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Abstract 

Protein Complex Structure Prediction by 

Template-Based and Ab Initio Docking 

 

Taeyong Park 

Department of Chemistry 

The Graduate School 

Seoul National University 

 

Protein-protein interactions play crucial roles in diverse biological processes, 

including various disease progressions. Atomistic structural details of protein-

protein interactions that can be obtained from protein complex structures may 

provide vital information for the design of therapeutic agents. However, a large 

portion of protein complex structures is hard to be experimentally captured due to 

their weak and transient protein-protein interactions. Indeed, a limited fraction of 

protein-protein interactions happening in the human body has been experimentally 

determined. Computational protein complex structure prediction methods have 

been spotlighted for their roles in providing insights into protein-protein 

interactions in the absence of complete structural information by experiment. In 

this dissertation, three protein complex structure prediction methods are explained: 

GalaxyTongDock, GalaxyHeteromer, and GalaxyHomomer2. GalaxyTongDock 

performs ab initio docking for structure prediction of hetero- and homo-oligomers. 

GalaxyHeteromer and GalaxyHomomer2 predict heterodimer and homo-oligomer 
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structures, respectively, by template-based docking and ab initio docking 

depending on the template's availability. Lastly, examples of how these methods 

were utilized to predict protein complex structures in CASP and CAPRI, 

community-wide prediction experiments, are presented. 

 

 

keywords: protein complex structure prediction, protein-protein docking, template-

based docking, ab initio docking, CASP, CAPRI 

Student Number: 2015-22613  



 

- iii - 

Table of Contents 

 

Abstract ............................................................................ i 

Table of Contents .......................................................... iii 

List of Figures ................................................................. v 

List of Tables ................................................................. vi 

1. Introduction ................................................................ 1 

2. GalaxyTongDock ........................................................ 4 

2.1. Methods ............................................................... 4 

2.2. Performance of GalaxyTongDock .................. 21 

3. GalaxyHeteromer ..................................................... 27 

3.1. Methods ............................................................. 27 

3.2. Performance of GalaxyHeteromer ................. 34 

4. GalaxyHomomer2 ..................................................... 40 

4.1. Methods ............................................................. 41 



 

- iv - 

4.2. Performance of GalaxyHomomer2 ................ 47 

5. CASP and CAPRI ..................................................... 54 

5.1. CASP13 ............................................................. 54 

5.2. CASP14 ............................................................. 57 

5.3. CAPRI ............................................................... 64 

6. Conclusion ................................................................. 65 

7. References .................................................................. 67 

국문초록 ........................................................................ 71 

감사의 글 ...................................................................... 73 

 

  



 

- v - 

List of Figures 

 

Figure 2.1. The prediction workflow of GalaxyTongDock_A.................................6 

 

Figure 3.1. GalaxyHeteromer pipeline for protein heterodimer structure 

prediction.................................................................................................................29 

Figure 3.2. An example of a successful prediction on H0986................................38 

Figure 3.3. Model 6 of GalaxyHeteromer and the template, a homodimer protein, 

that was used to generate the model are superposed on the native structure of 

H0974.......................................................................................................................39 

 

Figure 4.1. GalaxyHomomer2 pipeline for homo-oligomer structure prediction...42 

Figure 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of GDT-TS of monomer models...............................50 

Figure 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of LRMSD................................................................51 

Figure 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of IRMSD.................................................................51 

Figure 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of Fnat.........................................................................52 

 

Figure 5.1. Multimeric structure of model 5 for H1021.........................................56 

Figure 5.2. Model 1 of GalaxyHeteromer is superposed on the native structure of 

H1045.......................................................................................................................58 

Figure 5.3. Comparison of the crystal and modeled structures of T1070...............61 



 

- vi - 

Figure 5.4. The crystal and modeled structures before and after refinement of 

T1083………………...............................................................................................63 

 

 

List of Tables 

 

Table 2.1. List of PDB IDs for the targets in Set 1 and Set 2.................................13 

Table 2.2. List of PDB IDs for the targets in the asymmetric docking test set.......14 

Table 2.3. Grid sizes and search ranges of the parameter training rounds at fixed 

conformations..........................................................................................................17 

Table 2.4. Contribution of each energy component................................................18 

Table 2.5. Success rates of GalaxyTongDock and other methods for the top 1, top 

10, and top 50 models in the cases of asymmetric and symmetric docking............23 

Table 2.6. List of PDB IDs for the targets in the Cn symmetric docking test set....24 

Table 2.7. List of PDB IDs for the targets in the Dn symmetric docking test set...24 

Table 2.8. The p-values obtained by a two-sample z-test against the null hypothesis 

that GalaxyTongDock performs equal to or worse than each compared method for 

each of the top 1, top 10, and top 50 predictions.....................................................25 

Table 2.9. Success rates for the top 1, top 10, and top 50 models of asymmetric and 

symmetric docking by ZDOCK3.0.2 and M-ZDOCK with clustering....................25 

Table 2.10. Success rates for the top 1, top 10, and top 50 models of asymmetric 

and symmetric "bound" docking by GalaxyTongDock and those by other 

methods....................................................................................................................26 

 

Table 3.1. Performance comparison of GalaxyHeteromer with that of 

GalaxyTongDock_A in terms of CAPRI criterion of model accuracy on a test set of 

143 protein heterodimers.........................................................................................36 

Table 3.2. Performance comparison of GalaxyHeteromer with that of HDOCK in 

terms of CAPRI criterion on a test set of 54 protein heterodimers..........................36 



 

- vii - 

 

Table 4.1. The number of models in the top 1 and top 5 models generated for Set 1 

depending on their modeling methods.....................................................................46 

Table 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on Set 1 in terms of CAPRI criterion.......................................................................48 

Table 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on Set 2 in terms of CAPRI criterion.......................................................................48 

Table 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of CAPRI criterion....................................................50 

Table 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of multiple measures (average GDT-TS of monomer 

models, LRMSD, IRMSD, and Fnat of the top 1 and top 5 models)........................53 

 

  



 

- 1 - 

1. Introduction 

 

Protein-protein interactions play key roles in various biological processes such as 

cell division, maintenance of homeostasis, immunity, and various disease 

progressions1-3. Abnormal protein-protein interactions caused by gene mutations or 

environmental factors become the source of a wide range of diseases. Normal 

protein-protein interactions also can lead to diseases, for example, the PD-1-PD-L1 

interaction in various cancers. Understanding the atomistic detail of protein-protein 

interactions is a prerequisite for identifying therapeutic molecules that regulate 

disease-related biological processes. Computational protein complex structure 

prediction methods have been a valuable tool for the understanding of protein-

protein interactions due to the limited number of available protein complex 

structures obtained experimentally, especially for transient or weak protein 

complexes4-7. 

Protein complex structures are currently predicted using template-based or 

ab initio docking8-14, depending on the availability of structural templates for the 

target complex in structure database, such as Protein Data Bank (PDB). Structural 

templates for a protein complex can be detected by exploiting sequence or structure 

similarities of consisting proteins to proteins in the database. When such similarity-

based approaches are not reliable due to the lack of available structural templates, 

ab initio docking, based on the physical principles of protein binding, is used. Ab 

initio docking identifies the most stable binding pose in the conformational space 

of protein-protein complexes by conformational sampling and stability evaluation. 

The protein complexes can be divided into homo-oligomers, which are assemblies 

of identical proteins, and hetero-oligomers, which are assemblies of different 
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proteins. During the structure prediction of homo-oligomers, symmetricity may be 

additionally considered because homo-oligomers usually form symmetric 

conformations. 

Here, we introduce three protein complex structure prediction methods: 

GalaxyTongDock14, GalaxyHeteromer15, and GalaxyHomomer2 (unpublished). 

GalaxyTongDock is an ab initio protein-protein docking method composed of 

GalaxyTongDock_A, GalaxyTongDock_C, and GalaxyTongDock_D, which 

performs asymmetric docking for heterodimer structure prediction, symmetric 

docking for Cn symmetric homo-oligomer structure prediction, and symmetric 

docking for Dn symmetric homo-oligomer structure prediction, respectively. 

Structures of proteins composing a protein complex should be provided as input for 

GalaxyTongDock. GalaxyHeteromer predicts structures of heterodimers from 

amino acid sequences or structures of two subunit proteins. Both template-based 

docking and ab initio docking are employed by automatically detecting the 

template’s availability. When a subunit sequence is provided, GalaxyHeteromer 

utilizes GalaxyTBM16 and GalaxyDBM (unpublished) for subunit structure 

prediction. GalaxyDBM employs inter-residue distance prediction by exploring the 

coevolution relationships among the homologous sequences via deep learning. 

GalaxyHomomer2, an upgraded version of GalaxyHomomer10, predicts structures 

of homo-oligomers from an amino acid sequence or a monomer structure. As in 

GalaxyHeteromer, both template-based docking and ab initio docking are 

employed by automatically detecting the template’s availability. 

Utilizing the developed methods, we have been ranked 1st to 4th in 

multiple Critical Assessment of protein Structure Prediction (CASP)17 and Critical 

Assessment of PRediction of Interactions (CAPRI)18,19, which are community-wide 

prediction experiments for protein structure prediction and protein complex 
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structure prediction. Examples of how these methods were applied to predict 

protein complex structures in CASP and CAPRI are also presented. 
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2. GalaxyTongDock 

 

GalaxyTongDock is an ab initio protein-protein docking method that performs 

rigid-body docking20 just like ZDOCK21, known to be one of the best-performing 

methods, but with improved energy parameters. The energy parameters were 

trained by iterative docking and parameter search so that more native-like 

structures are selected as top rankers. GalaxyTongDock performs asymmetric 

docking of two different proteins (GalaxyTongDock_A) and symmetric docking of 

homo-oligomeric proteins with Cn and Dn symmetries (GalaxyTongDock_C and 

GalaxyTongDock_D). Performance tests on an unbound docking benchmark set for 

asymmetric docking and a model docking benchmark set for symmetric docking 

showed that GalaxyTongDock is better or comparable to other state-of-the-art 

methods. In addition, experimental and evolutionary information on binding 

interfaces can be easily incorporated using interface and block options. 

 

2.1. Methods 

2.1.1. The prediction workflow of GalaxyTongDock_A 

The prediction workflow of GalaxyTongDock_A is shown in Figure 2.1. Two 

proteins to be docked are conventionally referred to as a receptor and a ligand. 

GalaxyTongDock_C shares a similar workflow with that of GalaxyTongDock_A. 

The same proteins become the receptor and the ligand in GalaxyTongDock_C. 

