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Abstract 

 
Background: Monoclonal antibodies (mAbs) are produced by B 

cells and specifically binds to target antigens. Technical advances in 

molecular and cellular cloning made it possible to purify recombinant 

mAbs in a large scale, enhancing the multiple research area and 

potential for their clinical application. Since the importance of 

therapeutic mAbs is increasing, mAbs have become the predominant 

drug classes for various diseases over the past decades. During that 

time, immense technological advances have made the discovery and 

development of mAb therapeutics more efficient. Owing to advances 

in high-throughput methodology in genomic sequencing, phenotype 

screening, and computational data analysis, it is conceivable to 

generate the panel of antibodies with annotated characteristics 

without experiments.   

Thesis objective: This thesis aims to develop the next-

generation antibody discovery methods utilizing high-throughput 

antibody repertoire sequencing and bioinformatics analysis. I 

developed novel methods for construction of in vitro display antibody 

library, and machine learning based antibody discovery.  

In chapter 3, I described a new method for generating 

immunoglobulin (Ig) gene repertoire, which minimizes the 

amplification bias originated from a large number of primers 

targeting diverse Ig germline genes. Universal primer-based 

amplification method was employed in generating Ig gene repertoire 

then validated by high-throughput antibody repertoire sequencing, in 

the aspect of clonal diversity and immune repertoire reproducibility. 

A result of this research work is published in ‘Journal of 

Immunological Methods (2021). doi: 10.1016/j.jim.2021. 113089’.  

In chapter 4, I described a novel machine learning based 

antibody discovery method. In conventional colony screening 

approach, it is impossible to identify antigen specific binders having 

low clonal abundance, or hindered by non-specific phage particles 

having antigen reactivity on p8 coat protein. To overcome the 
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limitations, I applied the supervised learning algorithm on high-

throughput sequencing data annotated with binding property and 

clonal frequency through bio-panning. NGS analysis was performed 

to generate large number of antibody sequences annotated with its’ 

clonal frequency at each selection round of the bio-panning. By using 

random forest (RF) algorithm, antigen reactive binders were 

predicted and validated with in vitro screening experiment. A result 

of this research work is published in ‘Experimental & Molecular 

Medicine (2017). doi:0.1038/emm.2017.22’ and ‘Biomolecule 

(2020). doi:10.3390/biom10030421’. 

Conclusion: By combining conventional antibody discovery 

techniques and high-throughput antibody repertoire sequencing, it 

was able to make advances in multiple attributes of the previous 

methodology. Multi-cycle amplification with Ig germline gene 

specific primers showed the high level of repertoire distortion, but 

could be improved by employing universal primer-based 

amplification method. RF model generates the large number of 

antigen reactive antibody sequences having various clonal 

enrichment pattern. This result offers the new insight in interpreting 

clonal enrichment process, frequency of antigen specific binder does 

not increase gradually but depends on the multiple selection rounds. 

Supervised learning-based method also provides the more diverse 

antigen specific clonotypes than conventional antibody discovery 

methods.   

 

 

Keyword: Antibody discovery, immunoglobulin sequencing, B cell 

receptor repertoire, high-throughput method, machine learning 
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1. Introduction 
 

 

1.1. Antibody and immunoglobulin repertoire 
 

Antibody Structure and Function  

 

B cells play diverse role in immune system of diverse species by 

recognizing a broad array of antigen via membrane expressed B cell 

receptors (BCR) and secreted form of the BCR, antibodies1. 

Antibodies are multimeric glycoproteins consists of two copies of 

heavy chain (about 50 kDa) and light chain (about 25 kDa). These 

two types of chain share the functionality on highly polymorphic 

domain, variable region (VH for heavy chain and VL for light chain), 

which recognize the immense number of target antigen. Another 

functional domain of antibody which having conserved sequence, 

constant region determines the antibody’s architecture and mediates 

the interactions with effector molecules to elicit unique functionality2 

(Figure 1). After the identification of the antibody structure, 

important findings have been made in understanding the functions of 

antibodies in B cell development and humoral immune responses. 

The genes of VH and VL domain are having unique feature which is 

highly variable in somatic cells, compare to other proteins in genome. 

Sequence diversity of the variable domain is not equivalently 

distributed, but focused in specific regions3. Both the VH and VL 

domains contain three hypervariable regions neighboring the 

relatively conserved scaffold, framework regions (Figure 2). All six 

hypervariable regions, referred to as the complementarity 

determining regions (CDRs), are forming loop structure and 

conformationally interact to form the antigen-binding site which is 

determined by the lowest energy states along with antigen.  From 

the six CDRs, CDR3 has been proven to be the most critical regions 

which affect the antigen specificity4. Previous studies showed that 

artificially varying other regions while remaining identical CDR3 can 

maintain the antigen specificity in the variants5,6.  
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Figure 1. The structure of an antibody and functional domains. The 

Fab region is responsible of recognizing the various antigen, while 

the Fc region mediates the effector functions by interact with Fc 

receptors of the effector cells or activating the complement cascades. 

Class switch recombination further diversifies the architecture and 

function of the antibodies.  
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Figure 2. Hypervariable domain of the antibody. The Fab region is 

subdivided into two domains originated from distinct polypeptide 

chain of the antibody, variable heavy chain (VH) and variable light 

chain (VL). VH and VL form the fragment of the variability (Fv) which 

is consisted of sheet shaped region framework regions (FRs) which 

maintains the scaffold of the antibody, and loop shaped 

complementary determining regions (CDRs) which responsible of 

recognizing the various antigen. 
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Immunoglobulin repertoire 

 

The size of the heavy chain germline locus’ is in the order of 

megabases, and several exons are interspaced by extensive intronic 

regions. The coding regions of variable domain in the heavy and light 

chains are composed of multiple gene segments include a variable 

(V) and joining (J). The heavy chain also contains a diversity (D) 

segment, surrounded by the V and J gene segments7 (Figure 3). 

During early B cell development in the bone marrow, a D and a J 

gene segment are rearranged to create a continuous exon, and a V 

gene segment recombines with the DJ complex. There are two light 

chain loci, kappa (κ) and lambda (λ). The rearrangement of the light 

chain gene segments occurs after a successful assembly of variable 

heavy chain gene segments. This recombination process is mainly 

mediated by the recombinases RAG1 and RAG27. V(D)J 

recombination is accompanied by insertions and deletions8. The 

insertion process employees several enzymes. RAG1/2 protein 

generates semirandom P-nucleotides, and terminal deoxynucleotdyl 

transferase (TdT) adds non-templated N-nucleotides9. As a result of 

the error-prone process, only about 1/3 of rearrangements leading 

to a functional V(D)J recombination. In the light chain, by the 

presence of two candidate isotypes, and failure to rearrange one of 

them on both side of the chromosomes can be remunerated by a 

successful rearrangement of the other. If all the rearrangement goes 

unsuccessful, the cell goes through apoptosis progress7.  

After the recombination process in genomic DNA, and upon 

receiving appropriate activation signals, the successfully recombined 

V(D)J region splices with the constant (C) gene, in the downstream of 

the J gene segments. In the heavy chain locus, C gene named mu Cμ, 

Cδ, Cγ, Cε and Cα are translate into IgD, IgG, IgE and IgA 

immunoglobulin classes, respectively. The enzyme activation induced 

cytidine deaminase (AID) triggers the class switch recombination 

during the germinal center reaction which transduce the activation 

signal either to the naive and memory B cell. By that, the antigen 

specificity can be linked with the most effective functions7. Along 
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with class switch events, final diversification process is delivered in 

variable region by antigen dependent manner which take place in 

germinal center. Activated germinal center B cells, present a high 

level of transcription, undergo somatic hypermutation (SHM) process 

which is mediated by AID protein. By SHM, the mutational rate of V 

regions is raised to 10-5~10-3 / base pair compared to 10-9 in the 

other regions of the genome10,11. SHM is based on the DNA repair 

machinery carries multiple mutations to recover the conversion of 

cytosine to uridine by deamination7. SHM is the mechanism of affinity 

maturation of the antibodies. Favorable mutations will lead to 

receptors having improved affinity for the exposed antigen. These B 

cells carries a survival advantage in clonal expansion and selection 

to proceed the lateral stage of the B cell development.  

AID can engage any nucleotides spanning the whole V(D)J region, 

but SHM are predominantly detected in the CDRs, which have a 

major function in antigen recognition11. The causes of intrinsic 

preferential behavior of the AID are not fully elucidated, selection 

process can result the certain phenomenon12. Throughout the entire 

B cell development, combinatorial and junctional diversity yield a 

repertoire size of about 5 x 1013, further increases of diversity could 

be achieved by SHM events. As about 2 x 1012 lymphocytes are 

existed in the human body, the theoretical diversity exceed the 

individual’s diversity capacity13 (Figure 4).  

The last two exons of the constant gene anchor the antibody 

molecules into the B cell membrane, and translated during the whole 

B cell differentiation stages. This intermediate cell type is 

characterized by expression of surface receptors and secreted 

antibodies simultaneously. and secretion by alternative splicing of a 

secretory signal domain eliminating the membrane anchoring exons 

enables the production of shorter form of secreted B cell receptors. 

Specific cell type plasmablasts secrete antibodies at high levels then 

terminally differentiate into plasma cells, which lost the surface 

expression maintaining high level of antibody expression14 (Figure 5).  
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Figure 3. Germline immunoglobulin gene locus. The immunoglobulin 

gene segments are organized into three genetic loci- kappa (κ), 

lambda (λ) and heavy (H) chain. Each locus has a multiple gene 

segments as variable (V), diversity (D) and joining (J) to be 

recombined to generate genetic diversity during the early B cell 

development.   
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Figure 4. Generation of immunoglobulin repertoire diversity. 

Recombining gene segments by RAG1/2 protein, and pairing of heavy 

and light chain, combinatorial diversity is generated (2 x 106). During 

the process, additional diversity, junctional diversity is introduced 

with deletion and addition of the nucleotides by RAG1/2 and TdT 

enzyme (5 x 1013). After antigen exposure, SHM is introduced which 

resulting in additional diversity in immunoglobulin repertoire.  
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Figure 5. Changes in B cell receptor repertoire following 

developmental stages of the B cells. Repertoire diversity is 

generated from the early stage of the B cell maturation by V(D)J 

recombination along with chain pairing combination in genomic DNA 

of the pre-B cells. After leaving bone marrow for peripheral 

maturation of the B cells, naive repertoire is formed to take charge 

of primary immune responses. After antigen exposure, B cells 

entered the secondary lymphoid organs including spleen or lymph 

nodes, facing the further diversification either in variable region and 

constant region, mediated by AID. Clonally expanded B cells 

differentiate into memory B cells for secondary immune responses, 

and plasma cell lineages to elicit systemic humoral responses 

mediated by secreted antibodies.  
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1.2. Antibody therapeutics 
 

Monoclonal antibodies (mAbs) and related biotherapeutics 

 

Succeeding the discovery of antibodies and their unique function 

in human immune system, the first concept of the targeted therapy 

‘magic bullet’ conceived by Paul Ehrlich in the early 1900’s15, 

became a real-world idea. The history of therapeutic monoclonal 

antibodies (mAbs) has been developed following hybridoma 

technology by Köhler and Milstein in 1970’s16. Hybridoma is 

generated by fusing non-secretin g myeloma cells with antibody 

secreting plasma cells17. The first monoclonal antibody (mAb) 

approved for clinical use was Muromonab-CD3 (Orthoclone OKT3) in 

198618. The mechanism of action is targeting CD3 co-stimulatory 

receptor on T cells to desensitize the acute rejection in organ 

transplantation. Following successful development of therapeutic 

mAbs, growth of the mAbs market has exploded for the last decades, 

forecasted to increasing to $125 billion and $ 300 billion in 2020 and 

2025 respectively19. Globally, about 570 mAbs have been studied in 

clinical trials for therapeutic usage, and 121 therapeutic mAbs have 

been marked by the United States Food and Drug Administration (US 

FDA), 1997-202020.  

Over the native immunoglobulin molecule as mAb therapeutics, 

related therapeutic product field continues to expand as antibody 

drug conjugates (ADCs) and antibody derivative molecules (Figure 6). 

By conjugating cytotoxic drug or enzymatic payload to mAbs, it is 

conceivable to achieve therapeutic efficacy and target specificity at 

the same time21. Recombinant bi-specific antibodies can engage 

distinct targets to induce synergistic effect of multiple mechanisms 

of actions. Also, physical linking of target cells or molecules is 

possible using bi-specific antibodies. The bispecific T cell engager 

(BiTE), can target pathogenic cells such as tumor, by bringing T cells 

to efficiently localize the cytotoxic effect22. Other breakthrough 

application of mAb combined with cellular therapy, chimeric antigen 

receptor (CAR)-T cell therapy became an advancement in cancer 
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treatment23. CAR-T is generated by genetical engineering of T cells 

to express a synthetic receptor such as binding domain of the mAb 

followed by cellular expansion to be infused into the patient's body to 

attack pathologic targets. CAR-T targeting CD19 target showed 

dramatic clinical response and high rates of complete remission have 

been observed in the setting of B cell malignancies, acute 

lymphoblastic leukemia and diffuse large B-cell lymphoma, resulting 

in four FDA approvals24. In 2020, 191 active pre-clinical and clinical 

trials were directed at CD19 to improve the efficacy and safety25. 

Also, other challenges are ongoing to develop CAR-T cell therapy to 

address “off-the-shelf” allogeneic therapy, engineering strategies 

and aiming next-generation targets, BCMA, CD20, CD22 and HER2 

to overcome the limitations and resistances26-29.  
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Figure 6. Monoclonal antibody and related biotherapeutics. By 

targeting various systems in pathogenesis, it is conceivable to 

conduct targeted therapy using mAb and related biotherapeutics. By 

combining other drug classes, antibody-drug conjugates (ADC), 

which carries traditional small molecule drugs as a payload in the 

antibody scaffold, and chimeric antigen receptor T cell (CAR-T) and 

bispecific T cell engager (BiTE) platform, have been showing 

remarkable clinical responses compare to native form of the mAbs.  
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Developmental process of antibody therapeutics 

 

Since the mAb market value has been rapidly growing and 

proving the therapeutic potential in multiple disease area, myriad 

number of academic and industrial competitors started to discover 

therapeutic targets and establish advanced technologies in antibody 

drug development. The conventional development cycle of an 

antibody discovery campaign can be subdivided into distinct steps. 1) 

candidate discovery, 2) lead optimization, 3) pre-clinical 

development, and 4) clinical trials30. (Figure 7) After identification of 

target-specific antibodies, initial candidates then enter the series of   

engineering procedure to improve their antigen binding properties 

(affinity, specificity, cross-species reactivity) and druggabilities 

(physicochemical properties which is translated into 

thermal/chemical stability, aggregation propensity, productivity, 

solubility, solubility, and immunogenicity)31. Antibody discovery and 

engineering stage is of critical importance for a poor metric of 

sequence derived biophysical property can lead to failure of 

downstream development process19,32.  
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Figure 7. General contemplational process in development of 

antibody therapeutics. The first step in antibody therapeutics 

development is generation of target specific binders and meta data of 

the antibody characterization. In the parallel procedure, MOA study is 

essential for the further clinical development stages.   
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1.3. Methodology: antibody discovery and engineering 
 

Conventional antibody discovery and engineering methods 

 

Back in 1975, Georges J. F. Köhler and César Milstein 

established a method to generate hybridoma cells by fusion of 

immortalized B cells and myeloma cells. Hybridoma cells originated 

from an immunized organism could be used in selection of antibody 

secreting properties against the specific antigen used in immunization. 

After selection, antigen specific clones could be entered the scale-up 

process to generate large amount of antibody molecules33. Although, 

the hybridoma technology has technical limitations such as laborious, 

low efficient limiting dilution subcloning process and intrinsic 

limitation, immunogenicity, which could be unsafe in therapeutic 

usage. To overcome the certain limitations of the hybridoma 

technology, in vitro based antibody discovery methods have been 

developed.  

By harvesting genomic materials from the living organ having 

adaptive immune system, it is possible to reconstitute the antibody 

repertoire in vitro by cloning immunoglobulin genes into certain 

antibody display systems. The concept of antibody display is 

consisted of several key elements. (1) Construction of antibody 

library carrying the diversity at the genotypic level, (2) linking 

genotype to phenotype by utilizing in vitro display system and (3) 

applying selective pressure to screen out antigen specific binders34. 

Various type of in vitro display libraries can be generated from a 

variety of hosts for adequate purposes. Naive libraries are not biased 

towards the specific antigen stimulation so that carries higher 

diversity in repertoire. In contrast, immune libraries from an 

immunized (or infected) are less diverse, but having a significant 

level of enrichment in antigen specific binders. To complement the 

limitations of each libraries, synthetic and semisynthetic libraries are 

developed for improvement of the library features35.  

The first in vitro display system is translated by phage play 

platform (Figure 8). The finding that recombinant peptides and 
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proteins can be expressed upon fusion with the coat proteins 

resulting in display of the intended molecules on the surface of 

filamentous bacteriophages36. With the antibody displayed on the 

surface of the phage, the displayed antibodies can bind to an 

immobilized antigen enabling the selection of antigen specific clones. 

After washing out non-binding phage particles, antigen specific 

phage particles are eluted identified by phagemid sequencing. The 

major limitation of phage display platform is that the identified 

antibody clones enter the mammalian expression system which 

carries post-translational modification which could affect the 

expression level or even in antigen binding properties37. Despite the 

certain limitations, due to its’ robustness and effectiveness, 9 mAbs 

are approved on the market and more than 20 phage-display derived 

mAbs are in late-stage clinical trials19,38.  

Eric Boder and Dane Wittrup suggested the yeast display 

platform to overcome the limitations of the phage display system in 

199739. Yeast (Saccharomyces cerevisiae), as a eukaryotic organism, 

present the post-translational modifications, protein folding, and 

secretory machinery similar to mammalian system. By cloning of 

immunoglobulin genes into a yeast expression plasmid and 

transformed to generate antibody libraries, slightly smaller than 

phage, of 107 to 109 diversity40, it is conceivable to fusing antibodies 

to the Aga2p protein, similar to phage display system. 
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Figure 8. Phage display and biopanning. Recombinant DNA 

technologies enables the physical translation of genetic antibody 

repertoire to surface displayed antibody protein repertoire which 

could be subjected into selective cycles against specific antigen. 

Repetitive enrichment process of the antigen specific clones, 

biopanning, makes the screening of binders from huge sized antibody 

repertoire.   
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Transgenic humanized animal platform 

 

While the hybridoma, in vitro display technologies represented a 

certain advance in development of antibody therapeutics, the 

candidate originated from non-human organism eventually led to high 

immunogenicity. To overcome the limitations, generation of chimeric 

and humanized sequence of antibodies are developed41. Chimeric 

antibodies are consisted of a non-human Fab with a human Fc region 

and humanized antibodies are generated by grafting CDRs of the 

antigen specific non-human antibodies to human framework scaffold. 

which graft murine41. Bur during the process, binding properties of 

the original clones could be modified resulting in further engineering 

of binding affinity which is lagging the developmental process.  

To improve the technologies generating fully human antibodies, 

the demonstrations that human immunoglobulin gene loci could be 

introduced into the mouse genome42.  These efforts resulted in the 

first fully human transgenic mouse model, XenoMouse®  and HuMab-

Mouse®  and have been followed by a series of, humanized animals43-

45. The groundbreaking ability of these platform to understand non-

human immune system and human antibody repertoire has 

revolutionized biotechnology by providing a diverse source of fully 

human antibodies. Also, fully humanized antibodies derived from 

these platforms are taking a place in clinical usage and 

development46.  
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Third generation method: deep mining of antibody repertoire by 

next-generation sequencing  

 

With tremendous advances in antibody discovery and engineering 

platforms are emerged, screening of antibodies under high-

throughput manner is the most key and fundamental parts in antibody 

drug development. Sanger sequencing is commonly used at each of 

technologies reviewed in the previous section which could limit the 

scale and throughput of the antibody discovery platform. Even the 

phage display platform which leverages the most diverse antibody 

repertoire in selective procedure, isolation of individual phagemids 

from pools is limited to sequencing a few hundred to thousand clones 

generally. Since phage display gives an output of up to ∼108 

sequences, the use of high-throughput sequencing (HTS) or next-

generation sequencing (NGS) becomes essential to interrogate the 

entire sequence diversity. Recent advances in high-throughput DNA 

sequencing technologies over the last decade has led to a dramatic 

reduction in the cost of sequencing and has revolutionized the 

development of the computational methods in immunobiology47. By 

combining bioinformatic tools analyzing clonal selection procedure, it 

is conceivable to identify the antigen specific antibodies without 

experimental procedures48.  

Not only in analyzing in vitro display repertoire and selection 

procedure, the NGS analysis has enabled comprehensive 

characterization of the B cell receptor (BCR) landscape at various 

aspects49 (Figure 9). Large-scale computational structural modeling 

has revealed the correlation of the sequence and structural between 

naive and antigen-experienced antibody repertoires50. NGS-aided 

profiling of the BCR repertoire of multiple diseases such as infectious 

disease, cancer and autoimmune disease can provide the 

comprehensive understanding in antibody mediated pathogenesis, 

which could be directly applied to develop the therapeutics and 

diagnostics.  

