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Abstract

Protein Complex Structure Prediction by

Template-Based and Ab Initio Docking

Taeyong Park
Department of Chemistry
The Graduate School

Seoul National University

Protein-protein interactions play crucial roles in diverse biological processes,
including various disease progressions. Atomistic structural details of protein-
protein interactions that can be obtained from protein complex structures may
provide vital information for the design of therapeutic agents. However, a large
portion of protein complex structures is hard to be experimentally captured due to
their weak and transient protein-protein interactions. Indeed, a limited fraction of
protein-protein interactions happening in the human body has been experimentally
determined. Computational protein complex structure prediction methods have
been spotlighted for their roles in providing insights into protein-protein
interactions in the absence of complete structural information by experiment. In
this dissertation, three protein complex structure prediction methods are explained:
GalaxyTongDock, GalaxyHeteromer, and GalaxyHomomer2. GalaxyTongDock
performs ab initio docking for structure prediction of hetero- and homo-oligomers.

GalaxyHeteromer and GalaxyHomomer?2 predict heterodimer and homo-oligomer



structures, respectively, by template-based docking and ab initio docking
depending on the template's availability. Lastly, examples of how these methods
were utilized to predict protein complex structures in CASP and CAPRI,

community-wide prediction experiments, are presented.

keywords: protein complex structure prediction, protein-protein docking, template-
based docking, ab initio docking, CASP, CAPRI
Student Number: 2015-22613
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1. Introduction

Protein-protein interactions play key roles in various biological processes such as
cell division, maintenance of homeostasis, immunity, and various disease
progressions. Abnormal protein-protein interactions caused by gene mutations or
environmental factors become the source of a wide range of diseases. Normal
protein-protein interactions also can lead to diseases, for example, the PD-1-PD-L1
interaction in various cancers. Understanding the atomistic detail of protein-protein
interactions is a prerequisite for identifying therapeutic molecules that regulate
disease-related biological processes. Computational protein complex structure
prediction methods have been a valuable tool for the understanding of protein-
protein interactions due to the limited number of available protein complex
structures obtained experimentally, especially for transient or weak protein

complexes*’.

Protein complex structures are currently predicted using template-based or
ab initio docking®**, depending on the availability of structural templates for the
target complex in structure database, such as Protein Data Bank (PDB). Structural
templates for a protein complex can be detected by exploiting sequence or structure
similarities of consisting proteins to proteins in the database. When such similarity-
based approaches are not reliable due to the lack of available structural templates,
ab initio docking, based on the physical principles of protein binding, is used. Ab
initio docking identifies the most stable binding pose in the conformational space
of protein-protein complexes by conformational sampling and stability evaluation.
The protein complexes can be divided into homo-oligomers, which are assemblies

of identical proteins, and hetero-oligomers, which are assemblies of different



proteins. During the structure prediction of homo-oligomers, symmetricity may be
additionally considered because homo-oligomers usually form symmetric

conformations.

Here, we introduce three protein complex structure prediction methods:
GalaxyTongDock!*, GalaxyHeteromer'®, and GalaxyHomomer2 (unpublished).
GalaxyTongDock is an ab initio protein-protein docking method composed of
GalaxyTongDock A, GalaxyTongDock C, and GalaxyTongDock D, which
performs asymmetric docking for heterodimer structure prediction, symmetric
docking for C, symmetric homo-oligomer structure prediction, and symmetric
docking for D, symmetric homo-oligomer structure prediction, respectively.
Structures of proteins composing a protein complex should be provided as input for
GalaxyTongDock. GalaxyHeteromer predicts structures of heterodimers from
amino acid sequences or structures of two subunit proteins. Both template-based
docking and ab initio docking are employed by automatically detecting the
template’s availability. When a subunit sequence is provided, GalaxyHeteromer
utilizes GalaxyTBM?*® and GalaxyDBM (unpublished) for subunit structure
prediction. GalaxyDBM employs inter-residue distance prediction by exploring the
coevolution relationships among the homologous sequences via deep learning.
GalaxyHomomer2, an upgraded version of GalaxyHomomer®, predicts structures
of homo-oligomers from an amino acid sequence or a monomer structure. As in
GalaxyHeteromer, both template-based docking and ab initio docking are

employed by automatically detecting the template’s availability.

Utilizing the developed methods, we have been ranked 1% to 4" in
multiple Critical Assessment of protein Structure Prediction (CASP)*’ and Critical
Assessment of PRediction of Interactions (CAPRI)*®1°, which are community-wide

prediction experiments for protein structure prediction and protein complex



structure prediction. Examples of how these methods were applied to predict

protein complex structures in CASP and CAPRI are also presented.



2. GalaxyTongDock

GalaxyTongDock is an ab initio protein-protein docking method that performs
rigid-body docking® just like ZDOCK?, known to be one of the best-performing
methods, but with improved energy parameters. The energy parameters were
trained by iterative docking and parameter search so that more native-like
structures are selected as top rankers. GalaxyTongDock performs asymmetric
docking of two different proteins (GalaxyTongDock_A) and symmetric docking of
homo-oligomeric proteins with C, and D, symmetries (GalaxyTongDock_C and
GalaxyTongDock D). Performance tests on an unbound docking benchmark set for
asymmetric docking and a model docking benchmark set for symmetric docking
showed that GalaxyTongDock is better or comparable to other state-of-the-art
methods. In addition, experimental and evolutionary information on binding

interfaces can be easily incorporated using interface and block options.

2.1. Methods

2.1.1. The prediction workflow of GalaxyTongDock_A

The prediction workflow of GalaxyTongDock_A is shown in Figure 2.1. Two
proteins to be docked are conventionally referred to as a receptor and a ligand.
GalaxyTongDock_C shares a similar workflow with that of GalaxyTongDock_A.
The same proteins become the receptor and the ligand in GalaxyTongDock_C.
Experimental and theoretically predicted data on interaction can be provided as

interface and block options described in Section 2.1.6. In GalaxyTongDock_A, the



receptor structural information on a 3D continuous space is projected on a 3D
lattice of grid size 1 A. Then, translation of the ligand is sampled by FFT in the 3D
lattice after rotating the Euler angles of the ligand in steps of 10° (or 6° in the case
of symmetric docking). The best scoring docking pose from each rotated ligand

undergoes clustering and model selection steps, described in Section 2.1.5.



Figure 2.1. The prediction workflow of GalaxyTongDock_A. The protein
structures in the box represent an example of GalaxyTongDock_A output. The
native receptor (yellow), native ligand (orange), and top 20 predicted ligands (pink)

are shown.
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2.1.2. Docking energy function: Functional form

GalaxyTongDock performs rigid-body docking utilizing fast Fourier transform
(FFT)?2 with an energy function based on previously reported components. Using
FFT, translation relative to a receptor of a pre-rotated ligand on a 3D grid space is
performed much faster so that exhaustive sampling and evaluation of docking
poses can be achieved. The GalaxyTongDock energy is composed of six elements

as follows:
EGalaxyTongbock = Escpep, T Wisc, T W2Eglec T W3Eace + WaEirace + WsEconsy

where the first five terms are from ZDOCK (repulsive and attractive parts of the

shape complementarity score?® Esc.ep and Egc,,., Coulomb energy with distance-

dependent dielectric constant?* Eg.. , atomic contact energy® Ejcg oOf
ZDOCK?2.3.2%, and interface atomic contact energy?® Ejpacg 0f ZDOCK3.0.22%).
The last term E.onsy iS the conservation score®’. The energy components were

implemented as described in detail below.

As in ZDOCK3.0.2%, the energy value of the ith component, E;(a, B,7),
which describes interaction energy between a fixed receptor structure and a pre-
rotated ligand structure translated by (a, 8,y) from its initial position is expressed
as a convolution (R; * L;)(a,B,y) of areceptor grid R;(x,y,z) and a ligand grid

Li(x,y,z) asfollows:

Ei@B.0) = ) Ry DLG+ay+6,2+1) = Rix L)@AY)

XY,z

where (x,y,z) denotes a grid point in a 3-dimensional lattice, and definitions of

the receptor and ligand grids, R;(x,v,z) and L;(x,y,z), depend on the energy



component. A grid size of 1 A is used, which is slightly different from 1.2 A of
ZDOCK.

The energy components are calculated by FFT using the convolution

theorem
R+L=FYF(R)-F(L)}

where F and F refer to the Fourier and the inverse Fourier transformations.

