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Abstract

Background: Monoclonal antibodies (mAbs) are produced by B
cells and specifically binds to target antigens. Technical advances in
molecular and cellular cloning made it possible to purify recombinant
mAbs in a large scale, enhancing the multiple research area and
potential for their clinical application. Since the importance of
therapeutic mAbs is increasing, mAbs have become the predominant
drug classes for various diseases over the past decades. During that
time, immense technological advances have made the discovery and
development of mAb therapeutics more efficient. Owing to advances
in high—throughput methodology in genomic sequencing, phenotype
screening, and computational data analysis, it is conceivable to
generate the panel of antibodies with annotated characteristics
without experiments.

Thesis objective: This thesis aims to develop the next-
generation antibody discovery methods utilizing high-throughput
antibody repertoire sequencing and bioinformatics analysis. I
developed novel methods for construction of in vitro display antibody
library, and machine learning based antibody discovery.

In chapter 3, [ described a new method for generating
immunoglobulin  (Ig) gene repertoire, which minimizes the
amplification bias originated from a large number of primers
targeting diverse Ig germline genes. Universal primer—based
amplification method was employed in generating Ig gene repertoire
then validated by high—throughput antibody repertoire sequencing, in
the aspect of clonal diversity and immune repertoire reproducibility.
A result of this research work is published in  ‘Journal of
Immunological Methods (2021). doi: 10.1016/;.jim.2021. 113089’

In chapter 4, I described a novel machine learning based
antibody discovery method. In conventional colony screening
approach, it is impossible to identify antigen specific binders having
low clonal abundance, or hindered by non-specific phage particles

having antigen reactivity on p8 coat protein. To overcome the
§
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limitations, I applied the supervised learning algorithm on high-
throughput sequencing data annotated with binding property and
clonal frequency through bio—panning. NGS analysis was performed
to generate large number of antibody sequences annotated with its’
clonal frequency at each selection round of the bio—panning. By using
random forest (RF) algorithm, antigen reactive binders were
predicted and validated with in vitro screening experiment. A result
of this research work is published in ‘Experimental & Molecular
Medicine (2017). doi:0.1038/emm.2017.22" and  ‘Biomolecule
(2020). do0i:10.3390/biom10030421°

Conclusion: By combining conventional antibody discovery
techniques and high-throughput antibody repertoire sequencing, it
was able to make advances in multiple attributes of the previous
methodology. Multi-cycle amplification with Ig germline gene
specific primers showed the high level of repertoire distortion, but
could be improved by employing wuniversal primer-based
amplification method. RF model generates the large number of
antigen reactive antibody sequences having various clonal
enrichment pattern. This result offers the new insight in interpreting
clonal enrichment process, frequency of antigen specific binder does
not increase gradually but depends on the multiple selection rounds.
Supervised learning-based method also provides the more diverse
antigen specific clonotypes than conventional antibody discovery

methods.

Keyword: Antibody discovery, immunoglobulin sequencing, B cell
receptor repertoire, high—throughput method, machine learning
Student Number: 2015-22041
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1. Introduction

1.1. Antibody and immunoglobulin repertoire

Antibody Structure and Function

B cells play diverse role in immune system of diverse species by
recognizing a broad array of antigen via membrane expressed B cell
receptors (BCR) and secreted form of the BCR, antibodies’.
Antibodies are multimeric glycoproteins consists of two copies of
heavy chain (about 50 kDa) and light chain (about 25 kDa). These
two types of chain share the functionality on highly polymorphic
domain, variable region (Vi for heavy chain and Vi for light chain),
which recognize the immense number of target antigen. Another
functional domain of antibody which having conserved sequence,
constant region determines the antibody’s architecture and mediates
the interactions with effector molecules to elicit unique functionality?
(Figure 1). After the identification of the antibody structure,
important findings have been made in understanding the functions of
antibodies in B cell development and humoral immune responses.
The genes of Vg and V. domain are having unique feature which is
highly variable in somatic cells, compare to other proteins in genome.
Sequence diversity of the variable domain is not equivalently
distributed, but focused in specific regions’. Both the Vu and VL
domains contain three hypervariable regions neighboring the
relatively conserved scaffold, framework regions (Figure 2). All six
hypervariable regions, referred to as the complementarity
determining regions (CDRs), are forming loop structure and
conformationally interact to form the antigen—-binding site which is
determined by the lowest energy states along with antigen. From
the six CDRs, CDR3 has been proven to be the most critical regions
which affect the antigen specificity®. Previous studies showed that
artificially varying other regions while remaining identical CDR3 can

maintain the antigen specificity in the variants®®. .
¥ ) -
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Figure 1. The structure of an antibody and functional domains. The
Fab region is responsible of recognizing the various antigen, while
the Fc region mediates the effector functions by interact with Fc
receptors of the effector cells or activating the complement cascades.
Class switch recombination further diversifies the architecture and

function of the antibodies.
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Figure 2. Hypervariable domain of the antibody. The Fab region is
subdivided into two domains originated from distinct polypeptide
chain of the antibody, variable heavy chain (Vi) and variable light
chain (V1). VH and VL form the fragment of the variability (Fv) which
is consisted of sheet shaped region framework regions (FRs) which
maintains the scaffold of the antibody, and loop shaped
complementary determining regions (CDRs) which responsible of

recognizing the various antigen.
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Immunoglobulin repertoire

The size of the heavy chain germline locus’ is in the order of
megabases, and several exons are interspaced by extensive intronic
regions. The coding regions of variable domain in the heavy and light
chains are composed of multiple gene segments include a variable
(V) and joining (J). The heavy chain also contains a diversity (D)
segment, surrounded by the V and J gene segments’ (Figure 3).
During early B cell development in the bone marrow, a D and a J
gene segment are rearranged to create a continuous exon, and a V
gene segment recombines with the DJ complex. There are two light
chain loci, kappa (k) and lambda (A). The rearrangement of the light
chain gene segments occurs after a successful assembly of variable
heavy chain gene segments. This recombination process is mainly
mediated by the recombinases RAGl and RAG2". V(D)J
recombination is accompanied by insertions and deletions®. The
insertion process employees several enzymes. RAGI1/2 protein
generates semirandom P-nucleotides, and terminal deoxynucleotdyl
transferase (TdT) adds non-templated N-nucleotides’. As a result of
the error—-prone process, only about 1/3 of rearrangements leading
to a functional V(D)J recombination. In the light chain, by the
presence of two candidate isotypes, and failure to rearrange one of
them on both side of the chromosomes can be remunerated by a
successful rearrangement of the other. If all the rearrangement goes
unsuccessful, the cell goes through apoptosis progress’.

After the recombination process in genomic DNA, and upon
receiving appropriate activation signals, the successfully recombined
V(D)J region splices with the constant (C) gene, in the downstream of
the J gene segments. In the heavy chain locus, C gene named mu Cu,
Cd, Cy, Ce and Ca are translate into IgD, IgG, IgE and IgA
immunoglobulin classes, respectively. The enzyme activation induced
cytidine deaminase (AID) triggers the class switch recombination
during the germinal center reaction which transduce the activation

signal either to the naive and memory B cell. By that, the antigen

specificity can be linked with the most effective functions’. Along _
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with class switch events, final diversification process is delivered in
variable region by antigen dependent manner which take place in
germinal center. Activated germinal center B cells, present a high
level of transcription, undergo somatic hypermutation (SHM) process
which 1s mediated by AID protein. By SHM, the mutational rate of V
regions is raised to 10°~107° / base pair compared to 10-9 in the
other regions of the genome!“''. SHM is based on the DNA repair
machinery carries multiple mutations to recover the conversion of
cytosine to uridine by deamination’”. SHM is the mechanism of affinity
maturation of the antibodies. Favorable mutations will lead to
receptors having improved affinity for the exposed antigen. These B
cells carries a survival advantage in clonal expansion and selection
to proceed the lateral stage of the B cell development.

AID can engage any nucleotides spanning the whole V(D)J region,
but SHM are predominantly detected in the CDRs, which have a
major function in antigen recognition'!. The causes of intrinsic
preferential behavior of the AID are not fully elucidated, selection
process can result the certain phenomenon'?. Throughout the entire
B cell development, combinatorial and junctional diversity yield a
repertoire size of about 5 x 10%?, further increases of diversity could
be achieved by SHM events. As about 2 x 10' lymphocytes are
existed in the human body, the theoretical diversity exceed the
individual’s diversity capacity'® (Figure 4).

The last two exons of the constant gene anchor the antibody
molecules into the B cell membrane, and translated during the whole
B cell differentiation stages. This intermediate cell type 1is
characterized by expression of surface receptors and secreted
antibodies simultaneously. and secretion by alternative splicing of a
secretory signal domain eliminating the membrane anchoring exons
enables the production of shorter form of secreted B cell receptors.
Specific cell type plasmablasts secrete antibodies at high levels then
terminally differentiate into plasma cells, which lost the surface

expression maintaining high level of antibody expression'* (Figure 5).
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Figure 3. Germline immunoglobulin gene locus. The immunoglobulin
gene segments are organized into three genetic loci— kappa (x),
lambda (A) and heavy (H) chain. Each locus has a multiple gene
segments as variable (V), diversity (D) and joining (J) to be

recombined to generate genetic diversity during the early B cell

development.
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Figure 4. Generation of immunoglobulin repertoire diversity.
Recombining gene segments by RAG1/2 protein, and pairing of heavy
and light chain, combinatorial diversity is generated (2 x 10°). During
the process, additional diversity, junctional diversity is introduced
with deletion and addition of the nucleotides by RAG1/2 and TdT
enzyme (5 x 10"). After antigen exposure, SHM is introduced which

resulting in additional diversity in immunoglobulin repertoire.
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Figure 5. Changes in B cell receptor repertoire following
developmental stages of the B cells. Repertoire diversity is
generated from the early stage of the B cell maturation by V(D)J
recombination along with chain pairing combination in genomic DNA
of the pre-B cells. After leaving bone marrow for peripheral
maturation of the B cells, naive repertoire is formed to take charge
of primary immune responses. After antigen exposure, B cells
entered the secondary lymphoid organs including spleen or lymph
nodes, facing the further diversification either in variable region and
constant region, mediated by AID. Clonally expanded B cells
differentiate into memory B cells for secondary immune responses,
and plasma cell lineages to elicit systemic humoral responses

mediated by secreted antibodies.
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1.2. Antibody therapeutics

Monoclonal antibodies (mAbs) and related biotherapeutics

Succeeding the discovery of antibodies and their unique function
in human immune system, the first concept of the targeted therapy
‘magic bullet’ conceived by Paul Ehrlich in the early 1900’s'®,
became a real-world idea. The history of therapeutic monoclonal
antibodies (mAbs) has been developed following hybridoma
technology by Kohler and Milstein in 1970°s!. Hybridoma is
generated by fusing non-secretin g myeloma cells with antibody
secreting plasma cells'’. The first monoclonal antibody (mAb)
approved for clinical use was Muromonab-CD3 (Orthoclone OKT3) in
1986'. The mechanism of action is targeting CD3 co-stimulatory
receptor on T cells to desensitize the acute rejection in organ
transplantation. Following successful development of therapeutic
mAbs, growth of the mAbs market has exploded for the last decades,
forecasted to increasing to $125 billion and $ 300 billion in 2020 and
2025 respectively!”. Globally, about 570 mAbs have been studied in
clinical trials for therapeutic usage, and 121 therapeutic mAbs have
been marked by the United States Food and Drug Administration (US
FDA), 1997-2020%.

Over the native immunoglobulin molecule as mAb therapeutics,

related therapeutic product field continues to expand as antibody

drug conjugates (ADCs) and antibody derivative molecules (Figure 6).

By conjugating cytotoxic drug or enzymatic payload to mAbs, it is
conceivable to achieve therapeutic efficacy and target specificity at
the same time®'. Recombinant bi-specific antibodies can engage
distinct targets to induce synergistic effect of multiple mechanisms
of actions. Also, physical linking of target cells or molecules is
possible using bi-specific antibodies. The bispecific T cell engager
(BiTE), can target pathogenic cells such as tumor, by bringing T cells
to efficiently localize the cytotoxic effect?”. Other breakthrough
application of mAb combined with cellular therapy, chimeric antigen

receptor (CAR)-T cell therapy became an advancement in cancer
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treatment®®. CAR-T is generated by genetical engineering of T cells
to express a synthetic receptor such as binding domain of the mAb
followed by cellular expansion to be infused into the patient's body to
attack pathologic targets. CAR-T targeting CD19 target showed
dramatic clinical response and high rates of complete remission have
been observed in the setting of B cell malignancies, acute
lymphoblastic leukemia and diffuse large B-cell lymphoma, resulting
in four FDA approvals®!. In 2020, 191 active pre-clinical and clinical
trials were directed at CD19 to improve the efficacy and safety®.
Also, other challenges are ongoing to develop CAR-T cell therapy to
address “off-the-shelf” allogeneic therapy, engineering strategies
and aiming next-generation targets, BCMA, CD20, CD22 and HERZ2

to overcome the limitations and resistances?® 2,
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Figure 6. Monoclonal antibody and related biotherapeutics. By
targeting various systems in pathogenesis, it is conceivable to
conduct targeted therapy using mAb and related biotherapeutics. By
combining other drug classes, antibody—drug conjugates (ADC),
which carries traditional small molecule drugs as a payload in the
antibody scaffold, and chimeric antigen receptor T cell (CAR-T) and
bispecific T cell engager (BiTE) platform, have been showing

remarkable clinical responses compare to native form of the mADbs.

.
18 % A—T 2T

T



Developmental process of antibody therapeutics

Since the mAb market value has been rapidly growing and
proving the therapeutic potential in multiple disease area, myriad
number of academic and industrial competitors started to discover
therapeutic targets and establish advanced technologies in antibody
drug development. The conventional development cycle of an
antibody discovery campaign can be subdivided into distinct steps. 1)
candidate discovery, 2) lead optimization, 3) pre-clinical
development, and 4) clinical trials®®. (Figure 7) After identification of
target—specific antibodies, initial candidates then enter the series of
engineering procedure to improve their antigen binding properties
(affinity, specificity, cross—species reactivity) and druggabilities
(physicochemical properties which 1s translated into
thermal/chemical stability, aggregation propensity, productivity,
solubility, solubility, and immunogenicity)®!. Antibody discovery and
engineering stage is of critical importance for a poor metric of
sequence derived biophysical property can lead to failure of

downstream development process'?*.
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Figure 7. General contemplational process in development of

antibody therapeutics. The first step in antibody therapeutics

development is generation of target specific binders and meta data of

the antibody characterization. In the parallel procedure, MOA study is

essential for the further clinical development stages.
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1.3. Methodology: antibody discovery and engineering

Conventional antibody discovery and engineering methods

Back in 1975, Georges J. F. Kohler and César Milstein
established a method to generate hybridoma cells by fusion of
immortalized B cells and myeloma cells. Hybridoma cells originated

from an immunized organism could be used in selection of antibody

secreting properties against the specific antigen used in immunization.

After selection, antigen specific clones could be entered the scale-up
process to generate large amount of antibody molecules®. Although,
the hybridoma technology has technical limitations such as laborious,
low efficient limiting dilution subcloning process and intrinsic
limitation, immunogenicity, which could be unsafe in therapeutic
usage. To overcome the certain limitations of the hybridoma
technology, in vitro based antibody discovery methods have been
developed.

By harvesting genomic materials from the living organ having
adaptive immune system, it is possible to reconstitute the antibody
repertoire in vitro by cloning immunoglobulin genes into certain
antibody display systems. The concept of antibody display is
consisted of several key elements. (1) Construction of antibody
library carrying the diversity at the genotypic level, (2) linking
genotype to phenotype by utilizing in vitro display system and (3)
applying selective pressure to screen out antigen specific binders®.
Various type of in vitro display libraries can be generated from a
variety of hosts for adequate purposes. Naive libraries are not biased
towards the specific antigen stimulation so that carries higher
diversity in repertoire. In contrast, immune libraries from an
immunized (or infected) are less diverse, but having a significant
level of enrichment in antigen specific binders. To complement the
limitations of each libraries, synthetic and semisynthetic libraries are
developed for improvement of the library features®.

The first in vitro display system 1is translated by phage play
platform (Figure 8). The finding that recombinant peptides and
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proteins can be expressed upon fusion with the coat proteins
resulting in display of the intended molecules on the surface of
filamentous bacteriophages®. With the antibody displayed on the
surface of the phage, the displayed antibodies can bind to an
immobilized antigen enabling the selection of antigen specific clones.
After washing out non-binding phage particles, antigen specific
phage particles are eluted identified by phagemid sequencing. The
major limitation of phage display platform is that the identified
antibody clones enter the mammalian expression system which
carries post—translational modification which could affect the
expression level or even in antigen binding properties®’. Despite the
certain limitations, due to its’ robustness and effectiveness, 9 mAbs
are approved on the market and more than 20 phage-display derived
mAbs are in late-stage clinical trials'®*®,

Eric Boder and Dane Wittrup suggested the yeast display
platform to overcome the limitations of the phage display system in
1997%. Yeast (Saccharomyces cerevisiae), as a eukaryotic organism,
present the post—translational modifications, protein folding, and
secretory machinery similar to mammalian system. By cloning of
immunoglobulin genes into a yeast expression plasmid and
transformed to generate antibody libraries, slightly smaller than
phage, of 107 to 107 diversity®, it is conceivable to fusing antibodies

to the AgaZ2p protein, similar to phage display system.
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Transgenic humanized animal platform

While the hybridoma, in vitro display technologies represented a
certain advance in development of antibody therapeutics, the
candidate originated from non—human organism eventually led to high
immunogenicity. To overcome the limitations, generation of chimeric
and humanized sequence of antibodies are developed*'. Chimeric
antibodies are consisted of a non—human Fab with a human Fc region
and humanized antibodies are generated by grafting CDRs of the
antigen specific non—human antibodies to human framework scaffold.
which graft murine'!. Bur during the process, binding properties of
the original clones could be modified resulting in further engineering
of binding affinity which is lagging the developmental process.

To improve the technologies generating fully human antibodies,
the demonstrations that human immunoglobulin gene loci could be
introduced into the mouse genome*?. These efforts resulted in the
first fully human transgenic mouse model, XenoMouse® and HuMab-
Mouse® and have been followed by a series of, humanized animals*®”
% The groundbreaking ability of these platform to understand non-
human immune system and human antibody repertoire has
revolutionized biotechnology by providing a diverse source of fully
human antibodies. Also, fully humanized antibodies derived from
these platforms are taking a place in clinical wusage and

development?®.
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Third generation method: deep mining of antibody repertoire by

next—generation sequencing

With tremendous advances in antibody discovery and engineering
platforms are emerged, screening of antibodies under high-
throughput manner is the most key and fundamental parts in antibody
drug development. Sanger sequencing is commonly used at each of
technologies reviewed in the previous section which could limit the
scale and throughput of the antibody discovery platform. Even the
phage display platform which leverages the most diverse antibody
repertoire in selective procedure, isolation of individual phagemids
from pools is limited to sequencing a few hundred to thousand clones
generally. Since phage display gives an output of up to ~10°
sequences, the use of high—throughput sequencing (HTS) or next-
generation sequencing (NGS) becomes essential to interrogate the
entire sequence diversity. Recent advances in high-throughput DNA
sequencing technologies over the last decade has led to a dramatic
reduction in the cost of sequencing and has revolutionized the
development of the computational methods in immunobiology®’. By
combining bioinformatic tools analyzing clonal selection procedure, it
is conceivable to identify the antigen specific antibodies without
experimental procedures’®.

Not only in analyzing in vitro display repertoire and selection
procedure, the NGS analysis has enabled comprehensive
characterization of the B cell receptor (BCR) landscape at various
aspects’ (Figure 9). Large-scale computational structural modeling
has revealed the correlation of the sequence and structural between
naive and antigen—experienced antibody repertoires®. NGS-aided
profiling of the BCR repertoire of multiple diseases such as infectious
disease, cancer and autoimmune disease can provide the
comprehensive understanding in antibody mediated pathogenesis,
which could be directly applied to develop the therapeutics and
diagnostics.

