

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Validity Tracking Based Log Management for

In-Memory Databases

유효성 추적을 통한 인 메모리 데이터 베이스 로그 관리

August 2021

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Kwangjin Lee

Abstract

With in-memory databases (IMDBs), where all data sets reside in main memory

for fast processing speed, logging and checkpointing are essential for achieving

persistence in data. Logging of IMDBs has evolved to reduce run-time overhead

to suit the systems, but this causes an increase in recovery time. Checkpointing

technique compensates for these problems with logging, but existing schemes

often incur high costs due to reduced system throughput, increased latency, and

increased memory usage.

In this paper, we propose a checkpointing scheme using validity tracking-

based compaction (VTC), the technique that tracks the validity of logs in a

file and removes unnecessary logs. The proposed scheme shows extremely low

memory usage compared to existing checkpointing schemes, which use consis-

tent snapshots. Our experiments demonstrate that checkpoints using consistent

snapshot increase memory footprint by up to two times in update-intensive

workloads. In contrast, our proposed VTC only requires 2% additional memory

for checkpointing. That means the system can use most of its memory to store

data and process transactions.

Keywords: In-Memory Database, Persistence, Logging, Checkpointing,

Snapshot

Student Number: 2019-23670

1

Contents

Abstract 1

1 Introduction 7

2 BACKGROUND AND MOTIVATION 12

2.1 Persistence in In-Memory Databases 12

2.2 Fork-Based Checkpointing . 14

3 Design and Implementation 16

3.1 Design Overview . 16

3.2 Distributed Logging and Log Data Format 18

3.3 Log File Compaction . 19

3.4 Lazy Invalidation . 24

3.5 Recovery . 25

3.6 Correctness . 27

3.7 Implementation . 28

4 Evaluation 30

4.1 Experimental Setup . 30

4.2 Performance . 32

2

4.2.1 Throughput . 32

4.2.2 Memory Footprint . 33

4.2.3 Checkpointing Time . 35

4.2.4 File Size . 36

4.2.5 Restoring Time . 37

5 Related Work 39

6 Conclusion 42

초록 48

3

List of Figures

1.1 Redis memory footprint and throughput during checkpointing

for the Yahoo! Cloud Serving Benchmark (YCSB) (50% update). 8

3.1 Overall procedure. 17

3.2 The log format. 18

3.3 Log file compaction. 20

3.4 Example of logging for insert and update. 21

3.5 The recovery order. 25

4.1 Throughput for varying record count

(50% update proportion) . 32

4.2 Throughput for varying update proportion

(10M records) . 32

4.3 Memory footprint comparison with existing schemes

(50% update proportion) . 34

4.4 Increased memory footprint

(8M records) . 34

4.5 Checkpointing time . 35

4.6 File size . 37

4

4.7 Restoring time . 38

5

List of Tables

4.1 Parameters of YCSB workloads 31

6

Chapter 1

Introduction

In-memory databases (IMDBs) are designed to achieve fast response time by

processing data using the main memory, without accessing the disk. For this rea-

son, IMDBs are widely adopted for various applications [1], such as e-commerce

online transaction processing (OLTP) services, online games [2], finance [3],

and more. The entire data residing in memory guarantees fast processing, but

there is a risk of data loss due to system crashes, hardware failures, and power

outages. To improve fault tolerance in long-running applications, IMDBs pro-

vide persistence through a variety of strategies. Checkpointing and logging are

widely used techniques for the durability of IMDBs. Disk-based databases pre-

fer ARIES-style [4] logging and checkpointing protocols, while most IMDBs

record only redo logs excluding undo logs to reduce logging overhead and help

performance. In addition, IMDBs need to checkpoint much more data than

disk-based databases, so it is common to use an algorithm suitable for this,

such as consistent snapshots [5], [6].

Many systems provide persistence by combining logging and checkpointing.

7

-40

-20

0

20

40

60

80

0 5 10 15 20 25 30 35 40 45 50 55 60

In
c

re
a

s
e

d
 r

a
te

 (
%

)

Time (s)

Memory footprint Throughput

Figure 1.1 Redis memory footprint and throughput during checkpointing for
the Yahoo! Cloud Serving Benchmark (YCSB) (50% update).

Systems that guarantee data durability only with periodic checkpointing can

reduce run-time overhead, but the trade-off is that the system can lose a large

amount of data due to system failure. Systems that use logging can lower the

risk of data loss. Although logging increases the recovery interval and requires

more storage space due to logs that accumulate over time, these problems can

be alleviated by using checkpointing together. The combination of logging and

checkpointing reduces recovery time by loading the latest checkpoint file and

rerunning only subsequent logs. Furthermore, it allows for the space used by

the logs to be reused.

Checkpointing plays an important role in effectively providing persistence

for IMDBs, but it incurs significant costs for system throughput, latency, and

peak memory usage. Figure. 1.1 shows the memory footprint and throughput

of Redis, one of the most popular commercial IMDBs, during checkpointing.

When using Redis, the memory footprint continues to grow over time until

checkpointing is complete. As a result, memory usage at the end of checkpoint-

ing has increased up to 67%. Moreover, throughput decreases by 38% at the

beginning of checkpointing due to frequent copy-on-write (CoW) operations.

8

Redis performs checkpointing by periodically taking consistent snapshots and

storing them to stable storage. Data in a consistent snapshot should not be

overwritten during checkpointing, so changes made to a database during client

update requests are handled by CoW semantics. Since physical pages copied by

CoW are not reclaimed until the checkpoint is completed, the memory footprint

may increase up to two times during an update-intensive workload.

In a broad sense, a checkpoint is a technique that aims to keep the persis-

tent state of a database up to date with the goal of reducing recovery time and

reusing log space. Redis [7] and Hyper [8] simply take a consistent snapshot

and store the contents of the snapshot through the fork() system call [9] and

CoW semantics supported by the OS. However, this method has problems such

as latency spikes [10] and increased memory usage. DMC [11] allows pages to

be returned to the OS sooner before checkpointing is complete. This lowers the

peak memory usage during checkpointing, but does not completely solve the

increase in memory according to the update rate. Hekaton [12] and CALC [13]

attempt to reduce the checkpointing overhead by using a partial checkpoint

algorithm. This algorithm reduces cost by taking partial checkpoints that con-

tain only some of the latest records. However, the process of merging partial

checkpoints to create a complete checkpoint incurs another overhead.

In this paper, we propose a validity tracking-based log management scheme

to provide improved durability and efficient checkpointing by minimizing the use

of additional memory. By distributing and storing logs across multiple storage

devices, we can hide the latency caused by the log buffer flush so that logging

does not affect the throughput of the system. It also improves durability by

reducing the flush cycle of the log buffer. Instead of generating checkpoints

from the data on the main memory, our validity tracking-based compaction

(VTC) scheme creates checkpoints by identifying valid logs in log files. VTC

9

uses only a small amount of extra memory because it does not require physical

page duplication or multiple versioning in main memory.