Experimental and theoretically predicted data on interaction can be provided as 

interface and block options described in Section 2.1.6. In GalaxyTongDock_A, the 
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receptor structural information on a 3D continuous space is projected on a 3D 

lattice of grid size 1 Å . Then, translation of the ligand is sampled by FFT in the 3D 

lattice after rotating the Euler angles of the ligand in steps of 10° (or 6° in the case 

of symmetric docking). The best scoring docking pose from each rotated ligand 

undergoes clustering and model selection steps, described in Section 2.1.5. 
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Figure 2.1. The prediction workflow of GalaxyTongDock_A. The protein 

structures in the box represent an example of GalaxyTongDock_A output. The 

native receptor (yellow), native ligand (orange), and top 20 predicted ligands (pink) 

are shown. 
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2.1.2. Docking energy function: Functional form 

GalaxyTongDock performs rigid-body docking utilizing fast Fourier transform 

(FFT)22 with an energy function based on previously reported components. Using 

FFT, translation relative to a receptor of a pre-rotated ligand on a 3D grid space is 

performed much faster so that exhaustive sampling and evaluation of docking 

poses can be achieved. The GalaxyTongDock energy is composed of six elements 

as follows: 

𝐸GalaxyTongDock = 𝐸SCrep
+ 𝑤1𝐸SCatt

+ 𝑤2𝐸Elec + 𝑤3𝐸ACE + 𝑤4𝐸IFACE + 𝑤5𝐸consv 

where the first five terms are from ZDOCK (repulsive and attractive parts of the 

shape complementarity score23  𝐸SCrep
 and 𝐸SCatt

, Coulomb energy with distance-

dependent dielectric constant24 𝐸Elec , atomic contact energy25 𝐸ACE  of 

ZDOCK2.3.226, and interface atomic contact energy23 𝐸IFACE of ZDOCK3.0.223). 

The last term 𝐸consv is the conservation score27. The energy components were 

implemented as described in detail below.  

As in ZDOCK3.0.221, the energy value of the ith component, 𝐸𝑖(𝛼, 𝛽, 𝛾), 

which describes interaction energy between a fixed receptor structure and a pre-

rotated ligand structure translated by (𝛼, 𝛽, 𝛾) from its initial position is expressed 

as a convolution (𝑅𝑖 ∗ 𝐿𝑖)(𝛼, 𝛽, 𝛾) of a receptor grid 𝑅𝑖(𝑥, 𝑦, 𝑧) and a ligand grid 

𝐿𝑖(𝑥, 𝑦, 𝑧) as follows: 

𝐸𝑖(𝛼, 𝛽, 𝛾) = ∑ 𝑅𝑖(𝑥, 𝑦, 𝑧)𝐿𝑖(𝑥 + 𝛼, 𝑦 + 𝛽, 𝑧 + 𝛾) ≡ (𝑅𝑖 ∗ 𝐿𝑖)(𝛼, 𝛽, 𝛾)

𝑥,𝑦,𝑧

 

where (𝑥, 𝑦, 𝑧) denotes a grid point in a 3-dimensional lattice, and definitions of 

the receptor and ligand grids,  𝑅𝑖(𝑥, 𝑦, 𝑧) and 𝐿𝑖(𝑥, 𝑦, 𝑧), depend on the energy 
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component. A grid size of 1 Å  is used, which is slightly different from 1.2 Å  of 

ZDOCK. 

The energy components are calculated by FFT using the convolution 

theorem 

𝑅 ∗ 𝐿 = 𝐹−1{𝐹(𝑅) ∙ 𝐹(𝐿)} 

where F and F-1 refer to the Fourier and the inverse Fourier transformations. 

 

(1) Repulsive part of the shape complementarity score  𝑬𝐒𝐂𝐫𝐞𝐩
 

The repulsive energy component of the shape complementarity score is defined as 

𝐸SCrep
(𝛼, 𝛽, 𝛾) = (𝑅SCrep

∗ 𝐿SCrep
)(𝛼, 𝛽, 𝛾) 

𝑅SCrep
(𝑥, 𝑦, 𝑧) = 𝐿SCrep

(𝑥, 𝑦, 𝑧) = {
3.5         protein surface

3.52             protein core
0                       otherwise

 

Grid points (𝑥, 𝑦, 𝑧) located within 0.8× 𝑟vdW, where 𝑟vdW is van der Waals 

radius, from surface atoms are defined to be at the protein surface. Those atoms 

with the solvent accessible area, calculated by Naccess28 with a probe radius of 1.4 

Å , greater than 1 Å 2 are designated as surface atoms, and the rest as core atoms. 

Grid points located within 0.8× 𝑟vdW from core atoms are defined to be in the 

protein core. The grid point value at the protein surface is set to be lower (3.5) than 

that in the core (3.52) to allow small clashes that may occur by rigid-body docking 

but could be relaxed by slight structure adjustments. The value 0.8 multiplied to 

𝑟vdW plays the same role. The same van der Waals radii as ZDOCK3.0.2 are used. 
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(2) Attractive part of the shape complementarity score 𝑬𝐒𝐂𝐚𝐭𝐭
 

This energy component is expressed in terms of two convolutions as follows: 

𝐸SCatt
(𝛼, 𝛽, 𝛾) =

1

2
(𝑅SCatt

∗ 𝐿atoms + 𝑅atoms ∗ 𝐿SCatt
 )(𝛼, 𝛽, 𝛾) 

𝑅SCatt
(𝑥, 𝑦, 𝑧) = 𝐿SCatt

(𝑥, 𝑦, 𝑧) = −1.334𝑛 

𝑅atoms(𝑥, 𝑦, 𝑧) = 𝐿atoms(𝑥, 𝑦, 𝑧) = 𝑚 

where n is the number of atoms within 6 Å  from the grid point (𝑥, 𝑦, 𝑧), and m is 

the number of atoms for which (𝑥, 𝑦, 𝑧) is the nearest grid point.  

 

(3) Coulomb energy 𝑬𝐄𝐥𝐞𝐜 

The Coulomb electrostatic interaction energy is calculated as 

𝐸Elec(𝛼, 𝛽, 𝛾) = (𝑅Elec_pot ∗ 𝐿charge)(𝛼, 𝛽, 𝛾) 

𝑅Elec_pot(𝑥, 𝑦, 𝑧) = ∑
2500𝑞𝑖

𝜀(𝑟𝑖) max(𝑟𝑖 , 2 Å)
𝑖

 

𝜀(𝑟𝑖) = {

4                                   𝑟𝑖 < 6
38𝑟𝑖 − 224        6 ≤ 𝑟𝑖 < 8
80                                𝑟𝑖 ≥ 8

 

𝐿charge(𝑥, 𝑦, 𝑧) = ∑ 𝑞𝑖

nearest

 

where 𝑟𝑖 is the distance of the grid point (𝑥, 𝑦, 𝑧) from the ith receptor atom, 𝑟𝑖 

less than 2 Å  is set to 2 Å  to prevent the electric component from becoming too 

large upon clashes, 2500 is multiplied to balance the energy scale with other 

components, 𝜀(𝑟𝑖) is the distance-dependent dielectric constant24, and 𝐿charge is 
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defined as a sum of the partial charges 𝑞𝑖 of the atoms for which the nearest grid 

point is (𝑥, 𝑦, 𝑧). The same partial charges as ZDOCK3.0.2 are used. 

 

(4) Atomic contact energy 𝑬𝐀𝐂𝐄  

This component is a sum of two convolutions: 

𝐸ACE(𝛼, 𝛽, 𝛾) =
1

2
(𝑅ACE ∗ 𝐿atoms + 𝑅atoms ∗ 𝐿ACE )(𝛼, 𝛽, 𝛾) 

𝑅ACE(𝑥, 𝑦, 𝑧) = 𝐿ACE(𝑥, 𝑦, 𝑧) = ∑ 𝑒type(𝑖)

𝑟𝑖<6 Å

 

where 𝑒type(𝑖) is the average contact energy25 for the atom type of the ith atom, 

and this is summed over atoms within 6 Å  from the grid point (𝑥, 𝑦, 𝑧). 

 

(5) Interface atomic contact energy 𝑬𝐈𝐅𝐀𝐂𝐄 

The IFACE (Interface Atomic Contact Energy) is expressed as a sum of 

convolutions for atom types t as follows: 

𝐸IFACE(𝛼, 𝛽, 𝛾) = ∑(𝑅IFACE,𝑡 ∗ 𝐿atoms,𝑡)(𝛼, 𝛽, 𝛾)

12

𝑡=1

 

𝑅IFACE,𝑡(𝑥, 𝑦, 𝑧) =  ∑ 𝑛𝑠𝑒𝑠𝑡

12

𝑠=1

 

𝐿atoms,𝑡(𝑥, 𝑦, 𝑧) = 𝑚𝑡 
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where 𝑛𝑠 is the number of atoms of type s within 6 Å  of the grid point (𝑥, 𝑦, 𝑧), 

𝑒𝑠𝑡 is the interface atomic contact energy23 between atom types s and t, 𝑚𝑡 is the 

number of atoms of type t for which the nearest grid is (𝑥, 𝑦, 𝑧). The atom types of 

IFACE are different from those of ACE. 

 

(6) Conservation score 𝑬𝐜𝐨𝐧𝐬𝐯 

The conservation score is defined as follows: 

𝐸consv(𝛼, 𝛽, 𝛾) =
1

𝑛surf

(𝑅consv ∗ 𝐿surf + 𝑅surf ∗ 𝐿consv)(𝛼, 𝛽, 𝛾) 

𝑛surf = (𝑅Cα
∗ 𝐿surf + 𝑅surf ∗ 𝐿Cα

)(𝛼, 𝛽, 𝛾) 

𝑅consv(𝑥, 𝑦, 𝑧) = 𝐿consv(𝑥, 𝑦, 𝑧) = ∑ 𝐸consv(𝑙)

nearest 𝑙

 

𝐸consv(𝑙) = max[𝑀𝑙,𝑎𝑎(𝑙) − 𝐵𝑎𝑎(𝑙),𝑎𝑎(𝑙), 0] 

𝑅surf(𝑥, 𝑦, 𝑧) = 𝐿surf(𝑥, 𝑦, 𝑧) = {1       if any Cα atom exists within 15 Å from (𝑥, 𝑦, 𝑧)

0                                                                             otherwise
 

𝑅Cα
(𝑥, 𝑦, 𝑧) = 𝐿Cα

(𝑥, 𝑦, 𝑧) = 𝑛Cα
 

where ∑nearest l means a sum over amino acid residues at sequence position l for 

which (𝑥, 𝑦, 𝑧) is the nearest grid point from its Cα position, 𝑀𝑙,𝑎𝑎(𝑙) is the self-

substitution score in the position-specific substitution matrix generated from 

PSIBLAST29 for the amino acid type 𝑎𝑎(𝑙) at sequence position l, 𝐵𝑎𝑎(𝑙),𝑎𝑎(𝑙) is 

the diagonal element of BLOSUM6230 for the amino acid type 𝑎𝑎(𝑙), and 𝑛Cα
 is 

the number of Cα atoms for which (𝑥, 𝑦, 𝑧)  is the nearest grid point. The 

conservation score is defined to be zero if the denominator 𝑛surf is less than 9 to 
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prevent it becoming too large when there are only a small number of Cα-Cα 

contacts. 

