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Abstract 

Practical Microkinetic Modeling of 

Heterogeneous Catalytic Reactions 

through Parameter Estimation 

Jongmin Park 

School of Chemical & Biological Engineering 

Graduate School of Seoul National University 

 

In recent years, as environmental issues continue to emerge, interest in carbon 

utilization where carbon dioxide is the primary species to be reduced is growing. 

Accordingly, many researchers and industries in various fields have tried to 

reduce carbon emissions into the atmosphere. In particular, chemical engineers 

have developed carbon utilizing reaction processes which produce a variety of 

useful chemicals by consuming the greenhouse gases. Although the commercial 

processes related to these reactions have already been developed, controversy 

over their reaction mechanisms is still ongoing. Along with advances in 

computational performance, researches on reaction mechanism exploration are 

becoming more active in a new phase. Computational chemistry, which requires 

high computational costs, is a great help for reaction mechanism analysis. 

Moreover, microkinetic study is a study that can analyze mechanisms from a 
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kinetic perspective, creating synergies along with improvements in 

computational chemistry. While conventional kinetic models in chemical 

engineering have been mainly used in terms of process design, microkinetic 

models, in addition to these advantages, allow fundamental analysis. For these 

reasons, mechanism analysis through microkinetics is actively underway even 

for common reactions. In this thesis, practical microkinetic modeling strategies 

that could improve several previous drawbacks were proposed. For reactions 

related to methanol and dimethyl ether (DME) synthesis, density functional 

theory (DFT) calculations and microkinetic modeling using the DFT results 

were conducted, and the reaction mechanism analysis and the several case 

studies were suggested. By using parameter estimation techniques, pre-

exponential factors were fitted to experimental data minimizing the differences 

between the predicted and the experimental values. This practical modeling 

approach to the microkinetics improved computational efficiency and 

reliability of the model. 

In the first part, a lumped kinetic model for the direct synthesis of dimethyl 

ether from syngas over Cu/ZnO/Al2O3/ferrierite (CZA/FER) catalyst was 

presented to highlight the difference from a microkinetic model. Kinetic 

parameters were estimated by fitting experimental data for the hybrid catalyst, 

and these were compared with the reported values of conventional catalysts, 

which were the respective CZA and FER catalysts. High activation energies for 

the hybrid catalyst showed that the methanol synthesis step may have more 

control over the rate than the methanol dehydration step. Using the developed 

kinetic model, a temperature between 200 and 220 °C was determined for 
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thermal energy efficiency, and a further analysis provided the optimal range of 

the total pressure and space velocity. 

A practical strategy to develop a microkinetic model for methanol synthesis 

from syngas over a Cu-based catalyst is described in the second part. The 

comprehensive model consists of forward and backward reactions of 28 

possible elementary-step reactions for CO and CO2 hydrogenation and the 

water–gas shift reaction. A combination of ab-initio DFT and semi-empirical 

unity bond index-quadratic exponential (UBI-QEP) methods was used to 

determine the heat of adsorption and activation energies. DFT calculations 

confirmed that formate (HCOO**) adsorbs in a bidentate fashion and provided 

the enthalpies and adsorption energies of gas and surface intermediates for 

subsequent UBI-QEP calculations. The pre-exponential factors were estimated 

from the order-of-magnitude of the transition state theory as the initial values 

and by fitting the experimental data, thus reducing the computational load by 

not calculating the vibrational frequencies and partition functions for 

translational, rotational, and vibrational motions. For the reactor model, partial 

equilibrium ratios were used to reduce the stiffness of the microkinetic model. 

The most plausible reaction pathways were suggested by considering relatively 

fast step-reactions, while the surface reaction of H3CO* and H* was found to 

be the rate-determining step by the degree of rate control. The developed model 

was also used to evaluate the effects of the temperature, pressure, and H2 

fraction in the feed on the methanol synthesis rate to elucidate the suitable 

operating conditions.  
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In the third part, the reaction pathways of DME synthesis by methanol 

dehydration over a H-zeolite catalyst were analyzed through both 

computational chemistry and microkinetic modeling methods. The reaction 

mechanisms consisted of nine elementary-step reactions for both associative 

and dissociative pathways. Based on the second-order Møller–Plesset 

perturbation theory (MP2), to determine the effects of dispersion forces that 

were important in this reaction system, the structures of all related reaction 

species were optimized, and the transition states of the associative and 

dissociative pathways were elucidated. Also, the energies and activation 

barriers of the optimized structures and transition states were calculated. Then, 

a microkinetic model was developed using the energies and activation barriers 

obtained from the MP2 calculations. Meanwhile, the pre-exponential factors of 

the kinetic parameters were not calculated theoretically but estimated by fitting 

the experimental data, which enhanced the reliability of the microkinetic model. 

By comparing the relative elementary-step reaction rates calculated using the 

developed model, the dissociative pathway was suggested as a dominant 

pathway of DME synthesis, while the DME formation reaction of the 

dissociative pathway (CH3OH-CH3-Z → CH3OCH3-H-Z) was found to be the 

rate-determining step. The developed model was also used to evaluate the 

effects of temperature on the site fractions over the catalyst. 

Finally, machine learning-based surrogate models of the microkinetic model 

for the water-gas shift reaction were developed. The surrogate model can play 

a role in a bridge between the microkinetics and the higher-scale reaction 

engineering modules such as computational fluid dynamics or process 

simulations. The ExtraTrees algorithm and the artificial neural network (ANN) 
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were used for regressing the datasets acquired from the developed microkinetic 

model. Among interpolative machine learning techniques, an ANN is well 

known for its high performance in regression, and the feature importance can 

be calculated with the ExtraTrees algorithm. As a result, the ANN showed the 

great performance with an average error of 0.01 %. ExtraTrees could measure 

the feature importance, so that the important elementary reactions and surface 

intermediates to the overall reaction of the water-gas shift reaction were figured 

out. 
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Chapter 1 Introduction 

1.1 Research Motivation 

As global warming is getting more serious and fossil fuels are depleted, 

utilization of carbon dioxide, which is one of the main components of 

greenhouse gases, has gained huge interests by many researchers. Recently, 

many countries have pledged to achieve carbon neutrality by 2050, and acting 

to reduce carbon emissions. C1 chemistry, which utilizes one-carbon resources 

such as methane (CH4), carbon monoxide (CO) and carbon dioxide (CO2), is 

one of sustainable technologies to substitute petroleum. Therefore, C1 

chemistry is expected to play an important role in carbon neutrality by utilizing 

and reducing the greenhouse gases. There have been lots of researches on C1 

gas conversion taking place over biological or chemical catalysts. While 

searching for efficient C1 catalysts is important, mechanism analysis and 

kinetic modeling for C1 reactions also have significant importance, because 

there are still many reactions that don’t have an established explanation for the 

mechanism even though C1 reactions are well-known and long-studied. 

In order to analyze the reaction kinetics and to predict the behavior of a 

system, kinetic modeling is needed. The reaction kinetics can be modeled for 

each purpose, from the simplest power-law model to the complex microkinetic 

model. In general, a kinetic model predicts the results of reactor outputs such 

as conversions, selectivities, and production rates by varying operating 

conditions. In particular, microkinetic analysis has played an important role in 

understanding fundamentals of elementary steps of surface reactions in 

catalytic reaction systems [1], and is known to be a useful tool for elucidating 
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reaction mechanisms. A microkinetic model differs from a lumped kinetic 

model in that it doesn’t assume a rate-determining step (RDS) and equilibrated 

steps, while a lumped kinetic model assumes a RDS and develops the 

expression based on the RDS. 

According to the recent trends where clean production is necessary, kinetic 

studies in C1 chemistry are required for more efficient C1 gas refinery 

technologies. The synthesis of methanol and dimethyl ether from syngas 

(mixture of CO, CO2 and H2) is one of important C1 technologies since they 

can be used as fuel, solvent, and a precursor to various organic compounds. 

Additionally, biogas, which is composed of methane and CO2 produced by 

anaerobic digestion of organic matter, is used for the synthesis of methanol and 

DME [2]. Recently, Jiang et al. stated the importance of CO2 conversion to 

methanol in preparation for the promising approaches to reduce CO2 emissions 

[3]. 

The objective of this thesis is to propose practical microkinetic and lumped 

kinetic modeling approach and offer fundamental results on the several C1 gas 

conversion reactions, especially, the methanol and DME synthesis from syngas. 

Through the combination of first-principles calculations and kinetic parameter 

estimation by fitting the experimental data, the microkinetic models were 

developed practically and reliably. The developed models could give valuable 

contribution to elucidating the reaction mechanisms and optimization of the 

operating conditions. Moreover, for the purpose of developing the 

microkinetics applicable to the higher-scale CFD or process simulations, 

surrogate models based on machine learning methods were presented. 
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1.2 Outline of the Thesis 

The outline of this thesis is as follows: Chapter 1 introduces the thesis by 

explaining the necessity of the research, and gives the outline with the 

associated publications. Chapter 2 gives a detailed description of background 

theories for microkinetic modeling. A lumped kinetic model for the direct 

synthesis of DME over a hybrid catalyst is developed in Chapter 3, which 

emphasizes how different a microkinetic model is from a lumped kinetic model. 

Two microkinetic models for the methanol and DME synthesis are proposed in 

Chapter 4 and Chapter 5, respectively. In Chapter 6, surrogate models of a 

microkinetic model for the water-gas shift reaction were developed through 

machine learning methods for the future combination with the higher-scale 

simulations. 

 

1.3 Associated Publications 

Part of Chapter 2 was written on the basis of [4] which presented trends and 

outlook of computational chemistry and microkinetic modeling for catalyltic 

synthesis of methanol and DME. The work presented in Chapter 3 was based 

on [5]. The work presented in Chapter 4 was based on [6]. The work presented 

in Chapter 5 was based on [7]. The content of Chapter 6 has not been published 

yet, but it is being prepared for submission.  
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Chapter 2 Background Theory 

2.1 Microkinetics 

The use of a microkinetic analysis on catalytic reaction systems originated from 

Bush and Dyer’s work [8] in 1976, where they conducted an experimental and 

computational analysis of complicated kinetics for industrial high-temperature 

chlorocarbon rearrangement and hydrocarbon cracking by evaluating the 

surface reaction mechanisms to predict the performance of the industrial 

reactors. Since then, several researchers have considered the detailed catalytic 

reaction mechanisms in their kinetic modeling [9, 10], and eventually, Dumesic 

et al. set up the framework of the microkinetics of heterogeneous catalysis [11]. 

Microkinetics can be the key to understand the reaction mechanism. Because a 

microkinetic model includes all possible elementary steps, a rigorous 

investigation of the detailed reaction pathways is possible. In addition, the 

dominant pathway among the competitive pathways is able to be elucidated 

through a microkinetic model, which could be, in turn, helpful in designing 

catalysts and improving the catalytic process by deepening our understanding 

of the fundamentals of reaction mechanisms. 

Although closed-form empirical kinetic models, such as the power-law and 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) models, have been used 

widely [12, 13] due to their relatively simple structure and appropriate fitness 

to experimental data, their limitations in describing changes in the rate-limiting 

steps under varying operating conditions, as well as the irrelevance of kinetic 

parameters to the physical meaning, have aroused the necessity of the 

microkinetic modeling approach. To develop a microkinetic model, the overall 
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reactions are divided into elementary steps which consist of several competitive 

pathways. With the possible candidates of elementary steps, a microkinetic 

model is developed, and, by using the microkinetic model, the role of each step 

is evaluated and the dominant pathway is elucidated. 

Microkinetic modeling can be categorized as multiscale modeling of 

catalytic reactions as shown in Figure 1. Calculations for various length and 

time scales are performed to obtain electronic structures, reaction rates and 

reactor outputs. Kinetic parameters for all elementary reactions should be 

delivered to a kinetic model for calculating the reaction rates which are the 

essential values for reactor modeling. There are several methods to derive each 

value: Kinetic parameters are related to the electronic structure of reactants and 

products, and those can be calculated by computational chemistry or the semi-

empirical methods such as the unity bond index-quadratic exponential potential 

(UBI-QEP) method and the Brønsted-Evans-Polanyi (BEP) relation; At the 

mesoscopic scale, the mean-field kinetic model including the lumped kinetic or 

microkinetic model that assumes the averaged environments of surface types 

and surface intermediates, and the kinetic Monte Carlo method are most 

frequently employed to compute reaction rates and derived results of the 

reactions like the conversion, product distribution, and so on; The kinetic model 

is implanted in the reactor model consisting of balance equations with the rate 

expressions. The reactor model can be a simple continuous stirred-tank reactor 

(CSTR), plug flow reactor (PFR) or combination of them. When the effect of 

the flow pattern on reactions is important, computational fluid dynamics (CFD) 

is used.  
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Figure 1 Multiscale modeling in a microkinetic model. 
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A microkinetic model is defined as a system of ordinary differential 

equations (ODEs) for the site balances: 

 

𝑑𝜃j

𝑑𝑡
= ∑ 𝑆ij𝑟ii     (2.1) 

 

where θj is the site fraction of the surface intermediate j, Sij the stoichiometric 

coefficient, and ri the rate of the reaction i. For all surface intermediates, 

Equation (2.1) is calculated simultaneously, and, by calculating the equations, 

the site fractions and the reaction rates are obtained. The consumption and 

production rates of gaseous species can be calculated through the adsorption 

and desorption equations with a reactor model. Furthermore, in addition to the 

dominanty pathway, the most abundant surface intermediate and rate-limiting 

steps can be elucidated as a result of the calculations. However, the kinetic 

parameter and reaction rate of each elementary step have various orders of 

magnitude, making the ODE system so stiff that it may become difficult to solve 

the ODEs. For reducing the stiffness, several solutions, such as scaling and the 

quasi-equilibrium assumption, have been proposed and adopted. 

 

2.2 Kinetic Parameter 

The kinetic parameters for each elementary step reaction should be determined 

to calculate the reaction rate. For each surface reaction, reaction rates are 

formulated by the following: 
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𝑟i = 𝑘i ∏ 𝜃jj = 𝐴iexp (−
𝐸a

𝑅𝑇
) ∏ 𝜃jj    (2.2) 

 

where k, A, and Ea are the kinetic parameters of the reaction i, the pre-

exponential factor, and the activation energy, respectively. θj represents the 

portion of the surface intermediate j in the total catalytic active site over a 

catalytic surface. In the equation, the subscript j represents the reactants 

involved in the i-th reaction to comprise the terms of the driving forces, while 

the kinetic parameters were assumed to follow the Arrhenius type equation. The 

rate of the i-th elementary step (ri) is expressed by the multiplication of the 

kinetic parameter and driving forces. Calculating A and Ea for each elementary 

step is one of the main problems in microkinetic modeling, and there are several 

different ways to obtain the parameters. When the computational chemistry is 

limited by poor computing power, the parameters are estimated by fitting 

experimental data. Due to its enhancement in computing capacity, 

computational chemistry is widely used, although it is still burdensome to 

calculate the parameters for a large amount of elementary steps. Accordingly, 

the BEP relations (also known as the linear free energy relations) [14, 15] and 

the unity bond index-quadratic exponential potential (UBI-QEP) method (also 

known as the bond-order conservation method) [16] are often used for more 

practical approaches. In 2011, Maestri and Reuter [17] proposed the refined 

UBI-QEP method, which could derive activation energies that have values 

similar to those derived from the DFT. 
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2.2.1 Computational Chemistry 

First-principle modeling for catalytic reaction systems is a combination of solid 

state physics and surface chemistry [18]. It can be used to find the electronic 

structure of a catalyst, which relates to its reactivity on the surface, where the 

bonds of reactant molecules break to form new bonds. Using a computational 

catalyst is a paradigm shift approach in contrast to the trial and error method 

that has been used for decades [19], as it can rapidly replace conventional 

experimental tools, including infrared (IR), X-ray diffraction (XRD), and 

Raman spectra. Previously, detailed reaction mechanisms were hard to 

completely understand because the reaction networks are very complex and 

little was known about their physicochemical exactness [20]. However, the 

first-principle approach makes it possible to analyze a specific elementary 

reaction of a reaction system, thereby shedding light on the reaction 

mechanisms of many catalytic systems. 

In order to solve the many-body Shrödinger equation easily, there have been 

many quantum chemical approaches. Representatively, Density functional 

theory (DFT) rests on two fundamental theorems which were proved by 

Hohenberg and Kohn: Theorem 1. The total energy from Shrödinger equation 

is a unique functional of the electron density, which means there is a one-to-

one mapping between the ground-state wave function and the ground-state 

electron density; Theorem 2. The electron density that minimizes the total 

energy is the true ground-state density. The Kohn-Sham equation based on the 

Hohenberg-Kohn theorems is different from Shrödinger equation in that it is 

described in terms of the single-electron wave functions. The equation is as 

follows: 
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[−
ℏ2

2𝑚
∇2 + 𝑉ext(𝑥⃗) + 𝑉H(𝑥⃗) + 𝑉XC(𝑥⃗)] 𝜓(𝑥⃗) = 𝐸𝜓(𝑥) (2.3) 

 

where m is the electron mass, Vext the potential defining the interaction between 

an electron and the collection of atomic nuclei, VH the Hartree potential, VXC 

the potential defining exchange and correlation contributions, ψ the single-

electron wave function, and E the ground-state energy. 

Furthermore, the methods using localized and spatially extended functions, 

wave-function-based methods, Hartree-Fock method, and post-Hartree-Fock 

methods such as configuration interaction, coupled cluster, Møller-Plesset 

perturbation theory, and the quadratic configuration interaction approach have 

also been used. With the various quantum chemical approaches, exploration of 

the properties and energies of molecules is possible, and kinetic parameters of 

reactions can be derived. 

 

2.2.2 Transition State Theory 

Transition state theory (TST) assumes quasi-equilibrium between the reactants 

and an activated complex (A + B ↔ AB‡ → P). Unlike collision theory, TST 

incorporates information about molecular structure. The kinetic parameter of 

the forward reaction is derived in terms of the equilibrium constant for the 

activated complex formation. 
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  𝑘 =
𝑘B𝑇

ℎ
𝐾‡ =

𝑘B𝑇

ℎ
exp (

∆𝑆0‡

𝑘B
) exp (

−∆𝐻0‡

𝑘B𝑇
)  (2.4) 

 

where kB is the Boltzmann constant, h the Planck constant, ΔS0‡ the entropy 

change and ΔH0‡ the enthalpy change for the activated complex formation. In 

the Equation (2.4), 
𝑘B𝑇

ℎ
exp (

∆𝑆0‡

𝑘B
) and exp (

−∆𝐻0‡

𝑘B𝑇
) terms are related to the A 

and exp (−
𝐸𝑎

𝑅𝑇
)  of the Equation (2.2), respectively. The microscopic 

formulation of TST is described with regard to molecular partition functions 

which are a product of contributions from translational, rotational, and 

vibrational degrees of freedom for reactants and activated complex. 

 

𝑞 = 𝑞trans𝑞vib𝑞rot   (2.5) 

 

For a 3-dimensional molecule, the respective expressions are as follows: 

 

𝑞trans = (
√2𝜋𝑚i𝑘B𝑇

ℎ
)

3

   (2.6) 

𝑞vib = ∏
1

1−exp(−
ℎ𝑣ij

𝑘B𝑇
)

# 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠
j    (2.7) 

𝑞rot,lin =
8𝜋2𝐼lin𝑘B𝑇

𝜎rℎ3    (2.8) 
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𝑞rot,nonlin =
8𝜋2√8𝜋3𝐼1𝐼2𝐼3(𝑘B𝑇)2

𝜎rℎ3    (2.9) 

 

where mi the mass of the molecule i, vij the molecule i's vibrational frequency 

in the j-th mode, Ilin the moment of inertia about the molecular axis of the linear 

molecule, I1, I2, and I3 the moments of inertia about the three principal axes of 

the nonlinear molecule, and σr the rotational symmetry number. 