We provide the proposed scheme as a simple user-level API. To test this

system, we applied our scheme to Redis 5.0.6 and evaluate it with the Yahoo!

Cloud Serving Benchmark (YCSB) [14] to compare its performance against the

persistence schemes of Redis. The experimental results show that VTC con-

sumes little memory to perform checkpoints and does not adversely affect sys-

tem throughput and checkpoint time. With update-intensive workloads, VTC

uses less than 2% of the size of the data set, while the memory footprint of the

checkpointing scheme using consistent snapshots increases memory usage by up

to 200%. This means that VTC permits most of an IMDB’s primary resource,

system memory, to be used for data storage.

Our contributions can be summarized as follows.

• We analyze the persistence scheme for an existing in-memory database.

• We propose a persistence scheme that distributes and stores logs on mul-

tiple storage devices and removes unnecessary logs in the file by tracking

log validity.

• We provide high-level APIs that can be easily applied to the existing

IMDB with little modification.

• The experimental results show that our scheme offers slightly better through-

put than the existing Redis logging scheme and maintains a more stable

memory footprint than the existing Redis checkpointing scheme.

The rest of the paper is organized as follows. Section 2 describes the back-

ground and motivation. Section 3 introduces the design and implementation of

10

our proposed scheme. Section 4 evaluates VTC and other persistence schemes.

Section 5 discusses the related works. Finally, Section 6 concludes this paper.

11

Chapter 2

BACKGROUND AND MOTIVATION

2.1 Persistence in In-Memory Databases

Because all of the data for IMDBs is in DRAM, which is a volatile memory, it

is crucial to guarantee data durability with a fault-tolerance mechanism that

will help prevent data loss in case of system failure [15]. IMDBs prefer data

replication for fast failover and generally maintain replicas across multiple nodes

to achieve high availability [12], [16], [17], [18]. However, catastrophic failures

such as cluster-wide power outages can cause data loss if the data are not in

stable storage. To avoid this issue, data must be kept in stable storage to ensure

durability. The traditional techniques used for database durability are logging

and checkpointing.

Most disk-based databases guarantee transaction durability with ARIES-

style [4] logging. The ARIES protocol uses a write-ahead logging (WAL) scheme

that sequentially records changes before modified pages are written to disk, and

log records include redo and undo. Early IMDBs used similar techniques [19], [20].

12

However, logging to IMDBs is gradually optimized for high throughput and

low latency, and the traditional logging scheme, which is relatively expensive

compared to light transaction processing without disk access, is simplified for

in-memory systems. In general, IMDBs reduce log volume by recording only

the redo log and minimizing the log record’s information to mitigate the effects

from log creation and log I/O overhead. However, replaying the log for recovery

increases the recovery time. Additionally, WAL can recycle log space after ap-

plying all logs to the data file, whereas logging in IMDBs consumes more space

over time. Therefore, periodic checkpointing is required to reduce the recovery

time and recycle log space.

Checkpointing is also different in IMDBs. Because the entire data sets for

IMDBs are kept in the main memory, it is common for their checkpoints to

be larger than those of disk-based databases. Many IMDBs use a checkpoint-

ing algorithm that takes a consistent snapshot and stores it in stable storage.

The wide application of consistent snapshots has led to extensive research in

academia, and various algorithms [2], [21], [22] have been proposed. In fact, the

commercial systems Redis and Hyper use the fork() system call as a consistent

snapshot algorithm.

Redis, the most popular key-value IMDB [23], provides persistence via Redis

data backup (RDB) and an append-only file (AOF). RDB is a feature that backs

up the entire database in memory. It obtains a consistent snapshot using fork()

and stores the contents of the snapshot in stable storage in the background

through the child process created by fork(). AOF, a logging feature supported

by Redis, appends a log of events that have changed the database to the log file.

When a log file exceeds a specific size, the system acquires a snapshot, converts

its contents to log format, and saves them as a file. As a result, it creates a new

log file consisting of only the logs needed for recovery. This process mitigates

13

the increase in log space and recovery time.

2.2 Fork-Based Checkpointing

Fork-based checkpointing is a simple but efficient scheme that creates point-in-

time consistent snapshots and store them in stable storage with OS supports.

It has been demonstrated that the fork-based consistent snapshot algorithm

outperforms other algorithms [2], [21], [22] for update intensive workloads [6]. In

fact, many industrial IMDBs like Hyper [8] and Redis [7] employ the algorithm

for checkpointing.

The fork() system call is used to create a child process by duplicating a

process. Physical pages are not actually copied by fork(), and both processes

refer to the same physical pages through virtual memory pages. If a page shared

by both processes needs to be updated, the CoW technique copies the physical

page to a new memory space and modifies it. Thanks to this CoW technique,

point-in-time data on the child process (checkpointer) is not affected even as

the parent process (worker) handles the client’s update request. After fork(),

the checkpointer traverses the snapshot and saves point-to-time data to a file.

However, there are well-known problems with fork-based checkpointing. The

first problem is the latency spike due to the blocking operation, fork(), which

occurs because IMDBs cannot process or respond to client requests while creat-

ing a process by fork(). Moreover, latency due to fork() increases as the size

of the data set increases. The second problem is increased latency due to CoW.

During the checkpointing period, the overhead due to CoW for processing up-

date requests increases latency and affects throughput. If the update rate of the

workload is high, CoW will frequently have a greater impact on the throughput.

Finally, the increase in memory footprint by CoW is the most crucial problem.

14

The parent process handles client requests while the child process created by

fork() writes the snapshot data to the file. If the request is an update, the

physical page is copied by the CoW, which causes an increase in the memory

footprint. Moreover, the memory footprint increases proportionally to the up-

date rate of the workload. In the worst case of all pages being updated, the

required memory size is twice that of the data set. Furthermore, the increased

memory cannot be reclaimed until the child process is terminated. If there is no

more available memory, either the transaction processing and checkpoint speed

will be significantly slowed during the swap, or the out-of-memory killer will

kill the processes. For this reason, many IMDB vendors [24] recommend that

users take into consideration the memory increase due to fork() and set the

swap to prevent out-of-memory problems.

We focused on a persistence scheme that combines logging and checkpoint-

ing, along with a checkpointing algorithm to minimize the memory use increase

and provide stable throughput.

15

Chapter 3

Design and Implementation

3.1 Design Overview

Our key idea is to distribute the logs into multiple files and reorganize them by

identifying valid logs in the files. Figure. 3.1 shows the overall procedure of the

proposed scheme. The worker creates logs of events that change the database

and writes them to the log buffers. The flushers then flush the log buffer to

the stable storage in the background. We hid the latency caused by flush by

dividing the log into several SSDs and improved durability by reducing the flush

interval.