 

2.1.3. Docking energy function: Parameter training 

The linear weights, 𝑤1 to 𝑤5, of the energy components were balanced through a 

training process. A training set for energy parameter optimization was constructed 

by selecting 120 asymmetric complexes randomly among the 196 protein 

complexes that belong to the "rigid-body" and the "medium difficulty" categories 

in the Docking benchmark 531. These complexes have interface RMSD (IRMSD)32 

between the bound complex structure (receptor and ligand structures determined 

together by experiment) and the unbound complex structure (receptor and ligand 

structures determined separately by experiment and superposed onto the bound 

structure) less than 2.2 Å . The training set was again randomly split into 80 

complexes (Set 1) and 40 complexes (Set 2). Set 1 was used as a training set and 

Set 2 as an independent validation set to prevent overtraining. The remaining 76 

complexes were used as a performance test set. The full list of the targets in each 

set is provided in Tables 2.1 and 2.2. For all training and test set targets, unbound 

docking was performed with two unbound protein structures. 
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Table 2.1. List of PDB IDs for the targets in Set 1 (80 targets) and Set 2 (40 

targets), used for energy parameter training. 

Set 1 

1A2K 1AHW 1AZS 1D6R 1DQJ 1EZU 1F51 1FFW 1GHQ 1GLA 

1HIA 1IB1 1IQD 1J2J 1JPS 1JTD 1JWH 1K4C 1K5D 1KAC 

1KTZ 1KXP 1LFD 1M27 1ML0 1MQ8 1NW9 1OC0 1OFU 1OYV 

1PPE 1QFW 1R6Q 1RLB 1RV6 1T6B 1UDI 1WDW 1WEJ 1XQS 

1Z0K 1Z5Y 2A1A 2A5T 2A9K 2BTF 2FJU 2G77 2GAF 2H7V 

2HQS 2HRK 2JEL 2NZ8 2O8V 2OZA 2SIC 2UUY 2VXT 2W9E 

2X9A 3BIW 3BX7 3CPH 3EOA 3H2V 3LVK 3S9D 3SZK 4CPA 

4DN4 4FZA 4G6M 4GXU 4HX3 4JCV 4LW4 7CEI BAAD BOYV 

Set 2 

1B6C 1BUH 1CLV 1E6J 1E96 1EAW 1EWY 1FCC 1FQJ 1GPW 

1H9D 1HE1 1JIW 1JTG 1KLU 1M10 1MAH 1N2C 1NSN 1OPH 

1QA9 1R0R 1SBB 1TMQ 1US7 1VFB 1WQ1 1ZHI 1ZM4 2I25 

2VDB 3D5S 3EO1 3G6D 3K75 3L5W 3P57 3VLB 4M76 CP57 
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Table 2.2. List of PDB IDs for the targets in the asymmetric docking test set (76 

targets). 

1AK4 1AKJ 1AVX 1AY7 1BJ1 1BVK 1BVN 1CGI 1DFJ 1E6E 

1EFN 1EXB 1F34 1FC2 1FLE 1FSK 1GCQ 1GL1 1GP2 1GRN 

1GXD 1HCF 1HE8 1I2M 1I4D 1I9R 1IJK 1K74 1KKL 1KXQ 

1MLC 1NCA 1PVH 1S1Q 1SYX 1XD3 1XU1 1YVB 1ZHH 2ABZ 

2AJF 2AYO 2B42 2B4J 2CFH 2FD6 2GTP 2HLE 2J0T 2MTA 

2OOB 2OOR 2OUL 2PCC 2SNI 2VIS 2YVJ 2Z0E 3A4S 3AAA 

3BP8 3DAW 3HI6 3HMX 3MXW 3PC8 3R9A 3RVW 3SGQ 3V6Z 

4FQI 4G6J 4H03 4IZ7 9QFW BP57     
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The docking poses for the training set complexes were used to find the 

weight parameters that maximize the objective function SR200. SR200, Success 

Rate for top 200, evaluates docking performance of an energy parameter set during 

parameter training. Top 200 was chosen because subsequent clustering after 

conformational sampling by FFT can usually reduce 200 predictions to around 50, 

which is an affordable number for observation or a later structural refinement. 

SR200 is defined as 

SR200 =
𝑛top 200 success

𝑛target
× 100 (%) 

where 𝑛top 200 success is the number of targets for which at least one successful 

prediction is obtained within the top 200 predictions, and 𝑛target is the number of 

targets in the set. A successful prediction is defined as a predicted conformation 

obtained by conformational sampling for which ligand RMSD (LRMSD)32 from 

the crystal structure is less than 10 Å . Ligand RMSD was calculated after 

superposing the receptor structure of the docking pose to the bound receptor 

structure. The criterion of LRMSD < 10 Å  was used as an accuracy range that can 

be obtained by rigid-body docking and may be improved by flexible refinement 

docking methods such as RosettaDock33 or GalaxyRefineComplex34. Because 

docking poses depend on the energy parameters used to generate them, parameter 

optimization involved an iterative procedure that alternated parameter search and 

docking pose generation. 

Four initial weight parameter sets, (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5) = (0.34, 0.51, 

0.29, 0.60, 250), (1.22, 2.04, 0.81, 1.92, 200), (1.00, 1.00, 1.00, 1.00, 250), and 

(0.60, 00.60, 0.60, 0.60, 400), were chosen considering the scales of the energy 

components. For each initial parameter set, docking poses were generated and a 

grid search in the parameter space was performed. 
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At each parameter training round that was performed with a fixed set of 

docking poses, a grid search method in the 5D parameter space {𝑤1} (𝑖 =

1, 2, 3, 4, 5) was employed with SR200 for Set 1 as the objective function. Since 

change in the energy landscape by parameter change was ignored by parameter 

search at fixed conformations for computational efficiency, special care was taken 

so that parameter search does not become too broad. A large parameter change 

would involve a large change in the energy landscape, so the optimal parameters 

found at fixed conformations would not be optimal anymore in the changing 

energy landscape. The grid size and the search range were therefore defined in 

terms of a factor 𝑚𝑖 multiplied to the parameter 𝑤𝑖,prev of the previous round, i.e. 

𝑤𝑖 = 𝑚𝑖𝑤𝑖,prev, and the 𝑚𝑖 values around one were searched at each round, as 

summarized in Table 2.3. The parameter search range at each round was not set 

too broad because the gap between the actual performance evaluated after 

conformational sampling with the changed parameter set and the expected 

performance evaluated with fixed conformations can be huge for a large parameter 

change. The two parameter sets with the highest SR200 on Set 2, the validation set, 

among the five sets with the highest SR200 on Set 1, the main training set, were 

selected for the next round. Parameter sets that showed high performance on the 

validation set were chosen to avoid overtraining on the main training set. Parameter 

search was then performed again with docking poses generated with the new 

parameters. After four rounds of iteration, the parameter set {0.36, 0.36, 0.12, 0.48, 

60}, which showed the highest SR200 on both Set 1 and Set 2 among the 124 (4 + 

8 + 16 + 32 + 64) parameter sets, was finally chosen as the optimal weight set. 

Since the magnitudes of the parameters do not directly represent contributions of 

the corresponding components, a separate analysis of contributions of the 

components to the overall energy distribution is provided in Table 2.4.  
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Table 2.3. Grid sizes and search ranges of the parameter training rounds at fixed 

conformations, defined in terms of a factor 𝒎𝒊 which is multiplied by each weight 

parameter 𝒘𝒊 (𝒊 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓) that was selected in the previous training round. 

Energy 

component (i) 

Range of 𝒎𝒊  

(Grid size in 𝒎𝒊) 

Round 1 Round 2 Round 3 Round 4 

SCatt (1) 
0.1 ~ 2 

(0.1) 

0.55 ~ 1.5 

(0.05) 

0.82 ~ 1.2 

(0.02) 

0.82 ~ 1.2 

(0.02) 

Elec (2) 
0.1 ~ 2 

(0.1) 

0.55 ~ 1.5 

(0.05) 

0.82 ~ 1.2 

(0.02) 

0.82 ~ 1.2 

(0.02) 

ACE (3) 
0.2 ~ 2 

(0.2) 

0.6 ~ 1.5 

(0.1) 

0.8 ~ 1.25 

(0.05) 

0.8 ~ 1.25 

(0.05) 

IFACE (4) 
0.2 ~ 2 

(0.2) 

0.6 ~ 1.5 

(0.1) 

0.8 ~ 1.25 

(0.05) 

0.8 ~ 1.25 

(0.05) 

Consv (5) 
0.2 ~ 2 

(0.2) 

0.6 ~ 1.5 

(0.1) 

0.8 ~ 1.25 

(0.05) 

0.8 ~ 1.25 

(0.05) 
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Table 2.4. The contribution of each energy component defined as the standard 

deviation of the energy values for top 200 docking poses before clustering, 

multiplied by the weight factor, {𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓} =

{𝟎. 𝟑𝟔, 𝟎. 𝟑𝟔, 𝟎. 𝟏𝟐, 𝟎. 𝟒𝟖, 𝟎. 𝟔𝟎}, and averaged over 120 complexes in the training 

set and normalized over the energy components. 

 

 

  

Energy Component Contribution 

𝐸SCrep
+ 𝑤1𝐸SCatt

 0.3310 

𝑤2𝐸Elec 0.3096 

𝑤3𝐸ACE 0.0445 

𝑤4𝐸IFACE 0.2935 

𝑤5𝐸consv 0.0214 
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2.1.4. Symmetric and asymmetric docking protocols 

In GalaxyTongDock, symmetric docking methods that generate protein oligomers 

of Cn and Dn symmetry are also available along with asymmetric docking. A 

protein oligomer of Cn symmetry belongs to the cyclic Cn point group, which has a 

principal axis of n-fold rotational symmetry Cn but no C2 axes perpendicular to the 

principal axis. A protein oligomer of Dn symmetry belongs to the dihedral Dn point 

group, which has a Cn principal axis and nC2 axes perpendicular to the principal 

axis. GalaxyTongDock performs docking with the same scoring function for 

symmetric (GalaxyTongDock_C and GalaxyTongDock_D) and asymmetric 

docking (GalaxyTongDock_A). A separate scoring function was not derived 

because a large unbound set was not available for symmetric complexes. 

GalaxyTongDock_C samples docking poses of two-neighboring 

monomers by 2D FFT. GalaxyTongDock_D generates poses of Dn symmetry by 

1D FFT of the top 30 poses of Cn symmetry prepared with GalaxyTongDock_C. 

The conservation score is excluded in 1D FFT of GalaxyTongDock_D for 

computational efficiency. All of GalaxyTongDock_A, GalaxyTongDock_C, and 

GalaxyTongDock_D employ the model selection method described in Section 

2.1.5. 

 

2.1.5. Model selection 

Before model selection, the top poses (maximum of 1000 and 800 poses for 

asymmetric and symmetric docking, respectively) are clustered to remove 

structural redundancy. A clustering radius of √𝑁
3

, where 𝑁  is the number of 

amino acid residues in the complex, is used considering the dependency of RMSD 
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on the complex size. After ranking the clusters, the lowest-energy cluster 

representatives are reported. In asymmetric docking, clusters are ranked by cluster 

size, considering their potential relationship with conformational entropy. In 

symmetric docking, clusters are ranked by energy because ranking by cluster size 

is not practical due to higher structural redundancy resulting from decreased 

degrees of freedom. When the interface option (explained in Section 2.1.6) is used 

for asymmetric docking, clusters are also ranked by energy as higher redundancy 

emerges due to the additional restraints. 

