( 0

0 …

1/J/( …

⋮ ⋮

−1/J/K 0

⋱ …

… 1/J/K

q               (4.12) 

 

in which J/%  (7 = 2,3, . . . &) is the distance between the first and 7th mass load. 

Steepness between %i/  and (%i-, %i(, …%iK ) is â/%i . Similarly, the steepness 

between the kth mass load and all others is â:%i . Considering all we define matrix 

D for total steepness: 

 

G = ∑ â%
Lâ%

K
%#/               (4.13) 

 

Including the steepness penalty, we obtain the least square solutions 

 

%i − 〈%〉 = [(xL0x) + 	kG]@/xL0(YX − x〈%〉).          (4.14) 

 

where k is a regularization parameter. Equation (4.14) now yields a solution %i : 
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%i = 〈%〉 + [(xL0x) + 	kG]@/xL0(YX − x〈%〉)          (4.15) 

 

 We additionally modified Equation (4.15) to suppress leakage from land to 

oceans with a constraint that ocean elements in %i  are zeros. This constraint recovers 

land signals that have leaked to ocean grid points in YX . This is valid because 

estimated ocean mass signals were removed to obtain residual GRACE data as 

explained in section 4.2.1. To realize this constraint, we use matrix H whose diagonal 

elements are ones for ocean elements and zeros for all others (Seo et al., 2020): 

 

y%i = 0                (4.16) 

 

The land function, L, in Equation (4.4) was used to generate H.  

Finally, by including Equation (4.16) in the cost function, we obtained two equations 

which must be solved simultaneously by combining them into the matrix form (see 

Chapter 3.10 in Menke (2012)): 

 

u
%i

7v
w = u

〈%〉

0
w + ;

xL0x + kG yL

y 0
=

@/
;
xL0(YX − x〈%〉)

ℎ
=.          (4.17) 

 

The final solution of %i  needs to be estimated by adjusting the regularization 

parameter, k. k can be obtained in either an empirical or statistical way (Mu et al., 

2017; Xu, 1998). We first used “L-curve”, which is one of the most widely used 

methods to estimate k. The L-curve is a graph of the solution length and the size of 

prediction error obtained by different value of k. By adjusting k, ones can decide the 

optimal trade-off value that minimizes both quantities. Figure 4.3 shows the L-curve 

corresponding to Equation (4.17). The x- and y- axis represent the size of the 

prediction error and the solution, respectively. The graph depicts an L-shaped curve 

with smooth corners, indicating that an appropriate solution still needs to be chosen  
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Figure 4.3. L-curve obtained by varying the regularization factor, k. The red dot 

shows the position of k = 10)./ on the graph. 
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empirically between k = 10-~	10^. 

 Figure 4.4a and b show linear trend maps of ice mass loads estimated by 

Equation (4.17) when k are 10- and 10^, respectively. In both cases, we removed 

the effect of a-priori mass loads to highlight the difference between two. If k is small 

(k = 10-), stronger signals are observed with evident errors remained in the spatial 

pattern of the estimated mass loads. On the other hand, spatial patterns of mass loads 

estimated by larger k (k = 10^) are over-blurred, making it difficult to identify the 

small spatial-scale mass variability. There is also a slight difference in the time-series 

of mass changes obtained by each calculation (Figure 4.4c). The time-series 

estimated using larger k (k = 10^) shows smaller variability compared to the time-

series estimated based on smaller k	(k = 10-), indicating that the spatial leakage 

problem of GRACE data is not sufficiently resolved when using a larger k. 

 The L-curve with smooth corner provides a range of appropriate 

regularization factor, but cannot specify an exact value. Comparing k estimated by 

other methods may help to determine the value. For example, we estimated leakage-

corrected mass loads by FM in Section 4.3.1. By trial and error, we can obtain a 

regularization factor that minimizes root-mean-square (RMS) for the difference 

between forward modelled mass loads and estimated (from inversion) mass loads. 

The obtained k here is 10)./, which is also located at the corner of the L-curve (the 

red dot in Figure 4.3). Given the fact that k  should be chosen empirically, we 

estimate the CLD solution using k = 10)./ from the next chapter. 

 

4.3.3. Uncertainties 

  Antarctic ice mass changes from GRACE and satellite altimetry include 

uncertainties caused by observational error and inaccurate model correction. And 

these uncertainties would propagate into FM and CLD estimates, respectively. In the 

following subsections, we introduce uncertainty estimation methods for GRACE, 

FM, altimetry, and CLD, respectively.  
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Figure 4.4. a, b: Linear trend maps of Antarctic ice mass loads estimated by different 

value of k (a: k = 10-, b: = 10^). For clarity, linear trends of a-priori mass load 

were removed from each spatial pattern. c: Time-series of Antarctic ice mass change 

in each case. 
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4.3.3.1. Uncertainty of GRACE observation 

 Together with geoid SH coefficients, the GRACE data center provides SH 

coefficients of its standard deviations. Using these data, we estimate the 

observational error of GRACE by Monte-Carlo simulation. We first calculated the 

average of monthly standard deviations from 2003 to 2016, which are denoted by 

"Q!" and #Q!". Generated are 1000 random sets of SH coefficients with zero means 

and standard deviations of "Q!" and #Q!".  Each set of SHs was converted into surface 

mass densities (ñX/ , ñX-, … , ñX/$$$ ) after 400km Gaussian smoothing. Finally, we 

calculated the standard deviation of surface mass densities at each grid point and 

considered it as an observational error of GRACE data. Figure 4.5a shows the global 

error distribution, and its Antarctic part is highlighted in Figure 4.5b. 

 

4.3.3.2. Uncertainty of FM solution 

 The uncertainty of FM solution caused by GRACE’s error was calculated 

from random errors obtained from the section 4.3.3.1. We added each set of random 

errors (ñX/ , ñX-, … , ñX/$$$ ) to the observed surface mass density (YX ) at a month, 

assuming that the YX  is the signal.  Then, we obtained FM solutions using YX  plus 

random errors. Finally, the standard deviation of FM solutions was defined as its 

uncertainty. Figure 4.6 shows the spatial distribution of uncertainties. The 

uncertainty increases particularly along coasts. This is because FM restores both 

signals and errors from oceans to land. The total error over the entire AIS is still very 

small, about 3.5 Gton. 

 Another error source in FM solution is residual GIA effect due to the 

uncertainty of GIA model used in GRACE data reduction. We empirically estimate 

the uncertainty of the GIA effect using four GIA models (Caron & Ivins, 2019; 

Peltier et al., 2018; Purcell et al., 2016; Whitehouse et al., 2012). We corrected 

GRACE data using each of the GIA models and obtained four different FM solutions. 

Then, the maximum difference of linear trends in ice mass change calculated by four 

FM solutions was considered the GIA error in FM solutions. The estimated error  
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Figure 4.5. Spatial distribution of GRACE errors estimated around the world (a) and 

in Antarctica (b). 

 

 

 

Figure 4.6. Spatial distribution of FM solution error. 
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over the AIS was about 26.3 Gton yr-1, confirming that GRACE’s Antarctic 

observation is largely dependent on GIA models (Whitehouse et al., 2019). The total 

error of the ice mass change from the FM solution was estimated by summing up 

random error and GIA error. 

 

4.3.3.3. Uncertainty of altimetry-based mass loads 

 The uncertainty of altimetry-based ice mass change was classified into 

observational error (i.e., random error), firn thickness error and GIA model error. 