With regard to the reaction, A + B ↔ AB‡ → P, the kinetic parameter k can 

be expressed in terms of the partition functions as follows: 

 

𝑘 =
𝑘B𝑇

ℎ

𝑞
AB‡

𝑞A𝑞B
exp (

−∆𝐻0‡

𝑘B𝑇
)   (2.10) 

 

Therefore, the corresponding pre-exponential factor A is equal to 
𝑘B𝑇

ℎ

𝑞
AB‡

𝑞A𝑞B
. 

In particular, the quantum chemistry introduced above is able to calculate 

vibrational frequency and enthalpy change. For example, the climbing image 

nudged elastic band method (CI-NEB) [21-23] is most widely used for finding 

transition states, therefore, activation energies or diffusion barriers. The actual 

applications were shown in the following chapters. 
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2.2.3 UBI-QEP 

The UBI-QEP method is a semi-empirical method to simply calculate 

adsorption energies and activation energies [16]. Two-body interactions in a 

many-body system are assumed to be described by the quadratic potential of 

the exponential function of the two-center bond distance, i.e., the bond index, 

and the sum of all the bond indices is conserved as unity. Based on this method, 

once the enthalpies of the gas-phase species and adsorption energies of the 

surface intermediates are known, the activation energies can be calculated with 

a very low computational load. Although the activation energies can also be 

obtained using the CI-NEB, it may be an inefficient method in the case of 

microkinetic modeling with many elementary-step reactions in terms of its 

computational burden. Table 1 provides the equations to calculate the activation 

energies. 
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Table 1 Equations for calculation of the activation energies by the UBI-QEP† 

Reaction type Reaction formula Activation energy 

Dissociative adsorption AB + 2* → A* + B* 𝐸f = 𝜙 (∆𝐻rxn − 𝑄AB +
𝑄A𝑄B

𝑄A + 𝑄B
) 

Dissociation reaction AB* + * → A* + B* 𝐸𝑓 = 𝜙 (∆𝐻rxn +
𝑄A𝑄B

𝑄A + 𝑄B
) 

Disproportionation 

reaction 

A* + B* → C* + D* 𝐸𝑓 = 𝜙 (∆𝐻rxn +
𝑄C𝑄D

𝑄C + 𝑄D
) 

†𝐸f: activation energy of the forward reaction, 𝜙: bond index (0 < 𝜙 <1), 𝑄: adsorption energy. 
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Chapter 3 Lumped kinetic modeling 

for direct synthesis of DME from 

syngas 

3.1 Background 

Dimethyl ether (DME), the simplest ether, is a promising and economically 

alternative fuel for future applications. In recent years, the interest in DME as 

an additive or a blend-diesel fuel has increased considerably. It is an 

environmentally friendly compound because it has low global warming 

potentials due to its high cetane number, high oxygen content, and lack of C-C 

bonds, along with good combustion properties; low NOx, particulate matter 

(PM), SOx, and emissions compared to those of traditional diesel fuels. For 

these characteristics, DME fuel can fully or partially replace conventional 

diesel fuel [24].  

DME is usually synthesized in two steps; methanol (MeOH) synthesis from 

syngas (CO and H2) by CO and CO2 hydrogenation and water-gas shift reaction 

(the overall reactions are listed below), followed by MeOH dehydration. In the 

conventional two-step DME synthesis, the commercial catalyst Cu/ZnO/Al2O3 

(CZA) is frequently used to synthesize MeOH, and acid catalysts such as 

zeolites are used to dehydrate MeOH. Recently, the direct synthesis of DME 
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from syngas has been suggested by introducing two functionally independent 

catalysts, composed of one component for the formation of MeOH and the other 

for dehydration. In this work, a hybrid catalyst consisting of CZA and ferrierite 

(FER) with a core-shell structure was used. The co-production of MeOH and 

DME by the hybrid catalysts obviates the use of additional reactors and 

separation units, and alleviates the equilibrium limitation of the MeOH 

synthesis, resulting in a significant increase in MeOH productivity [25, 26].  

 

CO + 2H2 ⇄ CH3OH     CO hydrogenation 

CO2 + H2 ⇄ CO + H2O    Water-gas shift reaction 

CO2 + 3H2 ⇄ CH3OH + H2O   CO2 hydrogenation 

2CH3OH ⇄  CH3OCH3 + H2O   MeOH dehydration 

 

There have been many studies on the kinetics of the conversion of syngas to 

MeOH using copper-based catalysts. Klier et al. suggested a kinetic model 

based on two types of reactions; MeOH synthesis by the hydrogenation of CO 

and the redox equilibrium between CO and CO2 [27]. Coteron and Hayhurst 

developed a kinetic model that neglects the contribution of CO to MeOH 

production and converts it to CO2 by water-gas shift reactions [28]. Chinchen 
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et al. suggested, by referring to Coteron and Hayhurst’s study, that CO2 is the 

main source of carbon for MeOH synthesis when both CO and CO2 are used as 

the feed gas [29]. Bussche and Froment developed a kinetic model to describe 

the dissociative adsorption of H2 and CO2 on copper surfaces under the 

assumption of negligible CO hydrogenation [30], which was further evaluated 

by Peter et al. [31] Meanwhile, Graaf et al. assumed that both CO and CO2 

contribute to MeOH production, and suggested a kinetic model on the basis of 

the competitive adsorption of CO and CO2 on copper surfaces and competitive 

adsorption of H2 and H2O to zinc sites [32]. Park et al. suggested a three-site 

adsorption model by considering different adsorption sites for CO and CO2 [33]. 

In addition, several studies have incorporated microkinetic modeling to 

investigate reaction kinetics and mechanisms for MeOH synthesis over a 

copper-based catalyst [6, 34]. 

Several papers have been reported on DME synthesis by MeOH 

dehydration. Bercic and Levec developed a kinetic model that assumes that the 

surface reaction is a rate-controlling step, and MeOH is adsorbed on the γ-Al2O3 

surface in a dissociative manner [35]. Ng et al. further used this model to 

investigate the combined kinetics of MeOH synthesis by CO2 hydrogenation 

and MeOH dehydration [25]. Hadipour and Soharabi studied the conditions 

under which both MeOH synthesis by CO hydrogenation and MeOH 

dehydration occurs [36]. A microkinetic model was presented for DME 
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synthesis from MeOH [7]. Although there are some studies on the kinetic 

modeling of the direct synthesis of DME from syngas [36-39], most involved 

the use of γ-Al2O3 as the acid catalyst for MeOH dehydration. 

In this chapter, kinetic modeling was conducted for the direct synthesis of 

DME from syngas over a hybrid CZA/FER catalyst, and the developed kinetics 

were compared with those reported for MeOH synthesis over a CZA catalyst 

and MeOH dehydration over a zeolite catalyst. In addition, the developed 

kinetic model could be used to investigate the effects of operating conditions 

on catalytic performances. 
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3.2 Methods 

3.2.1 Experimentals 

The hybrid CZA/FER catalyst was synthesized by a coprecipitation method 

using a lab-made seed-derived FER. The seed-derived FER was synthesized 

using the previously synthesized FER seed (Si/Al molar ratio of 12) through a 

hydrothermal synthesis. For the FER seed, the precursor solution was prepared 

with fumed silica (SiO2), sodium aluminate (NaAlO2), piperidine (C5H11N, an 

organic structure directing agent (OSDA)), sodium hydroxide (NaOH), and 

deionized water (DIW) with a molar ratio of 

SiO2/NaAlO2/piperidine/NaOH/DIW = 1/0.096/0.9/0.14/40. The solution was 

vigorously stirred for 12 h, before it was hydrothermally synthesized for 7 days 

at 160 °C under the stirring condition. After the hydrothermal synthesis, the 

prepared zeolite gel was washed several times with sufficient DIW and then 

dried in an oven at 80 °C overnight. The dried powder was successively 

calcined at 550 °C at a ramping rate of 1 °C/min for 6 h to synthesize the Na-

form seed-derived FER. The seed-derived FER was synthesized using a similar 

procedure as the previous Na-form FER seed (24 wt%), but without OSDA 

(SiO2/NaAlO2/NaOH/DIW = 1/0.096/0.14/40) in the slurry-phase. After 

stirring for 12 h, the synthesized white gel was washed several times and ion-

exchanged to form H-form FER. The sample was dried at 80 °C and calcined 

at 550 °C for 3 h. 

To prepare the CZA/FER hybrid catalyst, 1 g of the seed-derived FER was 

dispersed in 200 mL of DIW. The solution was kept at 70 °C under a fixed pH 

7 and continuously stirred. A metal precursor solution containing Cu, ZnO, and 
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Al nitrate precursors (molar ratio of Cu/ZnO/Al2O3 = 7/3/1), and an ammonium 

carbonate solution, which was dissolved in DIW to control the pH during 

coprecipitation, were slowly and separately added to the FER-containing slurry. 

After the coprecipitation step, the solution was filtered by DIW, dried in an oven 

at 80 °C, and calcined at 350 °C for 3 h at a ramping rate of 1 °C/min. 

The experimental conditions are described in Table 2; for runs 1–4, 5–7, 8–

10, and 11–12 the temperature, total pressure, GHSV, and stoichiometric ratio 

(H2/(2CO + 3CO2)) were varied, respectively. A fixed-bed tubular reactor was 

used, which had a reactor length and inner diameter of 45.3 and 0.7 cm, 

respectively. For the kinetic experiments, 0.4 g of the seed-derived FER (1.2 

cm packing depth) was loaded and pretreated at 400 °C for 6 h under a N2 flow. 
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Table 2 Experimental conditions 

Run 
T 

[°C] 

Ptotal 

[bar] 

GHSV 

[L/(kgcat·h)] 

CO/CO2/H2/N2  

[vol%] 
H2/(2CO + 3CO2) 

1 180 50 2,000 21/9/66/4 0.96 

2 200 50 2,000 21/9/66/4 0.96 

3 220 50 2,000 21/9/66/4 0.96 

4 250 50 2,000 21/9/66/4 0.96 

5 250 20 2,000 21/9/66/4 0.96 

6 250 30 2,000 21/9/66/4 0.96 

7 250 40 2,000 21/9/66/4 0.96 

8 250 50 4,000 21/9/66/4 0.96 

9 250 50 6,000 21/9/66/4 0.96 

10 250 50 8,000 21/9/66/4 0.96 

11 250 50 2000 15/6.4/73.9/4.7 1.5 

12 250 50 2,000 11.5/4.9/79.4/4.2 2.1 
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3.2.2 Kinetic Model 

The DME synthesis reaction simultaneously occurs in two parts of the hybrid 

catalyst: (1) MeOH synthesis over a CZA surface and (2) dehydration of MeOH 

over a FER surface. The other reactions forming byproducts such as 

formaldehyde, formic acid, methane, ethylene, and so on were neglected based 

on the experimental results in which the selectivities of byproducts were below 

1 carbon-mole%. The reactants CO, H2, and CO2 were assumed to adsorb on 

different sites of CZA during MeOH synthesis under the assumption of three 

site adsorption [27, 40]. The reaction rate equations were adopted from the 

literature [25, 33]. The rate expressions are listed in Table 3, and their 

derivations can be found in the literature [25, 33]. 
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Table 3 Reaction rate equations and estimated kinetic parameters 

Reaction Rate equation Unit 

CO hydrogenation 𝑅1 =
𝑘1𝐾CO[𝑓CO𝑓H2

1.5 − 𝑓MeOH (𝐾p,1𝑓H2

0.5)⁄ ]

(1 + 𝐾CO𝑓CO)(1 + 𝐾H2

0.5𝑓H2

0.5 + 𝐾H2O𝑓H2O)
 

mol/(kgcat·s) 

Water-gas shift 

reaction 
𝑅2 = −

𝑘2𝐾CO2
[𝑓CO2

𝑓H2
− 𝑓CO𝑓H2O 𝐾p,2⁄ ]

(1 + 𝐾CO2
𝑓CO2

)(1 + 𝐾H2

0.5𝑓H2

0.5 + 𝐾H2O𝑓H2O)
 

CO2 hydrogenation 𝑅3 =
𝑘3𝐾CO2

[𝑓CO𝑓H2

1.5 − 𝑓H2O𝑓MeOH (𝐾p,3𝑓H2

1.5)⁄ ]

(1 + 𝐾CO2
𝑓CO2

)(1 + 𝐾H2

0.5𝑓H2

0.5 + 𝐾H2O𝑓H2O)
 

MeOH dehydration 𝑅4 =
𝑘4𝐾MeOH

2 [𝐶MeOH
2 − (𝐶H2O𝐶DME) 𝐾p,4⁄ ]

(1 + 2√𝐾MeOH𝐶MeOH + 𝐾H2O,DME𝐶H2O)
4 

† Other kinetic parameters are available in the literature [32, 33, 41] and were used without 

modification. 

‡ The units of the fugacity (fi) and concentration (Ci) are bar and mol/m3, respectively. k, Ki, and 

KP,j are the reaction rate constant, adsorption equilibrium constant of species i, and equilibrium 

constant of reaction j, respectively. R is the gas constant (8.314 J/(mol·K)). 
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Although different terms were used for the driving forces; fugacities and 

concentrations for MeOH and DME synthesis, respectively, the reported rate 

equations were used without modification to facilitate the comparison between 

the kinetic parameters of the present chapter and the reported ones. For the 

calculation of the fugacity, the assumption of an ideal solution was made to 

calculate the fugacities of pure components, and the virial equations were used 

with the reduced temperature and pressure [42]. The kinetic parameters can be 

expressed in the form of Arrhenius equations, as follows: 

 

𝑘i = 𝐴 exp (−
𝐸a,i

𝑅𝑇
)   (3.1) 

𝐾i = 𝐴 exp (−
∆𝐻i

𝑅𝑇
)   (3.2) 

 

where k, K, A, Ea, and ΔH denote the reaction rate constant, equilibrium 

constant, frequency factor, activation energy, and reaction enthalpy, 

respectively.  

Among the kinetic parameters of the rate equations, six parameters 

including k1, k2, k3, k4, 𝐾MeOH, and 𝐾H2O,DME, which play significant roles in 

determining the rates, were estimated by fitting the experimental data. All other 

parameters were obtained from previous studies [32, 33, 41] and used without 

modification to reduce the number of parameters to be estimated. It is worth 

noting that the parameters involving the adsorption were assumed to be the 

same since adsorption sites for syngas and MeOH were separately located in 
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hybrid catalysts due to the core-shell structure and thus, the adsorption 

behaviors between conventional and hybrid catalysts are similar. Besides, the 

parameters involving the adsorption behaviors little changed while the iterative 

calculations being conducted in the estimation, and it was also observed that 

the different values of initial estimates for those parameters little influenced on 

the rate, indicating the insensitiveness of the parameters to the reaction rate. 

The external mass transfer and internal pore diffusion limitations were 

assumed to be negligible because powder catalysts were used. To validate the 

effectiveness of the assumption, the dimensionless Mears parameters were 

calculated under all experimental conditions of the present chapter and the 

values were less than 2.17×10-6 (much lower than the threshold value of 0.15), 

confirming a negligible external mass diffusion [43]. The presence of any 

internal pore diffusion limitation was evaluated using the dimensionless Weisz-

Prater number (CWP), which is defined as the ratio of the dispersion and 

convection transport rates (the reciprocal of the dimensionless Péclet number) 

[43]. This parameter was calculated using the correlation of the effective 

diffusivity (De) [44], and the calculated value of CWP was 1.57×10-5, which is 

less than the threshold value of 1.0, indicating that there was no internal 

diffusion limitation. Based on the above assumptions, a pseudo-homogeneous 

one-dimensional reactor model with the following balance equations was 

considered. 

 

Mass balance: −𝑢s
𝑑𝐶i

𝑑𝑧
+ 𝜌B ∑ 𝑅i,j = 0𝑁𝑅

j=i     
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Energy balance: 𝜌g𝑢s𝐶p
𝑑𝑇

𝑑𝑧
= 𝜌B ∑ (−∆𝐻)j𝑅j +

4𝑈

𝐷t
(𝑇w − 𝑇)𝑁𝑅

j=1   

Boundary conditions: Ci = Ci,in , T = Tin at z = 0    

 

The kinetic parameters were estimated by minimizing the objective function 

(Fobj), which is the sum of the residuals of the square errors of the objective 

elements as follows: 

 

𝐹obj = ∑ [∑ 𝑤i (
𝑦i,calc−𝑦i,exp

𝑦i,exp
)

2

i ]
n

𝑁𝐸
n    (3.3) 

 

where, NE and wi denote the number of experimental conditions and weighting 

factor, respectively. The subscript ‘calc’ and ‘exp’ represent the calculated 

values and experimental data, respectively, and the elements of the objective 

function considered in the present chapter were the conversions of CO and CO2, 

and selectivities of MeOH and DME. 

The estimation was performed using the “lsqcurvefit” subroutine in 

MATLAB (MathWorks, Inc.), and the Levenberg-Marquardt method was 

applied. It is worthing noting that, since the number of elements in the objective 

function was 4 (2 conversions and 2 selectivities), a total of 48 data were used 

in the estimation to guarantee the reliability of the estimated parameters. 
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3.3 Application Results and Discussion 

Figure 2 shows a comparison of the conversions and selectivities of the 

experimental data and simulated results with the estimated kinetic parameters 

(Tables 4 and 5); the model effectively demonstrated the experimental 

behaviors. The values of the mean of the absolute relative residual (MARR) for 

the conversions of CO and CO2 and selectivities of MeOH and DME, were 

14.73, 37.67, 34.62, and 2.15%, respectively, while the corresponding values 

of the relative standard deviation of individual error (RSDE) were 11.93, 43.97, 

37.77, and 1.47%, respectively. When it comes to the CO2 conversion, there 

were large deviations for some conditions. This is partly attributed to that there 

was a limit to better describe the CO2 conversion in the current model, 

indicating that a more sophisticated kinetic model might be needed for reducing 

the error in the future. Another plausible reason for the large deviation might be 

measurement errors. As shown in Figure 2, some of the experimental data of 

CO2 conversion significantly deviated from the trend of simulation results. 
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Figure 2 Comparisons of CO2 conversions between experimental data and 

calculation results (experimental conditions for each case are referred to Table 

2) 

  

Figure S1. Comparisons of conversions and selectivities between experimental data and calculation results.
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Figure 3 Parity plot of the experimental data versus the calculation results 

of the CO (blue rectangle) and CO2 (orange rectangle) conversions, and 

MeOH (gray circle) and DME (yellow circle) selectivities. The dotted lines 

represent the ±20% errors. 
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Table 4 Estimated kinetic parameters for MeOH synthesis from syngas of the present and previous studies (numbers in the 

parentheses represent 95% confidence intervals) 

Parameter This work 
Park et al. 

[33] 

Graaf et al. 

[32] 

Klier et al. 

[27] 

Coteron and 

Hayhurst [28] 

Skrzypek et 

al. [45] 

Seidel et al. 