 

2.1.6. Prior information in the form of interface and block options 

Information on the binding interface can be provided as input in the form of 

interface and block options. If interface residues are designated, docking poses that 

have those residues within 8 Å  from the partner protein are prioritized during 

docking. If non-interface regions are designated by the block option, docking poses 

with those regions at the interface are strongly disfavored by a large penalty 

(positive energy) during docking. The GalaxyTongDock score is defined to have 

the same absolute value as the GalaxyTongDock energy but with the opposite sign 

to make the better poses have the higher scores.  
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2.2. Performance of GalaxyTongDock 

Docking performance was evaluated in terms of success rate, which is defined as 

the percentage of targets for which at least one model has ligand RMSD < 10 Å  

when a receptor is superposed to the bound structure. In the case of models from 

symmetric docking, one subunit was treated as the ligand, and the others were 

treated as the receptor to calculate the ligand RMSD. Success rates of 

GalaxyTongDock for the top 1, top 10, and top 50 models were compared with 

other top-performing ab initio docking methods: ZDOCK3.0.2 for asymmetric 

docking and M-ZDOCK13 and SAM35 for symmetric docking. The compared 

methods were run with default options. The results are presented in Table 2.5. 

GalaxyTongDock_A showed increased success rates than ZDOCK3.0.2 for top 10 

and top 50 models on both training and test sets. Here, the unbound receptor and 

ligand structures were randomly rotated before docking to remove the dependency 

on the initial orientation. 

In the case of symmetric docking, unbound monomer structures of homo-

oligomers resolved experimentally were not available in most cases; hence, a large-

scale unbound docking test using experimentally resolved unbound structures was 

not possible. Unbound docking with model structures was performed instead. 

Model docking would be also more relevant in actual applications. GalaxyTBM 

was used for template-based modeling using templates with sequence identity < 

40%. The inaccurately modeled loops or termini detected by GalaxyTBM were 

deleted before docking because they often interrupt docking. The PISA benchmark 

set36 was used to evaluate symmetric docking performance. Among the 142 homo-

oligomer proteins in the PISA benchmark set, those predicted to have multiple 

subunits for modeling by GalaxyTBM were excluded. Final test sets include 83 and 
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29 complexes with Cn and Dn symmetries, respectively. The lists of the symmetric 

docking targets are provided in Tables 2.6 and 2.7. 

The performance of GalaxyTongDock_C was higher than that of M-

ZDOCK and SAM, except that SAM showed a higher success rate for the top 1 

model (by 1 target). GalaxyTongDock_D showed higher performance than SAM 

when the top 1 and top 10 models are considered. 

A two-sample z-test analyzed the statistical significance of the 

performance comparison presented in Table 2.5. The p-values against the null 

hypothesis that GalaxyTongDock performs equal to or worse than each compared 

method for each top 1, top 10, and top 50 predictions are presented in Table 2.8. 

The training set and test set of the asymmetric docking were combined for the 

analysis. The table shows that the performance of GalaxyTongDock is statistically 

better than other methods with p-values 0.05~0.14 when the top 10 and top 50 

predictions are considered, except in the comparison of GalaxyTongDock_D with 

SAM on top 50 predictions. 

ZDOCK3.0.2 and M-ZDOCK do not perform clustering after sampling. 

Performance after applying the same clustering method to ZDOCK3.0.2 and M-

ZDOCK is shown in Table 2.9. GalaxyTongDock still shows higher performance. 

The performance of bound docking is also compared in Table 2.10, although 

bound docking is not of practical importance.  
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Table 2.5. Success rates of GalaxyTongDock and other methods for the top 1, top 

10, and top 50 models in the cases of asymmetric and symmetric docking, where 

the success rate is defined as the percentage of the targets for which at least one 

model is within ligand RMSD < 10 Å  from the bound structure. 

 

  

   Top 1 (%) Top 10 (%) Top 50 (%) 

Asymmetric 

docking 

Test set 

(76 targets) 

GalaxyTongDock_A 17.1 32.9 48.7 

ZDOCK3.0.2 9.2 31.6 42.1 

Training set 

(120 targets) 

GalaxyTongDock_A 10.0 34.2 55.8 

ZDOCK3.0.2 14.2 25.8 47.5 

Symmetric 

docking 

Cn set 

(83 targets) 

GalaxyTongDock_C 10.8 36.1 54.2 

M-ZDOCK 9.6 24.1 36.1 

SAM 12.1 26.5 45.8 

Dn set 

(29 targets) 

GalaxyTongDock_D 10.3 27.6 41.4 

SAM 3.5 10.3 41.4 
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Table 2.6. List of PDB IDs for the targets in the Cn symmetric docking test set (83 

targets). 

1A3C 1AA0 1AD3 1AF5 1AJS 1ALK 1AMK 1AQ6 1AUO 1B77 

1BAM 1BSR 1BUO 1CA4 1CB0 1CE0 1CHM 1CJD 1CMB 1CP2 

1CSH 1CUK 1CZJ 1DAA 1DPT 1E2A 1FGJ 1FIP 1FRO 1GVP 

1HJR 1HSS 1ICW 1IMB 1ISA 1ISO 1JHG 1JSG 1KBA 1KPF 

1LYN 1MJL 1MKA 1MOQ 1NHP 1NIF 1NKS 1NOX 1NSY 1OPY 

1OTP 1PGT 1PPR 1PRE 1PUC 1QLM 1RLA 1RPO 1SES 1SLT 

1SMN 1SMT 1TOX 1TRK 1TYS 1UBY 1UTG 1XSO 2CCY 2CHS 

2PII 2RSP 2STD 2TCT 2TGI 3CLA 3EOJa 3GRS 3SDH 3TDT 

4KBP 5TMP 9WGA        

a 4BCL was substituted to 3EOJ which has a higher resolution. 

 

Table 2.7. List of PDB IDs for the targets in the Dn symmetric docking test set (29 

targets). 

1A0L 1A2Z 1A3G 1A4E 1ADO 1BUC 1BVQ 1CG2 1CS1 1DCI 

1DCO 1DXE 1ETA 1EUH 1FTR 1GP1 1GSH 1ITH 1MPY 1MXB 

1NDC 1NHK 1UOX 1XVA 2CEV 2EIP 2IZG 4PGA 5PGM  
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Table 2.8. The p-values obtained by a two-sample z-test against the null hypothesis 

that GalaxyTongDock performs equal to or worse than each compared method for 

each top 1, top 10, and top 50 predictions. 

 

 

Table 2.9. Success rates for the top 1, top 10, and top 50 models of asymmetric and 

symmetric docking by ZDOCK3.0.2 and M-ZDOCK with clustering. 

   Top 1 (%) Top 10 (%) Top 50 (%) 

• Asymmetric 

docking 

Test set 

(76 targets) 

ZDOCK3.0.2 

with clustering 
5.3 26.3 40.8 

Training set 

(120 targets) 

ZDOCK3.0.2 

with clustering 
11.7 30.8 47.5 

• Symmetric 

docking 

Cn set 

(83 targets) 

M-ZDOCK 

with clustering 
9.6 27.7 42.2 

 

  

Compared methods 
p-values 

Top 1 Top 10 Top 50 

GalaxyTongDock_A 

vs ZDOCK3.0.2 
0.4404 0.1151 0.0643 

GalaxyTongDock_C 

vs M-ZDOCK 
0.3974 0.0455 0.0096 

GalaxyTongDock_C 

vs SAM 
0.5948 0.0901 0.1379 

GalaxyTongDock_D 

vs SAM 
0.1492 0.0475 0.5000 
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Table 2.10. Success rates for the top 1, top 10, and top 50 models of asymmetric 

and symmetric "bound" docking by GalaxyTongDock and those by other methods. 

   Top 1 (%) Top 10 (%) Top 50 (%) 

Asymmetric 

docking 

Docking 

benchmark 5 

(230 targets) 

GalaxyTongDock_A 49.6 78.3 89.6 

ZDOCK3.0.2 54.8 75.7 81.7 

ZDOCK3.0.2 

with clustering 
19.6 53.5 77.0 

Symmetric 

docking 

Cn set 

(83 targets) 

GalaxyTongDock_C 95.2 98.8 100.0 

M-ZDOCK 86.8 95.2 100.0 

M-ZDOCK 

with clustering 
86.8 97.6 100.0 

SAM 74.7 86.8 95.2 

Dn set 

(29 targets) 

GalaxyTongDock_D 44.8 72.4 82.8 

SAM 58.6 79.3 86.2 
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3. GalaxyHeteromer 

 

GalaxyHeteromer is a method that predicts protein heterodimer structures from two 

subunit protein sequences or structures. When subunit structures are unavailable, 

they are predicted by template- or distance-prediction-based modeling methods. 

Heterodimer structure can be predicted by both template-based and ab initio 

docking, depending on the template's availability. Structural templates are detected 

from the protein structure database based on both the sequence and structure 

similarities. The templates for heterodimers may be selected from monomers and 

homo-oligomers, as well as from hetero-oligomers, owing to the evolutionary 

relationships of heterodimers with domains of monomers or subunits of homo-

oligomers. In addition, the method employs one of the best ab initio docking 

methods when heterodimer templates are unavailable. The multiple heterodimer 

structure models and the associated scores provided by the method can be further 

examined to test or develop functional hypotheses or to design new functional 

molecules. 

 

3.1. Methods 

3.1.1. The overall pipeline of GalaxyHeteromer 

The prediction pipeline of GalaxyHeteromer for predicting heterodimer structure is 

shown in Figure 3.1. In GalaxyHeteromer, template-based docking is performed 

by detecting templates for heterodimer structure building based on subunit 

sequence similarities (sequence-based template search) and subunit structure 
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similarities (structure-based template search), as described in detail below. If 

subunit structures are not provided as input, they are predicted from subunit 

sequences using a recently developed protein structure prediction method 

explained below. Then, 3D models for heterodimer structures are generated by 

superposing the subunit structures on the template structures. The models are 

filtered based on physical criteria, such as steric clashes, inter-subunit contacts, and 

interface area. After removing redundancy (of TM-score37 > 0.8) among the 

heterodimer models, the models are ranked according to a template score, which 

consists of subunit and interface structure similarities measured in TM-score to the 

template structures. If < 50 models are left, ab initio docking is performed using 

GalaxyTongDock_A to generate more models so that a total of 50 models can be 

obtained. The best scoring model is further refined by using GalaxyLoop38 and 

GalaxyRefineComplex. 
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Figure 3.1. GalaxyHeteromer pipeline for protein heterodimer structure prediction. 
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3.1.2. Subunit structure prediction 

When only subunit sequences are provided as input, subunit structures are 

predicted from sequences by the protein structure prediction method of the 

GALAXY group who participated in CASP14 (2020) as the Seok-server. The 

protein structure prediction method selects a model through a random forest 

classifier from the models that were predicted by the template-based structure 

prediction method, GalaxyTBM, and from those that were predicted by a distance-

prediction-based structure prediction method, GalaxyDBM. The accuracy of this 

method is comparable to that of AlphaFold39 on CASP13 targets 

(https://predictioncenter.org/casp13/), in terms of the CASP measure GDT-TS40 

(average GDT-TS = 62.3, whereas that of AlphaFold is 62.9). The selected model 

is used for template search and heterodimer modeling. 