(1) Repulsive part of the shape complementarity score Esc,.,

The repulsive energy component of the shape complementarity score is defined as

Escrep (@, B,¥) = (Rscpep * Lscrep) (@, B, 7)

35 protein surface
Rscpep (%, ¥, 2) = Lsc,,, (%, ¥, 2) = 3.5 protein core
0 otherwise

Grid points (x,y,z) located within 0.8X ryqw, Where ryqw IS van der Waals
radius, from surface atoms are defined to be at the protein surface. Those atoms
with the solvent accessible area, calculated by Naccess?® with a probe radius of 1.4
A, greater than 1 A2 are designated as surface atoms, and the rest as core atoms.
Grid points located within 0.8% r,qyw from core atoms are defined to be in the
protein core. The grid point value at the protein surface is set to be lower (3.5) than
that in the core (3.5%) to allow small clashes that may occur by rigid-body docking
but could be relaxed by slight structure adjustments. The value 0.8 multiplied to

Tvaw Plays the same role. The same van der Waals radii as ZDOCK3.0.2 are used.



(2) Attractive part of the shape complementarity score Egc,,,

This energy component is expressed in terms of two convolutions as follows:

1
ESCatt(a' B.,y) = E (RSCatt * Latoms + Ratoms * LSCatt )a,B,v)

Rsc,.(%,¥,2) = Lsc,,,(x,y,2) = —1.334n
Ratoms(x, y; Z) = Latoms(x, y, Z) =m

where n is the number of atoms within 6 A from the grid point (x,y,z), and m is

the number of atoms for which (x,y, z) is the nearest grid point.

(3) Coulomb energy Egjec
The Coulomb electrostatic interaction energy is calculated as

EEleC (a: Bt '}/) = (RElec_pot * Lcharge)(a: :8: V)

2500¢;
e(r;) max(r;, 2 A)

RElec_pot(x: Z Z) = Z

i

4 1 <6
e(r) = {3873 —224 6<n1n<8
80 r>8

Lcharge(x'yiz)z Z qi

nearest

where r; is the distance of the grid point (x,y,z) from the ith receptor atom, r;
less than 2 A is set to 2 A to prevent the electric component from becoming too
large upon clashes, 2500 is multiplied to balance the energy scale with other

components, &(r;) is the distance-dependent dielectric constant®, and Lcharge 1S



defined as a sum of the partial charges q; of the atoms for which the nearest grid

pointis (x,y,z). The same partial charges as ZDOCK3.0.2 are used.

(4) Atomic contact energy Ecg

This component is a sum of two convolutions:
1
EACE ((Z, ﬁv )/) = E (RACE * Latoms + Ratoms * LACE )((X, ﬁ: ]/)

Race(%,¥,2) = Lace(x,y,2) = z type(D)

ri<6 A

where erype(;) I the average contact energy® for the atom type of the ith atom,

and this is summed over atoms within 6 A from the grid point (x,y, z).

(5) Interface atomic contact energy Ejgpack
The IFACE (Interface Atomic Contact Energy) is expressed as a sum of

convolutions for atom types t as follows:

12
Eipace(a, B,v) = Z(RIFACE,t * Latoms) (@, B,7)
t=1

12
Ripace:(x,y,2) = Znsest

s=1

Latoms,t(x' Y, z) = m

- 10 -



where ng is the number of atoms of type s within 6 A of the grid point (x,y, z),
es is the interface atomic contact energy? between atom types s and t, m, is the
number of atoms of type t for which the nearest grid is (x,y, z). The atom types of

IFACE are different from those of ACE.

(6) Conservation score Eonsv

The conservation score is defined as follows:

1
Econsv(a: B, V) = n

surf

(Rconsv * Lsurf + Rsurf * Lconsv)(a: ﬁ: V)
Nsurf = (RC(X * Lsurf + Rsurf * LCQ)(a: ﬁ: ]/)

Reonsy (%, ¥, 2) = Leonsv (%, ,2) = Z Econsv(D

nearest !
Econsv(D) = maX[Ml,aa(l) - Baa(l),aa(l)' 0]

1  ifany C, atom exists within 15 A from (x, y, z)

R x,y,z) =L X,V, 7 :{
surf( y ) surf( y ) 0 otherwise

Re (x,y,2) = Lc (x,¥,2) = ng,

where Ynearest | MeaANs a sum over amino acid residues at sequence position | for
which (x,y,z) is the nearest grid point from its C. position, M; 4,y is the self-
substitution score in the position-specific substitution matrix generated from
PSIBLAST? for the amino acid type aa(l) at sequence position |, Baq()qaq) 1S
the diagonal element of BLOSUM®62* for the amino acid type aa(l), and n¢_ is
the number of C, atoms for which (x,y,z) is the nearest grid point. The

conservation score is defined to be zero if the denominator ng,.¢ is less than 9 to

- 11 -



prevent it becoming too large when there are only a small number of C,-C,

contacts.

2.1.3. Docking energy function: Parameter training

The linear weights, w,; to we, of the energy components were balanced through a
training process. A training set for energy parameter optimization was constructed
by selecting 120 asymmetric complexes randomly among the 196 protein
complexes that belong to the "rigid-body" and the "medium difficulty” categories
in the Docking benchmark 5. These complexes have interface RMSD (IRMSD)*
between the bound complex structure (receptor and ligand structures determined
together by experiment) and the unbound complex structure (receptor and ligand
structures determined separately by experiment and superposed onto the bound
structure) less than 2.2 A. The training set was again randomly split into 80
complexes (Set 1) and 40 complexes (Set 2). Set 1 was used as a training set and
Set 2 as an independent validation set to prevent overtraining. The remaining 76
complexes were used as a performance test set. The full list of the targets in each
set is provided in Tables 2.1 and 2.2. For all training and test set targets, unbound

docking was performed with two unbound protein structures.

- 12 -



Table 2.1. List of PDB IDs for the targets in Set 1 (80 targets) and Set 2 (40

targets), used for energy parameter training.

Set1l
1A2K  1AHW 1AZS 1D6R 1DQJ 1EZU 1F51 1IFFW 1GHQ 1GLA
1HIA 11B1 11QD 1J2J 1JPS JTD 1JWH 1K4C 1K5D 1KAC
1KTz 1KXP 1LFD 1M27 1MLO 1MQ8 1NW9 10C0 1OFU 10YV
1PPE 1QFW 1R6Q 1RLB 1RV6 1T6B 1UDlI  1WDW 1WEJ 1XQS
170K  1zZ5Y 2A1A 2A5T 2A9K 2BTF 2FJU 2G77 2GAF  2H7V
2HQS 2HRK 2JEL 2NZ8 208V 20ZA  2SIC 2UUY  2VvXT 2W9E
2X9A 3BIW 3BX7 3CPH 3EOA 3H2V 3LVK 3S9D 3SZK  4CPA
4DN4  4FZA 4G6M 4GXU 4HX3 4JCV  4LW4 7CEI BAAD BOYV

Set 2
1B6C 1BUH 1CLV  1E6J 1E96 1EAW 1EWY 1FCC 1IFQJ 1GPW
1IH9D 1HE1 1UJIwW  1JTG 1KLU 1M10 1MAH 1IN2C INSN 10PH
1QA9 1ROR 1SBB 1TMQ 1US7 1VFB 1wQ1l 1ZHI 1ZM4 2125
2vDB 3D5S 3EO1 3G6D 3K75 3L5W 3P57 3VLB 4M76  CP57

- 13 -



Table 2.2. List of PDB IDs for the targets in the asymmetric docking test set (76

targets).

1AK4 1AKJ 1AVX 1AY7 1BJ1 1BVK 1BVN 1CGI 1DFJ 1E6E

1EFN 1EXB 1F34 1FC2 1IFLE 1FSK 1GCQ 1GL1 1GP2 1GRN

1GXD 1HCF 1HE8 1I2M 114D 1I9R 11IK 1K74 1KKL 1KXQ

IMLC 1INCA 1PVH 1S1Q 1SYX 1XD3 1XUl 1YVB 1ZHH 2ABZ

2AJF  2AYO 2B42 2B4J 2CFH 2FD6 2GTP 2HLE 2J0T 2MTA

200B 200R 20UL 2PCC 2SNI 2VIS  2YVJ 2Z0E  3A4S  3AAA

3BP8 3DAW 3HI6 3HMX 3MXW 3PC8 3R9A 3RVW 35GQ 3V6Z

4FQl 4G6J  4HO03 41Z7  9QFW  BP57

- 14 -



The docking poses for the training set complexes were used to find the
weight parameters that maximize the objective function SR200. SR200, Success
Rate for top 200, evaluates docking performance of an energy parameter set during
parameter training. Top 200 was chosen because subsequent clustering after
conformational sampling by FFT can usually reduce 200 predictions to around 50,
which is an affordable number for observation or a later structural refinement.
SR200 is defined as

Ntop 200 success

SR200 = x 100 (%)

Ntarget

Where 7op 200 success 1S the number of targets for which at least one successful
prediction is obtained within the top 200 predictions, and n,yge IS the number of
targets in the set. A successful prediction is defined as a predicted conformation
obtained by conformational sampling for which ligand RMSD (LRMSD)* from
the crystal structure is less than 10 A. Ligand RMSD was calculated after
superposing the receptor structure of the docking pose to the bound receptor
structure. The criterion of LRMSD < 10 A was used as an accuracy range that can
be obtained by rigid-body docking and may be improved by flexible refinement
docking methods such as RosettaDock® or GalaxyRefineComplex34. Because
docking poses depend on the energy parameters used to generate them, parameter
optimization involved an iterative procedure that alternated parameter search and
docking pose generation.