The VTC scheme performs checkpointing based on logs stored in storage

rather than on data in the main memory. VTC leaves only the logs needed

for recovery through file-to-file copying, so to achieve this, we maintained an

up-to-date log location for each database entry. An invalid bitmap is allo-

cated per log file, and each bit indicates the validity of each log in the file. The

invalid bitmapmakes it simple to examine the validity of the log during check-

16

(a) Logging with multiple SSDs

(b) Recovery with multiple buffers

Figure 3.1 Overall procedure.

pointing. When the number of invalid logs in each log file reaches the threshold,

chekcpointing is triggered. Only one file can be checkpointed at a time, and logs

are not stored in the file until checkpointing is complete. The separation of I/O

between logging and checkpointing reduces checkpointing time and avoids log

flush delays due to latency spikes caused by checkpointing.

Recovery works by sequentially replaying logs read from log files. To max-

imize the I/O bandwidth during recovery, several loaders simultaneously read

logs from files and fill the buffers. Since the logs in each log block are guaranteed

to be serialized, the recoverer compares the timestamps of the log blocks and

processes them in order, starting with the log block having the smallest value.

17

Figure 3.2 The log format.

We will explain each scheme in more detail in the following sections.

3.2 Distributed Logging and Log Data Format

For strong durability, logs should be immediately stored in stable storage. Un-

fortunately, synchronous durability leads to performance degradation. There-

fore, many systems adopt asynchronous durability that buffers logs and flushes

them to stable storage periodically. If the interval is too long, a large amount of

data may be lost in case of system failure. If the interval is too short, the system

throughput may be degraded due to write stalls. Write stalls occur when the

storage device operation for the previous buffer flush is not completed when

attempting to flush the buffer.

We use multiple storage devices to store logs in order to overcome the lim-

itation on durability due to the storage device’s performance. In addition, the

use of multiple storage devices makes it possible to separate storage I/O for

logging and checkpointing. This strategy ensures a stable log buffer flush cycle

and system throughput by avoiding the effect of latency spikes on logging that

can occur due to large data storage during checkpointing.

Figure. 3.1(a) shows the processing and logging for client requests. When

a request such as insert or update is received from a client (1○), the worker

18

reflects the processing result to the corresponding entry in the database and

also stores the location information where the log will be stored in a variable

called log pos (2○). The variable exists for each entry in the database and

is used for checkpointing. If the entry already exists, the worker updates the

invalid bitmap to invalidate its old log (3○). After that, the worker creates

a log and writes it to the active log buffer (4○). When the log buffer is filled

to more than the minimal number of logs, the worker requests that the log

buffer be flushed and then activates the next log buffer. Finally, durability is

guaranteed when the buffer is flushed to stable storage by the flusher (5○). For

recovery, it is necessary to identify the order of logs distributed across multiple

SSDs, but because the logs stored in each buffer are serialized, we only need

to clarify the order between log blocks, which is a unit flushed from buffer to

storage. To do this, we add a 4-byte timestamp to the header of the log block.

Figure. 3.2 shows the format of the log. The log file is composed of log

blocks, and a compaction signature and compaction timestamp to indicate re-

cent compaction histories are placed at the beginning of the file. The log block

is a collection of logs that are flushed at a time. 1-byte BOB (Beginning of

Block) and 1-byte EOB (End of Block) indicate the log block’s start and end.

Between them are 4 bytes of timestamp and logs that include type, length, key,

and value. The log type indicates the command or data type, and the length

information is used to parse the log or determine the size to be copied during

compaction.

3.3 Log File Compaction

We propose the VTC, a checkpointing scheme to reduce recovery time and

recycle log space. Figure. 3.3 presents the key idea of VTC. The VTC identifies

19

Figure 3.3 Log file compaction.

the log needed for recovery by referring to invalid bitamp (1○). It then checks

the length of the log (2○) and copies it to a new file if it is valid (3○).

To manage the validity of logs in files, it is necessary to know the location

of the latest log for each entry in the database. For this reason, the variable

log pos was defined to indicate the location of the log within the structure

of the existing database entries. Logs in the file are accessed sequentially from

the first log when restoring data or checkpointing. Because there is no need to

search for a specific log, log pos represents the order of logs in the file rather

than a byte address. The upper few bits of log pos are used to indicate which

file the log is stored in. The invalid bitmap allows the VTC to immediately

recognize whether the logs are valid. One invalid bitmap exists for each log

file, and its bits indicate the validity of each log in the file. If the bit is 1, it

means that the log is no longer needed for recovery.

Figure. 3.4 shows how the worker processes inserts and updates from clients.

First, when a client requests an insert for a new key, the worker creates an entry

with the key and value and adds it to the database. In addition, the location

where the log will be stored is recorded in the variable log pos in the entry

(1○). Then, the worker creates a log for insert and appends it the active log file

(2○). Later, when an update request for the same key is received, the worker

20

Figure 3.4 Example of logging for insert and update.

updates the value and log pos in entry (3○). Because the previous insert log

for the key is no longer needed for recovery, the worker sets the bit in the

invalid bitmap corresponding to the old value of log pos (4○). Finally, a log

for the update request is created and stored in the active log file (5○). The

insert log and update log for the same entry may be saved in different files. The

procedure for delete requests is similar. The worker deletes the entry and sets

the invalid bitmap in the same way as for update. Subsequently, the worker

appends the delete log to the active log file for recovery.

The gradually accumulated logs not only require more disk space but also

take more time to recover. VTC prevents this problem by removing unnecessary

logs from log files. Algorithm 1 and Algorithm 2 describe the VTC procedure,

which requires four steps: preparing, copying, remapping, and completing. In

the preparing step, VTC creates a new file, temp.log, to copy the valid log and

writes the current timestamp as the compaction timestamp. In addition, VTC

allocates memory for delta, a temporary array for calculating the locations of

21

Algorithm 1 Overview of the VTC procedure (step 1–2)

1: cp time = get curr time() ▷ step 1
2: min cp time = get min cp time()
3: dst fp = create file(temp.log)
4: write cp header(dst fp, cp time)
5: delta = allocate(log count)
6: for each log blocks stored in file do ▷ step 2
7: blk ts = get timestamp(block)
8: for each logs stored in logblock do
9: type = get type(log)

10: len = get len(log)
11: if type = delete then
12: if blk ts > min cp time then
13: copy log(dst fp, log, len)
14: else
15: removal = removal + 1

16: else
17: if is valid(bitmap, i) then
18: copy log(dst fp, log, len)
19: else
20: removal = removal + 1

21: delta[log num] = removal
22: i = i + 1

23: flush(dst fp)
24: clear invalid bitmap(bitmap)

logs moved by copying (Algorithm 1, step 1, lines 1—5). The size of the array is

determined by the number of logs in the file. Then, in the second step, copying,

VTC sequentially reads logs from the target log file and copies only valid logs

to temp.log file. VTC identifies the validity of each log by referring to the

invalid bitmap and copies the logs by referring to the log length in the header,

without complicated parsing (Algorithm 1, step 2, lines 6—20). This step also

fills the delta array to be referred to in the next step, remapping (Algorithm 1,

step 2, line 21). Each element of the delta array corresponds to the logs in the

file at the start of compaction. The values of the elements indicating the number

of previously removed logs are referred to update the location of logs moved by

compaction. After copying all valid logs, the VTC completes the second step

22

Algorithm 2 Overview of the VTC procedure (step 3–4)