Recently, by analyzing shaping of the B cell response in HIV-

infected individuals, Jardine et al. has developed the engineered
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immunogen that could target B cells that express the germline
clonotypes originated from a particular broadly neutralizing
antibodies (bNAbs) class®!. In the case of coronavirus disease—19
(COVID-19), Kim et al. have identified the stereotypic neutralizing
antibody against SARS-CoV-2 in healthy individuals and COVID-19
patients. They isolated SARS-CoV-2 spike protein receptor binding
domain (RBD)-specific clonotypes composed of immunoglobulin
heavy variable 3-53 (IGHV3-53) or IGHV3-66 and immunoglobulin
heavy joining 6 (IGHJ6) genes in COVID-19 patients. These
clonotypes were also detected in more than half of the heathy
cohorts, which provide the evidence of the pre—existing neutralizing
antibodies in naive BCR repertoire®®. By analyzing BCR repertoire of
the cancer patients who received the immune checkpoint inhibitor
(ICDand showed the clinical response, highly convergent antibody
repertoire was detected and shared between the multiple patients™.
A recombinant antibody which reconstituted from the convergent
BCR sequences were treated with ICI drug as a combination therapy,
showed improved therapeutic efficacy compared to the single
treatment of the ICI drug’. Further, disease types that are not
deeply studied in the related mechanism of the adaptive immunity,
including neurodegenerative disease, became emerging targets in

BCR repertoire profiling studies.
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2. Thesis objective

This thesis aims to develop the novel next-generation
antibody discovery method by combining phage
display, immunoglobulin sequencing and high-
throughput clone retrieval method.

Improving conventional phage display library construction method

To construct antibody libraries from B cells, singleplex or
multiplex PCR amplification were conducted using primers targeting
multiple immunoglobulin genes. However, during this process, the B
cell receptor (BCR) repertoire is distorted due to interactions
between multiple target genes and primers. To overcome the
conventional limitations, [ devised new way of library construction

method which minimize the Ig gene amplification bias.

Identification of antigen specific antibodies using immunoglobulin
sequencing data derived from biopanning, and high—throughput clone
retrieval method

In conventional phage display and biopanning methods, it is
known that the critical drawback of the method is extremely low
binder screening efficiency. Utilizing phage enzyme-linked
immunoassay (ELISA) and Fluorescence-activated Cell Sorting FACS
resulting in 10?7 screening scales from 10°7'! diversity of the initial
repertoire. To fully take advantage from hypervariable antibody
repertoire, we generate in siico sequence data annotated with
binding property. Supervised machine learning was employed to
annotation of the binding property along with experimental screening

data obtained from high—throughput clone retrieval method.
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3. Establishment of minimally biased phage
display library construction method for
antibody discovery

This i1s an author produced adaptation of a peer reviewed article

published in

Journal of Immunological Methods (2021). doi: 10.1016/).jim.2021.
113089.

[Lee Y', Yoo DK", Noh J*, Ju S, Lee E, Lee H, Kwon S & Chung J]

* These authors contributed equally.

3.1. Abstract

Immune hosts are valuable sources for antibody discovery. To
construct antibody libraries from B cells, singleplex or multiplex PCR
amplification were conducted using primers targeting multiple
immunoglobulin genes. However, during this process, the B cell
receptor (BCR) repertoire is distorted due to interactions between
multiple target genes and primers. To minimize this alternation, we
devised a new method for harvesting immunoglobulin genes and
tested its performance in rabbit VH and VK genes. Double-stranded
cDNA was synthesized using primers containing V/J gene-specific
and universal sequence parts from B-cell RNA. VH and VK gene
libraries were obtained through subsequent PCR amplification using
primers with universal sequences. Next—-generation sequencing
analysis confirmed that universal primer PCR libraries had more
diverse VH and VK gene repertoires, more clonotypes retrieved from
the BCR repertoire of RNA samples, and a higher relative frequency
correlation than conventional singleplex or multiplex gene-specific

primer libraries.
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3.2. Introduction

Immunized or infected organisms are great sources for antibody
discovery as the antigen—dependent clonal selection and expansion

1

of B cells occurs i vivo . Antibody display libraries have been

constructed from a wide variety of species possessing a humoral

55-58

immune system including humans , mice °Y, rabbits %9 cow %2,

6364 and sharks %°. To take full advantage of the indigenous

chickens
m vivo system, it is essential to construct an antibody library that
accurately reproduces the host B cell receptor (BCR) repertoire.

Due to the rapid advances of next-generation sequencing (NGS)
technologies, the germline variants of immunoglobulin (Ig) genes
have been identified in multiple species, leading to the successful

% The typical structure of Ig

design of gene amplification primers
genes contains multiple variable (V), diversity, and joining (J) gene
segments for heavy chains or V and J gene segments for light chains.
Therefore, multiple primer sets have been designed to cover the
entire BCR repertoire in the construction of an antibody library.
Conventionally, Ig genes can be amplified using multiple primers
with either singleplex or multiplex amplification. In singleplex
amplification, every set of forward and reverse primers is employed
for each individual polymerase chain reaction (PCR). Then, the
amplicons from each PCR are pooled. In multiplex amplification,
library construction is conducted in a single PCR reaction using a
mixture of all the forward and reverse primers, which enables the
handling of multiple samples in a more high—-throughput manner. In
addition, multiplex amplification is unavoidable when the quantity of
genomic materials 1s limited. However, cross—priming of primers to
unintended immunoglobulin genes during multiplex amplification can
skew the clonal distribution °"%. Furthermore, multiplex amplification
has more challenges such as cross oligonucleotide dimerization,
different primer annealing temperatures, and preferential
amplification of specific targets caused by steric interference among

69-71

multiple primers . Despite these explicit limitations in precisely

replicating the BCR repertoire, antibody display libraries have been
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constructed using Ig gene sequence-specific primers 072872779

However, the extent of the bias introduced in these libraries has not
been studied in detail.

To reduce the bias introduced during the PCR amplification of Ig
genes using sequence-specific primers, we devised and tested a new
way to harvest Ig genes. First, double—stranded cDNA was prepared
using primers containing the Ig gene—specific sequence and universal
sequence parts from RNA samples of rabbit B cells. Then, heavy
chain variable region (Vi) and kappa light chain variable region (Vk)
genes were amplified using universal primers through PCR. NGS
analysis confirmed that the Vu and Vk gene repertoires are more
diverse in these libraries. In addition, a higher number of clonotypes
were retrieved from RNA samples with a higher correlation of
relative frequency than conventional singleplex or multiplex libraries

using gene-specific primers (Figure 10).
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3.3. Results

Construction of antibody libraries

We devised a new way of harvesting Vg and Vk genes (Figure 1).
First, RNA was isolated from spleen, bone marrow and peripheral
blood mononuclear cells of a rabbit and subjected to reverse
transcription reactions with primers containing (1) a J gene—specific
sequence, (2) a S7I restriction site or linker, (3) a unique molecular
identifier (UMI) barcode for the precise error correction *, and (4) a
partial reverse Illumina adaptor (P7). After the reverse transcription
reaction, the second strand cDNA was synthesized with multiple
forward primers encoding (1) an Illumina adaptor (P5), (2) a V gene—
specific region, and (3) a SfI restriction site or linker. Then, the
double-stranded cDNA was subjected to PCR amplification with
universal primers targeting the conserved regions of the templates
(P5, P7). Thereafter, we confirmed the successful construction of the
single chain variable-fragment (scFv) gene library through overlap
extension PCR using these amplified Vi and Vi genes (Figure 11).

In parallel experiments, conventional Vi and Vi libraries were
prepared from the same RNA sample through both singleplex and
multiplex amplification using gene-specific primer sets, which were
rationally designed from the international ImMunoGeneTics

1 8. As a result,

information system (IMGT) database by Peng et a
three Vy libraries (singleplex PCR using universal primers, singleplex
PCR using gene-specific primers, and multiplex PCR using gene-
specific primers) and three Vi libraries were prepared then
subjected to NGS analysis for comparative evaluation using the
reference data. The reference data which accurately reproduce the
Vyu and Vk repertoire in the RNA sample were generated under UMI-
based error correction (Table 1), which has been widely used in BCR

repertoire analysis 2784,
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Figure 11. Construction of scFv library via overlap extension PCR.
(a) Construction of scFv gene through overlap extension PCR
amplification. The sequence of the primers used in overlap extension
PCR are listed in supplementary table 3. (b) Linker adapter primer
was designed to avoid intramolecular annealing (considered
sequence regions are highlighted as dotted yellow boxes) while
sharing similar melting temperature of amplification primers targeting
Sfil restriction site. (c) A representative 1% agarose gel
electrophoresis showing scFv product after overlap extension PCR
for scFv (left panel). Concentration of the linker adapter primer used

in PCR reaction was optimized (right panel).
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Table 1. Statistics for the preprocessing results of the NGS data. In this

research, 8 samples were prepared and NGS data were constructed. Heavy

chain and kappa chain of rabbit B cell receptor (BCR) transcript were

amplified with different methodologies;

singleplex, multiplex,

and the

alternative method that we propose in the article. Other libraries of heavy

and kappa chain were prepared, for the construction of reference libraries

which were error—corrected with UMI processing.

Unique
. functi 1
Sample name Raw reads Functional reads unctiona
reads
(clones)
Heavy_singleplex 3,269,549 1,430,067 170,172
Heavy_multiplex 3,634,768 1,483,354 164,323
Heavy_alternative 2,055,213 446,602 109,047
Heavy_reference 2,394,909 75,740 56,483
Kappa_singleplex 3,354,238 769,814 100,644
Kappa_multiplex 3,411,854 959,708 116,297
Kappa_alternative 3,028,775 1,090,895 150,884
Kappa_reference 2,213,801 68,060 40,885
b o ’ I;
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Universal PCR primer libraries achieved higher diversity

We determine the diversity of Vuy and Vk libraries by Hill
numbers, which have been widely used in BCR repertoire analysis *°~
8 Hill numbers (gD) are the integration of diversity indices differing

by an exponent q (g = 0), defined as
1

5 1-a
D= (Z Pa‘q)
i=1

where S is the whole number of unique Ig clonotype species and
pi is the frequency of regarding species. We used Hill numbers of q =
0, 1, and 2, which represent species richness, Shannon diversity, and
Simpson diversity, respectively, in the quantification of the diversity
of the libraries *.

Species richness is the number of different sequence
components without considering their frequencies. Because species
richness is highly sensitive to sample size “°, balancing NGS
throughput among libraries is a prerequisite for a fair comparison. To
normalize the NGS throughput of the libraries, the sample coverage
of individual NGS data was calculated (Figure 12a). Sample coverage
is defined as the proportion of Ig sequences covered by a specific
NGS throughput. In addition, interpolate and extrapolate estimates
for the sample coverage can be calculated as varying NGS
throughput. We selected a NGS throughput where the sample
coverage of the libraries equals each other: 83.8% sample coverage
in Vi, and 91.5 % sample coverage in Vx (Figure 12a). Then, the
unique sequence component was defined at the clonotype level as
sequences containing the same V and J gene and showing identical
amino acid sequences at the complementary determining region 1, 2,
and 3 (CDRI, 2, and 3). At the level of clonotype, species richness
values were higher in universal PCR primer libraries (Vu, 1.62-fold;
Vk, 2.27-fold) than singleplex and multiplex gene-specific PCR
primer libraries (Vy, 1.58-fold; Vi, 2.06-fold) (Figure 12b).

Shannon diversity and Simpson diversity weight the frequency of

each sequence component and can be interpreted as the number of
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typical clonotypes with moderate clonotype frequency and the
number of dominant clonotypes with high clonotype frequency,
respectively. Shannon diversity values of universal PCR libraries
were similar to those of singleplex and multiplex gene—-specific PCR
primer libraries: 1.15-fold and 1.08-fold for heavy chain, and 0.99-
fold and 1.07-fold for kappa chain, respectively (Figure 12c).
Simpson diversity values of universal PCR primer libraries were
much lower: 1.74-fold and 1.70-fold for heavy chain, and 1.46-fold
and 1.49-fold for kappa chain, respectively (Figure 12d). The
comparison was conducted with the asymptotic values of each
diversity estimate.

The higher values of species richness but lower values iIn
Shannon and Simpson diversity achieved in the universal PCR primer
libraries indicated that rare clonotypes were more effectively
retrieved from the RNA sample and typical and dominant clonotypes
were not over-represented in comparison to gene-specific PCR

primer libraries.
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Figure 12. Clonal diversity among libraries. (a) Sample coverage
estimates of the libraries and the throughput balancing. Sample
coverage estimates were calculated using INEXT R package, and the
throughput to be sampled was chosen by the point at which three
libraries had the same sample coverage estimate. (b) Species
richness from Vg and Vi libraries amplified by each method. The
(c—-d)

Shannon diversity estimates and Simpson diversity estimates of the

values were calculated from throughput—balanced data.
libraries. In Figure 2a, 2c¢, and 2d, the solid line represents the
rarefaction curve, and the dotted line represents the extrapolation

curve.
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Universal PCR primer libraries retrieved a higher number of
clonotypes with a higher relative frequency correlation from the RNA

sample

To determine the efficiency in retrieving Vy and Vk clonotypes
among lg libraries, we compared their similarity in V/J gene usage to
the reference data on the Ig repertoire from an RNA sample, counted
the number of overlapping clonotypes, and analyzed the correlation
in the frequency of overlapping clonotypes. The V/J gene usage of
each library was computed for Vi (Figure 13a) and Vi (Figure 13b).
To quantify their similarity to the reference data, cosine similarity
was calculated to measure the angle between two multidimensional
(39 heavy variable, 6 heavy junctional, 24 kappa variable, and 5
kappa junctional) vectors ranging from —1 (exactly opposite) to 1
(exactly the same). The results showed that the cosine similarity of
all libraries exceeded 0.9, implying that all libraries effectively
reproduced the original V/J gene usage proportion.

The number of overlapping clonotypes between the reference
data and each individual library was calculated (Table 2). Only 14.5%
Vi and 28.4% Vx clonotypes overlapped with those in the reference
data for the singleplex gene-specific PCR primer library. For the
multiplex library, the results were similar (15.0% Vyand 28.5% V).
For the universal PCR primer libraries, the overlapping percentage
significantly increased to 29.6% for Vup and 56.8% for Vk. In
particular, for the top 1,000 clonotypes in the RNA sample selected
on the basis of their frequency, more than 70% existed in the top
1,000 clonotypes of universal PCR primer libraries. However, the
percentage dropped to less than 33% and 51% in gene-specific PCR
primer Vy and Vi libraries, respectively.

Afterward, the correlation in frequency among overlapping
clonotypes was checked (Figure 13c). The R? values were higher
than 0.95 in universal PCR primer libraries. However, R* values were
lower than 0.56 and 0.82 in gene-specific PCR primer Vy and Vg
libraries, respectively. These results revealed that universal PCR

primer Vy and Vk libraries were significantly superior to gene-
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specific PCR primer libraries in both retrieving more clonotypes and

maintaining their relative frequency.
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Clonotype frequency in each method
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Figure 13. Immunoglobin gene usage and clonotype abundance
correlation. (a-b) Gene usage proportion of the libraries for the
heavy (a) and kappa (b) light chain. V gene (left panel) and J gene

(right panel) usage was calculated and compared with the reference
data of B cell RNA sample. The similarity was calculated using
cosine similarity, which is displayed on top of the figures. Higher
cosine similarity values correspond to greater similarity between two
libraries. (c¢) The correlation in frequency of overlapping clonotypes
with reference data. To measure the correlation, the regression line
and R? values were calculated. The green dotted line represents the

y=x line. The black line denotes the regression line.
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Table 2. Overlapping clonotypes between reference data and the

libraries. The number of overlapping clonotypes were counted for

top 1,000 and whole clonotypes in both libraries (reference library
The rank of the

clonotypes was defined according to the clonal frequency, and if the

and the

library prepared by each method).

clonal frequencies of clonotypes were same, rank of the clonotypes

were randomly selected.

The Th Th Percentage
number of b © ¢ b ¢ ¢ of
Chain clonotype Amplificatio number o number c'> overlappin
type sin n method clonotype overlappin g
s in each g
reference librar clonotypes clonotypes
data Y (%)
Heav Singleplex 322 32.2
y Multiplex 329 32.9
Top chain Universal 723 72.3
1,000 1,000
1,000 Singleplex 502 50.2
Kappa
hai Multiplex 491 49.1
cnain
Universal 765 76.5
Heav Singleplex 67,200 8,235 14.6
y 56,483 Multiplex 69,057 8,465 15.0
Whoy | Cham Universal 109,047 16,743 29.6
e Singleplex 66,428 11,596 28.4
Kappa )
ha 40,885 Multiplex 73,361 11,670 28.5
chain
Universal 150,884 20,787 50.8
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3.4. Discussion

NGS technology has been revolutionizing the path for antibody
discovery. It allowed us to analyze BCR repertoires of hosts in depth
with great accuracy and provided the information about the isotype
frequency, V/J gene usage, accumulated somatic mutation, and
foremost, the frequency of individual Vi and Vi, sequences ®°. These
data are powerful enough to enable the prediction of antigen—binding
clonotypes in the repertoire space solely through in silico analysis in
a controlled situation. In our prior study, we showed that after
chronological monitoring on the BCR repertoire of animals
undergoing immunization, antigen-reactive Vu clonotypes could be
successfully predicted by analyzing the degree of somatic
hypermutation and clonotype expansion **. NGS analysis on the BCR
repertoire of patients affected with viral infection, autoimmune
disease, and immunogenic types of cancers revealed the presence of

9279 similar to the stereotypic neutralizing

stereotypic Ig clonotypes
Vu clonotypes among patients with COVID-19 that we recently
discovered ®°. The presence of these shared Ig clonotypes provided

another convenient path for the identification of antibody clones

reactive to viral antigens, autoantigens, or tumor—associated antigens.

Single B cell sequencing, combined with antigen—guided B cell
selection, helped to determine the frequency of antigen-reactive B
cells in peripheral blood “*%". Among patients with viral disease, B
cells reactive to viral antigen could be relatively rare °". To heighten
the difficulty of antibody discovery, the B cell clones encoding
antibodies with desirable characteristics like virus—neutralizing
activity could be even scarcer. For example, the frequency of
neutralizing clonotypes was extremely low (0.0004-0.0064%) in the
Vi repertoire of patients with COVID-19 3. It is well known that

immunodominant decoy epitopes are provided by a wide variety of

viruses, including human immunodeficiency virus %, feline

immunodeficiency virus %, hepatitis C '%°, foot and mouth disease '°},
102

Middle East respiratory syndrome coronavirus -, severe fever with

thrombocytopenia syndrome virus %, porcine reproductive and
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194 murine gamma herpesvirus 68 °°, and

porcine circovirus type 2 % to induce predominantly non-

respiratory syndrome virus

neutralizing antibodies and evade the host immune response.

Antibody display library technology is still one of the most
frequently employed high—throughput platforms in antibody discovery
from immune hosts. However, to achieve the successful acquisition
of rare functional antibodies, the diversity of the BCR repertoire in
an RNA sample should be precisely replicated in the antibody display
library. Conventionally, for the construction of the antibody display
library, gene-specific primers homologous to V and J genes have
been employed to amplify Viy and Vi genes. During the PCR
amplification of Vg and VL genes, it was expected that skewing the
BCR repertoire occurred, but its extent and characteristics remained
un—answered. In prior studies, we established the NGS method to
analyze the Ig repertoire of antibody display libraries °*'%". Using this
method, we constructed an in si/ico repertoire of Vg and Vi libraries
amplified from B cells of antigen—immunized rabbits through either
singleplex or multiplex PCR amplification wusing gene-specific
primers. As expected, rare Vi and Vk clonotypes were preferentially
lost during the amplification. In addition, clonotypes with moderate
and dominant presence in BCR library tended to be overrepresented
in the antibody display library, which limited the fraction of
overlapping clonotypes between Vy (~15.0%) and Vk (~28.5%)
libraries and the RNA sample of B cells.