Four initial weight parameter sets, (wy,w,, w3, wy,wg) = (0.34, 0.51,
0.29, 0.60, 250), (1.22, 2.04, 0.81, 1.92, 200), (1.00, 1.00, 1.00, 1.00, 250), and
(0.60, 00.60, 0.60, 0.60, 400), were chosen considering the scales of the energy
components. For each initial parameter set, docking poses were generated and a

grid search in the parameter space was performed.

- 15 -



At each parameter training round that was performed with a fixed set of
docking poses, a grid search method in the 5D parameter space {w;} (i =
1,2,3,4,5) was employed with SR200 for Set 1 as the objective function. Since
change in the energy landscape by parameter change was ignored by parameter
search at fixed conformations for computational efficiency, special care was taken
so that parameter search does not become too broad. A large parameter change
would involve a large change in the energy landscape, so the optimal parameters
found at fixed conformations would not be optimal anymore in the changing
energy landscape. The grid size and the search range were therefore defined in

terms of a factor m; multiplied to the parameter w; .., Of the previous round, i.e.
Wi = M;W;prey, and the m; values around one were searched at each round, as

summarized in Table 2.3. The parameter search range at each round was not set
too broad because the gap between the actual performance evaluated after
conformational sampling with the changed parameter set and the expected
performance evaluated with fixed conformations can be huge for a large parameter
change. The two parameter sets with the highest SR200 on Set 2, the validation set,
among the five sets with the highest SR200 on Set 1, the main training set, were
selected for the next round. Parameter sets that showed high performance on the
validation set were chosen to avoid overtraining on the main training set. Parameter
search was then performed again with docking poses generated with the new
parameters. After four rounds of iteration, the parameter set {0.36, 0.36, 0.12, 0.48,
603}, which showed the highest SR200 on both Set 1 and Set 2 among the 124 (4 +
8 + 16 + 32 + 64) parameter sets, was finally chosen as the optimal weight set.
Since the magnitudes of the parameters do not directly represent contributions of
the corresponding components, a separate analysis of contributions of the

components to the overall energy distribution is provided in Table 2.4.

- 16 -



Table 2.3. Grid sizes and search ranges of the parameter training rounds at fixed
conformations, defined in terms of a factor m; which is multiplied by each weight

parameter w; (i = 1,2,3,4,5) that was selected in the previous training round.

Range of m;
Energy (Grid size in m;)
component (I

g ® Round 1 Round 2 Round 3 Round 4
SCu (1) 0.1~2 0.55~1.5 0.82~1.2 0.82~12

a (0.1) (0.05) (0.02) (0.02)
01~2 0.55~1.5 0.82~1.2 0.82~12

Elec (2) (0.1) (0.05) (0.02) (0.02)
02~2 06~15 0.8~1.25 0.8~1.25

ACE (3) (0.2) (0.1) (0.05) (0.05)
02~2 0.6~15 0.8~1.25 0.8~1.25

IFACE (4) (0.2) (0.1) (0.05) (0.05)
Consv (5) 02~2 06~15 0.8~1.25 0.8~1.25

(0.2) (0.1) (0.05) (0.05)

- 17 -



Table 2.4. The contribution of each energy component defined as the standard
deviation of the energy values for top 200 docking poses before clustering,
multiplied by the weight factor, fwi,wy,wa, wy,wg} =
{0.36,0.36,0.12,0.48,0.60}, and averaged over 120 complexes in the training

set and normalized over the energy components.

Energy Component Contribution
Escep T WiEscyy 0.3310
W2 EEec 0.3096
W3 EacE 0.0445
W4 Eipace 0.2935
WsEconsv 0.0214

- 18 -



2.1.4. Symmetric and asymmetric docking protocols

In GalaxyTongDock, symmetric docking methods that generate protein oligomers
of C, and D, symmetry are also available along with asymmetric docking. A
protein oligomer of C, symmetry belongs to the cyclic C, point group, which has a
principal axis of n-fold rotational symmetry C, but no C, axes perpendicular to the
principal axis. A protein oligomer of D, symmetry belongs to the dihedral D, point
group, which has a C, principal axis and nC, axes perpendicular to the principal
axis. GalaxyTongDock performs docking with the same scoring function for
symmetric (GalaxyTongDock C and GalaxyTongDock D) and asymmetric
docking (GalaxyTongDock A). A separate scoring function was not derived

because a large unbound set was not available for symmetric complexes.

GalaxyTongDock_C samples docking poses of two-neighboring
monomers by 2D FFT. GalaxyTongDock_D generates poses of D, symmetry by
1D FFT of the top 30 poses of C, symmetry prepared with GalaxyTongDock_C.
The conservation score is excluded in 1D FFT of GalaxyTongDock D for
computational efficiency. All of GalaxyTongDock A, GalaxyTongDock C, and
GalaxyTongDock_D employ the model selection method described in Section

2.1.5.

2.1.5. Model selection

Before model selection, the top poses (maximum of 1000 and 800 poses for

asymmetric and symmetric docking, respectively) are clustered to remove

structural redundancy. A clustering radius of /N, where N is the number of

amino acid residues in the complex, is used considering the dependency of RMSD
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on the complex size. After ranking the clusters, the lowest-energy cluster
representatives are reported. In asymmetric docking, clusters are ranked by cluster
size, considering their potential relationship with conformational entropy. In
symmetric docking, clusters are ranked by energy because ranking by cluster size
is not practical due to higher structural redundancy resulting from decreased
degrees of freedom. When the interface option (explained in Section 2.1.6) is used
for asymmetric docking, clusters are also ranked by energy as higher redundancy

emerges due to the additional restraints.

2.1.6. Prior information in the form of interface and block options

Information on the binding interface can be provided as input in the form of
interface and block options. If interface residues are designated, docking poses that
have those residues within 8 A from the partner protein are prioritized during
docking. If non-interface regions are designated by the block option, docking poses
with those regions at the interface are strongly disfavored by a large penalty
(positive energy) during docking. The GalaxyTongDock score is defined to have
the same absolute value as the GalaxyTongDock energy but with the opposite sign

to make the better poses have the higher scores.
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2.2. Performance of GalaxyTongDock

Docking performance was evaluated in terms of success rate, which is defined as
the percentage of targets for which at least one model has ligand RMSD < 10 A
when a receptor is superposed to the bound structure. In the case of models from
symmetric docking, one subunit was treated as the ligand, and the others were
treated as the receptor to calculate the ligand RMSD. Success rates of
GalaxyTongDock for the top 1, top 10, and top 50 models were compared with
other top-performing ab initio docking methods: ZDOCK3.0.2 for asymmetric
docking and M-ZDOCK® and SAM®* for symmetric docking. The compared
methods were run with default options. The results are presented in Table 2.5.
GalaxyTongDock A showed increased success rates than ZDOCK3.0.2 for top 10
and top 50 models on both training and test sets. Here, the unbound receptor and
ligand structures were randomly rotated before docking to remove the dependency

on the initial orientation.

In the case of symmetric docking, unbound monomer structures of homo-
oligomers resolved experimentally were not available in most cases; hence, a large-
scale unbound docking test using experimentally resolved unbound structures was
not possible. Unbound docking with model structures was performed instead.
Model docking would be also more relevant in actual applications. GalaxyTBM
was used for template-based modeling using templates with sequence identity <
40%. The inaccurately modeled loops or termini detected by GalaxyTBM were
deleted before docking because they often interrupt docking. The PISA benchmark
set®® was used to evaluate symmetric docking performance. Among the 142 homo-
oligomer proteins in the PISA benchmark set, those predicted to have multiple

subunits for modeling by GalaxyTBM were excluded. Final test sets include 83 and
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29 complexes with C, and D, symmetries, respectively. The lists of the symmetric

docking targets are provided in Tables 2.6 and 2.7.