[46] 
Units 

𝑘1 

𝐴 
1.50E+09 

(±4.60E+07) 
1.88E+08 2.69E+07 4.36E+05 1.99E+02 

- 

2.02E+09 mol (kgcat ∙ s ∙ bar1.5)⁄  

𝐸a 
125,757 

(±16,240) 
113,711 109,900 69,160 65,100 113,905 J/mol 

𝑘2 

𝐴 
6.08E+09 

(±1.08E+10) 
1.16E+10 7.31E+08 

- - 

6.94E+08 1.34E+08 mol (kgcat ∙ s ∙ bar)⁄  

𝐸a 
116,370 

(±66,950) 
126,573 123,400 104,700 102,101 J/mol 

𝑘3 

𝐴 
7.04E+05 

(±9.07E+04) 
7.08E+04 4.36E+02 4.51E+00 3.16E+00 8.33E+08 2.68E-01 mol (kgcat ∙ s ∙ bar1.5)⁄  

𝐸a 
88,777 

(±3,557) 
68,252 65,200 47,190 47,000 104,700 14,992 J/mol 

Catalyst CZA/FER CZA CZA CZ CZ CZA CZA  
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Table 5 Estimated kinetic parameters for DME synthesis from MeOH of the present and previous studies (numbers in the 

parentheses represent 95% confidence intervals) 

Parameter This work Ng et al. [25] Bercic and Levec [35] Unit of k or K 

𝑘4 

𝐴 
8.28E+11 

(±1.25E+13) 
3.70E+10 5.35E+13 mol (kgcat ∙ s)⁄  

𝐸a 
122,427 

(±71,240) 
105,000 143,666 J/mol 

𝐾MeOH 

𝐴 
7.80E-03 

(±1.22E-01) 
7.90E-04 5.39E-04 m3 kmol⁄  

∆𝐻 
-54,489 

(±442,600) 
-70,500 -70,560 J/mol 

𝐾H2O,DME 

𝐴 
1.49E-02 

(±2.14E+00) 
8.40E-02 8.47E-02 m3 kmol⁄  

∆𝐻 
-21,489 

(±575,100) 
-41,100 -42,152 J/mol 

Catalyst CZA/FER CZA/γ-alumina γ-alumina  
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As shown in Table 4, the kinetic parameters, including the frequency factor 

(A) and activation energy (Ea), obtained in this work and those of Park et al. [33] 

differed, and this may possibly be attributed to the hybridization of CZA with 

FER. By hybridizing CZA, both activation energies and frequency factors of 

the CO and CO2 hydrogenations increased, while those of the water-gas shift 

reaction decreased. 

The differences in the k4, 𝐾MeOH, and 𝐾H2O,DME parameters obtained in 

this work and those of Ng et al. [25] given in Table 5, are attributed to their use 

of γ-Al2O3 for the MeOH dehydration. Both the activation energy and 

frequency factor of MeOH dehydration (k4) were greater than those of the Ng 

et al. study [25]. For the adsorption equilibrium constants, 𝐾MeOH  and 

𝐾H2O,DME, the heats of adsorption (∆𝐻) were greater than previously reported 

values, while the estimations of the frequency factors for 𝐾MeOH  and 

𝐾H2O,DME  were greater and less than those of the conventional catalyst, 

respectively. 

The semi-log plot of Figure 4 was used to further analyze the effects of the 

hybridization of the catalysts. As shown in Figure 4, the frequency factors of 

the parameters vary greatly, while the activation energies have similar orders-

of-magnitude. The activation energies of the CO and CO2 hydrogenations and 

water-gas shift reactions over the CZA/FER catalyst were determined to be 

relatively high compared to those over CZA: the CO hydrogenation provided 

the highest value of all of the Ea,1 parameters, and the estimated values of Ea,2 

and Ea,3 were high, indicating that the MeOH synthesis step over the hybrid 

catalyst may have more control over the rate than the MeOH dehydration step. 
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Figure 4 Semi-log plot for a comparison of the estimated kinetic 

parameters for the hybrid catalyst with those reported in the literature. The 

units of the frequency factors for each parameter are given in Tables 4 and 5. 

The red arrows indicate the estimated parameters in the present work. 
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 Previous chapter considered a combination of density functional theory 

(DFT) and the semi-empirical unity bond index-quadratic exponential potential 

(UBI-QEP) method [6]. This chapter also supports the above discussion by 

showing that the activation energy of the rate determining step (RDS), 

overlapped by both CO and CO2 hydrogenations, was 105,169 J/mol, which is 

lower than the activation energies over the hybrid catalyst. In the case of MeOH 

dehydration (k4), the activation energy of the hybrid CZA/FER catalyst was 

reduced compared to Chapter 5’s result of 257,519 J/mol for the DME 

formation reaction via the dissociative pathway, obtained by computational 

chemistry based on the zeolite catalyst only. Therefore, owing to the 

hybridization of the two different functional catalysts, the activation barrier of 

the MeOH synthesis was greater than that of the conventional catalyst, while 

that of DME synthesis was less, plausibly indicating that MeOH synthesis could 

become a RDS over DME synthesis. This feature may be attributed to the core-

shell structure of the catalyst where CZA occupied the inside of the catalyst, 

resulting in diffusion resistance.  

The developed model was used to evaluate the effects of operating 

conditions on the catalytic performances. As shown in Figure 5 (a), as the 

temperature increased from 180 to 230 °C, the CO conversion increased. After 

it reached the maximum, a slight decrease with temperature was shown, while 

the CO2 conversion decreased. Further increases in temperature resulted in 

negative values, which meant that CO2 was produced rather than consumed. At 

high temperatures greater than 220 °C, the CO2 conversion also showed 

saturated behavior. The selectivity of MeOH decreased with increasing 

temperature, while that of the DME increased, reaching a plateau at 220 °C 
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(Figure 5 (b)). The reactions occurring below 220 °C are in the kinetically 

controlled regime, whereas reactions occurring above this temperature fall 

under the thermodynamically controlled regime. Therefore, the recommended 

optimal reaction temperature range is 200 to 220 °C for increasing the thermal 

energy efficiency. Besides, the kinetic model confirmed CO conversion showed 

the positive effects of temperature even at high temperature, which implies that 

the reaction still stays in the kinetic regime rather than the thermodynamically-

controlled region. In other words, the thermodynamic equilibrium limitation of 

CO conversion could be overcome by hybridizing the two catalysts. 
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Figure 5 Effects of operating conditions on the conversions (left column) 

and selectivities (right column); the first, second, and third rows show the 

effects of temperature, total pressure, and GHSV, respectively. The fixed 

conditions were: Ptotal = 50 bar, GHSV = 2,000 L/(kgcat∙h), and CO/CO2/H2/N2 

= 21/9/66/4% for varying temperature; T = 200 °C, GHSV = 2,000 L/(kgcat∙h), 

and CO/CO2/H2/N2 = 21/9/66/4% for varying total pressure; and T = 200 °C, 

Ptotal = 50 bar, and CO/CO2/H2/N2 = 21/9/66/4% for varying GHSV. 
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Positive effects of the total pressure on the CO conversion were observed 

for the entire range, while CO2 conversion was inversely influenced by the 

pressure (Figure 5 (c)). As negligible effects of the pressure on the selectivities 

were observed (Figure 5 (d)), the optimal pressure may range between 30 and 

40 bar, which coincides with the usual operating pressure in commercial 

processes. 

As shown in Figure 5 (e), the lower the GHSV, the higher the CO conversion, 

as a low GHSV corresponds to a high residence time. However, the selectivities 

were not significantly influenced by the GHSV. Considering the degree of the 

increase in the CO conversion for a low GHSV, the optimal reactor size can be 

determined so that the corresponding GHSV is 4000 L/(kgcat∙h).  

It is worth noting that, one of the advantages of the process with a hybrid 

catalyst, that is, with both MeOH and DME syntheses taking place 

simultaneously, is that the equilibrium CO conversion is close to 100%, 

implying that the conversion is not limited by thermodynamic limitations. 

Meanwhile, in the case of two-step processes, the conversion for the MeOH 

reactor with the same feed composition is limited by the equilibrium conversion 

of lower than 100%, indicating that either the production of DME in the 

downstream is reduced or the additional separation process is required for the 

recycle of unreacted syngas. 
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Chapter 4 Microkietic modeling of 

methanol synthesis from syngas 

4.1 Background 

Methanol is one of the key materials produced from syngas, which contains 

carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), and can not 

only be used as a fuel or solvent by itself, but also can be converted into other 

useful derivatives, such as dimethyl ether (DME), methyl acetate (MA), ethanol, 

and acetic acid. 

Kinetic studies on methanol synthesis can be divided into two main 

categories: lumped kinetics and microkinetics. The former usually employs a 

simple kinetic model representing the overall reactions and assuming a rate-

determining step (RDS), while the latter considers all possible reaction 

pathways without assuming a particular RDS. Although most previous studies 

have been conducted by lumped kinetics, microkinetic studies are necessary in 

order to gain a fundamental understanding of the reactions and increase the 

system efficiency. 

Studies on the production of methanol from syngas have mainly been based 

on catalytic reactions under gas-phase conditions, comprising CO 

hydrogenation, CO2 hydrogenation, and the water–gas shift (WGS) reaction as 

the basic mechanisms. 

Villa et al. proposed lumped kinetics for the low-pressure synthesis of 

methanol by CO hydrogenation and the WGS reaction over a commercial 
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Cu/ZnO/Al2O3 catalyst in a Berty CSTR [47]. Graaf et al. described the lumped 

kinetics of methanol synthesis in a low-pressure spinning basket reactor over a 

commercial Cu-Zn-Al catalyst at 15–50 bar and 483.15–518.15 K [32] to show 

that both CO and CO2 hydrogenations are involved in the synthesis of methanol 

under these experimental conditions. In another of their works, the chemical 

equilibria of the WGS reaction were analyzed in a fixed-bed catalytic reactor in 

the range of 10–80 bar and 473.15–543.15 K [41], using the Soave–Redlich–

Kwong equation of state, where commercial-size catalyst particles were found 

to exhibit limited intra-particle diffusion during methanol synthesis [48]. They 

also conducted experiments with two different catalyst particle sizes at 10–50 

bar and 483.15–548.15 K in a spinning basket reactor and a fixed-bed catalytic 

reactor.  

Baetzold and Somorjai calculated the pre-exponential factors for catalytic 

surface reactions and determined the RDS based on the calculated results [49], 

from which they suggested guidelines for typical pseudo first-order pre-

exponential factors for various rate-limiting steps: 102–104, 107–1011, 10–1013, 

and 1013–1016 s-1 for adsorption, diffusion, surface reaction, and desorption, 

respectively. 

Gokhale et al. analyzed the thermochemistry and activation energy barrier 

of the WGS reaction mechanism on Cu (111) by DFT-generalized gradient 

approximation (GGA) calculations [50], and proposed that a carboxyl-mediated 

route replaces the redox mechanism, which is the commonly accepted 

mechanism. Lim et al. presented a kinetic model with different adsorption sites 

for CO and CO2 for methanol synthesis over a Cu/ZnO/Al2O3/ZrO2 catalyst to 
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determine the appropriate RDS out of 48 combinations [40]. Grabow and 

Mavrikakis proposed a microkinetic model consisting of 49 elementary-step 

reactions [34], where the initial kinetic parameters were obtained by DFT 

calculations, and found that 2/3 of methanol is generated by CO2 hydrogenation 

under typical industrial conditions. Ovesen et al. presented a microkinetic 

model for the WGS reaction based on elementary-step reactions at the atomic 

level, and calculated the activation energies and reaction orders [51]. Skrzypek 

et al. studied the low-pressure synthesis of methanol over Polish commercial 

catalyst CuO (60–65 wt%)–ZnO (25–35 wt%)–Al2O3 (remaining percentage) 

and described that CO2 hydrogenation and WGS are the main reactions rather 

than CO hydrogenation [45]. A gas-phase thermodynamics model-based kinetic 

study by Askgaard et al. showed that H2COO* hydrogenation to methoxide 

over Cu (100) is the RDS, where the methanol synthesis rate obtained from the 

model was extrapolated to validate the industrial working conditions [52]. 

Bussche et al. reported a steady-state kinetic model for methanol synthesis and 

the WGS reaction over a Cu/ZnO/Al2O3 catalyst and fitted the parameters to 

bench-scale experimental data at 453.15–553.15 K and pressures of up to 51 

bar so as to predict the conversion data and evaluate the effects of the inlet 

temperature, pressure, and partial pressures of CO and CO2 [30]. Park et al. 

studied a kinetic model based on three-site adsorption and performed the 

parameter estimation using 118 experimental data under various conditions [33]. 

They confirmed the occurrence of both CO and CO2 hydrogenations, whose 

conversion was mainly influenced by the CO and H2 fractions. In addition, the 

effects of limited internal diffusion on the catalytic performance were evaluated 

by changing the catalyst particle size to model a pilot-scale methanol synthesis 
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process [53]. Portha et al. investigated the kinetics of methanol synthesis by 

CO2 hydrogenation on two noncommercial catalysts, a copper-zinc oxide 

catalyst on alumina (CuZA) and a copper-zinc oxide catalyst on zirconia 

(CuZZ), using Graaf’s kinetic model based on the LHHW mechanism [54]. An 

isothermal pseudo-homogeneous PFR at 473.15–503.15 K, 50–80 bar, and 

7800–23400 h-1 was considered in the absence of CO in the feed, in accordance 

with recent industrial applications. 

In this chapter, a practical microkinetic modeling approach that avoids the 

use of computationally intensive transition state theory (TST) is presented and 

applied to methanol synthesis over a Cu-based catalyst. On the basis of 28 

possible elementary-step reactions for CO hydrogenation, CO2 hydrogenation, 

and the WGS reaction, the values of the activation energies were obtained by a 

combination of DFT and the UBI-QEP methods, while pre-exponential factors 

were estimated by fitting the experimental data [32] without theoretical 

calculations to reduce the computational load and increase the reliability of the 

model. Although theoretical computation is based on electronic structure of 

catalyst and interactions between electrons, ab-initio calculations is insufficient 

to simulate the actual experimental behaviors, probably due to the limitation on 

the computational burden and inappropriate assumptions. Therefore, the 

method suggested in the present chapter determined heat of adsorption and 

activation energies by the theoretical calculations under the assumption of 

simple structure, while pre-exponential factors were determined by fitting 

experimental data to ensure the reliability of the model, in such a way that the 

development was conducted in relatively cost-effective manner.  In the reactor 

modeling step, the partial equilibrium ratio (PER) was calculated to reduce the 
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stiffness of the ODEs, and a quasi-equilibrium assumption was applied to the 

elementary-step reactions with PER values close to 0.5. A scheme of the 

modeling procedure in this chapter is shown in Figure 6. Finally, the most 

plausible reaction pathways for CO and CO2 hydrogenation and the rate-

controlling steps were found using the developed parameter-fitted microkinetic 

model. In addition, several case studies were evaluated to analyze the effects of 

the operating conditions on the synthesis of methanol. 
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Figure 6 Scheme of the stepwise multiscale modeling procedure. 
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4.2 Reaction Mechanism 

The reaction mechanism for methanol synthesis from syngas is basically 

composed of the following three overall reactions: 

 

CO hydrogenation: CO + 2H2 ↔ CH3OH 

CO2 hydrogenation: CO2 + 3H2 ↔ CH3OH + H2O 

WGS reaction: H2O + CO ↔ H2 + CO2 

 

Methanol is the only product from CO hydrogenation, while water is also 

produced during CO2 hydrogenation. For the microkinetic model, elementary-

step reactions for CO and CO2 hydrogenations were defined by considering all 

possible reactions and surface intermediates on the basis of previously reported 

works [30, 52, 55-58], whose details are described in Table 6. The elementary 

steps included the adsorption and desorption reactions of gas-phase species, 

which were mostly the reactants and the products of the three overall reactions, 

and the surface reactions of the intermediates on the catalytic surface. 

Dissociation and disproportionation reactions of the small intermediates, such 

as CO*, CO2*, H*, OH* and O*, were also included, and the reactions of 

building blocks with each other were considered to form larger intermediates 

such as H2O*, HCO*, HCOO**, CH2O*, CH3O*, CH3OH*, and so on. A total 

of 14 surface intermediates (CO*, CO2*, H*, H2O*, CH2O*, CH3OH*, O*, 

OH*, COOH*, HCOO**, H2CO2*, CH3O*, CH3O2*, and HCO*) were 

considered to constitute the catalyst surface sites. As a result, total number of 
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elementary steps was 28 by neglecting undetected gas phase species (CH2O, 

HCOOH and HCOOCH3) and the corresponding surface intermediates, while 

49 steps were considered in the literature [34]. 
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Table 6 Elementary step reactions for CO and CO2 hydrogenations and the 

WGS reaction (both redox and carboxyl mechanisms [50]) considered in this 

work† 

Rxn no. Reaction 𝑟𝑓 𝑟𝑏 

R1 CO + * ↔ CO* 𝑘f1𝑃CO𝜃𝐶𝑢 𝑘b1𝜃CO 

R2 CO2 + * ↔ CO2* 𝑘f2𝑃CO2
𝜃Cu 𝑘b2𝜃CO2

 

R3 H2 + 2* ↔ 2H* 𝑘f3𝑃H2
𝜃Cu

2  𝑘b3𝜃H
2  

R4 H2O + * ↔ H2O* 𝑘f4𝑃H2O𝜃Cu 𝑘b4𝜃H2O 

R5 CH2O + * ↔ CH2O* 𝑘f5𝑃CH2O𝜃Cu 𝑘b5𝜃CH2O 

R6 CH3OH + * ↔ CH3OH* 𝑘f6𝑃CH3OH𝜃Cu 𝑘b6𝜃CH3OH 

R7 CO* + O* ↔ CO2* + * 𝑘f7𝜃CO𝜃O 𝑘b7𝜃CO2
𝜃Cu 

R8 CO* + OH* ↔ COOH* + * 𝑘f8𝜃CO𝜃OH 𝑘b8𝜃COOH𝜃Cu 

R9 CO2* + H* ↔ COOH* + * 𝑘f9𝜃CO2
𝜃H 𝑘b9𝜃COOH𝜃Cu 

R10 CO2* + H2O* ↔ COOH* + OH* 𝑘f10𝜃CO2
𝜃H2O 𝑘b10𝜃COOH𝜃OH 

R11 H2O* + * ↔ OH* + H* 𝑘f11𝜃H2O𝜃Cu 𝑘b11𝜃OH𝜃H 

R12 OH* + * ↔ O* + H* 𝑘f12𝜃OH𝜃Cu 𝑘b12𝜃O𝜃H 

R13 2OH* + * ↔ H2O* + H* 𝑘f13𝜃OH
2  𝑘b13𝜃H2O𝜃H 

R14 CO2* + H* ↔ HCOO** 𝑘f14𝜃CO2
𝜃H 𝑘b14𝜃HCOO 

R15 HCOO** + H* ↔ H2CO2* + 2* 𝑘f15𝜃HCOO𝜃H 𝑘b15𝜃H2CO2
𝜃Cu

2  

R16 H2CO2* + H* ↔ CH3O2* + * 𝑘f16𝜃H2CO2
𝜃H 𝑘b16𝜃CH3O2

𝜃Cu 

R17 H2CO2* + * ↔ CH2O* + O* 𝑘f17𝜃H2CO2
𝜃Cu 𝑘b17𝜃CH2O𝜃O 

R18 CH3O2* + * ↔ CH2O* + OH* 𝑘f18𝜃H2CO2
𝜃Cu 𝑘𝑏18𝜃𝐶𝐻2𝑂𝜃𝑂 

R19 CH2O* + H* ↔ CH3O* + * 𝑘f19𝜃CH2O𝜃H 𝑘b19𝜃CH3O𝜃Cu 
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R20 CH3O* + H* ↔ CH3OH* + * 𝑘f20𝜃CH3O𝜃H 𝑘b20𝜃CH3OH𝜃Cu 

R21 CO* + H* ↔ HCO + * 𝑘f21𝜃CO𝜃H 𝑘b21𝜃HCO𝜃Cu 

R22 HCOO** ↔ HCO* + O* 𝑘f22𝜃HCOO 𝑘b22𝜃HCO𝜃O 

R23 HCO* + H* ↔ CH2O* + * 𝑘f23𝜃HCO𝜃H 𝑘b23𝜃CH2O𝜃Cu 

R24 CO* + OH* ↔ HCO* + O* 𝑘f24𝜃CO𝜃OH 𝑘b24𝜃HCO𝜃O 

R25 CO* + H2O* ↔ HCO* + OH* 𝑘f25𝜃CO𝜃H2O 𝑘b25𝜃HCO𝜃OH 

R26 CH3O* + CO* ↔ CH2O* + HCO* 𝑘f26𝜃CH3O𝜃CO 𝑘b26𝜃CH2O𝜃HCO 

R27 CH3O* + HCO* ↔ CH3OH* + CO* 𝑘f27𝜃CH3O𝜃HCO 𝑘b27𝜃CH3OH𝜃CO 

R28 CH3O2* + H* ↔ CH2O* + H2O* 𝑘f28𝜃CH3O2
𝜃H 𝑘b28𝜃CH2O𝜃H2O 

†Symbol * represents vacant sites and HCOO** refers to bidentate species, while 𝑟f  and 𝑟b 

denote the forward and backward reaction rates, respectively.  
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4.3 Methods 

For kinetic modeling of all 28 elementary-step reactions, all the kinetic 

parameters for the forward and backward reactions were calculated using the 

Arrhenius equation. The initial value of the pre-exponential factor was derived 

from the order-of-magnitude based on TST, under the assumption that the 

values of the pre-exponential factor for immobile transition states, molecular 

adsorption, and dissociative adsorption are of the order of 101 Pa-1 s-1, while 

those for the molecular desorption and associative desorption are of the order 

of 1013 s-1. The Langmuir–Hinshelwood surface reaction has an order of 1013 s-

1 in the absence of rotation [11]. 