Regarding the error of altimetry observation, we used the uncertainty data from 

Schröder et al. (2019), which is provided along with the surface elevation change 

data. We first calculated the average uncertainty of the elevation anomalies at each 

grid point over the total study period (2003-2016) and defined it as :'. During the 

volume-mass unit conversion (equation (4.2)), the uncertainty of the mass loads at 

each grid point (:'_"&'') was calculated as follows: 

 

:'_"&'' = @4:'	.                  (4.18) 

 

Because observational errors of satellite altimetry (:') is spatially correlated within 

a radius of 50km (Schröder et al., 2019), we modified the error to reflect such noise 

characteristics. First, we generated 1000 random errors with zero means and standard 

deviations of :'_"&''  at each grid pixel. Because the correlated noise would be 

amplified when summing up, it is necessary to apply a scale factor to the errors.  

Given the spatial resolution (27km) of our data processing, the area of a circle with 

a radius of 50km corresponds to 10.8 grid pixels of our data. Therefore, we generated 

1000 random errors with zero means and standard deviations of :'_"&'' at each grid 

pixel and multiplied the random errors by scale factor √10.8. The estimated 1000 

sets of noises,	(ñ`/, ñ`-, … , ñ`/$$$), are added into the mass loads in a given month, 

thereby obtaining %`
/, %`

-, … ,%`
/$$$ . The total uncertainty over the entire AIS 

estimated in this way is about 178.4 Gton. The spatial distribution of the modified 
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:'_"&'' is shown in Figure 4.7a. 

 Regarding the uncertainty of the firn thickness model, we used the 

uncertainty data (:[) from Ligtenberg et al. (2011), provided along with the model 

data. The contribution of model uncertainty to altimetry-based mass loads was 

calculated as follows: 

 

:[_"&'' =	@4:[ .              (4.19) 

 

Figure 4.7b shows the spatial map of :[_"&''. We also generated 1000 sets of random 

numbers with zero means and standard deviations of :[_+!//, (ñ[
/, ñ[

-, … , ñ[
/$$$). Over 

the entire AIS, the uncertainty caused by the firn thickness model was estimated to 

be about 6.3 Gton. 

 The total random error at each grid pixel can be obtained by the 1000 sets of 

random errors generated above,		

	

[ñ\
/, ñ\

-, … , ñ\
/$$$] = [ñ`/, ñ`-, … , ñ`/$$$] + [ñ[/, ñ[-, … , ñ[/$$$]          (4.20) 

 

The spatial distribution of the standard deviations of (ñ\/, ñ\-, … , ñ\/$$$), :\,  is shown 

in Figure 4.7c. The spatial patterns and amplitudes are similar to those of :'_"&'', 

indicating that most random errors are caused by altimetry data. 

 We also estimated the systematic errors induced by inaccurate GIA 

correction using a similar method to the previous section. We used four GIA models 

to convert the observed elevation changes to mass changes according to equation 

(4.2). Then we calculated the maximum difference in linear trends of estimated mass 

changes. The GIA error was about 8.6 Gton yr-1 over Antarctica.  
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Figure 4.7. Spatial distribution of :'_"&'' (a), :[_"&'' (b), and :\ (c). 
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4.3.3.4. Uncertainty of CLD solution 

  The CLD solution (%i ) obtained by equation (4.17) is affected by both 

GRACE and altimetry errors. To estimate the error propagations to the CLD solution, 

we also used an empirical method by Monte-Carlo simulations as similarly 

performed in the previous sections. We added GRACE’s random errors 

(ñX/ , ñX-, … , ñX/$$$) to YX  of a given month. Similarly, 〈%〉 at the same month of YX  

was contaminated by the random errors from altimetry (ñ\/, ñ\-, … , ñ\/$$$ ). Using 

contaminated mass loads of YX  and 〈%〉, we estimated 1000 different CLD solutions 

(%i/, %i-, … ,%i/$$$) by equation (4.17). Finally, the standard deviation of the CLD 

solution was defined as its uncertainty. Figure 4.8 shows estimated uncertainties in 

each grid pixel.   

 The CLD error is much smaller than the altimetry error shown in Figure 4.7 

due to error reduction in the linear deconvolution process. Altimetry observation, 

〈%〉, includes both true variations of ice mass loads and errors in 27km spatial 

resolution. The error in 〈%〉 is much larger than that in YX , GRACE observation. YX  

also includes the same true ice mass variations in much lower spatial resolutions, 

about 400km. Therefore, YX − x〈%〉, the rightmost term of the equation (4.17), 

includes mostly the Gaussian smoothed but opposite sign of error in 〈%〉 . The 

smoothed effect, however, is recovered during the linear deconvolution, and thus the 

large error in 〈%〉 can be effectively canceled in the CLD solutions. For example, the 

accumulated uncertainty over the entire AIS is only about 9.4Gton. 

 We also estimated systematic errors by inaccurate GIA models. Similar to 

previous sections, we obtained CLD solutions using the data corrected by four 

different GIA models, and the maximum difference in linear trends between CLD 

solutions was defined as a systematic error. Over the entire AIS, the systematic error 

cause by GIA model was about 28.3 Gton yr-1.  
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Figure 4.8. Uncertainties of the CLD solution over Antarctica. 
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4.4. High resolution Antarctic ice mass loads 

 Figure 4.9 shows time-series of total ice mass changes for the AIS obtained 

by FM and CLD methods. A similar time-series from satellite altimetry is also 

presented. Both FM and CLD results are constrained to agree with smoothed 

GRACE data, so provide nearly identical AIS loss rates; -144.8±26.4Gton yr-1 from 

FM and -146.2±28.7 Gton yr-1 from CLD. The altimetry-only rate is very different 

(-106.9±15.6Gton yr-1). 

 FM and CLD rate maps show significant differences between Figures 4.10a 

and 4.10b. The FM rate map (Figure 4.10a) shows effects of Gaussian smoothing, 

lacking signals at glacier scales. The CLD map (Figure 4.10b) shows Thwaites, Pine 

Island and Totten ice loss consistent with radar (McMillan et al., 2014; Rignot et al., 

2019), and SMB variations (Van Wessem et al., 2014). The CLD map (Figure 4.10b) 

shows stronger negative linear trends at glacier outlets where increased ocean 

temperatures are important (Li et al., 2016; Pritchard et al., 2012). The CLD rate map 

also provides a more detailed view of ice mass gains in Whillans and Kamb Ice 

Streams, West Antarctica, associated with reduced (stagnated) glacial flow (Joughin 

et al., 2005; Retzlaff & Bentley, 1993). Mass gains are evident in Dronning Maud 

Land, East Antarctica, due to increased snowfall (Boening et al., 2012). Although the 

two rate maps in Figure 4.10 are very different, they are very close to one another 

and to GRACE observations when smoothed to GRACE resolution (Figures 4.11a 

and b). 

GRACE mascon solutions, (defined at grid points with higher spatial resolution 

and leakage correction) are also available. Figure 4.12a-c shows spatial maps of 

AIS’s loss rates from CSR, NASA Jet Propulsion Laboratory (JPL), and Goddard 

Space Flight Center (GSFC) mascons, respectively. Spatial resolution is improved 

relative to the FM solution, but maps are smoother than CLD estimates (Figure 

4.10b).  
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Figure 4.9. Time-series of Antarctic total mass variability estimated by FM 

(blue), Altimetry (green), and revised CLD (red). Linear trends and their confidence 

intervals are indicated in the same color as graphs. 