Recently, by analyzing shaping of the B cell response in HIV-

infected individuals, Jardine et al. has developed the engineered 
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immunogen that could target B cells that express the germline 

clonotypes originated from a particular broadly neutralizing 

antibodies (bNAbs) class51. In the case of coronavirus disease-19 

(COVID-19), Kim et al. have identified the stereotypic neutralizing 

antibody against SARS-CoV-2 in healthy individuals and COVID-19 

patients. They isolated SARS-CoV-2 spike protein receptor binding 

domain (RBD)-specific clonotypes composed of immunoglobulin 

heavy variable 3-53 (IGHV3-53) or IGHV3-66 and immunoglobulin 

heavy joining 6 (IGHJ6) genes in COVID-19 patients. These 

clonotypes were also detected in more than half of the heathy 

cohorts, which provide the evidence of the pre-existing neutralizing 

antibodies in naive BCR repertoire52. By analyzing BCR repertoire of 

the cancer patients who received the immune checkpoint inhibitor 

(ICI)and showed the clinical response, highly convergent antibody 

repertoire was detected and shared between the multiple patients53. 

A recombinant antibody which reconstituted from the convergent 

BCR sequences were treated with ICI drug as a combination therapy, 

showed improved therapeutic efficacy compared to the single 

treatment of the ICI drug54. Further, disease types that are not 

deeply studied in the related mechanism of the adaptive immunity, 

including neurodegenerative disease, became emerging targets in 

BCR repertoire profiling studies.  
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Figure 9. B cell receptor repertoire analysis with next-generation 

sequencing. Experimental and computational improvements in BCR 

repertoire profiling enables the next-generation antibody discovery.  
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2. Thesis objective 
 

 

This thesis aims to develop the novel next-generation 

antibody discovery method by combining phage 

display, immunoglobulin sequencing and high-

throughput clone retrieval method. 
 

 

Improving conventional phage display library construction method  

 

To construct antibody libraries from B cells, singleplex or 

multiplex PCR amplification were conducted using primers targeting 

multiple immunoglobulin genes. However, during this process, the B 

cell receptor (BCR) repertoire is distorted due to interactions 

between multiple target genes and primers. To overcome the 

conventional limitations, I devised new way of library construction 

method which minimize the Ig gene amplification bias.  

 

Identification of antigen specific antibodies using immunoglobulin 

sequencing data derived from biopanning, and high-throughput clone 

retrieval method   

 

In conventional phage display and biopanning methods, it is 

known that the critical drawback of the method is extremely low 

binder screening efficiency. Utilizing phage enzyme-linked 

immunoassay (ELISA) and Fluorescence-activated Cell Sorting FACS 

resulting in 102-3 screening scales from 109-11 diversity of the initial 

repertoire. To fully take advantage from hypervariable antibody 

repertoire, we generate in silico sequence data annotated with 

binding property. Supervised machine learning was employed to 

annotation of the binding property along with experimental screening 

data obtained from high-throughput clone retrieval method.  
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3. Establishment of minimally biased phage 

display library construction method for 

antibody discovery 
 

 

This is an author produced adaptation of a peer reviewed article 

published in 

 

Journal of Immunological Methods (2021). doi: 10.1016/j.jim.2021. 

113089.  

 

[Lee Y*, Yoo DK*, Noh J*, Ju S, Lee E, Lee H, Kwon S & Chung J] 

 

* These authors contributed equally.  

 

3.1. Abstract 
 

Immune hosts are valuable sources for antibody discovery. To 

construct antibody libraries from B cells, singleplex or multiplex PCR 

amplification were conducted using primers targeting multiple 

immunoglobulin genes. However, during this process, the B cell 

receptor (BCR) repertoire is distorted due to interactions between 

multiple target genes and primers. To minimize this alternation, we 

devised a new method for harvesting immunoglobulin genes and 

tested its performance in rabbit VH and VK genes. Double-stranded 

cDNA was synthesized using primers containing V/J gene–specific 

and universal sequence parts from B-cell RNA. VH and VK gene 

libraries were obtained through subsequent PCR amplification using 

primers with universal sequences. Next-generation sequencing 

analysis confirmed that universal primer PCR libraries had more 

diverse VH and VK gene repertoires, more clonotypes retrieved from 

the BCR repertoire of RNA samples, and a higher relative frequency 

correlation than conventional singleplex or multiplex gene-specific 

primer libraries. 
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3.2. Introduction 
 

Immunized or infected organisms are great sources for antibody 

discovery as the antigen-dependent clonal selection and expansion 

of B cells occurs in vivo 1. Antibody display libraries have been 

constructed from a wide variety of species possessing a humoral 

immune system including humans 55-58, mice 59, rabbits 60,61, cow 62, 

chickens 63,64, and sharks 65. To take full advantage of the indigenous 

in vivo system, it is essential to construct an antibody library that 

accurately reproduces the host B cell receptor (BCR) repertoire. 

Due to the rapid advances of next-generation sequencing (NGS) 

technologies, the germline variants of immunoglobulin (Ig) genes 

have been identified in multiple species, leading to the successful 

design of gene amplification primers 66. The typical structure of Ig 

genes contains multiple variable (V), diversity, and joining (J) gene 

segments for heavy chains or V and J gene segments for light chains. 

Therefore, multiple primer sets have been designed to cover the 

entire BCR repertoire in the construction of an antibody library. 

Conventionally, Ig genes can be amplified using multiple primers 

with either singleplex or multiplex amplification. In singleplex 

amplification, every set of forward and reverse primers is employed 

for each individual polymerase chain reaction (PCR). Then, the 

amplicons from each PCR are pooled. In multiplex amplification, 

library construction is conducted in a single PCR reaction using a 

mixture of all the forward and reverse primers, which enables the 

handling of multiple samples in a more high-throughput manner. In 

addition, multiplex amplification is unavoidable when the quantity of 

genomic materials is limited. However, cross-priming of primers to 

unintended immunoglobulin genes during multiplex amplification can 

skew the clonal distribution 67,68. Furthermore, multiplex amplification 

has more challenges such as cross oligonucleotide dimerization, 

different primer annealing temperatures, and preferential 

amplification of specific targets caused by steric interference among 

multiple primers 69-71. Despite these explicit limitations in precisely 

replicating the BCR repertoire, antibody display libraries have been 
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constructed using Ig gene sequence-specific primers 56-58,72-79. 

However, the extent of the bias introduced in these libraries has not 

been studied in detail. 

To reduce the bias introduced during the PCR amplification of Ig 

genes using sequence-specific primers, we devised and tested a new 

way to harvest Ig genes. First, double-stranded cDNA was prepared 

using primers containing the Ig gene–specific sequence and universal 

sequence parts from RNA samples of rabbit B cells. Then, heavy 

chain variable region (VH) and kappa light chain variable region (VK) 

genes were amplified using universal primers through PCR. NGS 

analysis confirmed that the VH and VK gene repertoires are more 

diverse in these libraries. In addition, a higher number of clonotypes 

were retrieved from RNA samples with a higher correlation of 

relative frequency than conventional singleplex or multiplex libraries 

using gene-specific primers (Figure 10). 
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3.3. Results 
 

Construction of antibody libraries 

 

We devised a new way of harvesting VH and VK genes (Figure 1). 

First, RNA was isolated from spleen, bone marrow and peripheral 

blood mononuclear cells of a rabbit and subjected to reverse 

transcription reactions with primers containing (1) a J gene–specific 

sequence, (2) a SfiI restriction site or linker, (3) a unique molecular 

identifier (UMI) barcode for the precise error correction 80, and (4) a 

partial reverse Illumina adaptor (P7). After the reverse transcription 

reaction, the second strand cDNA was synthesized with multiple 

forward primers encoding (1) an Illumina adaptor (P5), (2) a V gene–

specific region, and (3) a SfiI restriction site or linker. Then, the 

double-stranded cDNA was subjected to PCR amplification with 

universal primers targeting the conserved regions of the templates 

(P5, P7). Thereafter, we confirmed the successful construction of the 

single chain variable-fragment (scFv) gene library through overlap 

extension PCR using these amplified VH and VK genes (Figure 11). 

In parallel experiments, conventional VH and VK libraries were 

prepared from the same RNA sample through both singleplex and 

multiplex amplification using gene-specific primer sets, which were 

rationally designed from the international ImMunoGeneTics 

information system (IMGT) database by Peng et al 81. As a result, 

three VH libraries (singleplex PCR using universal primers, singleplex 

PCR using gene-specific primers, and multiplex PCR using gene-

specific primers) and three VK libraries were prepared then 

subjected to NGS analysis for comparative evaluation using the 

reference data. The reference data which accurately reproduce the 

VH and VK repertoire in the RNA sample were generated under UMI-

based error correction (Table 1), which has been widely used in BCR 

repertoire analysis 82-84. 
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Figure 10. Flow chart for the construction of the antibody display 

library. The process combined two steps, double-stranded cDNA 

synthesis and PCR using universal primers. The PCR products were 

subjected to either next-generation sequencing (NGS) analysis or 

overlap extension PCR. The partial linker regions, linker-head (H) 

and linker-tail (T), are used for linking VK-VH amplicons during 

overlap extension PCR. ds, double strand; Ig, immunoglobin; RT, 

reverse transcription; scFv, single-chain variable fragment; UMI, 

unique molecular identifier. 
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Figure 11. Construction of scFv library via overlap extension PCR. 

(a) Construction of scFv gene through overlap extension PCR 

amplification. The sequence of the primers used in overlap extension 

PCR are listed in supplementary table 3. (b) Linker adapter primer 

was designed to avoid intramolecular annealing (considered 

sequence regions are highlighted as dotted yellow boxes) while 

sharing similar melting temperature of amplification primers targeting 

SfiⅠ restriction site. (c) A representative 1% agarose gel 

electrophoresis showing scFv product after overlap extension PCR 

for scFv (left panel). Concentration of the linker adapter primer used 

in PCR reaction was optimized (right panel).  
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Table 1. Statistics for the preprocessing results of the NGS data. In this 

research, 8 samples were prepared and NGS data were constructed. Heavy 

chain and kappa chain of rabbit B cell receptor (BCR) transcript were 

amplified with different methodologies; singleplex, multiplex, and the 

alternative method that we propose in the article. Other libraries of heavy 

and kappa chain were prepared, for the construction of reference libraries 

which were error-corrected with UMI processing. 

 

Sample name Raw reads Functional reads 

Unique 

functional 

reads 

(clones) 

Heavy_singleplex 3,269,549 1,430,067 170,172 

Heavy_multiplex 3,634,768 1,483,354 164,323 

Heavy_alternative 2,055,213 446,602 109,047 

Heavy_reference 2,394,909 75,740 56,483 

Kappa_singleplex 3,354,238 769,814 100,644 

Kappa_multiplex 3,411,854 959,708 116,297 

Kappa_alternative 3,028,775 1,090,895 150,884 

Kappa_reference 2,213,801 68,060 40,885 
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Universal PCR primer libraries achieved higher diversity 

 

We determine the diversity of VH and VK libraries by Hill 

numbers, which have been widely used in BCR repertoire analysis 85-

89. Hill numbers (qD) are the integration of diversity indices differing 

by an exponent q (q ≥ 0), defined as 

 

where S is the whole number of unique Ig clonotype species and 

pi is the frequency of regarding species. We used Hill numbers of q = 

0, 1, and 2, which represent species richness, Shannon diversity, and 

Simpson diversity, respectively, in the quantification of the diversity 

of the libraries 90. 

Species richness is the number of different sequence 

components without considering their frequencies. Because species 

richness is highly sensitive to sample size 90, balancing NGS 

throughput among libraries is a prerequisite for a fair comparison. To 

normalize the NGS throughput of the libraries, the sample coverage 

of individual NGS data was calculated (Figure 12a). Sample coverage 

is defined as the proportion of Ig sequences covered by a specific 

NGS throughput. In addition, interpolate and extrapolate estimates 

for the sample coverage can be calculated as varying NGS 

throughput. We selected a NGS throughput where the sample 

coverage of the libraries equals each other: 83.8% sample coverage 

in VH, and 91.5 % sample coverage in VK (Figure 12a). Then, the 

unique sequence component was defined at the clonotype level as 

sequences containing the same V and J gene and showing identical 

amino acid sequences at the complementary determining region 1, 2, 

and 3 (CDR1, 2, and 3). At the level of clonotype, species richness 

values were higher in universal PCR primer libraries (VH, 1.62-fold; 

VK, 2.27-fold) than singleplex and multiplex gene-specific PCR 

primer libraries (VH, 1.58-fold; VK, 2.06-fold) (Figure 12b). 

Shannon diversity and Simpson diversity weight the frequency of 

each sequence component and can be interpreted as the number of 
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typical clonotypes with moderate clonotype frequency and the 

number of dominant clonotypes with high clonotype frequency, 

respectively. Shannon diversity values of universal PCR libraries 

were similar to those of singleplex and multiplex gene-specific PCR 

primer libraries: 1.15-fold and 1.08-fold for heavy chain, and 0.99-

fold and 1.07-fold for kappa chain, respectively (Figure 12c). 

Simpson diversity values of universal PCR primer libraries were 

much lower: 1.74-fold and 1.70-fold for heavy chain, and 1.46-fold 

and 1.49-fold for kappa chain, respectively (Figure 12d). The 

comparison was conducted with the asymptotic values of each 

diversity estimate. 

The higher values of species richness but lower values in 

Shannon and Simpson diversity achieved in the universal PCR primer 

libraries indicated that rare clonotypes were more effectively 

retrieved from the RNA sample and typical and dominant clonotypes 

were not over-represented in comparison to gene-specific PCR 

primer libraries. 
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Figure 12. Clonal diversity among libraries. (a) Sample coverage 

estimates of the libraries and the throughput balancing. Sample 

coverage estimates were calculated using iNEXT R package, and the 

throughput to be sampled was chosen by the point at which three 

libraries had the same sample coverage estimate. (b) Species 

richness from VH and VK libraries amplified by each method. The 

values were calculated from throughput-balanced data. (c-d) 

Shannon diversity estimates and Simpson diversity estimates of the 

libraries. In Figure 2a, 2c, and 2d, the solid line represents the 

rarefaction curve, and the dotted line represents the extrapolation 

curve. 
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Universal PCR primer libraries retrieved a higher number of 

clonotypes with a higher relative frequency correlation from the RNA 

sample 

 

To determine the efficiency in retrieving VH and VK clonotypes 

among Ig libraries, we compared their similarity in V/J gene usage to 

the reference data on the Ig repertoire from an RNA sample, counted 

the number of overlapping clonotypes, and analyzed the correlation 

in the frequency of overlapping clonotypes. The V/J gene usage of 

each library was computed for VH (Figure 13a) and VK (Figure 13b). 

To quantify their similarity to the reference data, cosine similarity 

was calculated to measure the angle between two multidimensional 

(39 heavy variable, 6 heavy junctional, 24 kappa variable, and 5 

kappa junctional) vectors ranging from −1 (exactly opposite) to 1 

(exactly the same). The results showed that the cosine similarity of 

all libraries exceeded 0.9, implying that all libraries effectively 

reproduced the original V/J gene usage proportion. 

The number of overlapping clonotypes between the reference 

data and each individual library was calculated (Table 2). Only 14.5% 

VH and 28.4% VK clonotypes overlapped with those in the reference 

data for the singleplex gene-specific PCR primer library. For the 

multiplex library, the results were similar (15.0% VH and 28.5% VK). 

For the universal PCR primer libraries, the overlapping percentage 

significantly increased to 29.6% for VH and 56.8% for VK. In 

particular, for the top 1,000 clonotypes in the RNA sample selected 

on the basis of their frequency, more than 70% existed in the top 

1,000 clonotypes of universal PCR primer libraries. However, the 

percentage dropped to less than 33% and 51% in gene-specific PCR 

primer VH and VK libraries, respectively. 

Afterward, the correlation in frequency among overlapping 

clonotypes was checked (Figure 13c). The R2 values were higher 

than 0.95 in universal PCR primer libraries. However, R2 values were 

lower than 0.56 and 0.82 in gene-specific PCR primer VH and VK 

libraries, respectively. These results revealed that universal PCR 

primer VH and VK libraries were significantly superior to gene-
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specific PCR primer libraries in both retrieving more clonotypes and 

maintaining their relative frequency. 
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Figure 13. Immunoglobin gene usage and clonotype abundance 

correlation. (a-b) Gene usage proportion of the libraries for the 

heavy (a) and kappa (b) light chain. V gene (left panel) and J gene  

(right panel) usage was calculated and compared with the reference 

data of B cell RNA sample. The similarity was calculated using 

cosine similarity, which is displayed on top of the figures. Higher 

cosine similarity values correspond to greater similarity between two 

libraries. (c) The correlation in frequency of overlapping clonotypes 

with reference data. To measure the correlation, the regression line 

and R2 values were calculated. The green dotted line represents the 

y=x line. The black line denotes the regression line. 
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Table 2. Overlapping clonotypes between reference data and the 

libraries. The number of overlapping clonotypes were counted for 

top 1,000 and whole clonotypes in both libraries (reference library 

and the library prepared by each method). The rank of the 

clonotypes was defined according to the clonal frequency, and if the 

clonal frequencies of clonotypes were same, rank of the clonotypes 

were randomly selected. 

 

 
Chain 

type 

The 

number of 

clonotype

s in 

reference 

data 

Amplificatio

n method 

The 

number of 

clonotype

s in each 

library 

The 

number of 

overlappin

g 

clonotypes 

Percentage 

of 

overlappin

g 

clonotypes 

(%) 

Top 

1,000 

Heav

y 

chain 

1,000 

Singleplex 

1,000 

322 32.2 

Multiplex 329 32.9 

Universal 723 72.3 

Kappa 

chain 

Singleplex 502 50.2 

Multiplex 491 49.1 

Universal 765 76.5 

Whol

e 

Heav

y 

chain 

56,483 

Singleplex 67,200 8,235 14.6 

Multiplex 69,057 8,465 15.0 

Universal 109,047 16,743 29.6 

Kappa 

chain 
40,885 

Singleplex 66,428 11,596 28.4 

Multiplex 73,361 11,670 28.5 

Universal 150,884 20,787 50.8 
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3.4. Discussion 
 

NGS technology has been revolutionizing the path for antibody 

discovery. It allowed us to analyze BCR repertoires of hosts in depth 

with great accuracy and provided the information about the isotype 

frequency, V/J gene usage, accumulated somatic mutation, and 

foremost, the frequency of individual VH and VL sequences 83. These 

data are powerful enough to enable the prediction of antigen-binding 

clonotypes in the repertoire space solely through in silico analysis in 

a controlled situation. In our prior study, we showed that after 

chronological monitoring on the BCR repertoire of animals 

undergoing immunization, antigen-reactive VH clonotypes could be 

successfully predicted by analyzing the degree of somatic 

hypermutation and clonotype expansion 91. NGS analysis on the BCR 

repertoire of patients affected with viral infection, autoimmune 

disease, and immunogenic types of cancers revealed the presence of 

stereotypic Ig clonotypes 92-96, similar to the stereotypic neutralizing 

VH clonotypes among patients with COVID-19 that we recently 

discovered 83. The presence of these shared Ig clonotypes provided 

another convenient path for the identification of antibody clones 

reactive to viral antigens, autoantigens, or tumor-associated antigens. 

Single B cell sequencing, combined with antigen-guided B cell 

selection, helped to determine the frequency of antigen-reactive B 

cells in peripheral blood 92,97. Among patients with viral disease, B 

cells reactive to viral antigen could be relatively rare 97. To heighten 

the difficulty of antibody discovery, the B cell clones encoding 

antibodies with desirable characteristics like virus-neutralizing 

activity could be even scarcer. For example, the frequency of 

neutralizing clonotypes was extremely low (0.0004-0.0064%) in the 

VH repertoire of patients with COVID-19 83. It is well known that 

immunodominant decoy epitopes are provided by a wide variety of 

viruses, including human immunodeficiency virus 98, feline 

immunodeficiency virus 99, hepatitis C 100, foot and mouth disease 101, 

Middle East respiratory syndrome coronavirus 102, severe fever with 

thrombocytopenia syndrome virus 103, porcine reproductive and 
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respiratory syndrome virus 104, murine gamma herpesvirus 68 105, and 

porcine circovirus type 2 106, to induce predominantly non-

neutralizing antibodies and evade the host immune response. 

Antibody display library technology is still one of the most 

frequently employed high-throughput platforms in antibody discovery 

from immune hosts. However, to achieve the successful acquisition 

of rare functional antibodies, the diversity of the BCR repertoire in 

an RNA sample should be precisely replicated in the antibody display 

library. Conventionally, for the construction of the antibody display 

library, gene-specific primers homologous to V and J genes have 

been employed to amplify VH and VL genes. During the PCR 

amplification of VH and VL genes, it was expected that skewing the 

BCR repertoire occurred, but its extent and characteristics remained 

un-answered. In prior studies, we established the NGS method to 

analyze the Ig repertoire of antibody display libraries 64,107. Using this 

method, we constructed an in silico repertoire of VH and VK libraries 

amplified from B cells of antigen-immunized rabbits through either 

singleplex or multiplex PCR amplification using gene-specific 

primers. As expected, rare VH and VK clonotypes were preferentially 

lost during the amplification. In addition, clonotypes with moderate 

and dominant presence in BCR library tended to be overrepresented 

in the antibody display library, which limited the fraction of 

overlapping clonotypes between VH (~15.0%) and VK (~28.5%) 

libraries and the RNA sample of B cells. 