1: for each entries stored in DB do ▷ step 3
2: old pos = entry→log pos
3: if is on compaction(old pos) then
4: entry→log pos = old pos - delta[old pos]

5: if entry→lazy = 1 then
6: set invalid bitmap(bitmap, entry→log pos)
7: entry→lazy = 2

8: release(delta) ▷ step 4
9: rename file(dst fp)

10: delete file(src fp)

by clearing all bits of the invalid bitmap for reuse (Algorithm 1, step 2, line

24). The next step is remapping to update the log location of each entry in the

database (Algorithm 2, step 3, lines 1-–4). VTC traverses all the entries in the

database and adjusts the value of log pos, which has the location of the latest

log. VTC determines how much to change the log pos value of each entry by

referring to the delta array filled in step 2. For example, if log pos is n, VTC

gets the value of delta[n] and then decreases log pos by the value of delta[n].

After updating the log location of entry, if the entry is lazily invalidated, the

VTC reflects it in the invalid bitmap (Algorithm 2, step 3, lines 5—7). Lazy

invalidation will be discussed in more detail in the next section. When the above

steps are completed, the VTC completes compaction by releasing the temporary

array, deleting old log file, and renaming the new log file (Algorithm 2, step 4,

lines 8—10).

The VTC’s handling of delete logs is different from write logs. Because

the delete log is not invalidated by other logs, VTC does not refer to the

invalid bitmap when removing the delete log. Instead, the delete log can be

removed when all other logs for the same entry are removed through check-

pointing. The VTC determines whether to remove the delete log by comparing

the delete log’s timestamp with the compaction timestamp of each file. If the

23

timestamp value of the delete log is smaller than the compaction timestamps,

the VTC removes it. Otherwise, the VTC should keep the delete log in the

log file to ensure correct recovery (Algorithm 2, step 2, lines 11–15). We will

explain the removal of the delete log in more detail in section 3.6.

3.4 Lazy Invalidation

Even if the worker does not append logs to the log file where compaction is in

progress, the logs in the target file may be invalidated by an update or deletion.

This may cause problems in log management. For example, if the worker updates

an invalid bitmap to invalidate a log that has already been copied during the

copying step, the information is lost due to the invalid bitmap initialization

at the end of the step. As a result, the log is not removed even by subsequent

compaction. This inconsistency continues until the invalid bitmap is rebuilt

by replaying the logs on recovery.

We solve this problem by applying a lazy invalidation strategy. If the log in

the file where compaction is in progress needs to be invalidated by an update

or delete request, we delay it until compaction is complete. Before updating the

entry, the worker checks to see if the old log of the entry belongs to a file that

is undergoing compaction. If it is true, the worker sets the entry’s lazy variable

to 1 and does not change the invalid bitmap. Instead, the VTC creates a

new entry and adds it to the database. Lazy invalidation immediately releases

the memory for the entry’s key and value, thereby mitigating the increase in

memory usage caused by entries that are delayed for deletion.

Lazily invalidated entries are dealt with in the VTC’s remapping step.

In the remapping step, when after the log pos of the lazily invalidated en-

try is adjusted, the compactor notes the new location of the log with the

24

Figure 3.5 The recovery order.

invalid bitmap, and the log is removed in the next compaction. The com-

pactor completes the processing of lazy invalidation entries by setting the lazy

variable of those entries to 2, indicating that they should be deleted by the

worker later. If the compactor were to delete those entries, there could be a

conflict with the worker’s add entry or delete entry, which is why we give the

worker the role of deleting those entries.

3.5 Recovery

As shown in Figure. 3.1(b), the recoverer restores data by sequentially executing

logs. In the VTC, we allocate loader and buffer per storage to maximize I/O

bandwidth.

The loaders read log blocks from their respective files and fill the designated

buffers (1○). The recoverer selects log blocks in timestamp order and recovers

data by replaying the logs in the log blocks (2○). As the recoverer inserts the key

and value into the database, it also stores the location of the log read for com-

paction (3○). If overwrite or delete occurs during recovery, the recoverer records

25

the event in the invalid bitmap (4○). For example, as shown in Figure. 3.5,

the recoverer compares the timestamp of each buffer’s first log block and se-

lects the log block with TS(4) as the first recovery block. After completing the

recovery of log block with TS(4), the recoverer determines the next log block

to recover by comparing the timestamp of log block with TS(7) with others. In

general, the use of timestamps causes an increase in recovery time. However,

our recovery scheme uses a timestamp to determine the recovery order of log

blocks. Since timestamp comparison is unnecessary while logs in a log block are

sequentially executed, overhead due to timestamp use is insignificant.

When the recoverer encounters the write log, it checks whether an entry

containing the same key exists in the database, and replays the log by select-

ing between insert and update. Therefore, a lookup is required for every log

execution. To reduce the overhead caused by lookup, we divide the log into

two groups based on whether a lookup is needed. The smallest value among

compaction timestamps in each log file is the criterion for separating the two

groups. The front group logs are guaranteed to have no duplicate keys, so keys

and values are inserted immediately, without lookup.

Furthermore, we apply optimizations for the recovery of an sorted sets [25].

They spend a lot of time on recovery because they need to be sorted in ascending

order. To optimize this, an additional log buffer is allocated, and the recoverer

collects the logs that need to be sorted in the log buffer and batches them. This

method helps reduce the recovery time by increasing the cache hit rate during

sorting.

26

3.6 Correctness

Having explained how the VTC performs checkpointing by reconstructing log

files using only the latest log for each entry, we will now provide proof of how

the VTC guarantees correctness in all scenarios. The VTC maintains logs by

entry, which is the smallest unit that the system can modify. This ensures that

the system can restore data by replaying only the latest log of all entries. For

instance, consider an entry A that is initially inserted with the value of a1, then

updated to a2, and finally updated with the value of a3. These three write logs

are stored across multiple log files. In this state, if a recovery proceeds due to

system failure, the system executes three consecutive writes by referring to the

timestamp of the log block. However, as a result, the final state of entry A is

determined by the a3 update log, and the other two logs do not affect it. The

VTC performs checkpointing individually for each file, and thus one or both

of the a1 and a2 logs can be removed. Nevertheless, entry A can be restored

correctly using the a3 update log remaining in the log file.

Next, we look at the process of the VTC removing the delete log. As we

discussed, to properly remove the delete log, the VTC needs to confirm that

all other logs of the deleted entry have been removed by checkpointing. If the

VTC deletes the delete log without going through this process, at the time of

recovery, entry A may be erroneously revived by a write log that may have

remained in another log file. For example, consider the process in which VTC

removes its logs after entry A is deleted. To remove the delete log of entry A, the

VTC must first confirm that logs for three writes do not exist in other log files,

which necessitates tracing all of the logs for each entry, incurring significant

overhead. To avoid this, we use a compaction timestamp that represents the

last checkpointing time for each file.