4.3.1 Activation Energy 

In order to calculate the activation energies, the enthalpies and adsorption 

energies of gas and surface intermediates were calculated by the first-principles 

DFT method and then, those values were applied to the UBI-QEP [16]. The 

software Vienna Ab-Initio Simulation Package (VASP) was used for DFT 

calculations in the present chapter [22, 59, 60].  

For gas-phase species, DFT calculations were carried out in an isolated 

system not affected by periodic boundary conditions. Spin-polarized 

calculations were performed for atom species such as H and O, while non-spin-

polarized calculations were used for the remaining species [61]. 

Copper nanoparticles exist in several forms on the surface of Cu/ZnO/Al2O3 

catalyst, including metallic surfaces such as Cu (111), Cu (100) and Cu (200), 

partially oxidized Cu surfaces such as Cu2O and CuO, and defective sites. Cu 

can also interact with ZnO support affecting the reaction activities [62]. In 
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addition, the stepped and defective sites on Cu surface affect the adsorption of 

intermediates and reaction activities in methanol synthesis. For example, CO2 

dissociation takes place preferentially on the stepped and defective sites, 

resulting in the high selectivity for methanol synthesis [63]. Strong adsorption 

of the intermediates on the stepped sites, which are stabilized by defects like 

stacking faults, and lower activation barriers also cause high activity [64]. 

However, since it was reported that the oxide support has no significant effects 

on the activity of Cu in methanol synthesis due to highly reduced conditions 

[65], the pure metallic Cu surface was used in DFT calculations. Since Cu (111) 

and Cu (100) surfaces are one of the most frequently observed surfaces at low 

pressures [66] and polycrystalline Cu exposes primarily a Cu (111) surface [67], 

DFT calculations were performed on Cu (111) surface. Having cubic structure 

and space group of Fm-3m, unit cell optimization was performed to create a Cu 

(111) surface slab model, as shown in Figure 7, with a lattice constant of 3.66 

Å (cf., the experimental value is 3.62 Å) [23]. The slab model consisted of three 

layers of Cu (111) surfaces under the assumption of negligible surface 

relaxation effects and vacuum of 10.6 Å to minimize the effects of periodic 

boundary conditions [50, 68, 69]. It is worth noting that, although there are 

many possible oxidation states Cu in contact with ZnO such as Cu0, Cu+ and 

Cu2+ [70, 71], this feature was not considered in the present work due to the 

assumption of pure metallic Cu on the catalyst surface. 
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Figure 7 Cu (111) slab model. 



 66 

Using a primitive (3  3) model, all the materials had a coverage of 1/9 of 

the monolayer. The total energies of the adsorbed materials were calculated on 

a 5  5  1 k-point monkhorst-packed grid, and the Perdew–Wang 91 GGA 

(GGA-PW91) was used as the functional. The calculations were performed 

under a non-spin-polarized environment, and the plane-wave cut-off was set to 

530 eV to prevent Pulay stresses [72]. 

The adsorption energies (Qads) were calculated using the following equation: 

 

𝑄ads = |𝐸ads| = |𝐸total − 𝐸clean − 𝐸gas|  (4.1) 

 

where Etotal, Eclean, and Egas represent the total energy of the surface with surface 

intermediates, the bare surface, and the adsorbed species in gas-phase, 

respectively. A negative value of Eads corresponds to an exothermic adsorption 

reaction, while a positive value denotes endothermic adsorption. The enthalpy 

of the reaction (∆𝐻rxn) is defined as follows: 

For dissociative adsorption: 

∆𝐻rxn = 𝐷AB − 𝑄A − 𝑄B with 𝐷AB = 𝐻A + 𝐻B − 𝐻AB (4.2) 

For the dissociation reaction: 

∆𝐻rxn = 𝐷AB+𝑄AB − 𝑄A − 𝑄B with 𝐷AB = 𝐻A + 𝐻B − 𝐻AB (4.3) 

For the disproportionation reaction: 
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∆𝐻rxn = 𝐷AB + 𝑄A + 𝑄B − 𝑄C − 𝑄D  with 𝐷AB = 𝐻C + 𝐻D − 𝐻A − 𝐻B  (4.4) 

 

where the gas-phase dissociation energy 𝐷 and gas-phase enthalpy 𝐻 were 

calculated by the DFT method. 

Only 𝐸f  was calculated by the UBI-QEP method, while 𝐸b  was 

calculated by the following equation: 

 

𝐸b = 𝐸f − ∆𝐻rxn    (4.5) 

 

If either 𝐸f or 𝐸b became negative during the calculation process, it was 

set to zero and the other energy replaced with the absolute value of the enthalpy 

of reaction. 

 

4.3.2 Microkinetic Model 

As mentioned earlier, a microkinetic model is difficult to solve with a general 

ODE solver because many reactions are included in the model and they are 

strongly correlated. In order to solve this problem, model reduction was 

conducted in such a way that the elementary-step reactions, which are close to 

the quasi-equilibrium, were assumed to have little influence on the reaction 

kinetics and the corresponding mechanisms were excluded [1]. 

First, steady-state solutions were obtained at three different temperatures of 

483.5, 499.3, and 516.7 K, and a partial equilibrium analysis was performed to 



 68 

exclude the reactions that barely influence the reaction kinetics. The partial 

equilibrium ratio (φ) was defined by the following equation: 

 

𝜑 =
𝑟f

𝑟f+𝑟b
    (4.6) 

 

An elementary surface reaction can be assumed to be quasi-equilibrated if 

φ is close to 0.5 (i.e., the rates of the forward and backward reactions are 

similar). The kinetic parameters of the remaining elementary-step reactions 

were fitted to the experimental values of the H2O and CH3OH outlet 

compositions at the three temperatures. Meanwhile, the adsorption and 

desorption reactions of gaseous species (CO (g), CO2 (g), H2 (g), H2O (g), and 

CH3OH (g)) were assumed to be in quasi-equilibrium, with the exception of 

CH2O (g) desorption that was assumed to be negligible because it is not a 

product experimentally observed. 

For gas-phase species, the following equations were developed by applying 

the equilibrium relations of adsorption and desorption reactions: 

 

𝐾CO =
𝑘ads,CO

𝑘des,CO
= 𝑎(CO)exp (

𝑏(CO)

𝑅𝑇
) =

𝜃CO

𝑃CO𝜃Cu
   (4.7) 

𝐾CO2
=

𝑘ads,CO2

𝑘des,CO2

= 𝑎(CO2)exp (
𝑏(CO2)

𝑅𝑇
) =

𝜃CO2

𝑃CO2
𝜃Cu

   (4.8) 

𝐾H2
=

𝑘ads,H2

𝑘des,H2

= 𝑎(H2)exp (
𝑏(H2)

𝑅𝑇
) =

𝜃H
2

𝑃H2𝜃Cu
2    (4.9) 
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𝐾H2O =
𝑘ads,H2O

𝑘des,H2O
= 𝑎(H2O)exp (

𝑏(H2O)

𝑅𝑇
) =

𝜃H2O

𝑃H2O𝜃Cu
  (4.10) 

𝐾CH3OH = 𝑎(CH3OH)exp (
𝑏(CH3OH)

𝑅𝑇
) =

𝑘ads,CH3OH

𝑘des,CH3OH
=

𝜃CH3OH

𝑃CH3OH𝜃Cu
 (4.11) 

 

where 𝐾i , 𝑘ads,i  , 𝑘des,i , and 𝑃i  represent the adsorption equilibrium 

constant, adsorption rate constant, desorption rate constant, and partial pressure, 

respectively, for gas-phase species i, while 𝜃j  denotes the coverage (site 

fraction) of surface intermediate j (cf., θCu is the fraction of vacant sites). 

Symbols 𝑎(𝑖)  and 𝑏(𝑖)  are derived from the Arrhenius equations for the 

adsorption and desorption rate constants. The coverages of the adsorbed 

components of the feed (CO*, CO2*, and H*) were determined as follows: 

 

𝜃CO = 𝐾CO𝑃CO𝜃Cu   (4.12) 

𝜃CO2
= 𝐾CO2

𝑃CO2
𝜃Cu   (4.13) 

𝜃H = (√𝐾H2
𝑃H2

)𝜃Cu   (4.14) 

 

The partial pressures of the main products (H2O and CH3OH) were derived 

by calculating the coverage of H2O* and CH3OH*, as follows: 

 

𝑃H2O =
𝜃H2O

𝐾H2O𝜃Cu
    (4.15) 
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𝑃CH3OH =
𝜃CH3OH

𝐾CH3OH𝜃Cu
   (4.16) 

 

Since a previous study showed that the most abundant surface intermediates 

on Cu (111) were free sites and hydrogen (H*) as a result of the calculation [52], 

those species were considered in the site balance equation, while H2O and 

CH3OH were assumed to desorb rapidly. The coverage of vacant sites was 

derived by considering the species significantly related to the production of 

CH3OH [32, 33] and applying Equations (4.12)–(4.14), as follows: 

 

1 = 𝜃Cu + 𝜃CO + 𝜃CO2
+ 𝜃H     (4.17) 

1 = 𝜃Cu + 𝐾CO𝑃CO𝜃Cu + 𝐾CO2
𝑃CO2

𝜃Cu + (√𝐾H2
𝑃H2

)𝜃Cu  (4.18) 

𝜃Cu =
1

1+𝐾CO𝑃CO+𝐾CO2𝑃CO2+√𝐾H2𝑃H2

    (4.19) 

 

The remaining reaction kinetic equations were solved by a stiff ODE solver 

(ode15s) in MATLAB (MathWorks, Inc.), where the backward differentiation 

formula (BDF) algorithm was used to solve the following ODEs efficiently. The 

coverages of surface intermediates except CO*, CO2*, and H*, which were 

already included in the reaction rates, were determined by solving the balance 

equations until steady states were reached. Detailed differential equations for 



 71 

the balances of surface intermediates can be referred to the Supporting 

Information in Appendix (Equations (S1)–(S11)). 

Experimental data for a spinning basket reactor reported by Graaf et al. [32, 

73] were used to conduct kinetic parameter estimations, and a CSTR was used 

as the reactor model in this work. A spinning basket reactor has several 

advantages: Ease of construction and maintenance, perfect mixing of the bulk 

gas, and great heat and mass transfer between the bulk gas and the external 

surface of the catalyst [74]. In the experiments, kinetic data were obtained over 

a commercial Cu/ZnO/Al2O3 catalyst (Haldor Topsoe Mk 101) at 15–50 bar and 

483–518 K by varying feed flow rates and compositions of CO, CO2 and H2. 

The catalyst particles were kept in four baskets attached on a common stirrer 

shaft of the reactor. The compositions of gas species except for hydrogen at the 

outlet were measured by a gas-liquid chromatography, while the composition 

of hydrogen was determined from material balances. On the basis of 

experimental observation that the methanol synthesis rates did not change with 

the variation of the stirrer speed from 8.3 to 33 s-1 and reported calculations, the 

experimental conditions were assumed to be under the reaction kinetics regime, 

with no mass transfer limitation. However, some experimental data were 

ignored in this work because intra-particle diffusion limitations were observed 

at temperatures above 518 K, as noted by Askgaard et al. [52]. 

The exit gas consisted of reactants (CO, CO2, and H2), products (H2O and 

CH3OH), and byproducts (CH3OCH3 (DME), CH4, C2H6, and C3H8), as per the 
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report by Graaf et al. However, since the sum of compositions for the 

byproducts was below 0.0001 in the experimental data, the corresponding 

elementary steps were ignored. In addition, the data presenting relative errors 

above 40% in the material balance according to Askgaard et al.’s criterion were 

considered to be obtained at non-steady-state and were thus excluded. The site 

density of the copper catalyst was specified to be 300 μmol g-1 [75]. 

The parameter estimation was conducted for 41 parameters, including five 

adsorption and desorption equilibrium constants and 36 pre-exponential factors 

(18 for each forward and backward reaction), with all activation energies fixed. 

For the adsorption and desorption equilibrium constants, 𝑏(𝑖) were fixed with 

the values obtained from the DFT calculations, and only 𝑎(𝑖) were estimated 

with initial values specified at 10-12 Pa-1 s-1 from the order-of-magnitude of TST. 

In the case of surface reactions, the pre-exponential factors have been reported 

to vary from 101 to 1022 s-1 [49, 56], and thus, those values were specified as the 

lower and upper bounds for the parameters. 

The genetic algorithm (GA), which is a useful optimization technique to 

search for optimal points by randomly scattering population seeds when the 

search space is large, was used to estimate the parameters globally. The 

following objective function, based on the relative error sum of squares (ESS) 

between the experimental and calculated values of the CH3OH and H2O 

production rates, was used to fit the experimental data. From the perspective of 
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overall mass balance, the consumption rates of H2, CO and CO2 are reflected in 

the production rate of methanol and water. Therefore, because of highly 

correlated characteristics of the species, the production rates of methanol and 

water were only included in the objective function. 

 

𝐹obj = ∑ [(
𝑟CH3OH,exp−𝑟CH3OH,calc

𝑟CH3OH,exp
)

2

+ 𝑊𝐹 (
𝑟H2O,exp−𝑟H2O,calc

𝑟H2O,exp
)

2

]
𝑖

𝑁
𝑖  (4.20) 

 

where 𝑁 denotes the number of experimental conditions considered, and WF 

is a weighting factor. When WF was set to 0, parameter fitting was performed 

only for CH3OH, while an infinite value of WF corresponded to the estimation 

only for H2O. Likewise, at WF = 1, CH3OH and H2O were considered equally. 

In this work, equal weight was given to both quantities.
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4.4 Application Results and Discussion 

4.4.1 DFT Calculations 

The adsorption energies and most stable adsorption states of all the surface 

intermediates under 1/9 monolayer conditions involved in the elementary-step 

reactions were determined, as summarized in Table 7. These results are in good 

agreement with the findings of previous research works [34]. It is worth noting 

that the adsorption energy of CO (-0.71 eV) is much lower than that of H* (-

2.40 eV). This feature is attributable that, since CO is more stable than H* in 

gas-phase, less adsorption energy is released when CO is adsorbed on Cu 

surface. Meanwhile, highly unstable state of H* in gas-phase leads to much 

higher adsorption energy of H (-2.40 eV) than that of CO (-0.71 eV).  
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Table 7 Most stable adsorption sites and adsorption energies of all the surface 

intermediates 

Surface intermediate Adsorption site Adsorption energy [eV] 

CO* fcc -0.71 

CO2* physisorbed -0.04 

H* fcc -2.40 

H2O* top -0.18 

CH3OH* O-top -0.19 

O* fcc -4.89 

OH* fcc -3.13 

HCO* bridge -1.23 

HCOO** top-top -2.75 

H2CO2* bridge-bridge -3.81 

COOH* top -1.56 

CH2O* C-top/O-bridge -0.06 

CH3O* fcc -2.26 

CH3O2* O-bridge/O-top -2.20 
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Since formate (HCOO**), which can be generated in the WGS reaction, has 

been reported to play an important role in methanol synthesis [76-81] and its 

coverage is known to be proportional to the turnover frequency of methanol in 

the Zn/Cu (111) catalyst model [82], the adsorption state of the molecule was 

assumed to significantly affect the overall reaction rates. It has been reported in 

previous studies [34, 83-85] that formate adsorbs in a bidentate fashion on the 

Cu (111) surface, as observed in the DFT calculations (Figure 8). This behavior 

is in fact reflected in the equations of the microkinetic model, while most 

reported works have considered a first-order dependence of the vacant sites 

(θCu). 
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Figure 8 Most stable state of HCOO** calculated by the DFT method 

(bidentate form).

Figure 3
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4.4.2 Microkinetic Model 

In this work, microkinetic model was developed under the experimental 

operating conditions: pressure of 15, 30, and 50 bar; temperature of 483.5, 

499.3, and 516.7 K; gas flow rates per catalyst weight of 0.001–0.006 m3 s-1 kg-

1 at the standard temperature and pressure. The catalyst weight was 4.24 g and 

the feed compositions were 0.053/0.047/0.900, 0.120/0.021/0.859, 

0.179/0.067/0.754 for CO/CO2/H2. The partial equilibrium ratios were 

calculated for each elementary-step reaction to alleviate the stiffness of the 

ODEs, and the results are shown in Figure 9 on the basis of steady-state 

solutions under three different temperature conditions. 
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Figure 9 Partial equilibrium ratios for the surface reactions at three different 

temperatures. 
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Since the partial equilibrium ratios of R9, R14, R19, and R28 are close to 

0.5, those four reactions can be assumed to be quasi-equilibrated and were thus 

excluded from the set of reaction rates. 

The estimated data are shown in the parity plot (Figure 10), where a log–log 

scale was applied to consider different orders of experimental data. The 

experimental data were well reproduced with R2 values of 0.90 and 0.99 for the 

CH3OH and H2O synthesis rates, respectively (R2 = 0.94 overall).  