To reduce this distortion, we devised a new way to amplify VH 

and VK genes. Double-stranded cDNA was synthesized with primers 

harboring both a V/J gene–specific sequence and a universal 

sequence, and PCR amplification was subsequently performed using 

primers with universal sequences. This universal primer amplification 

method greatly reduced the diminishment of rare BCR clonotypes 

(species richness value increased 1.58-2.27 fold) and increased the 

overlapping clones between VH (29.6%) and VK (56.8%) libraries and 

the RNA sample of B cells. Our study was limited to the rabbit BCR 

library. Nevertheless, considering that the complexity of Ig genes is 

similar in other species such as mice, humans, monkeys, and alpacas 
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(Table 3), our universal primer PCR strategy is likely to be applied 

with minor modifications. 

 

 

Table 3. Number of functional immunoglobulin gene in human, mouse 

rabbit and monkey identified from IMGT database. 
 

Gene 

type 

Human 

Homo 
sapiens 

Mouse 

Mus 
musculus 

Rabbit 

Oryctolagus 
cuniculus 

Monkey 

Macaca 
mulatta 

Alpaca 

Vicugna 
pacos 

IGHV 251 302 39 87 73 

IGHJ 12 8 11 9 6 

IGKV 64 120 26 83 - 

IGKJ 4 8 8 4 - 

IGLV 69 5 20 85 - 

IGLJ 6 3 2 5 - 

IGHV: immunoglobulin heavy chain variable; IGHJ: immunoglobulin heavy 

chain joining; IGKV: immunoglobulin kappa chain variable; IGKJ: 

immunoglobulin kappa chain joining; IGLV: immunoglobulin lambda chain 

variable; IGLJ: immunoglobulin lambda chain joining. 
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3.5. Methods 
 

Amplification of VH and VK genes 

 

 A New Zealand white rabbit (Oryctolagus cuniculus) was 

immunized and then boosted two times with 10 μg recombinant 

human HGFR/c-MET Fc chimera His-tag protein (358-MT, R&D 

Systems). One week after the final boosting, total RNA was isolated 

from the spleen, bone marrow, and peripheral blood mononuclear 

cells using TRIzol reagent (15596018; Invitrogen). Then, cDNA was 

synthesized using 1 μg total RNA and a SuperScript Ⅳ first-strand 

cDNA synthesis kit with oligo dT priming (18091050; Invitrogen). 

From the cDNA, VH and VK amplicons were prepared using singleplex 

and multiplex PCR. We used rabbit Ig gene-specific primer sets 

consisting of 14 heavy variable, 5 heavy junctional, 14 kappa variable, 

and 10 kappa junctional segments, which were rationally designed 

using the IMGT database by Peng et al. 81 (Table 4). Singleplex 

amplifications were performed with individual primers in separate 

reaction tubes. Multiplex amplification was performed using a single 

PCR reaction with a mixture of multiple primers in an equimolar 

manner. PCR was performed with KAPA HiFi HotStart DNA 

polymerase (KK2502; Kappa Bioscience) using forward and reverse 

primers (95℃ for 3 min, 25 cycles of 98℃ for 30 s, 60℃ for 30 s, 

72℃ for 1 min, and 72℃ for 5 min). 

For the universal PCR primer library, double-stranded cDNA was 

synthesized using multiple rabbit Ig gene-specific primers with 

additional universal sequences, and multicycle amplification was 

conducted with universal amplification primers (Supplementary Table 

3). First-strand cDNA was synthesized using 1 μg total RNA and a 

SuperScript Ⅳ first-strand cDNA synthesis kit with rabbit J gene–

specific reverse primers with an additional restriction or linker 

sequence, a P7 sequence, and the UMI barcode 80. First-strand cDNA 

was purified using AMPure XP beads (A63881; Beckman Coulter) 

following the instruction provided by the supplier. Then second-

strand cDNA was synthesized using KAPA HiFi HotStart DNA 
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polymerase (KK2502; Kappa Bioscience) with rabbit V gene–specific 

forward primers with an additional restriction or linker sequence and 

a P5 sequence (98℃ for 4 min, 60℃ for 1 min, 72℃ for 5 min). 

Double-stranded cDNA was purified using AMPure XP beads 

(A63881; Beckman Coulter) and subjected to PCR amplification with 

KAPA HiFi HotStart DNA polymerase (KK2502; Kappa Bioscience) 

using two universal primers containing Illumina adapters and index 

sequences (95℃ for 3 min, 25 cycles of 95℃ for 30 s, 65℃ for 30 s, 

72℃ for 1 min, and 72℃ for 5 min). 
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NGS analysis 

 

From the singleplex and multiplex PCR, we prepared 1 μg gel-

purified PCR amplicons. Using the purified amplicons, adapter 

ligation was performed using the NEBNext Multiplex Oligos for 

Illumina kit (New England Biolabs) following the manufacturer’s 

protocol 91. Final products were purified using AMPure XP beads 

(A63881; Beckman Coulter) and submitted to a quality control 

procedure on TapeStation 2200 (Agilent Technologies) as previously 

described 83. Libraries with a single peak of the correct sequence 

length were subjected to NGS analysis using the MiSeq platform 

(Illumina Inc.) with 2 × 300 paired-end run mode. From the universal 

PCR amplification with sample indexing primers, we obtained gel-

purified PCR amplicons. Final NGS libraries that passed the quality 

check were subjected to NGS analysis using the MiSeq platform as 

described above. To prepare the reference data to accurately 

reproduce the original BCR repertoire, we constructed and analyzed 

NGS libraries from distinct RNA input (identical RNA composition 

used in singleplex, multiplex and universal amplification) with the 

universal PCR primer amplification method for further UMI-based 

error correction. We uploaded the sequence data to the National 

Center for Biotechnology Information (SRA accession number: 

PRJNA700634). 
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Preprocessing of raw reads 

 

Raw paired FASTQ files were merged using the PEAR software 
108 with default parameters. Merged FASTQ files were quality filtered 

using an in-house Python 3.6 script with a Q20P95 option, which 

extracted the reads if more than 95% of bases had a Phred quality 

score of more than 20. All reads containing more than one N base 

were excluded. To enhance the validity of the data, a computational 

error correction process was applied. First, primer sequences were 

recognized from each read and unrecognized reads were excluded. 

Primer recognition sites were limited at the edge of reads having a 

length of 100 bp. Primer sequences were recognized using the 

BLAST program 109, allowing one mismatch of alignment except for 

the 6-bp region at the 3′ end of primer sequences. For eliminating 

the artifacts induced by synthetic errors of primers, primer 

sequences of each read were trimmed. The end position of the 

trimming region was determined as the 3′ end position of the primer 

binding. For the data of singleplex and multiplex gene-specific 

primer libraries and universal PCR primer libraries, error correction 

was performed using the MiXCR methodology 110, which corrects 

errors based on hierarchical clustering. For the reference data, error 

correction based on the UMI was conducted as previously described 
83. 
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Functional reads filtration and clonotyping 

 

Functional reads were defined as those satisfying following 

conditions: (1) reads were in-frame without the stop codon and 

frame shift when translated into amino acid sequences, (2) V 

(variable) and J (joining) genes were annotated, and (3) 

complementary determining regions (CDRs; CDR1, CDR2, and CDR3) 

were extracted without the stop codon and frame shift. The V and J 

genes and CDRs of each error-corrected read were obtained using 

the IgBLAST tool 111, with the Ig germline database of the New 

Zealand white rabbit acquired from the IMGT database 66. A 

clonotype was defined as a group of sequences sharing identical V 

and J genes and encoding identical CDRs at the amino acid level. 
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Extraction of antibody library features for comparative analysis 

 

Sample coverage and clonotype diversity of six NGS data 

(singleplex gene-specific PCR primer VH, multiplex gene-specific 

PCR primer VH, universal PCR primer VH, singleplex gene-specific 

PCR primer VK, multiplex gene specific PCR primer VK, and universal 

PCR primer VK) were calculated using the iNEXT R package (version 

2017-04-02) 112. The clonotype diversity was calculated using the 

iNEXT() function with multiple q values (from 0 to 2), which specify 

the diversity orders of Hill numbers that denote species richness 

(q = 0), Shannon diversity (q = 1), and Simpson diversity (q = 2). The 

V/J gene usage of each library was calculated by summing the 

clonotype frequency of these genes. The cosine similarity was used 

for quantifying the similarity of gene usage between the reference 

data and others, as previously used 113. The identical clonotypes 

found both in the reference data and the prepared libraries were 

extracted, which were denoted as overlapping clonotypes, and the 

ratio of overlapping clonotypes were quantified. The correlation of 

clonotype frequency was measured by calculating a regression line 

of zero y-intercept and the coefficient of determination (R2, R 

squared). All statistical analyses except for sample coverage were 

applied to the clonotypes. 
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Table 4. List of primers targeting rabbit immunoglobulin V, J genes. 
 

Primers used for singleplex and multiplex PCR  

Name Sequence / Structure Procedure 

Conv_HV1 
[GGTGGTTCCTCTAGATCTTCC][CAGTCGGTGGAG

GAGTCCAGG] 
Multi-cycle PCR  

Conv_HV2 
[GGTGGTTCCTCTAGATCTTCC][CAGTCGGTGGAG

GAGTCCGGG] 
Multi-cycle PCR 

Conv_HV3 
[GGTGGTTCCTCTAGATCTTCC][CAGTCAGTGAAG

GAGTCCGAG] 
Multi-cycle PCR 

Conv_HV4 
[GGTGGTTCCTCTAGATCTTCC][CAGTCGCTGGAG

GAGTCCGGG] 
Multi-cycle PCR 

Conv_HV5 
[GGTGGTTCCTCTAGATCTTCC][CAGTCGTTGGAG

GAGTCCGGG] 
Multi-cycle PCR 

Conv_HV6 
[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCTG

GAGGAGTCCGGG] 
Multi-cycle PCR 

Conv_HV7 
[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCTG

AAGGAGTCCGG] 
Multi-cycle PCR 

Conv_HV8 
[GGTGGTTCCTCTAGATCTTCC][CAGAAGCAGCTG

GTGGAGTCCGG] 
Multi-cycle PCR 

Conv_HV9 
[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCTG

GTGGAGTCCGG] 
Multi-cycle PCR 

Conv_HV1

0 

[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCAG

AAGGAGTCCGGG] 
Multi-cycle PCR 

Conv_HV1

1 

[GGTGGTTCCTCTAGATCTTCC][CAGTCGCTGGAG

GAGTCCAGG] 
Multi-cycle PCR 

Conv_HV1

2 

[GGTGGTTCCTCTAGATCTTCC][CAGTCGCTGGGG

GAGTCCAGG] 
Multi-cycle PCR 

Conv_HV1

3 

[GGTGGTTCCTCTAGATCTTCC][CAGACAGTGAAG

GAGTCCGAG] 
Multi-cycle PCR 

Conv_HV1

4 

[GGTGGTTCCTCTAGATCTTCC][CAGTCGCTGGAG

GAATTCGGG] 
Multi-cycle PCR 

Conv_HV_

structure 
[Linker partial][V gene specific region]  

Conv_HJ1 
[CCTGGCCGGCCTGGCCACTAGT][TGAAGAGACGG

TGACCAGGGTGCC] 
Multi-cycle PCR 

Conv_HJ2 
[CCTGGCCGGCCTGGCCACTAGT][TGAAGAGATGG

TGACCAGGGTGCC] 
Multi-cycle PCR 

Conv_HJ3 
[CCTGGCCGGCCTGGCCACTAGT][TGAGGAGACGG

TGACCAGGGTGCC] 
Multi-cycle PCR 

Conv_HJ4 
[CCTGGCCGGCCTGGCCACTAGT][TGAGGAGATGG

TGACCAGGGTGCC] 
Multi-cycle PCR 

Conv_HJ5 
[CCTGGCCGGCCTGGCCACTAGT][TGAAGAGACGG

TGACGAGGGTCCC] 
Multi-cycle PCR 

Conv_HJ_s

tructure 
[SfiⅠ restriction site][J gene specific region]  

Conv_KV1 
[GGGCCCAGGCGGCC][GCCGCCGTGCTGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV2 
[GGGCCCAGGCGGCC][GCCCAAGTGCTGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV3 
[GGGCCCAGGCGGCC][GCCCTTGTGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV4 
[GGGCCCAGGCGGCC][GACCCTATGCTGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV5 
[GGGCCCAGGCGGCC][GATGTCGTGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV6 [GGGCCCAGGCGGCC][GACCCTGTGCTGACCCAGAC Multi-cycle PCR 
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T] 

Conv_KV7 
[GGGCCCAGGCGGCC][TATGTCATGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV8 
[GGGCCCAGGCGGCC][GCCGCCGTGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV9 
[GGGCCCAGGCGGCC][GCCCAAGGGCCAACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV1

0 

[GGGCCCAGGCGGCC][GCCGTCGTGCTGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV1

1 

[GGGCCCAGGCGGCC][GCCATCAAAATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV1

2 

[GGGCCCAGGCGGCC][GACCCTGTGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV1

3 

[GGGCCCAGGCGGCC][GATGGCGTGATGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV1

4 

[GGGCCCAGGCGGCC][GACATTGTGCTGACCCAGAC

T] 
Multi-cycle PCR 

Conv_KV_

structure 
[SfiⅠ restriction site][V gene specific region]  

Conv_KJ1 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATTTCCACATT

GGTGCC] 

Multi-cycle PCR 

Conv_KJ2 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATTTCCACCTT

GGTGCC] 

Multi-cycle PCR 

Conv_KJ3 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATCTCCACCTT

GGTCCC] 

Multi-cycle PCR 

Conv_KJ4 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATCTCCACCTT

GGTTCC] 

Multi-cycle PCR 

Conv_KJ5 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATCTCCAGCTT

GGTCCC] 

Multi-cycle PCR 

Conv_KJ6 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGATCTCCAGCTT

GGTTCC] 

Multi-cycle PCR 

Conv_KJ7 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGACCACCACCTC

GGTCCC] 

Multi-cycle PCR 

Conv_KJ8 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTTGACGACCACCTC

GGTCCC] 

Multi-cycle PCR 

Conv_KJ9 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TAGGATCTCCAGCTC

GGTCCC] 

Multi-cycle PCR 

Conv_KJ10 

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG

AGCCACCGCCACCAGAGGA][TTCGACGACCACCTT

GGTCCC] 

Multi-cycle PCR 

Conv_KJ_s

tructure 
[Linker partial][J gene specific region]  

 

 

 

 

 



 

 ５５ 

(continued)  

Name Sequence Procedure 

Alt_HV1 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGGTGGAGGAGT

CCAG] 

2nd strand cDNA 

synthesis 

Alt_HV2 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGGTGGAGGAGT

CCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV3 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCAGTGAAGGAGT

CCGAG] 

2nd strand cDNA 

synthesis 

Alt_HV4 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAGT

CCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV5 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGTTGGAGGAGT

CCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV6 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGGAGCAGCTGGAGG

AGTCCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV7 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGGAGCAGCTGAAGG

AGTCCGG] 

2nd strand cDNA 

synthesis 

Alt_HV8 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGAAGCAGCTGGTGG

AGTCCGG] 

2nd strand cDNA 

synthesis 

Alt_HV9 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGGAGCAGCTGGTGG

AGTCCGG] 

2nd strand cDNA 

synthesis 

Alt_HV10 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGGAGCAGCAGAAGG

AGTCCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV11 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAGT

CCAGG] 

2nd strand cDNA 

synthesis 

Alt_HV12 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGCTGGGGGAGT

CCAGG] 

2nd strand cDNA 

synthesis 

Alt_HV13 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGACAGTGAAGGAGT

CCGAG] 

2nd strand cDNA 

synthesis 

Alt_HV14 

[CACGACGCTCTTCCGATCT][GCGGTGGTGGGGGT

GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAAT

TCGGG] 

2nd strand cDNA 

synthesis 

Alt_HV_str

ucture 

[P5 illumina adapter partial][linker partial][V gene 

specific region] 
 

Alt_HJ1 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCTGGCCGGCCTGGCCACTAGT][TGAAGAGACGG

TGACCAGGGTGCC] 

Reverse transcription 

Alt_HJ2 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCTGGCCGGCCTGGCCACTAGT][TGAAGAGATGG

TGACCAGGGTGCC] 

Reverse transcription 

Alt_HJ3 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCTGGCCGGCCTGGCCACTAGT][TGAGGAGACGG

TGACCAGGGTGCC] 

Reverse transcription 

Alt_HJ4 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCTGGCCGGCCTGGCCACTAGT][TGAGGAGATGG

TGACCAGGGTGCC] 

Reverse transcription 
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Alt_HJ5 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCTGGCCGGCCTGGCCACTAGT][TGAAGAGACGG

TGACGAGGGTCCC] 

Reverse transcription 

Alt_HJ_str

ucture 

[P7 illumina adapter partial][UMI barcode][SfiⅠ 

restriction site][J gene specific region] 
 

Alt_KV1 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCGCCGTGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV2 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCCAAGTGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV3 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCCTTGTGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV4 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GACCCTATGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV5 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GATGTCGTGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV6 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GACCCTGTGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV7 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[TATGTCATGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV8 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCGCCGTGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV9 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCCAAGGGCCAACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV10 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCGTCGTGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV11 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GCCATCAAAATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV12 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GACCCTGTGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV13 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GATGGCGTGATGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV14 
[CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]

[GACATTGTGCTGACCCAGACT] 

2nd strand cDNA 

synthesis 

Alt_KV_str

ucture 

[P5 illumina adapter partial][SfiⅠ restriction site][V 

gene specific region] 
 

Alt_KJ1 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATTTCCA

CATTGGTGCC] 

Reverse transcription 

Alt_KJ2 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATTTCCA

CCTTGGTGCC] 

Reverse transcription 

Alt_KJ3 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA

CCTTGGTCCC] 

Reverse transcription 

Alt_KJ4 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA

CCTTGGTTCC] 

Reverse transcription 

Alt_KJ5 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA

GCTTGGTCCC] 

Reverse transcription 

Alt_KJ6 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA

GCTTGGTTCC] 

Reverse transcription 

Alt_KJ7 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGACCACCA

CCTCGGTCCC] 

Reverse transcription 

Alt_KJ8 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTTGACGACCA

CCTCGGTCCC] 

Reverse transcription 
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Alt_KJ9 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TAGGATCTCCA

GCTCGGTCCC] 

Reverse transcription 

Alt_KJ10 

[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN

][CCGAGCCACCGCCACCAGAGGA][TTCGACGACCA

CCTTGGTCCC] 

Reverse transcription 

Alt_KJ_str

ucture 

[P7 illumina adapter partial][UMI barcode][linker 

partial][J gene specific region] 
 

 

 

(continued) 

 

Name Sequence Procedure 

Uni_forwar

d_p5 
CACGACGCTCTTCCGATCT Multi-cycle PCR 

Uni_revers

e_p7 
ACGTGTGCTCTTCCGATCT Multi-cycle PCR 

Linker_ada

pter 

CTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGGGTG

GTTC 
Overlap extension PCR 

Overlap_fo

rward 
GAGGCGGGGCCCAGGCGGCCGAGC Overlap extension PCR 

Overlap_re

verse 
GAGCCTGGCCGGCCTGGCCACTAGTG Overlap extension PCR 

Uni_forwar

d_p5 
CACGACGCTCTTCCGATCT Multi-cycle PCR 

Uni_revers

e_p7 
ACGTGTGCTCTTCCGATCT Multi-cycle PCR 

Linker_ada

pter 

CTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGGGTG

GTTC 
Overlap extension PCR 
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4. In silico identification of target specific 

antibodies by high-throughput antibody 

repertoire analysis and machine learning 
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4.1. Abstract 
 

c-Met is a promising target in cancer therapy for its intrinsic 

oncogenic properties. However, there are currently no c-Met-

specific inhibitors available in the clinic. Antibodies blocking the 

interaction with its only known ligand, hepatocyte growth factor, 

and/or inducing receptor internalization have been clinically tested. 

To explore other therapeutic antibody mechanisms like Fc-mediated 

effector function, bispecific T cell engagement, and chimeric antigen 

T cell receptors, a diverse panel of antibodies is essential. We 

prepared a chicken immune scFv library, performed four rounds of 

bio-panning, obtained 641 clones using a high-throughput clonal 

retrieval system (TrueRepertoireTM, TR), and found 149 antigen-

reactive scFv clones. We also prepared phagemid DNA before the 

start of bio-panning (round 0) and, after each round of bio-panning 

(round 1–4), performed next-generation sequencing of these five 
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sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and 

443,292 LCDR3 clonotypes along with their clonal abundance data. 