The performance of GalaxyTongDock_C was higher than that of M-
ZDOCK and SAM, except that SAM showed a higher success rate for the top 1
model (by 1 target). GalaxyTongDock D showed higher performance than SAM

when the top 1 and top 10 models are considered.

A two-sample z-test analyzed the statistical significance of the
performance comparison presented in Table 2.5. The p-values against the null
hypothesis that GalaxyTongDock performs equal to or worse than each compared
method for each top 1, top 10, and top 50 predictions are presented in Table 2.8.
The training set and test set of the asymmetric docking were combined for the
analysis. The table shows that the performance of GalaxyTongDock is statistically
better than other methods with p-values 0.05~0.14 when the top 10 and top 50
predictions are considered, except in the comparison of GalaxyTongDock D with

SAM on top 50 predictions.

ZDOCK3.0.2 and M-ZDOCK do not perform clustering after sampling.
Performance after applying the same clustering method to ZDOCK3.0.2 and M-
ZDOCK is shown in Table 2.9. GalaxyTongDock still shows higher performance.
The performance of bound docking is also compared in Table 2.10, although

bound docking is not of practical importance.
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Table 2.5. Success rates of GalaxyTongDock and other methods for the top 1, top

10, and top 50 models in the cases of asymmetric and symmetric docking, where

the success rate is defined as the percentage of the targets for which at least one

model is within ligand RMSD < 10 A from the bound structure.

Topl(%) Topl10(%) Top 50 (%)
Test set GalaxyTongDock_A 17.1 32.9 48.7
(76 targets) ZDOCK3.0.2 9.2 31.6 42.1
Asymmetric GalaxyTongDock_A 10.0 34.2 55.8

docking Training set

(120 targets) ZDOCK3.0.2 14.2 25.8 47.5
GalaxyTongDock C 10.8 36.1 54.2
Ch set M-ZDOCK 9.6 24.1 36.1
symmeric. (2119 A o1 s dss
Dy set GalaxyTongDock_D 10.3 27.6 414
(29 targets) SAM 35 10.3 41.4
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Table 2.6. List of PDB IDs for the targets in the C, symmetric docking test set (83

targets).

1A3C  1AA0 1AD3 1AF5 1AJS 1ALK 1AMK 1AQ6 1AUO 1B77

1IBAM 1BSR 1BUO 1CA4 1CB0O 1CE0 1CHM 1CJD 1CMB 1CP2
1ICSH 1CUK 1CZJ 1DAA 1DPT 1E2A 1FGJ 1FIP 1FRO 1GVP
IHJR 1HSS 1ICW 1IMB 1ISA 1ISO 1JHG 1JSG 1KBA 1KPF
1ILYN 1MJL 1IMKA 1MOQ INHP INIF  INKS 1INOX 1INSY 10PY
10TP 1PGT 1PPR 1PRE 1PUC 1QLM 1RLA 1RPO 1SES  1SLT
1ISMN  1SMT 1TOX 1TRK 1TYS 1UBY 1UTG 1XSO 2CCY 2CHS
2PII 2RSP  2STD  2TCT 2TGI 3CLA 3EOJ® 3GRS 3SDH 3TDT
4KBP 5TMP 9WGA

2 4BCL was substituted to 3EOJ which has a higher resolution.

Table 2.7. List of PDB IDs for the targets in the D, symmetric docking test set (29

targets).

1AOL  1A2Z 1A3G 1A4E 1ADO 1BUC 1BVQ 1CG2 1CS1  1DCI
1IDCO 1DXE 1ETA 1EUH 1FTR 1GP1 1GSH 1ITH 1MPY 1MXB
INDC INHK 1UOX 1IXVA 2CEV 2EIP  21ZG 4PGA 5PGM
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Table 2.8. The p-values obtained by a two-sample z-test against the null hypothesis
that GalaxyTongDock performs equal to or worse than each compared method for

each top 1, top 10, and top 50 predictions.

Compared methods prvalues

Top 1 Top 10 Top 50
ook o3 oS .
Galax;\//'gglfl\tjlock_c 0.5948 0.0901 0.1379
Galax;\//'goSrEI\D/Iock_D 0.1492 0.0475 0.5000

Table 2.9. Success rates for the top 1, top 10, and top 50 models of asymmetric and

symmetric docking by ZDOCK3.0.2 and M-ZDOCK with clustering.

Topl1l(%) Top10 (%) Top 50 (%)

Test set
viiil(jfzcl:u‘:tgé:)iﬁzg 5.3 26.3 40.8
Asymmetric (76 targets)
docking Training set
Z.DOCK3'0.'2 11.7 30.8 475
(120 targets) with clustering
i Chn set -
Symmetric " M-ZDOCK 9.6 277 42.2
docking (83 targets) with clustering
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Table 2.10. Success rates for the top 1, top 10, and top 50 models of asymmetric

and symmetric "bound" docking by GalaxyTongDock and those by other methods.

Topl(%) Top10 (%) Top 50 (%)
GalaxyTongDock A 49.6 78.3 89.6
] Docking
ASymmetric  penchmark 5 ZDOCK3.0.2 54.8 75.7 81.7
docking (230 |
targets
Z.DOCKS'O.'Z 19.6 53.5 77.0
with clustering
GalaxyTongDock_C 95.2 98.8 100.0
M-ZDOCK 86.8 95.2 100.0
Ch set
(83 targets) M-ZDOCK 86.8 97.6 100.0
Symmetric with clustering : ' :
docking
SAM 74.7 86.8 95.2
D, set GalaxyTongDock_D 44.8 724 82.8
(29 targets) SAM 58.6 79.3 86.2
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3. GalaxyHeteromer

GalaxyHeteromer is a method that predicts protein heterodimer structures from two
subunit protein sequences or structures. When subunit structures are unavailable,
they are predicted by template- or distance-prediction-based modeling methods.
Heterodimer structure can be predicted by both template-based and ab initio
docking, depending on the template's availability. Structural templates are detected
from the protein structure database based on both the sequence and structure
similarities. The templates for heterodimers may be selected from monomers and
homo-oligomers, as well as from hetero-oligomers, owing to the evolutionary
relationships of heterodimers with domains of monomers or subunits of homo-
oligomers. In addition, the method employs one of the best ab initio docking
methods when heterodimer templates are unavailable. The multiple heterodimer
structure models and the associated scores provided by the method can be further
examined to test or develop functional hypotheses or to design new functional

molecules.

3.1. Methods

3.1.1. The overall pipeline of GalaxyHeteromer

The prediction pipeline of GalaxyHeteromer for predicting heterodimer structure is
shown in Figure 3.1. In GalaxyHeteromer, template-based docking is performed
by detecting templates for heterodimer structure building based on subunit

sequence similarities (sequence-based template search) and subunit structure
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similarities (structure-based template search), as described in detail below. If
subunit structures are not provided as input, they are predicted from subunit
sequences using a recently developed protein structure prediction method
explained below. Then, 3D models for heterodimer structures are generated by
superposing the subunit structures on the template structures. The models are
filtered based on physical criteria, such as steric clashes, inter-subunit contacts, and
interface area. After removing redundancy (of TM-score®” > 0.8) among the
heterodimer models, the models are ranked according to a template score, which
consists of subunit and interface structure similarities measured in TM-score to the
template structures. If < 50 models are left, ab initio docking is performed using
GalaxyTongDock_A to generate more models so that a total of 50 models can be
obtained. The best scoring model is further refined by using GalaxyLoop® and

GalaxyRefineComplex.
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Figure 3.1. GalaxyHeteromer pipeline for protein heterodimer structure prediction.

[ Input: Sequences or structures of two subunits ]

v ¥

Sequence-based template search

Structure-based template search

( Subunit template detection (Subunit structure prediction (if necessary))
v )
C Templates from DB-Mo/Ho C Templates from DB-Het )
I
v
( 3D model building of heterodimer structures by superposition ]
¥
C Filtering and ranking of the models )

Ab initio docking
by GalaxyTongDock_A

( Energy minimisation of top 50 models
]
C Complex structure refinement of top 1 model )
¥
C Output: 10 models and scores j
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3.1.2.  Subunit structure prediction

When only subunit sequences are provided as input, subunit structures are
predicted from sequences by the protein structure prediction method of the
GALAXY group who participated in CASP14 (2020) as the Seok-server. The
protein structure prediction method selects a model through a random forest
classifier from the models that were predicted by the template-based structure
prediction method, GalaxyTBM, and from those that were predicted by a distance-
prediction-based structure prediction method, GalaxyDBM. The accuracy of this
method is comparable to that of AlphaFold® on CASP13 targets
(https://predictioncenter.org/casp13/), in terms of the CASP measure GDT-TS*
(average GDT-TS = 62.3, whereas that of AlphaFold is 62.9). The selected model

is used for template search and heterodimer modeling.

