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Abstract

As computation responsibilities are transferred and migrated to cloud comput-

ing environments, cloud operators are facing more challenges to accommodate

workloads provided by their customers. Modern applications typically require a

massive amount of main memory. DRAM allows the robust delivery of data to

processing entities in conventional node-centric architectures. However, phys-

ically expanding DRAM is impracticable due to hardware limits and cost. In

this thesis, we present RapidSwap, an efficient hierarchical far memory that

exploits phase-change memory (persistent memory) in data centers to present

near-DRAM performance at a significantly lower total cost of ownership (TCO).

RapidSwap migrates cold memory contents to slower and cheaper storage de-

vices by exhibiting the memory access frequency of applications. Evaluated with

several different real-world cloud benchmark scenarios, RapidSwap achieves a

reduction of 20% in operating cost at minimal performance degradation and

is 30% more cost-effective than pure DRAM solutions. RapidSwap exempli-

fies that the sophisticated utilization of novel storage technologies can present

significant TCO savings in cloud data centers.

Keywords: Far Memory, Virtual Memory, Swap Systems, Cloud Datacenter,

Operating Systems
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Chapter 1

Introduction

In recent years, memory resources have been intensively utilized and are actively

recognized as a critical component for warehouse-scale computing (WSC) work-

loads, such as databases, distributed big-data processing, artificial intelligence,

and many more [13, 20, 22]. These in-memory applications require an enormous

amount of physical memory to avoid performance degradation from process-

ing and retrieval latency [28]. For example, Google Cloud Platform, Microsoft

Azure, and Amazon Web Services provide machines with up to 24 terabytes of

main memory to operate a proprietary in-memory database [1, 2, 9].

Dynamic RAM (DRAM) enables the robust delivery of data to processing

entities in conventional processor-centric architectures, and it is still maintain-

ing its position as the fastest component in the storage tier. However, infinitely

expanding memory capacity is unfavorable in terms of hardware limitations.

Also, constituting overestimated memory resources in the warehouses yields

resource under-utilization and high total cost of ownership (TCO). Therefore,

cloud datacenter operators are challenged to allocate and harmonically orches-
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Instance Type vCPU Memory (GiB) Storage (TB) Cost ($/hr)

c6g.metal

64

128

-

2.176

r6g.metal 512 3.2256

r5.metal

96 768

7.296

i3en.metal 60 10.848

Table 1.1: Amazon EC2 pricing. [8]

trate memory resources more than ever.

While it is ideal to store all the data in the fastest storage for maximum per-

formance, maintaining all contents in DRAM heavily impacts the warehouses’

TCO. This directly affects the pricing policy of cloud services. Table 1.1 analyzes

the on-demand pricing of several Amazon EC2 instances. Instance r6g.metal of-

fers 384 GiB more memory than c6g.metal for an additional $1.0496 per hour.

Amazon also provides 60 TB of local NVMe SSDs for i3en.metal for an ex-

tra $3.552 per hour. Combining these two observations, Amazon is charging

×42.19 more on DRAM over SSD for the same capacity. In the market, the

per-gigabyte cost of the former is about six times higher than the latter; this

without accounting for the surge in DRAM price due to increasing demand and

supply chain shortage [6, 7]. Our observation shows that warehouse operators

try to minimize memory pressure by imposing a relatively large price penalty

on DRAM.

Paging has been the core of the virtual memory management of operat-

ing systems. It dissolves the capacity gap between the virtual memory and the

actual physical memory by extending physical memory to attached storage de-

vices. The Linux kernel tries to reclaim pages in proactive way if the number

of free pages drops below a certain threshold. If the memory pressure surpasses
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what proactive reclamation thread can tolerate, on-demand reactive reclama-

tion will be triggered and can cause a significant page reclaim latency [17]. The

research community has suggested several solutions for this issue [14, 15, 16].

However, these solutions extend the failure domain, contribute to complex re-

covery, or do not show significant improvements in the TCO. In this thesis,

we try to answer the following: Is it possible to reduce memory pressure and

expose cheaper memory to cloud customers while minimizing the performance

penalty?

This thesis presents RapidSwap, an efficient hierarchical far memory that

leverages tiered storage to maintain a high memory utilization. RapidSwap ex-

ploits phase-change memory (Intel Optane persistent memory), a novel storage

technology, in data centers to present near-DRAM performance at a signifi-

cantly lower total cost of ownership. RapidSwap migrates cold memory contents

to slower and cheaper storage devices by tracking the memory access frequency

of applications. RapidSwap delivers 20% reductions in operating cost and is 30%

more cost-effective the pure DRAM solutions when evaluated with well-known

cloud benchmarks.

This thesis is organized as follows: Chapter 2 presents the background and

related work for RapidSwap. Chapter 3 describes the motivation for our work.