GalaxyDBM predicts the probability distributions over distances between 

Cβ atoms (Cα atom for GLY) of different residues using a deep residual 

convolutional neural network based on MSA-based features, including sequence 

profile and raw co-evolutionary coupling features from CCMPred41, following 

AlphaFold. Thereafter, 3D backbone structures are predicted by the global 

optimization method, which is known as conformational space annealing42, 

maximizing the likelihood of probability distributions and satisfying local 

stereochemistry controlled by GALAXY energy function38,43. The predicted 

structures are then refined by GalaxyRefine44 for optimizing side-chain 

conformations. 
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3.1.3. Sequence- and structure-based template search 

The sequence-based template search is performed on the database of monomer and 

homo-oligomer proteins, named DB-Mo/Ho, as shown in Figure 3.1. DB-Mo/Ho 

is the protein structure database of monomers and homo-oligomers, which has a 

maximum mutual sequence identity of 70%. Subunit templates are first detected by 

HHsearch45. Proteins in DB-Mo/Ho with high sequence similarity (in terms of 

GalaxyTBM template score16 within the top 200) and high structure similarity 

(TM-score > 0.4) to both subunits in different parts of the same protein (e.g., 

different domains of a monomer or different subunits of a homo-oligomer) are 

selected as templates for building the heterodimer structure. Proteins with interface 

structure similarity of less than TM-score < 0.4 are discarded for homo-oligomer 

templates. The interface region for interface structure similarity comparison is 

defined as residues whose Cα atoms are placed closer than 20 Å  from any of the 

other chain's Cα atoms. 

The structure-based template search is performed on the database of 

heterodimers, named DB-Het, as shown in Figure 3.1. DB-Het was prepared by 

collecting non-redundant heterodimer structures from protein complex structures 

that have resolution better than 4.0 Å  and consist of more than two distinct proteins 

in PDB. The detailed procedures constructing DB-Het are as follows: 

 

1) Structures satisfying following conditions from PDB were downloaded; a) 

Resolution < 4.0 Å, b) Experimental method = X-RAY or EM, c) Number of 

Entities (Protein) > 1. 

2) The structures were disassembled into dimer-wise structures. 
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3) Dimers having less than 5 Cα atoms within 10 Å  from Cα atoms of another chain 

were excluded. 

4) Monomers in dimers were clustered using CD-HIT46 with a sequence identity 

cutoff of 70%. 

5) Dimers that consist of monomers in the same clusters were clustered if TM-

score between corresponding chains is larger than 0.8 and TM-score between 

interface regions is larger than 0.8. The dimer with the best resolution in a cluster 

became the representative dimer of the cluster. 

6) DB-Het consisted of 45,267 representative dimers from step 5 (Date: 20201215). 

 

From DB-Het, structure-based templates are detected by searching heterodimers 

with subunits with high structure similarities (TM-score > 0.4) to the corresponding 

subunit. Proteins with interface structure similarity less than TM-score < 0.4 are 

discarded. 

 

3.1.4. Heterodimer modeling 

Heterodimer modeling is performed by superposing the subunit structures provided 

as input or modeled by the modeling method described in Section 3.1.2 on the 

templates searched by the method described in Section 3.1.3. Each subunit 

structure is superposed on the interface region of the corresponding subunit (or 

domain) of a selected template, resulting in a heterodimer model. Heterodimer 

models having more than 15 steric clashes or less than five contacts or an interface 

area less than 100 Å 2 are excluded. The steric clashes and contacts are defined by 
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the number of Cα atoms within 4 Å  from another chain and the number of Cα atoms 

within 15 Å  from another chain. The remaining heterodimer models are ranked by 

a template score that is defined as follows: 

 

Template score for heterodimer and homo-oligomer templates 

= [2 × (sum of subunit TM-scores between target and template for receptor and ligand) + 5 

× (sum of interface TM-scores between target and template for receptor and ligand)] / 14 

Template score for monomer templates 

= (sum of subunit TM-scores between target and template for receptor and ligand) / 2 

 

The template score for monomer templates is defined differently because the 

interface region of monomer templates cannot be clearly defined. The heterodimer 

models are then clustered by TM-score > 0.8 criteria. If < 50 models are left, 

GalaxyTongDock_A, described in Section 2, is used to generate more models so 

that a total of 50 models can be obtained. After energy minimization, the best 

scoring model is further refined by re-modeling interfacial loop structures which 

are detected as inaccurate by the loop modeling method GalaxyLoop and relaxed 

by repetitive side-chain perturbations and molecular dynamics simulations using 

the complex structure refinement method GalaxyRefineComplex. 
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3.2. Performance of GalaxyHeteromer 

The protein complex structure prediction method, which contains 

GalaxyHeteromer and GalaxyHomomer2, described in Section 4, participated in 

the assembly category of CASP14 and CASP14-CAPRI challenges as a group 

named Seok, and ranked as fourth and first, respectively. 

The performance of GalaxyHeteromer was compared to that of the ab 

initio docking method GalaxyTongDock_A on a test set of 143 heterodimers of the 

Docking benchmark 5, to evaluate the combined effect of template-based and ab 

initio docking compared to ab initio docking alone. The same monomer models 

generated by GalaxyHeteromer were used as input subunit structures for ab initio 

docking. To simulate a rather difficult prediction case, the subunit templates with 

sequence identities > 70% were excluded for monomer modeling, and the protein 

templates with sequence identities of any subunits > 70% to the corresponding 

subunits of the test proteins were excluded for heterodimer modeling. The 

generated models were assessed by CAPRI criterion32 that classifies the accuracy 

of protein complex models as follows: 

 

Acceptable:  𝐹𝑛𝑎𝑡 > 0.1 𝑎𝑛𝑑 (5Å < 𝐿𝑅𝑆𝑀𝐷 ≤ 10Å 𝑜𝑟 2Å <  𝐼𝑅𝑀𝑆𝐷 ≤ 4Å)   

Medium:  𝐹𝑛𝑎𝑡 > 0.3 𝑎𝑛𝑑 (1Å < 𝐿𝑅𝑆𝑀𝐷 ≤ 5Å 𝑜𝑟 1Å <  𝐼𝑅𝑀𝑆𝐷 ≤ 2Å)  

High: 𝐹𝑛𝑎𝑡 > 0.5 𝑎𝑛𝑑 (𝐿𝑅𝑆𝑀𝐷 ≤ 1Å 𝑜𝑟 𝐼𝑅𝑀𝑆𝐷 ≤ 1Å) 
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As shown in Table 3.1, GalaxyHeteromer and GalaxyTongDock_A generated 

models with better than acceptable accuracy in 30% and 5% of cases, respectively, 

as the top 1, and in 50% and 34% of cases, respectively, within the top 50. 

Next, the performance of GalaxyHeteromer was compared to that of 

HDOCK9, which is one of the best methods, on the 54 heterodimers used 

previously for benchmarking HDOCK9. The protein templates with sequence 

identities to the target complex greater than 30% were excluded, and unbound 

subunit structures were used as input. As shown in Table 3.3, GalaxyHeteromer 

outperformed HDOCK except for the case of the top 1 prediction. Top N (N=1, 5, 

10, and 50) success rates (percentage of the cases in which models better than 

acceptable qualities obtained within the N models) are 33.3%, 53.7%, 55.6%, and 

68.5%, respectively, for GalaxyHeteromer, whereas those for HDOCK are 38.9%, 

40.7%, 44.4%, and 59.3%, respectively.  
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Table 3.1. Performance comparison of GalaxyHeteromer, which combines 

template-based and ab initio docking, with that of GalaxyTongDock_A, which 

employs ab initio docking, in terms of CAPRI criterion of model accuracy on a test 

set of 143 protein heterodimers. 

% of the cases with medium/acceptable accuracy models within top N 

N GalaxyHeteromer GalaxyTongDock_A 

1 13.3/30.1 1.4/4.9 

5 18.2/39.2 5.6/13.3 

10 19.6/41.3 7.0/16.8 

50 22.4/49.7 9.8/34.3 

 

Table 3.2. Performance comparison of GalaxyHeteromer with that of HDOCK in 

terms of CAPRI criterion on a test set of 54 protein heterodimers. 

% of the cases with acceptable accuracy models within top N 

N GalaxyHeteromer HDOCK 

1 33.3 38.9 

5 53.7 40.7 

10 55.6 44.4 

50 68.5 59.3 
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GalaxyHeteromer puts more emphasis on providing multiple alternative 

solutions for possible complex structures by exploring multiple templates 

compared to HDOCK. The provided multiple models may be combined with 

separate experimental information to select more feasible complex structures. 

In CASP13, our automatic prediction server submitted no acceptable 

models on the heterodimer targets of CASP13 (H0957, H0968, H0974, H0980, and 

H0986) in the top 5 predictions. On the other hand, GalaxyHeteromer made 

acceptable models on three targets, H0968, H0974, and H0986, in the top 5 

predictions. Here, for a fair comparison, DB-Het reconstructed with structures 

released before 20180425, which is before CASP13, was used in GalaxyHeteromer. 

An example of a successful prediction for H0986 is shown in Figure 3.2. 

GalaxyHeteromer made a model having medium accuracy at sixth prediction for 

H0974, shown in Figure 3.3. This model was generated using a homo-oligomer 

template (PDB ID: 1Y7Y), which shows the importance of utilizing the 

evolutionary relationship of heterodimers to different forms of quaternary 

complexes, i.e., homo-oligomers and monomers. 

 

  



 

- 38 - 

Figure 3.2. An example of a successful prediction on H0986. Left) Each subunit 

structure modeled by GalaxyHeteromer (in sky-blue and yellow) is superposed on 

the corresponding subunit structure in the native structure of H0986 (in blue and 

red). The two interfacial loops which were inaccurately modeled are in the circles. 

Right) The 5th prediction model of GalaxyHeteromer (in sky-blue and yellow), 

which has an acceptable accuracy [Fnat
32: 0.232, IRMSD: 4.89 Å , LRMSD: 8.45 Å ], 

is superposed on the native structure (in blue and red). Although there were 

inaccurately modeled loops in the interface region of subunit structures, 

GalaxyHeteromer successfully generated an acceptable accuracy model by 

template-based docking. 
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Figure 3.3. Model 6 of GalaxyHeteromer (in sky-blue and yellow) and the 

template, a homodimer protein (PDB ID: 1Y7Y), that was used to generate the 

model (in pink) are superposed on the native structure of H0974 (in blue and red). 