GalaxyDBM predicts the probability distributions over distances between
Cy atoms (C, atom for GLY) of different residues using a deep residual
convolutional neural network based on MSA-based features, including sequence
profile and raw co-evolutionary coupling features from CCMPred*, following
AlphaFold. Thereafter, 3D backbone structures are predicted by the global
optimization method, which is known as conformational space annealing®,
maximizing the likelihood of probability distributions and satisfying local
stereochemistry controlled by GALAXY energy function®®4%. The predicted
structures are then refined by GalaxyRefine** for optimizing side-chain

conformations.
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3.1.3. Sequence- and structure-based template search

The sequence-based template search is performed on the database of monomer and
homo-oligomer proteins, named DB-Mo/Ho, as shown in Figure 3.1. DB-Mo/Ho
is the protein structure database of monomers and homo-oligomers, which has a
maximum mutual sequence identity of 70%. Subunit templates are first detected by
HHsearch®. Proteins in DB-Mo/Ho with high sequence similarity (in terms of
GalaxyTBM template score'® within the top 200) and high structure similarity
(TM-score > 0.4) to both subunits in different parts of the same protein (e.g.,
different domains of a monomer or different subunits of a homo-oligomer) are
selected as templates for building the heterodimer structure. Proteins with interface
structure similarity of less than TM-score < 0.4 are discarded for homo-oligomer
templates. The interface region for interface structure similarity comparison is
defined as residues whose C, atoms are placed closer than 20 A from any of the

other chain's C, atoms.

The structure-based template search is performed on the database of
heterodimers, named DB-Het, as shown in Figure 3.1. DB-Het was prepared by
collecting non-redundant heterodimer structures from protein complex structures
that have resolution better than 4.0 A and consist of more than two distinct proteins

in PDB. The detailed procedures constructing DB-Het are as follows:

1) Structures satisfying following conditions from PDB were downloaded; a)
Resolution < 4.0 A, b) Experimental method = X-RAY or EM, c¢) Number of
Entities (Protein) > 1.

2) The structures were disassembled into dimer-wise structures.
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3) Dimers having less than 5 C, atoms within 10 A from C, atoms of another chain

were excluded.

4) Monomers in dimers were clustered using CD-HIT* with a sequence identity

cutoff of 70%.

5) Dimers that consist of monomers in the same clusters were clustered if TM-
score between corresponding chains is larger than 0.8 and TM-score between
interface regions is larger than 0.8. The dimer with the best resolution in a cluster

became the representative dimer of the cluster.

6) DB-Het consisted of 45,267 representative dimers from step 5 (Date: 20201215).

From DB-Het, structure-based templates are detected by searching heterodimers
with subunits with high structure similarities (TM-score > 0.4) to the corresponding
subunit. Proteins with interface structure similarity less than TM-score < 0.4 are

discarded.

3.1.4. Heterodimer modeling

Heterodimer modeling is performed by superposing the subunit structures provided
as input or modeled by the modeling method described in Section 3.1.2 on the
templates searched by the method described in Section 3.1.3. Each subunit
structure is superposed on the interface region of the corresponding subunit (or
domain) of a selected template, resulting in a heterodimer model. Heterodimer
models having more than 15 steric clashes or less than five contacts or an interface

area less than 100 A 2 are excluded. The steric clashes and contacts are defined by
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the number of C, atoms within 4 A from another chain and the number of C, atoms
within 15 A from another chain. The remaining heterodimer models are ranked by

a template score that is defined as follows:

Template score for heterodimer and homo-oligomer templates

= [2 x (sum of subunit TM-scores between target and template for receptor and ligand) + 5

x (sum of interface TM-scores between target and template for receptor and ligand)] / 14
Template score for monomer templates

= (sum of subunit TM-scores between target and template for receptor and ligand) / 2

The template score for monomer templates is defined differently because the
interface region of monomer templates cannot be clearly defined. The heterodimer
models are then clustered by TM-score > 0.8 criteria. If < 50 models are left,
GalaxyTongDock_A, described in Section 2, is used to generate more models so
that a total of 50 models can be obtained. After energy minimization, the best
scoring model is further refined by re-modeling interfacial loop structures which
are detected as inaccurate by the loop modeling method GalaxyLoop and relaxed
by repetitive side-chain perturbations and molecular dynamics simulations using

the complex structure refinement method GalaxyRefineComplex.
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3.2. Performance of GalaxyHeteromer

The protein complex structure prediction method, which contains
GalaxyHeteromer and GalaxyHomomer2, described in Section 4, participated in
the assembly category of CASP14 and CASP14-CAPRI challenges as a group

named Seok, and ranked as fourth and first, respectively.

The performance of GalaxyHeteromer was compared to that of the ab
initio docking method GalaxyTongDock_A on a test set of 143 heterodimers of the
Docking benchmark 5, to evaluate the combined effect of template-based and ab
initio docking compared to ab initio docking alone. The same monomer models
generated by GalaxyHeteromer were used as input subunit structures for ab initio
docking. To simulate a rather difficult prediction case, the subunit templates with
sequence identities > 70% were excluded for monomer modeling, and the protein
templates with sequence identities of any subunits > 70% to the corresponding
subunits of the test proteins were excluded for heterodimer modeling. The
generated models were assessed by CAPRI criterion® that classifies the accuracy

of protein complex models as follows:

Acceptable: F,, > 0.1 and (5A < LRSMD < 10A or 2A < IRMSD < 44)
Medium: F,, > 0.3 and (1A < LRSMD < 5A or 1A < IRMSD < 24)

High: F,q > 0.5 and (LRSMD < 1A or IRMSD < 1A)

- 34 -



As shown in Table 3.1, GalaxyHeteromer and GalaxyTongDock A generated
models with better than acceptable accuracy in 30% and 5% of cases, respectively,

as the top 1, and in 50% and 34% of cases, respectively, within the top 50.

Next, the performance of GalaxyHeteromer was compared to that of
HDOCK?®, which is one of the best methods, on the 54 heterodimers used
previously for benchmarking HDOCK®. The protein templates with sequence
identities to the target complex greater than 30% were excluded, and unbound
subunit structures were used as input. As shown in Table 3.3, GalaxyHeteromer
outperformed HDOCK except for the case of the top 1 prediction. Top N (N=1, 5,
10, and 50) success rates (percentage of the cases in which models better than
acceptable qualities obtained within the N models) are 33.3%, 53.7%, 55.6%, and
68.5%, respectively, for GalaxyHeteromer, whereas those for HDOCK are 38.9%,
40.7%, 44.4%, and 59.3%, respectively.
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Table 3.1. Performance comparison of GalaxyHeteromer, which combines

template-based and ab initio docking, with that of GalaxyTongDock A, which

employs ab initio docking, in terms of CAPRI criterion of model accuracy on a test

set of 143 protein heterodimers.

% of the cases with medium/acceptable accuracy models within top N

N GalaxyHeteromer GalaxyTongDock A
1 13.3/30.1 1.4/4.9
5 18.2/39.2 5.6/13.3
10 19.6/41.3 7.0/16.8
50 22.4149.7 9.8/34.3

Table 3.2. Performance comparison of GalaxyHeteromer with that of HDOCK in

terms of CAPRI criterion on a test set of 54 protein heterodimers.

% of the cases with acceptable accuracy models within top N

N GalaxyHeteromer HDOCK
1 33.3 38.9
) 53.7 40.7
10 55.6 44.4
50 68.5 59.3
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GalaxyHeteromer puts more emphasis on providing multiple alternative
solutions for possible complex structures by exploring multiple templates
compared to HDOCK. The provided multiple models may be combined with

separate experimental information to select more feasible complex structures.