27

The VTC compares the delete log’s timestamp with all compaction times-

tamps to determine removing the delete log of entry A. The timestamp of the

delete log can be found by referring to the timestamp of the log block to which

it belongs. If the delete log timestamp is less than the compaction timestamp

from all of the log files, the VTC can safely remove the delete log because it is

guaranteed that all three writes of entry A have been removed. Thus, in this

case, no log for entry A remains, so no processing for entry A will occur dur-

ing recovery. Conversely, if the compaction timestamp of any file has a value

smaller than the delete log’s timestamp, correct recovery can be guaranteed by

maintaining the delete log for the corresponding entry. To do this, the VTC

retains the delete log by copying it to a new file. In this case, the write log for

entry A may be executed during recovery, but the delete log also remains, so

entry A can be deleted and restored to the correct state.

3.7 Implementation

We implemented the proposed scheme on Redis 5.6.0. In Redis, write operations

either create entries for new key-value pairs or update existing ones. Then write

operations generate logs and write them to the log buffer. For these operations,

we used the code path of Redis. To handle overwriting when the old log of an

entry is stored in a file in which compaction is in progress, we insert codes for

lazy invalidation, which sets a lazy variable and inserts a new entry instead of

updating the entry. In addition, the entries contain the log pos variable, which

is 8 bytes in size, to keep track of their latest log. The upper 2 bits of the variable

are reserved for the lazy invalidation of the entry. For the read operation we

follow the Redis code path and add only the code to handle lazily invalidated

entries. We also add functions for new algorithms and change the call path in

28

order to replace the existing Redis algorithms such as logging, checkpointing,

and recovery.

We allocate as many threads as the number of files (storage devices) to

flush the log buffer. These threads are responsible for reading log blocks from

a file during recovery; we also add one thread for checkpointing. We only allow

workers to add or remove entries in the database. This restriction prevents per-

formance degradation due to contention between the worker and the compactor.

Additionally, we use atomic operations to ensure atomicity for some variables

that are shared between threads. We count the number of logs and the number

of invalidation processes for each file for checkpointing with an appropriate fre-

quency, and checkpointing is triggered when the number of invalidated logs and

their ratio to total logs reach the thresholds. The user can determine thresholds

in consideration of checkpointing frequency and execution time.

29

Chapter 4

Evaluation

4.1 Experimental Setup

In this section, we describe the experiments conducted to measure the per-

formance of the proposed scheme under various conditions. We conducted all

experiments using two machines as a client and server, each of which is equipped

with an Intel Xeon W-2245 CPU running at 3.9 GHz; the CPU had 8 physical

cores and 16 logical cores with hyper-threading and 32 GB of DRAM memory.

The machines were connected through a 10 Gbps network. We used Samsung

860 PRO [26] SATA SSDs to store logs and checkpoints. Our scheme distributes

logs to three SSDs, and Redis-AOF, which uses the existing logging scheme,

stores logs in a single SSD or a RAID-0 array with three SSDs. One additional

SSD was used as a swap device to prevent the process from being killed by an

out-of-memory killer. The machines ran Ubuntu 18.04.4 LTS distribution with

the Linux kernel 4.15.0.

To demonstrate the efficiency of our scheme, we applied the VTC to Redis-

30

Table 4.1 Parameters of YCSB workloads

Parameters Setting

Record Count 2M, 4M, 6M, 8M, 10M, 12M

Update proportion 10%, 30%, 50%, 70%, 90%

Record Size default

Distribution zipfian

Number of threads 128

5.0.6 and compared the VTC performance to the following Redis protocols:

Redis-RDB: No logging, and all of the data were periodically backed up

to a file through checkpointing.

Redis-AOF: This records the log of all events that change the database

and manages the size of the log file through periodic checkpointing.

Redis-AOF with RAID-0 Setup: This has the same configuration as

Redis-AOF except that it uses a RAID-0 array across the three SSDs handled

through a software RAID driver in Linux.

To evaluate the performance of each scheme, we used Yahoo! Cloud Serv-

ing Benchmark (YCSB) [14] as the target workload. Table 4.1 summarizes the

parameters of YCSB used for throughput evaluation. In order to evaluate the

performance of each scheme with various configurations, we changed the num-

ber of records and the update proportions as shown in the table. After loading

YCSB data into Redis, we measured the performance while the YCSB work-

load was running. For fair comparison we forced checkpointing at the same

time. If the checkpointing time increased rapidly due to swap, we measured the

performance for up to 600 seconds.

We disable the RDB compression option for a fair comparison because our

prototype does not currently support data compression.

31

0

50

100

150

200

250

300

2M 4M 6M 8M 10M 12M

T
h

ro
u

g
h

p
u

t
(K

tr
x

/s
)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(a) Normal Throughput

0

50

100

150

200

250

300

2M 4M 6M 8M 10M 12M

T
h

ro
u

g
h

p
u

t
(K

tr
x

/s
)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(b) Throughput during Checkpointing

Figure 4.1 Throughput for varying record count(50% update proportion)

0

50

100

150

200

250

300

10% 30% 50% 70% 90%

T
h

ro
u

g
h

p
u

t
(K

tr
x

/s
)

Update Proportion

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(a) Normal Throughput

0

50

100

150

200

250

300

10% 30% 50% 70% 90%

T
h

ro
u

g
h

p
u

t
(K

tr
x

/s
)

Update Proportion

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(b) Throughput during Checkpointing

Figure 4.2 Throughput for varying update proportion(10M records)

4.2 Performance

4.2.1 Throughput

Figure. 4.1 shows the throughput of each system for the YCSB workload with

various record counts. As shown in Figure. 4.1(a), Redis-VTC offers an average

of 8% higher throughput than Redis-AOF with logging and similar through-

put as Redis-RDB using only checkpoints. This means that Redis-VTC has

little overhead for logging processing. Also, as the throughput of AOF-RAID0

is similar to that of Redis-AOF, we can see that the performance of the storage

device does not affect the system throughput. Overall, for all of the schemes, the

32

throughput was not appreciably affected by the size of the data set. However,

throughput during checkpointing tends to be different for each system depend-

ing on the size of the data set. Figure. 4.1(b) shows the throughput of the YCSB

workload for a 50% update proportion while checkpointing was performed in the

background. When the system memory was sufficient (a record count of 8M or

less), each scheme exhibited a similar trend to normal throughput. Conversely,

when the size of the data set increased, there was a difference in results that

corresponded to the checkpointing scheme. In contrast to Redis-VTC, which

showed stable throughput regardless of data set size, other schemes had severely

degraded throughput when the size of the data set was larger than about 60% of

system memory. Specifically, systems that use fork-based snapshots for check-

pointing increase memory usage by CoW when processing an update request

from a client. If the record count is 10M and the update proportion is 50%, more

than 10 GB of memory is used by CoW during checkpointing. Eventually, swap

due to insufficient system memory causes throughput degradation. In contrast,

Redis-VTC performs checkpointing based on the validity of the logs and thus

requires only a small amount of additional memory.