 

 

 

 

Figure 4.10. Linear trend maps of ice mass loads estimated by FM (a) and the 

revised CLD (b). 
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Figure 4.11. Similar to Figure 4.10 except that mass fields are smoothed by 

400km Gaussian filter. 

 

 

 

Figure 4.12. Linear trend maps of Antarctic ice mass change from CSR (a), JPL (b), 

and GSFC (c) mascon solutions. 
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4.5. AIS glacier mass balance 

 We estimated monthly ice mass variations at individual Antarctic glaciers 

using both FM and CLD methods and compared them with estimates from the Input-

output method (IOM). In the past, it has been difficult to compare GRACE with 

glacier scale ice mass change from IOM because GRACE spatial resolution is so 

poor.  

Ice mass changes (∆Y), from the IOM combine SMB from the ice sheet interior with 

ice discharge (∫â) across grounding lines via: 

 

∆Y = #Yà − ∫â.                       (4.21) 

 

Rignot et al. (2019) estimated annual (1979-2017) discharge (â) for individual 

Antarctic glaciers using surface velocity observations from satellite imagery and 

revised ice thickness data at grounding lines. Multiple reanalysis models provide 

estimates of continent-wide Antarctic SMB. In this study, we use RACMO2.3p2, as 

in section 4.2.2. ∆Y from IOM can be compared with our time-variable mass fields 

by partitioning the total ice sheet into glacier-scale areas. Glacier boundaries are 

taken from the MEaSURES-2 project (Mouginot et al., 2017; Rignot et al., 2013), as 

used by Rignot et al. (2019).  

Pine Island and Thwaites Glaciers are in West Antarctica and are the two largest 

Antarctic contributors to ongoing sea-level rise over the last decades (Rignot et al., 

2019). Jutulstraumen Glacier is in Dronning Maud Land in East Antarctica, where 

snowfall accumulation has abruptly increased since 2009 (Boening et al., 2012) and 

a positive mass rate is expected. The time-series of ice mass at three glaciers from 

FM (blue), satellite altimetry-only (green), CLD (red), and IOM (black) are shown 

together in Figure 4.13a-c, respectively. We calculated linear trends of four time-

series and using a second-order polynomial fit (.$ + ./9 +
/
-
.-9

-), where ./ is the 

linear rate we used. Estimated trends are shown with the same colors in the figure. 
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Figure 4.13. Comparison of ice mass variability at (a) Pine Island, (b) Thwaites, and 

(c) Jutulstraumen Glaciers estimated from FM (blue), Altimetry (green), CLD (red), 

and IOM (black). Linear trends and corresponding uncertainties (with 95% 

confidence intervals) are in the same colors on each panel. 
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For Pine Island Glacier (Figure 4.13a), the FM (blue) rate is -39.1 Gton yr-1, 

about 23% smaller than the IOM rate (black dotted), -50.6 Gton yr-1. The Thwaites 

Glacier (Figure 4.13b) FM rate is -40.2 Gton yr-1, larger than the IOM value, -33.2 

Gton yr-1. Despite magnitude differences, FM provides consistently negative rates in 

agreement with IOM. FM signals are smooth, so blend signals from the two glaciers, 

and in addition, Thwaites is adjacent to Haynes, Pope, Smith, and Kohler Glaciers, 

all of which experienced a sharp decrease in ice thickness near the grounding line 

over the last three decades (Konrad et al., 2017). The FM solution would likely 

include spatial leakage from those glaciers. Mass change estimates from satellite 

altimetry (green) and CLD (red) agree well with IOM estimates for both Thwaites 

and Pine Island glaciers, confirming the consistency among multiple geodetic 

techniques. 

In the Jutulstraumen Glacier, FM and CLD estimates are in agreement with 

IOM (Figure 4.13c), although they reflect differing spatial resolution. The mass 

increase in the Jutulstraumen basin is concentrated in a narrow area (the stoss side 

of wind direction) due to the interaction of atmospheric circulation and rough 

topography (Lenaerts et al., 2013). Because the glacier basin (red line on the right 

side of Figure 4.13c) is large compared to the area of large snow accumulation, mass 

balance in this region would be less affected by basin-to-basin leakage in the FM 

estimate. On the other hand, satellite altimetry alone underestimates ice mass 

increase compared to other three methods, possibly the result of errors associated 

with rough topography, or errors in the firn density model. Our CLD estimate based 

upon the same altimetry data, overcomes apparent shortcomings of altimetry in this 

region by requiring agreement with GRACE data.  

 We extend the analysis to glacial basins for the entire AIS basins excluding 

those with areas smaller than 1000 km2. Mass rates from FM, satellite altimetry, CLD, 

and IOM, are computed. Three scatter plots are produced using IOM on the 

horizontal axis in Figure 4.14. Estimates from FM (Figure 4.14a), satellite altimetry 

(Figure 4.14b), and CLD (Figure 4.14c) for smaller glaciers (upper right-hand corner)  
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Figure 4.14. Comparison of linear changes in ice mass estimated from the IOM (x-

axis) and three methods (y-axis).  
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show progressively increasing coefficients of determination R2. Including all AIS 

glaciers exceeding 1000 km2, R2 increases slightly from 0.69 (Altimetry) to 0.71 

(FM) to 0.79 (CLD). The modest improvement with CLD by including the largest 

glaciers reflects the fact that mass rates from all three methods and IOM are 

reasonably well determined for these larger areas.  

 Similar improvements are also found in glacier basins within West 

Antarctica (black circles in Figure 4.14) and East Antarctica (green circles). In West 

Antarctica, R2 values for FM and altimetry are 0.84 and 0.94, respectively. R2 using 

CLD is 0.94, similar to altimetry. In East Antarctica, CLD gives a much larger value 

(0.51) compared with FM (0.34) and altimetry (0.24). However, FM provides a larger 

R2 (0.61) than CLD (0.58) and altimetry (0.06) for the Antarctic Peninsula (red 

circles). A slightly lower R2 for CLD is likely due to poor satellite altimetry 

observations (used as the a priori) in the Antarctic Peninsula (Schröder et al., 2019). 

Disagreements between our CLD and IOM estimates are also partly associated with 

uncertainties in IOM, based on ice discharge and SMB. SMB is obtained from 

numerical models, and ice discharge is estimated by both observation of ice flow 

velocity and ice thickness at grounding lines (Rignot et al., 2019).   

 

 

4.6. Conclusions 

 It has been difficult to estimate ice mass changes for AIS glacier basins from 

conventional GRACE data due to leakage error. The CLD method provides 

improved spatial resolution by using GRACE to constrain satellite altimetry data as 

an a priori. As a result, the glacial-scale ice mass changes can be estimated more 

accurately by CLD (see Appendix). CLD estimates provide higher spatial resolution 

and suppress spatial leakage. Ice mass change anomalies occurring at glacial scales 

agree well with those from the IOM method (based on radar remote sensing and 

regional climate models). GRACE estimates are important constraints because they 

provide spatial pattern of ice mass change at monthly time scales. The IOM method 
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only provides an annual flux estimate at glaciers outlets. 