The estimated parameters are shown in Table 8 with the reaction enthalpies 

and activation energies obtained from DFT and UBI-QEP calculations, 

respectively. After assuming the quasi-equilibrium on the several elementary 

steps and performing parameter estimation, the ODE solving failure caused by 

stiffness did not occur when conducting analysis on the reaction mechanisms 

and case studies. 
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Figure 10 Experimental and calculated CH3OH/H2O synthesis rates (● 

CH3OH, □ H2O). 
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Table 8 Estimated parameters for adsorption/desorption reactions and surface 

reactions 

Reaction 

𝑎(𝑖) 

[Pa-1 s-1] 

∆H 

[eV] 

Bond index 

Ef 

[eV] 

R1 2.55E-20 -0.71 - - 

R2 1.75E-18 -0.04 - - 

R3 1.73E-09 -0.27 - - 

R4 1.31E-17 -0.18 - - 

R5 - -0.06 - - 

R6 5.51E-21 -0.19 - - 

 

Af 

[s-1] 

Ab 

[s-1] 

∆H 

[eV] 

Bond index 

Ef 

[eV] 

R7 3.83E+16 6.98E+17 -1.08 0.95 0.53 

R8 1.00E+20 1.28E+06 0.16 0.5 0.37 

R10 1.00E+18 1.65E+06 0.78 0.5 0.78 

R11 6.07E+11 2.83E+14 0.26 0.5 0.81 

R12 8.78E+17 1.42E+07 0.72 0.5 1.17 

R13 1.57E+11 2.66E+14 0.47 0.95 0.61 

R15 3.17E+18 4.32E+16 0.89 0.5 1.09 

R16 1.94E+17 8.40E+19 -0.61 0.6 0.64 

R17 1.18E+17 1.47E+13 0.76 0.5 0.76 

R18 7.67E+12 1.38E+14 0.65 0.5 0.65 

R20 1.94E+11 1.01E+05 -0.23 0.95 1.09 

R21 5.16E+07 1.28E+09 0.72 0.5 0.72 
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R22 1.97E+14 9.31E+17 2.08 0.5 2.08 

R23 4.31E+13 1.72E+11 -0.43 0.5 0.19 

R24 8.15E+12 1.78E+19 1.45 0.5 1.45 

R25 2.08E+19 1.01E+13 0.98 0.5 0.98 

R26 1.00E+22 1.00E+14 1.70 0.5 1.70 

R27 1.31E+02 8.20E+20 -0.96 0.5 0 
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The relative reaction rates of each elementary-step reactions were compared 

using the parameter-fitted microkinetic model developed in this chapter to show 

that the most plausible path for CO hydrogenation is CO (g) → CO* → HCO* 

→ CH2O* → CH3O* → CH3OH* → CH3OH (g), while CO2 is most likely 

hydrogenated via CO2 (g) → CO2* → HCOO** → H2CO2* → CH3O2* → 

CH2O* → CH3O* → CH3OH* → CH3OH (g). These reactions were 

approximately 2–3 orders of magnitude faster than the other competitive 

reactions. In the case of CO hydrogenation, CO (g) in the gas-phase is adsorbed 

on the catalyst surface (CO*) and sequentially reacts with H* to form CH3OH*, 

followed by its desorption. In the case of CO2 hydrogenation, CO2* reacts 

sequentially with H* to form CH3O2*. Then, CH3O2* reacts with H* and is 

decomposed into CH2O* and H2O* via a disproportionation reaction (R28). 

Finally, CH2O* reacts in the same way as in CO hydrogenation to produce 

CH3OH*. Figure 11 (a) and (b) shows the most plausible pathways for CO and 

CO2 hydrogenation, respectively, along with the energy levels estimated by the 

DFT calculations and the adsorption images of the involved surface 

intermediates. It is worth noting that, although step reactions R14, R19, and 

R28 were found to be quasi-equilibrated and thus excluded from the kinetic 

analysis, they were included in the pathways to compensate for the missing 

steps and were assumed to rapidly reach the quasi-equilibrium. 
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Figure 11 Most plausible reaction pathways for (a) CO and (b) CO2 

hydrogenation. 
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Figure 12 shows the surface coverage of the most abundant surface 

intermediates as a function of the pressure from 1 to 100 bar at the fixed 

temperature of 510 K, where those with a coverage below 10-5 were excluded 

from the figure. The catalyst surface was mainly covered by H* and vacant sites 

under the operating conditions, which is consistent with reported results[52]. 

As seen in Figure 12 (a) and (b), at a constant feed ratio, the coverage of H* 

increased with an increase in pressure, while that of the vacant sites decreased.  

Comparison of Figure 12 (a) and (b) revealed the effects of the fraction of 

H2 (g) on the surface coverage of H*; the smaller the fraction of H2 (g), the 

smaller the coverage of H* at the same pressure. Meanwhile, the CO* and CO2* 

coverages were found to be little influenced by the fractions of CO (g) and CO2 

(g). 
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Figure 12 Plots of surface coverage as a function of the total pressure at H2 

fractions of (a) 0.9 and (b) 0.5. 
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4.4.3 Rate-Determining Step 

The rate-controlling steps were identified using Campbell’s degree of rate 

control [20, 86-88]. The sensitivity of each elementary-step reaction on the 

overall methanol synthesis rate was analyzed. The degree of rate control of the 

n-th elementary step, XRC,n, is given by: 

 

𝑋RC,n =
𝑘n

𝑟CH3OH
(

𝜕𝑟CH3OH

𝜕𝑘n
)

𝐾n,eq,𝑘m≠n

   (4.21) 

 

where 𝑟CH3OH  is the reaction rate of methanol synthesis and kn is the rate 

constant of the n-th step reaction to be varied, while the equilibrium constant 

of the n-th step reaction and the other reaction rate constants are held constant. 

The temperature and pressure were fixed at 500 K and 15 bar, respectively. The 

degree was calculated at three different feed compositions: (1) 5.3 mol% CO, 

4.7 mol% CO2, and 90 mol% H2; (2) 12 mol% CO, 2.1 mol% CO2, and 85.9 

mol% H2; and (3) 17.9 mol% CO, 6.7 mol% CO2, and 75.4 mol% H2.  

Based on the degree of rate control, four steps were determined to be rate-

controlling: R7 (CO* + O* ↔ CO2* + *), R20 (CH3O* + H* ↔ CH3OH* + *), 

R24 (CO* + OH* ↔ HCO* + O*), and R26 (CH3O* + CO* ↔ CH2O* + 

HCO*), of which R20 is the only step included in the most plausible reaction 

pathways for CO and CO2 hydrogenation (cf., Figure 11).  
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Graaf’s group showed that R19 (CH2O* + H* ↔ CH3O* + *) and R16 

(H2CO2* + H* ↔ CH3O2* + *) are the RDSs for CO and CO2 hydrogenation, 

respectively [32], while the surface reaction of methoxy species H3CO* and H* 

(R20) [40, 79] and the hydrogenation of formate intermediate HCOO** (R15) 

[40, 89] have been reported to determine the overall rate, respectively. In the 

microkinetic model, R20 was determined as the common RDS for CO and CO2 

hydrogenation, as discussed above. In addition, the activation energy 

calculations showed that R20 presents a higher activation energy (1.09 eV) than 

R16 (0.64 eV) and R19 (0.01 eV). Compared to the reported RDS [40, 89], the 

hydrogenation of formate intermediate HCOO** (R15) was not included in the 

RDS. Since the bidentate species of the formate intermediate (HCOO**) 

covered larger surface than a monodentate species and collided with hydrogen 

intermediate more easily, the hydrogenation of formate intermediate (R15) 

might be faster and this reaction step was not considered as a RDS. 

 

4.4.4 Effects of Operating Conditions 

The effects of the temperature, pressure, and relative amount of H2 (g) on the 

methanol synthesis rate were evaluated. High pressures result in high rates due 

to the increased concentration of gaseous reactants, while high temperatures 

induce high rates by increasing the overall reaction rates (Figure 13 (a)) as the 

reaction remains in the kinetic regime. 

The effects of the relative amount of H2 (g) on the methanol synthesis rate 

are shown in Figure 13 (b). As the stoichiometric ratio of H2, defined as 
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H2/(2CO + 3CO2), was increased from 0.2 to approximately 1, the synthesis 

rate increased, and further increases of the ratio led to a decay of the methanol 

synthesis rate due to the lack of carbon sources. Consequently, this suggests 

that the optimum feed ratio should be maintained close to the stoichiometry to 

maximize the methanol synthesis rate. Since the optimum ratio is not exactly 

unity owing to the occurrence of the WGS reaction and is also dependent on 

the temperature, as shown in Figure 13 (b) (cf., the arrows denote the optimal 

ratio as a function of the temperature), an optimization procedure may be 

required at this stage of process development. 
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Figure 13 Effects of (a) pressure (stoichiometric ratio of H2 = 2) and (b) 

stoichiometric ratio of H2 (pressure = 50 bar) on the methanol synthesis rate at 

temperatures of 460, 480, and 500. 

  

Figure 8 (a) (b)
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Chapter 5 Microkinetic modeling of 

DME synthesis from methanol over 

H-zeolite catalyst 

5.1 Background 

Due to its simple ether structure with no C–C bond, dimethyl ether (DME) 

contains approximately 35 % oxygen by weight, which means its combustion 

byproducts, such as carbon oxides and hydrocarbons, are less abundant than 

those of other gas-like energy resources [90]. In addition, DME produces no 

toxic nitrogenic or sulfonic gases during its combustion and is easily liquefied 

when pressurized above 0.5 MPa [91]. Therefore, it is a potential alternative to 

diesel as a transportation fuel due to growing concerns over its environmental 

impact [92-94]. DME can be also used as an intermediate in the production of 

olefins [95]. 

Among the several ways to synthesize DME, three are representative; one 

involve the dehydration of methanol [96, 97], and the other two involve 

conversion from syngas via methanol and directly to DME, respectively [94]. 

In addition, several recent studies for intrinsic kinetics of DME synthesis from 

CO2 have been reported. Qin et al. studied the adsorption state of CO2 on Cu 

(111), and established an intrinsic kinetic model for CO2 hydrogenation to DME 

over a Cu-Fe-Zr/HZSM-5 catalyst [98]. It has been shown that plasma-

activated CO2 was hydrogenated to synthesize DME over a Cu-Fe-Ce/HZSM-

5 catalyst, leading to the reduction of activation barrier [99]. For catalytic 
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synthesis of DME from methanol, solid-acid catalysts are used; for example, 

alumina catalysts like γ-Al2O3 have been used in the vast majority of work due 

to their strong selectivity at temperatures of 200–300 ℃ [100, 101]. Meanwhile, 

as a byproduct, water deactivates the catalyst by blocking the active sites, 

resulting in a potential decrease in the overall catalytic reaction efficiency. Boon 

et al. observed the conversion of γ-Al2O3 into γ-AlO(OH) when the partial 

pressure of steam was 13–14 bar, resulting in the reduction of the catalytic 

activity. However, they mentioned that this conversion was reversible [102]. 

This problem has motivated the development of other acidic catalysts, and as a 

result, zeolites have been investigated as suitable substitutes for alumina 

catalysts. Reaction systems with these other catalysts have exhibited good 

conversion and selectivity with more stability in the presence of water than 

alumina catalysts [103]. Moreover, their catalytic properties, such as their 

specific surface area and crystal structure, which can affect the selectivity or 

acidity of the catalyst, could be suitably modified [104, 105]. Furthermore, 

Chiang et al. prepared a CuO-Al2O3 catalyst with CuAl2O4 spinel structure by 

a co-precipitation method in order to synthesize DME from methanol, and 

revealed that methanol decomposition, methanol/formic acid formations, and 

methanol dehydration occurred at CuO, Cu, and Al2O3/CuAl2O4, respectively 

[106]. Herrera et al. investigated methanol dehydration and plausible side 

reactions over Ta/Al2O3 and Ta/TiO2 catalysts, and concluded that Ta/Al2O3 was 

more reactive and highly selective at temperature close to 200 ℃ [24]. 

Therefore, nowadays, much research on methanol conversion into DME has 

employed zeolites, which are also widely used industrial processes [107]. 
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The specific characteristics of zeolites are attributed to their structural 

diversity. The crystal structures of zeolites vary, but most of them consist of 

ring-like structures, which allow microporous cage-like channels to capture 

molecules selectively. For such reasons, zeolites have different properties at 

different sizes and shapes, which makes them ideal for many catalytic chemical 

processes [108, 109].  

There have been many works on simulating reactions over zeolites. Because 

it is important to understand the structural properties of zeolites at the atomic 

scale, DFT has been one of the most widely used methods in computational 

chemistry [110]. DFT calculations for zeolites have been conducted using either 

a periodic or a cluster model. Moses et al. reported the effect of water on the 

conversion of methanol to DME over the ZSM-22 zeolite using a periodic 

model [111], and Wang et al. simulated the conversion of methanol to olefin 

using a periodic model of HSAPO-34 [112]. However, because periodic models 

contain many atoms in a unit cell, the calculation costs are usually high. To 

reduce computational costs, the cluster model, which contains a finite number 

of atoms, has been introduced. Kachurovskaya et al. used a 3T cluster model of 

the FeZSM-5 catalyst for the reaction of benzene to phenol [113], and Ryder et 

al. used a cluster model of HZSM-5 to calculate the energy barrier of proton 

jumping in the presence of water [114]. Many other researchers have also used 

cluster models for the modeling of zeolites [115-118]. 

The reaction mechanisms of methanol dehydration to DME over an acidic 

catalyst have been studied by many researchers. In its early stages, because γ-

Al2O3 was commonly used in methanol dehydration, Figueras et al. suggested 

that two methanol molecules adsorb to alumina catalysts [119], and Aguayo et 
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al. suggested that there is a single-step synthesis mechanism over alumina bi-

functional catalysts [37]. Kubelková et al. showed that methanol adsorbs to the 

active site of a zeolite when methanol hydration begins [120], while 

Blaszkowski and van Santen demonstrated a mechanism with two distinctive 

(associative and dissociative) pathways in the catalytic formation of DME from 

methanol by zeolitic protons [121]. Since then, they have proposed an 

additional pathway, making three pathways in total [115]. However, debates are 

still ongoing as to which pathway is the dominant one. Blaszkowski and van 

Santen compared the calculated activation barriers over an acidic zeolite on the 

basis of their DFT calculations and showed that DME is formed by an 

associative pathway, while Jones and Iglesia concluded that the dominant 

pathway depended on a number of conditions, such as temperature and pressure, 

suggesting that a dissociative pathway would be dominant at higher 

temperatures and lower pressures [122]. Moses and Nørskov’s DFT 

calculations found the dissociative pathway to be dominant, and the relative 

reaction rates were calculated by identifying the slowest step of each pathway 

[111]. Recently, Gao et al. investigated three possible pathways of methanol 

dehydration to DME over hydrated γ-Al2O3 (110) by using the DFT in vacuum 

and liquid paraffin to suggest that 2CH3OH(g) + 2* → 2CH3OH* → 2CH3O* 

+ 2H* → CH3OCH3* + H2O* was the main reaction pathway while 2CH3O* 

→ CH3OCH3* + O* was the step having the highest activation barrier [123]. 

Several studies have been conducted on the kinetic modeling of DME 

synthesis by methanol dehydration. Aguayo et al. developed an experiment-

based kinetic model for syngas conversion to DME over a CuO-ZnO-Al2O3/γ-

Al2O3 bi-functional catalyst [37], where they divided their kinetic study into 
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two parts: CO and CO2 hydrogenations over CuO-ZnO-Al2O3 to synthesize 

methanol, followed by its dehydration to DME over an acid catalyst. They used 

a lumped kinetic model with four equilibrium reactions and considered the 

deactivation of an acid catalyst by degradation of alumina acidity. Tavan et al. 

also conducted lumped kinetic modeling of methanol dehydration to DME 

using experimental data [124], and Lu et al. suggested a new mechanism of 

methanol dehydration to DME on the HZSM-5 zeolite catalyst by considering 

both experimental and simulation results based on a lumped kinetic model 

[125]. Lu et al. developed a kinetic model based on only a dissociative pathway, 

and Mollavali et al. adopted the reaction pathway proposed by Lu et al. to 

develop their own kinetic model [126]. Also, Bercic and Levec found that a 

kinetic model based on a Langmuir–Hinshelwood mechanism with dissociative 

adsorption of methanol sufficiently correlated with the experimental results 

[103]. However, few studies have been conducted on the associative reaction 

pathway with lumped kinetic modeling. 

As discussed above, the controversy between associative and dissociative 

pathways motivates analysis of the reaction mechanism, but no such analyses 

have been reported, especially using a detailed microkinetic model. Therefore, 

in this chapter, the reaction mechanisms of DME synthesis by methanol 

dehydration over H-zeolite were investigated using computational chemistry 

and microkinetic modeling, where detailed forward and backward elementary-

step reactions were considered in the reaction mechanisms of both associative 

and dissociative pathways. In terms of computational chemistry, the second-

order Møller–Plesset perturbation theory (MP2) was employed to determine the 

dispersion interactions that are important in the reaction system, and the 
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computational burden of MP2 calculation was reduced by employing a 4T 

cluster model of H-zeolite. The structures and energies of the related reaction 

species were calculated, and the transition states included in the reaction 

pathways were determined by MP2 calculations. Using the calculated energy 

levels, a microkinetic model was developed with no assumptions of the rate-

determining steps (RDSs); the pre-exponential factors were estimated to fit the 

experimental data [127] in order to increase the reliability of the microkinetic 

model validated in Chatper 4 [6]. Finally, the dominant pathway between the 

associative and dissociative pathways was discussed, and the RDSs were found 

using the parameter-estimated microkinetic model. In addition, the effects of 

temperature on the site fractions of the intermediates were analyzed. 

 

5.2 Reaction mechanism 

The overall reaction mechanism of DME synthesis by the methanol dehydration 

is as follows: 

 

Dehydration of methanol: 2CH3OH ↔ CH3OCH3 + H2O 

 

Two methanol molecules react with each other, which dehydrates them to a 

DME molecule through two competitive reaction pathways: one associative 

and one dissociative. A schematic of the two pathways is shown in Figure 14. 

In the associative pathway (also known as the direct pathway), two methanol 

molecules adsorb to the Brønsted acid site of a zeolite catalyst and then react to 

form DME and water simultaneously. On the other hand, in the dissociative 
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pathway (also known as the sequential pathway), one adsorbed methanol 

molecule reacts to form water and a CH3 group bound to the H-eliminated 

zeolite first, and then the second methanol molecule adsorbs to react with the 

CH3 group to form DME, i.e., DME and water are synthesized sequentially. 

  



 99 

 

Figure 14 Dissociative (left) and associative (right) pathways for methanol 

dehydration. 
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For the computational chemistry analysis and microkinetic model, the 

elementary steps for methanol dehydration reaction were defined in reference 

to previously reported works [111, 115, 121, 122], whose details are given in 

Table 9. A total of 9 elementary steps and 11 reaction species, including the 

gaseous species, catalytic active site, and reaction intermediates, constituted the 

reaction system. 