To reduce this distortion, we devised a new way to amplify Vu
and Vk genes. Double—stranded cDNA was synthesized with primers
harboring both a V/J gene-specific sequence and a universal
sequence, and PCR amplification was subsequently performed using
primers with universal sequences. This universal primer amplification
method greatly reduced the diminishment of rare BCR clonotypes
(species richness value increased 1.58-2.27 fold) and increased the
overlapping clones between Vi (29.6%) and Vk (56.8%) libraries and
the RNA sample of B cells. Our study was limited to the rabbit BCR
library. Nevertheless, considering that the complexity of Ig genes is

similar in other species such as mice, humans, monkeys, and alpacas
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(Table 3), our universal primer PCR strategy is likely to be applied

with minor modifications.

Table 3. Number of functional immunoglobulin gene in human, mouse
rabbit and monkey identified from IMGT database.

Gene Human Mouse Rabbit Monkey Alpaca
Homo Mus Oryctolagus Macaca Vicugna

type . R

sapiens musculus cuniculus mulatta pacos
IGHV 251 302 39 87 73
IGHJ 12 8 11 9 6
IGKV 64 120 26 83 -
IGKJ 4 8 8 4 -
IGLV 69 5 20 85 -
IGLJ 6 3 2 5 -

IGHV: immunoglobulin heavy chain variable; IGHJ: immunoglobulin heavy
chain joining; IGKV: immunoglobulin kappa chain variable; IGKIJ:
immunoglobulin kappa chain joining; IGLV: immunoglobulin lambda chain
variable; IGLJ: immunoglobulin lambda chain joining.
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3.5. Methods

Amplification of VH and VK genes

A New Zealand white rabbit (Oryctolagus cuniculus) was
immunized and then boosted two times with 10 pg recombinant
human HGFR/c-MET Fc¢ chimera His-tag protein (358-MT, R&D
Systems). One week after the final boosting, total RNA was isolated
from the spleen, bone marrow, and peripheral blood mononuclear
cells using TRIzol reagent (15596018; Invitrogen). Then, cDNA was
synthesized using 1 pg total RNA and a SuperScript IV first-strand
cDNA synthesis kit with oligo dT priming (18091050; Invitrogen).
From the cDNA, Vy and Vk amplicons were prepared using singleplex
and multiplex PCR. We used rabbit Ig gene-specific primer sets
consisting of 14 heavy variable, 5 heavy junctional, 14 kappa variable,
and 10 kappa junctional segments, which were rationally designed
using the IMGT database by Peng et al. ®' (Table 4). Singleplex
amplifications were performed with individual primers in separate
reaction tubes. Multiplex amplification was performed using a single
PCR reaction with a mixture of multiple primers in an equimolar
manner. PCR was performed with KAPA HiFi HotStart DNA
polymerase (KK2502; Kappa Bioscience) using forward and reverse
primers (95T for 3 min, 25 cycles of 98C for 30 s, 60T for 30 s,
72C for 1 min, and 72°C for 5 min).

For the universal PCR primer library, double—stranded cDNA was
synthesized using multiple rabbit Ig gene-specific primers with
additional universal sequences, and multicycle amplification was
conducted with universal amplification primers (Supplementary Table
3). First-strand ¢cDNA was synthesized using 1 ug total RNA and a
SuperScript IV first-strand cDNA synthesis kit with rabbit J gene-
specific reverse primers with an additional restriction or linker
sequence, a P7 sequence, and the UMI barcode . First-strand cDNA
was purified using AMPure XP beads (A63881; Beckman Coulter)
following the instruction provided by the supplier. Then second-
strand cDNA was synthesized using KAPA HiFi HotStart DNA

-
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polymerase (KK2502; Kappa Bioscience) with rabbit V gene—specific
forward primers with an additional restriction or linker sequence and
a P5 sequence (98T for 4 min, 60T for 1 min, 72C for 5 min).
Double-stranded c¢DNA was purified using AMPure XP beads
(A63881; Beckman Coulter) and subjected to PCR amplification with
KAPA HiFi HotStart DNA polymerase (KK2502; Kappa Bioscience)
using two universal primers containing Illumina adapters and index
sequences (95T for 3 min, 25 cycles of 95T for 30 s, 656C for 30 s,
72C for 1 min, and 72C for 5 min).
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NGS analysis

From the singleplex and multiplex PCR, we prepared 1 pg gel-
purified PCR amplicons. Using the purified amplicons, adapter
ligation was performed using the NEBNext Multiplex Oligos for
[lumina kit (New England Biolabs) following the manufacturer’s
protocol !. Final products were purified using AMPure XP beads
(A63881; Beckman Coulter) and submitted to a quality control
procedure on TapeStation 2200 (Agilent Technologies) as previously
described ®. Libraries with a single peak of the correct sequence
length were subjected to NGS analysis using the MiSeq platform
(Illumina Inc.) with 2 X 300 paired-end run mode. From the universal
PCR amplification with sample indexing primers, we obtained gel-
purified PCR amplicons. Final NGS libraries that passed the quality
check were subjected to NGS analysis using the MiSeq platform as
described above. To prepare the reference data to accurately
reproduce the original BCR repertoire, we constructed and analyzed
NGS libraries from distinct RNA input (identical RNA composition
used in singleplex, multiplex and universal amplification) with the
universal PCR primer amplification method for further UMI-based
error correction. We uploaded the sequence data to the National
Center for Biotechnology Information (SRA accession number:
PRINA700634).
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Preprocessing of raw reads

Raw paired FASTQ files were merged using the PEAR software
198 with default parameters. Merged FASTQ files were quality filtered
using an in—house Python 3.6 script with a Q20P95 option, which
extracted the reads if more than 95% of bases had a Phred quality
score of more than 20. All reads containing more than one N base
were excluded. To enhance the validity of the data, a computational
error correction process was applied. First, primer sequences were
recognized from each read and unrecognized reads were excluded.
Primer recognition sites were limited at the edge of reads having a
length of 100 bp. Primer sequences were recognized using the
BLAST program '%, allowing one mismatch of alignment except for
the 6-bp region at the 3" end of primer sequences. For eliminating
the artifacts induced by synthetic errors of primers, primer
sequences of each read were trimmed. The end position of the
trimming region was determined as the 3" end position of the primer
binding. For the data of singleplex and multiplex gene-specific
primer libraries and universal PCR primer libraries, error correction

10 which corrects

was performed using the MiXCR methodology
errors based on hierarchical clustering. For the reference data, error

correction based on the UMI was conducted as previously described
83
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Functional reads filtration and clonotyping

Functional reads were defined as those satisfying following
conditions: (1) reads were in—frame without the stop codon and
frame shift when translated into amino acid sequences, (2) V
(variable) and J (oining) genes were annotated, and (3)
complementary determining regions (CDRs; CDR1, CDR2, and CDR3)
were extracted without the stop codon and frame shift. The V and J
genes and CDRs of each error—-corrected read were obtained using
the IgBLAST tool ''!, with the Ig germline database of the New
Zealand white rabbit acquired from the IMGT database . A
clonotype was defined as a group of sequences sharing identical V

and J genes and encoding identical CDRs at the amino acid level.
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Extraction of antibody library features for comparative analysis

Sample coverage and clonotype diversity of six NGS data
(singleplex gene-specific PCR primer Vy, multiplex gene-specific
PCR primer Vy, universal PCR primer Vy, singleplex gene-specific
PCR primer Vg, multiplex gene specific PCR primer Vi, and universal
PCR primer Vk) were calculated using the iINEXT R package (version
2017-04-02) '*2. The clonotype diversity was calculated using the
iINEXT() function with multiple g values (from O to 2), which specify
the diversity orders of Hill numbers that denote species richness
(g =0), Shannon diversity (q=1), and Simpson diversity (q=2). The
V/J gene usage of each library was calculated by summing the
clonotype frequency of these genes. The cosine similarity was used
for quantifying the similarity of gene usage between the reference
data and others, as previously used . The identical clonotypes
found both in the reference data and the prepared libraries were
extracted, which were denoted as overlapping clonotypes, and the
ratio of overlapping clonotypes were quantified. The correlation of
clonotype frequency was measured by calculating a regression line
of zero y-intercept and the coefficient of determination (R? R
squared). All statistical analyses except for sample coverage were
applied to the clonotypes.
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Table 4. List of primers targeting rabbit immunoglobulin V, J genes.

Primers used for singleplex and multiplex PCR

Name

Sequence / Structure

Procedure

Conv_HV1

Conv_HV2

Conv_HV3

Conv_HV4

Conv_HV5

Conv_HV6

Conv_HV7

Conv_HV8

Conv_HV9

Conv_HV1
0
Conv_HV1
1
Conv_HV1
2
Conv_HV1
3
Conv_HV1
4
Conv_HV_
structure

Conv_HJ1

Conv_HJ2

Conv_HJ3

Conv_HJ4

Conv_HJ5

Conv_HJ_s
tructure

Conv_KV1

Conv_KV2

Conv_KV3

Conv_KV4

Conv_KV5

Conv_KV6

[GGTGGTTCCTCTAGATCTTCCI[CAGTCGGTGGAG
GAGTCCAGG]
[GGTGGTTCCTCTAGATCTTCCIICAGTCGGTGGAG
GAGTCCGGG]
[GGTGGTTCCTCTAGATCTTCCIICAGTCAGTGAAG
GAGTCCGAG]
[GGTGGTTCCTCTAGATCTTCCII[CAGTCGCTGGAG
GAGTCCGGG]
[GGTGGTTCCTCTAGATCTTCCII[CAGTCGTTGGAG
GAGTCCGGG]
[GGTGGTTCCTCTAGATCTTCC]ICAGGAGCAGCTG
GAGGAGTCCGGG]
[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCTG
AAGGAGTCCGG]
[GGTGGTTCCTCTAGATCTTCCII[CAGAAGCAGCTG
GTGGAGTCCGG]
[GGTGGTTCCTCTAGATCTTCCIICAGGAGCAGCTG
GTGGAGTCCGG]
[GGTGGTTCCTCTAGATCTTCC][CAGGAGCAGCAG
AAGGAGTCCGGG]
[GGTGGTTCCTCTAGATCTTCCIICAGTCGCTGGAG
GAGTCCAGG]
[GGTGGTTCCTCTAGATCTTCCIICAGTCGCTGGGG
GAGTCCAGG]
[GGTGGTTCCTCTAGATCTTCC][CAGACAGTGAAG
GAGTCCGAG]
[GGTGGTTCCTCTAGATCTTCC][CAGTCGCTGGAG
GAATTCGGG]

[Linker partial] [V gene specific region]

[CCTGGCCGGCCTGGCCACTAGTIITGAAGAGACGG
TGACCAGGGTGCC]
[CCTGGCCGGCCTGGCCACTAGTIITGAAGAGATGG
TGACCAGGGTGCC]
[CCTGGCCGGCCTGGCCACTAGTI[TGAGGAGACGG
TGACCAGGGTGCC]
[CCTGGCCGGCCTGGCCACTAGTI[TGAGGAGATGG
TGACCAGGGTGCC]
[CCTGGCCGGCCTGGCCACTAGTIITGAAGAGACGG
TGACGAGGGTCCC]

[SfiI restriction site][J gene specific region]

[GGGCCCAGGCGGCC]IGCCGCCGTGCTGACCCAGAC
[T(;GGCCCAGGCGGCC] [GCCCAAGTGCTGACCCAGAC
’[FC]}GGCCCAGGCGGCC] [GCCCTTGTGATGACCCAGAC
’[FC]}GGCCCAGGCGGCC] [GACCCTATGCTGACCCAGAC
[T(%GGCCCAGGCGGCC] [GATGTCGTGATGACCCAGAC
T

[GGGCCCAGGCGGCCIIGACCCTGTGCTGACCCAGAC
53

Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR
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Conv_KV7

Conv_KV8

Conv_KV9

Conv_KV1
0
Conv_KV1
1
Conv_KV1
2
Conv_KV1
3
Conv_KV1
4
Conv_KV_
structure

Conv_KIJ1

Conv_KJ2

Conv_KJ3

Conv_KJ4

Conv_KJ5

Conv_KJ6

Conv_KJ7

Conv_KIJ8

Conv_KJ9

Conv_KJ10

Conv_KlJ_s
tructure

T]

[GGGCCCAGGCGGCCITATGTCATGATGACCCAGAC
%gGGCCCAGGCGGCCHGCCGCCGTGATGACCCAGAC
%gGGCCCAGGCGGCCHGCCCAAGGGCCAACCCAGAC
?gGGCCCAGGCGGCCHGCCGTCGTGCTGACCCAGAC
EgGGCCCAGGCGGCCHGCCATCAAAATGACCCAGAC
%gGGCCCAGGCGGCCHGACCCTGTGATGACCCAGAC
%gGGCCCAGGCGGCCHGATGGCGTGATGACCCAGAC
E%GGCCCAGGCGGCCHGACATTGTGCTGACCCAGAC
T

[Sfi1 restriction site][V gene specific region]

[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA][TTTGATTTCCACATT
GGTGCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGATTTCCACCTT
GGTGCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA][TTTGATCTCCACCTT
GGTCCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGATCTCCACCTT
GGTTCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGATCTCCAGCTT
GGTCCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGATCTCCAGCTT
GGTTCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGACCACCACCTC
GGTCCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA]ITTTGACGACCACCTC
GGTCCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA][TAGGATCTCCAGCTC
GGTCCC]
[GGAAGATCTAGAGGAACCACCCCCACCACCGCCCG
AGCCACCGCCACCAGAGGA][TTCGACGACCACCTT
GGTCCC]

[Linker partial] [J gene specific region]

Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR
Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR

Multi-cycle PCR
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(continued)

Name Sequence Procedure
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HV1 GGTTCCTCTAGATCTTCCIICAGTCGGTGGAGGAGT stra ¢
CCAG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT and DNA
Alt_HV2 GGTTCCTCTAGATCTTCCI[CAGTCGGTGGAGGAGT stra ¢
CCGGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT and DNA
Alt_HV3 GGTTCCTCTAGATCTTCCI[CAGTCAGTGAAGGAGT stra ¢
CCGAG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT and DNA
Alt_HIV4  GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAGT Stra ¢
CCGGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HV5  GGTTCCTCTAGATCTTCCI[CAGTCGTTGGAGGAGT stra ¢
CCGGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HV6  GGTTCCTCTAGATCTTCC][CAGGAGCAGCTGGAGG —~ ~M¢ ~ stran ¢
AGTCCGGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HV7  GGTTCCTCTAGATCTTCC][CAGGAGCAGCTGAAGG ~ ~M¢ ~ stran ¢
AGTCCGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HVS  GGTTCCTCTAGATCTTCC][CAGAAGCAGCTGGTGG —~ ~'¢ ~ stran ¢
AGTCCGG] synthesis
[CACGACGCTCTTCCGATCTI[GCGGTGGTGGGGGT o DNA
Alt_HV9 GGTTCCTCTAGATCTTCCI[CAGGAGCAGCTGGTGG " Stran ¢
AGTCCGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o oy
Alt_HV10  GGTTCCTCTAGATCTTCC][CAGGAGCAGCAGAAGG .
AGTCCGGG] synthesis
[CACGACGCTCTTCCGATCTIGCGGTGGTGGGGGT o o 0 oo
Alt_HV11  GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAGT .
CCAGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o o oy
Alt_HV12  GGTTCCTCTAGATCTTCC][CAGTCGCTGGGGGAGT .
CCAGG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt HV13  GGTTCCTCTAGATCTTCCI[CAGACAGTGAAGGAGT stra ¢
CCGAG] synthesis
[CACGACGCTCTTCCGATCTIIGCGGTGGTGGGGGT o DNA
Alt_HV14  GGTTCCTCTAGATCTTCC][CAGTCGCTGGAGGAAT — “" stran ¢
TCGGG] synthesis
Alt_HV_str [P5 illumina adapter partial][linker partiall[V gene
ucture specific region]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
Alt_HJ1 J[CCTGGCCGGCCTGGCCACTAGTI]ITGAAGAGACGG Reverse transcription
TGACCAGGGTGCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
Alt_HJ2 J[CCTGGCCGGCCTGGCCACTAGTI]I[TGAAGAGATGG Reverse transcription
TGACCAGGGTGCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
Alt_HJ3 J[CCTGGCCGGCCTGGCCACTAGTI]ITGAGGAGACGG Reverse transcription
TGACCAGGGTGCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
Alt_HJ4 J[CCTGGCCGGCCTGGCCACTAGTI]ITGAGGAGATGG Reverse transcription

TGACCAGGGTGCC]
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Alt_HJ5

Alt_HJ_str
ucture

Alt_KV1

Alt_KV2

Alt_KV3

Alt_KV4

Alt_KV5

Alt_KV6

Alt_KV7

Alt_KV8

Alt_KV9

Alt_KV10

Alt_KV11

Alt_KV12

Alt_KV13

Alt_KV14
Alt_KV_str

ucture

Alt_KJ1

Alt_KJ2

Alt_KJ3

Alt_KJ4

Alt_KJ5

Alt_KJ6

Alt_KJ7

Alt_KJ8

[ACGTGTGCTCTTCCGATCT]INNNNTNNNNTNNNN
J[CCTGGCCGGCCTGGCCACTAGTIITGAAGAGACGG
TGACGAGGGTCCC]

[P7 illumina adapter partial]l [UMI
restriction site][J gene specific region]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GCCGCCGTGCTGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GCCCAAGTGCTGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GCCCTTGTGATGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GACCCTATGCTGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GATGTCGTGATGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[GACCCTGTGCTGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[TATGTCATGATGACCCAGACT]
[CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
[

[

[

[

[

[

[

[

[

[

[

[

[

[

barcode] [Sfi I

GCCGCCGTGATGACCCAGACT]
CACGACGCTCTTCCGATCTI]IGGGCCCAGGCGGCC]
GCCCAAGGGCCAACCCAGACT]
CACGACGCTCTTCCGATCTI]IGGGCCCAGGCGGCC]
GCCGTCGTGCTGACCCAGACT]
CACGACGCTCTTCCGATCT][GGGCCCAGGCGGCC]
GCCATCAAAATGACCCAGACT]
CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
GACCCTGTGATGACCCAGACT]
CACGACGCTCTTCCGATCT]IGGGCCCAGGCGGCC]
GATGGCGTGATGACCCAGACT]
CACGACGCTCTTCCGATCTIIGGGCCCAGGCGGCC]
GACATTGTGCTGACCCAGACT]

P5 illumina adapter partial][Sfi I restriction site][V
gene specific region]
[ACGTGTGCTCTTCCGATCT]INNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA][TTTGATTTCCA
CATTGGTGCC]
[ACGTGTGCTCTTCCGATCTI]INNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA]ITTTGATTTCCA
CCTTGGTGCC]
[ACGTGTGCTCTTCCGATCTI]INNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA]ITTTGATCTCCA
CCTTGGTCCC]
[ACGTGTGCTCTTCCGATCT ] [NNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA
CCTTGGTTCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA
GCTTGGTCCC]
[ACGTGTGCTCTTCCGATCT ] [NNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA][TTTGATCTCCA
GCTTGGTTCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA]ITTTGACCACCA
CCTCGGTCCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
J[CCGAGCCACCGCCACCAGAGGA][TTTGACGACCA
CCTCGGTCCC]
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Reverse transcription

2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis
2nd strand cDNA
synthesis

Reverse transcription
Reverse transcription
Reverse transcription
Reverse transcription
Reverse transcription
Reverse transcription
Reverse transcription

Reverse transcription

1T



[ACGTGTGCTCTTCCGATCT ] [NNNNTNNNNTNNNN

Alt_KJ9 1[CCGAGCCACCGCCACCAGAGGAT[TAGGATCTCCA  Reverse transcription
GCTCGGTCCC]
[ACGTGTGCTCTTCCGATCT][NNNNTNNNNTNNNN
Alt_KJ10  1[CCGAGCCACCGCCACCAGAGGA]ITTCGACGACCA  Reverse transcription
CCTTGGTCCC]
Alt_KJ_str  [P7 illumina adapter partial][UMI barcode][linker
ucture partial][J gene specific region]
(continued)
Name Sequence Procedure
g“p‘gforwar CACGACGCTCTTCCGATCT Multi-cycle PCR
g“p‘;revers ACGTGTGCTCTTCCGATCT Multi-cycle PCR
Linker_ada CTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGGGTG .
Overlap extension PCR
pter GTTC
?\Zsféap—fo GAGGCGGGGCCCAGGCGGCCGAGC Overlap extension PCR
Sevfsrelap—re GAGCCTGGCCGGCCTGGCCACTAGTG Overlap extension PCR
grggforwar CACGACGCTCTTCCGATCT Multi-cycle PCR
g“;evers ACGTGTGCTCTTCCGATCT Multi-cycle PCR
Linker_ada CTCTGGTGGCGGTGGCTCGGGCGGTGGTGGGGGTG .
oter GTTC Overlap extension PCR
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4. In silico identification of target specific
antibodies by high—-throughput antibody
repertoire analysis and machine learning

This is an author produced adaptation of a peer reviewed article

published in

Experimental & Molecular Medicine (2017). doi:0.1038/emm.2017.22,
[Yang W, Yoon A, Lee S, Kim S, Han J & Chung J]

Biomolecules (2020). doi:10.3390/biom10030421.
[Yoo DK, Lee SR", Jung Y, Han H, Lee HK, Han J, Kim S, Chae J, Ryu
T & Chung J]

* These authors contributed equally.