In CASP13, our automatic prediction server submitted no acceptable
models on the heterodimer targets of CASP13 (H0957, H0968, H0974, H0980, and
HO0986) in the top 5 predictions. On the other hand, GalaxyHeteromer made
acceptable models on three targets, H0968, H0974, and HO0986, in the top 5
predictions. Here, for a fair comparison, DB-Het reconstructed with structures
released before 20180425, which is before CASP13, was used in GalaxyHeteromer.
An example of a successful prediction for H0986 is shown in Figure 3.2.
GalaxyHeteromer made a model having medium accuracy at sixth prediction for
H0974, shown in Figure 3.3. This model was generated using a homo-oligomer
template (PDB ID: 1Y7Y), which shows the importance of utilizing the
evolutionary relationship of heterodimers to different forms of quaternary

complexes, i.e., homo-oligomers and monomers.
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Figure 3.2. An example of a successful prediction on H0986. Left) Each subunit
structure modeled by GalaxyHeteromer (in sky-blue and yellow) is superposed on
the corresponding subunit structure in the native structure of H0986 (in blue and
red). The two interfacial loops which were inaccurately modeled are in the circles.
Right) The 5th prediction model of GalaxyHeteromer (in sky-blue and yellow),
which has an acceptable accuracy [Fra®% 0.232, IRMSD: 4.89 A, LRMSD: 8.45 A1,
is superposed on the native structure (in blue and red). Although there were
inaccurately modeled loops in the interface region of subunit structures,
GalaxyHeteromer successfully generated an acceptable accuracy model by

template-based docking.
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Figure 3.3. Model 6 of GalaxyHeteromer (in sky-blue and yellow) and the
template, a homodimer protein (PDB ID: 1Y7Y), that was used to generate the
model (in pink) are superposed on the native structure of H0974 (in blue and red).
The model generated based on the template has medium accuracy [Fna: 0.667,
IRMSD: 2.60 A, LRMSD: 3.33 A]. The histidine tag of the model, not captured in

the crystal structure, is in the circle.
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4. GalaxyHomomer2

GalaxyHomomer2, an upgraded version of GalaxyHomomer®, predicts a homo-
oligomer structure from a monomer sequence or structure composing the homo-
oligomer. When a monomer structure is unavailable, the monomer structure is
predicted by the subunit structure prediction method, described in Section 3.1.2.
The homo-oligomer structure can be predicted by both template-based and ab initio
docking, depending on the template's availability. Structural templates are detected
from the protein structure database based on both the sequence and structure
similarities. The method employs one of the best ab initio docking methods when

homo-oligomer templates are unavailable.

GalaxyHomomer was designed to prioritize sequence-based template
search over structure-based template search when a protein sequence is provided as
input. The structure-based template search was used only when less than five
templates were found by sequence-based template search. Since the time that
GalaxyHomomer was developed, the accuracy of the protein structure prediction
method has been significantly improved®. Therefore, structure-based template
search and modeling based on structural superposition, the performance of which
primarily depends on the monomer model quality, is more emphasized in

GalaxyHomomer?2.
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4.1. Methods

4.1.1. The overall pipeline of GalaxyHomomer2

The prediction pipeline of the GalaxyHomomer2 for predicting homo-oligomer
structures is shown in Figure 4.1. In GalaxyHomomer2, template-based docking is
performed by detecting templates for homo-oligomer structure modeling based on
monomer sequence similarity (sequence-based template search) and monomer
structure similarity (structure-based template search). The sequence-based template
search and structure-based template search are performed on the DB-Ho, which is
the same database that is used in GalaxyHomomer. Homo-oligomer templates are
detected by HHsearch. Homo-oligomers in DB-Ho with high sequence similarity
(in terms of GalaxyTBM template score within the top 200) become the templates
detected from the sequence-based template search. If a monomer structure is not
provided as input, it is predicted from a monomer sequence using a protein
structure prediction method explained in Section 3.1.2. Among the top 200
templates from the sequence-based template search, templates with high structure
similarity (TM-score > 0.4) become the templates detected from the structure-
based template search. The template detected from the sequence-based template
search and the structure-based template search are ranked based on a template
score, described in Section 4.1.3. Homo-oligomer models are generated by the
sequence threading method of GalaxyTBM if a template is from sequence-based
template search and structural superposition if a template is from structure-based
template search. If < 5 models are generated from template-based docking, ab
initio docking is performed using GalaxyTongDock_C to generate more models so
that a total of 5 models can be obtained. The best scoring model is further refined

by using GalaxyLoop and GalaxyRefineComplex.
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Figure 4.1. GalaxyHomomer2 pipeline for homo-oligomer structure prediction.

TBD stands for template-based docking. The TBD corresponds to the sequence

threading method of GalaxyTBM if a template is from sequence-based template

search and structural superposition if a template is from structure-based template

search.
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4.1.2. Benchmark set preparation

A benchmark set for GalaxyHomomer2 was prepared by extracting homo-

oligomers satisfying the following conditions from PDB:

a) Containing proteins only

b) Oligomeric state is between 2 to 6

c) Molecular weight is between 5,000 to 100,000
d) Has no free ligands

e) Has no modified polymeric residues

f) Resolution is between 0 A to 2.5 A

The homo-oligomers satisfying the conditions were clustered to have maximum
mutual sequence identity < 30%, resulting in 2,410 homo-oligomers. Homo-
oligomers composed of multi-domain proteins were detected by GalaxyDom
(unpublished), an in-house domain detection method, and excluded from the
benchmark set, resulting in a benchmark set of 2244 homo-oligomers. From the
benchmark set, 600 homo-oligomers, Set 1, were randomly selected by maintaining
the portion of each oligomeric state (dimer: 458, trimer: 52, tetramer: 63, pentamer:
5, hexamer: 22). In the same way, 600 homo-oligomers, Set 2, were randomly
selected from the remaining homo-oligomers, maintaining the portion of each

oligomeric state.
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4.1.3. Parameter tuning for ranking templates

Scoring and ranking templates detected by different template search methods are
tricky because the templates were selected based on different criteria. First, the
GalaxyHomomer2 template score, Syomz2, for templates from the sequence-based
template search and templates from the structure-based template search was

formulated as follows:

Shomz = Sseq = SGalaxyTBM(a X TMpred + b % idseq)
Shomz = Sstr = SGalaxyTBM X TMpred(C + d X TMyono + € X TMigace)

where Sgoq is a template score for a template from sequence-based template

search, S is a template score for a template from structure-based template
search, Sgalaxyrem IS the template score of GalaxyTBM, TMp..q is predicted
TM-score that is calculated by GalaxyTBM based on HHsearch result and has a
single value for a target homo-oligomer, idg.q is sequence identity between a
target and a template, TMy,on0 iS Structure similarity between a monomer model
and a template, TM;p e iS interface structure similarity between a monomer
model and an interface region of a template. The interface region was defined as
residues whose C, atoms are placed closer than 20 A from any of the other chain's

C, atoms.

For parameter tuning of a, b, c, d, and e values, 20 models from each
sequence-based template search followed by modeling based on sequence
threading method and structure-based template search followed by modeling based
on structural superposition were generated for homo-oligomers in Set 1. IRMSD of
the generated model was calculated. c, d, and e values minimizing the best IRMSD

of top 5 models from structure-based template search were first determined to be 1,

- 44 -



0.2, and 0.5 by rough grid search in parameter space. And then, a and b values
minimizing the best IRMSD of top 5 models from both template searches were
determined to be 1.65 and 0 by rough grid search in parameter space. Therefore,

Shomz 1S determined as follows:
Shomz = Sseq = 1.65 X SGalaxyTBM X TMpred
Shom2 = Sstr = SGalaxyTBM X TMpred(l + 0.2 X TMpyono + 0.5 X TMigace)

In both Sseq and Sgir, TMpreq, Which estimates the accuracy of a
monomer model, is necessary to define a cutoff value for deciding whether use the
templates for homo-oligomer modeling or not. Ab initio docking, by
GalaxyTongDock C, may be a better choice than template-based docking using

templates with low Sp,m2. It turned out that ab initio docking performs better than

template-based docking when —Shomz 1, Therefore, templates having
maX(SGalaxyTBM)

S . . .
———homz ____|ower than 1.0 are excluded in the homo-oligomer modeling step.
max(SgalaxyTBM)

By applying the above GalaxyHomomer2 template score and template
exclusion criterion, the usage of models from structure-based template searches in
the top 1 and top 5 models was increased compared to that of GalaxyHomomer, as

shown in Table 4.1. The usage of models from ab initio docking is also increased.
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Table 4.1. The number of models in the top 1 and top 5 models generated for Set 1

depending on their modeling methods.

Set 1

# of models
(sequence-based

template search)

# of models
(structure-based

template search)

# of models

(ab initio docking)

GalaxyHomomer

525 28 47
(top 1 model)
GalaxyHomomer2
302 218 80
(top 1 model)
GalaxyHomomer
2038 400 562
(top 5 models)
GalaxyHomomer2
1671 477 852

(top 5 models)
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4.2. Performance of GalaxyHomomer?2

The performance of GalaxyHomomer2 was compared to that of GalaxyHomomer.
Templates having more than 40% sequence identity to targets were excluded for
the performance test. Even though some parameters of GalaxyHomomer2 were
tuned using Set 1, the performance of GalaxyHomomer2 was shown to be better on
Set 2 in terms of CAPRI criterion, as shown in Tables 4.2 and 4.3. The same
tendency was observed in terms of LRMSD, IRMSD, and Fn.2. Furthermore, the
performance gap between GalaxyHomomer2 and GalaxyHomomer was more
noticeable on Set 2. This result could happen because Set 1 and Set 2 have different
properties and the grid search of parameters was rough enough not to be over-
trained on Set 1. The performance of GalaxyHomomer2 was analyzed in detail on
the combined set of Set 1 and Set 2 that is composed of 1,200 homo-oligomers.
The results in Tables 4.2 and 4.3 are slightly different from those in the following
analysis because there were minor changes in the GalaxyHomomer2 pipeline after

Tables 4.2 and 4.3 were made.