We then established a TR data set consisting of antigen reactivity for 

scFv clones found in TR analysis and the clonal abundance of their 

HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using 

the TR data set, a random forest machine learning algorithm was 

trained to predict the binding properties of in silico HCDR3 and 

LCDR3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40 

LCDR3 clonotypes predicted to be antigen reactive (AR) and 

constructed a phage-displayed scFv library called the AR library. In 

parallel, we also prepared an antigen non-reactive (NR) library using 

10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a 

single round of bio-panning, we screened 96 randomly-selected 

phage clones from the AR library and found out 14 AR scFv clones 

consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also 

screened 96 randomly-selected phage clones from the NR library, 

but did not identify any AR clones. In summary, machine learning 

algorithms can provide a method for identifying AR antibodies, which 

allows for the characterization of diverse antibody libraries 

inaccessible by traditional methods. 
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4.2. Introduction 
 

The mesenchymal-epithelial transition factor (c-Met) and its 

ligand hepatocyte growth factor (HGF) are well-known oncogenic 

drivers of tumorigenesis114. Numerous clinical observations have 

demonstrated that c-Met overexpression or gene alterations play a 

key role in both oncogenesis and the development of drug resistance 

across multiple cancer types115-118. Furthermore, recent research 

suggests that the HGF-c-Met axis limits the efficacy of cancer 

immunotherapy by modulating immune cell function and the 

expression of programmed cell death ligand 1 (PD-L1)119-122. Despite 

efforts to inhibit the HGF-c-Met axis including antibodies against c-

Met or HGF, c-Met tyrosine kinase inhibitors, and more, no 

therapeutic agent specific to the HGF-c-Met axis is clinically 

available. Currently, two anti-HGF antibodies, including YYB-101 

previously discovered by our group, are under clinical trials 

(NCT02499224)123. However, no antibodies are under development 

against c-Met after the failure of onartuzumab in clinical trials124. 

Based on rapid advances in next-generation sequencing (NGS) 

technology, various methodologies for analyzing NGS data have been 

developed to decode the antibody repertoire from diverse sources 

such as the natural B cell receptor of animals and humans as well as 

recombinant antibody libraries that can be synthetically designed and 

constructed125-127. Furthermore, combining surface display 

technology and NGS analysis offers synergistic advantages in 

identifying antigen-reactive clones in silico over the laborious in 

vitro screening process, which is frequently overwhelmed by 

dominant antibody clones48. Traditional bio-panning methodologies 

are biased towards the excessive enrichment of dominant clones with 

significant suppression of antibody diversity. Consequently, this 

approach could lead to the omission of potential antigen-reactive 

(AR) clones with low clonal abundance or their diminishment by 

unintended selective pressure.  

Previously, our group analyzed the enrichment patterns of bio-

panned clones by employing NGS technology to predict the antigen 
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binding properties of antibody clones inside different clusters64. First, 

we tracked the clonal abundance of heavy chain complementarity 

region 3 (HCDR3) through multiple rounds of bio-panning with NGS 

analysis, and then applied clustering analysis to group HCDR3 

clonotypes based on the enrichment pattern. As a result, different 

clusters (enriched, impoverished, and fluctuated) were generated 

with the enriched pattern cluster containing a higher frequency of AR 

scFv (single-chain variable fragment) clones than other clusters. 

However, due to limitations in retrieving the physical DNA of 

encoded scFv from a large, diverse number of clones, we were 

unable to sufficiently observe the binding properties of in silico scFv 

clones. Recently, we developed a laser and microchip-based high-

throughput clonal retrieval system (TrueRepertoireTM, TR) for scFv 

DNA from the library63, which allows a much higher number of scFv 

clones to be obtained and tested for antigen reactivity.  

In this study, we established a phage-displayed chicken scFv 

library after immunization with recombinant c-Met. Four rounds of 

bio-panning were performed on antigen-conjugated magnetic beads. 

Through bio-panning, five sets of phagemid DNA (rounds 0–4) were 

obtained and subjected to NGS analysis using both HiSeq and MiSeq 

platforms. After the final round of bio-panning, scFv-displayed 

phage clones were obtained in a high-throughput manner using TR 

technology, and individual clone reactivity was evaluated by phage 

enzyme-linked immunosorbent assay (ELISA). From NGS data 

obtained using the HiSeq platform, HCDR3, and light chain 

complementarity region 3 (LCDR3) clonotypes were extracted and 

evaluated for their clonal abundance in phagemid DNA sets from 

round 0 (before biopanning) to round 4. We then established a data 

set (TR data set) containing the antigen reactivity of scFv clones 

retrieved through TR technology and the clonal abundance of their 

HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using 

this TR data set, we trained our random forest (RF) machine learning 

algorithm to predict the binding properties of in silico HCDR3 and 

LCDR3 clonotypes128,129.  
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To test the accuracy of our RF model (Figure 14), we extracted 

VH and VL sequences from MiSeq NGS data, which encompass both 

RF model-determined AR and antigen non-reactive (NR) HCDR3 or 

LCDR3 clonotypes and chemically synthesized them. Using these VH 

and VL genes, we established two phage-displayed scFv libraries. 

The AR library was prepared using VH and VL genes encompassing 

AR HCDR3 and LCDR3 clonotypes, and the NR library was 

constructed using VH and VL genes encompassing NR HCDR3 and 

LCDR3 clonotypes. After one round of bio-panning on antigen-

conjugated magnetic beads, antigen reactivity of phage clones was 

tested by phage ELISA. From the AR library, we obtained many scFv 

clones containing AR HCDR3 and LCDR3 clonotypes, while no AR 

clones were enriched from the NR library. 
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Figure 14. Workflow of the machine learning-guided selection of 

antigen-reactive HCDR3 and LCDR3 clonotypes with 

confirmation of their reactivity. 
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4.3. Results 
 

Generation of antibody library and screening for positive clones 

using the conventional colony screening method 

 

Using mRNA prepared from spleen, bone marrow, and bursa of 

Fabricius from three PSA-immunized chickens, we generated scFv 

libraries with complexities of 6.09 × 1010, 3.64 × 1010 and 5.16 × 1010 

clones, respectively, referred to as chicken libraries 1, 2 and 3. Next, 

we performed four rounds of bio-panning, rescued phage clones 

from the output titer plate of the fourth round, and performed a 

phage enzyme immunoassay to screen for positive clones. A total of 

300 clones (100 clones in each library) exhibiting an optical density 

of >0.3 at 405 nm were considered to be positive, and their scFv 

gene sequence was determined by Sanger sequencing analysis. We 

finally obtained 22 clones with unique HCDR3 sequences (Table 5). 
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Table 5. HCDR3 amino-acid sequences selected using the 

conventional colony screening method, and binding reactivity 

measurement of the antibody clones. 

 

HCDR3; heavy chain complementarity-determining region 3; NGS, 

next-generation sequencing; O.D., optical density. 

 

 

 

 

Library Cluster Sequence of HCDR3 Proportion 

of NGS 

(%) 

Proportion 

of 

conventional 

method (%) 

Binding 

reactivity 

(O.D.405 

nm) 

1 1 DFGSGVGEIDA 3.81 1.04 1.01 
  

GIESDSDGYMTAEEIDA 0.13 1.04 0.977 
 

2 AAHSTYIWGGYEAGSIDA 6.49 4.17 0.669 
  

SAVSSCSSGSCSASWIDA 1.16 2.08 0.873 
  

TADDGFSCGGYGLCADRIDA 0.39 1.04 0.723 
  

ESGNGGWITAARIDA 0.08 1.04 0.767 
  

SSHSTYIWGAYEAGSIDA 0.03 2.08 0.651 
 

4 APGTGSGYCGIWTYTTAGCIDA 0.03 1.04 0.964 
  

GRISYICADYDAGCIDA 0.02 5.21 1.063 
  

SSHSTYIWGGYEAGSIDA 0.01 2.08 0.916 

2 2 SSYSDGATVIYNIDA 0.69 1.04 0.87 
 

3 GRISYICADYDAGCIDA 0.04 6.25 1.063 
  

AAGSWCAWGTGSCAGSIDA 0.02 5.21 1.067 
  

AAGSWCAWGTGSCAGNIDA 0.01 1.04 0.985 
  

TTGGDFYSGIDTAGYIDA 0.01 5.21 0.938 
  

APGTGSGYCGIWTYTTAGCIDA 0.01 3.13 0.964 

3 2 AAGSGYIYSGSAGWIDA 1.07 3.13 0.941 
 

3 AAGSWCAWGTGSCAGSIDA 0.03 4.17 0.918 
  

GRISYICADYDAGCIDA 0.02 8.33 1.063 
  

TTGGDFYSGIDTAGYIDA 0.02 2.08 0.889 
  

AAGSWCAWGAGSCAGSIDA 0.01 1.04 0.914 
  

AAGSGYVYSGSAGWIDA 0.01 2.08 1.021 
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Diversity analysis of antibody clones using next-generation 

sequencing 

 

A total of 15 sets of phagemid DNA (three chicken libraries from 

bio-panning rounds 0, 1, 2, 3, and 4) were used for NGS analysis. 

After the NGS experiment, we obtained 60,000–180,000 VH 

sequences. Raw paired-end nucleotide sequences were merged, 

filtered, aligned and trimmed by uniformly applying pre-specified 

criteria to remove low-quality and meaningless short sequences. The 

numbers of nucleotide sequences remaining after each preprocess 

are summarized in Table 6; and were used in subsequent analyses. 

From the NGS results, the total population of VH fragment 

nucleotides decreased as the bio-panning rounds proceeded. To 

analyze HCDR3 diversity and frequency, we used HCDR3 sequences 

existing only in the fourth bio-panning round. clValid predicted that 

2–6 clusters would be the most dependable in the HCDR3 sequence 

count profile data (Table 7). The sequence reads in chicken library 1 

showed the maximum Dunn index (0.1048) with 4–6 clusters, and 

chicken libraries 2 and 3 had maximum Dunn indices with 2–3 

clusters. We clustered HCDR3 sequences into 2–6 clusters using 

hierarchical clustering, and generated heat maps for each cluster to 

examine the patterns of HCDR3 sequence enrichment and population 

shift throughout the bio-panning rounds. The pattern of HCDR3 

sequence enrichment and population shift in chicken library 1 showed 

four clear clusters, and the patterns in chicken libraries 2 and 3 

showed three clear clusters (Figure 15). 

 

 

 

 

 

 

 

 

 



 

 ６７ 

Table 6. Sequence read counts by preprocessing raw sequencing 

data. 

 

Libra

ry 

Panni

ng 

round 

Raw 

sequenci

ng read 

count  

Read 

count 

after 

mergi

ng  

Read 

ount of 

qualifie

d 

sequenc

es 

Read 

count of 

disqualifi

ed 

sequence

s 

Read 

count 

aligne

d with 

HCD

R3  

Unique 

nucleoti

de 

sequenc

e count 

1 R0 664,955 393,74

9 

393,624 125 310,58

9 

(78.9) 

205,255 

 
R1 663,061 377,63

0 

377,484 146 298 47

4 (79) 

198,150 

 
R2 391,118 229,87

3 

229,773 100 181,43

0 

(78.9) 

128,513 

 
R3 673,875 388,34

1 

388,179 162 314,51

7 (81) 

148,787 

 
R4 621,174 379,63

0 

379,611 19 334,38

7 

(88.1) 

27,141 

2 R0 432,274 256,26

8 

256,199 69 193,26

2 

(75.4) 

148,862 

 
R1 661,248 417,42

6 

417,323 103 316,15

0 

(75.7) 

221,423 

 
R2 608,850 363,55

3 

363,460 93 274,10

0 

(75.4) 

197,190 

 
R3 547,353 342,18

9 

342,123 66 289,28

7 

(84.5) 

66,545 

 
R4 455,119 290,74

1 

290,722 19 274,63

5 

(94.5) 

22,763 

3 R0 616,410 360,83

0 

360,783 47 279,99

6 

164,869 
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(77.6) 
 

R1 608,045 370,09

0 

370,033 57 288,17

2 

(77.9) 

167,249 

 
R2 619,731 373,09

3 

373,038 55 290,05

6 

(77.7) 

168,084 

 
R3 690,602 419,79

6 

419,757 39 343,99

6 

(81.9) 

74,611 

 
R4 568,948 354,31

4 

354,301 13 287,12

6 (81) 

21,884 

HCDR3, heavy chain complementarity-determining region 3. 
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Table 7. Dunn index on hierarchical clustering to estimate optimal 

number of clusters in scFv nucleotide sequence profile data 

scFv, single-chain variable fragment. Bold numbers indicate the 

largest Dunn index in each library. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of clusters 
 

2 3 4 5 6 

Library 1 0.0863 0.0723 0.1048 0.1048 0.1048 

Library 2 0.2331 0.2331 0.0564 0.0564 0.0845 

Library 3 0.1508 0.186 0.1544 0.0893 0.0893 
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Figure 15. Heat map representing the population of heavy chain 

complementarity-determining region 3 (HCDR3) sequences in each 

cluster through bio-panning rounds. Red and blue denote high and 

low proportions of the HCDR3 sequence, respectively. (a) scFv 

library 1, (b) scFv library 2 and (c) scFv library 3. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ７１ 

Population shift in HCDR3 sequences throughout bio-panning rounds 

 

The diversity of the antibody clones is represented by the 

number of HCDR3 sequences that belong to each cluster (Figure 16). 

The abundance of the HCDR3 sequences in each cluster is 

represented by heat map color; high and low populations are 

indicated in red and blue, respectively. HCDR3 sequences in cluster 

1 were highly abundant before bio-panning and up to the second bio-

panning round. However, there was a sudden impoverishment in 

rounds 3 and 4 of bio-panning. In contrast, HCDR3 sequences that 

belonged to clusters 2 and 3 (including cluster 4 of library 1) showed 

the opposite pattern. Their populations were very low before bio-

panning, remained low after the second round of bio-panning, and 

started to enrich from the third round of bio-panning. The increase 

continued in the fourth round of bio-panning. This population shift of 

HCDR3 sequences throughout bio-panning is represented in Figure 

16. All 22 HCDR3 sequences in clones found via the conventional 

colony screening method existed among the HCDR3 sequences 

obtained from NGS analysis of phagemid DNA prepared after the 

fourth round of bio-panning (Table 5). Two out of the 22 unique 

HCDR3 sequences belonged to cluster 1, and the other 20 HCDR3 

sequences belonged to clusters 2, 3 or 4. 
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Figure 16. Line graph representing population shifts in HCDR3 

sequences through bio-panning rounds. (a) scFv library 1, (b) scFv 

library 2 and (c) scFv library 3. 
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Reactivity of scFv clones identified in NGS analysis 

 

For each cluster, 1–5 HCDR3 sequences newly identified from the 

fourth round of bio-panning via NGS analysis were selected 

arbitrarily (Table 8). These selected sequences were used to 

synthesize the primers to retrieve the whole scFv gene from the 

phagemid DNA. The scFv gene was prepared in two-step linker PCR 

using the primers and cloned into a phagemid vector (Figure 17). 

After transformation of the phagemid vector-encoding scFv gene and 

rescue with helper phage, scFv-displaying phage was used to test 

their binding reactivity against PSA (Figure 18). In cluster 1, across 

the three libraries, 12 out of 14 antibody clones (85.7%) had 

negligible binding reactivity against PSA (O.D.450nm<0.2; Table 4, 

blue). In contrast, 21 out of 26 antibody clones (80.8%) in clusters 

2~4 across the three libraries had significant binding reactivity 

(O.D.450nm>0.3; Table 4, red). These results imply that antibody 

clones with low reactivity tend to be impoverished throughout bio-

panning (cluster 1), in contrast to the antibody clones with high 

reactivity, which showed enrichment throughout bio-panning 

(clusters 2~4). 
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Table 8. CDR3 amino-acid sequences selected in each cluster from 

NGS and binding reactivity measurement of antibody clones. 

 

Librar

y 

Cluster  HCDR3 Sequence Proportion of 

the sequence in 

R4 

O.D.40

5 nm 

1 Cluster 1 GVYSGSPDGYDIDA 0.32% 0.454 
  

TTCVGSSYCGGENIDA 0.16% 0.173 
  

GAYSDWGAGFIDA 0.08% 0.161 
  

DGDSGWGVYLNSAGNIDA 0.03% 0.153 
 

Cluster 2 YAGSGWTYYSSDVGSIDA 2.16% 0.62 
  

GVYSASGCCDSIDT 1.93% 1.032 
  

SAHSTYIWGGYEAGSIDA 1.41% 1.075 
  

GGGAGYGAPSIDT 1.05% 0.871 
  

DVYSGLITANTIDA 0.67% 0.639 
 

Cluster 3 SSHSTYIWGAYEAGCIDA 0.02% 0.757 
  

RAYGGGYCGCIEDIDA 0.01% 0.323 
  

AASTWSFYGSAEDIDA 0.01% 0.725 
 

Cluster 4 APGTGSGYCGIWTYTTAGSI

DA 

0.04% 0.323 

  
GRISYICADYEAGSIDA 0.02% 0.407 

2 Cluster 1 GAYGHCDGWCAVDSIDT 0.07% 0.175 
  

AAGSGYCGWGDCIAGSIDA 0.07% 0.167 
  

GIYGYSGGDYAAAEIDA 0.06% 0.179 
  

GAGGSCDGGSWCSPGIIDA 0.04% 0.187 
  

TRGGAGSGWYWYSGIAGII

DA 

0.03% 0.18 

 
Cluster 2 TAGCGPWSYITAGCIDA 0.21% 1.119 

  
DAAYGYCGTWAGCAGRID

A 

0.21% 1.187 

  
CAYSGCTGGWSTSSIDA 0.20% 1.007 

  
DVYGCNSYGCPYIGNTIDA 0.09% 1.254 

  
RAFSGCCDADSIDA 0.07% 0.845 

 
Cluster 3 SSSGTTYYSSGVISAGGIDA 0.17% 0.167 

  
GRISYICVDYDAGCIDA 0.07% 0.706 

  
NAYTSAYITDIDS 0.06% 0.944 
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SAYSDSCCAEDIDA 0.04% 0.876 

  
SAFGGGACCYTAGTIDA 0.03% 0.165 

3 Cluster 1 DGSGCGWSAAGCIDA 0.35% 0.16 
  

AATYSWLHSGIDA 0.29% 0.728 
  

DGSDCGWSAAGCIDA 0.06% 0.146 
  

GTGSWCYSGADSIDT 0.06% 0.167 
  

SAAGYWYAGSIDA 0.05% 0.138 
 

Cluster 2 TAGGDFYSGVDTAGYIDA 4.79% 1.064 
 

Cluster 3 GSGYSCWSYAGCIDA 0.66% 1.083 
  

GRIYYICADYDAGCIDA 0.53% 1.052 
  

TADSGFGCGGYGLCAAFID

A 

0.09% 0.907 

  
TADIGYCFGGGIGCIDA 0.08% 0.984 

  
SAGGSYGYRYMDTAAAIDA 0.07% 0.861 

HCDR3; heavy chain complementarity-determining region 3; NGS, 

next-generation sequencing. 
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Figure 17. Schematic representation of next-generation sequencing 

and two-step linker PCR. The structure of scFv gene, CDRs and 

frameworks of variable regions are indicated by colored boxes. (a) 

For NGS analysis, most of VH region including HCDR3 was amplified 

and sequenced using specific primers as described in materials and 

methods. The sequencing coverage is indicated with dashed lines. (b) 

To retrieve scFv gene, two-step linker PCR was performed using 

primers annealing to HCDR3, LFR1 and HFR4. The first step of PCR 

was performed using LFR1_F and HCDR3_R primers and HCDR3_F 

and HFR4_R primers. The linker PCR was performed using LFR1_F 

and HFR4_R primers. 
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Figure 18. Binding reactivity of scFv antibodies retrieved from 

selected HCDR3 amino-acid sequences in each cluster using NGS. 

(a) scFv library 1, (b) scFv library 2 and (c) scFv library 3. ANOVA 

with Turkey’s multiple-comparison test was used to compare cluster 

1 with other clusters. In library 3, the P-value was calculated using 

the Mann–Whitney U-test. *P-value <0.05; **P-value <0.01; ***P-

value <0.001. ANOVA, analysis of variance. 
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Construction of Phage-Displayed scFv Library, Biopanning, Selection 

of Positive Clones, Next-Generation Sequencing (NGS), And 

Establishment of TR Data Set 

 

Chickens were immunized with recombinant mouse c-Met-Fc 

chimera. Spleen, bone marrow, and bursa of Fabricius were 

harvested from the immunized chickens and total RNA was prepared 

to generate a phage-displayed scFv library with a complexity of 4.96 

× 109. Four rounds of bio-panning were performed using antigen-

coated magnetic beads. After the final round of bio-panning, the 

phage pool was subjected to high-throughput clonal retrieval using 

TR technology. From the TR analysis, 641 clones with unique VH and 

VL pairs were identified. These phage clones were rescued and 

subjected to phage ELISA. Out of 641 phage clones, 149 clones 

showed reactivity to c-Met with statistical differences from non-

reactive clones (data not shown) designated as AR clones. We used 

the binding reactivity of the 641 clones as a part of the TR data set. 

After arranging the phage-displayed scFv library and each round 

of bio-panning, phagemid DNA (rounds 0–4) was prepared using 

bacterial pellets obtained after centrifugation of overnight culture 

supernatant. From these five sets of phagemid DNA, gene fragments 

encoding HCDR3 and LCDR3 were amplified and subjected to NGS 

analysis using the HiSeq platform. After NGS data pre-processing, 

we defined valid clonotypes as unique CDR3 sequences with read 

counts of two or higher in any set of phagemid DNA, and we were 

able to retrieve 860,207 HCDR3 clonotypes and 443,292 LCDR3 

clonotypes across the entire bio-panning phase (Table 9). Clonal 

abundance throughout bio-panning stages was determined by 

counting the number of times that a clonotype appeared in each bio-

panning round. The clonal abundance of clonotypes matching to scFv 

clones found in TR analysis was used as another part of the TR data 

set. We also amplified VH and VL gene fragments from five sets of 

phagemid DNA and subjected them to NGS analysis using the MiSeq 

platform. 
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Table 9. Number of CDR3 clonotypes obtained from the bio-

panning procedure. 