  The CLD method may be supplemented with other in-situ and remote 

sensing data such as GNSS loading information and results from new altimetry 

missions (e.g., ICESat-2). Detailed understanding of glacial scale ice mass variations 

revealed by the CLD approach should be important in future glacier mass balance 

and sea level projections. 
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Chapter 5. Estimation of GIA effect beneath the 
Antarctic Glacier using multiple remote sensing and 

climate models 
 

5.1 Introduction 

 Solid earth under the Antarctic glaciers has been uplifted due to the 

viscoelastic response of the upper mantle by deglaciation. This effect is known as 

glacial isostatic adjustment (GIA) and estimated to have rates from several to tens of 

mm per year over the Antarctic Ice Sheet (AIS). An accurate understanding of the 

GIA effect is essential for observing the present-day AIS mass change. For example, 

GRACE & GRACE-FO gravity satellites (2002-present) observe mass changes 

caused by both ice and solid earth. To separate the ice mass variability from the 

observation, the solid earth mass change must be corrected using appropriate GIA 

models (Tapley et al., 2019). 

 Despite its importance, the Antarctic GIA is still poorly understood due to 

the limited in-situ observations. Since most surface of the Antarctica is covered with 

thick ice, the physical properties or motion of bedrock cannot be directly observed. 

Observation networks (e.g., Global Navigation Satellite System (GNSS)) are only 

deployed at exposed bedrock areas, limiting the identification of the overall spatial 

pattern of the Antarctic GIA. Indirect estimation of bedrock elevation changes using 

ice surface elevation and ice thickness observations is also very challenging due to 

the viscous internal deformation and basal sliding of glaciers. Accordingly, current 

understanding of GIA effect heavily relies on numerical models, which simulate the 

relaxation time of isostatic adjustment (reflecting the mantle's viscosity) with the 

historical ice coverages and its melting history (Roy & Peltier, 2015). However, the 

GIA effect suggested by various models are not consistent with each other 

(Whitehouse et al., 2019), leading to highly scattered estimates in Antarctic mass 

loss rates, about 40 Gtons yr-1 (Shepherd et al., 2012)). 

 The Kamb Ice Stream, adjacent to the Ross Ice Shelf in West Antarctica, is 



 

 ６９ 

a region where a number of GIA models estimate the highest uplift rates over 

Antarctica (Figure 5.1). For example, a GIA model of Peltier et al. (2018) estimates 

that the apparent average mass rate associated with GIA in the KIS  is about 6.3 Gton 

yr-1. The high uplift in the KIS is probably because it reflects the large deglaciation 

history and the low mantle viscosity in West Antarctica. However, the estimation is 

largely uncertain due to limited observational evidences (Peltier et al., 2015; 

Whitehouse et al., 2019). 

 The KIS was stagnated about 160 years ago (Retzlaff & Bentley, 1993), and 

there is no present-day glacial flow at the downstream trunk (Rignot et al., 2017). 

The amount of ice discharge at the grounding line is negligible, and only the surface 

mass balance (SMB: time integration of snowfall and sublimation) contributes to the 

mass increase in this region (Rignot et al., 2019). The glacial-scale SMBs in AIS 

have been well understood by global climate reanalysis models (e.g., ECMWF 

ERA5 (Hersbach et al., 2019)) and regional climate models (e.g., RACMO (Van 

Wessem et al., 2014) and MAR (Agosta et al., 2019)). In addition, recent 

development of inversion with GRACE including satellite altimetry data as a priori 

allows to estimate glacial-scale mass variability in AIS. Since GRACE detects the 

ice and sub-ice mass variability at once, it may be possible to estimate the mass 

change due to solid earth under the KIS when comparing GRACE data with SMB 

estimates. Based on this idea, we investigate the mass changes induced by the solid 

earth's uplift under the KIS during the period of 2003-2016. 

 

5.2 Data & Method 

5.2.1 Method 

 The mass change in Antarctica is occurred to firn (∆:[) and ice layer (∆:4), 

and bedrock (∆:7 ). GRACE (∆:Xa\bc ) observation provides a sum of the mass 

changes in the three layers: 

 

∆:Xa\bc =	∆:4 + ∆:[ + ∆:7  (5.1) 
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Figure 5.1. Apparent surface mass variability due to GIA effects estimated by 

multiple GIA models; (a) Peltier et al. (2018) (a),  Peltier (2004) (b), A et al. (2012) 

(c), Purcell et al. (2016) (d), and Caron and Ivins (2019) (e). Blue lines are boundary 

of the KIS (see Chapter 5.2.2). 
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In KIS, where ice flow is stagnant, ∆:4 is negligible and ∆:[ is explained by 

SMB. Accordingly, equation (5.1) is simplified as follows: 

 

∆:Xa\bc =	∆:7 + ∆#Yà.  (5.2) 

 

By removing #Yà from GRACE observation, the mass change induced by GIA 

(∆:7) would be estimated.  

 Current numerical models simulate SMB with spatial resolutions of several 

tens of km (Chapter 5.2.3), which resolution is high enough to examine SMB 

variability (∆#Yà ) at glacial scale. However, GRACE has been limited in the 

examination of glacial scale ice mass changes due to the inherent low spatial 

resolution (a few hundred km). Simply subtracting  ∆#Yà from ∆:Xa\bc will yield 

a highly inaccurate ∆:7 in a glacial basin due to the low spatial resolution of GRACE. 

To constrain the mass changes (∆:Xa\bc) within KIS, GRACE data needs to be re-

processed to higher-resolution as suggested in Chapter 4. This issue will be briefly 

addressed again in the following sections. 

 

5.2.2 Basin boundary 

 NASA Making Earth System Data Records for Use in Research 

Environments (MEaSUREs) Program (Rignot et al., 2017) provides high-resolution 

boundary of individual Antarctic glaciers based on the observation of glacial velocity 

fields by satellites. However, we find that the boundary of KIS defined by the 

MEaSUREs (blue line of Figure 5.2) does not include parts of the southern tributary 

flowing into the downstream trunk. Therefore, we revise the basin boundary of KIS 

to include all of the ice stream catchments. The red line of Figure 5.2 shows the new 

boundary. 
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Figure 5.2. Glacier flow speeds (color shading) and their directions (gray arrows) 

near KIS provided by MEaSUREs2 project (Rignot et al., 2017). The blue line is the 

boundary of the KIS provided by the same repository, and the red line is the new 

boundary defined in this study (Chapter 5.2.2). Black line is grounding line from 

Modis Mosaic of Antarctica (MOA) 2014 (Scambos et al., 2007). 
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5.2.3 SMB models 

 To estimate the ice mass variability (2003-2016) induced by SMB, we used 

state-of-the-art climate models: European Centre for Medium-Range Weather 

Forecasts reanalysis 5 (ERA5) (Hersbach et al., 2019), Regional Atmospheric 

Climate Model (RACMO) 2.3p2 (Van Wessem et al., 2014), and Modèle 

Atmosphérique Régional (MAR) v3.6.4 (Agosta et al., 2019). ERA5 is an updated 

version of the previous ERA-Interim global reanalysis model (Dee et al., 2011) and 

has a spatial resolution of 31km. RACMO2.3p2 is a regional climate model with a 

spatial resolution of 27 km and is forced by the ERA-Interim. MAR is another 

regional climate model simulated with a spatial resolution of 35 km and provides 

three types of data, which is forced by ERA-Interim, MERRA2, and JRA-55 global 

reanalysis, respectively. Considering the three sub-models of MAR as independent 

data, we have a total of five different SMB models. To reduce the influence of 

different spatial resolutions on the estimated mass change, ERA5 and MAR were re-

sampled with 27km grid intervals, the spatial resolution of RACMO2.3p2. 