- 47 -



Table 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on Set 1 in terms of CAPRI criterion.

Set1 High Medium Acceptable
GalaxyHomomer
0 102 86
(top 1 model)
GalaxyHomomer2
1 104 90
(top 1 model)
GalaxyHomomer
5 154 88
(top 5 models)
GalaxyHomomer2
4 157 88
(top 5 models)

Table 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on Set 2 in terms of CAPRI criterion.

Set 2 High Medium Acceptable
GalaxyHomomer
3 93 100
(top 1 model)
GalaxyHomomer2
4 104 91
(top 1 model)
GalaxyHomomer
6 165 89
(top 5 models)
GalaxyHomomer2
7 174 93
(top 5 models)
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The performance of the final pipeline of GalaxyHomomer2 was compared
to that of GalaxyHomomer in terms of GDT-TS of monomer models (Figure4.2),
CAPRI criterion (Table 4.4), LRMSD (Figure 4.3), IRMSD (Figure 4.4), and Fnat,
(Figure 4.5). The average values of GDT-TS of monomer models, LRMSD,
RMSD, and Fa are summarized in Table 4.5. There were moderate improvements
in GDT-TS of monomer models, CAPRI criterion, IRMSD, and LRMSD.
GalaxyHomomer2 showed similar performance in terms of Fna compared to

GalaxyHomomer.

In summary, GalaxyHomomer2 generated better quality models and made
successful predictions on more targets compared to GalaxyHomomer. However,
the extent of improvement was moderate. There is still large room for improvement
because GalaxyHomomer2 failed many targets that were successfully predicted by

GalaxyHomomer, as can be seen in Figures 4.3, 4.4, and 4.5.

There was a considerable improvement of the monomer structure
prediction method on CASP14 (2020). AlphaFold2 successfully predicted the
monomer structures for most of the targets of CASP14 with remarkable precision.
Surprisingly, the monomer structures of the obligate homo-oligomers were
correctly predicted without explicitly considering their oligomeric states. If
structure-based template search is combined with an advanced monomer structure
prediction method, such as AlphaFold2, the performance of template-based
docking combined with structure-based template search, which is more emphasized

in GalaxyHomomer?2, is expected to be significantly improved.
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Figure 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on the combined set (1,200 homo-oligomers) in terms of GDT-TS of monomer
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Table 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on the combined set in terms of CAPRI criterion.

Combined set High Medium Acceptable
GalaxyHomomer
3 195 186
(top 1 model)
GalaxyHomomer2
5 207 183
(top 1 model)
GalaxyHomomer
11 319 177
(top 5 models)
GalaxyHomomer2
11 334 185
(top 5 models)
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Figure 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on the combined set in terms of LRMSD.
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Figure 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on the combined set in terms of IRMSD.

irmsd (top1)

irmsd (top5)

8 ¥ 8 =
+ + +
+ + +
o . + + 4
+ 4t Y . & +
7 + + + 74 4 oy
+ + ot " + + + +
61 4 ty 6 + + P/
+ + . LS + + + £ *
+ +
+ 4+ +
i o+ tat #+4 + 4 + - e +++ !
5 + + L s 51 + * + s
+ + R 4 4 {r +
+ 4ttt + + S T A
to4 okt Fr + + + ~ "\ R + 1
4 - "o +*.,;-_+ B+t g4' + i'l{* bt
LR gt o+ 1 = + ++t‘$ i+ 1 +
+ + % + + 4
+ + + + *. + o +
3 + it;* + 4 + 34 +y ++
+4 h ek, * 223 + .
+ b+
5 Ra . . , . Beg *t*‘: Y .
i + . o+ 4 + "
+ r++$+ oF ot +
+
+ N + P +
14 + * 14 + *
+ %
0 T T T T T T T 0 T T T T T T T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
hom?2 hom2
- ] T
’ e
F
- o

&)
|

kTl



Figure 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer

on the combined set in terms of Fna.
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Table 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer
on the combined set in terms of multiple accuracy measures (average GDT-TS of
monomer models, LRMSD, IRMSD, and F of the top 1 and top 5 models). For
the top 5 models, the model with the best value for each accuracy measure was
used for computing the average. LRMSD over 20 A was considered to be 20 A,

and IRMSD over 8 A was considered to be 8 A .

Combined GalaxyHomomer | GalaxyHomomer2 | GalaxyHomomer | GalaxyHomomer2
set (top 1 model) (top 1 model) (top 5 model) (top 5 model)
GDT-TS of
monomer 68.2 70.3 71.6 73.6
models
LRMSD 7.12 6.82 6.76 6.28
IRMSD 3.48 3.24 3.21 2.97
Frat 0.436 0.424 0.424 0.423
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5. CASP and CAPRI

By utilizing the developed methods and other GALAXY software*’, we have
achieved high performance in CASP and CAPRI, second place in the CASP13
assembly category?’, third place in CASP13-CAPRI®, fourth place in CASP14
assembly, first place in CASP14-CAPRI, and second place in CAPRI 7th edition
(round 38-45)'°. CASP and CAPRI are community-wide prediction experiments
for protein structure prediction and protein complex structure prediction in a blind
fashion. In CASP and CAPRI, there are server and human predictions that
participants should submit their models within three days and target-dependent
time, respectively. In our group, the models of the server predictions were
automatically generated by a prediction pipeline, and the models of the human
predictions were manually generated with human intervention, such as literature
search and template search. In this section, examples of how the developed
methods have been utilized to predict protein complex structures in CASP and

CAPRI are presented.

51. CASP13

51.1. H1021 (AsBsCs)

H1021 has AsBsCs stoichiometry. H1021 was a challenging target due to its large
assembly. In the human prediction of the target H1021, low-resolution EM data
was utilized to predict the oligomer structure. We first built homo-hexamer
structures of each subunit based on the templates (5W5F for As, 3J9Q for Bs, and
4HUH for Csg). The templates were detected by the template score of GalaxyTBM.

Two homo-hexamer subunit structures, A6 and B6, were assembled by rigid-body
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fitting into a 20 A resolution EM map (Electron Microscopy Data Bank [EMDB]:
EMD-2419)* using UCSF Chimera*. Due to the wrongly modeled C-terminal
domain orientation in the third subunit, we failed to fit the last homo-hexamer
subunits (Cg) into the EM data. Instead, the last subunits were docked into
assembled AsBs structure by GalaxyTongDock. Our model 5 turned out to have the
best ICS score®, and it showed quite good arrangements of the subunits except for
the orientation of the last subunit's C-terminal domain, as shown in Figure 5.1. Our
model 5 for the target H1021 was highlighted at the CASP13 conference for its

accuracy.
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Figure 5.1. Multimeric structure of model 5 for H1021. (A) The native structure
and (B) model 5 are shown with a low-resolution EM map (Electron Microscopy
Data Bank [EMDB]: EMD-2419). (C) A part of the complex (chains A, B, C) is
shown in clarity. Native chain structures are in lighter colors, while those of model
5 are in darker colors. Except for the circled domain, the overall predicted structure

is quite similar to the native structure.
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5.2. CASP14

52.1. H1045 (AB)

H1045 is a heterodimer protein. Model 1 of our server prediction, which is
automatically predicted by GalaxyHeteromer, was of medium accuracy in terms of
CAPRI criterion. GalaxyHeteromer generated subunit structure models of GDT-TS
= 82 and 64. An available heterodimer template (PDB ID: 2Y9M) was detected via
structure-based template detection. A heterodimer structure was built by
superposing the models of the subunits onto the template, and energy minimization
was performed to remove steric clashes. This model structure was refined by the
complex structure refinement method GalaxyRefineComplex, resulting in a
heterodimer structure with medium accuracy [Fna = 0.630, IRMSD = 2.00 A,
LRMSD = 11.8 A] (colored yellow and sky-blue in Figure 5.2). LRMSD was
relatively large because of the low-quality monomer model of subunit B. The
heterodimer model could have medium accuracy because the interface regions of

both subunits were modeled accurately.
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Figure 5.2. Model 1 of GalaxyHeteromer (in yellow and sky-blue), which has a
medium accuracy [Fra = 0.630, IRMSD = 2.00 A, LRMSD = 11.8 A], is
superposed on the native structure of H1045 (in red and blue). The template (PDB
ID: 2Y9M) used for the heterodimer modeling is colored pink. Even though the
monomer model of the subunit B (in sky-blue) was relatively inaccurate, the
heterodimer model could be successfully predicted because the interface regions of

both subunits were accurately modeled.
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5.2.2. T1070 (As)

Our server prediction for the homo-trimer structure of the four-domain protein
T1070 was unsuccessful due to the failure of monomer structure prediction: no
proper oligomeric template was found when the target was treated as a single-
domain protein. In the human prediction, the T1070 trimeric structure prediction
was performed domain-wise after manually dividing the structure into four
domains (residues 1-76, 80-165, 190-249, and 264-335). The GalaxyTongDock C
was used to predict the trimer structures for each domain using domain structures
selected from the CASP14 TS server models. Indeed, the crystal structure of T1070
could be divided into four structural domains, with slightly different domain

assignments (1-76, 80-180, 181-256, and 265-335), as shown in Figure 5.3A.