Clonotypes Round 0 Round 1 Round 2 Round 3 Round 4 Total 

HCDR3 390,814 395,459 402,854 311,678 308,547 860,207 

LCDR3 272,317 253,899 250,630 187,314 117,239 443,292 
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Establishing Random Forest (RF) Binding Reactivity Prediction Model 

 

We compared random forest, regularized discriminant analysis, 

linear discriminant analysis, support vector machine, naïve bayes, 

and AdaBoost classification trees for their accuracy and kappa score 

distributions. We found out that the random forest algorithm was best 

suited for binder predictions of HCDR3 clonotypes with the mean 

accuracy of 89.69% and mean Cohen’s kappa value of 0.45 (Table 10 

and Table 11). While regularized discriminant analysis did perform 

marginally better in the LCDR3 clonotypes, random forest showed 

more potential for improvement with manual tuning when consulting 

maximum accuracy and Cohen’s kappa value (Table 12 and Table 13). 

With these observations, we decided to adopt random forest models 

to establish a binding reactivity prediction model (Figure 19).  

Utilizing the TR data set, two separate RF models were trained 

for HCDR3 and LCDR3 clonotypes. The algorithm was instructed to 

treat the clonal abundance of clonotypes in the five sets of phagemid 

DNA (round 0–4) as predictor variables and the binding reactivity as 

the response variable. Thus, each unique clonotype in our TR data 

set was individually labelled with that clonotype’s abundance at each 

of the bio-panning rounds and its binding reactivity. Before the 

training of each new RF model, the TR data set was divided into a 

training data set and a validation data set. After training the RF 

model using the training set, the validation set was presented to the 

RF model, and RF model accuracy in predicting clonotype binding 

reactivity was determined.  

To determine the optimum training parameters for our RF model, 

7200 RF models were evaluated. Optimizing for sensitivity, the ideal 

parameters for the HCDR3 RF model were found to be a 75% 

sampling ratio of the TR data set, mtry of 4, and ntree of 500. The 

performance metrics of 10 RF models using those parameters were: 

(1) mean accuracy of 90.48%, (2) mean sensitivity of 44.36%, and (3) 

mean specificity of 97.61%. Optimizing for accuracy, the ideal 

parameters for the LCDR3 RF model were found to be a 65% 

sampling ratio of the TR data set, mtry of 2, and ntree of 500. Once 
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again, the performance metrics of 10 LCDR3 RF models using those 

parameters were: (1) mean accuracy of 86.47%, (2) sensitivity of 

55.98%, and (3) specificity of 94.90%.  
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Table 10. Accuracy score distributions of random forest (RF), 

regularized discriminant analysis (RDA), linear discriminant analysis 

(LDA), support vector machines (SVM), naïve bayes (NB), AdaBoost 

Classification Trees (ADA) for HCDR3 binding reactivity predictions. 
 

Models Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max 

RF 0.851 0.868 0.896 0.895 0.918 0.962 
RDA 0.830 0.867 0.884 0.882 0.906 0.924 
LDA 0.830 0.849 0.858 0.859 0.865 0.907 
SVM 0.833 0.849 0.851 0.858 0.865 0.886 
NB 0.773 0.830 0.847 0.847 0.886 0.905 
ADA 0.132 0.134 0.148 0.143 0.150 0.150 
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Table 11. Kappa score distributions of RF, RDA, LDA, SVM, NB, and 

ADA for HCDR3 binding reactivity predictions. 

 

Models Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max 

RF 0.149 0.367 0.426 0.446 0.564 0.835 
RDA -0.034 0.195 0.306 0.308 0.488 0.629 
LDA -0.034 0.000 0.000 0.040 0.000 0.505 
SVM -0.034 0.000 0.000 0.026 0.000 0.224 
NB 0.015 0.133 0.301 0.290 0.434 0.612 
ADA 0.000 0.000 0.000 0.000 0.000 0.000 
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Table 12. Accuracy score distributions of RF, RDA, LDA, SVM, NB, 

and ADA for LCDR3 binding reactivity predictions. 

 

Models Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max 

RDA 0.826 0.846 0.876 0.872 0.898 0.924 
RF 0.803 0.846 0.849 0.857 0.867 0.943 
LDA 0.769 0.788 0.803 0.804 0.826 0.846 
NB 0.750 0.776 0.805 0.802 0.825 0.865 
SVM 0.769 0.769 0.773 0.774 0.773 0.788 
ADA 0.115 0.169 0.180 0.182 0.210 0.230 
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Table 13. Kappa score distributions of RF, RDA, LDA, SVM, NB, and 

ADA for LCDR3 binding reactivity predictions. 

 

Models Min. 1
st
 Qu. Median Mean 3

rd
 Qu. Max 

RDA 0.338 0.476 0.596 0.579 0.675 0.755 
RF 0.214 0.482 0.532 0.535 0.586 0.833 
LDA 0.000 0.122 0.135 0.195 0.259 0.434 
NB 0.000 0.156 0.235 0.244 0.340 0.523 
SVM 0.000 0.000 0.000 0.000 0.000 0.000 
ADA -0.251 -0.178 -0.141 -0.130 -0.070 0.000 
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Figure 19. Evaluation of 6 prediction models using training data sets. 

RF: random forest, RDA: regularized discriminant analysis, LDA: 

linear discriminant analysis, NB: naïve bayes, SVM: support vector 

machine, ADA: AdaBoost classification trees. Accuracy and Cohen’s 

kappa value were calculated and plotted as an evaluation metric. 
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Measurement of the Minimum Depth Value of a Predictor Variable 

 

The minimum depth of a predictor variable can be interpreted as 

a measure of the variable importance. We extracted the minimum 

depth value of each predictor variable from the 500 decision trees 

that compromised our RF model. Of note is that, in our HCDR3 RF 

model, our predictor variable representing CDR3 clonal abundance in 

round 3 of bio-panning was most likely to appear at the root node of 

our decision trees appearing in 360 instances out of our 500 decision 

trees, and, consequently, had the lowest mean minimum depth of 0.46. 

In our LCDR3 RF model, our predictor variable representing CDR3 

clonal abundance in round 4 of bio-panning was most likely to appear 

at the root node of our decision trees appearing in 195 instances out 

of 500 decision trees and, consequently, had the lowest minimum 

depth of 1.16 (Figure 20). In accordance with these observations, the 

Shannon entropy (SE) representing clonal diversity dropped at round 

3 in the case of HCDR3 clonotypes while the SE of LCDR3 

significantly dropped at round 4 (Table 14 and Figure 21).  

We also observed the interaction of our predictor variables 

taking place within the decision trees. Variable interactions are 

regarded as taking a sub-tree of two nodes and considering it as a 

single node. We can then look at the minimum depth value of that 

sub-tree to gauge the interaction’s importance in classifying its input. 

In our HCDR3 RF model, the top four most influential interactions all 

involved clonal abundance in round 3 of bio-panning as the root node. 

The most influential interaction took place between round 3 and 

round 1 with a minimum depth value of 0.84 (Table 15). In our 

LCDR3 RF model, three of the top four most influential interactions 

involved clonal abundance in round 4 of bio-panning as the root node. 

The most influential interaction took place between round 4 and 

round 0 with a minimum depth value of 1.18 (Table 16). Using the 

training data set, the clonal abundance of HCDR3 clonotype in round 

3 and round 1 and that of LCDR3 clonotype in round 4 and round 0 

were plotted in Figure 22a and 22b, which shows significant 

correlation. 
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Figure 20. Distribution of the minimum depth of predictor 

variables (clonal abundance at round 0–4 of bio-panning) from 

individual decision trees in the RF prediction model for CDR3 

clonotypes. Minimum depth value is colored according to its 

depth and mean value is calculated and displayed at points. 
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Table 14. Biopanning titer following four rounds of biopanning. 
 

 0.05% PBST 
wash 

antigen: mouse c-Met   
input titer (PFU/mL) output titer (PFU/mL) 

Round 0 - 4.96 x 10
9

 
Round 1 x 1 2.44 x 10

11

 6.26 x 10
7

 
Round 2 x 3 3.28 x 10

11

 8.80 x 10
4

 
Round 3 x 3 2.51 x 10

12

 1.12 x 10
7

 
Round 4 x 5 2.68 x 10

11

 1.24 x 10
7
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Figure 21. Shannon’s entropy (SE) change following biopanning 

procedure. Yellow and blue dots represent SE of LCDR3 and HCDR3, 

respectively.   
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Table 15. Mean-minimal depth of each variables and interaction 

(HCDR3). 

 

root_variable variable mean_min_depth occurrences interaction 

HCDR3.R3 HCDR3.R1 0.836608  470 HCDR3.R3:HCDR3.R1. 

HCDR3.R3 HCDR3.R0 1.232051  460 HCDR3.R3:HCDR3.R0. 

HCDR3.R3 HCDR3.R4 1.381857  474 HCDR3.R3:HCDR3.R4. 

HCDR3.R3 HCDR3.R2 1.489798  471 HCDR3.R3:HCDR3.R2. 

HCDR3.R3 HCDR3.R3 1.554127  462 HCDR3.R3:HCDR3.R3. 

HCDR3.R0 HCDR3.R3 1.873671  379 HCDR0.R3:HCDR3.R3. 

HCDR3.R4 HCDR3.R4 1.922962  416 HCDR3.R4:HCDR3.R4. 

HCDR3.R1 HCDR3.R3 1.952568  399 HCDR3.R1:HCDR3.R3. 

HCDR3.R1 HCDR3.R4 2.054730  407 HCDR3.R1:HCDR3.R4. 

HCDR3.R4 HCDR3.R3 2.058536  397 HCDR3.R4:HCDR3.R3. 

HCDR3.R4 HCDR3.R2 2.191051  403 HCDR3.R4:HCDR3.R2. 

HCDR3.R1 HCDR3.R3 2.335815  402 HCDR3.R1:HCDR3.R3. 

HCDR3.R0 HCDR3.R4 2.371460  367 HCDR3.R0:HCDR3.R4. 

HCDR3.R1 HCDR3.R1 2.412306  388 HCDR3.R1:HCDR3.R1. 

HCDR3.R1 HCDR3.R2 2.414817  401 HCDR3.R1:HCDR3.R2. 

HCDR3.R0 HCDR3.R2 2.527646  375 HCDR3.R0:HCDR3.R2. 

HCDR3.R2 HCDR3.R4 2.534346  296 HCDR3.R2:HCDR3.R4. 
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Table 16. Mean-minimal depth of each variables and interaction 

(LCDR3). 

 

root_variable variable mean_min_depth occurrences interaction 

LCDR3.R4 LCDR3.R0 1.180377  444 LCDR3.R4:LCDR3.R0 

LCDR3.R4 LCDR3.R2 1.428251  446 LCDR3.R4:LCDR3.R2 

LCDR3.R3 LCDR3.R0 1.465202  426 LCDR3.R3:LCDR3.R0 

LCDR3.R4 LCDR3.R1 1.486852  432 LCDR3.R4:LCDR3.R1 

LCDR3.R4 LCDR3.R3 1.549865  436 LCDR3.R4:LCDR3.R3 

LCDR3.R3 LCDR3.R1 1.555740  431 LCDR3.R3:LCDR3.R1 

LCDR3.R3 LCDR3.R4 1.632188  427 LCDR3.R3:LCDR3.R4 

LCDR3.R4 LCDR3.R4 1.633327  435 LCDR3.R4:LCDR3.R4 

LCDR3.R3 LCDR3.R3 1.720592  430 LCDR3.R3:LCDR3.R3 

LCDR3.R0 LCDR3.R2 1.785722  428 LCDR3.R3:LCDR3.R2 

LCDR3.R1 LCDR3.R4 1.932578  391 LCDR3.R0:LCDR3.R4 

LCDR3.R1 LCDR3.R4 1.944619  385 LCDR3.R1:LCDR3.R4 

LCDR3.R0 LCDR3.R3 2.245964  377 LCDR3.R1:LCDR3.R3 

LCDR3.R2 LCDR3.R3 2.255933  375 LCDR3.R0:LCDR3.R3 

LCDR3.R2 LCDR3.R3 2.256614  371 LCDR3.R2:LCDR3.R3 

LCDR3.R2 LCDR3.R1 2.276000  370 LCDR3.R2:LCDR3.R1 

LCDR3.R2 LCDR3.R4 2.279314  377 LCDR3.R2:LCDR3.R4 
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Measurement of the Minimum Depth Value of a Predictor Variable 

 

Of the 860,207 HCDR3 clonotypes fed into the RF model, 5,780 

clonotypes were predicted to be AR. Of the 443,292 LCDR3 

clonotypes, 34,703 clonotypes were predicted to be AR. The 

confidence value of the RF model for each prediction was also 

obtained. For HCDR3 and LCDR3, 1.70% (98/5,780) and 0.16% 

(58/34,703) of clonotypes, respectively, were predicted to be AR 

with a confidence value of more than 0.9. Meanwhile, 0.56% 

(4,825/854,427) of HCDR3 clonotypes and 41.14% (168,116/408,589) 

of LCDR3 clonotypes were predicted to be NR with a confidence 

value over 0.9. When CDR3 clonotypes were visualized with the most 

important variable interactions together including a confidence value 

(Figure 22c), clonotypes with higher confidence values were 

distributed near the axis of the most important variable akin to the 

distribution of AR clonotypes in the training data set.  
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Figure 22. The most influential variable interactions and 

distributions of CDR3 clonotypes. (a) Clonal abundance at the 

most influential interaction is plotted with binding property label 

from training data used in the random forest (RF) prediction 

model. AR, antigen-reactive, NR, antigen non-reactive. (b) 

Clonal abundance at the most influential interaction is plotted 

with a binding property label from validation data used in the RF 

prediction model. (c) Clonal abundance at the most influential 

interaction is plotted with confidence value (probability) from 

HiSeq-identified CDR3 clonotypes. Clonotypes with higher 

confidence values are distributed near the root variable axis 

(highlighted with a dashed blue circle) while clonotypes having 
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lower confidence values are distributed below the y = x axis 

(dotted line) (highlighted with a dashed red circle). 
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Antigen Reactivity Validation of In Silico CDR3 Clonotypes in 

Phage ELISA 

We selected 40 HCDR3 AR, 40 LCDR3 AR, 10 HCDR3 NR, and 10 

LCDR3 NR clonotypes with the highest confidence values of which 

whole VH or VL gene sequences were available from the NGS data 

generated from five sets of phagemid DNA using the MiSeq platform 

(Table 17, 18). After whole VH and VL genes were chemically 

synthesized, VH and VL genes of AR clonotypes were used to 

construct the AR phage-displayed scFv library. In a parallel 

experiment, the NR phage-displayed scFv library was also 

constructed using the same scheme. After a single round of bio-

panning on antigen-coated magnetic beads, 96 phage clones were 

randomly selected from the output titer plate of the AR library and 

subjected to phage ELISA. Fifteen phage clones were found to be AR, 

which turned out to be 14 scFv clones consisting of five HCDR3 and 

11 LCDR3 clonotypes by Sanger sequencing (Figure 23, Table 19). 

AR5 and AR6 phage clones encoded the same scFv sequence. It was 

noticeable that three LCDR3 clonotypes were paired with two 

different HCDR3 clonotypes as in AR1 and AR13, AR2, and AR7, and 

AR4 and AR14 phage clones showing light chain redundancy. In a 

parallel experiment, no AR clones were identified from 96 phage 

clones from the NR library. Sixteen clones were randomly selected 

and Sanger sequencing was performed to find 13 HCDR3 and nine 

LCDR3 clonotypes. With these results, we concluded that our RF 

model can be used to select HCDR3 and LCDR3 AR clonotypes with a 

significant hit ratio. 

We then further validate the RF model by comparing positive rate, 

clonal diversity and frequency with the conventional colony 

screening method. As a result, RF model shows higher clonal 

diversity and positive rate than conventional method either in HCDR3 

and LCDR3 (Table 20). Clonal frequency distribution of binder and 

non-binder clones were compared from each round of bio-panning 

(Figure 24). At each selection round, frequency distributions were 

similar between binder and non-binder groups, but frequency ratio of 
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round 1 to 3 showed different pattern in two groups (Figure 25). This 

result is compatible with the feature importance value observed in RF 

prediction model. We inferred that RF model generated predicted 

binders having diverse enrichment pattern, and the result is 

originated from training data with high clonal frequency variation. 

However, it is impossible to explain the reason why frequency ratio 

of round 1 to 3 mostly impacted on the prediction results, which is 

the intrinsic feature of the supervised learning algorithm.  
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Table 17. Predicted clones with HCDR3, full variable domain 

sequences with prediction results and confidence value. 

 

Clone ID Selected 

HCDR3 Mapped VH Prediction Probability 

RFAR1 SAGIGGDCIDA 
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSYNMGWVRQAPG

KGLEWVAAISNDGSSTGYATAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKSAGIGGDCIDA

WGHGTEVIVSS 
AR 0.99 

RFAR2 CADTGYGCAYCID

A 

AVTLDESGGGLQTPGGTLSLVCKASGFTFSSFNMFWVRQAPG

KGLEFVASISNTGSYTKYGAAVKG 

RATISRDDGQSTVRLQLNNLRAEDTGTYYCTRCADTGYGCAYC

IDAWGHGTEVIVSS 
AR 0.99 

RFAR3 TAGTCTTSCNAG

AYIDA 

AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQAPG

KGLEFVASISNTGSTTGYGPAVKG 

RATISRDDGQSTVRLQLNNLRAEDTATYFCAKTAGTCTTSCNA

GAYIDAWGHGTEVIVSS 
AR 0.96 

RFAR4 AVGFACGWCSAGI

DA 

AVTLDESGGGLQTPGGTLSLVCKASGFSFSSFYMFWVRQAPGK

GLEFVAQISSTGSSTDYGSAVKG 

RATISRDNGQSTLRLQLNNLRAEDTGTYFCAKAVGFACGWCSA

GIDAWGHGTEVIVSS 
AR 0.96 

RFAR5 SADSCATCATYPS

EIDT 

AVTLDESGGGLQTPGGGLSLVCKASGFTFTDYGMGWMRQAPG

KGLEYVAGISNDGSSVAYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSADSCATCATY

PSEIDTWGHGTEVIVSS 
AR 0.95 

RFAR6 SGSNWWADSTGN

VDA 

AVTLDESGGGLQTPGGALSLVCKASGFTFNNYAMNWVRQAPG

KGLEYVAAISSSASYTNYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCAKSGSNWWADST

GNVDAWGHGTEVIVSS 
AR 0.95 

RFAR7 SPGGYCCAGWIDA 
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSYNMGWVRQAPG

KGLEWVAGIYSGNRTYYAPAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYFCARSPGGYCCAGWI

DAWGHGTEVIVSS 
AR 0.95 

RFAR8 SPGAFTYVSGIDA 
AVTLDESGGGLQTPGGALSLVCKASGFTFSDYDMAWVRQAPG

KGLEFVAGITSDGSNTGYGSAVKG 

RATISRDNGQSSVRLQLNNLRAEDTGTYICARSPGAFTYVSGID

AWGHGTEVIVSS 
AR 0.95 

RFAR9 SVTGCGGDYAWC

AFGDLDHIDA 

AVTLDESGGGLQTPGRALSLVCKASGFTFSSFNMFWVRQAPG

KGLEYVAAISSTGSYTKYGAAVQG 

RATISRDNGQSTVRLQLNNLRAEDTSTYFCAKSVTGCGGDYAW

CAFGDLDHIDAWGHGTEVIVSS 
AR 0.95 

RFAR10 ASGGGYCSWGACI

VAWIGT 

AVTLDESGGGLQTPGGTLSLVCKASGFSISSYGMGWMRQAPGK

GLEFVASISNTGSYTNYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCAKASGGGYCSWG

ACIVAWIGTWGHGTEVIVSS 
AR 0.95 

RFAR11 TTVISCGTLCAGH AVTLDESGGGLQTPGGTLSLVCKASGFSFSSFYMFWVRQAPGK AR 0.95 
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IDA GLEFVAQISNTGSSTDYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTAIYYCAKTTVISCGTLCAG

HIDAWGHGTEVIVSS 

RFAR12 GASSGSGCAGGLC

AGEIDA 

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMGWMRQAPG

KGLEWVADINSAGSSTNYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYFCAKGASSGSGCAGGL

CAGEIDAWGHGTEVIVSS 
AR 0.95 

RFAR13 GSGGVDSIDA 
AVTLDESGGGLQTPGGAFSLVCKGSGFTFSSFNMFWVRQAPG

KGLEYVAGIYYSGSGTGNGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCARGSGGVDSIDAW

GHGTEVIVSS 
AR 0.95 

RFAR14 TADDGNCCGGDNI

DA 

AVTLDESGGGLQTPGGGLSLVCKASGFTFSDYGMGWVRQAPG

KGLEWVAGIYTGSYTGYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTADDGNCCGG

DNIDAWGHGTEVIVSS 
AR 0.95 

RFAR15 AYSGGFYCAGSLC

AAHAGLIDA 

AVTLDESGGGLQTPGGALSLVCKASGFTFSSYGMFWVRQAPG

KGLEWIAGISNSGSYTAYGAVDG 

RATISRDNGQSTLRLQLNNLRAEDTATYYCAKAYSGGFYCAGS

LCAAHAGLIDAWGHGTEVIVSS 
AR 0.95 

 