 

5.2.4 Mass densities from GRACE data 

 GRACE gravity satellite observes the temporal variation of the gravitational 

potential, and the data are provided as spherical harmonic (SH) coefficients. Using 

the linear relationship between mass and gravitational potential, the observed 

potential field is converted into surface mass densities (Wahr et al., 1998). We used 

CSR RL06 level 2 monthly (2003-2016) SH product as GRACE observation. Degree 

1, and degree 2 and order 0 coefficients were replaced with estimates in 

supplementary datasets in GRACE Technical Notes 13 (Landerer, 2019) and 14 

(Loomis et al., 2019), respectively. Spatial aliasing errors were removed by 

sequential application of decorrelation filter (Swenson & Wahr, 2006) and Gaussian 

filter with a radius of 400km (Wahr et al., 1998). Unlike the conventional processing 

schemes, we did not apply any GIA correction to include its effect in GRACE data 

(Chapter 5.2.1).  
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5.2.5 Mass densities from satellite altimetry data  

 We estimate mass densities from satellite altimetry, which will be used in 

Chapter 5.2.6 for joint estimation with GRACE data. We used multi-mission satellite 

altimetry data from 2003 to 2016 calculated by Schröder et al. (2019). Nominally, 

satellite altimetry observations provide surface elevation changes (∆y&!8) caused by 

ice (∆y4) and firn thickness variability (∆y[), and vertical displacement of bedrock 

(∆y7): 

 

∆y&!8 =	∆y4 + ∆y7 + ∆y[.   (5.3) 

 

The thickness observation can be converted to mass variations, ∆:&!8:  

 

∆:&!8 =	@4∆y4 + @7∆y7 + @[∆y[ = @4∆y4 + @7∆y7 + ∆#Yà       (5.4) 

 

where @4, @7, and @[ are density of ice (917 kg m-3), bedrock (unknown), and firn 

layer (unknown), respectively, and ∆#Yà  is SMB variations. Since the satellite 

altimeter does not distinguish the elevation changes in each layer, the typical 

volume-mass conversion process requires additional numerical models that describe 

the bedrock elevation and firn thickness variability. 

 ∆y4 and ∆y[ are negatively correlated because the bottom-most firn layer is 

continuously converted to the ice layer during the densification process. On the other 

hand, the intermittent snowfall accumulations compensate for the thickness loss at 

the bottom of the firn layer. Therefore, @[ varies during the acquisition of new firn 

by snowfall and the loss of old firn to ice. The time-varying firn thickness (1979-

2016) is provided by IMAU-FDM (Ligtenberg et al., 2011), which is empirically 

simulated using RACMO2.3p2 model. We used the data from 2003 to 2016 to 

calculate the firn thickness changes during our study period. We removed the linear 

trend of firn thickness change during 1979-2002 from the data during 2003-2016, 
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and used the residuals as ∆y[. Here we assumed that the period from 1979 to 2002 

is long enough to equilibrate the acquisition (due to snow accumulation) and loss 

(due to firn compaction and downward ice flow) in the firn layer over the KIS basin, 

and that the imbalance over the subsequent period have changed the firn thickness. 

By subtracting ∆y[ from ∆y&!8 and adding back the effect of SMB, we obtained a 

new mass density: 

 

∆:&!8
∗ =	@∗Ñ∆y&!8 −	∆y[Ö +	∆#Yà& = @∗	(∆y4 + ∆y7) + ∆#Yà.      (5.5) 

 

∆#Yà  used here is the SMB anomaly (2003-2016) from RACMO2.3p2 after 

removing the linear trend estimated from the SMB during 1979-2002 as we have 

done with the firn density model. @∗ is a density corresponding to the total volume 

change of the bedrock and ice layer. Strictly, @∗ should be an intermediate value of 

bedrock and ice density. But here we assumed the density of ice (@4) as @∗: 

 

∆:&!8
∗ =	@4Ñ∆y&!8 −	∆y[Ö +	∆#Yà& = @4 	(∆y4 + ∆y7) + ∆#Yà&. 

 (5.6) 

 

This assumption causes the estimated mass density (∆:&!8∗ ) differs from actual mass 

density (∆:&!8 ) by the amount of, ∆:&!8 −	∆:&!8∗ = (@7 − @4)∆y7 . In the next 

section, we will show that the difference becomes negligible after the joint estimation 

of GRACE and altimetry data.  

 

5.2.6 High-resolution GRACE data and its sensitivity to GIA estimates 

 A recent study (Kim et al., in prep) has reported that the spatial resolution of 

GRACE observations in AIS can be greatly improved (~27km) by a revised method 

of constrained linear deconvolution (Seo et al., 2020) (revised CLD). The revised 

CLD estimates high-resolution surface mass loads from GRACE data by using 
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satellite altimetry data (after volume-mass conversion) as a-priori. The linear 

equation of the revised CLD is (Kim et al., in prep) 

 

u
%i

7v
w = u

∆:&!8
∗

0
w + ;

xL0x + kG yL

y 0
=

@/
;
xL0(∆:Xa\bc − x∆:&!8

∗ )

ℎ
=    (5.7) 

 

where x, k, P, and G are Gaussian smoothing matrix, regularization factor, diagonal 

weighting matrix, and steepness (smoothness) matrix, respectively. y is a matrix 

whose diagonal elements are ones in the ocean and zeros in the inland area. ℎ is a 

zero vector, and 7v is a null vector. %i  is a vector of model parameters to be estimated, 

high-resolution surface mass loads. The definitions for each term are the same as 

shown in section 4.3.2.  

 In the above section 5.2.5, we recognized that ∆:&!8∗   (as used the first term 

in the right-hand side of the equation (5.7)) from satellite altimetry includes error 

associated with using the same ice density for volumetric variations of ice layer and 

solid earth uplift of GIA. Therefore, spatial scales of the expected errors would be 

similarly large scale of GIA effect, distinctly different from smaller spatial scale of 

ice variations. The error can be understood by ∆:Xa\bc − x∆:&!8∗  in the second term 

of the right-hand side of the equation (5.7) while the error in ∆:Xa\bc − x∆:&!8∗  is 

smoothed by the Gaussian kernel and opposite sign to the error in ∆:&!8∗ . Because the 

smoothing effect of the error in ∆:Xa\bc − x∆:&!8∗  is mostly diminished via 

constrained linear deconvolution using the kernel of the inverse matrix, the error will 

be mostly canceled in from the equation (5.7).  

 To examine the error reduction, we generated new surface mass loads,	∆:&!8∗∗ , 

by removing expected surface mass loads estimated by a GIA model of Peltier et al. 

(2018) from ∆:&!8∗ . We then used ∆:&!8∗∗  instead of ∆:&!8∗  in the revised CLD, defining 

%i- as the estimated mass loads using ∆:&!8∗∗ . Because effect associated with GIA was 

removed from ∆:&!8∗ , ∆:&!8∗∗  includes the similar error generated by using the same 

density of the uplift bedrock to that of the ice layer as in equation (5.6). Figure 5.3a 
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shows the spatial pattern of the linear trend difference between ∆:&!8∗  and ∆:&!8∗∗ , 

which is the same as the mass loads estimated by the GIA model of Peltier et al. 

(2018). The maximum value is about 4.2 cmH2O yr-1, located in the midstream of 

the KIS. The average value within the KIS basin is about 3.0 cmH2O yr-1, which is 

equivalent to 6.3 Gton yr-1 over the entire basin.  