Figure 5.3 shows the results of our human predictions for only the second
and fourth domains since predictions for the first and the third domains were
unsuccessful (crystal structures are shown in gray color). The structures of the
trimers of the first domain, an inter-twined domain, and the third domain, which do
not include inter-subunit contacts, were challenging to be predicted via ab initio
docking. The trimer structure of the second domain of our model 5 (Figure 5.3B)
was of acceptable quality in terms of the CAPRI accuracy criterion [Fna = 0.18,
IRMSD =5.26 A, LRMSD = 5.31 A]. The monomer structure for this domain was
provided by Seok-server_TS1, which was generated by GalaxyDBM [GDT-TS =
76.19, RMSD = 4.283 A]. The predicted trimer structure was more compact (see
magenta-colored structure in Figure 5.3B) than the crystal structure (yellow) since
the beta-strand residues (166-180, green) were tightly interacting with each other in
the crystal structure. This region was not included in the monomer structure for
docking due to domain mis-splitting. The domain boundary of the fourth domain

was predicted accurately, and our human prediction model 1 for this domain
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(Figure 5.3C) was of medium quality with respect to the CAPRI criterion [Fna =
0.42, IRMSD = 3.22 A, LRMSD = 2.06 A]. The monomer structure used for
docking was obtained from Zhang-CEthreade TS1 [GDT-TS = 83.45, RMSD =
2.423A1.

These results demonstrated that homo-oligomer structures can be
predicted by symmetric ab initio docking when monomer structures of reasonable
quality are available. For multi-domain proteins, an accurate domain assignment is
crucial for successful structure prediction. We did not attempt assembly of the four
trimer domains for T1070, as the first and third domain structures were deemed

inaccurate.
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Figure 5.3. Comparison of the crystal and modeled structures of T1070. (A) The
crystal structure of T1070 is divided into four domains. Domains 1 and 3 are
colored in gray, and domains 2 and 4 are colored in yellow. The model structures
of domains 2 and 4 extracted from our human models 5 and 1, respectively, are
depicted in purple. (B) The model structure of domain 2 (magenta) is superposed
onto the crystal structure (yellow and green) and shown from a different
perspective. The beta-strand residues 166-180 (green), missing in the model
structure, interact tightly with each other in the crystal structure. The subunits of
the model structure are closer to each other in the model structure due to the
missing region. (C) The model structure of domain 4 (magenta) is superposed onto

the crystal structure (yellow).
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5.2.3. T1083 (A)

T1083 is a homodimer protein. Model 1 of our server prediction, which is
automatically predicted by GalaxyHomomer2, was of medium accuracy in terms of
CAPRI criterion. GalaxyHomomer2 detected an available oligomer template [PDB
ID = 3GWK, TM-score = 0.61] via the structure-based template detection using the
monomer model generated by GalaxyDBM [GDT-TS = 87.5, RMSD = 2.82 A]. A
homodimer structure was built by superposing the monomer model onto the
template, and energy minimization was performed to remove steric clashes. Local
energy minimization was insufficient to induce a conformational change from the
superposed structure (colored in pink in Figure 5.4) to the crystal structure
(yellow). This model structure was incorrect [Fra = 0.392, IRMSD = 4.09 A,
LRMSD = 10.1 A]. This model structure was refined by GalaxyRefineComplex,
resulting in an improved structure with medium accuracy [Fna = 0.608, IRMSD =
251 A, LRMSD = 4.83 A] (colored sky-blue in Figure 5.4). This model was
submitted as model 1. GalaxyRefineComplex refined the loose N-terminal portions
of each subunit of the homodimer (magenta in Figure 5.4) to a helix structure
(dark blue), which packed against the helix bundle, similarly to the N-terminus of
the crystal (green). The relative orientation of the two subunit helices was also
improved upon refinement (structures before and after refinement are colored pink

and sky-blue, respectively).
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Figure 5.4. The crystal (yellow) and modeled structures before (pink) and after
refinement (sky-blue) of T1083. The loose N-terminal structures of the two
subunits before refinement (magenta) were well-packed upon refinement (dark
blue) and approached the crystal structure (green). The relative orientation between

the two subunits was also improved by the refinement.

GalaxyRefineComplex

Fnat = 0.392 Fnat = 0. 608
IRMSD = 4.09A IRMSD = 2.51A
LRMSD = 10.1A LRMSD = 4.83A
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5.3. CAPRI

53.1. T131(AB)

This target is a hetero-dimer protein. The crystal structures of both subunits were
available at the time of prediction (PDB ID: 5LP2 and 4WHD). No acceptable or
higher accuracy models were submitted within the top 10 by either server or human
predictions for this target. Our server model 66 was of high quality with [Fna =
0.92, IRMSD = 1.5 A, LRMSD = 2.7 A], which was the best among all models
submitted by all predictors. Interestingly, the model was selected as top 1 by
GalaxyTongDock. However, the model was evaluated to be wrong by
GalaxyPPDock (unpublished), which performs global optimization starting with
the models generated by GalaxyTongDock. We attribute this failure to the
limitation of GalaxyPPDock that does not sample backbone structure flexibility.
The rigid-body docking method GalaxyTongDock considers backbone flexibility
implicitly with a low penalty for steric clashes. GalaxyPPDock employs high-

resolution energy, which imposes a high penalty for steric clashes.
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6. Conclusion

Three protein  complex structure prediction methods, GalaxyTongDock,
GalaxyHeteromer, and GalaxyHomomer2 were developed. GalaxyTongDock
performs asymmetric and symmetric ab initio docking utilizing FFT.
GalaxyHeteromer and GalaxyHomomer2 employ both template-based docking and
ab initio docking for hetero- and homo-oligomer structure prediction, respectively.

The methods have been being freely serviced for global users as web servers at

GalaxyTongDock web server (http://galaxy.seoklab.org/tongdock)

GalaxyHeteromer web server (http://galaxy.seoklab.org/heteromer)

GalaxyHomomer2 web server (http://galaxy.seoklab.org/homomer)

Our group has been ranked on top in multiple CASP and CAPRI using the
methods, second place in the CASP13 assembly category, third place in CASP13-
CAPRI, fourth place in CASP14 assembly category, first place in CASP14-CAPRI,
and second place in CAPRI 7th edition (round 38-45). The methods have been
actively utilized in various joint research with pharmaceutical companies and
academic research groups regarding protein complex structure prediction, protein-

peptide docking, and protein drug design.

Near future, we expect there will be meaningful progress in protein

complex structure prediction from two aspects. First, there was a remarkable
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improvement of the protein structure prediction in CASP14 by AlphaFold2.
Accurate monomer model structures are a prerequisite for accurate protein complex
structure prediction. A meaningful improvement would be followed as protein
complex structure prediction methods are combined with advanced monomer
structure prediction methods. Second, many researchers are trying to apply deep
learning to protein complex structure prediction. Deep learning is thought to have
massive potential in protein complex structure prediction. We are trying to apply
deep learning to protein complex structure prediction. The performance of
GalaxyTongDock has been highly increased by a deep learning-based docking pose
rescoring method. Binding affinity between proteins could also be more accurately

predicted by deep learning-based energy than conventional GALAXY energy.

Improvement in protein structure prediction and protein complex structure
prediction will change the field of drug discovery. Computational methods are
potent tools for rationally designing protein-based therapeutic agents, like antibody
and cytokine drugs. Accurately predicted protein-protein interface makes it
possible to determine where to target and how to target for discovering protein-
protein interaction inhibitors. The era of precision medicine does not seem too far

from where we are standing.
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