The model generated based on the template has medium accuracy [Fnat: 0.667, 

IRMSD: 2.60 Å , LRMSD: 3.33 Å ]. The histidine tag of the model, not captured in 

the crystal structure, is in the circle. 
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4. GalaxyHomomer2 

 

GalaxyHomomer2, an upgraded version of GalaxyHomomer10, predicts a homo-

oligomer structure from a monomer sequence or structure composing the homo-

oligomer. When a monomer structure is unavailable, the monomer structure is 

predicted by the subunit structure prediction method, described in Section 3.1.2. 

The homo-oligomer structure can be predicted by both template-based and ab initio 

docking, depending on the template's availability. Structural templates are detected 

from the protein structure database based on both the sequence and structure 

similarities. The method employs one of the best ab initio docking methods when 

homo-oligomer templates are unavailable. 

GalaxyHomomer was designed to prioritize sequence-based template 

search over structure-based template search when a protein sequence is provided as 

input. The structure-based template search was used only when less than five 

templates were found by sequence-based template search. Since the time that 

GalaxyHomomer was developed, the accuracy of the protein structure prediction 

method has been significantly improved39. Therefore, structure-based template 

search and modeling based on structural superposition, the performance of which 

primarily depends on the monomer model quality, is more emphasized in 

GalaxyHomomer2. 
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4.1. Methods 

4.1.1. The overall pipeline of GalaxyHomomer2 

The prediction pipeline of the GalaxyHomomer2 for predicting homo-oligomer 

structures is shown in Figure 4.1. In GalaxyHomomer2, template-based docking is 

performed by detecting templates for homo-oligomer structure modeling based on 

monomer sequence similarity (sequence-based template search) and monomer 

structure similarity (structure-based template search). The sequence-based template 

search and structure-based template search are performed on the DB-Ho, which is 

the same database that is used in GalaxyHomomer. Homo-oligomer templates are 

detected by HHsearch. Homo-oligomers in DB-Ho with high sequence similarity 

(in terms of GalaxyTBM template score within the top 200) become the templates 

detected from the sequence-based template search. If a monomer structure is not 

provided as input, it is predicted from a monomer sequence using a protein 

structure prediction method explained in Section 3.1.2. Among the top 200 

templates from the sequence-based template search, templates with high structure 

similarity (TM-score > 0.4) become the templates detected from the structure-

based template search. The template detected from the sequence-based template 

search and the structure-based template search are ranked based on a template 

score, described in Section 4.1.3. Homo-oligomer models are generated by the 

sequence threading method of GalaxyTBM if a template is from sequence-based 

template search and structural superposition if a template is from structure-based 

template search. If < 5 models are generated from template-based docking, ab 

initio docking is performed using GalaxyTongDock_C to generate more models so 

that a total of 5 models can be obtained. The best scoring model is further refined 

by using GalaxyLoop and GalaxyRefineComplex.  
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Figure 4.1. GalaxyHomomer2 pipeline for homo-oligomer structure prediction. 

TBD stands for template-based docking. The TBD corresponds to the sequence 

threading method of GalaxyTBM if a template is from sequence-based template 

search and structural superposition if a template is from structure-based template 

search. 

 

  



 

- 43 - 

4.1.2. Benchmark set preparation 

A benchmark set for GalaxyHomomer2 was prepared by extracting homo-

oligomers satisfying the following conditions from PDB:   

 

a) Containing proteins only 

b) Oligomeric state is between 2 to 6 

c) Molecular weight is between 5,000 to 100,000 

d) Has no free ligands 

e) Has no modified polymeric residues 

f) Resolution is between 0 Å  to 2.5 Å  

 

The homo-oligomers satisfying the conditions were clustered to have maximum 

mutual sequence identity < 30%, resulting in 2,410 homo-oligomers. Homo-

oligomers composed of multi-domain proteins were detected by GalaxyDom 

(unpublished), an in-house domain detection method, and excluded from the 

benchmark set, resulting in a benchmark set of 2244 homo-oligomers. From the 

benchmark set, 600 homo-oligomers, Set 1, were randomly selected by maintaining 

the portion of each oligomeric state (dimer: 458, trimer: 52, tetramer: 63, pentamer: 

5, hexamer: 22). In the same way, 600 homo-oligomers, Set 2, were randomly 

selected from the remaining homo-oligomers, maintaining the portion of each 

oligomeric state. 
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4.1.3. Parameter tuning for ranking templates 

Scoring and ranking templates detected by different template search methods are 

tricky because the templates were selected based on different criteria. First, the 

GalaxyHomomer2 template score, 𝑆hom2, for templates from the sequence-based 

template search and templates from the structure-based template search was 

formulated as follows: 

𝑆hom2 = 𝑆seq = 𝑆GalaxyTBM(𝑎 × 𝑇𝑀pred + 𝑏 × 𝑖𝑑seq) 

𝑆hom2 = 𝑆str = 𝑆GalaxyTBM × 𝑇𝑀pred(𝑐 + 𝑑 × 𝑇𝑀mono + 𝑒 × 𝑇𝑀iface) 

where 𝑆seq is a template score for a template from sequence-based template 

search, 𝑆str is a template score for a template from structure-based template 

search, 𝑆GalaxyTBM is the template score of GalaxyTBM, 𝑇𝑀pred is predicted 

TM-score that is calculated by GalaxyTBM based on HHsearch result and has a 

single value for a target homo-oligomer, 𝑖𝑑seq is sequence identity between a 

target and a template, 𝑇𝑀mono is structure similarity between a monomer model 

and a template, 𝑇𝑀iface  is interface structure similarity between a monomer 

model and an interface region of a template. The interface region was defined as 

residues whose Cα atoms are placed closer than 20 Å  from any of the other chain's 

Cα atoms. 

For parameter tuning of a, b, c, d, and e values, 20 models from each 

sequence-based template search followed by modeling based on sequence 

threading method and structure-based template search followed by modeling based 

on structural superposition were generated for homo-oligomers in Set 1. IRMSD of 

the generated model was calculated. c, d, and e values minimizing the best IRMSD 

of top 5 models from structure-based template search were first determined to be 1, 
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0.2, and 0.5 by rough grid search in parameter space. And then, a and b values 

minimizing the best IRMSD of top 5 models from both template searches were 

determined to be 1.65 and 0 by rough grid search in parameter space. Therefore, 

𝑆hom2 is determined as follows: 

𝑆hom2 = 𝑆seq = 1.65 × 𝑆GalaxyTBM × 𝑇𝑀pred 

𝑆hom2 = 𝑆str = 𝑆GalaxyTBM × 𝑇𝑀pred(1 + 0.2 × 𝑇𝑀mono + 0.5 × 𝑇𝑀iface) 

In both 𝑆seq  and 𝑆str , 𝑇𝑀pred , which estimates the accuracy of a 

monomer model, is necessary to define a cutoff value for deciding whether use the 

templates for homo-oligomer modeling or not. Ab initio docking, by 

GalaxyTongDock_C, may be a better choice than template-based docking using 

templates with low 𝑆hom2. It turned out that ab initio docking performs better than 

template-based docking when 
𝑆hom2

max(𝑆GalaxyTBM)
< 1.0. Therefore, templates having 

𝑆hom2

max(𝑆GalaxyTBM)
 lower than 1.0 are excluded in the homo-oligomer modeling step. 

By applying the above GalaxyHomomer2 template score and template 

exclusion criterion, the usage of models from structure-based template searches in 

the top 1 and top 5 models was increased compared to that of GalaxyHomomer, as 

shown in Table 4.1. The usage of models from ab initio docking is also increased. 
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Table 4.1. The number of models in the top 1 and top 5 models generated for Set 1 

depending on their modeling methods. 

Set 1 

# of models 

(sequence-based 

template search) 

# of models 

(structure-based 

template search) 

# of models 

(ab initio docking) 

GalaxyHomomer 

(top 1 model) 
525 28 47 

GalaxyHomomer2 

(top 1 model) 
302 218 80 

GalaxyHomomer 

(top 5 models) 
2038 400 562 

GalaxyHomomer2 

(top 5 models) 
1671 477 852 
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4.2. Performance of GalaxyHomomer2 

The performance of GalaxyHomomer2 was compared to that of GalaxyHomomer. 

Templates having more than 40% sequence identity to targets were excluded for 

the performance test. Even though some parameters of GalaxyHomomer2 were 

tuned using Set 1, the performance of GalaxyHomomer2 was shown to be better on 

Set 2 in terms of CAPRI criterion, as shown in Tables 4.2 and 4.3. The same 

tendency was observed in terms of LRMSD, IRMSD, and Fnat
32. Furthermore, the 

performance gap between GalaxyHomomer2 and GalaxyHomomer was more 

noticeable on Set 2. This result could happen because Set 1 and Set 2 have different 

properties and the grid search of parameters was rough enough not to be over-

trained on Set 1. The performance of GalaxyHomomer2 was analyzed in detail on 

the combined set of Set 1 and Set 2 that is composed of 1,200 homo-oligomers. 

The results in Tables 4.2 and 4.3 are slightly different from those in the following 

analysis because there were minor changes in the GalaxyHomomer2 pipeline after 

Tables 4.2 and 4.3 were made. 
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Table 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on Set 1 in terms of CAPRI criterion. 

Set 1 High Medium Acceptable 

GalaxyHomomer 

(top 1 model) 
0 102 86 

GalaxyHomomer2 

(top 1 model) 
1 104 90 

GalaxyHomomer 

(top 5 models) 
5 154 88 

GalaxyHomomer2 

(top 5 models) 
4 157 88 

 

Table 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on Set 2 in terms of CAPRI criterion. 

Set 2 High Medium Acceptable 

GalaxyHomomer 

(top 1 model) 
3 93 100 

GalaxyHomomer2 

(top 1 model) 
4 104 91 

GalaxyHomomer 

(top 5 models) 
6 165 89 

GalaxyHomomer2 

(top 5 models) 
7 174 93 
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The performance of the final pipeline of GalaxyHomomer2 was compared 

to that of GalaxyHomomer in terms of GDT-TS of monomer models (Figure4.2), 

CAPRI criterion (Table 4.4), LRMSD (Figure 4.3), IRMSD (Figure 4.4), and Fnat, 

(Figure 4.5). The average values of GDT-TS of monomer models, LRMSD, 

RMSD, and Fnat are summarized in Table 4.5. There were moderate improvements 

in GDT-TS of monomer models, CAPRI criterion, IRMSD, and LRMSD. 

GalaxyHomomer2 showed similar performance in terms of Fnat compared to 

GalaxyHomomer.  

In summary, GalaxyHomomer2 generated better quality models and made 

successful predictions on more targets compared to GalaxyHomomer. However, 

the extent of improvement was moderate. There is still large room for improvement 

because GalaxyHomomer2 failed many targets that were successfully predicted by 

GalaxyHomomer, as can be seen in Figures 4.3, 4.4, and 4.5.  

There was a considerable improvement of the monomer structure 

prediction method on CASP14 (2020). AlphaFold2 successfully predicted the 

monomer structures for most of the targets of CASP14 with remarkable precision. 