 Figure 5.3b shows the spatial pattern of linear trend difference between %i  

and %i-, which are estimated by the observations of ∆:&!8∗  and ∆:&!8∗∗ , respectivcely. 

Most anomalies shown in Figure 5.3a are largely suppressed: total anomaly is about 

0.2 Gton yr-1, much smaller than Figure 5.3a. This test demonstrates that it is possible 

to estimate variations of surface loads from combined observation of ice mass 

variations and solid earth uplift in glacial scale by suppressing uncertainty associated 

with unknown effect of bed rock uplift rate and its density.    

 

5.3 Result & Discussion 

5.3.1 Estimated mass rates 

 Figure 5.4a shows a linear trend map of mass changes near the KIS estimated 

by the revised CLD (The trend map of the entire AIS is shown in Figure 5.5). The 

increasing trend is dominant within the basin boundaries of KIS, with an average 

rate of about +11.2±0.4 cmH2O yr-1. The maximum value of the trend is about 

+49.3±0.3 cmH2O yr-1 and is located in the midstream where glacial flow remains. 

As previously noted, the total mass change of KIS is affected by SMB and GIA effect. 

On a smaller spatial scale, the upstream glacial flow (Figure 5.2) supplies ice to the 

downstream, forming high increasing mass trends on the stagnant area. Such mass 

exchanges are only occurred within the basin, and thus do not affect the total mass 

change over the basin. Slight decreasing trends are shown in the upstream pixels, 

with a minimum rate of about -2.6±0.3 cmH2O yr-1. This is probably because the 

amount of ice transferred to the downstream during the study period was larger than 

the SMB accumulation.  
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Figure 5.3. (a) Map of differences between ∆:&!8∗  and ∆:&!8∗∗ .  (b) Map of differences 

between two mass rates after the joint estimation. Red lines denote basin boundary 

of KIS (Chapter 5.2.1). Note that the color scales of the two images are different. 

 

 

 

Figure 5.4. (a) Linear trend map of estimated mass changes near KIS. The magenta 

line is the boundary of the KIS. (b) Time-series of mass changes in KIS estimated by 

SMB models and the revised CLD. (c) Comparison of linear trends in mass 

variability shown in (b); the average of five SMB models (SMB: all models), the 

average of three ECMWF models (SMB: ECMWF), the revised CLD without GIA 

model (without GIA), and the revised CLD with a GIA model of Peltier et al. (2018). 
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Figure 5.5. Similar to Figure 5.4(a) except for the entire Antarctic Ice Sheet. 
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5.3.2 GIA mass rate beneath the KIS 

 Figure 5.4b compares time-series of mass changes from SMB and revised 

CLD. For SMBs, the highest increasing trend is shown in the MAR forced by JRA-

55 (purple line), which is +30.0±0.2 Gton yr-1. The lowest increasing trend is shown 

in the ERA5 reanalysis (red line), which is about +23.2±0.1 Gton yr-1. The average 

trend calculated by five SMB models is about +27.2 Gton yr-1, with the confidence 

interval (two standard deviations) of 5.9 Gton yr-1 (the first column in Figure 5.4c). 

Previous studies (Bromwich et al., 2011; Palerme et al., 2017) evaluated multiple 

reanalysis models and found that the ECMWF reanalysis is superior to other models 

in AIS. The average trend for SMBs calculated by three ECMWF-based models 

(RACMO, MAR forced by ERA-Interim, ERA5) is about +25.4 Gton yr-1, with the 

confidence interval of 5.2 Gton yr-1 (the second column in Figure 5.4c). 

 The black solid line of Figure 5.4b shows the mass change of the KIS 

estimated by the revised CLD without correcting GIA effect. The linear trend is about 

+23.5±0.2 Gton yr-1 (the third column in Figure 5.4c), similar to the SMB trend by 

ERA5 (+23.2±0.1 Gton yr-1) or RACMO (+24.9±0.1 Gton yr-1). Subtracting the 

SMB from the total mass change (from the revised CLD), we can estimate the 

contribution of GIA (Equation (5.2)). Given the five SMB models, the possible mass 

rates induced by the GIA range from -9.8 to +2.4 Gton yr-1. Using the three ECMWF 

SMB models, the GIA mass rates range from -7.3 to +3.5 Gton yr-1. The rates are 

much closer to zero when ERA5 (+0.3 Gton yr-1) and RACMO (-1.4 Gton yr-1) are 

used. 

 The GIA model from Peltier et al. (2018) is the most widely used for the 

correction of GRACE data. If the GIA model reasonably depicts the GIA effect over 

KIS, the ice mass change estimated by the revised CLD incorporating the GIA model 

should be similar to the SMB changes according to Equation (5.2). The black dotted 

line of Figure 5.4b is the ice mass change estimated by the revised CLD 

incorporating the GIA model. The linear trend is about +16.8±0.2 Gton yr-1 (the 

fourth column in Figure 5.4c), much smaller than the trend of all SMB models. The 
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GIA mass rate beneath the KIS indicated by Peltier et al. (2018) is about 6.7 Gton 

yr-1, which is larger than our estimates in this study. Similarly, GIA mass rates from 

other models are generally over-estimated, which are +8.9 Gton yr-1 (A et al., 2012), 

+10.2 Gton yr-1 (Peltier, 2004), +4.8 Gton yr-1 (Purcell et al., 2016), and +3.0 Gton 

yr-1 (Caron & Ivins, 2019), respectively.  

 

4. Conclusion  

 We estimated the GIA mass rate under the KIS using multiple SMB models, 

high-resolution mass change estimates, and new basin boundary data. The estimated 

GIA mass rate ranges from -9.8 to +3.5 Gton yr-1. When ERA5 and RACMO SMB 

models were used, the rates were estimated to +0.3 Gton yr-1 and -1.4 Gton yr-1, 

respectively. These rates were much smaller than that from the most widely used 

GIA model (Peltier et al., 2018), 6.7 Gton yr-1. The large difference in GIA mass rate 

between estimated here and the model is likely due to the uncertainty of the GIA 

model. The historical ice coverage used in Peltier et al. (2018) model was simulated 

by an ice sheet coupled climate model forced by a small number of paleoclimate 

proxy records and GNSS observations. Therefore, current GIA predictions 

particularly over Antarctica would be problematic.  

 This study was examined only on the KIS region, where ice flows are 

stagnant. It is clear that the evaluation of the limited region cannot represent the 

entire uncertainty of the model. KIS only accounts for 1.8% of the total area of AIS. 

To extend this study to the entire AIS, accurate ice discharge observations are 

necessary. Glacier flow rates at AIS’s surface have been observed by satellite radar 

imagery (Rignot et al., 2019). However, glacier flow at fluxgate, an area where 

glaciers pass through the grounding line, is highly inaccurate due to limited 

observations and numerical models (Fretwell et al., 2013; Morlighem et al., 2020). 