The elementary steps included both the associative and dissociative 

pathways. The reaction R1, where gaseous methanol is adsorbed (or desorbed) 

to the Brønsted acid site of a zeolite (H-Z), was the only elementary step 

contained in both pathways, while R2–R6 and R7–R9 were involved in the 

dissociative and associative pathways, respectively. The gas-phase species 

considered in this work were CH3OH, CH3OCH3, and H2O, and the reaction 

intermediates on the zeolite surface were CH3OH-H-Z, H2O-CH3-Z, CH3-Z, 

CH3OH-CH3-Z, CH3OCH3-H-Z, CH3OH-CH3OH-H-Z, and CH3OCH3-H2O-

H-Z. The elementary-step reaction rates listed in Table 9 were expressed with 

the site fractions of the reaction intermediates over the catalyst. Both forward 

and backward reactions were considered for most of the steps, while re-

adsorption of H2O was assumed to be negligible in R3 and R9. 
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Table 9 Elementary steps and corresponding rate equations for DME synthesis by methanol dehydration 

Reaction number Reaction mechanism Forward reaction rate (𝑟𝑓) Backward reaction rate (𝑟𝑏) 

R1 CH3OH(g) + H-Z ↔ CH3OH-H-Z 𝑘f1𝑃CH3OH𝜃H−Z 𝑘b1𝜃CH3OH−H−Z 

R2 CH3OH-H-Z ↔ H2O-CH3-Z 𝑘f2𝜃CH3OH−H−Z 𝑘b2𝜃H2O−CH3−Z 

R3 H2O-CH3-Z → CH3-Z + H2O(g) 𝑘f3𝜃H2O−CH3−Z – 

R4 CH3-Z + CH3OH(g) ↔ CH3OH-CH3-Z 𝑘f4𝑃CH3OH𝜃CH3−Z 𝑘b4𝜃CH3OH−CH3−Z 

R5 CH3OH-CH3-Z ↔ CH3OCH3-H-Z 𝑘f5𝜃CH3OH−CH3−Z 𝑘b5𝜃CH3OCH3−H−Z 

R6 CH3OCH3-H-Z ↔ CH3OCH3(g) + H-Z 𝑘f6𝜃CH3OCH3−H−Z 𝑘b6𝑃CH3OCH3
𝜃H−Z 

R7 CH3OH-H-Z + CH3OH(g) ↔ CH3OH-CH3OH-H-Z 𝑘f7𝑃CH3OH𝜃CH3OH−H−Z 𝑘b7𝜃CH3OH−CH3OH−H−Z 

R8 CH3OH-CH3OH-H-Z ↔ CH3OCH3-H2O-H-Z 𝑘f8𝜃CH3OH−CH3OH−H−Z 𝑘b8𝜃CH3OCH3−H2O−H−Z 

R9 CH3OCH3-H2O-H-Z → H-Z + CH3OCH3(g) + H2O(g) 𝑘f9𝜃CH3OCH3−H2O−H−Z – 
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5.3 Methods 

As similar to Chapter 4, the order of magnitude of A was used; for immobile 

transition states, the values of A for the molecular adsorption and desorption 

are of the order of 101 Pa-1 s-1 and 1013 s-1, respectively, while the Langmuir–

Hinshelwood surface reaction has an order of 1013 s-1 in the absence of rotation. 

In this work, these estimates were used as initial guesses for A when fitting 

experimental data, while the values of Ea were calculated by employing 

computational chemistry. 

5.3.1 Computational Chemistry 

Both bond rearrangements and van-der-Waals interactions (also called 

dispersion interactions) are important in systems that involve catalytic 

transformations of hydrocarbons over zeolites [128]. Although DFT is one of 

the most widely used methods in computational chemistry, the general 

functionals are unable to consider van-der-Waals interactions appropriately 

[129]. Because dispersion is the interaction between electrons and is a kind of 

electron correlation effect, MP2, which involves electron correlation effects, is 

known to describe dispersion interactions well [128] at the expense of 

computational cost. Therefore, to consider the dispersion interactions in an 

efficient manner, a 4T cluster model, which contains four tetrahedral sites (Si 

or Al), was used as a H-zeolite. The structure of the 4T cluster model consisting 

of H3Si–O–AlH2–(OH)–SiH2–O–SiH3 is shown in detail in Figure 15, where a 

Brønsted acidic OH group works as an active site of the DME synthesis reaction. 
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In the 4T cluster model, the replacement of only one Si atom with an Al atom 

has been widely used by many researches with both periodic or cluster models 

because the precise positions of the distributed Al atoms are difficult to 

determine when the structures are modeled with more than one Al atom [111, 

115-118, 122, 128, 130-135]. It is worth noting that the O and Si atoms in Figure 

15 are numbered in the order from left to right for convenience. In general, a 

cluster model of a zeolite should be neutralized by capping them with hydride 

(–H) or hydroxyl (–OH) bonds to prevent unphysical deformations [117, 136]. 

There have been the previous reports stating that differences of energies were 

small between H- and OH-capped cluster models, and the convergence of 

cluster models with the OH terminals was relatively poor when seeking 

transition state structures [137-140]. In this respect, the H terminals were 

applied to the cluster model in this study. 
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Figure 15 Framwork of the 4T cluster model used in this work. 
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All MP2 calculations for the reactant, reaction intermediates, products, and 

transition states were conducted using the Gaussian16 package [141] with the 

basis set of 6-311+G(2df,2p) [118, 142, 143], while transition states were 

determined using the optimized initial and final states. Each optimized structure 

in MP2 calculations was confirmed by not exhibiting any imaginary frequency, 

while the transition states were confirmed to have only one imaginary frequency. 

In addition, all energies were calculated by summing the energy obtained from 

an MP2 calculation (EMP2) and zero-point energy (EZPE) as follows: 

 

   𝐸 = 𝐸MP2 + 𝐸ZPE = 𝐸MP2 + ∑
ℎ𝜈𝑘

2𝑘    (5.1) 

 

where EZPE was corrected using the vibrational frequencies, and h and νk 

represent Planck’s constant and the normal mode vibrational frequencies, 

respectively. 

The adsorption energies were calculated using the following equation: 

 

   ∆𝐸(𝑎𝑑𝑠) = 𝐸gas−adsorbent − 𝐸adsorbent − 𝐸gas  (5.2) 

 

where Egas-adsorbent, Eadsorbent, and Egas represent the energies of the gas-adsorbent 

complexes, adsorbent species, and adsorbed species in gas-phase, respectively. 

A negative value of ΔE(ads) indicates an exothermic adsorption reaction, while 
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a positive value indicates endothermic adsorption. The desorption energies 

were calculated by the negated version of Equation (5.2). 

 

5.3.2 Microkinetic Model 

Unlike in the lumped kinetic modeling approach, where assumptions are 

generally applied on the quasi-equilibriums and RDSs, microkinetic analysis 

determines a dominant pathway and RDSs to clearly elucidate the reaction 

mechanism.  

To enhance the reliability of the microkinetic model in this work, pre-

exponential factors were estimated by fitting experimental data from the 

literature [127]. Among the results for various commercial zeolites and 

modified H-ZSM-5 catalysts, those over the commercial H-MFI90 catalyst 

(Süd-Chemie, AG, Germany) were applied to the model because the others 

were based on Na-modified catalysts, which are outside the scope of this work. 

The acidity of the H-MFI90 catalyst was 0.421 mmol/gdry sample, and 1 g of the 

catalyst was loaded in the reactor. The experiments were conducted at P = 17 

bar, liquid hourly space velocity (LHSV) = 3.8 h-1, and T = 240–330 ℃. 

Although by-products, including methane, ethylene, and propylene, were 

produced under these conditions, their proportions were relatively low. 

Therefore, only the formation rates of DME and consumption rates of methanol 

for DME formation were used, while the formation mechanisms of by-products 

were neglected. In addition, because the experimental data were sampled under 
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the stable conditions with no deactivation behaviors observed in time 

evolutionary profiles, deactivation of the catalyst was assumed to be negligible. 

The site fractions of reaction intermediates were calculated by solving the 

system of ordinary differential equations (ODEs) obtained from the balance 

equations which can be referred to the Supporting Information in Appendix 

(Equations (S12)–(S18)), except H-Z was determined by Equation (5.3). To 

consider the stiffness of the ODE system, which may result from strong 

correlation between many reactions and reaction species, a stiff ODE solver 

(ode15s) was employed in MATLAB (MathWorks, Inc.) with the backward 

differentiation formula (BDF) algorithm. 

 

𝜃H−Z = 1 − (𝜃CH3OH−H−Z + 𝜃H2O−CH3−Z + 𝜃CH3−Z + 𝜃CH3OH−CH3−Z +

𝜃CH3OCH3−H−Z + 𝜃CH3OH−CH3OH−H−Z + 𝜃CH3OCH3−H2O−H−Z)  (5.3) 

 

While activation energies were calculated using MP2, pre-exponential 

factors were estimated by fitting experimental data. The number of parameters 

to be estimated, including those for both forward and backward reactions, was 

16 (see Table 9). Due to the limited number of experimental data, initial 

estimates of pre-exponential factors were reasonably determined by referring 

to the order of magnitude based on the TST and the previous literatures [49, 56], 

and the estimation was conducted with the lower and upper bounds of the pre-
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exponential factors specified to be 101 to 106 Pa-1s-1 for the adsorption reactions, 

and 1013 to 1019 s-1 for the desorption and surface reactions. The experiments 

used to estimate the parameters were conducted only in change of temperature, 

so the estimated parameters of the microkinetic model consider the effects of 

temperature, while those of other operating conditions are insubstantially 

included in the model. Therefore, the model might be used in the limited range 

of pressure and site fractions. 

The following objective function was minimized on the basis of the relative 

error sum of squares (ESS):  

 

𝐹obj = ∑ [(
𝑁CH3OCH3,exp−𝑁CH3OCH3,calc

𝑁CH3OCH3,exp
)

2

+ 𝑊𝐹 (
𝑁CH3OH,exp−𝑁CH3OH,calc

𝑁CH3OH,exp
)

2

]
i

n
i

        (5.4) 

 

where n denotes the number of experimental conditions, WF is a weighting 

factor, and N is molar flow rate. In this chapter, parameter estimation was 

carried out with n = 4 and WF = 1. The genetic algorithm (GA) was used in the 

optimization because it is useful when the search space is large. In addition, 

because it searches for the optimal points by randomly scattering population 

seeds and using bio-inspired operators, such as mutation, crossover, and 

selection [144], global and reliable minimization can be accomplished. All 

calculations were conducted on an Intel® Xeon® E5-2667 v4 CPU @ 3.20 

GHz. 
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5.4 Application results and discussion 

5.4.1 MP2 Calculations 

The optimized structures, energy levels, and transition states of the reaction 

species were obtained by MP2 calculations, and the calculated energy levels 

were then used to calculate reaction energies (∆E) and activation energies for 

the considered reactions (see Table 10). 
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Table 10 Reaction and activation energies for the forward and backward 

reactions calculated by MP2 (ZPE corrected) 

Rxn no. ∆E [eV] Ef [eV] Eb [eV] 

R1 -0.751 0.000 0.751 

R2 0.107 2.876 2.769 

R3 0.374 0.374 – 

R4 -0.467 0.000 0.467 

R5 -0.244 2.669 2.914 

R6 0.705 0.705 0.000 

R7 -0.243 0.000 0.243 

R8 -0.261 2.509 2.770 

R9 0.978 0.978 – 
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The optimized structures of common species in the associative and 

dissociative pathways are shown in Figure 16. Figures 16 (a) and 16 (b) show 

a cluster of H-zeolite and its methanol-adsorbed form, respectively. The bond 

angles and lengths within the optimized H-zeolite were summarized in Table 

11 (The atom numbering was referred to Figure 15). In the methanol adsorption, 

the O atom in the OH group of the methanol is bound to the Brønsted acid H 

atom in the zeolite, and the H atom in the OH group of the methanol also forms 

a weak bond with the O atom next to the Al atom (O-1) of the zeolite, as shown 

in Figure 16 (b). This structure has also been reported by many researchers 

[145-149]. The bond length of the O (methanol)–H (Brønsted acid site) was 

1.519 Å, while that of the O1–H (methanol) was 1.818 Å. In addition, the 

methanol molecule in gas-phase had a C–O bond length of 1.420 Å, while the 

C–O bond length for the adsorbed one was 1.432 Å, indicating that the C–O 

bond of the adsorbed methanol could be more easily broken than that of the 

gaseous methanol. It was also seen that the O-2–H (Brønsted acid site) bond 

became weaker through the methanol adsorption compared to the case with no 

methanol adsorption. Detailed values of the bond lengths are listed to Table 12. 
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Figure 16 Optimized structures of the (a) 4T cluster of H-zeolite (H-Z) and 

(b) the cluster with methanol adsorbed (CH3OH-H-Z), which are included in 

both the associative and dissociative pathways. 
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Table 11 Bond angle and length within the 4T cluster of H-Z 

Bond angle or length 

∠Si2O2(H)Al 124.9 ° 

∠Si1O1Al 151.2 ° 

∠Si2O3Si3 148.4 ° 

Si1–O1 1.628 Å  

Al–O1 1.741 Å  

Al–O2 1.996 Å  

Si2–O2 1.694 Å  

Si2–O3 1.621 Å  

Si3–O3 1.654 Å  
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Table 12 Comparison of bond lengths when the methanol was adsorbed to the 

H-zeolite (adsorbed) and not (isolated) 

Bond Bond length [Å ] 

C–O (isolated) 1.420 

C–O (adsorbed) 1.432 

O–H (isolated) 0.967 

O–H (adsorbed) 1.022 
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5.4.1.1 Dissociative Pathway 

The dissociative pathway for DME synthesis from methanol is composed of 

R2–R6. R3, R4, and R6 were the adsorption or desorption reactions, while R2 

and R5 had the transition states of the reactions. Unlike the associative pathway 

in which another methanol molecule adsorbed to CH3OH-H-Z, CH3OH-H-Z 

reacted directly to form CH3-Z and a water molecule via R2 and R3. In this 

reaction, a methanol molecule was split into –CH3 and –OH by the breakage of 

a C–O bond, and then –CH3 adsorbed to O-1 to form CH3-Z, while –OH reacted 

with H of the Brønsted acid site to form a water molecule. This procedure is 

illustrated in Figure 17. The reaction energy and activation barrier of the 

forward reaction of R2 were 0.107 and 2.876 eV, respectively, indicating that 

the reaction is endothermic. 
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Figure 17 Reaction procedure of R2 and R3: (a) initial state (CH3OH-H-Z), 

(b) transition state, and (c) final state (H2O (g) and CH3-Z). 
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After the formation of CH3-Z, another methanol molecule adsorbed, as 

shown in Figure 18. The H atom of methanol formed a bond with O-2 with a 

bond length of 1.837 Å. Through the adsorption of methanol (R4), the bonding 

force of CH3 to Z was weakened (bond length changed from 1.450 to 1.454 Å), 

making CH3 more reactive. Also, the bond length of the O–H bond of the 

methanol was increased to 0.974 Å after adsorption. As in the associative 

pathway, the adsorption energy of the second methanol by R4 was lower than 

that of the first methanol (∆E (R4) = -0.467 eV). 
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Figure 18 Methanol adsorption to CH3-Z. 
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The CH3OH-CH3-Z complex further reacted to form DME by R5 via the 

procedures shown in Figure 19. The CH3 group, which had been adsorbed to Z, 

desorbed to bind with the O of the second methanol molecule, and then the H 

of the OH group of the second methanol was released and adsorbed to Z, 

followed by the production of a H-Z cluster and a DME molecule (R6). The 

reaction energy and activation barrier of the forward reaction of R5 were -0.244 

and 2.669 eV, respectively, indicating an exothermic reaction. 
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Figure 19 Reaction procedure of R5 and R6: (a) initial state (CH3OH-CH3-Z), 

(b) transition state, and (c) final state (CH3OCH3 and H-Z). 
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5.4.1.2 Associative Pathway 

Among the reactions R7–R9 in Table 9, which constituted the associative 

pathway, R7 and R9 were related to adsorption/desorption, while only R8 was 

considered to have the transition state. The optimized structure of CH3OH-

CH3OH-H-Z, which was formed by adsorption of the second methanol 

molecule to CH3OH-H-Z (R7), is shown in Figure 20, where two methanol 

molecules are labeled as MeOH-1 (left) and MeOH-2 (right) for the first and 

the second adsorptions, respectively. MeOH-1 was more strongly bound to the 

catalyst than MeOH-2, as verified by the adsorption energies of ∆E (R1) = -

0.751 eV and ∆E (R7) = -0.243 eV. In addition, because the C–O bond of 

MeOH-1 was longer (1.436 Å) than that of MeOH-2 (1.422 Å), it is plausible 

that the C–O bond of MeOH-1 would be broken when the DME formation 

reaction occurs. Figure 21 shows the evolutionary change of the structure when 

two methanol molecules reacted to form DME and water. As expected and 

shown in Figure 21 (b), MeOH-1’s C–O bond was broken to form DME, and 

the reaction energy and activation barrier of the forward reaction of R8 were -

0.261 and 2.509 eV, respectively, indicating an exothermic reaction. 
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Figure 20 Optimized structure of H-Z when two methanol molecules were 

adsorbed. 
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Figure 21 Evolutionary change of the structure: (a) initial state (CH3OH-

CH3OH-H-Z), (b) transition state, and (c) final state (CH3OCH3-H2O-H-Z). 

  

(a) (b) (c) 
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The energy levels of the reaction intermediates in reference to the MP2 

calculations are illustrated for both pathways in Figure 22, where the changes 

of bonds and structures along the reaction procedures are observed and 

discussed. From these results, it can be seen that two activation barriers of the 

dissociative pathway were higher than the one activation barrier of the 

associative pathway, indicating that the associative pathway might be dominant 

in DME synthesis from methanol. 
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Figure 22 Energy levels of two reaction pathways for DME synthesis: Black line represents common steps in the 

associative and dissociative pathways, while blue and red lines represent distinctive steps for the associative and 

dissociative pathways, respectively. 
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5.4.2 Microkinetic Model 

To develop a reliable microkinetic model, the estimation of pre-exponential 

factors was conducted by fitting the experimental data, and comparison 

between the data and simulated results with the estimated parameters is 

provided in Figure 23, where the calculated molar flow rates of DME and 

methanol at the reactor outlet show good agreement with the experimental data. 

The average errors were 14.6 and 21.8 % for DME and methanol, respectively. 

Details about the estimation method can be seen in Section 5.3.2, and Table 13 

lists the estimated parameters. 

  



 127 

 

Figure 23 Experimental and calculated CH3OCH3/CH3OH molar flow rates at 

the reactor outlet (□ CH3OCH3, ● CH3OH). 
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Table 13 Estimated values of pre-exponential factors 

Rxn no. Af [Pa-1s-1 or s-1] Ab [Pa-1s-1 or s-1] 

R1 2.09E+02 7.61E+17 

R2 7.83E+14 4.17E+13 

R3 2.75E+17 – 

R4 1.76E+05 2.77E+15 

R5 9.57E+11 3.66E+16 

R6 2.29E+18 2.27E+03 

R7 5.19E+01 3.17E+17 

R8 6.35E+15 1.30E+16 

R9 8.32E+14 – 
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5.4.2.1 Dominant Pathway and Rate-Determining 

Step 

Based on the microkinetic model developed in the present work, the reaction 

rates of each elementary step were compared to find the dominant one between 

the associative and dissociative pathways. In particular, the desorption rates of 

DME (R6 for dissociative and R9 for associative pathways), which directly 

affected the DME production rate, were compared at P = 17 bar and T = 450, 

475, and 500 K. As shown in Table 14, R6 was significantly faster than R9, 

indicating that DME was predominantly synthesized through the dissociative 

pathway. This result is in agreement with results from a lumped kinetic model 

reported in the literature [111]. Although the results based on the MP2 

calculations suggest dominancy of the associative pathway, the microkinetic 

model analysis resulted in conflicting results. The microkinetic model considers 

the effects of temperature, pressure, and site fraction on the reaction system, 

while the MP2 calculations only evaluate the change of energy without 

considering those features. In other words, energy barriers alone are insufficient 

to determine the detailed characteristics of the reaction kinetics, such as relative 

reaction rates and RDSs. In addition, because H-Z was more abundant than 

CH3OH-H-Z over the catalyst, methanol would be more easily adsorbed to H-

Z than CH3OH-H-Z, leading to dominancy of the dissociative pathway over the 

associative one. The low site fraction of CH3OH-CH3OH-H-Z also supports this 

explanation (the site fraction will be discussed in the next section). 
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Table 14 Desorption rates of DME for R6 and R9 at the reactor outlet at T = 

450, 475, and 500 K 

Temperature [K] 

Desorption rate of DME [s-1] 

R6 R9 

450 3.40E+09 5.23E-26 

475 3.47E+09 1.92E-22 

500 3.72E+09 1.00E-23 
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Among the elementary steps in the dissociative pathway, the forward 

directions of R2 (CH3OH-H-Z → H2O-CH3-Z) and R5 (CH3OH-CH3-Z → 

CH3OCH3-H-Z) were much slower than the other reactions; the activation 

barriers of R2 and R5 were 2.876 and 2.669 eV, respectively (see Table 10). 