Figure. 4.2(b) shows the throughput for varying update proportions with a

record count of 10M. As shown in Figure. 4.2(a), a high update proportion usu-

ally has a positive effect on performance. However, when the system memory

is marginal, a high update proportion causes frequent CoW during checkpoint-

ing, which can cause swap. This means that using fork-based snapshots requires

more extra system memory for update-intensive workloads.

4.2.2 Memory Footprint

Figure. 4.3(a) shows the memory footprint of the data set with varying record

counts. Redis-VTC had a 3.5% larger memory footprint than other schemes be-

33

0

5

10

15

20

25

30

2M 4M 6M 8M 10M 12M

M
e

m
o

ry
 f

o
o

tp
ri

n
t

(G
B

)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(a) Memory Footprint for Data Set

0

5

10

15

20

25

30

35

40

45

2M 4M 6M 8M 10M 12M

M
e

m
o

ry
 f

o
o

tp
ri

n
t

(G
B

)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

(b) Peak Memory Footprint (Gray bars de-
note swap memory)

Figure 4.3 Memory footprint comparison with existing schemes
(50% update proportion)

0

20

40

60

80

100

10% 30% 50% 70% 90%In
c
re

a
s

e
d

 m
e
m

o
ry

 f
o

o
tp

ri
n

t
(%

)

Update Proportion

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

Figure 4.4 Increased memory footprint(8M records)

cause variables for managing logs were added for each entry. However, during

checkpointing, Redis-VTC required less additional memory than other proto-

cols. As shown in Figure. 4.3(b), during checkpointing, the memory footprint of

Redis-RDB and Redis-AOF increased by 69.6% and 79.7%, respectively, while

the memory increase of Redis-VTC is less than 2%. Figure. 4.4 shows that

this gap can be wider as the update proportion is increased. This is because the

higher the update proportion, the more CoW that occurs during checkpointing,

which consumes more memory.

34

0

100

200

300

400

2M 4M 6M 8M 10M 12M

C
h

e
c
k
p

o
in

ti
n

g
 t

im
e
 (

s
)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

over

600

Figure 4.5 Checkpointing time

Redis-VTC creates a temporary array to update the location of the logs

during checkpointing, but this is insignificant compared to the size of the entire

data set because it only requires 8 bytes per entry. However, with Redis-RDB

and Redis-AOF, memory usage continuously increases from CoW during check-

pointing. Moreover, the increased memory cannot be reclaimed until the process

in charge of storing the snapshot is terminated.

4.2.3 Checkpointing Time

The VTC performs checkpointing independently for each log file, but in order

to have a fair comparison, we measured time by sequentially performing check-

pointing for all log files. Redis-RDB was also configured not to use incremental-

fsync option as Redis-VTC uses fsync() only once, after the last write when

saving checkpoints to a file for optimization. However, this option was enabled

in Redis-AOF because logging can be affected by latency spikes, and enabling

this option increases the checkpoint time by about 20% because fsync() is

called for every 32 MB write.

Figure. 4.5 shows the time taken for checkpointing with varying record

35

counts. In all schemes, under conditions of sufficient memory (record counts

of less than 6M), the processing time increased as the size of the data set rose.

We found that Redis-VTC required less than half the time of the other schemes

under this condition. Because Redis-VTC performs checkpointing through file-

to-file copy, it requires more I/O than other schemes to read the logs from

storage device. However, if the system memory is sufficient, Redis-VTC can

read logs to be copied from the buffer cache. Furthermore, a simple way to

determine which log to copy by bitmap reference reduces checkpointing time.

We can see that the processing time for all three schemes increases as mem-

ory becomes insufficient. In particular, for schemes other than Redis-VTC,

checkpointing time increases rapidly by swap. In this case, we only plotted up

to 600 seconds, but checkpointing would normally take ten or more minutes.

Redis-VTC also takes more time for checkpointing if the record count is 8M

or more, because some logs are read from disk due to insufficient memory used

as the buffer cache. However, Redis-VTC alleviates the increase in processing

time because it reads the contents of a file sequentially, without random access.

4.2.4 File Size

Redis allows insert or update requests with set data [25] that include several sub-

key and value pairs in the key. Because Redis-VTC has to manage the validity

of logs by entry, it records the set data as separate logs for each sub-key/value

pair. In this case, the file size increased because each separate log must include

the parent key’s information. For this reason, the YCSB workload, which uses

bundled requests for data set loading before performance measurement, is not

good for Redis-VTC in terms of file size.

Figure. 4.6 is the result of measuring the file size with a varying record count

for the three schemes. We measured the file size when the YCSB workload ran

36

0

4

8

12

16

20

2M 4M 6M 8M 10M 12M

F
il

e
 s

iz
e
 (

G
B

)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

Figure 4.6 File size

the workload at a 50% update rate for 60 seconds after loading the data. The

file sizes of Redis-VTC and Redis-AOF were measured before checkpointing.

The file size of all schemes increases in proportion to the record count. For the

reasons described above, the file size of Redis-VTC was, on average, 22% larger

than Redis-RDB and 6% larger than Redis-AOF. For all schemes other than

Redis-RDB, which does not use logging, the file size may be larger depending

on the checkpointing interval and running time.

4.2.5 Restoring Time

Figure. 4.7 shows the restoring time by record count. We measured the data

recovery time under the same conditions as measuring the file size. Redis-VTC

took longer by an average of 53% to restore as compared to Redis-RDB. As

described in the result of the file size, because the set data are logged separately,

Redis-VTC executes each log independently for recovery. Conversely, Redis-

RDB reduces the recovery time by handling the data set all at once. Moreover,

as a property of checkpointing using snapshot, all data with the same parent

key are stored together. This enables fast sorting with a high cache hit rate

37

0

20

40

60

80

100

120

140

2M 4M 6M 8M 10M 12M

R
e
s
to

ri
n

g
 t

im
e
 (

s
)

Total Record Count

Redis-RDB Redis-AOF Redis-AOF-RAID0 Redis-VTC

Figure 4.7 Restoring time

when recovering the sorted data set, which is one of the data types used by the

YCSB workload. According to the results, Redis-VTC had 10% faster recovery

time than Redis-AOF. However, if recovery was attempted after checkpointing,

Redis-AOF recovered as quickly as Redis-RDB. Although our scheme takes

more time to restore than other schemes with consistent snapshots, we believe

that reducing memory usage and maintaining stable throughput are preferable

for IMDBs. Moreover, data restoration may not occur frequently.

38

Chapter 5

Related Work

In this section, we epitomize the techniques required to provide persistence in

IMDBs. There have been several studies to provide logging suitable for IMDBs.

The fast processing speed of IMDBs makes the run-time overhead of traditional

logging relatively large. To avoid the throughput degradation caused by logging,

many IMDBs [8], [27] attempt lightweight logging based on logical logging.