4.1. Abstract

c—Met is a promising target in cancer therapy for its intrinsic
oncogenic properties. However, there are currently no c-Met-
specific inhibitors available in the clinic. Antibodies blocking the
interaction with its only known ligand, hepatocyte growth factor,
and/or inducing receptor internalization have been clinically tested.
To explore other therapeutic antibody mechanisms like Fc—mediated
effector function, bispecific T cell engagement, and chimeric antigen
T cell receptors, a diverse panel of antibodies is essential. We
prepared a chicken immune scFv library, performed four rounds of
bio—panning, obtained 641 clones using a high—-throughput clonal
retrieval system (TrueRepertoire™, TR), and found 149 antigen-—
reactive scFv clones. We also prepared phagemid DNA before the
start of bio—panning (round 0) and, after each round of bio—panning

(round 1-4), performed next—generation sequencing of these five
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sets of phagemid DNA, and identified 860,207 HCDR3 clonotypes and
443,292 LCDR3 clonotypes along with their clonal abundance data.
We then established a TR data set consisting of antigen reactivity for
scFv clones found in TR analysis and the clonal abundance of their
HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using
the TR data set, a random forest machine learning algorithm was
trained to predict the binding properties of in silico HCDR3 and
LCDRS3 clonotypes. Subsequently, we synthesized 40 HCDR3 and 40
LCDR3 clonotypes predicted to be antigen reactive (AR) and
constructed a phage-displayed scFv library called the AR library. In
parallel, we also prepared an antigen non-reactive (NR) library using
10 HCDR3 and 10 LCDR3 clonotypes predicted to be NR. After a
single round of bio—panning, we screened 96 randomly-selected
phage clones from the AR library and found out 14 AR scFv clones
consisting of 5 HCDR3 and 11 LCDR3 AR clonotypes. We also
screened 96 randomly-selected phage clones from the NR library,
but did not identify any AR clones. In summary, machine learning
algorithms can provide a method for identifying AR antibodies, which
allows for the characterization of diverse antibody libraries

inaccessible by traditional methods.
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4.2. Introduction

The mesenchymal-epithelial transition factor (c-Met) and its
ligand hepatocyte growth factor (HGF) are well-known oncogenic

drivers of tumorigenesis''.

Numerous clinical observations have
demonstrated that c-Met overexpression or gene alterations play a
key role in both oncogenesis and the development of drug resistance

-
157118 - Burthermore, recent research

across multiple cancer types
suggests that the HGF-c—Met axis limits the efficacy of cancer
immunotherapy by modulating immune cell function and the
expression of programmed cell death ligand 1 (PD-L1)''""'22, Despite
efforts to inhibit the HGF-c-Met axis including antibodies against c—
Met or HGF, c—-Met tyrosine kinase inhibitors, and more, no
therapeutic agent specific to the HGF-c-Met axis is clinically
available. Currently, two anti—~HGF antibodies, including YYB-101
previously discovered by our group, are under clinical trials
(NCT02499224)!%%, However, no antibodies are under development
against c-Met after the failure of onartuzumab in clinical trials'**.

Based on rapid advances in next-generation sequencing (NGS)
technology, various methodologies for analyzing NGS data have been
developed to decode the antibody repertoire from diverse sources
such as the natural B cell receptor of animals and humans as well as
recombinant antibody libraries that can be synthetically designed and
constructed'® ¥’ Furthermore, combining surface display
technology and NGS analysis offers synergistic advantages in
identifying antigen—reactive clones in silico over the laborious in
vitro screening process, which 1s frequently overwhelmed by
dominant antibody clones*®. Traditional bio-panning methodologies
are biased towards the excessive enrichment of dominant clones with
significant suppression of antibody diversity. Consequently, this
approach could lead to the omission of potential antigen-reactive
(AR) clones with low clonal abundance or their diminishment by
unintended selective pressure.

Previously, our group analyzed the enrichment patterns of bio-

panned clones by employing NGS technology to predict the antigen
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binding properties of antibody clones inside different clusters®. First,
we tracked the clonal abundance of heavy chain complementarity
region 3 (HCDR3) through multiple rounds of bio—panning with NGS
analysis, and then applied clustering analysis to group HCDRS3
clonotypes based on the enrichment pattern. As a result, different
clusters (enriched, impoverished, and fluctuated) were generated
with the enriched pattern cluster containing a higher frequency of AR
scFv (single-chain variable fragment) clones than other clusters.
However, due to limitations in retrieving the physical DNA of
encoded scFv from a large, diverse number of clones, we were
unable to sufficiently observe the binding properties of in silico scFv
clones. Recently, we developed a laser and microchip—based high-
throughput clonal retrieval system (TrueRepertoire™, TR) for scFv
DNA from the library®, which allows a much higher number of scFv
clones to be obtained and tested for antigen reactivity.

In this study, we established a phage-displayed chicken scFv
library after immunization with recombinant c-Met. Four rounds of
bio-panning were performed on antigen—-conjugated magnetic beads.
Through bio—panning, five sets of phagemid DNA (rounds 0-4) were
obtained and subjected to NGS analysis using both HiSeq and MiSeq
platforms. After the final round of bio-panning, scFv-displayed
phage clones were obtained in a high—-throughput manner using TR
technology, and individual clone reactivity was evaluated by phage
enzyme-linked immunosorbent assay (ELISA). From NGS data
obtained using the HiSeq platform, HCDR3, and light chain
complementarity region 3 (LCDR3) clonotypes were extracted and
evaluated for their clonal abundance in phagemid DNA sets from
round O (before biopanning) to round 4. We then established a data
set (TR data set) containing the antigen reactivity of scFv clones
retrieved through TR technology and the clonal abundance of their
HCDR3 and LCDR3 clonotypes in five sets of phagemid DNA. Using
this TR data set, we trained our random forest (RF) machine learning
algorithm to predict the binding properties of in silico HCDR3 and
LCDR3 clonotypes!?$1%,
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To test the accuracy of our RF model (Figure 14), we extracted
Vu and VL sequences from MiSeq NGS data, which encompass both
RF model-determined AR and antigen non-reactive (NR) HCDR3 or
LCDR3 clonotypes and chemically synthesized them. Using these Vy
and VL. genes, we established two phage-displayed scFv libraries.
The AR library was prepared using Vuy and VL genes encompassing
AR HCDR3 and LCDR3 clonotypes, and the NR library was
constructed using Vg and VL genes encompassing NR HCDR3 and
LCDR3 clonotypes. After one round of bio—-panning on antigen-—
conjugated magnetic beads, antigen reactivity of phage clones was
tested by phage ELISA. From the AR library, we obtained many scFv
clones containing AR HCDR3 and LCDRS3 clonotypes, while no AR

clones were enriched from the NR library.
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4.3. Results

Generation of antibody library and screening for positive clones

using the conventional colony screening method

Using mRNA prepared from spleen, bone marrow, and bursa of
Fabricius from three PSA-immunized chickens, we generated scEFv
libraries with complexities of 6.09 x 10'%, 3.64 x 10" and 5.16 x 10"
clones, respectively, referred to as chicken libraries 1, 2 and 3. Next,
we performed four rounds of bio-panning, rescued phage clones
from the output titer plate of the fourth round, and performed a
phage enzyme immunoassay to screen for positive clones. A total of
300 clones (100 clones in each library) exhibiting an optical density
of >0.3 at 405nm were considered to be positive, and their scFv
gene sequence was determined by Sanger sequencing analysis. We

finally obtained 22 clones with unique HCDR3 sequences (Table 5).
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Table 5. HCDR3 amino-acid sequences selected using the
conventional colony screening method, and binding reactivity

measurement of the antibody clones.

Library Cluster Sequence of HCDR3 Proportion  Proportion Binding

of NGS of reactivity

(%) conventional  (0.D.405
method (%) nm)
1 1 DFGSGVGEIDA 3.81 1.04 1.01
GIESDSDGYMTAEEIDA 0.13 1.04 0.977
2 AAHSTYIWGGYEAGSIDA 6.49 4.17 0.669
SAVSSCSSGSCSASWIDA 1.16 2.08 0.873
TADDGFSCGGYGLCADRIDA 0.39 1.04 0.723
ESGNGGWITAARIDA 0.08 1.04 0.767
SSHSTYIWGAYEAGSIDA 0.03 2.08 0.651
4 APGTGSGYCGIWTYTTAGCIDA 0.03 1.04 0.964
GRISYICADYDAGCIDA 0.02 5.21 1.063
SSHSTYIWGGYEAGSIDA 0.01 2.08 0.916
2 2 SSYSDGATVIYNIDA 0.69 1.04 0.87
3 GRISYICADYDAGCIDA 0.04 6.25 1.063
AAGSWCAWGTGSCAGSIDA 0.02 5.21 1.067
AAGSWCAWGTGSCAGNIDA 0.01 1.04 0.985
TTGGDFYSGIDTAGYIDA 0.01 5.21 0.938
APGTGSGYCGIWTYTTAGCIDA 0.01 3.13 0.964
3 2 AAGSGYIYSGSAGWIDA 1.07 3.13 0.941
3 AAGSWCAWGTGSCAGSIDA 0.03 4.17 0.918
GRISYICADYDAGCIDA 0.02 8.33 1.063
TTGGDFYSGIDTAGYIDA 0.02 2.08 0.889
AAGSWCAWGAGSCAGSIDA 0.01 1.04 0.914
AAGSGYVYSGSAGWIDA 0.01 2.08 1.021

HCDR3; heavy chain complementarity—determining region 3; NGS,

next—generation sequencing; O.D., optical density.
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Diversity analysis of antibody clones using next—generation

sequencing

A total of 15 sets of phagemid DNA (three chicken libraries from
bio-panning rounds O, 1, 2, 3, and 4) were used for NGS analysis.
After the NGS experiment, we obtained 60,000-180,000 VH
sequences. Raw paired—-end nucleotide sequences were merged,
filtered, aligned and trimmed by uniformly applying pre-specified
criteria to remove low—quality and meaningless short sequences. The
numbers of nucleotide sequences remaining after each preprocess
are summarized in Table 6; and were used in subsequent analyses.
From the NGS results, the total population of VH fragment
nucleotides decreased as the bio-panning rounds proceeded. To
analyze HCDR3 diversity and frequency, we used HCDR3 sequences
existing only in the fourth bio—panning round. clValid predicted that
2—6 clusters would be the most dependable in the HCDR3 sequence
count profile data (Table 7). The sequence reads in chicken library 1
showed the maximum Dunn index (0.1048) with 4-6 clusters, and
chicken libraries 2 and 3 had maximum Dunn indices with 2-3
clusters. We clustered HCDR3 sequences into 2-6 clusters using
hierarchical clustering, and generated heat maps for each cluster to
examine the patterns of HCDR3 sequence enrichment and population
shift throughout the bio-panning rounds. The pattern of HCDR3
sequence enrichment and population shift in chicken library 1 showed
four clear clusters, and the patterns in chicken libraries 2 and 3

showed three clear clusters (Figure 15).
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Table 6. Sequence read counts by preprocessing raw sequencing
data.

Libra Panni Raw Read Read Read Read  Unique
ry ng sequenci count ount of count of count nucleoti
round ng read after qualifie disqualifi aligne de

count mergi d ed d with sequenc
ng sequenc sequence HCD e count
es S R3
1 RO 664,955 393,74 393,624 125 310,58 205,255
9 9
(78.9)
R1 663,061 377,63 377,484 146 29847 198,150
0 4 (79)
R2 391,118 229,87 229,773 100 181,43 128,513
3 0
(78.9)
R3 673,875 388,34 388,179 162 314,51 148,787
1 7 (81)
R4 621,174 379,63 379,611 19 334,38 27,141
0 7
(88.1)
2 RO 432,274 256,26 256,199 69 193,26 148,862
8 2
(75.4)
R1 661,248 417,42 417,323 103 316,15 221,423
6 0
(75.7)
R2 608,850 363,55 363,460 93 274,10 197,190
3 0
(75.4)
R3 547,353 342,18 342,123 66 289,28 66,545
9 7
(84.5)
R4 455,119 290,74 290,722 19 274,63 22,763
1 5
(94.5)
3 RO 616,410 360,83 360,783 47 279,99 164,869
0 6
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R1 608,045 370,09
0

R2 619,731 373,09
3

R3 690,602 419,79
6

R4 568,948 354,31
4

370,033

373,038

419,757

354,301

57

55

39

13

(77.6)
288,17
2
(77.9)
290,05
6
(77.7)
343,99
6
(81.9)
287,12
6 (81)

167,249

168,084

74,611

21,884

HCDRS3, heavy chain complementarity—determining region 3.
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Table 7. Dunn index on hierarchical clustering to estimate optimal
number of clusters in scFv nucleotide sequence profile data

Number of clusters

2 3 4 5 6
Library 1 0.0863 0.0723 0.1048 0.1048 0.1048
Library 2 0.2331 0.2331 0.0564 0.0564 0.0845
Library 3 0.1508 0.186 0.1544 0.0893 0.0893

scFv, single-chain variable fragment. Bold numbers indicate the

largest Dunn index in each library.
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Figure 15. Heat map representing the population of heavy chain
complementarity—determining region 3 (HCDR3) sequences in each
cluster through bio—panning rounds. Red and blue denote high and
low proportions of the HCDR3 sequence, respectively. (a) scFv
library 1, (b) scFv library 2 and (c) scFv library 3.
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Population shift in HCDR3 sequences throughout bio—panning rounds

The diversity of the antibody clones is represented by the
number of HCDR3 sequences that belong to each cluster (Figure 16).
The abundance of the HCDR3 sequences in each cluster is
represented by heat map color; high and low populations are
indicated in red and blue, respectively. HCDR3 sequences in cluster
1 were highly abundant before bio-panning and up to the second bio-
panning round. However, there was a sudden impoverishment in
rounds 3 and 4 of bio—-panning. In contrast, HCDR3 sequences that
belonged to clusters 2 and 3 (including cluster 4 of library 1) showed
the opposite pattern. Their populations were very low before bio-—
panning, remained low after the second round of bio-panning, and
started to enrich from the third round of bio—panning. The increase
continued in the fourth round of bio—panning. This population shift of
HCDR3 sequences throughout bio—panning is represented in Figure
16. All 22 HCDRS3 sequences in clones found via the conventional
colony screening method existed among the HCDR3 sequences
obtained from NGS analysis of phagemid DNA prepared after the
fourth round of bio—panning (Table 5). Two out of the 22 unique
HCDR3 sequences belonged to cluster 1, and the other 20 HCDR3

sequences belonged to clusters 2, 3 or 4.
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Reactivity of scFv clones identified in NGS analysis

For each cluster, 1-5 HCDR3 sequences newly identified from the
fourth round of bio-panning via NGS analysis were selected
arbitrarily (Table 8). These selected sequences were used to
synthesize the primers to retrieve the whole scFv gene from the
phagemid DNA. The scFv gene was prepared in two-step linker PCR
using the primers and cloned into a phagemid vector (Figure 17).
After transformation of the phagemid vector—-encoding scFv gene and
rescue with helper phage, scFv-displaying phage was used to test
their binding reactivity against PSA (Figure 18). In cluster 1, across
the three libraries, 12 out of 14 antibody clones (85.7%) had
negligible binding reactivity against PSA (0.D.450nm<0.2; Table 4,
blue). In contrast, 21 out of 26 antibody clones (80.8%) in clusters
2~4 across the three libraries had significant binding reactivity
(0.D.450nm>0.3; Table 4, red). These results imply that antibody
clones with low reactivity tend to be impoverished throughout bio—
panning (cluster 1), in contrast to the antibody clones with high
reactivity, which showed enrichment throughout bio—panning
(clusters 2~4).
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Table 8. CDR3 amino—acid sequences selected in each cluster from

NGS and binding reactivity measurement of antibody clones.

Librar Cluster HCDR3 Sequence Proportion of 0.D.40
y the sequence in 5 nm
R4
1 Cluster1 GVYSGSPDGYDIDA 0.32% 0.454
TTCVGSSYCGGENIDA 0.16% 0.173
GAYSDWGAGFIDA 0.08% 0.161
DGDSGWGVYLNSAGNIDA  0.03% 0.153
Cluster 2  YAGSGWTYYSSDVGSIDA 2.16% 0.62
GVYSASGCCDSIDT 1.93% 1.032
SAHSTYIWGGYEAGSIDA 1.41% 1.075
GGGAGYGAPSIDT 1.05% 0.871
DVYSGLITANTIDA 0.67% 0.639
Cluster 3 SSHSTYIWGAYEAGCIDA 0.02% 0.757
RAYGGGYCGCIEDIDA 0.01% 0.323
AASTWSFYGSAEDIDA 0.01% 0.725
Cluster4 APGTGSGYCGIWTYTTAGSI 0.04% 0.323
DA
GRISYICADYEAGSIDA 0.02% 0.407
2 Cluster 1 GAYGHCDGWCAVDSIDT 0.07% 0.175
AAGSGYCGWGDCIAGSIDA  0.07% 0.167
GIYGYSGGDYAAAEIDA 0.06% 0.179
GAGGSCDGGSWCSPGIIDA  0.04% 0.187
TRGGAGSGWYWYSGIAGII  0.03% 0.18
DA
Cluster2 TAGCGPWSYITAGCIDA 0.21% 1.119
DAAYGYCGTWAGCAGRID  0.21% 1.187
A
CAYSGCTGGWSTSSIDA 0.20% 1.007
DVYGCNSYGCPYIGNTIDA  0.09% 1.254
RAFSGCCDADSIDA 0.07% 0.845
Cluster 3 SSSGTTYYSSGVISAGGIDA  0.17% 0.167
GRISYICVDYDAGCIDA 0.07% 0.706
NAYTSAYITDIDS 0.06% 0.944
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SAYSDSCCAEDIDA 0.04% 0.876
SAFGGGACCYTAGTIDA 0.03% 0.165
3 Cluster 1 DGSGCGWSAAGCIDA 0.35% 0.16
AATYSWLHSGIDA 0.29% 0.728
DGSDCGWSAAGCIDA 0.06% 0.146
GTGSWCYSGADSIDT 0.06% 0.167
SAAGYWYAGSIDA 0.05% 0.138
Cluster 2 TAGGDFYSGVDTAGYIDA 4.79% 1.064
Cluster 3 GSGYSCWSYAGCIDA 0.66% 1.083
GRIYYICADYDAGCIDA 0.53% 1.052
TADSGFGCGGYGLCAAFID  0.09% 0.907

A
TADIGYCFGGGIGCIDA 0.08% 0.984
SAGGSYGYRYMDTAAAIDA 0.07% 0.861

HCDR3; heavy chain complementarity—determining region 3; NGS,

next—-generation sequencing.
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Figure 17. Schematic representation of next—generation sequencing
and two-step linker PCR. The structure of scFv gene, CDRs and
frameworks of variable regions are indicated by colored boxes. (a)
For NGS analysis, most of VH region including HCDR3 was amplified
and sequenced using specific primers as described in materials and
methods. The sequencing coverage is indicated with dashed lines. (b)
To retrieve scFv gene, two-step linker PCR was performed using
primers annealing to HCDR3, LFR1 and HFR4. The first step of PCR
was performed using LFR1_F and HCDR3_R primers and HCDR3_F
and HFR4_R primers. The linker PCR was performed using LFR1_F
and HFR4_R primers.
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Figure 18. Binding reactivity of scFv antibodies retrieved from
selected HCDR3 amino—-acid sequences in each cluster using NGS.
(a) scFv library 1, (b) scFv library 2 and (c) scFv library 3. ANOVA
with Turkey’s multiple—comparison test was used to compare cluster
1 with other clusters. In library 3, the P-value was calculated using
the Mann-Whitney U-test. *P-value <0.05; **P-value <0.01; #**P-
value <0.001. ANOVA, analysis of variance.
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Construction of Phage-Displayed scFv Library, Biopanning, Selection
of Positive Clones, Next—Generation Sequencing (NGS), And
Establishment of TR Data Set

Chickens were immunized with recombinant mouse c-Met-Fc
chimera. Spleen, bone marrow, and bursa of Fabricius were
harvested from the immunized chickens and total RNA was prepared
to generate a phage—displayed scFv library with a complexity of 4.96
X 10%. Four rounds of bio—-panning were performed using antigen-
coated magnetic beads. After the final round of bio—panning, the
phage pool was subjected to high—throughput clonal retrieval using
TR technology. From the TR analysis, 641 clones with unique Vy and
Vi pairs were identified. These phage clones were rescued and
subjected to phage ELISA. Out of 641 phage clones, 149 clones
showed reactivity to c-Met with statistical differences from non-
reactive clones (data not shown) designated as AR clones. We used
the binding reactivity of the 641 clones as a part of the TR data set.