Therefore, those two reactions could significantly affect the overall DME 

production rate. In addition, as can be seen from the relative reaction rates of 

the forward reactions included in the dissociative pathway in Figure 24 on a log 

scale, R3 was slower than the other adsorption and desorption reactions because 

of the low site fraction of H2O-CH3-Z, which was attributed to the low reaction 

rate of R2. Because the reaction rate of R2 was faster than that of R5 by more 

than two orders of magnitude, R5 could be considered as an RDS of the 

synthesis reaction from methanol to DME. The literature also suggests the 

DME formation step (R5) as an RDS rather than the water elimination step (R2) 

[111]. However, despite the relatively slower rate of R5 than that of R2, the 

degrees of both reactions are slow compared to the other reactions, and it can 

thus be concluded that R2 might be an RDS alongside R5. 
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Figure 24 Relative forward reaction rates for the dissociative pathway (R1–

R6) on a log scale at T = 450, 475, and 500 K. 

  



 133 

5.4.2.2 Site Fractions 

Because temperature is an important factor affecting the reaction rates and 

pathways, the developed microkinetic model was employed to analyze the 

effects of temperature on the site fractions. Although the model could evaluate 

the effects of other operating conditions, such as pressure and feed composition, 

only temperature was considered because the experimental data used in the 

estimation considered temperature variation only. 

 As shown in Figure 25 (a), the most abundant site was H-Z, and the next 

most were CH3OH-H-Z, CH3-Z, CH3OH-CH3-Z, and CH3OCH3-H-Z, which 

were all involved in the dissociative pathway. The others had site fractions 

under 10-6, as shown in Figure 25 (b), describing the change of site fractions of 

the intermediates in associative and dissociative pathways at the reactor outlet 

with respect to temperature from 473.15 to 573.15 K. It is worth noting that the 

site fractions along the reactor axis showed the same trend as those in the 

reactor outlet. As shown in Figure 25 (a), as temperature increased, the site 

fractions of CH3OH-H-Z and CH3OCH3-H-Z decreased significantly, while the 

site fraction of CH3OH-CH3-Z only slightly decreased. Meanwhile, the site 

fractions of H2O-CH3-Z (Figure 25 (b)) and CH3-Z (Figure 25 (a)) increased. 

Referring to those trends, it appears that the adsorption of methanol and 

desorption of DME are more significantly influenced by temperature than the 

other steps. Therefore, the water elimination step (R2) in the dissociative 

pathway, which is one of the RDSs, may become less important than R5 as the 

operating temperature increases. In addition, by referring to the much lower site 

fraction of H2O-CH3-Z, it could be concluded that H2O rapidly desorbed 

immediately after R2 in which H2O-CH3-Z was formed from CH3OH-H-Z. As 
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mentioned earlier, the site fraction of H-Z was much higher than that of 

CH3OH-H-Z (Figure 25 (a)), causing a methanol molecule to adsorb to H-Z 

rather than CH3OH-H-Z. Also, the site fractions of reaction intermediates 

included in the associative pathway, such as CH3OH-CH3-H-Z and CH3OCH3-

H2O-H-Z, were much lower than those of the intermediates included in the 

dissociative pathway, leading to dominancy of the dissociative pathway. That 

is, the high site fractions of the reaction intermediates included in the 

dissociative pathway resulted in the high reaction rates of the dissociation and 

the dominance of the dissociative pathway. In conclusion, the conflicting results 

obtained from the MP2 calculations and the microkinetic model could be 

explained by the abundancy of intermediates in the dissociative pathway over 

the catalytic sites, which could only be considered in the microkinetic model. 
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Figure 25 Effects of temperature on the site fractions on a log scale for the 

intermediates whose values were (a) > 10-6 and (b) < 10-6. 

  

(a) (b) 
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Chapter 6 Machine Learning-based 

Surrogate Model of Microkinetics for 

the Water-Gas Shift Reaction 

6.1 Background 

It has been desired to achieve the coupling of the detailed kinetics and CFD 

simulations of catalytic reactors because it is a multiscale technique that 

integrates the quantum to the reactor level giving fundamental knowledge of 

catalysis to realistic reactor modeling [150, 151]. Coupling the microkinetics 

with CFD simulations has the advantage of calculating site fractions of surface 

intermediates, rates of elementary step reactions and concentrations of various 

byproducts in CFD environments, which cannot be obtained by conventional 

kinetic models. Therefore, it is possible to investigate the mutual interaction 

between transport phenomena including mass, momentum and energy transport, 

and detailed reaction kinetics. Moreover, by modeling a solid catalyst packed 

in a reactor, the distribution of the adsorbed intermediates in the pore of the 

catalyst would be known, which can offer the specific information, for example, 

disclosing causes of conversion, yield or selectivity loss. Despite being aware 

of this importance, it is so challenging that linking modeling techniques with 

distinctly different time and length scales. In addition, in case of the 

microkinetics, the model is so complex, non-linear and stiff that it is difficult to 

solve together with CFD simulations. Nevertheless, to overcome these 

problems, efforts to map the catalytic reaction rates and the concentrations of 
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gas and surface species before or during CFD simulations have been made to 

implant detailed chemical kinetics into continuum mechanics for chemical 

reactor modeling by many researchers [152-158]. 

To map detailed kinetics exactly without reducing the details, methodologies 

for tabulating and interpolating pre-computed data derived from detailed 

kinetics are required. In general, data calculated from detailed kinetics such as 

the microkinetics inevitably have high dimensions, and suitable techniques for 

a surrogate model for data with these characteristics is machine learning 

techniques because these are not based on linear regression. For this reason, in 

this chapter, a microkintic model for the WGS reaction was developed firstly 

by fitting the pre-exponential factors to the experimental data in the same ways 

as the previous chapters, and then machine learning-based surrogate models 

were developed by using the pre-computed datasets derived from the 

microkinetic model for the WGS reaction. Two machine learning methods 

which were the ensemble learning method, the ExtraTrees algorithm, and the 

artificial neural network (ANN) were used and the results from them were 

compared. The two methods were chosen since an ANN has been known to be 

very good at regression, and the ExtraTrees algorithm can measure the feature 

importance which is a primary interest in microkinetic studies. 

The pre-computed data were the steady-state solutions of the microkinetic 

model. Therefore, for coupling the microkinetics with the CFD simulation, 

pseudo steady-state approximation for the chemical reactions was required. 

Fortunately, in typical catalytic reactor systems, the time scales of a 

microkinetic model (nanosecond to millisecond) are generally much shorter 
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than those of transport phenomena (millisecond to kilosecond), making the 

assumption reasonable. Still, in some specific cases such as the presence of 

microscopic flows, dimensionless numbers like the Damköhler numbers (Da) 

must be calculated to determine whether the assumption is valid. Da is defined 

as a ratio of reaction rate to flow rate, so that pseudo steady-state approximation 

is valid when Da << 1. 

 

6.2 Reaction Mechanism 

The elementary steps for WGS reaction were referred to Gokhale et al.’s work 

where the two competitive mechanisms, the redox and the carboxyl 

mechanisms, were involved [50]. Moreever, they considered the pathway 

forming a formate (HCOO) species. The elementary steps and their activation 

energies from Gokhale’s group were summarized in Table 15. 
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Table 15 The elementary steps for WGS reaction and their activation 

energies from Gokhale et al.’s work [50]† 

No. Reaction Ef [eV] Eb [eV] 

R1 CO + * ↔ CO* 0 0.51 

R2 H2 + 2* ↔ 2H* 0.54 1.07 

R3 H2O + * ↔ H2O* 0 0.18 

R4 CO2 + * ↔ CO2* 0 0.09 

R5 H2O* + * ↔ OH* + H* 1.36 1.35 

R6 OH* + * ↔ O* + H* 1.76 1.28 

R7 2OH* ↔ H2O* + O* 0.60 0.00 

R8 CO* + O* ↔ CO2* + * 0.82 1.69 

R9 CO* + OH* ↔ cis-COOH* + * 0.61 0.59 

R10 cis-COOH* ↔ trans-COOH* 0.52 0.75 

R11 trans-COOH* + * ↔ CO2* + H* 1.41 1.80 

R12 trans-COOH* + OH* ↔ CO2* + H2O* 0.42 0.82 

R13 CO2* + H* ↔ HCOO* + * 1.02 0.74 

R14 HCOO* + * ↔ HCOO** 0.10 0.55 

R15 CO2* + H2O* + * ↔ HCOO** + OH* 1.69 1.83 

R16 CO2* + OH* + * ↔ HCOO** + O* 2.02 1.75 

†Symbol * represents vacant sites and HCOO** refers to bidentate species, while 𝐸f and 𝐸b 

denote the forward and backward activation energies, respectively. 
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They also included cis-COOH to trans-COOH isomerization after the 

formation of the first carboxyl species, and the activation energies were 

calculated using DACAPO DFT code [159, 160]. 

 

6.3 Methods 

6.3.1 Microkinetic Model 

Like in the previous chapters, the pre-exponential factors were estimated by 

fitting Koryabkina et al’s experimental data [161]. Among the various 

experimental sets they conducted, the data of the commercial 40 % CuO–ZnO–

Al2O3 catalyst sample from United Catalysts were used because it described the 

details of the experimental conditions and results including total flow rate, total 

pressure, temperature, gas composition, and turnover rate (TOR). The 

experiment was conducted in a CSTR at 190 ℃ temperature, 1 atm total 

pressure, total inlet flow rate 118 ml min-1, 0.2 g of catalyst, and copper surface 

area of 9.6 m2 g-1. 

The microkinetic model was developed on the basis of the experiments, and 

the site balances consisting of the system of ODEs were solved by a stiff ODE 

solver, ode15s, in MATLAB with the backward differentiation formula (BDF) 

algorithm. Also, parameter estimation was conducted through the genetic 

algorithm with the aim of minimizing errors in turnover rate (TOR) valules of 

calculations and experiments. 

For obtaing the pre-computed datasets, operating conditions such as 

temperature, pressure and compositions of gaseous species were varied, and 
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site fractions, molar flow rate of gaseous species, and elementary reaction rates 

were calculated under those conditions by using the developed microkinetic 

model. The operating conditions were summarized in Table 16. In Table 16, 

compositions of gaseous species were referred to Koryabkina’s work [161], and 

remaining composition is for inert gas Ar. The combination of these operating 

conditions resulted in a total of 9,633 datasets. 
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Table 16 Varied range of operating conditions for making the pre-computed 

datasets  

Operating condition Range 

Temperature [℃] 180–240 

Pressure [atm] 1–20 

Composition of   

CO 0.038–0.197 

CO2 0.070–0.173 

H2 0.203–0.504 

H2O 0.081–0.379 
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6.3.2 Surrogate Model 

A Random Forest is an ensemble learning method used for classification or 

regression. It is one of the best machine learning algorithms, learning an 

ensemble of decision trees via bagging or pasting method. Its algorithm is 

simple and convenient, but it performs high accuracy even with relatively small 

training datasets and can overcome overfitting. Moreover, although a Random 

Forest algorithm is a black box model as other high-performance machine 

learning techniques, it can measure easily the feature importance. The more 

important features are, the closer to the root of the tree rather than the leaves 

the features appear. ExtraTrees (extremely randomized trees) algorithm, which 

randomizes decision trees extremely, is an improved version of Random Forests 

by using random thresholds for each feature and selecting the best splitting 

rather than finding the best possible thresholds at every node [162]. ExtraTrees 

is much faster to train than Random Forests and more effective in dealing with 

high-dimensional data owing to its less variance than regular Random Forests. 

ANNs, which mimic the human neural system to learn the relationship 

between the given data and solutions, are one the most popular and effective 

machine learning methods being used. Although the concept of a perceptron, 

which is the working unit of an ANN, was first introduced in 1958, the 

development progress of ANNs had come to a halt until the early 2000s, due to 

the problem of overfitting and the vanishing gradient problem. Overfitting is a 

common problem found in regression algorithms. When a complex function is 

used to fit a set of data points, the resulting regression function tends to “overly 

fit” the given data set, thus showing low accuracy when new data points are 

applied. The performance of an ANN naturally improves when the number of 



 144 

nodes in each layer, and the number of layers increase, due to the increasing 

number of parameters used to fit the data points, but it becomes vulnerable to 

overfitting. Another big problem of ANNs is the vanishing gradient problem, 

but we do not need to dive deeper into that problem.  

Owing to the development of novel activation functions (regularized linear 

units (ReLU), softmax activation function, etc.) and the increase in 

computational power made available by the development of general purpose 

graphical processing units (GPGPU), ANNs have made astonishing progress in 

the past 10 years, affecting various fields of study. By appropriately selecting a 

set of feature inputs and the structure of the ANN, an ANN is able to effectively 

learn the complex relationships between the input-output dataset. In this section, 

both ExtraTrees algorithm and ANN were used for regressing the microkinetic 

model, and the results from them were compared and analyzed.  

6.3.2.1 ExtraTrees 

Three surrogate models were developed using the ExtraTrees algorithm: (1) 

Temperature, pressure, and gas compositions as inputs, and site fractions, molar 

flow rate of gaseous species and elementary reaction rates as outputs, which 

can be used as a surrogate model of a microkinetic model for CFD simulations; 

(2) Elementary reaction rate as an input, and TOR as an output for investigating 

the relative importance of each reaction to TOR; (3) Site fraction as an input, 

and TOR as an output for investigating the relative importance of a site fraction 

of each surface intermediate to TOR. 

Bagging is short for bootstrap aggregating (also called bootstrapping), 

which is a random sampling method performed with replacement. By using 
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bootstrapping, the correlation between trees and the variance are reduced [163]. 

Therefore, bootstrap sampling was used when building trees in this study. In 

case of using bootrapping, out-of-bag (oob) samples are available. When using 

bootstrapping, some traning datasets may not be sampled at all, and these are 

called the oob samples. ExtreTrees use the oob samples as validation sets so 

that separate validation or cross-validaion is not necessary. Splitting datasets 

into the training and the test sets was conducted with the ratio of 3:1, 

respectively. 

  

6.3.2.2 Artificial Neural Network 

An ANN was designed to effectively accommodate the features of a chemical 

reaction, using the temperature, pressure, and composition values as inputs to 

predict site fractions, molar flow rate, and reaction rates of each  elementary 

step. A properly trained ANN could significantly reduce the computation time 

for the calculation of site fractions and reaction rates while providing high 

accuracy for the reaction rate values. 

When using ANNs for regression, the most important step is the selection of 

features that can effectively be used to predict the output data. In the case 

considered in this study, although temperature, pressure, and the composition 

of the individual components have been used to calculate the site fractions and 

reaction rates, using values in their current form may not provide sufficient 

results. In this study, the output variables were derived from the reaction rate 

equation. Although equations of first principles were not directly incorporated 
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into the ANN design, extracting features based on its format could enhance the 

performance of the ANN. Consider a typical reaction rate equation: 

 

𝑟f = 𝑘[𝐴]𝑛[𝐵]𝑚    (6.1) 

𝑘 = 𝐴𝑒−
𝐸a
𝑅𝑇    (6.2) 

 

where rf is the reaction rate, k is the reaction constant consisting of the 

Arrhenius equation and the activation energy, and the [A] and [B] are the 

activity values of the components A and B. 

To enhance the training performance and to ensure that no gradient 

vansishing occurs due to difference in order of magnitude among the data 

variables, the log-scale data of each of the input and output variables were used 

for ANN training. Observing the regression performance of different data 

preprocessing, it was concluded that normalizing the negative reciprocal form 

of temperature variable (−1/𝑇) that is the form in the Arrhenius equation only 

and using the rest of data in log forms was the best option. 

The neural network was designed using two hidden layers, with 10 nodes 

for the first hidden layer and 46 nodes for the second hidden layer, and the 

sigmoid activation function was used. The implemented neural network 

structure was visualized in Figure 26.  
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Figure 26 The implemented ANN structure. 
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There were 6 input variables and 46 output variables, where temperature 

values were input as (−1/𝑇), and the rest of the input and the output variables 

were input as log forms. The datatset was split so that the training data consisted 

of 70 % of the entire data, and the validation and test data consisted of 15 % of 

the whole data set, respectively.  

   

6.4 Application Results and Discussion 

6.4.1 Microkinetic Model 

In order to construct a reliable microkinetic model for WGS reaction, the pre-

exponential factors were fitted to the experimental data, and the parity plot was 

shown in Figure 27, and the estimated values were described in Table 17. As in 

the previous chapters, the pre-exponential factors of the adsorption reactions 

(the forward reactions of R1–R4) were estimated on the basis of the value 101, 

while those of the other reactions, the desorption and the surface reactions, were 

based on the value 1013. 
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Figure 27 Parity plot of the experimental and the calculated turnover rates. 
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Table 17 Estimated values of the pre-exponential factors for WGS reaction 

Rxn no. Af [Pa-1s-1 or s-1] Ab [Pa-1s-1 or s-1] 

R1 2.03E+00 8.20E+14 

R2 1.02E+01 7.70E+11 

R3 1.20E+04 8.27E+10 

R4 2.11E+01 3.90E+12 

R5 4.76E+14 3.80E+14 

R6 2.88E+10 6.45E+15 

R7 1.62E+16 8.54E+10 

R8 9.98E+15 1.49E+15 

R9 1.35E+12 7.08E+14 

R10 1.29E+13 5.60E+15 

R11 2.64E+15 3.56E+10 

R12 1.75E+11 5.62E+14 

R13 6.64E+10 5.30E+14 

R14 7.79E+15 1.10E+12 

R15 5.29E+14 8.97E+15 

R16 1.84E+15 6.07E+11 
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6.4.2 Surrogate Model 

6.4.2.1 ExtraTrees 

For training through ExtraTrees, the number of decision trees in the forest 

should be decided because this parameter significantly affects the performance 

of a surrogate model. Therefore, the average errors were measured by 

increasing the number of decision trees for the three types of surrogate models 

developed in this chapter. The result of the first model that might be a surrogate 

model of the microkinetic model was described in Figure 28. As shown in the 

Figure, the errors both on the test and the training sets were decreasing as the 

number of decision trees increased. Considering both the accuracy and the 

computational cost, it seemed optimal to use about 300 trees by which the 

model could have about 2.7 % error. 
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Figure 28 Changes of errors as increasing the number of decision trees in 

ensemble for the test (upper; blue line) and the training sets (lower; red line). 