Surprisingly, the monomer structures of the obligate homo-oligomers were 

correctly predicted without explicitly considering their oligomeric states. If 

structure-based template search is combined with an advanced monomer structure 

prediction method, such as AlphaFold2, the performance of template-based 

docking combined with structure-based template search, which is more emphasized 

in GalaxyHomomer2, is expected to be significantly improved. 
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Figure 4.2. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set (1,200 homo-oligomers) in terms of GDT-TS of monomer 

models. 

 

 

Table 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of CAPRI criterion. 

Combined set High Medium Acceptable 

GalaxyHomomer 

(top 1 model) 
3 195 186 

GalaxyHomomer2 

(top 1 model) 
5 207 183 

GalaxyHomomer 

(top 5 models) 
11 319 177 

GalaxyHomomer2 

(top 5 models) 
11 334 185 
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Figure 4.3. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of LRMSD. 

 

 

Figure 4.4. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of IRMSD. 
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Figure 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of Fnat. 
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Table 4.5. The performance test result of GalaxyHomomer2 and GalaxyHomomer 

on the combined set in terms of multiple accuracy measures (average GDT-TS of 

monomer models, LRMSD, IRMSD, and Fnat of the top 1 and top 5 models). For 

the top 5 models, the model with the best value for each accuracy measure was 

used for computing the average. LRMSD over 20 Å  was considered to be 20 Å , 

and IRMSD over 8 Å  was considered to be 8 Å . 

Combined 

set 

GalaxyHomomer 

(top 1 model) 

GalaxyHomomer2 

(top 1 model) 

GalaxyHomomer 

(top 5 model) 

GalaxyHomomer2 

(top 5 model) 

GDT-TS of 

monomer 

models 

68.2 70.3 71.6 73.6 

LRMSD 7.12 6.82 6.76 6.28 

IRMSD 3.48 3.24 3.21 2.97 

Fnat 0.436 0.424 0.424 0.423 
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5. CASP and CAPRI 

By utilizing the developed methods and other GALAXY software47, we have 

achieved high performance in CASP and CAPRI, second place in the CASP13 

assembly category17, third place in CASP13-CAPRI18, fourth place in CASP14 

assembly, first place in CASP14-CAPRI, and second place in CAPRI 7th edition 

(round 38-45)19. CASP and CAPRI are community-wide prediction experiments 

for protein structure prediction and protein complex structure prediction in a blind 

fashion. In CASP and CAPRI, there are server and human predictions that 

participants should submit their models within three days and target-dependent 

time, respectively. In our group, the models of the server predictions were 

automatically generated by a prediction pipeline, and the models of the human 

predictions were manually generated with human intervention, such as literature 

search and template search. In this section, examples of how the developed 

methods have been utilized to predict protein complex structures in CASP and 

CAPRI are presented. 

 

5.1. CASP13 

5.1.1. H1021 (A6B6C6) 

H1021 has A6B6C6 stoichiometry. H1021 was a challenging target due to its large 

assembly. In the human prediction of the target H1021, low-resolution EM data 

was utilized to predict the oligomer structure. We first built homo-hexamer 

structures of each subunit based on the templates (5W5F for A6, 3J9Q for B6, and 

4HUH for C6). The templates were detected by the template score of GalaxyTBM. 

Two homo-hexamer subunit structures, A6 and B6, were assembled by rigid-body 
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fitting into a 20 Å  resolution EM map (Electron Microscopy Data Bank [EMDB]: 

EMD-2419)48 using UCSF Chimera49. Due to the wrongly modeled C-terminal 

domain orientation in the third subunit, we failed to fit the last homo-hexamer 

subunits (C6) into the EM data. Instead, the last subunits were docked into 

assembled A6B6 structure by GalaxyTongDock. Our model 5 turned out to have the 

best ICS score50, and it showed quite good arrangements of the subunits except for 

the orientation of the last subunit's C-terminal domain, as shown in Figure 5.1. Our 

model 5 for the target H1021 was highlighted at the CASP13 conference for its 

accuracy. 
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Figure 5.1. Multimeric structure of model 5 for H1021. (A) The native structure 

and (B) model 5 are shown with a low-resolution EM map (Electron Microscopy 

Data Bank [EMDB]: EMD-2419). (C) A part of the complex (chains A, B, C) is 

shown in clarity. Native chain structures are in lighter colors, while those of model 

5 are in darker colors. Except for the circled domain, the overall predicted structure 

is quite similar to the native structure. 
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5.2. CASP14 

5.2.1. H1045 (AB) 

H1045 is a heterodimer protein. Model 1 of our server prediction, which is 

automatically predicted by GalaxyHeteromer, was of medium accuracy in terms of 

CAPRI criterion. GalaxyHeteromer generated subunit structure models of GDT-TS 

= 82 and 64. An available heterodimer template (PDB ID: 2Y9M) was detected via 

structure-based template detection. A heterodimer structure was built by 

superposing the models of the subunits onto the template, and energy minimization 

was performed to remove steric clashes. This model structure was refined by the 

complex structure refinement method GalaxyRefineComplex, resulting in a 

heterodimer structure with medium accuracy [Fnat = 0.630, IRMSD = 2.00 Å , 

LRMSD = 11.8 Å ] (colored yellow and sky-blue in Figure 5.2). LRMSD was 

relatively large because of the low-quality monomer model of subunit B. The 

heterodimer model could have medium accuracy because the interface regions of 

both subunits were modeled accurately.  
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Figure 5.2. Model 1 of GalaxyHeteromer (in yellow and sky-blue), which has a 

medium accuracy [Fnat = 0.630, IRMSD = 2.00 Å , LRMSD = 11.8 Å ], is 

superposed on the native structure of H1045 (in red and blue). The template (PDB 

ID: 2Y9M) used for the heterodimer modeling is colored pink. Even though the 

monomer model of the subunit B (in sky-blue) was relatively inaccurate, the 

heterodimer model could be successfully predicted because the interface regions of 

both subunits were accurately modeled. 
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5.2.2. T1070 (A3) 

Our server prediction for the homo-trimer structure of the four-domain protein 

T1070 was unsuccessful due to the failure of monomer structure prediction: no 

proper oligomeric template was found when the target was treated as a single-

domain protein. In the human prediction, the T1070 trimeric structure prediction 

was performed domain-wise after manually dividing the structure into four 

domains (residues 1-76, 80-165, 190-249, and 264-335). The GalaxyTongDock_C 

was used to predict the trimer structures for each domain using domain structures 

selected from the CASP14 TS server models. Indeed, the crystal structure of T1070 

could be divided into four structural domains, with slightly different domain 

assignments (1-76, 80-180, 181-256, and 265-335), as shown in Figure 5.3A. 

Figure 5.3 shows the results of our human predictions for only the second 

and fourth domains since predictions for the first and the third domains were 

unsuccessful (crystal structures are shown in gray color). The structures of the 

trimers of the first domain, an inter-twined domain, and the third domain, which do 

not include inter-subunit contacts, were challenging to be predicted via ab initio 

docking. The trimer structure of the second domain of our model 5 (Figure 5.3B) 

was of acceptable quality in terms of the CAPRI accuracy criterion [Fnat = 0.18, 

IRMSD = 5.26 Å , LRMSD = 5.31 Å ]. The monomer structure for this domain was 

provided by Seok-server_TS1, which was generated by GalaxyDBM [GDT-TS = 

76.19, RMSD = 4.283 Å ]. The predicted trimer structure was more compact (see 

magenta-colored structure in Figure 5.3B) than the crystal structure (yellow) since 

the beta-strand residues (166-180, green) were tightly interacting with each other in 

the crystal structure. This region was not included in the monomer structure for 

docking due to domain mis-splitting. The domain boundary of the fourth domain 

was predicted accurately, and our human prediction model 1 for this domain 
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(Figure 5.3C) was of medium quality with respect to the CAPRI criterion [Fnat = 

0.42, IRMSD = 3.22 Å , LRMSD = 2.06 Å ]. The monomer structure used for 

docking was obtained from Zhang-CEthreade_TS1 [GDT-TS = 83.45, RMSD = 

2.423 Å ]. 

These results demonstrated that homo-oligomer structures can be 

predicted by symmetric ab initio docking when monomer structures of reasonable 

quality are available. For multi-domain proteins, an accurate domain assignment is 

crucial for successful structure prediction. We did not attempt assembly of the four 

trimer domains for T1070, as the first and third domain structures were deemed 

inaccurate. 
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Figure 5.3. Comparison of the crystal and modeled structures of T1070. (A) The 

crystal structure of T1070 is divided into four domains. Domains 1 and 3 are 

colored in gray, and domains 2 and 4 are colored in yellow. The model structures 

of domains 2 and 4 extracted from our human models 5 and 1, respectively, are 

depicted in purple. (B) The model structure of domain 2 (magenta) is superposed 

onto the crystal structure (yellow and green) and shown from a different 

perspective. The beta-strand residues 166-180 (green), missing in the model 

structure, interact tightly with each other in the crystal structure. The subunits of 

the model structure are closer to each other in the model structure due to the 

missing region. (C) The model structure of domain 4 (magenta) is superposed onto 

the crystal structure (yellow). 
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5.2.3. T1083 (A2) 

T1083 is a homodimer protein. Model 1 of our server prediction, which is 

automatically predicted by GalaxyHomomer2, was of medium accuracy in terms of 

CAPRI criterion. GalaxyHomomer2 detected an available oligomer template [PDB 

ID = 3GWK, TM-score = 0.61] via the structure-based template detection using the 

monomer model generated by GalaxyDBM [GDT-TS = 87.5, RMSD = 2.82 Å ]. A 

homodimer structure was built by superposing the monomer model onto the 

template, and energy minimization was performed to remove steric clashes. Local 

energy minimization was insufficient to induce a conformational change from the 

superposed structure (colored in pink in Figure 5.4) to the crystal structure 

(yellow). This model structure was incorrect [Fnat = 0.392, IRMSD = 4.09 Å , 

LRMSD = 10.1 Å ]. This model structure was refined by GalaxyRefineComplex, 

resulting in an improved structure with medium accuracy [Fnat = 0.608, IRMSD = 

2.51 Å , LRMSD = 4.83 Å ] (colored sky-blue in Figure 5.4). This model was 

submitted as model 1. GalaxyRefineComplex refined the loose N-terminal portions 

of each subunit of the homodimer (magenta in Figure 5.4) to a helix structure 

(dark blue), which packed against the helix bundle, similarly to the N-terminus of 

the crystal (green). The relative orientation of the two subunit helices was also 

improved upon refinement (structures before and after refinement are colored pink 

and sky-blue, respectively). 
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Figure 5.4. The crystal (yellow) and modeled structures before (pink) and after 

refinement (sky-blue) of T1083. The loose N-terminal structures of the two 

subunits before refinement (magenta) were well-packed upon refinement (dark 

blue) and approached the crystal structure (green). The relative orientation between 

the two subunits was also improved by the refinement. 
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5.3. CAPRI 

5.3.1. T131 (AB) 

This target is a hetero-dimer protein. The crystal structures of both subunits were 

available at the time of prediction (PDB ID: 5LP2 and 4WHD). No acceptable or 

higher accuracy models were submitted within the top 10 by either server or human 

predictions for this target. Our server model 66 was of high quality with [Fnat = 

0.92, IRMSD = 1.5 Å , LRMSD = 2.7 Å ], which was the best among all models 

submitted by all predictors. Interestingly, the model was selected as top 1 by 

GalaxyTongDock. However, the model was evaluated to be wrong by 

GalaxyPPDock (unpublished), which performs global optimization starting with 

the models generated by GalaxyTongDock. We attribute this failure to the 

limitation of GalaxyPPDock that does not sample backbone structure flexibility. 