After arranging the phage-displayed scFv library and each round
of bio-panning, phagemid DNA (rounds 0-4) was prepared using
bacterial pellets obtained after centrifugation of overnight culture
supernatant. From these five sets of phagemid DNA, gene fragments
encoding HCDR3 and LCDR3 were amplified and subjected to NGS
analysis using the HiSeq platform. After NGS data pre-processing,
we defined valid clonotypes as unique CDR3 sequences with read
counts of two or higher in any set of phagemid DNA, and we were
able to retrieve 860,207 HCDR3 clonotypes and 443,292 LCDR3
clonotypes across the entire bio—panning phase (Table 9). Clonal
abundance throughout bio-panning stages was determined by
counting the number of times that a clonotype appeared in each bio-
panning round. The clonal abundance of clonotypes matching to scFv
clones found in TR analysis was used as another part of the TR data
set. We also amplified Vi and Vi gene fragments from five sets of
phagemid DNA and subjected them to NGS analysis using the MiSeq

platform.
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Table 9. Number of CDR3 clonotypes obtained from the bio-

panning procedure.

Clonotypes Round O

Round 1

Round 2 Round 3 Round 4 Total

HCDR3 390,814
LCDR3 272,317

395,459
253,899

402,854 311,678 308,547 860,207
250,630 187,314 117,239 443,292
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Establishing Random Forest (RF) Binding Reactivity Prediction Model

We compared random forest, regularized discriminant analysis,
linear discriminant analysis, support vector machine, naive bayes,
and AdaBoost classification trees for their accuracy and kappa score
distributions. We found out that the random forest algorithm was best
suited for binder predictions of HCDR3 clonotypes with the mean
accuracy of 89.69% and mean Cohen’s kappa value of 0.45 (Table 10
and Table 11). While regularized discriminant analysis did perform
marginally better in the LCDR3 clonotypes, random forest showed

more potential for improvement with manual tuning when consulting

maximum accuracy and Cohen’s kappa value (Table 12 and Table 13).

With these observations, we decided to adopt random forest models
to establish a binding reactivity prediction model (Figure 19).

Utilizing the TR data set, two separate RF models were trained
for HCDR3 and LCDR3 clonotypes. The algorithm was instructed to
treat the clonal abundance of clonotypes in the five sets of phagemid
DNA (round 0-4) as predictor variables and the binding reactivity as
the response variable. Thus, each unique clonotype in our TR data
set was individually labelled with that clonotype’s abundance at each
of the bio-panning rounds and its binding reactivity. Before the
training of each new RF model, the TR data set was divided into a
training data set and a validation data set. After training the RF
model using the training set, the validation set was presented to the
RF model, and RF model accuracy in predicting clonotype binding
reactivity was determined.

To determine the optimum training parameters for our RF model,
7200 RF models were evaluated. Optimizing for sensitivity, the ideal
parameters for the HCDR3 RF model were found to be a 75%
sampling ratio of the TR data set, mtry of 4, and ntree of 500. The
performance metrics of 10 RF models using those parameters were:
(1) mean accuracy of 90.48%, (2) mean sensitivity of 44.36%, and (3)
mean specificity of 97.61%. Optimizing for accuracy, the ideal
parameters for the LCDR3 RF model were found to be a 65%

sampling ratio of the TR data set, mtry of 2, and ntree of BQO. Once
¥ )
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again, the performance metrics of 10 LCDR3 RF models using those
parameters were: (1) mean accuracy of 86.47%, (2) sensitivity of
55.98%, and (3) specificity of 94.90%.
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Table 10. Accuracy score distributions of random forest (RF),
regularized discriminant analysis (RDA), linear discriminant analysis
(LDA), support vector machines (SVM), naive bayes (NB), AdaBoost
Classification Trees (ADA) for HCDR3 binding reactivity predictions.

Models Min. 1" Qu. Median Mean 3" Qu. Max
RF 0.851 0.868 0.896 0.895 0.918 0.962
RDA 0.830 0.867 0.884 0.882 0.906 0.924
LDA 0.830 0.849 0.858 0.859 0.865 0.907
SVM 0.833 0.849 0.851 0.858 0.865 0.886
NB 0.773 0.830 0.847 0.847 0.886 0.905
ADA 0.132 0.134 0.148 0.143 0.150 0.150

8 2



Table 11. Kappa score distributions of RF, RDA, LDA, SVM, NB, and
ADA for HCDR3 binding reactivity predictions.

Models Min. 1" Qu. Median Mean Srd Qu. Max
RF 0.149 0.367 0.426 0.446 0.564 0.835
RDA -0.034 0.195 0.306 0.308 0.488 0.629
LDA -0.034 0.000 0.000 0.040 0.000 0.505
SVM -0.034 0.000 0.000 0.026 0.000 0.224
NB 0.015 0.133 0.301 0.290 0.434 0.612
ADA 0.000 0.000 0.000 0.000 0.000 0.000
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Table 12. Accuracy score distributions of RF, RDA, LDA, SVM, NB,
and ADA for LCDR3 binding reactivity predictions.

Models Min. 1" Qu. Median Mean Srd Qu. Max
RDA 0.826 0.846 0.876 0.872 0.898 0.924
RF 0.803 0.846 0.849 0.857 0.867 0.943
LDA 0.769 0.788 0.803 0.804 0.826 0.846
NB 0.750 0.776 0.805 0.802 0.825 0.865
SVM 0.769 0.769 0.773 0.774 0.773 0.788
ADA 0.115 0.169 0.180 0.182 0.210 0.230
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Table 13. Kappa score distributions of RF, RDA, LDA, SVM, NB, and

ADA for LCDR3 binding reactivity predictions.

Models Min. 1" Qu. Median Mean Srd Qu. Max
RDA 0.338 0.476 0.596 0.579 0.675 0.755
RF 0.214 0.482 0.532 0.535 0.586 0.833
LDA 0.000 0.122 0.135 0.195 0.259 0.434
NB 0.000 0.156 0.235 0.244 0.340 0.523
SVM 0.000 0.000 0.000 0.000 0.000 0.000
ADA -0.251 -0.178 -0.141 -0.130 -0.070 0.000
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Figure 19. Evaluation of 6 prediction models using training data sets.
RF: random forest, RDA: regularized discriminant analysis, LDA:
linear discriminant analysis, NB: naive bayes, SVM: support vector
machine, ADA: AdaBoost classification trees. Accuracy and Cohen’s
kappa value were calculated and plotted as an evaluation metric.
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Measurement of the Minimum Depth Value of a Predictor Variable

The minimum depth of a predictor variable can be interpreted as
a measure of the variable importance. We extracted the minimum
depth value of each predictor variable from the 500 decision trees
that compromised our RF model. Of note is that, in our HCDR3 RF
model, our predictor variable representing CDR3 clonal abundance in
round 3 of bio—panning was most likely to appear at the root node of

our decision trees appearing in 360 instances out of our 500 decision

trees, and, consequently, had the lowest mean minimum depth of 0.46.

In our LCDR3 RF model, our predictor variable representing CDR3
clonal abundance in round 4 of bio—panning was most likely to appear
at the root node of our decision trees appearing in 195 instances out
of 500 decision trees and, consequently, had the lowest minimum
depth of 1.16 (Figure 20). In accordance with these observations, the
Shannon entropy (SE) representing clonal diversity dropped at round
3 in the case of HCDR3 clonotypes while the SE of LCDR3
significantly dropped at round 4 (Table 14 and Figure 21).

We also observed the interaction of our predictor variables
taking place within the decision trees. Variable interactions are
regarded as taking a sub-tree of two nodes and considering it as a

single node. We can then look at the minimum depth value of that

sub—tree to gauge the interaction’s importance in classifying its input.

In our HCDR3 RF model, the top four most influential interactions all

involved clonal abundance in round 3 of bio—panning as the root node.

The most influential interaction took place between round 3 and
round 1 with a minimum depth value of 0.84 (Table 15). In our

LCDR3 RF model, three of the top four most influential interactions

involved clonal abundance in round 4 of bio—panning as the root node.

The most influential interaction took place between round 4 and
round O with a minimum depth value of 1.18 (Table 16). Using the
training data set, the clonal abundance of HCDR3 clonotype in round
3 and round 1 and that of LCDR3 clonotype in round 4 and round O
were plotted in Figure 22a and 22b, which shows significant

correlation.
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Figure 20. Distribution of the minimum depth of predictor
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individual decision trees in the RF prediction model for CDR3
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Table 14. Biopanning titer following four rounds of biopanning.

0.05% PBST antigen: mouse c-Met
L input titer (PFU/mL) | output titer (PFU/mL)
Round 0 - 4.96 x 10°
Round 1 x1 2.44 x 10" 6.26 x 10’
Round 2 x3 3.28 x 10" 8.80 x 10"
Round 3 x 3 251x10" 1.12x 10"
Round 4 x5 2.68 x 10" 1.24 x 10’
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diversity index
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Figure 21. Shannon’s entropy (SE) change following biopanning
procedure. Yellow and blue dots represent SE of LCDR3 and HCDR3,

respectively.
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Table 15. Mean—minimal depth of each variables and interaction

(HCDR3).

root_variable variable mean_min_depth  occurrences interaction

HCDR3.R3 HCDR3.R1 0.836608 470 HCDR3.R3:HCDR3.R1.
HCDR3.R3 HCDR3.RO 1.232051 460 HCDR3.R3:HCDR3.RO.
HCDR3.R3 HCDR3.R4 1.381857 474 HCDR3.R3:HCDR3.R4.
HCDR3.R3 HCDR3.R2 1.489798 471 HCDR3.R3:HCDR3.R2.
HCDR3.R3 HCDR3.R3 1.554127 462 HCDR3.R3:HCDR3.R3.
HCDR3.RO HCDR3.R3 1.873671 379 HCDRO.R3:HCDR3.R3.
HCDR3.R4 HCDR3.R4 1.922962 416 HCDR3.R4:HCDR3.R4.
HCDR3.R1 HCDR3.R3 1.952568 399 HCDR3.R1:HCDR3.R3.
HCDR3.R1 HCDR3.R4 2.054730 407 HCDR3.R1:HCDR3.R4.
HCDR3.R4 HCDR3.R3 2.058536 397 HCDR3.R4:HCDR3.R3.
HCDR3.R4 HCDR3.R2 2.191051 403 HCDR3.R4:HCDR3.R2.
HCDR3.R1 HCDR3.R3 2.335815 402 HCDR3.R1:HCDR3.R3.
HCDR3.RO HCDR3.R4 2.371460 367 HCDR3.RO:HCDR3.R4.
HCDR3.R1 HCDR3.R1 2.412306 388 HCDR3.R1:HCDR3.R1.
HCDR3.R1 HCDR3.R2 2.414817 401 HCDR3.R1:HCDR3.R2.
HCDR3.RO HCDR3.R2 2.527646 375 HCDR3.RO:HCDR3.R2.
HCDR3.R2 HCDR3.R4 2.534346 296 HCDR3.R2:HCDR3.R4.
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Table 16. Mean—minimal depth of each variables and interaction

(LCDR3).

root_variable variable mean_min_depth  occurrences interaction
LCDR3.R4 LCDR3.RO 1.180377 444 LCDR3.R4:LCDR3.RO
LCDR3.R4 LCDR3.R2 1.428251 446 LCDR3.R4:LCDR3.R2
LCDR3.R3 LCDR3.RO 1.465202 426 LCDR3.R3:LCDR3.RO
LCDR3.R4 LCDR3.R1 1.486852 432 LCDR3.R4:LCDR3.R1
LCDR3.R4 LCDR3.R3 1.549865 436 LCDR3.R4:LCDR3.R3
LCDR3.R3 LCDR3.R1 1.555740 431 LCDR3.R3:LCDR3.R1
LCDR3.R3 LCDR3.R4 1.632188 427 LCDR3.R3:LCDR3.R4
LCDR3.R4 LCDR3.R4 1.633327 435 LCDR3.R4:LCDR3.R4
LCDR3.R3 LCDR3.R3 1.720592 430 LCDR3.R3:LCDR3.R3
LCDR3.RO LCDR3.R2 1.785722 428 LCDR3.R3:LCDR3.R2
LCDR3.R1 LCDR3.R4 1.932578 391 LCDR3.RO:LCDR3.R4
LCDR3.R1 LCDR3.R4 1.944619 385 LCDR3.R1:LCDR3.R4
LCDR3.RO LCDR3.R3 2.245964 377 LCDR3.R1:LCDR3.R3
LCDR3.R2 LCDR3.R3 2.255933 375 LCDR3.RO:LCDR3.R3
LCDR3.R2 LCDR3.R3 2.256614 371 LCDR3.R2:LCDR3.R3
LCDR3.R2 LCDR3.R1 2.276000 370 LCDR3.R2:LCDR3.R1
LCDR3.R2 LCDR3.R4 2.279314 377 LCDR3.R2:LCDR3.R4
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Measurement of the Minimum Depth Value of a Predictor Variable

Of the 860,207 HCDR3 clonotypes fed into the RF model, 5,780
clonotypes were predicted to be AR. Of the 443,292 LCDRS3
clonotypes, 34,703 clonotypes were predicted to be AR. The
confidence value of the RF model for each prediction was also
obtained. For HCDR3 and LCDR3, 1.70% (98/5,780) and 0.16%
(58/34,703) of clonotypes, respectively, were predicted to be AR
with a confidence value of more than 0.9. Meanwhile, 0.56%
(4,825/854,427) of HCDRS3 clonotypes and 41.14% (168,116/408,589)
of LCDR3 clonotypes were predicted to be NR with a confidence
value over 0.9. When CDR3 clonotypes were visualized with the most
important variable interactions together including a confidence value
(Figure 22c¢), clonotypes with higher confidence values were
distributed near the axis of the most important variable akin to the

distribution of AR clonotypes in the training data set.
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Figure 22. The most influential variable interactions and
distributions of CDR3 clonotypes. (a) Clonal abundance at the
most influential interaction is plotted with binding property label
from training data used in the random forest (RF) prediction
AR, NR, (b)

Clonal abundance at the most influential interaction is plotted

model. antigen-reactive, antigen non-reactive.
with a binding property label from validation data used in the RF
prediction model. (¢) Clonal abundance at the most influential
interaction is plotted with confidence value (probability) from
HiSeq-identified CDRS3

confidence values are distributed near the root variable axis
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(highlighted with a dashed blue circle) while clonotypes having
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lower confidence values are distributed below the y = x axis
(dotted line) (highlighted with a dashed red circle).
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Antigen Reactivity Validation of In Silico CDR3 Clonotypes in
Phage ELISA

We selected 40 HCDR3 AR, 40 LCDR3 AR, 10 HCDR3 NR, and 10
LCDR3 NR clonotypes with the highest confidence values of which
whole Vy or VL gene sequences were available from the NGS data
generated from five sets of phagemid DNA using the MiSeq platform
(Table 17, 18). After whole Vuy and VL. genes were chemically
synthesized, Vu and VL genes of AR clonotypes were used to
construct the AR phage-displayed scFv library. In a parallel
experiment, the NR phage-displayed scFv library was also
constructed using the same scheme. After a single round of bio-
panning on antigen—-coated magnetic beads, 96 phage clones were
randomly selected from the output titer plate of the AR library and
subjected to phage ELISA. Fifteen phage clones were found to be AR,
which turned out to be 14 scFv clones consisting of five HCDR3 and
11 LCDR3 clonotypes by Sanger sequencing (Figure 23, Table 19).
AR5 and ARG6 phage clones encoded the same scFv sequence. It was
noticeable that three LCDR3 clonotypes were paired with two
different HCDRS3 clonotypes as in AR1 and AR13, AR2, and AR7, and
AR4 and AR14 phage clones showing light chain redundancy. In a
parallel experiment, no AR clones were identified from 96 phage
clones from the NR library. Sixteen clones were randomly selected
and Sanger sequencing was performed to find 13 HCDR3 and nine
LCDR3 clonotypes. With these results, we concluded that our RF
model can be used to select HCDR3 and LCDR3 AR clonotypes with a
significant hit ratio.

We then further validate the RF model by comparing positive rate,
clonal diversity and frequency with the conventional colony
screening method. As a result, RF model shows higher clonal
diversity and positive rate than conventional method either in HCDR3
and LCDR3 (Table 20). Clonal frequency distribution of binder and
non-binder clones were compared from each round of bio-panning
(Figure 24). At each selection round, frequency distributions were

similar between binder and non-binder groups, but frequency ratio of
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round 1 to 3 showed different pattern in two groups (Figure 25). This
result is compatible with the feature importance value observed in RF
prediction model. We inferred that RF model generated predicted
binders having diverse enrichment pattern, and the result is
originated from training data with high clonal frequency wvariation.
However, it is impossible to explain the reason why frequency ratio
of round 1 to 3 mostly impacted on the prediction results, which is

the intrinsic feature of the supervised learning algorithm.
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Table 17. Predicted clones with HCDR3, full variable domain
sequences with prediction results and confidence value.