  

Test set

Training set
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As mentioned above, ExtraTrees could provide the relative importances of 

input features to outputs. In microkinetic studies, elucidating the factors that 

affect the overall reaction is the main purpose. Therefore, the relative 

importances of each elementary reaction and intermediate covering catalyst 

surfaces are invaluable information to catalysis researches. In this study, the 

relative importances of the elementary steps and the surface intermediates to 

the TOR, a representative of the overall reaction, and were described in Figure 

29. Referring to Figure 29 (a) and (b), top 5 most affecting reactions were rb12 

(CO2* + H2O* → trans-COOH* + OH*), rf8 (CO* + O* → CO2* + *), rb16 

(CO2* + OH* → HCOO** + O*), rb15 (HCOO** + OH* → CO2* + H2O*), 

and rb10 (trans-COOH* → cis-COOH*), while the surface intermediates were 

HCOO*, HCOO**, O*, H*, and OH* within the operating range referred to 

Table 16. Considering these results, we can see easily which reaction is more 

dominant and important than the competitive reaction through the ExtraTrees 

algorithm. 
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Figure 29 Relative importances of (a) the elementary reaction rates and (b) the surface intermetiates to the TOR. 

(a) (b)
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6.4.2.2 Artificial Neural Network 

The results described in Figure 30 showed that the designed ANN shows good 

performanace regarding the validation and test datasets. The overall training 

process converged quickly so only 200 iterations of backpropagation 

calculations were applied. The mean squared error (MSE) values are in the 

order of 10-4, and the error values are distributed around zero with a small 

standard deviation, showing the stability of the trained ANN. The MSE values 

are in the same order for the training, validation and test datasets, which means 

that the ANN model has not been overfitted, and can be applied to various 

operating conditions and gas compositions. The accuracy of the reaction rate 

estimation shows an average of 0.01 %, which will have minimal errors when 

applying the estimated results to other usages, for example for CFD simulations. 
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Figure 30 Performance of regression by the ANN; (a) Mean squared error 

between the predictions by the ANN and the microkinetic model; (b) The 

error distribution. 

  

(a) (b)
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Chapter 7 Concluding Remarks 

7.1 Summary of Contributions 

Practical and theoretical approaches for lumped- and micro-kinetic modeling 

with parameter estimation were presented in this thesis. Also, by using the first-

principles calculation, information about the structures, the energies and the 

reactivities of chemicals adsorbed on catalytic surfaces were be given. All the 

developed microkinetic models retained the reliability through parameter 

estimation to fit the experimental results with the genetic algorithm which is 

the commonly used global optimization algorithm. By estimating the kinetic 

parameters using the genetic algorithm, the computational load was able to be 

mitigated without calculating vibrational frequencies through the DFT, which 

has been a drawback in most of the previous microkinetic modeling works, and 

the reliability was increased in that the model was based on experimental data. 

Ultimately, analysis using the developed models gave the insight in what the 

important reactions and pathways are, and what the efficient operating 

conditions are. Lastly, surrogate models of microkinetic models based on 

machine learning techniques were presented for subsequent applications to 

higher-scale reaction engineering such as CFD and process simulations. 

Moreover, important features to the relevant overall reaction could be suggested 

by the ExtraTrees algorithm. To sum up, the main contributions of each chapter 

were summarized below. 

Chapter 3 provided a lumped kinetic model for the direct synthesis of DME 

from syngas over a hybrid CZA/FER catalyst, highlighting the differences 

between lumped- and micro-kinetic models. Reaction rates with estimated 
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kinetic parameters determined by fitting the experimental data evidently 

showed that the model is capable of describing the experimental behavior. The 

estimated parameters of the hybrid catalyst were compared with the reported 

values of conventional catalysts to evaluate the effects of the hybridization of 

the CZA and FER catalysts on the catalytic behavior. The activation energies of 

the methanol synthesis from syngas were high, whereas those of the DME 

synthesis from methanol were lower than the value calculated by applying 

computational chemistry to the conventional zeolite catalyst. It may seem that 

the diffusion resistance plausibly plays an important role, due to the core-shell 

structure of the hybrid catalyst. The methanol synthesis step may have more 

control over the rate than the methanol dehydration step, and a temperature 

between 200 and 220 ℃ was determined for thermal energy efficiency. 

In Chapter 4, a practical microkinetic modeling approach for methanol 

synthesis from syngas over a Cu-based catalyst was described by considering 

28 possible elementary-step reactions for CO hydrogenation, CO2 

hydrogenation, and the water-gas shift reaction. A combination of the DFT and 

the semi-empirical UBI-QEP method was used to determine the reaction and 

activation energies, and the pre-exponential factors were estimated. The 

proposed method was shown to be efficient because computationally intense 

procedures, such as the calculation of vibrational frequencies, as well as 

partition functions of translational, rotational, and vibrational motions, are no 

longer required. In order to reduce the stiffness of the microkinetic model, 

partial equilibrium ratios were calculated. The estimated parameters on the 

basis of the experimental data increased the reliability of the reaction pathways 

proposed by the microkinetic model. As a results of the modeling, the most 
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dominant pathways of CO and CO2 hydrogentaions, and the RDS, the surface 

reaction of H3CO* and H*, were elucidated.  

Chapter 5 proposed a microkinetic model of DME synthesis from methanol 

over H-zeolite catalyst. For considering the London dispersion forces, the 

energy calculations were based on the MP2 instead of the DFT with a 4T cluster 

model for the H-zeolite, and the transition states of the reactions were found. 

After modeling the microkinetics through parameter estimation, the 

dissociative pathway was suggested as a dominant pathway, and the DME 

formation reaction of the dissociative pathway was found to be the RDS. 

In Chapter 6, machine learning techniques were applied for alternating a 

microkinetic model of the water-gas shift reaction. In order to transfer the 

microkinetic information into the higher-scale simulations such as CFD and 

process simulations, a surrogate model is necessary because a microkinetic 

model is so complex and difficult to solve that direct combination with other 

simulation tools is challenging. ExtraTrees and an artificial neural network 

(ANN) were used for regressing the mirokinetic data derived through the 

developed model. Operating conditions such as temperature, pressure and gas 

compositions were the input variables, while gas molar flow rates, site fractions 

of the surface intermediates and elementary reaction rates were the output 

variables. the developed surrogate models could predict the results of the 

microkinetic model with the same operating conditions. As a result, the ANN 

showed better performance when it comes to regression, while the important 

reactions and surface intermediates were elucidated through the ExtraTrees 

algorithm. 
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7.2 Future Work 

Future works on the microkinetics would be likely to be able to proceed in two 

directions: (1) Developing multiscale modeling platforms of catalytic reaction 

engineering from the quantum to the process scales, and (2) Applying several 

techniques to the microkinetics for digging up correlations between elementary 

reactions or surface intermediates more obviously by simplifying the 

microkinetics, for example, the dimension reduction or for a rigorous 

microkinetic modeling itself. 

As described in Chapter 6, a microkinetic model could be mapped into a 

simpler surrogate model by machine learning methods. These surrogate models 

are more suitable to be used for CFD or process simulations owing to their cost-

effectiveness, facilitating the linkage within multiscale modeling. If it is 

possible to analyze the first-principles based microkinetics even in CFD and 

process simulations, the multiscale model would make the synergetic effects on 

improving chemical processes. However, it should be kept in mind that there 

might be several limitations. As explained in Chapter 6, in specific situations 

where the time scales of transport phenomena are not much longer than those 

of elementary reactions, the steady-state assumption on the reaction kinetics is 

not valid. Furthermore, machine learning techniques are basically interpolative 

methods and very good at interpolation, but poor at extrapolation. Thus, for 

utilizing the machine learning-based surrogate model in the desired range of 

operating conditions, additional datasets would be needed to extend the model. 

Apart from this, the microkinetic study itself can be conducted. At present, 

a microkinetic model is too stiff to solve easily and vulnerable to diverge during 



 161 

calculations, and reasonable methods to resolve these problems can be studied. 

Also, more various analysis using a microkinetic model is possible if analytical 

techniques are applied for simplifying and visualizing the microkinetics, which 

would make progess in exploration of reaction mechanisms. By breaking the 

limitations, more rigorous microkinetic models would be developed, and there 

will be more information available from the microkinetics. 
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Appendix 

Supporting Information 

System of Differential Equations for the Site Balances 

in Chapter 4 

𝑑𝜃H2O

𝑑𝑡
= 𝑟f4 + 𝑟b10 + 𝑟b11 + 𝑟f13 + 𝑟b25 + 𝑟f28 − 𝑟b4 − 𝑟f10 − 𝑟f11 − 𝑟b13 −

𝑟f25 − 𝑟b28        (S1) 

𝑑𝜃CH3OH

𝑑𝑡
= 𝑟f6 + 𝑟f20 + 𝑟f27 − 𝑟b6 − 𝑟b20 − 𝑟b27   (S2) 

𝑑𝜃O

𝑑𝑡
= 𝑟b7 + 𝑟f12 + 𝑟f13 + 𝑟f17 + 𝑟f22 + 𝑟b24 − 𝑟f7 − 𝑟b12 − 𝑟b13 − 𝑟b17 −

𝑟b22 − 𝑟f24        (S3) 

𝑑𝜃OH

𝑑𝑡
= 𝑟b8 + 𝑟f10 + 𝑟f11 + 𝑟b12 + 2𝑟b13 + 𝑟f18 + 𝑟b24 + 𝑟f25 − 𝑟f8 − 𝑟b10 −

𝑟b11 − 𝑟f12 − 2𝑟f13 − 𝑟b18 − 𝑟f24 − 𝑟b25                (S4) 

𝑑𝜃HCO

𝑑𝑡
= 𝑟f21 + 𝑟f22 + 𝑟b23 + 𝑟f24 + 𝑟f25 + 𝑟f26 + 𝑟b27 − 𝑟b21 − 𝑟b22 −

𝑟f23 − 𝑟b24 − 𝑟b25 − 𝑟b26 − 𝑟f27          (S5) 

𝑑𝜃HCOO

𝑑𝑡
= 𝑟f14 + 𝑟b15 + 𝑟b22 − 𝑟b14 − 𝑟f15 − 𝑟f22    (S6) 

𝑑𝜃H2CO2

𝑑𝑡
= 𝑟f15 + 𝑟b16 + 𝑟b17 − 𝑟b15 − 𝑟f16 − 𝑟f17        (S7) 

𝑑𝜃COOH

𝑑𝑡
= 𝑟f8 + 𝑟b9 + 𝑟b10 − 𝑟b8 − 𝑟f9 − 𝑟f10       (S8) 
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𝑑𝜃CH2O

𝑑𝑡
= 𝑟f5 + 𝑟f17 + 𝑟f18 + 𝑟b19 + 𝑟f23 + 𝑟f26 + 𝑟f28 − 𝑟b5 − 𝑟b17 − 𝑟b18 −

𝑟f19 − 𝑟b23 − 𝑟b26 − 𝑟b28              (S9) 

𝑑𝜃CH3O

𝑑𝑡
= 𝑟f19 + 𝑟b20 + 𝑟b26 + 𝑟b27 − 𝑟b19 − 𝑟f20 − 𝑟f26 − 𝑟f27   (S10) 

𝑑𝜃CH3O2

𝑑𝑡
= 𝑟f16 + 𝑟b18 + 𝑟b28 − 𝑟b16 − 𝑟f18 − 𝑟f28      (S11) 
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System of Differential Equations for the Site Balances 

in Chapter 5 

𝑑𝜃CH3OH−H−Z

𝑑𝑡
= 𝑟f1 + 𝑟b2 + 𝑟b7 − 𝑟b1 − 𝑟f2 − 𝑟f7   (S12) 

𝑑𝜃H2O−CH3−Z

𝑑𝑡
= 𝑟f2 − 𝑟b2 − 𝑟f3            (S13) 

𝑑𝜃CH3−Z

𝑑𝑡
= 𝑟f3 + 𝑟b4 − 𝑟f4      (S14) 

𝑑𝜃CH3OH−CH3−Z

𝑑𝑡
= 𝑟f4 + 𝑟b5 − 𝑟b4 − 𝑟f5    (S15) 

𝑑𝜃CH3OCH3−H−Z

𝑑𝑡
= 𝑟f5 + 𝑟b6 − 𝑟b5 − 𝑟f6    (S16) 

𝑑𝜃CH3OH−CH3OH−H−Z

𝑑𝑡
= 𝑟f7 + 𝑟b8 − 𝑟b7 − 𝑟f8    (S17) 

𝑑𝜃CH3OCH3−H2O−H−Z

𝑑𝑡
= 𝑟f8 − 𝑟b8 − 𝑟f9    (S18) 
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Abstract in Korean (국문초록) 

최근에 계속해서 환경 오염 문제가 대두됨에 따라 이산화탄소를 

줄이는 것에 대한 관심이 커지고 있다. 이에 따라 다양한 분야의 

많은 연구자들과 산업에서도 이산화탄소의 배출을 줄이고자 

노력하고 있다. 특히 화학공학자들은 온실 가스를 사용하여 유용한 

케미컬을 생산할 수 있는 탄소 활용 반응 공정들을 개발해왔다. 

이러한 반응들에 대해 이미 상용 공정들이 개발되어 있지만 이 

반응들의 반응 메커니즘에 대해서는 여전히 논쟁이 진행 중이다. 

컴퓨터 계산 성능의 발전과 더불어 반응 메커니즘 탐색에 대한 

연구는 새로운 국면을 맞아 더욱 활발해지고 있다. 상당한 계산량을 

요구하는 계산 화학은 반응 메커니즘 분석에 엄청난 도움이 되고 

있다. 더욱이 키네틱 관점에서 메커니즘을 분석할 수 있는 

마이크로키네틱 스터디는 계산 화학의 발전과 더불어 시너지 

효과를 낼 수 있다. 화학 공학에서 전통적인 키네틱 모델은 주로 

공정 개발에 사용되는 반면, 마이크로키네틱 모델은 이러한 장점에 

더하여 근본적인 분석이 가능하다. 이러한 이유로 널리 알려진 

반응들에 대해서도 마이크로키네틱을 통한 메커니즘 분석은 

활발하게 이루어지고 있다. 본 학위 논문에서는 기존의 몇 가지 

결점들을 개선할 수 있는 실용적인 마이크로키네틱 모델링 전략을 

제안하였다. 메탄올 및 디메틸에테르(DME) 합성 관련 반응들에 

대해서 밀도범함수 이론(DFT) 및 이 결과를 이용한 마이크로키네틱 

모델링을 수행하고, 이를 통한 반응 메커니즘 분석 및 여러 케이스 
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스터디를 진행하였다. 파라미터 추정 기법을 이용하여 예측값과 

실험값의 차이를 최소화 하는 방향으로 Pre-exponential 인자를 실험 

데이터에 피팅하였다. 이러한 마이크로키네틱스에의 실용적인 

모델링 접근법은 모델의 계산효율과 신뢰성을 개선할 수 있었다. 

논문의 첫 번째 부분으로 Lumped 키네틱 모델과 마이크로키네틱 

모델의 차이를 강조하기 위해, Cu/ZnO/Al2O3/ferrierite (CZA/FER) 

하이브리드 촉매 하에서 합성가스로부터 디메틸에테르로의 직접 

전환 반응에 대해 Lumped 키네틱 모델을 개발하였다. 키네틱 

파라미터는 하이브리드 촉매에서의 실험 값에 피팅되도록 

추정하였고, 이는 CZA 및 FER 촉매 각각에서 보고된 선행 

연구에서의 값과 비교하였다. 하이브리드 촉매에서의 높은 활성화 

에너지는 메탄올 합성 단계가 메탄올 탈수 단계보다 전체적인 반응 

속도를 조절하는 인자라는 것을 보여주었다. 또한 개발된 키네틱 

모델을 통해 200 ~ 220 ℃의 온도에서 운전하는 것이 효율적임을 알 

수 있었으며, 최적의 운전 압력 및 공간 속도를 제시하였다. 

두 번째 부분에서는 구리 기반 촉매 하에서 합성가스로부터 

메탄올을 합성하는 반응에 대해서 마이크로키네틱 모델링을 하기 

위한 실용적인 방법에 대해 묘사하였다. 일산화탄소 및 

이산화탄소의 수소화 반응, Water-gas shift 반응에 대해 28 개의 

단일단계반응을 고려하였다. DFT 와 반경험적인 방법론인 Unity bond 

index-quadratic exponential (UBI-QEP) 기법을 조합하여 흡착열 및 

활성화 에너지를 도출하였다. DFT 계산을 통해 포름산염(HCOO**)이 
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이좌배위자(Bidentate) 형태로 흡착되는 것을 확인하였으며, UBI-QEP 

계산을 위한 기상과 흡착된 중간 생성물들의 흡착에너지 및 

엔탈피를 제공하였다. Pre-exponential 인자의 경우에는 

전이상태이론의 Order-of-magnitude 에 기반하여 초기 값을 설정하고, 

실험 데이터에 피팅하였다. 덕분에 이를 위한 진동 주파수 및 분배 

함수를 계산하지 않아 계산 로드를 줄일 수 있었다. 반응기 

모델에서는 마이크로키네틱 모델의 경직성을 완화하기 위해 

부분평형비를 계산하였다. 상대적으로 빠른 단일단계반응을 

기반으로 우세한 반응 경로를 제안하였으며, Degree of rate control 

계산을 통해 H3CO*와 H*의 표면 반응이 속도 결정 단계임을 

제안하였다. 또한 운전 온도, 압력 및 Feed 의 H2 분율이 메탄올 

합성 속도에 미치는 영향을 알아보기 위해 개발된 모델을 

사용하였다. 

세 번째 부분에서는 계산 화학 및 마이크로키네틱 모델링을 통해, 

H-zeolite 촉매 하에서 메탄올 탈수 반응에 의한 디메틸에테르 

합성에 대해서 반응 경로를 분석하였다. 반응 메커니즘으로는 

Associative 및 Dissociative 경로에 대해서 9 개의 단일단계반응을 

포함하였다. 이러한 반응 시스템에서는 분산력의 영향이 있으므로 

2 차 묄러-플레셋 섭동 이론(MP2)에 기반하여 반응종들의 구조를 

최적화하였다. 또한, 반응의 전이 상태를 도출하였으며 이와 최적 

분자 구조의 에너지 및 활성화 에너지를 계산하였다. 이 결과에 

기반하여 마이크로키네틱 모델을 개발하였고, Pre-exponential 인자는 
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마찬가지로 실험 데이터에 피팅하였다. 이러한 방법론은 개발된 

마이크로키네틱 모델의 신뢰성을 강화하였다. 단일단계반응들의 

상대적인 반응 속도를 비교하여 Dissociative 경로가 우세하게 

작용함을 알 수 있었으며, 이 경로의 DME 생성 반응(CH3OH-CH3-Z 

→ CH3OCH3-H-Z)을 속도 결정 단계로 제안하였다. 마찬가지로 이 

모델을 통해 온도가 촉매 표면의 농도 분포에 미치는 영향을 

분석하였다. 

마지막으로, Water-gas shift 반응에 대한 마이크로키네틱 모델에 

대하여 기계학습 기반의 대체 모델을 제시하였다. 마이크로키네틱 

대체 모델은 마이크로키네틱스와 전산유체역학이나 공정 

시뮬레이션과 같은 더 높은 차원의 반응 공학 모듈을 이어주는 

다리 역할을 할 수 있다. ExtraTrees 알고리즘과 인공신경망을 

이용하여 개발된 마이크로키네틱 모델로부터 얻은 데이터셋을 

회귀하였다. 보간 기계학습 기법 중에서 인공신경망은 회귀 

분석에서 높은 성능을 낼 수 있는 것으로 잘 알려져 있고, ExtraTrees 

알고리즘은 특성 중요도를 계산 할 수 있다. 인공신경망 기반의 

대체 모델은 평균 오차율 0.01%로 좋은 성능을 보여주었다. 

ExtraTrees 일고리즘은 특성 중요도를 측정할 수 있어, Water-gas shift 

반응에서 중요한 단일단계반응과 중요한 촉매 표면의 중간생성물을 

찾아낼 수 있었다. 
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