The rigid-body docking method GalaxyTongDock considers backbone flexibility 

implicitly with a low penalty for steric clashes. GalaxyPPDock employs high-

resolution energy, which imposes a high penalty for steric clashes. 
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6. Conclusion 

 

Three protein complex structure prediction methods, GalaxyTongDock, 

GalaxyHeteromer, and GalaxyHomomer2 were developed. GalaxyTongDock 

performs asymmetric and symmetric ab initio docking utilizing FFT. 

GalaxyHeteromer and GalaxyHomomer2 employ both template-based docking and 

ab initio docking for hetero- and homo-oligomer structure prediction, respectively. 

The methods have been being freely serviced for global users as web servers at 

 

GalaxyTongDock web server (http://galaxy.seoklab.org/tongdock) 

GalaxyHeteromer web server (http://galaxy.seoklab.org/heteromer) 

GalaxyHomomer2 web server (http://galaxy.seoklab.org/homomer) 

 

Our group has been ranked on top in multiple CASP and CAPRI using the 

methods, second place in the CASP13 assembly category, third place in CASP13-

CAPRI, fourth place in CASP14 assembly category, first place in CASP14-CAPRI, 

and second place in CAPRI 7th edition (round 38-45). The methods have been 

actively utilized in various joint research with pharmaceutical companies and 

academic research groups regarding protein complex structure prediction, protein-

peptide docking, and protein drug design. 

Near future, we expect there will be meaningful progress in protein 

complex structure prediction from two aspects. First, there was a remarkable 
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improvement of the protein structure prediction in CASP14 by AlphaFold2. 

Accurate monomer model structures are a prerequisite for accurate protein complex 

structure prediction. A meaningful improvement would be followed as protein 

complex structure prediction methods are combined with advanced monomer 

structure prediction methods. Second, many researchers are trying to apply deep 

learning to protein complex structure prediction. Deep learning is thought to have 

massive potential in protein complex structure prediction. We are trying to apply 

deep learning to protein complex structure prediction. The performance of 

GalaxyTongDock has been highly increased by a deep learning-based docking pose 

rescoring method. Binding affinity between proteins could also be more accurately 

predicted by deep learning-based energy than conventional GALAXY energy. 

Improvement in protein structure prediction and protein complex structure 

prediction will change the field of drug discovery. Computational methods are 

potent tools for rationally designing protein-based therapeutic agents, like antibody 

and cytokine drugs. Accurately predicted protein-protein interface makes it 

possible to determine where to target and how to target for discovering protein-

protein interaction inhibitors. The era of precision medicine does not seem too far 

from where we are standing. 
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국문초록 

 

단백질 사이의 상호작용은 세포분열, 항상성 유지, 면역반응, 질병의 

발생 등 많은 생물학적 과정에서 핵심적인 역할을 한다. 단백질 복합체 

구조로부터 얻을 수 있는 단백질 상호작용에 대한 구조적 이해는 

효과적인 항체 신약, 단백질 상호작용 저해제 등의 약물 설계를 위해 

필수적인 요소이다. 그러나 단백질 복합체는 대체로 약한 상호작용에 

의해 일시적으로 형성되어 실험을 통해 결정하기가 어렵다. 실제로 우리 

몸에서 일어나는 수많은 단백질 상호작용 중 극히 일부에 대해서만 

복합체 구조가 알려져 있다. 컴퓨터를 이용한 단백질 복합체 구조 예측 

방법은 실험에 의해 결정된 단백질 복합체 구조가 없는 경우에 단백질 

상호작용에 대한 정보를 제공하는 중요한 역할을 해왔다. 이 논문에서는 

단백질 복합체 구조 예측 방법인 GalaxyTongDock 과 

GalaxyHomomer2, GalaxyHeteromer 에 대해서 소개한다. 

GalaxyTongDock 은 ab initio 도킹을 통해 동종 올리고머 단백질과 

이종 올리고머 단백질의 구조를 예측한다. GalaxyHomomer2 와 

GalaxyHeteromer 는 각각 동종 올리고머 단백질과 이종 올리고머 

단백질의 구조를 주형 기반 도킹과 ab initio 도킹을 모두 이용하여 

예측한다. 마지막으로, 이 방법들이 국제 단백질 구조 및 복합체 구조 

예측 대회인 CASP 과 CAPRI 에서 단백질 복합체 구조를 예측하기 위해 

어떻게 활용되었는지 몇 가지 예시를 통해 소개한다. 
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주요어: 단백질 복합체 구조 예측, 단백질-단백질 도킹, 주형 기반 도킹, 
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최영호 선생님. 칠판에 하얀 분필로 경사로 위에 상자를 

그리시던 모습이 기억납니다. 제자들의 성장에 함께 진심으로 기뻐해 

주시는 선생님과 과학 공부를 하며 과학이 참 재미있다고 느끼기 
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형, 민경 누나, 제가 여러 부사수를 가르쳐보며 저는 형, 누나에게 손이 

많이 가는 부사수였겠다는 생각이 들었어요. 잘 가르쳐주셔서 

감사합니다. 범창이 형, 저는 형이 없었으면 사뭇 다른 대학원 생활을 

했을 것 같아요. 형 덕분에 즐거운 일도 많았고 유쾌하게 지냈습니다. 

현욱아, 너처럼 똑똑한 부사수를 두어 영광이었어. 영국도 가고, CASP, 

CAPRI 도 하고, 너는 내게 말 그대로 동고동락하는 동료였어, 고맙다. 

민재, 항상 문제를 스스로 해결해보려 노력하는 모습이 멋지다고 생각해. 
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세대이죠. 무슨 문제가 생기면 바로 문제를 해결해주는 형들 덕분에 

저는 참 편하게 연구할 수 있었어요. 졸업한 이후에도 함께하기로 
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같이하진 않지만, 나중에 좋은 아이디어 기획해서 같이 세상을 바꾸자. 

재욱이, 내가 대학원에 입학하고 거의 달에 1 번은 꾸준히 본 것 같네. 

네가 없었으면 참 심심한 대학원 생활이 됐을 것 같다. 아무 이유 

없이도 꾸준히 계속 만나는 우리가 정말 친구 같은 친구라고 느껴진다. 

민영아, 너의 긍정적이고 밝은 에너지가 나를 더 긍정적인 사람으로 

변하게 하는 것 같아. 덕분에 힘들거나 어려운 상황에 부닥쳐도 잘 

이겨낼 수 있었어. 항상 응원해줘서 고마워. 앞으로도 많은 즐거운 일들 

같이 할 수 있으면 좋겠어. 잘 부탁할게. 마르틴, 함께 연구실 생활할 때 

같이 자주 어울렸었는데, 너는 어느새 교수가 됐네. 네가 교수가 되고 

나서도 우리 관계는 변함없지만, 만나서 나누는 대화는 한층 더 깊어진 

것 같다. 대화할수록 네가 정말 생각이 깊고 배울 점이 많은 사람이라는 

것을 느껴. 네가 서울대로 취직해서 자주 볼 수 있어 기쁘다. 앞으로도 

자주 볼 수 있으면 좋겠어. 제민이 형, 형과 어울렸던 그 시간 시간이 

굉장히 강렬해서 여운이 길어요. 저도 나름대로 마음이 자유로운 

사람이라고 자부했는데, 형은 정말.. 많이 배웠어요. 라헬아, 과학고와 

카이스트를 나온 내게 예술을 하는 네가 사는 세상은 마치 다른 세상 

같아 신선한 충격을 줬어. 덕분에 다양한 사람들과 만나고 좋은 시간 
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보낼 수 있었어, 고마워. 세진 누나, 처음 만났을 때 팬으로써 참 

신기하고 기뻤답니다. 그 이후로 인연이 이어져, 지금은 참 좋은 누나가 

생긴 것 같이 느껴져 더 좋아요. 누나가 저에게 사업하면 딱 맞을 

사람이라고 이야기하곤 했었는데, 어쩌다 보니 그 말이 현실이 됐네요. 

누나가 그렇게 말해줘서 뭐 하나 익숙한 것 없는 일에 대해 ‘딱 맞겠지. 

뭐!’하고 용기 낼 수 있어요, 고마워요.  

 

마지막으로 항상 응원해주고 사랑해준 가족에 감사합니다. 

아버지. 어릴 때는 눈에 보이는 것만 볼 줄 알아 몰랐지만, 

나이가 들어 아버지가 얼마나 가족을 위해 헌신해왔는지 알았습니다. 

아버지가 은퇴하시니 제가 일을 시작하네요. 아버지가 오랜 세월 들고 

계셨던 바통을 넘겨받는 느낌이 들어 기분이 좋습니다. 과거에도 지금도 

앞으로도 아버지는 제 마음속의 지주입니다. 항상 든든한 우리 아버지, 

감사합니다.  

어머니. 맨날 엄마한테 전화해서 퇴근하는 길에 과자 사 와 줄 

수 있는지 물어보던 아이가 서울대학교 박사로 성장할 수 있었던 것은 

모두 어머니 덕분입니다. 힘들고 어려웠던 시절부터 많은 우여곡절을 

이겨내고 지금까지 정말 고생 많으셨어요. 하나부터 열까지 잘 

챙겨주고도 항상 더 챙겨주려고 해주셔서 감사합니다. 호강시켜드리고 

다양한 경험 함께 할 수 있도록 두 분 모두 오래오래 건강하게 

계셔주세요. 언젠가 옛날처럼 한집에서 살면서 같이 시간 보내고 

싶습니다. 
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형. 형은 내게 어릴 때도 든든했지만 시간이 갈수록 더 

든든해지네. 언제부터인가 형이 나를 인정해주는 말들을 하기 

시작했는데 그게 참 기뻤던 게 기억난다. 나와는 많이 다른 형의 

모습들을 동경했었는데, 그런 형한테 인정을 받으니 스스로에 대해 더 

자부심을 가지고 계속 열심히 할 수 있었어. 서로 다른 길을 쭉 

걸어왔는데 어째 지금 형하고 내가 굉장히 닮아있다는 생각이 드네. 내 

행동과 생각하는 방식을 보면 어렸을 적부터 봐온 형의 모습이 많이 

녹아있다는 게 느껴진다. 든든한 형이 있어서 다행이야. 

 

앞으로도 여러분들의 자랑스러운 아들, 동생, 제자, 친구, 동료가 될 수 

있도록 더 노력하겠습니다. 감사합니다. 
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