(continued) 

 

Clone ID Selected HCDR3 Mapped VH Prediction Probability 

RFAR16 AAASGCAGDNIDA 
AVTLDESGGGLQTPGGALSLVCKASGFTFSDYGMGWMR

QAPGKGLEFVAGIGNTGSWTAYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCAKAAASGCA

GDNIDAWGHGTEVIVSS 
AR 0.95 

RFAR17 STSDYGGWYGADLD

SIDA 

AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQ

APGKGLEWVAQISGDGSTYYAPAVQG 

RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKSTSDYGG

WYGADLDSIDAWGHGTEVIVSS 
AR 0.95 

RFAR18 TADGGWFGNSAGSI

DA 

AVTLDESGGGLQTPGGTLSLVCKASGFSISSYTMQWVRQ

APGKGLEWVAGISSSGRYTDYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYFCAKTADGGWF

GNSAGSIDAWGHGTEVIVSS 
AR 0.95 

RFAR19 TSGYCGWCGAYNID

A 

AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQ

APGKGLEYVAEISSTGSWTGYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTSGYCGW

CGAYNIDAWGHGTEVIVSS 
AR 0.95 

RFAR20 SANSGRSASQMDA 
AVTLDESEGGLQTPGGALSLVCKASGFTFSDYAMGWVR

QAPGKGLEYVASIRGAGSSDTSYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKSANSGRS

ASQMDAWGHGTEVIVSS 
AR 0.95 

RFAR21 GGSGYCGWSGYSCV

GEIDA 
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSSYGMHWVR

QAPGKGLEWVAGIYSGGGNTYYAPAVKG 

RATISRDNGQSTVRLQLNDLRAEDTATYYCTRGGSGYCG

AR 0.95 
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WSGYSCVGEIDAWGHGTEVIVSS 

RFAR22 ATGTGYYGSDSYVS

SIDA 

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSYDMYWVRQ

APGKGLEYVAVISSDGRYTNYGSAVKG 

RATISKDNGQSTVRLQLNNLRAEDTGTYYCAKATGTGYY

GSDSYVSSIDAWGHGTEVIVSS 
AR 0.95 

RFAR23 SDISWCAWCATDLG

QIDA 

AVTLDESGGGLQTPGGTLSLVCKASGFTFSSFNMFWVRQ

APGKGLEYVASISSADIWTGYGSAVKG 

RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKSDISWCA

WCATDLGQIDAWGHGTEVIVSS 
AR 0.95 

RFAR24 GAYGHCSGSWCSAG

LIDA 

AVTLDESGGGLQTPGGTLSLVCKASGFNFSSYQMNWIRQ

APGKGLEFVAAINRFGNSTGYAAAVKG 

RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKGAYGHCS

GSWCSAGLIDAWGHGTEVIVSS 
AR 0.95 

RFAR25 DVYGWCASDCGGSD

TIDA 

AVTLDESGGGLQTPGGALSLVCKASGFSISSYGMFWVRQ

APGKGLEFVAGISSSGRHTDYGSAVKG 

RATISRDNGQSTMRLQLNNLRAEDTGTYFCAKDVYGWC

ASDCGGSDTIDAWGHGTEVIVSS 
AR 0.95 

RFAR26 SAAGYGCTYGSGYG

WCVNYIDA 

AVTLDESGGGLQTPGRALSLVCKASGFTFSSFNMFWVRQ

APGKGLEFVAAISSSGRYTGYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTAIYFCAKSAAGYGCT

YGSGYGWCVNYIDAWGHGTEVIVSS 
AR 0.95 

RFAR27 AAACSGNDCAALLA

AGIDA 

AVTLDESGGGLQTPGGTLSLVCKASGFTFSSYAMNWVR

QAPGKGLEWVGVISDSGNTPKYGPAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKAAACSGN

DCAALLAAGIDAWGHGTEVIVSS 
AR 0.95 

RFAR28 DDSSCIWNTGCTGLI

DE 

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMFWVR

QAPGKGLEWVAEISTTGRYTNYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKDDSSCIW

NTGCTGLIDEWGHGTEVIVSS 
AR 0.95 

RFAR29 SADGYGWDTAGNM

DA 

AVTLDESGGGLQTPGGGLSLVCKASGFTFSSNAMGWMR

QAPSKGLEFVAAISSSGSGTYYGAAVKG 

RATISRDDGQSTVRLQLNNLRAEDTAIYFCAKSADGYGW

DTAGNMDAWGHGTEVIVSS 
AR 0.95 

RFAR30 SGTGKYTTGQIDA 
AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSFNMFWVRQ

APGKGLEYVAEITSGGSYTYYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSGTGKYT

TGQIDAWGHGTEVIVSS 
AR 0.95 
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(continued) 

 

Clone ID Selected 

HCDR3 Mapped VH Prediction Probability 

RFAR31 TTDSAYCCAGEID

T 

AVTLDESGGGLQTPGGTLSLVCKASGFTFSSYGMNWVRQAPGKG

LEYVAAISSTGTTTNYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKTTDSAYCCAGEID

TWGHGTEVIVSS 
AR 0.95 

RFAR32 TATTCTGCWAGID

SIDA 

AVTLDESGGGLQTPGRALSLVCKASGFTFNTYTMFWVRQAPGKG

LEFVAGIDNTGSSTGYGPAVQG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCAKTATTCTGCWAGI

DSIDAWGHGTEVIVSS 
AR 0.95 

RFAR33 SAADYTCGNGGGS

CAGSIDA 

AVTLDESGGGLQTPGRALSLVCKASGFTFNTYTMFWVRQAPGKG

LEWVAQTSNTGRYTAYGPAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKSAADYTCGNGGGS

CAGSIDAWGHGTEVIVSS 
AR 0.95 

RFAR34 TTGSDYCTLCTGG

IDA 

AVTLDESGGGLQTPGGGLSLVCKASGFSFSSYDMLWVRQAPGKG

LEFVGVISSSGRYTSYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTTGSDYCTLCTG

GIDAWGRGTEVIVSS 
AR 0.95 

RFAR35 GGGSDSCTACAGS

IDA 

AVTLDESGGGLQTPGGGLSLICKASGFTFSDYGMGWMRQAPGKG

LEYVGVISSSGSTTRYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYYCTRGGGSDSCTACAGSI

DAWGHGTEVIVSS 
AR 0.95 

RFAR36 AAGDSGYAGRIDA 
AVTLDESGGGLQTPGGALSLVCKASGFTFSSFYMFWVRQAPGKG

LEYVAQISGDGSWTYYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKAAGDSGYAGRIDA

WGHGTEVIVSS 
AR 0.95 

RFAR37 TTCSGSYGWCADS

IDA 

AVTLDESGGGLQTPGGGLSLVCKASGFTISDYGMGWVRQAPGKG

LEYVAQINSAGSYPKYGAAVKG 

RATISKDNGQSTVRLQLNNLRAEDTATYYCAKTTCSGSYGWCAD

SIDAWGHGTEVIVSS 
AR 0.95 

RFAR38 SATTGGAWAGEID

T 

AVTLDESGGGLQTPGGGLSLVCKASGFTFSDYQMNWIRQAPGKG

LEWVAGISSGGGYTYYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYFCGKSATTGGAWAGEID

TWGHGTEVIVSS 
AR 0.95 

RFAR39 GCAGCGWSAARID

A 

AVTLDESGGGLQTPGGALSLVCKGSGFTFSSYAMFWVRQEPGKG

LECVGYINNDGSSTWYATAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCARGCAGCGWSAARID

AWGHGTEVIVSS 
AR 0.95 

RFAR40 DTNRDCHSDADSI

DA 

AVTLDESGGGLQTPGGALSLVCKASGFTFSSYAMNWVRQAPGKG

LEWVGGIGSTGSGTYYAPAVQG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKDTNRDCHSDADSI

DAWGHGTEVIVSS 
AR 0.95 

RFNR1 DAYGYNGWRAGSI AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMAWVRQAPGKG NR 0.00 



 

 １０２ 

DA LEFVAEISSDAGSWTAYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKDAYGYNGWRAGSI

DAWGHGTEVIVSS 

RFNR2 NSGSGGWITDTGR

IDA 

AVTLDESGGGLQMPGGALSLVCKASGFTFSSYEMQWVRQAPGKG

LEWVAGIYSGGTTTSYGPAVKG 

RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKNSGSGGWITDTGR

IDAWGHGTEVIVSS 
NR 0.00 

RFNR3 SADNGWNTAGRID

A 

AVTLDESGGGLQTPGGTLSLICKASGFTFSSVNMGWVRQAPGKG

LEFIAQITSRGSSTYYAPAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSADNGWNTAGRI

DAWGHGTEVIVSS 
NR 0.00 

RFNR4 AAGSGTGWSAGGI

DA 

AVTLDESGGGLQTPGGALSLVCKGSGFTFNSYAMQWVRQAPGKG

LEWVAGISGSGSYTAYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYYCAKAAGSGTGWSAGGI

DAWGHGTEVIVSS 
NR 0.00 

RFNR5 SGDAATPDAGGID

A 

AVTLDESGGGLQTPGGGLSLVCKGSGFTFSSFNMFWVRQAPGKG

LEFVAAINSGGRYTGYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGIYYCARSGDAATPDAGGID

AWGHGTEVIVSS 
NR 0.00 

RFNR6 SGYGGYDGSNIDA 
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSHGMGWVRQAPGKG

LEWVAGIYSGGRYTYYGAAVKG 

RATISRDNGQSTVRLQLNNLRAEDTAIYYCAKSGYGGYDGSNIDA

WGHGTEVIVSS 
NR 0.00 

RFNR7 ATYAGSGCCDNID

A 

AVTLDESGGGLQTPGGVLSLVCKASGFDFSNNDMAWVRQAPGK

GLEFVADISSGGGSYTYYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTATYFCARATYAGSGCCDNID

AWGHGTEVIVSS 
NR 0.00 

RFNR8 GACGGGCYTATFI

GTIDV 

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMGWMRQAPGK

GLEYVAEISGSGSWTYYAPAVKG 

RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKGACGGGCYTATFI

GTIDVWGHGTEVIVSS 
NR 0.00 

RFNR9 SAAGYGCAYGWC

GDSIDA 

AVTLDESGGGLQTPGGALSLVCKASGFSISSYDMAWVRQAPGKG

LEFVAGIYSGTTTAYGAAVKG 

RATISRDDGQSTVRLQLNNLRAEDTATYYCAKSAAGYGCAYGWC

GDSIDAWGHGTEVIVSS 
NR 0.00 

RFNR10 AAGTCYGCSFYAT

NIDA 

AVTLDESGGGLQTPGGALSLVCKGSGFTFSSVNMFWVRQAPGKG

LEWVAGIDNTGRYTSYGSAVKG 

RATISRDNGQSTVRLQLNNLRAEDTAIYFCAKAAGTCYGCSFYAT

NIDAWGHGTEVIVSS 
NR 0.00 

 

 

 

 

 

 

 



 

 １０３ 

Table 18. Predicted clones with LCDR3, full variable domain 

sequences with prediction results and confidence value. 

 

Clone 

ID Selected LCDR3 Mapped VL Prediction Probability 

RFAR1 GNYDGSSSVGI LTQPSSVSANLGGTVKITCSGGSGDYGWYQQKSPGSAPVTVIYWDDERPSGIPS 

RFSGSTSGSTNTLTITGVQADDEAVYFCGNYDGSSSVGIFGAGTTLTVL AR 0.99 

RFAR2 GSRDSTLAA LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYYNTNRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYFCGSRDSTLAAFGAGTTLTVL AR 0.99 

RFAR3 GSYDSSYVGYVGV LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYNDNQRPSNIPS 

RFSGALSGSTATLTITGVQAEDEAVYYCGSYDSSYVGYVGVFGAGTTLTVL AR 0.99 

RFAR4 GNKDN LTQPSSVSANPGGTVEITCSGGSGSYGWFQQKAPGSAPVTLIYANTNRPSDIPS 

RFSGSKSGSTNTLTITGVQADDEAVYYCGNKDNFGAGTTLTVL AR 0.99 

RFAR5 GGYDSTYAGL LTQPSSVSANLGGTVEITCSGGSYYGWYQQKSPGSAPVTLIYNNDKRPSDIPS 

RFSGSKSGSTGTLTITGVRAEDEAVYYCGGYDSTYAGLFGAGTTLTVL AR 0.99 

RFAR6 GTADSSGTV LTQPSSVSANPGETVKITCSGGGSSSYYGWYQQKSPGSAPVTLIYESNKRPSDIPS 

RFSGSKSGSTATLTITGVQADDEAVYYCGTADSSGTVFGAGTTLTVL AR 0.99 

RFAR7 GSRDSSYVPI LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYYNTNRPSDIPS 

RFSGSKSGSTHTLTITGVRAEDEAVYFCGSRDSSYVPIFGAGTTLTVL AR 0.99 

RFAR8 GSWDSSSEGDSGYAGI LTQPSSVSANPGETVKITCSGSRNSYGWYQQKSPGSAPVTVIYWNSNRPSGIPS 

RFSGSTSGSTGTLTITGVQADDEAVYYCGSWDSSSEGDSGYAGIFGAGTTLTVL AR 0.99 

RFAR9 GAYDSSYIGI LTQPSSVSANLGGTVKITCSGGSSGYGWYQQKSPGSAPVTVIYSNTNRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYYCGAYDSSYIGIFGAGTTLTVL AR 0.99 

RFAR10 GSFDSSYVGM LTQPSSVSANPGETVKITCSGGSGNYGWYQQKSPGSAPVTVIYDSSSRPSDIPS 

RFSGSTSGSTSTLTITGVQADDEAVYYCGSFDSSYVGMFGAGTTLTVL AR 0.99 

RFAR11 GSIDSNYDGI LTQPSSVSANPGETVKLICSGSSGDYGWYQQKSPGSAPVTVIYDNTNRPSNIPS 

RFSGSLSGSTNTLSITGVQVEDEAVYFCGSIDSNYDGIFGAGTTLTVL AR 0.99 

RFAR12 GSRDNSSAST LTQPSSVSANPGETVEITCSGSSSGYGYGWYQQKSPGSAPVTLIYSNDKRPSDIPS 

RFSGSKSGSTGTLTITGVRAEDEAVYFCGSRDNSSASTFGAGTTLTVL AR 0.99 

RFAR13 GSFDSSSDSGYVGI LTQPSSVSANPGETVKITCSGGSNNYGWYQQKSPGSAPVTVIYDNTNRPSDIPS 

RFSGSASGSASTLTITGVQADDEAVYYCGSFDSSSDSGYVGIFGAGTALTVL AR 0.99 

RFAR14 GSYDSSYVGL LTQPSSVSANLGGTVEITCSGGSSNEYGWYQQKAPGSAPVTLIYDNTNRPSDIPS 

RFSGSKSGSTGTLTIAGVQAEDEAVYFCGSYDSSYVGLFGAGTTLTVL AR 0.98 

RFAR15 GSTDSSNTDI LTQPSSVSAKPGGTVEITCSGGSGSYGWFQQKSPGSAPVTLIYANTNRPSDIPS 

RFSGSKSGSTATLTITGVQAEDEAIYYCGSTDSSNTDIFGAGTTLTVL AR 0.98 
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(continued) 

 

Clone 

ID 
Selected 

LCDR3 Mapped VL Prediction Probability 

RFAR16 GSRAGSSI LTQPSSVSANPGETVKITCSGSSGSYGWYQQKSPGSAPVTVIYYNDKRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYFCGSRAGSSIFGAGTTLTVL AR 0.98 

RFAR17 GSYDSSYDGV LTQPSSVSANPGETVKITCSGSSGYGYGWYQQKSPGSAPVTVIYYNDKRPSNIPS 

RFSGSKSGSTATLTITGVRADDEAVYFCGSYDSSYDGVFGAGTTLTVL AR 0.98 

RFAR18 GNGDRSSTTGI LTQPSSVSANLGETVKITCSGGSGSYGWFQQKSPGSAPVTVIYSNDKRPSDIPS 

RFSGSKSGSTGTLTITGVQADDEAVYYCGNGDRSSTTGIFGAGTTLTVL AR 0.97 

RFAR19 GNEDISGI LTQPSSVSANPGETVKITCSGGSYKYGWFQQKSPGSAPVTVIYYNDKRPSNIPS 

RFSGSKSGSTATLTITGVQADDEAVYYCGNEDISGIFGAGTSLTVL AR 0.97 

RFAR20 GSFDSSYTGI LTQPSSVSANLGGTVKITCSGSSGSYGYGWYQQKSPGSAPVTVIYSNNQRPSNIPS 

RFSGSTSGSTGTLTITGVRAEDEAVYYCGSFDSSYTGIFGAGTTLTVL AR 0.97 

RFAR21 GSTDSSRTDT LTQPSSVSANLGGTVKITCSGSSGSYGWYQQKSPGSAPVTLIYQNTKRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYYCGSTDSSRTDTFGAGTTLTVL AR 0.97 

RFAR22 GSIDSRYVGI LTQPSSVSANLGETVKITCSGGSYSYGWYQQKAPGSAPVTLIYDNTNRPSDIPS 

RFSGSKSGSTHTLTITGVQADDEAVYFCGSIDSRYVGIFGAGTTLTVL AR 0.97 

RFAR23 GGYDGSSAA LTQPSSVSANPGGTVEITCSGGSGNNYGWFQQKSPGSTPVTVIYNNDKRPSDIPS 

RFSGSKSGSTATLTITGVQADDEAVYYCGGYDGSSAAFGAGTTLTVL AR 0.97 

RFAR24 ANYDSSTDI LTQPSSVSANPGETVKITCSGGSSGYGYGWFQQKSPGSAPVTLIYYNDKRPSDIPS 

RFSGSTSGSTSTLTITGVQADDEAVYYCANYDSSTDIFGAGTTLTVL AR 0.97 

RFAR25 GSYDSTYAGM LTQPSSVSANPGETVKITCSGGSGSYGWYQQKSPGSAPVTVIYYNYKRPSDIPS 

RFSGSASGSTATLTITGVQAEDEAVYYCGSYDSTYAGMFGAGTTLTVL AR 0.97 

RFAR26 GSGDSSGTEAA LTQPSSVSANPGGTVEITCSGSSGSYGWYQQKSPGSAPVTLIYANTNRPSNIPS 

RFSGSTSGSTATLTITGVQADDEAVYYCGSGDSSGTEAAFGAGTTLTVL AR 0.97 

RFAR27 GSEDSSGAGYVGI LTQPSSVSANPGETVKITCSGGSYGYSWHQQKSPGSAPVTVIYSSNQRPSDIPS 

RFSGSTSGSTATLTITGVQADDEAVYFCGSEDSSGAGYVGIFGAGTTLTVL AR 0.96 

RFAR28 GGFDSTDSGYAGI LTQPSSVSANPGETVKITCSGSTSTYYGWYQQKSPGSAPVTLIYNNNNRPSDIPS 

RFSGSTSGSTNTLTITGVRAEDEAVYYCGGFDSTDSGYAGIFGAGTTLTVL AR 0.96 

RFAR29 GSADTKYVGI LTQPSSVSANPGETVEITCSGDSSYYGWYQQKSPGSAPVTVIYDNTNRPSDIPS 

RFSGSLSGSTNTLTITGVQVEDEAIYFCGSADTKYVGIFGAGTTLTVL AR 0.96 

RFAR30 GSRDSSYLDSGI LTQPSSVSANLGGTVKITCSGGGSYYGWYQQKAPGSAPVTLIYWNDNRPSDIPS 

RFSGSKSGSTATLTITGVQADDEAVYYCGSRDSSYLDSGIFGAGTTLTVL AR 0.95 
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(continued) 

 

Clone 

ID Selected LCDR3 Mapped VL Prediction Probability 

RFAR31 GTWDSNTYA LTQPSSVSANLGETVKITCSGGSGNYGWFQQKAPGSAPVTVIYYDDERPSNIPS 

RFSGSTSGSTSTLTITGVQVEDEAVYFCGTWDSNTYAGIFGAGTTLTVL AR 0.95 

RFAR32 GSYEDSSYVGI LTQPSSVSANLGGTVKITCSGGSGSYGWFQQKSPGSVPVTVIYDSSSRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYFCGSYEDSSYVGIFGAGTTLTVL AR 0.95 