Improving them through continuous efforts will help to produce a robust estimate of 

the Antarctic GIA. 
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Chapter 6. Sea-level projections 

 In this dissertation, Antarctic SMB and glacial scale ice mass change along 

with suppressing residual GIA effect were examined. Those findings are all 

important to project future sea level changes. Antarctic ice mass changes (∆M) 

includes evident high frequency variabilities and most of them are associated with 

∆SMB variations as shown in Chapter 3. On the other hand, the estimated ice 

discharge by subtracting ∆SMB from ∆M only showed multi-decadal accelerations 

with a significant linear trend (Figure 3.9). Using the estimated ice discharge, we can 

effectively project future ice mass change because it is expected that multi-decadal 

and longer variabilities are dominant in the change of ice discharge. In Chapter 4, 

the glacial-scale mass variability was estimated by increasing the spatial resolution 

of GRACE observation. Using the high-resolution mass change data, each 

contribution of the future sea-level rise from individual glaciers in Antarctica can be 

separated. Finally, we showed that the GIA model by Caron and Ivins (2019) is the 

best among currently available models (Chapter 5), which is significant information 

to understand the contemporary ice mass loss and its projection.   

 We first investigate different projections of future sea-level changes by using 

variations of ice discharge (∆D) and ice mass (∆M), separately. The ice discharge 

was estimated by subtracting ∆SMB (from RACMO2.3p2) from the ∆M (from the 

revised CLD), where ∆SMB was obtained by removing the linear trend of 1979-

2002 in the SMB variations. For ∆M, we first reduced the GIA effect using the output 

from Peltier et al. (2018), which is currently most widely used. Later, we include the 

GIA model of Caron and Ivins (2019), the possibly best GIA model based on the 

Chapter 5. Two different projections of future sea-level changes driven by Antarctic 

ice mass loss are compared using long-term components (linear trend and 

acceleration during 2003-2016) of ∆M and ∆D. 

  The blue line in Figure 6.1a shows a time-series of ∆M. The linear trend and 

acceleration are estimated as -152.5± 7.2 Gton yr-1 and -18.1± 4.1 Gton yr-2, 
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respectively. The red line is the time-series of ∆D showing that the high-frequency 

amplitudes are largely suppressed after removing ∆SMB (Chapter 3). The linear 

trend and acceleration are reduced by 15% (-129.5±5.7 Gton yr-1) and 39% (-

11.0 ± 3.2 Gton yr-2), respectively. Confidence intervals of linear trend and 

acceleration estimates are also reduced by 21% and 22%, respectively. Figure 6.1b 

shows projections of future sea-level changes based on estimates of ∆M and ∆D. If 

the ∆M is used for the projection (blue), the sea-level change in 2100 is about 

+24.4± 4.8 cm, consistent with previous estimates by ice dynamics modeling 

simulated with the RCP8.5 scenario (DeConto et al., 2021). On the other hand, the 

sea-level projection by ∆D is about +16.0±3.8 cm, 34% lower, and 21% less 

scattered than the projections using ∆M.  

 A similar comparison is carried out for individual glaciers in Antarctica. The 

Thwaites and Pine Island Glaciers, which show the fastest ice mass loss rates among 

Antarctic glaciers, are selected as the target areas. Figure 6.2 shows future sea-level 

changes projected by mass loss rates at each glacier. The sea-level change in 2100 

estimated by Thwaites’s ∆M is about +2.9±0.3 cm (blue line in Figure 6.2a), but it 

reduces to +1.7±0.2 cm (red line in Figure 6.2a) when considering ∆D. Similarly, 

the sea-level change in 2100 by Pine Island Glacier is estimated to +4.4±0.4 cm 

when using ∆M but the value reduces to +2.9±0.2 cm when considering ∆D.  

 Subsequently, we tested the impact of the GIA model on GRACE data 

correction. Figure 6.3 shows another sea-level projection of the two glaciers 

estimated by ∆D with the GIA model from Caron and Ivins (2019). The sea-level 

change in 2100 caused by the two glaciers is 1.6±0.2 cm (Thwaites Glacier, blue), 

2.8±0.2 cm (Pine Island Glacier, red), which are not much different from the use of 

the GIA model from Peltier et al. (2018) (red lines in Figure 6.2). This is because the 

GIA mass rates presented by the two GIA models are similar to each other except for 

the KIS region (Figure 5.1). For the same reason, the sea-level change in 2100 by 

the entire AIS is about 15.9±3.7 cm (not shown in the figure), slightly different from 

the case when the GIA model from Peltier et al. (2018) is used (16.0±3.8 cm).  
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Figure 6.1. (a) Antarctic ice mass change (thin blue line) and ice discharge (thin red 

line) estimates. Thick blue and red lines show quadratic polynomial fits of the two 

time series. Linear trends and accelerations of each time-series are presented in the 

panel. The errors are estimated with 95% confidence intervals. (b) Future sea-level 

changes associated with Antarctic ice mass loss projected by using long-term 

components (linear trend and acceleration) of ice mass change (blue) and ice 

discharge (red). 
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Figure 6.2. Future sea-level rise projected by mass loss in the Thwaites (a) and Pine 

Island (b) Glaciers. 

 

 

Figure 6.3. Future sea-level rise projected by ∆D in the Thwaites (blue) and Pine 

Island (red) Glaciers. GIA model from Caron and Ivins (2019) is used for ∆D 

estimates. 
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Chapter 7. Conclusion 

 This dissertation aimed to understand the causes of the current Antarctic ice 

mass changes (∆M), improve the spatial resolution of ∆M and reduce the uncertainty 

associated with GIA. This study about Antarctic ∆M is eventually important for 

future sea-level projection. The major findings of this study are as follows: 

 1. Precipitation accumulation anomaly (e.g., SMB) over Antarctica has 

contributed to the ice mass loss acceleration significantly during the last four decades 

(Chapter 3). It is found that such SMB variability has been largely attributed to the 

Southern Annular Mode. The SMB accounts for the annual to inter-annual variability 

of Antarctic ice mass change. In particular, inter-annual variation in SMB can explain 

an abrupt ice mass loss in Antarctica at 2007. The ice discharge estimated by 

subtracting the SMB from ice mass change shows a steady increase.  

 2. This study developed the revised CLD method which provides improved 

mass change data by using GRACE to constrain satellite altimetry data as an a priori 

(Chapter 4). The CLD estimates provides higher spatial resolution (~27km) than 

GRACE (hundreds of km) and suppress spatial leakage. The ice mass change 

anomalies occurring at glacial scales agree well with those from the Input-Output 

method. 

 3. A comparison of the mass change between SMB models and the revised 

CLD suggests that the GIA mass rate beneath the KIS should be negligible. Most 

GIA models, however, estimate the largest GIA rate over the KIS region in Antarctica. 

A GIA model of Caron and Ivins (2019) shows the minimum rate (3.0 Gton yr-1) 

among other GIA models. 

 4. The future sea-level rise in 2100 projected by the current rate of ice mass 

change (about 24 cm) would be overestimated. The sea-level rise projection based 

on Antarctic ice discharge is about 16cm. Of these, the Thwaites and Pine Island 

Glaciers would contribute about 1.6 cm and 2.8 cm, respectively. 

 This dissertation includes several implications that should be addressed in 
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future studies. First, the SMB study shows that the Antarctic precipitation has not 

increased over the past 40 years despite global climate warming (Chapter 3). This is 

probably because the SAM has played a superior role in the changes in precipitation 

during the same period. On the other hand, a number of existing climate prediction 

models have suggested an increase in precipitation during the historical period. Since 

predictions from falsely constrained climate models may include high uncertainty, 

further studies should be made to improve accuracy of climate models to reflect the 

present-day SMB variability. 

 The revised CLD was used to combine GRACE and satellite altimetry data 

to generate high-resolution Antarctic ice mass change data (Chapter 4). It is expected 

that the method would not be limited to the application of Antarctic ice mass change. 