Selected
Clone ID
HCDR3

Mapped VH

Prediction

Probability
AVTLDESGGGLQTPGGTLSLVCKASGFTESSYNMGWVRQAPG
RFAR1

SAGIGGDCIDA

KGLEWVAAISNDGSSTGYATAVKG

AR 0.99
RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKSAGIGGDCIDA
WGHGTEVIVSS

AVTLDESGGGLQTPGGTLSLVCKASGFTFSSFNMEWVRQAPG
CADTGYGCAYCID
RFAR2

KGLEFVASISNTGSYTKYGAAVKG
A

AR 0.99
RATISRDDGQSTVRLQLNNLRAEDTGTYYCTRCADTGYGCAYC
IDAWGHGTEVIVSS

AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQAPG
TAGTCTTSCNAG
RFAR3

KGLEFVASISNTGSTTGYGPAVKG
AYIDA

AR 0.96
RATISRDDGQSTVRLQLNNLRAEDTATYFCAKTAGTCTTSCNA
GAYIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGTLSLVCKASGFSFSSFYMFWVRQAPGK
AVGFACGWCSAGI GLEFVAQISSTGSSTDYGSAVKG
RFAR4
DA RATISRDNGQSTLRLQLNNLRAEDTGTYFCAKAVGFACGWCSA

AR 0.96
GIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGGLSLVCKASGFTFTDYGMGWMRQAPG
SADSCATCATYPS KGLEYVAGISNDGSSVAYGSAVKG
RFARS AR 0.95
EIDT RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSADSCATCATY
PSEIDTWGHGTEVIVSS

AVTLDESGGGLQTPGGALSLVCKASGFTENNYAMNWVRQAPG
SGSNWWADSTGN KGLEYVAAISSSASYTNYGAAVKG
RFAR6
VDA

95
RATISRDNGQSTVRLQLNNLRAEDTATYYCAKSGSNWWADST A 00
GNVDAWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSYNMGWVRQAPG
KGLEWVAGIYSGNRTYYAPAVKG
RFAR7 SPGGYCCAGWIDA

AR
RATISRDNGQSTVRLQLNNLRAEDTATYFCARSPGGYCCAGWI

0.95
DAWGHGTEVIVSS

AVTLDESGGGLQTPGGALSLVCKASGFTFSDYDMAWVRQAPG
KGLEFVAGITSDGSNTGYGSAVKG
RFAR8 SPGAFTYVSGIDA

AR 0.95
RATISRDNGQSSVRLQLNNLRAEDTGTYICARSPGAFTYVSGID
AWGHGTEVIVSS

AVTLDESGGGLQTPGRALSLVCKASGFTF!
SVTGCGGDYAWC
RFAR9

SFNMFWVRQAPG

KGLEYVAAISSTGSYTKYGAAVQG
AR 0.95
AFGDLDHIDA RATISRDNGQSTVRLQLNNLRAEDTSTYFCAKSVTGCGGDYAW
CAFGDLDHIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFSISSYGMGWMRQAPGK
ASGGGYCSWGACI GLEFVASISNTGSYTNYGSAVKG
RFARI0 AR 0.95
VAWIGT RATISRDNGQSTVRLQLNNLRAEDTATYYCAKASGGGYCSWG
ACIVAWIGTWGHGTEVIVSS
RFARI1 TTVISCGTLCAGH ~ AVTLDESGGGLQTPGGTLSLVCKASGFSFSSFYMFWVRQAPGK AR

0.95
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RFAR12

RFAR13

RFAR14

RFARIS

IDA

GASSGSGCAGGLC

AGEIDA

GSGGVDSIDA

TADDGNCCGGDNI

DA

AYSGGFYCAGSLC

AAHAGLIDA

GLEFVAQISNTGSSTDYGSAVKG

RATISRDNGQSTVRLQLNNLRAEDTAIYYCAKTTVISCGTLCAG

HIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMGWMRQAPG

KGLEWVADINSAGSSTNYGAAVKG

RATISRDNGQSTVRLQLNNLRAEDTGIYFCAKGASSGSGCAGGL

CAGEIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGAFSLVCKGSGFTFSSFNMEFWVRQAPG

KGLEYVAGIYYSGSGTGNGAAVKG

RATISRDNGQSTVRLQLNNLRAEDTGTYYCARGSGGVDSIDAW

GHGTEVIVSS

AVTLDESGGGLQTPGGGLSLVCKASGFTFSDYGMGWVRQAPG

KGLEWVAGIYTGSYTGYGSAVKG

RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTADDGNCCGG

DNIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGALSLVCKASGFTFSSYGMFWVRQAPG

KGLEWIAGISNSGSYTAYGAVDG

RATISRDNGQSTLRLQLNNLRAEDTATYYCAKAYSGGFYCAGS

LCAAHAGLIDAWGHGTEVIVSS

AR

AR

AR

AR

0.95

0.95

0.95

0.95

(continued)

Clone ID

Selected HCDR3

Mapped VH

Prediction

Probability

RFAR16

RFAR17

RFAR18

RFAR19

RFAR20

RFARZ21

AAASGCAGDNIDA

STSDYGGWYGADLD

SIDA

TADGGWEFGNSAGSI

DA

TSGYCGWCGAYNID

A

SANSGRSASQMDA

GGSGYCGWSGYSCV

GEIDA

AVTLDESGGGLQTPGGALSLVCKASGFTFSDYGMGWMR
QAPGKGLEFVAGIGNTGSWTAYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTATYYCAKAAASGCA

GDNIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQ
APGKGLEWVAQISGDGSTYYAPAVQG
RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKSTSDYGG
WYGADLDSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFSISSYTMQWVRQ
APGKGLEWVAGISSSGRYTDYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTGIYFCAKTADGGWF
GNSAGSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFTFSSFNMFWVRQ
APGKGLEYVAEISSTGSWTGYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTSGYCGW
CGAYNIDAWGHGTEVIVSS
AVTLDESEGGLQTPGGALSLVCKASGFTFSDYAMGWVR
QAPGKGLEYVASIRGAGSSDTSYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKSANSGRS
ASQMDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSSYGMHWVR
QAPGKGLEWVAGIYSGGGNTYYAPAVKG

RATISRDNGQSTVRLQLNDLRAEDTATYYCTRGGSGYCG
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AR

AR

AR

AR

AR

AR

0.95

0.95

0.95



RFAR22

RFAR23

RFAR24

RFAR25

RFAR26

RFAR27

RFAR28

RFAR29

RFAR30

ATGTGYYGSDSYVS

SIDA

SDISWCAWCATDLG

QIDA

GAYGHCSGSWCSAG

LIDA

DVYGWCASDCGGSD

TIDA

SAAGYGCTYGSGYG

WCVNYIDA

AAACSGNDCAALLA

AGIDA

DDSSCIWNTGCTGLI

DE

SADGYGWDTAGNM

DA

SGTGKYTTGQIDA

WSGYSCVGEIDAWGHGTEVIVSS

AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSYDMYWVRQ
APGKGLEYVAVISSDGRYTNYGSAVKG
RATISKDNGQSTVRLQLNNLRAEDTGTYYCAKATGTGYY
GSDSYVSSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSFNMFWVRQ
APGKGLEYVASISSADIWTGYGSAVKG
RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKSDISWCA
WCATDLGQIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFNFSSYQMNWIRQ
APGKGLEFVAAINRFGNSTGYAAAVKG
RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKGAYGHCS
GSWCSAGLIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFSISSYGMFWVRQ
APGKGLEFVAGISSSGRHTDYGSAVKG
RATISRDNGQSTMRLQLNNLRAEDTGTYFCAKDVYGWC
ASDCGGSDTIDAWGHGTEVIVSS
AVTLDESGGGLQTPGRALSLVCKASGFTFSSFNMFWVRQ
APGKGLEFVAAISSSGRYTGYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTAIYFCAKSAAGYGCT
YGSGYGWCVNYIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSYAMNWVR
QAPGKGLEWVGVISDSGNTPKYGPAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKAAACSGN
DCAALLAAGIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMFWVR
QAPGKGLEWVAEISTTGRYTNYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKDDSSCIW
NTGCTGLIDEWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSNAMGWMR
QAPSKGLEFVAAISSSGSGTYYGAAVKG
RATISRDDGQSTVRLQLNNLRAEDTAIYFCAKSADGYGW
DTAGNMDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSFNMFWVRQ
APGKGLEYVAEITSGGSYTYYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSGTGKYT

TGQIDAWGHGTEVIVSS

AR

AR

AR

AR

AR

AR

AR

AR

AR

0.95

0.95

0.95

0.95

0.95

0.95

0.95
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(continued)

Selected
Clone ID Mapped VH Prediction Probability
HCDR3
AVTLDESGGGLQTPGGTLSLVCKASGFTFSSYGMNWVRQAPGKG
TTDSAYCCAGEID LEYVAAISSTGTTTNYGSAVKG
RFAR31 AR 0.95
T RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKTTDSAYCCAGEID
TWGHGTEVIVSS
AVTLDESGGGLQTPGRALSLVCKASGFTENTYTMFWVRQAPGKG
TATTCTGCWAGID LEFVAGIDNTGSSTGYGPAVQG
RFAR32 AR 0.95
SIDA RATISRDNGQSTVRLQLNNLRAEDTATYYCAKTATTCTGCWAGL
DSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGRALSLVCKASGFTENTYTMFWVRQAPGKG
SAADYTCGNGGGS LEWVAQTSNTGRYTAYGPAVKG
RFAR33 AR 0.95
CAGSIDA RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKSAADYTCGNGGGS
CAGSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFSFSSYDMLWVRQAPGKG
TTGSDYCTLCTGG LEFVGVISSSGRYTSYGAAVKG
RFAR34 AR 0.95
IDA RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTTGSDYCTLCTG
GIDAWGRGTEVIVSS
AVTLDESGGGLQTPGGGLSLICKASGFTFSDYGMGWMRQAPGKG
GGGSDSCTACAGS LEYVGVISSSGSTTRYGSAVKG
RFAR35 AR 0.95
DA RATISRDNGQSTVRLQLNNLRAEDTGIYYCTRGGGSDSCTACAGSI
DAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFTFSSFYMFWVRQAPGKG
LEYVAQISGDGSWTYYGSAVKG
RFAR36 AAGDSGYAGRIDA AR 0.95
RATISRDNGQSTVRLQLNNLRAEDTGIYYCAKAAGDSGYAGRIDA
WGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFTISDYGMGWVRQAPGKG
TTCSGSYGWCADS LEYVAQINSAGSYPKYGAAVKG
RFAR37 AR 0.95
IDA RATISKDNGQSTVRLQLNNLRAEDTATYYCAKTTCSGSYGWCAD
SIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFTFSDYQMNWIRQAPGKG
SATTGGAWAGEID LEWVAGISSGGGYTYYGSAVKG
RFAR38 AR 0.95
T RATISRDNGQSTVRLQLNNLRAEDTGIYFCGKSATTGGAWAGEID
TWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKGSGFTFSSYAMFWVRQEPGKG
GCAGCGWSAARID LECVGYINNDGSSTWYATAVKG
RFAR39 AR 0.95
A RATISRDNGQSTVRLQLNNLRAEDTATYYCARGCAGCGWSAARID
AWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFTFSSYAMNWVRQAPGKG
DTNRDCHSDADSI LEWVGGIGSTGSGTYYAPAVQG
RFAR40 AR 0.95
DA RATISRDNGQSTVRLQLNNLRAEDTGTYYCAKDTNRDCHSDADSI
DAWGHGTEVIVSS
RENR1 DAYGYNGWRAGSI  AVTLDESGGGLQTPGGTLSLVCKGSGFTFSSVNMAWVRQAPGKG NR 0.00
.
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RENR2

RFNR3

RENR4

RFNRS

RFNR6

RFNR7

RFNR8

RFNR9

RFNR10

DA

NSGSGGWITDTGR

IDA

SADNGWNTAGRID

A

AAGSGTGWSAGGI

DA

SGDAATPDAGGID

A

SGYGGYDGSNIDA

ATYAGSGCCDNID

A

GACGGGCYTATFI

GTIDV

SAAGYGCAYGWC

GDSIDA

AAGTCYGCSFYAT

NIDA

LEFVAEISSDAGSWTAYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKDAYGYNGWRAGSI
DAWGHGTEVIVSS
AVTLDESGGGLQMPGGALSLVCKASGFTFSSYEMQWVRQAPGKG
LEWVAGIYSGGTTTSYGPAVKG
RATISRDDGQSTVRLQLNNLRAEDTGTYYCAKNSGSGGWITDTGR
IDAWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLICKASGFTFSSVNMGWVRQAPGKG
LEFIAQITSRGSSTYYAPAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYYCARSADNGWNTAGRI
DAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKGSGFTFNSYAMQWVRQAPGKG
LEWVAGISGSGSYTAYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTATYYCAKAAGSGTGWSAGGI
DAWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKGSGFTFSSFNMFWVRQAPGKG
LEFVAAINSGGRYTGYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTGIYYCARSGDAATPDAGGID
AWGHGTEVIVSS
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSHGMGWVRQAPGKG
LEWVAGIYSGGRYTYYGAAVKG
RATISRDNGQSTVRLQLNNLRAEDTAIYYCAKSGYGGYDGSNIDA
WGHGTEVIVSS
AVTLDESGGGLQTPGGVLSLVCKASGFDFSNNDMAWVRQAPGK
GLEFVADISSGGGSYTYYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTATYFCARATYAGSGCCDNID
AWGHGTEVIVSS
AVTLDESGGGLQTPGGTLSLYCKGSGFTFSSVNMGWMRQAPGK
GLEYVAEISGSGSWTYYAPAVKG
RATISRDNGQSTVRLQLNNLRAEDTGTYFCAKGACGGGCYTATFI
GTIDVWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKASGFSISSYDMAWVRQAPGKG
LEFVAGIYSGTTTAYGAAVKG
RATISRDDGQSTVRLQLNNLRAEDTATYYCAKSAAGYGCAYGWC
GDSIDAWGHGTEVIVSS
AVTLDESGGGLQTPGGALSLVCKGSGFTFSSVNMFWVRQAPGKG
LEWVAGIDNTGRYTSYGSAVKG
RATISRDNGQSTVRLQLNNLRAEDTAIYFCAKAAGTCYGCSFYAT

NIDAWGHGTEVIVSS

NR

NR

NR

NR

NR

NR

NR

NR

NR

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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Table 18. Predicted clones with LCDR3, full variable domain
sequences with prediction results and confidence value.

Clone
Selected LCDR3 Mapped Vi Prediction  Probability
D
LTQPSSVSANLGGTVKITCSGGSGDYGWYQQKSPGSAPVTVIYWDDERPSGIPS
RFAR1 GNYDGSSSVGI AR 0.99
RFSGSTSGSTNTLTITGVQADDEAVYFCGNYDGSSSVGIFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYYNTNRPSDIPS
RFAR2 GSRDSTLAA AR 0.99
RESGSKSGSTGTLTITGVQAEDEAVYFCGSRDSTLAAFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYNDNQRPSNIPS
RFAR3 GSYDSSYVGYVGV AR 0.99
RFSGALSGSTATLTITGVQAEDEAVYYCGSYDSSYVGYVGVFGAGTTLTVL
LTQPSSVSANPGGTVEITCSGGSGSYGWFQQKAPGSAPVTLIYANTNRPSDIPS
RFAR4 GNKDN AR 0.99
RFSGSKSGSTNTLTITGVQADDEAVYYCGNKDNFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSYYGWYQQKSPGSAPVTLIYNNDKRPSDIPS
RFAR5 GGYDSTYAGL AR 0.99
RFSGSKSGSTGTLTITGVRAEDEAVYYCGGYDSTYAGLFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGGSSSYYGWYQQKSPGSAPV TLIYESNKRPSDIPS
RFAR6 GTADSSGTV AR 0.99
RFSGSKSGSTATLTITGVQADDEAVYYCGTADSSGTVFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKSPGSAPVTVIYYNTNRPSDIPS
RFAR7 GSRDSSYVPI AR 0.99
RFSGSKSGSTHTLTITGVRAEDEAVYFCGSRDSSYVPIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGSRNSYGWYQQKSPGSAPVTVIYWNSNRPSGIPS
RFAR8  GSWDSSSEGDSGYAGI AR 0.99
RESGSTSGSTGTLTITGVQADDEAVYYCGSWDSSSEGDSGYAGIFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGGSSGYGWYQQKSPGSAPVTVIYSNTNRPSDIPS
RFAR9 GAYDSSYIGI AR 0.99
RFSGSKSGSTGTLTITGVQAEDEAVYYCGAYDSSYIGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSGNYGWYQQKSPGSAPVTVIYDSSSRPSDIPS
RFAR10 GSFDSSYVGM AR 0.99
RFSGSTSGSTSTLTITGVQADDEAVYYCGSFDSSYVGMFGAGTTLTVL
LTQPSSVSANPGETVKLICSGSSGDYGWYQQKSPGSAPVTVIYDNTNRPSNIPS
RFAR11 GSIDSNYDGI AR 0.99
RFSGSLSGSTNTLSITGVQVEDEAVYFCGSIDSNYDGIFGAGTTLTV
LTQPSSVSANPGETVEITCSGSSSGYGYGWYQQKSPGSAPVTLIYSNDKRPSDIPS
RFAR12 GSRDNSSAST AR 0.99
RFSGSKSGSTGTLTITGVRAEDEAVYFCGSRDNSSASTFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSNNYGWYQQKSPGSAPYVTVIYDNTNRPSDIPS
RFAR13  GSFDSSSDSGYVGI AR 0.99
RESGSASGSASTLTITGVQADDEAVYYCGSFDSSSDSGYVGIFGAGTALTVL
LTQPSSVSANLGGTVEITCSGGSSNEYGWYQQKAPGSAPVTLIYDNTNRPSDIPS
RFAR14 GSYDSSYVGL AR 0.98
RFSGSKSGSTGTLTIAGVQAEDEAVYFCGSYDSSYVGLFGAGTTLTVL
LTQPSSVSAKPGGTVEITCSGGSGSYGWFQQKSPGSAPVTLIYANTNRPSDIPS
RFAR15 GSTDSSNTDI AR 0.98
RESGSKSGSTATLTITGVQAEDEAIYYCGSTDSSNTDIFGAGTTLTVL
ey
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(continued)

Clone Selected
Mapped Vy Prediction Probability
ID LCDR3
LTQPSSVSANPGETVKITCSGSSGSYGWYQQKSPGSAPVTVIYYNDKRPSDIPS
RFAR16 GSRAGSSI AR 0.98
RFSGSKSGSTGTLTITGVQAEDEAVYFCGSRAGSSIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGSSGYGYGWYQQKSPGSAPVTVIYYNDKRPSNIPS
RFAR17 GSYDSSYDGV AR 0.98
RESGSKSGSTATLTITGVRADDEAVYFCGSYDSSYDGVFGAGTTLTVL
LTQPSSVSANLGETVKITCSGGSGSYGWFQQKSPGSAPVTVIYSNDKRPSDIPS
RFARI8  GNGDRSSTTGI AR 0.97
RFSGSKSGSTGTLTITGVQADDEAVYYCGNGDRSSTTGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSYKYGWFQQKSPGSAPVTVIYYNDKRPSNIPS
RFAR19 GNEDISGI AR 0.97
RFSGSKSGSTATLTITGVQADDEAVYYCGNEDISGIFGAGTSLTVL
LTQPSSVSANLGGTVKITCSGSSGSYGYGWYQQKSPGSAPVTVIYSNNQRPSNIPS
RFAR20 GSFDSSYTGI AR 0.97
RFSGSTSGSTGTLTITGVRAEDEAVYYCGSFDSSYTGIFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGSSGSYGWYQQKSPGSAPVTLIYQNTKRPSDIPS
RFAR21L GSTDSSRTDT AR 0.97
RFSGSKSGSTGTLTITGVQAEDEAVYYCGSTDSSRTDTFGAGTTLTVL
LTQPSSVSANLGETVKITCSGGSYSYGWYQQKAPGSAPVTLIYDNTNRPSDIPS
RFAR22 GSIDSRYVGI AR 0.97
RFSGSKSGSTHTLTITGVQADDEAVYFCGSIDSRYVGIFGAGTTLTVL
LTQPSSVSANPGGTVEITCSGGSGNNYGWFQQKSPGSTPVTVIYNNDKRPSDIPS
RFAR23 GGYDGSSAA AR 0.97
RFSGSKSGSTATLTITGVQADDEAVYYCGGYDGSSAAFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSSGYGYGWFQQKSPGSAPVTLIYYNDKRPSDIPS
RFAR24 ANYDSSTDI AR 0.97
RFSGSTSGSTSTLTITGVQADDEAVYYCANYDSSTDIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSGSYGWYQQKSPGSAPVTVIYYNYKRPSDIPS
RFAR25  GSYDSTYAGM AR 0.97
RFSGSASGSTATLTITGVQAEDEAVYYCGSYDSTYAGMFGAGTTLTVL
LTQPSSVSANPGGTVEITCSGSSGSYGWYQQKSPGSAPVTLIYANTNRPSNIPS
RFAR26  GSGDSSGTEAA AR 0.97
RFSGSTSGSTATLTITGVQADDEAVYYCGSGDSSGTEAAFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSYGYSWHQQKSPGSAPVTVIYSSNQRPSDIPS
RFAR27  GSEDSSGAGYVGI AR 0.96
RFSGSTSGSTATLTITGVQADDEAVYFCGSEDSSGAGYVGIFGAGT TLTVL
LTQPSSVSANPGETVKITCSGSTSTYYGWYQQKSPGSAPVTLIYNNNNRPSDIPS
RFAR28  GGFDSTDSGYAGI AR 0.96
RFSGSTSGSTNTLTITGVRAEDEAVYYCGGFDSTDSGYAGIFGAGTTLTVL
LTQPSSVSANPGETVEITCSGDSSYYGWYQQKSPGSAPVTVIYDNTNRPSDIPS
RFAR29 GSADTKYVGI AR 0.96
RFSGSLSGSTNTLTITGVQVEDEAIYFCGSADTKYVGIFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGGGSYYGWYQQKAPGSAPVTLIYWNDNRPSDIPS
RFAR30  GSRDSSYLDSGI AR 0.95
RFSGSKSGSTATLTITGVQADDEAVYYCGSRDSSYLDSGIFGAGTTLTVL
.
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(continued)