Command logging [28] used by H-Store is a logical logging variant that records

a single log record including only a procedure ID and input parameters. While

redo-only logging such as command logging reduces run-time overhead, it takes

more time to recover because logs are replayed for recovery.

Adaptive logging [29] is a logging method that focuses on the balance be-

tween run-time and recovery performance. It extends command logging to dis-

tributed systems and allows all nodes to perform recovery in parallel. Moreover,

It reduces the recovery time by re-executing only transactions related to the

failed node through dependency analysis between transactions. Taurus [30] and

SiloR [31] also use distributed logging to solve the performance bottleneck prob-

39

lem caused by logging. Taurus performs logging in parallel using a log sequence

numbers vector to manage transaction dependency. Taurus performs logging

in parallel and manages the dependency of logs scattered in several files using

a log sequence numbers vector. SiloR allocates one thread for each storage to

write and flush logs in parallel. The system performs group commit in the epoch

using optimistic concurrency control.

Our logging system is in line with these approaches [29], [30], [31], in terms of

storing logs across multiple storage devices. However, in general, single-stream

logging records are logged in one storage device, but our scheme improves dura-

bility by distributing logs across multiple storage devices. Furthermore, our

scheme avoids logging and checkpointing I/O from affecting each other by sep-

arating them into different storage devices.

An efficient checkpointing method has been continuously proposed by sev-

eral studies. Systems for some applications are sufficient to guarantee durability

with only periodic checkpoints. However, most systems use a combination of

logging and checkpointing to minimize data loss due to system failure. The

checkpointing method employed by many IMDBs is to use consistent snap-

shots. It takes a consistent snapshot of the in-memory and stores its contents

in stable storage. Representative consistent snapshot algorithms include naive

snapshot [32], copy-on-update(COU) [2], [21], Zigzag [22], and PingPong [22].

Naive snapshot stops the system for a consistent snapshot. It is the simplest

algorithm, but it is not suitable for in-memory database systems that need to

process transactions even during checkpointing. COU is the most widely used

algorithm for non-blocking checkpointing, and a number of variants have been

studied. In contrast to the general COU algorithm using physical page shadow-

ing, SIREN [21] proposes a COU algorithm based on tuple units smaller than

pages. Small duplication granularity has the effect of reducing memory usage,

40

but the average latency may increase due to tuple-level locking. Algorithms us-

ing fork() are applied to many IMDBs [7], [8] because it can easily implement

COU with OS support, but there are problems with latency spike and memory

increase. DMC [11] uses a memory dump to overcome the increase in memory

usage, returning the page to the OS before the checkpoint is complete. How-

ever, at high update proportions, this scheme also requires a significant memory

footprint.

Incremental or partial checkpointing reduces cost by limiting the amount

of data processed at one time. Hekaton [12] creates a checkpoint file from the

transaction logs not covered by a previous checkpointing and manages updates

or deletions by recording them in delta files. The incremental checkpoints used

by Hekaton can lower the cost by creating a checkpoint file only for new trans-

actions. In contrast, a large number of files and a high ratio of deleted con-

tents in the checkpoint file degrades recovery performance. To alleviate this,

an additional process such as merging between checkpoints files is required.

CALC [13] supports partial checkpointing. It performs checkpointing, including

only records that have changed since the most recent checkpoint. It is effective

in workloads where updates are not frequent, whereas in the opposite case, it

may be inefficient in comparison to complete checkpointing due to overhead for

merging files.

These systems that checkpoint data in main memory require page copy-

ing or version control, which causes increased memory usage. However, our

scheme consumes less memory than the existing checkpointing scheme because

it performs checkpointing using the log in the file. This enables efficient use of

memory, the most important resource for IMDBs.

41

Chapter 6

Conclusion

This paper proposed an effective transaction log-based persistence scheme for

IMDBs. Our key idea is to distribute logs across multiple storage devices and

use log file compaction for checkpointing. The use of multiple storage devices

improves the durability of the log without sacrificing system throughput. The

log file compaction by managing log validity can keep the peak memory usage

lower than the scheme using consistent snapshots. We implemented and evalu-

ated our scheme in a famous IMDB, Redis, and the experimental results show

that our proposed scheme can more stably manage memory during checkpoint-

ing compared to the scheme currently applied to commercial IMDBs. This is

very desirable for IMDBs, because it allows the memory reserved for peak usage

to be used for data storage.

42

Bibliography

[1] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory

big data management and processing: A survey,” IEEE Transactions on

Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015.

[2] M. Vaz Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke, C. Koch, and

W. White, “An evaluation of checkpoint recovery for massively multi-

player online games,” Proceedings of the VLDB Endowment, vol. 2, no. 1,

pp. 1258–1269, 2009.

[3] B. K. Park, W.-W. Jung, and J. Jang, “Integrated financial trading sys-

tem based on distributed in-memory database,” in Proceedings of the 2014

Conference on Research in Adaptive and Convergent Systems, pp. 86–87,

2014.

[4] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A

transaction recovery method supporting fine-granularity locking and par-

tial rollbacks using write-ahead logging,” ACM Transactions on Database

Systems (TODS), vol. 17, no. 1, pp. 94–162, 1992.

[5] L. Li, G. Wang, G. Wu, and Y. Yuan, “Consistent snapshot algorithms for

in-memory database systems: experiments and analysis,” in 2018 IEEE

43

34th International Conference on Data Engineering (ICDE), pp. 1284–

1287, IEEE, 2018.

[6] L. Li, G. Wang, G. Wu, Y. Yuan, L. Chen, and X. Lian, “A compara-

tive study of consistent snapshot algorithms for main-memory database

systems,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[7] Redis, “Redis.” http://Redis.io/. (2021).

[8] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory

database system based on virtual memory snapshots,” in 2011 IEEE 27th

International Conference on Data Engineering, pp. 195–206, IEEE, 2011.

[9] Wikipedia, “Fork (system call).” https://en.wikipedia.org/wiki/

Fork_(systemcall). (2021).

[10] Redis, “latency problems troubleshooting.” http://redis.io/topics/

latency. (2021).

[11] J. Park, Y. Lee, H. Y. Yeom, and Y. Son, “Memory efficient fork-based

checkpointing mechanism for in-memory database systems,” in Proceedings

of the 35th Annual ACM Symposium on Applied Computing, pp. 420–427,

2020.

[12] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-

pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-optimized

oltp engine,” in Proceedings of the 2013 ACM SIGMOD International Con-

ference on Management of Data, pp. 1243–1254, 2013.

[13] K. Ren, T. Diamond, D. J. Abadi, and A. Thomson, “Low-overhead asyn-

chronous checkpointing in main-memory database systems,” in Proceedings

44

http://Redis.io/
https://en.wikipedia.org/wiki/Fork_(system call)
https://en.wikipedia.org/wiki/Fork_(system call)
http://redis.io/topics/latency
http://redis.io/topics/latency

of the 2016 International Conference on Management of Data, pp. 1539–

1551, 2016.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the

1st ACM symposium on Cloud computing, pp. 143–154, 2010.