RFAR33 GSYVSGKYDGI LTQPSSVSANPGETAKITCSGGYRSYGWYQQKSPGSAPVTLIYSNNQRPSSIPS 

RFSGSVSVFTHTLTITGVQAEDEAVYYCGSYVSGKYDGIFGAGTTLTVL AR 0.95 

RFAR34 GTADSSTEAI LTQPSSVSANPGETVKITCSGGSGRYGWFQQKSPGSAPVTVIYWDDERPSNIPS 

RFSGSTSGSTNTLTITGVQVEDEAVYFCGTADSSTEAIFGAGTTLTVL AR 0.95 

RFAR35 GSYDNTYAGI LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKAPGSAPVTVIYANTNRPSNIPS 

RFSGSKSGSTNTLTITGVQAEDEAVYFCGSYDNTYAGIFGAGTTLTVL AR 0.95 

RFAR36 GGYDSSSSSAV LTQPSSVSANLGGTVKITCSGSSSNNYGWYQQKSPGSTPLTLIYWNDKRPSDIPS 

RFSGSTSGSTATLTITGVQAEDEAVYFCGGYDSSSSSAVFGAGTTLTVL AR 0.95 

RFAR37 GSYEDSNY LTQPSSVSANPGETVEITCSGSRTGYGWFQQKSPGSAPVTLIYGSNKRPSNIPS 

RFSGSKSGSTSTLTITGVQAEDEAVYFCGSYEDSNYFGAGTTLTVL AR 0.95 

RFAR38 GSFDSSYSGI LTQPSSVSANLGGTVKITCSGGSSGYYGWYQQKSPGSAPVTLIYSNNQRPSNIPS 

RFSGSGSGSTGTLTITGVRAEDEAVYFCGSFDSSYSGIFGAGTTLTVL AR 0.95 

RFAR39 GDWDSNI LTQPSSVSANPGETVEITCSGDSNYYGWYQQKAPGSAPVTLIYANTNRPSNIPS 

RFSGSGSGSTNTLTITGVQAEDEAVYYCGDWDSNIFGAGTTLTVL AR 0.95 

RFAR40 GGYDSSSGA LTQPSSVSANPGETVKITCSGGGSSRYYGWYQQKAPGSAPVTLIYDNTNRPSNIPS 

RFSGSKSGSTATLTITGVQAEDEAVYFCGGYDSSSGAFGAGTTLTVL AR 0.94 

RFNR1 GGYDGSTDAGI 

LTQPSSVSANPGETVKITCSGSSSSYYGWYQQKSPGSAPVTLIYDNTNRPSDIPS 

RFSGSKSGSTATLTITGVQADDEAVYFCGGYDGSTDAGIFGAGTTLTVL 

NR 0.00 

RFNR2 GSTDSSYTDSL 

LTQPSSVSANPGETVKITCSGGGSYDYGWYQQKSPGSAPVTVIYNNNKRPSDIPS 

RFSGALSGSTATLTITGVQADDEAVYFCGSTDSSYTDSLFGAGTTLTVL 

NR 0.00 

RFNR3 GNEDSSYAGI 

LTQPSSVSANLGGTVEITCSGGSGSYGWFQQKAPGSAPVTLIYANTNRPSDIPS 

RFSGSKSGSTATLIITGVQAEDEAVYFCGNEDSSYAGIFGAGTTLTVL 

NR 0.00 

RFNR4 GNYADSSST 

LTQPSSVSANPGETVKITCSGGTYNYGWYQQKSPGSAPVTVIYDNNKRPSDIPS 

RFSGALSGSTATLTITGVQADDEAVYFCGNYADSSSTFGAGTTLTVL 

NR 0.00 

RFNR5 GSADSSSAGI 

LTQPSSVSANLGGTVKITCSGSSDSYGWYQQKSPGSAPVTLIYESNKRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYYCGSADSSSAGIFGAGTTLTVL 

NR 0.00 

RFNR6 GSADSSGSGI 

LTQPSSVSANPGETVKITCSGGGSYGWYQQKSPSSAPVTLIYTNTNRPSNIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYFCGSADSSGSGIFGAGTTLTVL 

NR 0.00 

RFNR7 GSRDSSNVGI 

LTQPSSVSANLGGTVEITCSGGGSYGWYQQKSPGSAPVTVIYWNDKRPSDIPS 

RFSGSKSGSTGTLTITGVQAEDEAVYFCGSRDSSNVGIFGAGTTLTVL 

NR 0.00 

RFNR8 GSYEGSSGIV 

LTQPSSVSANPGETVKITCSGSSGSYGWYQQKSPGSAPVTVIYSNDKRPSDIPS 

RFSGSASGSTATLTITGVQADDEAVYYCGSYEGSSGIVFGAGTTLTVL 

NR 0.00 

RFNR9 GSRDSTDSLYVGI 

LTQPSSVSANPGETVKITCSGGSSYYAWYQQKSPGSAPVTVIYYNDKRPSDIPS 

RFSGSTSGSTSTLTITGVQADDEAVYFCGSRDSTDSLYVGIFGAGTTLTVL 

NR 0.00 

RFNR10 GSADSSTDSGI 

LTQPSSVSANPGGTVEITCSGGSSNYGWFQQKAPGSAPVTVIYNNNKRPSDIPS 

RFSGSKSGSTGTLTITGVQADDEAVYFCGSADSSTDSGIFGAGTTLTVL 

NR 0.00 
 

 



 

 １０６ 

 

Figure 23. Reactivity of phage-displayed scFv clones in phage 

ELISA. Binding reactivity of 15 unique clones identified from the 

AR library and 16 unique clones from the NR library are shown. 

Wells in microtiter plates were either coated with recombinant 

mouse c-Met or just blocked with 3% BSA in PBS. Phage clones, 

HRP-conjugated anti-M13 antibody, and HRP substrate solution 

were added sequentially with intermittent washing. 
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Table 19. Amino acid sequences of AR CDR3 clonotypes 

identified from AR library. 

Clone ID HCDR3 AA* Sequence LCDR3 AA* Sequence 

AR1 GSGGVDSIDA GSYDNTYAGI 

AR2 SADGYGWDTAGNMDA GSIDSNYDGI 

AR3 TAGTCTTSCNAGAYIDA GGYDGSSAA 

AR4 TTCSGSYGWCADSIDA GAYDSSYIGI 

AR5 SADSCATCATYPSEIDT GSFDSSYVGM 

AR6 SADSCATCATYPSEIDT GSFDSSYVGM 

AR7 SADSCATCATYPSEIDT GSIDSNYDGI 

AR8 SADSCATCATYPSEIDT GSYDSSYVGL 

AR9 SADSCATCATYPSEIDT GSYDSSYDGV 

AR10 SADSCATCATYPSEIDT GSFDSSYTGI 

AR11 SADSCATCATYPSEIDT GSIDSRYVGI 

AR12 SADSCATCATYPSEIDT GSYDSSYVGYVGV 

AR13 SADSCATCATYPSEIDT GSYDNTYAGI 

AR14 SADSCATCATYPSEIDT GGYDSSSGA 

AR15 SADSCATCATYPSEIDT GAYDSSYIGI 

* AA: amino acid. 
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Table 20. Validation of positive rate and clonal diversity from 

conventional colony screening method and RF prediction model. 

scFv, single chain variable fragment; VH, variable heavy chain; HCDR3, heavy 

chain complementary region 3; VL, variable light chain; LCDR3, light chain 

complementary region 3. 

Library Region Positive rate 
Species richness 

(normalized) 

Training 

scFv 
149/641 

(23.24%) 
4.88 

VH 

91/582 

(15.64%) 
3.28 

HCDR3 
80/531 

(15.07%) 

3.16 

VL 
145/634 

(22.87%) 
4.80 

LCDR3 
123/524 

(23.47%) 
4.93 

RF 

prediction 

model 

scFv 
330/376 

(87.77%) 
18.44 

VH, 

HCDR3 

15/21 

(71.43%) 
15 

VL, 

LCDR3 

22/28 

(78.57%) 
16.54 
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Figure 24. Clonal frequency distribution in the training data. 

Clonal frequency of each clonotype were calculated and plotted 

from entire clonotypes (A, C, E, G) and rare clonotypes 

(clonotype having clonal frequency less than 0.0001) (B, D, F, G). 

Yellow dots and black dots represent the non-binder and binder 

clones respectively.  
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Figure 25. Distribution of clonal frequency ratio in the training 

data. Clonal frequency ratio of round 1 (A), 2 (B), 4 (C) to round 

3 was calculated and plotted. Yellow dots and black dots 

represent the non-binder and binder clones respectively.   
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4.4. Discussion 
 

Despite the promise of targeting the HGF-c-Met signaling 

pathway for cancer therapy, no specific therapeutic agent has been 

approved for clinical use. Small molecule inhibitors specific to c-Met 

are yet to be approved, and only nonspecific tyrosine kinase 

inhibitors inhibiting c-Met are available (Table 21)130. Recombinant 

protein (truncated HGF, decoy c-Met) was not successful in clinical 

trials due to several factors, including short half-life and low target 

affinity limiting the intended efficacy131. Several HGF-neutralizing 

antibodies have been developed with two currently active in clinical 

trials132. However, the inhibitory targeting of c-Met by an antibody 

has been difficult since the bivalency of antibodies often induces 

receptor dimerization, which potentially causes cancer cell 

proliferation and migration. As such, both a monovalent form of 

antibody blocking its interaction with HGF and a bivalent antibody 

inducing receptor internalization have been developed and tested in 

clinical trials unsuccessfully126,133. Recently, an anti-EGFR x c-Met 

bispecific antibody monovalent to each target came under clinical 

development, which should inhibit the ligand interaction and induce 

the internalization of both receptors134,135. Besides blocking the 

interaction with ligand and receptor internalization, other 

mechanisms of actions for therapeutic antibody binding to targets on 

cancer cells were also reported, which include complement-

dependent cell cytotoxicity as observed in rituximab136, antibody-

dependent cell cytotoxicity seen with obinutuzumab137, and 

phagocytosis of antibody-opsonized tumor cells138. Antibodies are 

also used to deliver cytotoxic payloads into cancer cells such as with 

T-DM1139, and cross-linking cancer cells to cytotoxic T cells with 

blinatumomab140. Furthermore, antibodies are used as a cancer cell-

targeting component in chimeric antigen receptor T cell therapy, as 

seen with tisagenlecleucel and axicabtagene ciloleucel27. Additionally, 

it is well known that the antibody epitope and binding characteristics 

critically influence efficacy for all these various modes of action141,142. 

Therefore, it is crucial to develop a significant number of antibodies 
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to a target and characterize their performance. However, antibody 

selection technologies, including conventional hybridoma and display 

technologies such as phage, ribosomal, and bacterial, all have their 

own limitations regarding high-throughput capabilities.  

After George P. Smith and Gregory P. Winter successfully displayed 

recombinant peptides and antibodies at the pIII protein of the M13 

phage143, this powerful technology has evolved and been actively 

applied toward therapeutic antibody discovery144,145. Currently, over 

80 antibodies derived from phage display libraries have entered 

clinical studies with 10 of these granted marketing authorization146. 

Since Ravn U et al. demonstrated the potential for NGS analysis in 

the phage-displayed antibody repertoire in 2010, numerous groups 

have leveraged similar strategies for discovering antibodies reactive 

to specific antigens64,147-155. The next hurdle to overcome after the 

identification of in silico antibody sequences in NGS data was the 

low-throughput nature of chemically synthesizing all antibody 

sequences and individually testing their reactivity. Recently, we 

introduced a method for combining NGS analysis and individual 

antibody sequence identification with the isolation of their physical 

DNA, which was named TR technology63. To reduce the burden of 

expressing all of the antibodies, we also devised a way of predicting 

antigen reactivity toward antigens by clustering antibody clonotypes 

with their patterns of enrichment or restriction through bio-panning 

rounds, and then combining TR with clustering and testing reactivity 

for a significant number of clones. 
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Table 21. Clinical usage of small molecule inhibitors targeting c-

Met in cancer therapy. 

Drug Name Targets FDA Approval Status 
Approved 

Year 

Tivantinib c-Met, microtubule None N.A.* 

Foretinib c-Met, VEGFR-2* None N.A. 

Cabozantinib c-Met, VEGFR, Axl 

Medullary thyroid cancer 

Advanced renal cell 

carcinoma 

Hepatocellular carcinoma  

2012 

2016 

2019 

Crizotinib 
c-Met, ALK*, ROS1, 

RON* 

ALK or ROS-1 positive 

NSCLC* 
2011 

Capmatinib c-Met, EGFR*, ErbB-3 None N.A. 

AMG337 c-Met None N.A. 

AZD6094 c-Met None N.A. 

BMS777607/ 

ASLAN002 

c-Met, Axl, Tyro3, 

RON 
None N.A. 

Glesatinib c-Met, Axl None N.A. 

Tepotinib c-Met None N.A. 

* VEGFR-2: Vascular endothelial growth factor-2, ALK: 

Anaplastic lymphoma kinase, RON: Receptor d’Origine nantais, 

EGFR: Epidermal growth factor receptor, NSCLC: Non-small cell 

lung cancer, N.A.: not available. 
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Using these tools and procedures, we believed that it was 

possible to train a machine learning algorithm to derive in silico AR 

clonotypes from a repertoire of NGS sequences. To demonstrate this, 

we performed an in-depth analysis of our bio-panning library with 

the guidance of our supervised machine learning algorithm trained 

with large amounts of data sets generated from a high-throughput 

clone retrieval platform and independent NGS analysis. The RF 

model utilized is composed of numerous unique decision trees that 

work together to classify inputs. Each decision tree in an RF model is 

generated using a bootstrapped sample of the training data and a 

randomized subset of variables evaluated for the best split at each 

node of that decision tree. As a result, each RF model decision tree 

is uniquely generated and makes the model more robust to overfitting 

compared to other linear classifiers or decision trees. Compared to 

the more complicated black boxes of artificial neural networks, RF 

models frequently show similar levels of predictive performance 

while remaining observable and transparent. By inspecting the 

composition of decision trees in the RF model, we can extract 

important measures of input variables to better understand the 

decision-making process of the algorithm. Our extraction of variable 

importance measures helped explain the logical processes of our RF 

prediction model, which consists of complex, randomized interactions 

of predictor variables and response variables. From these results, we 

can infer that AR HCDRs are mostly selected in enrichment rounds, 

while LCDR3s are significantly enriched with selected HCDR3s after 

additional selective pressure occurs. We can then infer that 

enrichment of scFv molecules depends on individual chains in 

different stages of the bio-panning process (first VH is then 

significantly biased by VL). We believe our prediction model may be 

enhanced to better predict binding reactivity with multiple (high, mid, 

low) rather than binary (reactive/non-reactive) classifications. It is 

highly likely that this model can be applied to other display platforms 

that use bio-panning as the selection process, such as yeast display 

library for fluorescence-activated cell sorting screening156. Recently, 
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artificial intelligence has been applied to predict the physicochemical 

properties of antibody sequences157-161 and/or optimize them162-164.  

In summary, we report that machine learning algorithm can 

provide a way to identify AR antibody clones with a significant hit 

ratio, which will allow us to better characterize diverse antibodies in 

greater numbers currently unattainable by traditional methods.  
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4.5. Methods 
 

Library construction and bio-panning 

 

Three white leghorn chickens were immunized and boosted four 

times with recombinant human PSA (Fitzgerald, Acton, MA, USA). 

After the final booster injection, total RNA was extracted from the 

spleen, bone marrow, and bursa of Fabricius using the TRI Reagent 

(Invitrogen, Grand Island, NY, USA). First-strand cDNA was 

synthesized using SuperScript reverse transcriptase with oligo (dT) 

priming (Invitrogen). Using this cDNA, three phage-displayed 

libraries of chicken scFvs were constructed using the pComb3XSS 

phagemid vector165. Four rounds of bio-panning were performed to 

screen scFv clones from the library following a previously reported 

procedure165. For each round of bio-panning, 5 × 106 magnetic beads 

(Dynabeads M-270 epoxy) (Invitrogen) coated with 1.5 μg 

recombinant PSA protein were used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 １１７ 

Phage enzyme immunoassay 

 

The scFv-displaying phages were rescued from titer plates after 

transformation and subjected to phage enzyme immunoassay as 

described previously165. The microtiter plates (Corning, NY, USA) 

were coated overnight at 4 °C with 20 μL recombinant human Fc-

tagged PSA (5 μl ml−1) dissolved in phosphate-buffered saline (PBS). 

After blocking with 3% bovine serum albumin dissolved in PBS (w/v, 

PBS-B), the plates were then sequentially incubated with scFv-

displaying phages in the culture supernatant, horseradish peroxidase 

(HRP)-conjugated mouse anti-M13 monoclonal antibody (GE 

Healthcare, Pittsburg, PA, USA) in PBS-B, and then finally with 2,2′-

Azinobis [3-ethylbenzothiazoline-6-sulfonic acid]-diammonium salt 

(ABTS) substrate solutions (Amresco LLC, Solon, OH, USA), with 

intermittent washing using 0.05% Tween-20 in PBS (PBST). After 

incubating the plates at 37 °C for 10 min, the optical density was 

measured at 405 nm using a microtiter plate reader (Labsystems AiG 

SL, Barcelona, Spain). 
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Sanger sequencing analysis 

 

Phagemid DNA from selected clones identified by phage enzyme 

immunoassays was prepared with a small-scale plasmid preparation 

kit (Qiagen, Hilden, Germany). The OmpSeq primer (5′-

AAGACAGCTATCGCGATTGCAG-3′) and HRML-F primer (5′-

GGTGGTTCCTCTAGATCTTCC-3′) were used to sequence the VH 

and VL chains of the antibody. Sequence analysis of positive clones 

(O.D.405nm>0.3) was performed by Macrogen (Seoul, Korea). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 １１９ 

Next-generation sequencing analysis 

 

A total of 15 sets of phagemid DNA including three initial 

chicken scFv libraries and three libraries obtained after each of four 

rounds of bio-panning were analyzed using a MiSeq system (Illumina 

Inc., San Diego, CA, USA). The MiSeq library for DNA sequencing 

was prepared using Illumina Nextera XT chemistry (Illumina) 

following the protocol provided by the manufacturer. The genes from 

the chicken library were amplified using the forward primer (pre-

adaptor, 5′-TCGTCGGCAGCGTC-3′; sequencing primer, 5′-

AGATGTGTATAAGAGACAG-3′; specific locus primer, 5′-

TCAGCCTCGTCTGCAAGG-3′), and reverse primer (pre-adaptor, 

5′-GTCTCGTGGGCTCGG-3′; sequencing primer, 5′-

AGATGTGTATAAGAGACAG-3′; specific locus primer, 5′-

AGTGGAGGAGACGATGACTTC-3′), respectively. The final libraries 

were normalized by quantification with LightCycler 480 II (Roche 

Applied Science, Indianapolis, IN, USA) and qualification with 

Bioanalyzer (Agilent, Palo Alto, CA, USA). The final loading 

concentration was adjusted to 11 pM following the MiSeq loading 

protocol. The MiSeq reagent kit v3 (Illumina) was used for long 

paired-end reads (2 × 300 bp) sequencing reactions. The sequencing 

data was processed by CLC Genomics Workbench version 5 (CLC 

Bio, Aarhus, Denmark) software. Low-quality sequencing data were 

first trimmed depending on quality scores using PHRED with the 

minimum quality score of 20 and reads with less than 150 bases in 

length were discarded166. The cleaned-up sequencing data were 

processed by merging the paired-end sequence reads using fast 

length adjustment of short reads to obtain complete sequences of the 

chicken scFv libraries167. Sequencing data were further cleaned up 

using PRINSEQ (San Diego State University, San Diego, CA, USA), 

setting the minimum quality score at 20 and read length at 150166. 

EMBOSS Needle 6.5.0.0 (The European Bioinformatics Institute 

(EMBL-EBI), UK) was used to map sequence read in the HCDR3 

region, with a threshold score of 300168. Subsequently, a custom Perl 

script was used to summarize and count sequence reads in 15 sets of 
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phagemid DNA. We merged the read counts across all the panning 

rounds, but for computational and statistical analysis, we only 

counted the reads existing in the phagemid DNA after the fourth bio-

panning round. 
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Clustering analysis 

 

An optimized number of clusters in the merged sequence read 

counts was estimated using the clValid algorithm, to facilitate pattern 

analysis of NGS data for population shifts in antibody clones 

throughout the bio-panning process169. The clValid algorithm 

validated number of clusters by assessing intra-cluster homogeneity 

and inter-cluster separation, and the assessment for each and every 

clustering is represented in the Dunn index169. A higher Dunn index 

indicates better clustering. The ‘Internal’ cluster validation metrics 

were chosen, which consider only the data set and the clustering 

partition, and the intrinsic properties of the data were used to 

evaluate the quality of the clustering results in designated clustering 

algorithms such as hierarchical clustering and k-mean clustering170. 

Unsupervised hierarchical clustering analysis was used to cluster 

HCDR3 sequences according to the number of clusters estimated by 

clValid. Ward’s method was used to measure distances between 

sequence reads based on read counts throughout the bio-panning, 

and a heat map visualizing the sequence read changes in each cluster 

was generated using Gene Pattern v3.9.2 software171. Line charts 

representing the pattern of sequence read changes in each cluster 

across all the bio-panning rounds were then generated as in a 

previous study. 
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Cloning to retrieve scFvs 

 

To rebuild real scFv clones from the virtual HCDR3 sequences in 

the clusters, we performed two-step linker PCR. In the first PCR 

step, primers targeting both LFR1-HCDR3 (LFR1_F primer, 5′-

GTGGCCCAGGCGGCCCTG-3′) and HCDR3-HFR4 fragments 

(HFR4_R primer, 5′-CTGGCCGGCCTGGCCACT-3′) were synthesized, 

based on HCDR3 sequences determined in NGS analysis and 

phagemid DNA obtained after the 4th round of bio-panning. The 

second PCR step linked these two gene fragments into a single scFv 

gene using primers annealing to LFR1 and HFR4 (LFR1_F primer, 5′-

GTGGCCCAGGCGGCCCTG-3′; HFR4_R primer, 5′-

CTGGCCGGCCTGGCCACT-3′). The scFv gene was ligated into the 

pComb3XSS phagemid vector and rescued as scFv-displaying phages, 

as described previously165. To measure the binding reactivity of 

these scFv-displaying phages, we rescued more than 15 clones per 

HCDR3 sequence, and performed phage enzyme immunoassay as 

described earlier. We regarded the clone providing the highest 

optical density at 405 nm as the retrieved clone. 
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Immunization, Construction of Phage-Displayed scFv Library, and 

Bio-Panning 

 

White leghorn chickens were immunized and boosted three times 

with 10 µg of recombinant mouse c-Met-Fc chimera (527-ME; R&D 

systems, Carlsbad, California, United States). The experiment was 

approved by the Ethics Committee of BioPOA, Ltd. (ethical approval 

code: BP-2019-C03-1). One week after the final boosting, total RNA 

was isolated from spleen, bone marrow, and bursa of Fabricius using 

TRIzol Reagent (15596018; Invitrogen), and cDNA was synthesized 

using SuperScript III first-strand cDNA synthesis kit with oligo dT 

priming (18418020; Invitrogen, Carlsbad, California, United States). 