Clone
Selected LCDR3 Mapped Vi, Prediction Probability
ID
LTQPSSVSANLGETVKITCSGGSGNYGWFQQKAPGSAPVTVIYYDDERPSNIPS
RFAR31 GTWDSNTYA AR 0.95
RFSGSTSGSTSTLTITGVQVEDEAVYFCGTWDSNTYAGIFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGGSGSY GWFQQKSPGSVPVTVIYDSSSRPSDIPS
RFAR32 GSYEDSSYVGI AR 0.95
RFSGSKSGSTGTLTITGVQAEDEAVYFCGSYEDSSYVGIFGAGTTLTVL
LTQPSSVSANPGETAKITCSGGYRSYGWYQQKSPGSAPVTLIYSNNQRPSSIPS
RFAR33 GSYVSGKYDGI AR 0.95
RFSGSVSVFTHTLTITGVQAEDEAVYYCGSYVSGKYDGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSGRYGWFQQKSPGSAPVTVIYWDDERPSNIPS
RFAR34 GTADSSTEAI AR 0.95
RFSGSTSGSTNTLTITGVQVEDEAVYFCGTADSSTEAIFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSGSYGWYQQKAPGSAPVTVIYANTNRPSNIPS
RFAR35 GSYDNTYAGI AR 0.95
RFSGSKSGSTNTLTITGVQAEDEAVYFCGSYDNTYAGIFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGSSSNNYGWYQQKSPGSTPLTLIYWNDKRPSDIPS
RFAR36 GGYDSSSSSAV AR 0.95
RFSGSTSGSTATLTITGVQAEDEAVYFCGGYDSSSSSAVFGAGTTLTVL
LTQPSSVSANPGETVEITCSGSRTGYGWFQQKSPGSAPVTLIYGSNKRPSNIPS
RFAR37 GSYEDSNY AR 0.95
RFSGSKSGSTSTLTITGVQAEDEAVYFCGSYEDSNYFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGGSSGYYGWYQQKSPGSAPVTLIYSNNQRPSNIPS
RFAR38 GSFDSSYSGI AR 0.95
RFSGSGSGSTGTLTITGVRAEDEAVYFCGSFDSSYSGIFGAGTTLTVL
LTQPSSVSANPGETVEITCSGDSNYYGWYQQKAPGSAPVTLIYANTNRPSNIPS
RFAR39 GDWDSNI AR 0.95
RFSGSGSGSTNTLTITGVQAEDEAVYYCGDWDSNIFGAGT TLTVL
LTQPSSVSANPGETVKITCSGGGSSRYYGWYQQKAPGSAPVTLIYDNTNRPSNIPS
RFAR40 GGYDSSSGA AR 0.94
RFSGSKSGSTATLTITGVQAEDEAVYFCGGYDSSSGAFGAGTTLTVL
LTQPSSVSANPGETVKITCSGSSSSYYGWYQQKSPGSAPVTLIYDNTNRPSDIPS
RFNR1 GGYDGSTDAGI NR 0.00
RFSGSKSGSTATLTITGVQADDEAVYFCGGYDGSTDAGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGGSYDYGWYQQKSPGSAPVTVIYNNNKRPSDIPS
RFNR2 GSTDSSYTDSL NR 0.00
RFSGALSGSTATLTITGVQADDEAVYFCGSTDSSYTDSLFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGSGSYGWFQQKAPGSAPVTLIYANTNRPSDIPS
RFNR3 GNEDSSYAGI NR 0.00
RFSGSKSGSTATLIITGVQAEDEAVYFCGNEDSSYAGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGTYNYGWYQQKSPGSAPVTVIYDNNKRPSDIPS
RFNR4 GNYADSSST NR 0.00
RFSGALSGSTATLTITGVQADDEAVYFCGNYADSSSTFGAGTTLTVL
LTQPSSVSANLGGTVKITCSGSSDSYGWYQQKSPGSAPVTLIYESNKRPSDIPS
RFNR5 GSADSSSAGI NR 0.00
RFSGSKSGSTGTLTITGVQAEDEAVYYCGSADSSSAGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGGSYGWYQQKSPSSAPVTLIYTNTNRPSNIPS
RENR6 GSADSSGSGI NR 0.00
RFSGSKSGSTGTLTITGVQAEDEAVYFCGSADSSGSGIFGAGTTLTVL
LTQPSSVSANLGGTVEITCSGGGSYGWYQQKSPGSAPVTVIYWNDKRPSDIPS
RENR7 GSRDSSNVGI NR 0.00
RFSGSKSGSTGTLTITGVQAEDEAVYFCGSRDSSNVGIFGAGTTLTVL
LTQPSSVSANPGETVKITCSGSSGSYGWYQQKSPGSAPVTVIYSNDKRPSDIPS
RFNR8 GSYEGSSGIV NR 0.00
RESGSASGSTATLTITGVQADDEAVYYCGSYEGSSGIVFGAGTTLTVL
LTQPSSVSANPGETVKITCSGGSSYYAWYQQKSPGSAPVTVIYYNDKRPSDIPS
RFNR9  GSRDSTDSLYVGI NR 0.00
RESGSTSGSTSTLTITGVQADDEAVYFCGSRDSTDSLYVGIFGAGTTLTVL
LTQPSSVSANPGGTVEITCSGGSSNYGWFQQKAPGSAPVTVIYNNNKRPSDIPS
RFNR10 GSADSSTDSGI NR 0.00
RFSGSKSGSTGTLTITGVQADDEAVYFCGSADSSTDSGIFGAGTTLTVL
.
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Figure 23. Reactivity of phage-displayed scFv clones in phage
ELISA. Binding reactivity of 15 unique clones identified from the
AR library and 16 unique clones from the NR library are shown.
Wells in microtiter plates were either coated with recombinant
mouse c—Met or just blocked with 3% BSA in PBS. Phage clones,
HRP-conjugated anti-M13 antibody, and HRP substrate solution

were added sequentially with intermittent washing.

106 M E



Table 19. Amino acid sequences
identified from AR library.

of AR CDR3 clonotypes

Clone ID HCDR3 AA# Sequence LCDR3 AA#* Sequence
AR1 GSGGVDSIDA GSYDNTYAGI
AR2 SADGYGWDTAGNMDA GSIDSNYDGI
AR3 TAGTCTTSCNAGAYIDA GGYDGSSAA
AR4 TTCSGSYGWCADSIDA GAYDSSYIGI
AR5 SADSCATCATYPSEIDT GSFDSSYVGM
AR6 SADSCATCATYPSEIDT GSFDSSYVGM
AR7 SADSCATCATYPSEIDT GSIDSNYDGI
ARB SADSCATCATYPSEIDT GSYDSSYVGL
AR9 SADSCATCATYPSEIDT GSYDSSYDGV
AR10 SADSCATCATYPSEIDT GSFDSSYTGI
ARI11 SADSCATCATYPSEIDT GSIDSRYVGI
AR12 SADSCATCATYPSEIDT GSYDSSYVGYVGV
AR13 SADSCATCATYPSEIDT GSYDNTYAGI
AR14 SADSCATCATYPSEIDT GGYDSSSGA
AR15 SADSCATCATYPSEIDT GAYDSSYIGI

* AA: amino acid.
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Table 20. Validation of positive rate and clonal diversity from
conventional colony screening method and RF prediction model.

Species richness

Library Region Positive rate
(normalized)

149/641
scFv 4.88

(23.24%)

91/582
VH 3.28

(15.64%)

80/531
Training HCDR3 3.16

(15.07%)

145/634
VL 4.80

(22.87%)

123/524
LCDR3 4.93

(23.47%)

330/376
scFv 18.44

(87.77%)

RF
prediction VH, 15721 15

el HCDR3 (71.43%)
VL, 22/28 1654

LCDRS3 (78.57%)

scFv, single chain variable fragment; VH, variable heavy chain; HCDR3, heavy

chain complementary region 3; VL, variable light chain; LCDR3, light chain

complementary region 3.
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Figure 24. Clonal frequency distribution in the training data.
Clonal frequency of each clonotype were calculated and plotted
from entire clonotypes (A, C, E, G) and rare clonotypes
(clonotype having clonal frequency less than 0.0001) (B, D, F, G).
Yellow dots and black dots represent the non—binder and binder
clones respectively.
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Figure 25. Distribution of clonal frequency ratio in the training
data. Clonal frequency ratio of round 1 (A), 2 (B), 4 (C) to round
3 was calculated and plotted. Yellow dots and black dots
represent the non—binder and binder clones respectively.
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4.4. Discussion

Despite the promise of targeting the HGF-c—Met signaling
pathway for cancer therapy, no specific therapeutic agent has been
approved for clinical use. Small molecule inhibitors specific to c—Met
are yet to be approved, and only nonspecific tyrosine kinase
inhibitors inhibiting c-Met are available (Table 21)'*°. Recombinant
protein (truncated HGF, decoy c-Met) was not successful in clinical
trials due to several factors, including short half-life and low target
affinity limiting the intended efficacy'!. Several HGF-neutralizing
antibodies have been developed with two currently active in clinical
trials'®®. However, the inhibitory targeting of c-Met by an antibody
has been difficult since the bivalency of antibodies often induces
receptor dimerization, which potentially causes cancer cell
proliferation and migration. As such, both a monovalent form of
antibody blocking its interaction with HGF and a bivalent antibody
inducing receptor internalization have been developed and tested in
clinical trials unsuccessfully!?®'*® Recently, an anti-EGFR x c-Met
bispecific antibody monovalent to each target came under clinical
development, which should inhibit the ligand interaction and induce
the internalization of both receptors™ ¥, Besides blocking the
interaction with ligand and receptor internalization, other
mechanisms of actions for therapeutic antibody binding to targets on
cancer cells were also reported, which include complement-

1
b36

dependent cell cytotoxicity as observed in rituxima , antibody-—

dependent cell cytotoxicity seen with obinutuzumab'®’, and

138~ Antibodies are

phagocytosis of antibody—-opsonized tumor cells
also used to deliver cytotoxic payloads into cancer cells such as with
T-DM1%Y and cross-linking cancer cells to cytotoxic T cells with
blinatumomab'*’. Furthermore, antibodies are used as a cancer cell-
targeting component in chimeric antigen receptor T cell therapy, as
seen with tisagenlecleucel and axicabtagene ciloleucel®’. Additionally,
it is well known that the antibody epitope and binding characteristics
critically influence efficacy for all these various modes of action'*!!*%.

Therefore, it is crucial to develop a significant number of antibodies
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to a target and characterize their performance. However, antibody
selection technologies, including conventional hybridoma and display
technologies such as phage, ribosomal, and bacterial, all have their
own limitations regarding high—throughput capabilities.

After George P. Smith and Gregory P. Winter successfully displayed
recombinant peptides and antibodies at the plll protein of the M13

3 this powerful technology has evolved and been actively

phage!?
applied toward therapeutic antibody discovery'**'*°. Currently, over
80 antibodies derived from phage display libraries have entered
clinical studies with 10 of these granted marketing authorization'*°.
Since Ravn U et al. demonstrated the potential for NGS analysis in
the phage-displayed antibody repertoire in 2010, numerous groups
have leveraged similar strategies for discovering antibodies reactive

6L1477195 The next hurdle to overcome after the

to specific antigens
identification of in silico antibody sequences in NGS data was the
low—throughput nature of chemically synthesizing all antibody
sequences and individually testing their reactivity. Recently, we
introduced a method for combining NGS analysis and individual
antibody sequence identification with the isolation of their physical
DNA, which was named TR technology®. To reduce the burden of
expressing all of the antibodies, we also devised a way of predicting
antigen reactivity toward antigens by clustering antibody clonotypes
with their patterns of enrichment or restriction through bio—panning
rounds, and then combining TR with clustering and testing reactivity

for a significant number of clones.
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Table 21. Clinical usage of small molecule inhibitors targeting c-—

Met in cancer therapy.

Drug Name Targets FDA Approval Status Ap;)r(;(;;fed
Tivantinib c—Met, microtubule None N.A.*
Foretinib c-Met, VEGFR-2x* None N.A.

Medullary thyroid cancer
.. Advanced renal cell 2012
Cabozantinib c—Met, VEGFR, Axl . 2016

carcinoma

. 2019

Hepatocellular carcinoma

. c—Met, ALK*, ROS1, ALK or ROS-1 positive

Crizotinib RON* NSCLC 2011

Capmatinib  c¢c-Met, EGFR*, ErbB-3 None N.A.
AMG337 c—Met None N.A.
AZD6094 c-Met None N.A.

BMS777607/ c-Met, Axl, Tyro3, None NA

ASLANO00O2 RON o
Glesatinib c—Met, Axl None N.A.
Tepotinib c—Met None N.A.

* VEGFR-2: Vascular endothelial growth factor-2, ALK:
Anaplastic lymphoma kinase, RON: Receptor d'Origine nantais,
EGFR: Epidermal growth factor receptor, NSCLC: Non-small cell

lung cancer, N.A.: not available.
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Using these tools and procedures, we believed that it was
possible to train a machine learning algorithm to derive in silico AR
clonotypes from a repertoire of NGS sequences. To demonstrate this,
we performed an in—depth analysis of our bio—panning library with
the guidance of our supervised machine learning algorithm trained
with large amounts of data sets generated from a high—throughput
clone retrieval platform and independent NGS analysis. The RF
model utilized is composed of numerous unique decision trees that
work together to classify inputs. Each decision tree in an RF model is
generated using a bootstrapped sample of the training data and a
randomized subset of variables evaluated for the best split at each
node of that decision tree. As a result, each RF model decision tree
is uniquely generated and makes the model more robust to overfitting
compared to other linear classifiers or decision trees. Compared to
the more complicated black boxes of artificial neural networks, RF
models frequently show similar levels of predictive performance
while remaining observable and transparent. By inspecting the
composition of decision trees in the RF model, we can extract
important measures of input variables to better understand the
decision—-making process of the algorithm. Our extraction of variable
importance measures helped explain the logical processes of our RF
prediction model, which consists of complex, randomized interactions
of predictor variables and response variables. From these results, we
can infer that AR HCDRs are mostly selected in enrichment rounds,
while LCDR3s are significantly enriched with selected HCDR3s after
additional selective pressure occurs. We can then infer that
enrichment of scFv molecules depends on individual chains in
different stages of the bio—panning process (first Vy is then
significantly biased by Vi). We believe our prediction model may be
enhanced to better predict binding reactivity with multiple (high, mid,
low) rather than binary (reactive/non-reactive) classifications. It is
highly likely that this model can be applied to other display platforms
that use bio—panning as the selection process, such as yeast display

library for fluorescence-activated cell sorting screening'®. Recently,
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artificial intelligence has been applied to predict the physicochemical

577161 gnd/or optimize them!®?7164,

properties of antibody sequences

In summary, we report that machine learning algorithm can
provide a way to identify AR antibody clones with a significant hit
ratio, which will allow us to better characterize diverse antibodies in

greater numbers currently unattainable by traditional methods.
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4.5. Methods

Library construction and bio—panning

Three white leghorn chickens were immunized and boosted four
times with recombinant human PSA (Fitzgerald, Acton, MA, USA).
After the final booster injection, total RNA was extracted from the
spleen, bone marrow, and bursa of Fabricius using the TRI Reagent
(Invitrogen, Grand Island, NY, USA). First-strand cDNA was
synthesized using SuperScript reverse transcriptase with oligo (dT)
priming (Invitrogen). Using this c¢DNA, three phage-displayed
libraries of chicken scFvs were constructed using the pComb3XSS
phagemid vector'®®. Four rounds of bio—panning were performed to
screen scFv clones from the library following a previously reported
procedure!®. For each round of bio—panning, 5 x 10° magnetic beads
(Dynabeads M-270 epoxy) (Invitrogen) coated with 1.5pg

recombinant PSA protein were used.
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Phage enzyme immunoassay

The scFv-displaying phages were rescued from titer plates after
transformation and subjected to phage enzyme immunoassay as
described previously'®. The microtiter plates (Corning, NY, USA)
were coated overnight at 4 °C with 20 ul. recombinant human Fc-—
tagged PSA (5 plml-1) dissolved in phosphate-buffered saline (PBS).
After blocking with 3% bovine serum albumin dissolved in PBS (w/v,
PBS-B), the plates were then sequentially incubated with scFv-—
displaying phages in the culture supernatant, horseradish peroxidase
(HRP)-conjugated mouse anti-M13 monoclonal antibody (GE
Healthcare, Pittsburg, PA, USA) in PBS-B, and then finally with 2,2~
Azinobis [3-ethylbenzothiazoline—6-sulfonic acid]-diammonium salt
(ABTS) substrate solutions (Amresco LLC, Solon, OH, USA), with
intermittent washing using 0.05% Tween-20 in PBS (PBST). After
incubating the plates at 37 °C for 10min, the optical density was
measured at 405 nm using a microtiter plate reader (Labsystems AiG

SL, Barcelona, Spain).
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Sanger sequencing analysis

Phagemid DNA from selected clones identified by phage enzyme
immunoassays was prepared with a small-scale plasmid preparation
kit (Qiagen, Hilden, Germany). The OmpSeq primer (56—
AAGACAGCTATCGCGATTGCAG-3) and HRML-F primer (5=
GGTGGTTCCTCTAGATCTTCC-3") were used to sequence the VH
and VL chains of the antibody. Sequence analysis of positive clones

(0.D.405nm>0.3) was performed by Macrogen (Seoul, Korea).
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Next-generation sequencing analysis

A total of 15 sets of phagemid DNA including three initial
chicken scFv libraries and three libraries obtained after each of four
rounds of bio—panning were analyzed using a MiSeq system (Illumina
Inc., San Diego, CA, USA). The MiSeq library for DNA sequencing
was prepared using Illumina Nextera XT chemistry (I[llumina)
following the protocol provided by the manufacturer. The genes from
the chicken library were amplified using the forward primer (pre-
adaptor, 5 -TCGTCGGCAGCGTC-3"; sequencing primer, 55—
AGATGTGTATAAGAGACAG-3;  specific locus  primer, 5'-
TCAGCCTCGTCTGCAAGG-3"), and reverse primer (pre-adaptor,
5 -GTCTCGTGGGCTCGG-3% sequencing primer, 5-
AGATGTGTATAAGAGACAG-35; specific  locus  primer, 5=
AGTGGAGGAGACGATGACTTC-3"), respectively. The final libraries
were normalized by quantification with LightCycler 480 II (Roche
Applied Science, Indianapolis, IN, USA) and qualification with
Bioanalyzer (Agilent, Palo Alto, CA, USA). The final loading
concentration was adjusted to 11 pM following the MiSeq loading
protocol. The MiSeq reagent kit v3 (Illumina) was used for long
paired—end reads (2 x 300 bp) sequencing reactions. The sequencing
data was processed by CLC Genomics Workbench version 5 (CLC
Bio, Aarhus, Denmark) software. Low—quality sequencing data were
first trimmed depending on quality scores using PHRED with the
minimum quality score of 20 and reads with less than 150 bases in

d'. The cleaned-up sequencing data were

length were discarde
processed by merging the paired—-end sequence reads using fast
length adjustment of short reads to obtain complete sequences of the
chicken scFv libraries'®’. Sequencing data were further cleaned up
using PRINSEQ (San Diego State University, San Diego, CA, USA),
setting the minimum quality score at 20 and read length at 150,
EMBOSS Needle 6.5.0.0 (The European Bioinformatics Institute
(EMBL-EBI), UK) was used to map sequence read in the HCDR3
region, with a threshold score of 300'®, Subsequently, a custom Perl

script was used to summarize and count sequence reads in 15 sets of

S !
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phagemid DNA. We merged the read counts across all the panning
rounds, but for computational and statistical analysis, we only
counted the reads existing in the phagemid DNA after the fourth bio-

panning round.
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Clustering analysis