[15] F. Faerber, A. Kemper, P.-Å. Larson, J. Levandoski, T. Neumann,

A. Pavlo, et al., Main memory database systems. Now Publishers, 2017.

[16] T. Wang, R. Johnson, and I. Pandis, “Query fresh: Log shipping on

steroids,” Proceedings of the VLDB Endowment, vol. 11, no. 4, pp. 406–419,

2017.

[17] T. Mühlbauer, W. Rödiger, A. Reiser, A. Kemper, and T. Neumann,

“Scyper: Elastic olap throughput on transactional data,” in Proceedings

of the Second Workshop on Data Analytics in the Cloud, pp. 11–15, 2013.

[18] M. Stonebraker and A. Weisberg, “The voltdb main memory dbms.,” IEEE

Data Eng. Bull., vol. 36, no. 2, pp. 21–27, 2013.

[19] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan,

“Dali: A high performance main memory storage manager,” in VLDB,

vol. 94, pp. 48–59, 1994.

[20] H. Jagadish, A. Silberschatz, and S. Sudarshan, “Recovering from main-

memory lapses.,” in VLDB, vol. 93, pp. 391–404, Citeseer, 1993.

[21] A.-P. Liedes and A. Wolski, “Siren: A memory-conserving, snapshot-

consistent checkpoint algorithm for in-memory databases,” in 22nd In-

ternational Conference on Data Engineering (ICDE’06), pp. 99–99, IEEE,

2006.

45

[22] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and

W. White, “Fast checkpoint recovery algorithms for frequently consistent

applications,” in Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, pp. 265–276, 2011.

[23] D.-E. Ranking, “Db-engines ranking.” http://db-engines.com/en/

ranking. (2021).

[24] Redis, “Administration.” https://Redis.io/topics/admin. (2021).

[25] Redis, “Data types.” https://Redis.io/topics/data-types. (2021).

[26] Samsung, “Samsung ssd 860 pro.” https://www.samsung.com/

semiconductor/minisite/ssd/product/consumer/860pro. (2021).

[27] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P.

Jones, S. Madden, M. Stonebraker, Y. Zhang, et al., “H-store: a high-

performance, distributed main memory transaction processing system,”

Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1496–1499, 2008.

[28] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker, “Rethinking

main memory oltp recovery,” in 2014 IEEE 30th International Conference

on Data Engineering, pp. 604–615, IEEE, 2014.

[29] C. Yao, D. Agrawal, G. Chen, B. C. Ooi, and S. Wu, “Adaptive logging: Op-

timizing logging and recovery costs in distributed in-memory databases,”

in Proceedings of the 2016 International Conference on Management of

Data, pp. 1119–1134, 2016.

[30] Y. Xia, X. Yu, A. Pavlo, and S. Devadas, “Taurus: lightweight parallel

logging for in-memory database management systems,” Proceedings of the

VLDB Endowment, vol. 14, no. 2, pp. 189–201, 2020.

46

http://db-engines.com/en/ranking
http://db-engines.com/en/ranking
https://Redis.io/topics/admin
https://Redis.io/topics/data-types
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer /860pro
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer /860pro

[31] W. Zheng, S. Tu, E. Kohler, and B. Liskov, “Fast databases with fast

durability and recovery through multicore parallelism,” in 11th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI}

14), pp. 465–477, 2014.

[32] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,

“Recent advances in checkpoint/recovery systems,” in Proceedings 20th

IEEE International Parallel & Distributed Processing Symposium, pp. 8–

pp, IEEE, 2006.

47

초록

인-메모리 데이터베이스는 메인 메모리에 상주해 있는 데이터셋에서 트렌젝션을

처리하기 때문에 클라이언트 요청에 대한 빠른 응답시간을 달성할 수 있다. 처리

속도의 향상은 인해 트렌젝션의 내구성을 보장하기 위한 기존의 로깅 기법과 체

크포인팅 기법의 비용을 상대적으로 크게 만든다. 많은 인-메모리 데이터베이스가

로그의 부피를 줄이는 것으로 통해 로그 생성과 로그 저장 IO에 의한 오버헤드를

감소시키지만 그것은 복구 시간의 증가를 가져온다. 주기적인 체크포인팅은 복구

시간을 감소시키고 로그의 저장 공간을 재사용할 수 있도록 한다. 하지만 기존의

체크포인트 방법은 종종 시스템의 작업량 저하, 지연 증가, 메모리 사용량 증가로

인해 상당한 비용이 발생한다.

이 논문에서는 파일 내 로그의 유효성을 추적하고 불필요한 로그를 제거하는

기술인 validity tracking-based compaction (VTC)를 사용한 체크포인팅을 제안

한다. 우리가 제안 하는 방식은 스냅샷을 사용하는 기존 체크 포인트 방식에 비해

메모리 사용량이 매우 낮출 수 있다. 우리의 실험에 따르면 기존의 체크포인팅

방법은 업데이트가 집중되는 워크로드에서 메모리 사용량이 최대 2배까지 증가

하는 것이 비하여 VTC는 2% 미만의 증가를 보인다. 그것은 시스템이 메모리의

대부분을 데이터를 보관하고 트렌젝션을 처리하기 위해서 사용할 수 있다는 것을

의미한다.

주요어: In-Memory Database, Persistence, Logging, Checkpointing, Snapshot

학번: 2019-23670

48

	Abstract
	1 Introduction
	2 BACKGROUND AND MOTIVATION
	2.1 Persistence in In-Memory Databases
	2.2 Fork-Based Checkpointing

	3 Design and Implementation
	3.1 Design Overview
	3.2 Distributed Logging and Log Data Format
	3.3 Log File Compaction
	3.4 Lazy Invalidation
	3.5 Recovery
	3.6 Correctness
	3.7 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance
	4.2.1 Throughput
	4.2.2 Memory Footprint
	4.2.3 Checkpointing Time
	4.2.4 File Size
	4.2.5 Restoring Time

	5 Related Work
	6 Conclusion
	초록

<startpage>4
Abstract 1
1 Introduction 7
2 BACKGROUND AND MOTIVATION 12
 2.1 Persistence in In-Memory Databases 12
 2.2 Fork-Based Checkpointing 14
3 Design and Implementation 16
 3.1 Design Overview 16
 3.2 Distributed Logging and Log Data Format 18
 3.3 Log File Compaction 19
 3.4 Lazy Invalidation 24
 3.5 Recovery 25
 3.6 Correctness 27
 3.7 Implementation 28
4 Evaluation 30
 4.1 Experimental Setup 30
 4.2 Performance 32
 4.2.1 Throughput 32
 4.2.2 Memory Footprint 33
 4.2.3 Checkpointing Time 35
 4.2.4 File Size 36
 4.2.5 Restoring Time 37
5 Related Work 39
6 Conclusion 42
초록 48
</body>