Using this cDNA, a phage-displayed scFv library was prepared as 

described previously172,173. VH and VL genes were amplified from the 

cDNA using specific primer sets utilized for the construction of scFv 

genes. Then, scFv genes were ligated into the pComb3XSS phage 

display vector, which was transfected into E. coli K12 ER2738 cells. 

Phage-displayed scFv libraries were rescued from transfected cells 

after infection with VCSM13 helper phage and overnight culture, and 

then subjected to four rounds of bio-panning using recombinant 

mouse c-Met (50622-M08H, Sino Biological, Beijing, China)-

conjugated magnetic beads (Dynabeads 14302D; Invitrogen). 

Antigen-coated magnetic beads were washed with 0.05% tween in 

phosphate-buffered saline (PBS) once for the first round, three times 

for the second and third rounds, and five times for the fourth round. 

After each round of bio-panning, phagemid DNA was prepared from 

bacterial cell pellets using a Qiaprep Spin Miniprep Kit (27104, 

Qiagen, Hilden, Germany). 

 

 

 

 

 

 

 



 

 １２４ 

Next-Generation Sequencing (NGS) 

 

From five sets of phagemid DNA, short VH and VL gene 

fragments encoding the 3′ part of FR3 and CDR3, and the 5′ part of 

FR4, were amplified using primers designed to hybridize to FR3 and 

FR4 of the chicken VH gene (LFR3: 5 ′ -

CCCTTCACGATTCTCCGGTGCC-3 ′ ; LFR4: 5 ′ -

CTGACCTAGGACGGT CAGGG-3 ′ ; HFR3: 5 ′ -

GGCTGCAGCTGAACAACCTCAGGGCTG-3 ′ ; HFR4: 5 ′ -

GGAGGAGACGA TGACTTCGGTCCCGTGG-3 ′ ). Other gene 

fragments encoding the whole VH and VL genes were also amplified 

using specific primers previously described64. Prior to NGS analysis, 

all amplicon libraries were submitted for a quality control procedure 

on TapeStation 2200 (Agilent Technologies, Santa Clara, California, 

United States). Libraries having a single peak of correct fragment 

length were subjected to NGS analysis using the HiSeq 2500 and 

MiSeq platforms (Illumina, Inc.) for short and whole VH and VL gene 

fragments, respectively. We uploaded the sequence data to NCBI 

(SRA accession number: PRJNA607865).  

To ensure the quality of NGS data, the following pre-processing 

steps were performed. First, all pair-end reads were merged with 

PEAR using the developer ’ s default parameters108. Second, we 

filtered out any reads that were compatible with the following 

description: (1) reads not meeting our minimum quality Phred score, 

(2) reads not having the primer sequence used in the phage-

displayed scFv library construction process, (3) out-of-frame reads, 

and (4) reads without any identifiable CDR3. The reads were then 

collated based on their CDR3 sequences and any CDR3 clonotype 

with read count of less than 2 was discarded. 
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High-Throughput Clone Retrieval and Phage ELISA 

 

The phagemid library from the final bio-panning round was 

transfected into E. coli K12 ER2738 cells, and then subjected to our 

high-throughput clonal retrieval procedure using TrueRepertoire 

(TR) technology, as described previously63.  

The retrieved phage clones were subjected to phage ELISA, as 

described previously with adequate modifications173. Phage clones 

were rescued overnight from the plate and culture supernatants 

containing phage that were diluted with equal volumes of 6% bovine 

serum albumin (BSA) solution in PBS. Phage solutions were then 

added to microtiter wells (3690, Corning life sciences, Corning, New 

York, United States) coated with recombinant mouse c-Met or mouse 

anti-HA antibody (H3663, Merck, Darmstadt, Germany) and blocked 

with BSA. Microtiter plates were incubated for 2 h at 37 °C and 

washed three times with 0.05% Tween in PBS, which is followed by 

3% BSA in PBS containing horseradish peroxidase (HRP)-conjugated 

anti-M13 antibody (11973-MM05, Sino Biological) in addition to each 

well. After incubation and washing as described above, HRP 

substrate solution 2,2 ’-azino-bis(3-ethylbenzothiazoline-6-sulfonic 

acid) (ABTS) (002024, Thermo Fisher Scientific, Waltham, 

Massachusetts, United States) was added to each well. The plate was 

incubated 15 min and the absorbance values of each well were 

measured by a SkanIt microplate reader (Thermo Fisher Scientific) 

with a fast measurement protocol at a wavelength of 405 nm.  

For each clone, the ratio (Relative Absorbance A) of the average 

absorbance of a recombinant mouse c-Met-coated well vs. an anti-

HA antibody-coated well was calculated. The absorbance of an anti-

HA-coated well was used to accommodate variations in the amount 

of phage in each phage clone. We also determined the ratio (Relative 

Absorbance B) of the average absorbance of a BSA-blocked well to 

an anti-HA antibody-coated well. When Relative Absorbance A 

exceeded +3 standard deviation of Relative Absorbance B, we 

designated the phage clone as antigen-reactive.  
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Establishment of the Random forest (RF) Models 

 

Random forest (RF), regularized discriminant analysis (RDA), 

linear discriminant analysis (LDA), support vector machine (SVM), 

naïve bayes (NB), and AdaBoost (ADA) classification trees were 

selected for comparison. Our input data for the training of binder 

prediction models were created using a TR data set consisting of 

antigen reactivity for scFv clones found in TR analysis and the clonal 

abundance of their HCDR3 and LCDR3 clonotypes in five sets of 

phagemid DNA. The caret package for R was used to benchmark 

popular classification algorithms by their accuracy and Cohen ’ s 

kappa value. Each algorithm was evaluated across five repetitions of 

10-fold cross-validations (50 models in total). This meant that, for 

each repetition, the training data set was randomly divided into 10 

parts and each of the 10 models were cross-validated by one unique 

part after being trained on the other nine parts of the training data 

set. No manual tuning was performed during this benchmarking 

phase174. 

To generate binder prediction models for HCDR3 and LCDR3 

clonotypes using a random Forest package, we sampled a proportion 

of the TR data set without replacement to be used as a training data 

set for the RF model. The remaining portion of the TR data set 

served as a validation set to measure the performance of RF 

models175. The following parameters were adjusted to best tune our 

model’s performance: (1) sampling ratio of training data, (2) number 

of variables (mtry) to randomly sample at each node of the decision-

making tree, and (3) number of trees (ntree) to compromise our RF 

model. We then iterated through all combinations of parameters. 

Each combination was used to generate 10 different RF models to 

minimize any biases arising from the training data set not being 

representative of the TR data set. The validation set was then used 

to measure the performance of each RF model to determine optimal 

parameters for the RF. Using the randomForestExplainer package, 

the minimum depth of each variable was calculated, which is 

frequently used as a measure of variable importance to elucidate the 
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decision-making process of the algorithm176. The minimum depth of a 

variable is defined as the distance between the root node and the 

variable’s first appearance at a node of the decision tree. Thus, the 

variable with the smallest mean minimum depth could be regarded as 

the most important variable. To compare the variable importance 

results of the prediction model with actual experimental data, we 

tracked the enrichment pattern by measuring the bio-panning titer 

and clonal diversity change as Shannon’s entropy (SE)177 by following 

each round of bio-panning, as described previously173. 
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Construction of Antigen-Reactive (AR) and Non-Reactive (NR) 

Phage-Displayed scFv Library and Phage ELISA 

 

Forty antigen-reactive (AR) and 10 non-reactive (NR) VH and VL 

genes were chemically synthesized (Twist Bioscience, San Francisco, 

California, United States). Forty AR VH and 40 AR VL genes were 

subjected to linker PCR to generate scFv genes, which were used to 

create the AR phage-displayed scFv library, as described 

previously20. In a parallel experiment, the NR phage-displayed scFv 

library was constructed using 10 NR VH and 10 NR VL genes. After 

a round of bio-panning using recombinant mouse c-Met (50622-

M08H; Sino Biological)-conjugated magnetic beads (Dynabeads 

14302D; Invitrogen) and washing once with 0.05% tween in PBS, 96 

phage clones were randomly rescued from each AR and NR library 

and subjected to phage ELISA, as described above. After phage 

ELISA, the nucleotide sequences of scFv clones were determined by 

Sanger nucleotide sequencing (Macrogen, Seoul, South Korea). 
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5. Future perspectives 
 

Sequence-based prediction of antigen-antibody 

interaction  
 

Immense advances in the field of high-throughput antibody 

repertoire sequencing and screening platform enables the emerging 

of number of novel antibody discovery technology178,179. However, 

ultimate question: predicting and understanding the vocabulary of 

antigen-antibody interaction by its’ amino acid sequence, remain 

challenging problems. To the recent, the most accurate method for 

identifying paratope-epitope interactions is solving the 3D structure 

of antigen-antibody complexes and determining contact amino acids 

residues from each binding partners180. Cryo-electron microscopy 

(cryo-EM), X-ray crystallography and NMR (nuclear magnetic 

resonance) are mostly used methods in analyzing structures of the 

proteins181. From the 3D structure data of antigen-antibody complex, 

several studies have shown that antigen contacting residues are 

mostly existed in CDR region, but non-CDR residues are also 

frequently observed in paratope regions182,183. Also, amino acid 

sequence of the epitopes is indistinguishable from other surface 

exposed non-epitope residue when the counter-part antibody is not 

bound as a complex182,183. To overcome the redundancy and the low-

throughput manner of current approaches in analyzing sequence-

based antigen-antibody interactome, machine learning guided 

computational methods are rapidly advancing.  

Current machine learning based approaches have been 

successful in predicting paratopes184, epitopes185, paratope-epitope 

interaction126,127,186 and antibody structure187. Recent reports have 

showed slight evidence for the possibility of prediction of antibody-

antigen interaction. The antibody repertoire has now established that 

antibody sequence diversity underlies predictable patterns188,189. Also, 

the presence of universal specificity motifs from different antibodies 

was recently identified and suggested by showing that high-affinity 

functional antibodies can be designed by grafting unrelated paratopes 
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190. Further, Akbar et al., showed that structurally identified contact 

residue has a correlation with somatic hypermutation191. This 

suggests that which somatic hypermutation preserves binding motifs 

and how a germline would have evolved their interaction motifs. 

However, without more abundant experimental 3D antibody-antigen 

interactions data, it is impossible to predict the interactions between 

antibody and antigen which cannot be crystallized or for unstructured 

loops of antigens which is generally not existed in structural 

database. To overcome the certain limitations, the area of de novo 

protein design is rapidly growing owing to advances in artificial 

intelligent technologies. In prediction of protein structure, de novo 

folding without structural references or comparative modeling from 

similar template are widely used methods192. The recent approaches 

rely on structural modeling of specific motif of the antigen and 

antibodies, rather than pre-existing paratope-epitope database193. 

However, high-accuracy prediction of antibody structure is 

restricted to framework scaffolds, and requires advanced methods in 

designing hypervariable loop structure in CDR regions194. In summary, 

motif-based prediction of epitope-paratope interactions and 

structural modeling of antibody frameworks are complementarily 

developing in prediction of antigen specific antibody sequences.  
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Machine learning-guided engineering of therapeutic 

antibodies   
 

Therapeutic antibody candidates have to undergo the 

optimization process before entering pre-clinical and clinical studies. 

Assessing immunogenicity, affinity optimization and improving 

physicochemical properties are the three main goals in antibody 

optimization works.  

Many of clinically available antibodies are derived from immune 

B cell repertoires of mice, or humanized mice19,20. However, non-

human antibodies can elicit an immune response, which is known as 

immunogenicity, and high immunogenicity can influence the efficacy 

and safety of the mAb therapeutics19. To minimize or remove the 

immunogenicity of mAbs, engineering non-human sequences by 

substituting the sequence with human Ig germline gene sequence 

used. These approaches are referred to as de-immunization195 and 

humanization196. Assessing immunogenicity of the mAbs is time 

consuming and high-cost process by possessing repetitive and 

arbitrary generation of mutation library followed by screening of 

antibody functionality195. To reduce the erroneous humanization, 

accurate validation of immunogenicity or humanness score is needed. 

Recently, using random forest (RF) algorithm and publicly available 

antibody sequence database, Marks et al., developed machine 

learning based validation method measuring humanness scores197. 

However, the non-human sequences in the database were mostly 

restricted to murine antibody sequence and limitations in the size of 

the training dataset. 

After successful assessment of the immunogenicity of the mAb, 

optimization of the lead antibodies remains multiple challenges, 

including productivity (production yield), solubility, thermostability, 

viscosity, pharmacokinetics31,198. Using in vitro surface display 

techniques guided directed evolution, multiple variants could be 

generated and screened out34, physicochemical property validation of 

the variant antibodies should be conducted against the compounds 

derived from mammalian protein expression system37. Low-
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throughput process including cloning, transfection and repurification 

limits the scale of the variant screening up to 103 clones37. Machine 

learning based prediction of genotype-phenotype relationship has 

been applied to the engineering of multiple types of proteins199. Also, 

the concepts of machine learning guided directed evolution and 

generation of mutagenesis library has long been proposed200,201. 

Romero et al. engineered cytochrome enzymes using Gaussian 

regression models to generate the thermostable variants202 and 

Bedbrook et al. designed the variants library of channelrhodopsin 

protein also utilizing Gaussian regression model203. Mason et al. 

applied the deep learning-based approaches in mammalian cell 

expressed antibody optimization179. Trastuzumab-CDR3 randomized 

libraries were designed with multiple strategies in generating diverse 

training data sets, to prevent the overfitting of the model. Similar 

approaches are expected to be developed in the near future for 

efficient identification of the most druggable lead compounds.  
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Single domain antibodies: next-generation therapeutic 

antibody platform  
 

Back in 1989, stable mouse derived variable heavy chain are 

isolated and showed binding reactivities to the specific antigens204. 

After that observation, single domain antibodies (sdAbs) were 

suggested and studied as a unique class of mAbs204. Moreover, in 

1993, ~ 15 Kda heavy chain only antibodies (HCAbs) was isolated 

from the sera of camels, which is referred to as VHH205. In 1995, ~ 

12 Kda sized HCAbs were also isolated from sharks which belongs to 

cartilaginous fish, and defined as IgNAR (new antigen receptor)206. 

Major advantage of sdAbs is the small size. Compare to full-length 

Igs, small sized sdAbs can penetrate into hidden epitopes in tissues 

or infectious pathogens207. Also, monomeric structure makes sdAbs 

effective building blocks for generating multi -valent and -specific 

antibodies for improvement of therapeutic potency208.  

In next-generation antibody discovery utilizing high-throughput 

antibody repertoire sequencing and analysis, sdAb repertoires has 

multiple advantages. To analyze the full-length Ig, heavy chain and 

light chain genes have to be amplified then subjected into NGS 

analysis48. During that process, low-throughput and high-cost 

single-cell sequencing platform should be employed to retain the 

information of natively paired VH-VL origin209. In contrast, sdAb 

repertoire can be annotated with antigen specificity without pairing 

information, enables the larger depth of the high-throughput analysis. 

Recently, the increasing success with rapid discovery of sdAbs 

makes advances in designing the qualified sdAb library. Fridy et al. 

performed the high-throughput antibody repertoire sequencing 

combined with mass spectrometric (MS) identification of high-affinity 

sdAb, from the immunized llamas210. Shin et al. designed the 

improved sdAb library having smaller diversity but better 

characteristics using autoregressive generative models211. 

Autoregressive generative model was used in synthetic library 

design by learning alignment-free feature of amino acid sequences 

having potential binding capacity to diverse target antigens. By 
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utilizing qualified sdAb library and new machine learning algorithms, 

it is expected to generate a large panel of antibody sequences 

targeting inaccessible region by the previous approaches.  
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초록 

 

연구의 배경: 단일 클론 항체 (monoclonal antibody, mAb) 는 B 

세포에서 생산되어 표적 항원에 특이적으로 결합하는 폴리펩타이드 

복합체 이다. 분자 및 세포 클로닝 기술의 발전으로 재조합 단일 클론 

항체를 대용량으로 생산하는것이 가능해졌으며, 이를 바탕으로 다양한 

연구 및 임상 분야에서의 활용이 확대되고 있다. 또한 치료용 항체를 

효율적으로 발굴하고 개발하는 기술에 대한 비약적인 발전이 이루어졌다. 

유전자 서열 분석, 표현형 스크리닝, 컴퓨팅 기반 분석법 분야에서 

이루어진 고집적 방법론 (high-throughput methodology) 의 발전과 

이의 응용을 통해, 비실험적 방법을 통해 항원 반응성 항체 패널을 

생산하는것이 가능해졌다.  

연구의 목표: 본 박사 학위 논문은 고집적 항체 레퍼토어 시퀀싱 

(high-throughput antibody repertoire sequencing) 과 생물정보학 

(bioinformatics) 기법을 활용하여 신규한 (novel) 차세대 항체 발굴법 

(next-generation antibody discovery method) 을 개발하는것을 목표로 

하고 있다. 본 연구를 통해 in vitro display 항체 라이브러리를 제작하기 

위한 신규 프로토콜 및 기계 학습을 기반으로한 항체 발굴법을 개발 

하였다.  

Chapter 3: 항체 레퍼토어를 증폭하는 과정에서, 다수의 생식세포 

면역 글로불린 유전자 (germline immunoglobulin gene) 특이적 

프라이머 사용에 의해 발생하는 증폭 편차 (amplification bias) 를 

최소화 하는 방법론에 대해 기술하였다. 유니버셜 (universal) 

프라이머를 사용한 다중 사이클 증폭 (multi-cycle amplification) 법이 

사용되었으며, 고집적 항체 레퍼토어 시퀀싱을 통해, 클론 다양성 

(clonal diversity) 및 면역 레퍼토어 재구성도 (immune repertoire 

reproducibility) 를 생물정보학적 기법으로 측정하여 신규 방법론에 

대한 검증을 수행하였다. 본 연구의 연구결과는 다음의 학술지에 출판 

되었다: Journal of Immunological Methods (2021). doi: 

10.1016/j.jim.2021. 113089. 

Chapter 4: 기계 학습 기반의 항체 발굴법 개발에 대해 기술하였다. 

전통적 콜로니 스크리닝 (colony screening) 방법에서는, 클론 빈도 

(clonal abundance) 가 낮은 클론을 발굴 하거나 선택압 (selective 

pressure) 이 부여되는 과정에서, p8 표면 단백질의 비 특이적 항원 
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특이성을 제거할 수 없다. 이러한 제한점을 극복하기 위해서 항원 

결합능 및 바이오패닝 에서의 클론 빈도가 측정 되어있는 고집적 항체 

서열 데이터를 대상으로 지도 학습 알고리즘을 적용하였다. 랜덤 

포레스트 (random forest, RF) 알고리즘을 적용하여 항원 특이적 항체 

클론을 예측하였으며, 시험관 내 스크리닝을 통해 항원 특이성을 

검증하였다. 본 연구의 연구 결과는 다음의 학술지에 출판되었다: 1) 

Experimental & Molecular Medicine (2017). doi:0.1038/emm.2017.22., 

2) Biomolecule (2020). doi:10.3390/biom10030421. 

결론: 전통적 항체 발굴 기술과 고집적 항체 레퍼토어 시퀀싱 

기술을 융합함으로써, 기존 방법론의 다양한 한계점을 개선할 수 있었다. 

면역 글로불린 생식세포 유전자 특이적 프라이머를 사용한 다중 사이클 

증폭은 클론 빈도 및 다양성에 왜곡을 유도 하였으나, 유니버셜 

프라이머를 사용한 증폭법을 통해 높은 효율로 레퍼토어 왜곡을 

개선시킬 수 있음을 관찰할 수 있었다. RF 모델은 다양한 클론 증폭 

패턴 (enrichment pattern) 을 가지는 항원 반응성 항체 서열을 

생성하였다. 이를 통해 항원에 특이적으로 결합하는 클론이 단계적으로 

증폭되는 것이 아니라 초기 및 후기의 다수의 선별 단계 (selection 

round) 에 의존함을 확인할 수 있었으며, 바이오패닝 에서의 클론 

증폭에 대한 새로운 해석을 제시하였다. 또한 지도 학습을 기반으로 

발굴 된 클론들에서, 전통적 콜로니 스크리닝 방법과 대비하여 더 높은 

서열 다양성을 관찰할 수 있었다.   

 

Keyword: Antibody discovery, immunoglobulin sequencing, B cell 

receptor repertoire, high-throughput method, machine learning 
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