An optimized number of clusters in the merged sequence read
counts was estimated using the clValid algorithm, to facilitate pattern
analysis of NGS data for population shifts in antibody clones
throughout the bio—panning process'®. The clValid algorithm
validated number of clusters by assessing intra—cluster homogeneity
and inter—cluster separation, and the assessment for each and every
clustering is represented in the Dunn index'®”. A higher Dunn index
indicates better clustering. The ‘Internal’ cluster validation metrics
were chosen, which consider only the data set and the clustering
partition, and the intrinsic properties of the data were used to
evaluate the quality of the clustering results in designated clustering
algorithms such as hierarchical clustering and k-mean clustering!'".
Unsupervised hierarchical clustering analysis was used to cluster
HCDR3 sequences according to the number of clusters estimated by
clValid. Ward’s method was used to measure distances between
sequence reads based on read counts throughout the bio—-panning,
and a heat map visualizing the sequence read changes in each cluster
was generated using Gene Pattern v3.9.2 software!'’!. Line charts
representing the pattern of sequence read changes in each cluster
across all the bio-panning rounds were then generated as in a

previous study.
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Cloning to retrieve scFvs

To rebuild real scFv clones from the virtual HCDR3 sequences in
the clusters, we performed two-step linker PCR. In the first PCR
step, primers targeting both LFR1-HCDR3 (LFR1_F primer, 5-
GTGGCCCAGGCGGCCCTG-3") and HCDR3-HFR4  fragments
(HFR4_R primer, 5'"-CTGGCCGGCCTGGCCACT-3") were synthesized,
based on HCDR3 sequences determined in NGS analysis and
phagemid DNA obtained after the 4th round of bio-panning. The
second PCR step linked these two gene fragments into a single scFv
gene using primers annealing to LFR1 and HFR4 (LFR1_F primer, 5~
GTGGCCCAGGCGGCCCTG-37% HFR4_R primer, 5~
CTGGCCGGCCTGGCCACT=-3"). The scFv gene was ligated into the
pComb3XSS phagemid vector and rescued as scFv-displaying phages,

165 To measure the binding reactivity of

as described previously
these scFv-displaying phages, we rescued more than 15 clones per
HCDR3 sequence, and performed phage enzyme immunoassay as
described earlier. We regarded the clone providing the highest

optical density at 405 nm as the retrieved clone.
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Immunization, Construction of Phage-Displayed scFv Library, and

Bio—-Panning

White leghorn chickens were immunized and boosted three times
with 10 pg of recombinant mouse c-Met-Fc chimera (527-ME; R&D
systems, Carlsbad, California, United States). The experiment was
approved by the Ethics Committee of BioPOA, Ltd. (ethical approval
code: BP-2019-C03-1). One week after the final boosting, total RNA
was isolated from spleen, bone marrow, and bursa of Fabricius using
TRIzol Reagent (15596018; Invitrogen), and cDNA was synthesized
using SuperScript III first—strand cDNA synthesis kit with oligo dT
priming (18418020; Invitrogen, Carlsbad, California, United States).
Using this cDNA, a phage-displayed scFv library was prepared as
described previously'"?!"®, Vi and Vi genes were amplified from the
cDNA using specific primer sets utilized for the construction of scFv
genes. Then, scFv genes were ligated into the pComb3XSS phage
display vector, which was transfected into £. coli K12 ER2738 cells.
Phage-displayed scFv libraries were rescued from transfected cells
after infection with VCSM13 helper phage and overnight culture, and
then subjected to four rounds of bio—panning using recombinant
mouse c¢—Met (50622-MO8H, Sino Biological, Beijing, China)-
conjugated magnetic beads (Dynabeads 14302D; Invitrogen).
Antigen—-coated magnetic beads were washed with 0.05% tween in
phosphate-buffered saline (PBS) once for the first round, three times
for the second and third rounds, and five times for the fourth round.
After each round of bio—panning, phagemid DNA was prepared from
bacterial cell pellets using a Qiaprep Spin Miniprep Kit (27104,
Qiagen, Hilden, Germany).
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Next—-Generation Sequencing (NGS)

From five sets of phagemid DNA, short Vi and V. gene
fragments encoding the 3" part of FR3 and CDR3, and the 5" part of
FR4, were amplified using primers designed to hybridize to FR3 and
FR4 of the chicken Vi gene (LFRS3: 5 7 -

CCCTTCACGATTCTCCGGTGCC-3 = LFR4: 5 -
CTGACCTAGGACGGT CAGGG-3 = HFR3: 5 -
GGCTGCAGCTGAACAACCTCAGGGCTG-3 ~ ;  HFR4: 5 ° -

GGAGGAGACGA TGACTTCGGTCCCGTGG-3 “ ). Other gene
fragments encoding the whole Vi and Vi genes were also amplified
using specific primers previously described®. Prior to NGS analysis,
all amplicon libraries were submitted for a quality control procedure
on TapeStation 2200 (Agilent Technologies, Santa Clara, California,
United States). Libraries having a single peak of correct fragment
length were subjected to NGS analysis using the HiSeq 2500 and
MiSeq platforms (Illumina, Inc.) for short and whole Vi and V. gene
fragments, respectively. We uploaded the sequence data to NCBI
(SRA accession number: PRINA607865).

To ensure the quality of NGS data, the following pre-processing
steps were performed. First, all pair-end reads were merged with
PEAR using the developer’s default parameters'®. Second, we
filtered out any reads that were compatible with the following
description: (1) reads not meeting our minimum quality Phred score,
(2) reads not having the primer sequence used in the phage-
displayed scFv library construction process, (3) out-of-frame reads,
and (4) reads without any identifiable CDR3. The reads were then
collated based on their CDR3 sequences and any CDR3 clonotype

with read count of less than 2 was discarded.

124 A =1



High—-Throughput Clone Retrieval and Phage ELISA

The phagemid library from the final bio—-panning round was
transfected into E. coli K12 ER2738 cells, and then subjected to our
high—-throughput clonal retrieval procedure using TrueRepertoire
(TR) technology, as described previously®.

The retrieved phage clones were subjected to phage ELISA, as

described previously with adequate modifications'™.

Phage clones
were rescued overnight from the plate and culture supernatants
containing phage that were diluted with equal volumes of 6% bovine
serum albumin (BSA) solution in PBS. Phage solutions were then
added to microtiter wells (3690, Corning life sciences, Corning, New
York, United States) coated with recombinant mouse c-Met or mouse
anti—-HA antibody (H3663, Merck, Darmstadt, Germany) and blocked
with BSA. Microtiter plates were incubated for 2 h at 37 °C and
washed three times with 0.05% Tween in PBS, which is followed by
3% BSA in PBS containing horseradish peroxidase (HRP)-conjugated
anti-M13 antibody (11973-MMO05, Sino Biological) in addition to each
well. After incubation and washing as described above, HRP
substrate solution 2,2’ —azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) (002024, Thermo Fisher Scientific, Waltham,
Massachusetts, United States) was added to each well. The plate was
incubated 15 min and the absorbance values of each well were
measured by a Skanlt microplate reader (Thermo Fisher Scientific)
with a fast measurement protocol at a wavelength of 405 nm.

For each clone, the ratio (Relative Absorbance A) of the average
absorbance of a recombinant mouse c—-Met-coated well vs. an anti—
HA antibody-coated well was calculated. The absorbance of an anti—
HA-coated well was used to accommodate variations in the amount
of phage in each phage clone. We also determined the ratio (Relative
Absorbance B) of the average absorbance of a BSA-blocked well to
an anti—-HA antibody-coated well. When Relative Absorbance A
exceeded +3 standard deviation of Relative Absorbance B, we

designated the phage clone as antigen-reactive.
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Establishment of the Random forest (RF) Models

Random forest (RF), regularized discriminant analysis (RDA),
linear discriminant analysis (LDA), support vector machine (SVM),
naive bayes (NB), and AdaBoost (ADA) classification trees were
selected for comparison. Our input data for the training of binder
prediction models were created using a TR data set consisting of
antigen reactivity for scFv clones found in TR analysis and the clonal
abundance of their HCDR3 and LCDRS3 clonotypes in five sets of
phagemid DNA. The caret package for R was used to benchmark
popular classification algorithms by their accuracy and Cohen’s
kappa value. Each algorithm was evaluated across five repetitions of
10-fold cross-validations (50 models in total). This meant that, for
each repetition, the training data set was randomly divided into 10
parts and each of the 10 models were cross—validated by one unique
part after being trained on the other nine parts of the training data
set. No manual tuning was performed during this benchmarking
phase!™,

To generate binder prediction models for HCDR3 and LCDR3
clonotypes using a random Forest package, we sampled a proportion
of the TR data set without replacement to be used as a training data
set for the RF model. The remaining portion of the TR data set
served as a validation set to measure the performance of RF
models'™. The following parameters were adjusted to best tune our
model’s performance: (1) sampling ratio of training data, (2) number
of variables (mtry) to randomly sample at each node of the decision-
making tree, and (3) number of trees (ntree) to compromise our RF
model. We then iterated through all combinations of parameters.
Each combination was used to generate 10 different RF models to
minimize any biases arising from the training data set not being
representative of the TR data set. The validation set was then used
to measure the performance of each RF model to determine optimal
parameters for the RF. Using the randomForestExplainer package,
the minimum depth of each wvariable was calculated, which is

frequently used as a measure of variable importance to elucidate the

3 ey
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16 The minimum depth of a

decision—making process of the algorithm
variable is defined as the distance between the root node and the
variable’s first appearance at a node of the decision tree. Thus, the
variable with the smallest mean minimum depth could be regarded as
the most important variable. To compare the variable importance
results of the prediction model with actual experimental data, we
tracked the enrichment pattern by measuring the bio—panning titer
and clonal diversity change as Shannon’s entropy (SE)!"" by following

each round of bio—panning, as described previously'”.
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Construction of Antigen-Reactive (AR) and Non-Reactive (NR)
Phage-Displayed scFv Library and Phage ELISA

Forty antigen-reactive (AR) and 10 non-reactive (NR) VH and VL
genes were chemically synthesized (Twist Bioscience, San Francisco,
California, United States). Forty AR VH and 40 AR VL genes were
subjected to linker PCR to generate scFv genes, which were used to
create the AR phage-displayed scFv library, as described
previously20. In a parallel experiment, the NR phage-displayed scFv
library was constructed using 10 NR VH and 10 NR VL genes. After
a round of bio-panning using recombinant mouse c-Met (50622-
MO8H; Sino Biological)-conjugated magnetic beads (Dynabeads
14302D; Invitrogen) and washing once with 0.05% tween in PBS, 96
phage clones were randomly rescued from each AR and NR library
and subjected to phage ELISA, as described above. After phage
ELISA, the nucleotide sequences of scFv clones were determined by

Sanger nucleotide sequencing (Macrogen, Seoul, South Korea).
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5. Future perspectives

Sequence-based prediction of antigen—antibody
interaction

Immense advances in the field of high—throughput antibody
repertoire sequencing and screening platform enables the emerging

178179 However,

of number of novel antibody discovery technology
ultimate question: predicting and understanding the vocabulary of
antigen—antibody interaction by its’ amino acid sequence, remain
challenging problems. To the recent, the most accurate method for
identifying paratope—epitope interactions is solving the 3D structure
of antigen—antibody complexes and determining contact amino acids
residues from each binding partners'®. Cryo-electron microscopy
(cryo-EM), X-ray crystallography and NMR (nuclear magnetic
resonance) are mostly used methods in analyzing structures of the
proteins'®. From the 3D structure data of antigen—antibody complex,
several studies have shown that antigen contacting residues are
mostly existed in CDR region, but non-CDR residues are also
frequently observed in paratope regions'®*!'®  Also, amino acid
sequence of the epitopes is indistinguishable from other surface
exposed non-epitope residue when the counter—part antibody is not
bound as a complex'®!¥ To overcome the redundancy and the low-
throughput manner of current approaches in analyzing sequence-—
based antigen—antibody interactome, machine learning guided
computational methods are rapidly advancing.

Current machine learning based approaches have been
successful in predicting paratopes'®, epitopes'®, paratope-epitope

126.127.185 gnd  antibody structure®®.

interaction Recent reports have
showed slight evidence for the possibility of prediction of antibody-—
antigen interaction. The antibody repertoire has now established that
antibody sequence diversity underlies predictable patterns'®®'%’, Also,
the presence of universal specificity motifs from different antibodies
was recently identified and suggested by showing that high-affinity

functional antibodies can be designed by grafting unrelated paratopes
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9 Further, Akbar et al., showed that structurally identified contact
residue has a correlation with somatic hypermutation'!. This
suggests that which somatic hypermutation preserves binding motifs
and how a germline would have evolved their interaction motifs.
However, without more abundant experimental 3D antibody-antigen
interactions data, it is impossible to predict the interactions between
antibody and antigen which cannot be crystallized or for unstructured
loops of antigens which is generally not existed in structural
database. To overcome the certain limitations, the area of de novo
protein design is rapidly growing owing to advances in artificial
intelligent technologies. In prediction of protein structure, de novo
folding without structural references or comparative modeling from
similar template are widely used methods'”?. The recent approaches
rely on structural modeling of specific motif of the antigen and
antibodies, rather than pre-existing paratope-—epitope database'®”.
However, high-accuracy prediction of antibody structure 1is
restricted to framework scaffolds, and requires advanced methods in
designing hypervariable loop structure in CDR regions'*. In summary,
motif-based prediction of epitope-paratope interactions and
structural modeling of antibody frameworks are complementarily

developing in prediction of antigen specific antibody sequences.
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Machine learning—guided engineering of therapeutic
antibodies

Therapeutic antibody candidates have to undergo the
optimization process before entering pre-—clinical and clinical studies.
Assessing immunogenicity, affinity optimization and improving
physicochemical properties are the three main goals in antibody
optimization works.

Many of clinically available antibodies are derived from immune
B cell repertoires of mice, or humanized mice!'**°. However, non-
human antibodies can elicit an immune response, which is known as
immunogenicity, and high immunogenicity can influence the efficacy
and safety of the mAb therapeutics'’. To minimize or remove the
immunogenicity of mAbs, engineering non—human sequences by
substituting the sequence with human [g germline gene sequence
used. These approaches are referred to as de-immunization'® and

humanization'%.

Assessing immunogenicity of the mAbs is time
consuming and high-cost process by possessing repetitive and
arbitrary generation of mutation library followed by screening of

19 To reduce the erroneous humanization,

antibody functionality
accurate validation of immunogenicity or humanness score is needed.
Recently, using random forest (RF) algorithm and publicly available
antibody sequence database, Marks et al.,, developed machine
learning based validation method measuring humanness scores'?.
However, the non—-human sequences in the database were mostly
restricted to murine antibody sequence and limitations in the size of
the training dataset.

After successful assessment of the immunogenicity of the mAb,
optimization of the lead antibodies remains multiple challenges,
including productivity (production yield), solubility, thermostability,

SLI%  Using in wvitro surface display

viscosity, pharmacokinetics
techniques guided directed evolution, multiple variants could be
generated and screened out®, physicochemical property validation of
the variant antibodies should be conducted against the compounds

derived from mammalian protein expression system®’. Low~-
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throughput process including cloning, transfection and repurification
limits the scale of the variant screening up to 10° clones®’. Machine
learning based prediction of genotype-phenotype relationship has
been applied to the engineering of multiple types of proteins'®. Also,
the concepts of machine learning guided directed evolution and
generation of mutagenesis library has long been proposed?’®?°!,
Romero et al. engineered cytochrome enzymes using Gaussian

202 and

regression models to generate the thermostable wvariants
Bedbrook et al. designed the variants library of channelrhodopsin
protein also utilizing Gaussian regression model?®. Mason et al.
applied the deep learning—based approaches in mammalian cell
expressed antibody optimization'””. Trastuzumab-CDR3 randomized
libraries were designed with multiple strategies in generating diverse
training data sets, to prevent the overfitting of the model. Similar
approaches are expected to be developed in the near future for

efficient identification of the most druggable lead compounds.
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Single domain antibodies: next—generation therapeutic
antibody platform

Back in 1989, stable mouse derived variable heavy chain are
isolated and showed binding reactivities to the specific antigens®?.
After that observation, single domain antibodies (sdAbs) were

204 Moreover, in

suggested and studied as a unique class of mAbs
1993, ~ 15 Kda heavy chain only antibodies (HCAbs) was isolated
from the sera of camels, which is referred to as VHH?*®. In 1995, ~
12 Kda sized HCAbs were also isolated from sharks which belongs to
cartilaginous fish, and defined as IgNAR (new antigen receptor)?".
Major advantage of sdAbs is the small size. Compare to full-length
Igs, small sized sdAbs can penetrate into hidden epitopes in tissues
or infectious pathogens?”’. Also, monomeric structure makes sdAbs
effective building blocks for generating multi —valent and —specific
antibodies for improvement of therapeutic potency?"®.

In next-generation antibody discovery utilizing high—-throughput
antibody repertoire sequencing and analysis, sdAb repertoires has
multiple advantages. To analyze the full-length Ig, heavy chain and
light chain genes have to be amplified then subjected into NGS
analysis*®. During that process, low-throughput and high-cost
single-cell sequencing platform should be employed to retain the
information of natively paired VH-VL origin®”. In contrast, sdAb

repertoire can be annotated with antigen specificity without pairing

information, enables the larger depth of the high—-throughput analysis.

Recently, the increasing success with rapid discovery of sdAbs
makes advances in designing the qualified sdAb library. Fridy et al.
performed the high—throughput antibody repertoire sequencing
combined with mass spectrometric (MS) identification of high—affinity
sdAb, from the immunized llamas®'’. Shin et al. designed the
improved sdAb library having smaller diversity but better
characteristics using autoregressive generative models?!'.
Autoregressive generative model was used in synthetic library
design by learning alignment-free feature of amino acid sequences

having potential binding capacity to diverse target antigens. By
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utilizing qualified sdAb library and new machine learning algorithms,
it 1s expected to generate a large panel of antibody sequences

targeting inaccessible region by the previous approaches.
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At A @Y F2 A (monoclonal antibody, mAb) + B
Alszoll A AateE]o] T4 o] SHolHor Afete EEPEHo|=
A oty A 2 Alx 229 7w HHoRE Axd dd S8
FAE dHEFoE A=) Thsaizlon, olE nigow theksl
AT B A Fokd e &Eo] FrjEa Jvt. E3F A58 FAE
agdo=m Wasta sk 7l tigk vleFA ]l wdo] o] Foj Rt
T AE BA, 1598 239, AFE 71 AW FofdlA
o]Fojzx A WE (high-throughput methodology) ¢ 3}
ole] &&& F3l, HARA WHES FI I A A Hds
Aaket=Ao] 7k A

Ao Hi: B EAl 319 =2 1A A dEES AlEA
(high-throughput antibody repertoire sequencing) I} *g A\ st
(bioinformatics) 71HS &3t A58k (novel) A A e
(next—generation antibody discovery method) & 7/NH3=AS Hx =
atal Qlvh i A5"E F3 in vitro display @A gtolB & A XE}7]
gk At ZREEF 9 VA gES Vvt Es A daEHs Ui

sheieh.
Chapter 3: @4l AMESE FZatz F4olA, thee] YHAE

Hel ZF2EH f2x12 (germline immunoglobulin  gene) Eo°]%

A
zgjol ARgo] 93] WAStE 5% HA (amplification bias) &
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