If any a priori information is available at study area, the revised CLD could be used 

to improve the spatial resolution of GRACE observations over those regions such as 

the Greenland Ice Sheet or alpine glaciers.  

 Validation of GIA models with high-resolution Antarctic ice mass change 

(Chapter 5) suggests that a number of GIA models would overestimate the solid 

earth’s uplift rate beneath the KIS. Even though this examination was only carried 

out in a single ice stream region, the method can be extended to other glaciers to 

understand the Antarctic GIA effect if accurate estimations of glacier mass changes 

using the Input and Output method are available.  

 Those findings and new methods developed here are important to project 

future sea-level change empirically. Correcting SMB contributions from high-

resolution ice mass change, glacier scale ice discharge variations were estimated. 

Because ice discharge variations have multi-decadal and longer variations, such 

variation are important to understand future ice mass change and consequently sea-

level variations. The sea-level change projection based on the contemporary ice 

discharge variations underestimates the future sea-level rise compared to that based 

on the ice mass change (Chapter 6). This is because the current ice mass change 

includes apparent ice mass loss acceleration due to the decrease in Antarctic 
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precipitation in recent decades (Chapter 3). Such SMB effect would not continue for 

the next decades because, as mentioned earlier, climate models predict that the 

Antarctic precipitation would gradually increase due to climate warming. The 

increase in SMB will add more ice to Antarctic Ice Sheet, which further suppresses 

the global sea-level rise. As a result, considering the future SMB effect, our 

projections proposed in Chapter 6 using only ice discharge variabilities might still 

overestimate the contribution of Antarctic ice mass change to future sea-level rise.  
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Appendix 

The following figures show mass changes of Antarctic glaciers jointly estimated 

by satellite gravimetry and altimetry. For comparison, the mass variations observed 

alone by satellite gravimetry and altimetry are presented together. The basin 

boundaries of Antarctic glaciers are obtained from Mouginot et al. (2017). Given the 

effective spatial resolution of estimated mass anomalies, only glaciers larger than 

8000 km2 (corresponding to 10 grid pixels in 27km spatial resolution) were 

considered. 
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국문요약 

 지난 수 십 년 간, 남극의 얼음 질량 변화에 대한 우리의 지식은 

인공위성 관측과 지구 물리 모델링 기술의 발전에 의해 비약적으로 향상되어 

왔다. 인공위성 관측은 진행중인 남극 얼음 질량 손실과 가속화를 설명할 수 

있는 메커니즘들을 지속적으로 제안하고 있으며, 이들을 고려한 모델링은 

미래에 진행될 남극 빙하 손실을 정량적으로 산출하고 있다. 현재의 관측과 

모델링 모두는 남극의 얼음 배출이 향후에 점차 가속화 될 것이라고 예측하고 

있다. 이러한 증가율이 지속된다면, 남극은 가까운 미래에 해수면 상승을 

유발시키는 첫번째 기여자가 될 것이다. 남극에서 배출될 빙하의 질량을 

정확하게 예측하기 위해서는 진행중인 얼음 질량 손실에 대한 지속적인 

관찰과 함께, 그것의 원인 기작을 규명하는 일이 요구된다.  

남극의 얼음 질량 변화는 각 빙하마다 비균질하게 발생하고 있으며, 

개별 빙하의 동력학은 대기와 해양 순환, 그리고 고체 지구의 변동성 등 

다양한 지구 시스템 구성 요소들의 영향을 받고 있다. 각 요소들이 얼음 질량 

변화에 미치는 물리적 기작을 보다 정확히 이해하고, 미래 질량 변화 예측의 

불확실성을 해소하기 위해서는 이들을 총 망라하는 다학제간 연구가 

필요하다. 이러한 흐름의 일환으로, 본 학위 논문에서는 기후 모델들과 원격 

탐사 데이터를 활용하여 남극의 얼음 질량 변화를 분석한 세 개의 연구들이 

수행되었다.  

첫번째 연구는 얼음 질량 변화와 강설량의 관계를 조사한 것으로, 지구 

시스템 내의 기권과 빙권 간의 상호작용에 대해 다루고 있다. 조사 결과, 최근 

수 십 년 간 발생한 남극의 강설은 얼음 질량 변화의 경년 변동성의 대부분을 

설명하고 있었으며, 동 시기 진행된 남극 얼음 질량 손실의 가속화의 약 

30%가 강설량 변화의 기여임을 발견하였다. 또한 추가적인 통계분석을 통해, 

이러한 강설량 변화가 남반구 극진동 (Southern Annular Mode, SAM) 
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이라고 불리우는 남반구 고위도의 주기적 기후변화와 밀접한 관련이 있음도 

발견하였다.  

두 번째 연구에서는 남극 얼음 질량 변화 관측의 해상도를 높이고자 

하였다. 이는 빙하 동력학 모델들의 초기 조건을 단일 빙하와 같은 작은 

규모에서 효과적으로 제약하기 위한 목적이다. 해상도 증가를 위해, 

인공위성 중력계와 고도계 관측 데이터를 융합하는 새로운 선형 역산법을 

개발하였다. 역산법의 적용 결과, 남극 대륙 전체의 얼음 질량 변화 (2003-

2016) 를 약 27km의 높은 공간 해상도와 함께 한 달의 짧은 샘플링 간격으로 

확인할 수 있는 데이터를 산출하였다. 이 연구에서 만든 데이터는 인공위성 

중력계나 고도계를 독립적으로 활용하는 것에 비해 더 높은 정확도를 가질 

것이라 추측된다. 예를 들어, 새로운 데이터를 활용하여 계산한 남극의 빙하 

별 질량 변화는 각 센서를 따로 활용하는 것에 비해, Input-Output 

방법이라는 독립적인 관측 결과와 더 높은 유사성을 보이고 있다.  

세 번째 연구에서는 남극 빙하 하부의 고체 지구가 유발하는 후빙기 반동 

(Glacial Isostatic Adjustment, GIA) 효과를 추정하고자 하였다. 이는 

현재의 기술로 관측이 불가능한 GIA 효과가 얼음 질량 관측에 미치는 

불확실성를 경감시키기 위한 목적으로 수행되었다. GIA효과를 분리시키기 

위해, 앞서 수행한 고해상도 질량 추산 데이터와 다수의 기후모델을 서로 

비교하였다. 그 결과, 서남극 로스 빙붕 근처에 위치한 캠 빙류 (Kamb Ice 

Stream) 하부의 GIA 효과가 효과적으로 분리될 수 있었다. 계산 값을 선행 

연구에서 개발된 후빙기 반동 모델들과 비교한 결과, 대부분의 모델들이 캠 

빙류의 후빙기 반동을 과대추정하고 있음도 발견하였다. 현존하는 다수의 

GIA 모델들에서 캠 빙류 하부의 후빙기 반동 효과가 남극에서 가장 높게 

모의되고 있다는 사실을 감안할 때, 이 발견은 모델들의 불확실성을 

재고한다는 점에서 남극 얼음 질량 변화에 대한 기존 관측 결과에 시사하는 

바가 크다.  
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세 연구의 결과를 종합한 남극 빙하 배출량 추정과 그에 따른 해수면 

상승 예측이 논문의 마지막 장에 제시되어 있다. 이 결과는 대기와 고체 

지구의 변동성을 고려함과 동시에, 개별 빙하의 해수면 상승 기여도를 

예측하였다는 점에서 이전의 연구들과 차별된다.   
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