Chapter 4 address the design and implementation of our technique. Chapter 5

deliver the experimental setup and a detailed evaluation of RapidSwap. Chap-

ter 6 discusses conclusion and future works.
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Chapter 2

Background

2.1 Tiered Storage

Tiered storage, also known as hierarchical storage, is a widely adopted technique

in computing devices [11]. Typically, these systems place faster high-cost stor-

age devices in the upper portion of the hierarchy while slower low-cost media

are located in the lower levels of the hierarchy. Placing all the data in high-

performance devices is preferred, but may be unfavorable in terms of operating

costs. Since access patterns of real-world applications are subject to locality,

one way to decrease the operating cost is to optimize the system towards these

characteristics [24]. In tiered storage, policy to arrange and place every data

chunk must be designed exquisitely to create an illusion that there is no need

to consider the trade-off between performance and cost. This is done by eventu-

ally segmenting all data by temperature (hot or cold). Data which has turned

cold is not likely to be accessed near future and is available as a candidate for

migration into slower devices.
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2.2 Trends in Storage Devices

Recently, storage devices with dramatically improved performance character-

istics have emerged in the market. Non-volatile memory (NVM) devices such

as phase-change memory (PCM) used in Intel 3D XPoint show read/write the-

oretical latencies of 10 µs [12]. This figure is three orders of magnitude lower

than conventional Hard Disk Drives (HDD). Aside from SATA interfaces, stor-

age devices are available in different interfaces such as NVDIMM or PCIe. The

NVDIMM interface allows direct load/store accesses from CPU cores and able

to enjoy cache benefits. It is a technical trend to consider and efficiently sup-

port the emerging fast storage devices in file systems [27, 29]. By allowing direct

access (DAX) to the device, they achieve better performance than block-based

storage devices. Table 2.1 shows the read/write latencies that we measured on

different storage devices.

Device 4K Read Latency 4K Write Latency

DRAM 434 ns 439 ns

PMEM 1183 ns 1789 ns

NVMe SSD 9837 ns 28 870 ns

SATA SSD 94 930 ns 36 143 ns

Table 2.1: 4K read/write latency in different storage devices.

2.3 Techniques Proposed to Lower Memory Pressure

2.3.1 Transparent Memory Compression

Zswap is an in-kernel feature that was officially merged in the Linux kernel

v3.11 [18]. Zswap attempts to compress swapped-out pages with a lightweight
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and robust compression algorithm. If the size of the compressed page including

metadata is smaller than the uncompressed page, the compressed data is stored

in local memory pool. Rejected pages from zswap are handed over to swap

devices. Zswap serves as an efficient cache for swap devices especially when

the read latency from the zswap cache is dramatically faster than the physical

backing store as it can obtain the original page content from DRAM in a robust

manner. Figure 2.1 shows the overall flow of zswap.

swap request frontswap Zswap Swap Backend

mempool SSD
HDD

...

Figure 2.1: Zswap flow.

2.3.2 Far Memory

How to efficiently handle scarce memory resources has been one of the core top-

ics studied by the research community. Memory that is not available as natural

or local is defined as far memory. Currently, far memory is proposed through

2 different forms – 1) software-based approach and 2) memory disaggregation.

Software-Defined Far Memory

Software-based approach has been the classic method to implement far mem-

ory [4, 26]. It is offered as an intermediary tier between DRAM and secondary

storage devices. Recently, Google researchers have revisited the idea and imple-

mented in-DRAM compression in warehouse-scale without additional hardware

6



support [15] .

Google’s software-defined far memory re-implements the existing Zswap

mechanism in Linux to compress a certain portion of the original memory,

which is still stored in DRAM. All memory pages in this case are classified as

either hot or cold by their last access time. If a page has not been touched

for more than T seconds, it will be considered as a cold page and ready to be

sent to the far memory. Parameter T is dynamically adjustable and optimized

towards Google’s warehouses with both hands-on-dirty and machine learning

approaches.

On average, Google reports that 20% of all pages are classified as cold, and

among them, about 69% are compressible by 1/3. The other cold pages incur

metadata overhead and there is no gain from compression. Overall, Google was

able to achieve a 4-5% reduction in the overall TCO. However, the number

of absolute compressible pages is limited and the figure in the savings is not

overwhelming on a smaller scale.

Memory Disaggregation

Memory Disaggregation is another form of far memory to increase resource

utilization. By pooling memory resources from different physical nodes over

low-latency and high-throughput network, disaggregated memory can simply

overcome the limitations of the current node-centric computation model. If

local memory is not sufficient, remote memory will be used as a swap device.

Gu et al. [10] presented Infiniswap, a remote paging system under Remote

Direct Memory Access (RDMA) network. Infiniswap divides and distributes

swapped memory to memory spaces along with remote machines. Infiniswap

is exposed as a block device and does not need any extra modifications after

opening the device. Jo et al. [14] proposed RackMem, which implements a cus-
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tom demand paging through disaggregated memory. RackMem has resolved the

latency caused by slow page reclamation of the Linux kernel.

Previous studies [14, 16, 21] leverage remote memory to increase the over-

all memory utilization of the over-committed memory. They allow page size

fine-grained distribution memory pressure. However, memory disaggregation

extends the failure domain from local to remote machines which makes dealing

with fault tolerance more complex. It also incurs a certain amount of network

traffic to swap in/out memory pages to remote machines. Lee et al. [16] en-

sure fault tolerance by applying erasure coding rather than the full memory

replication.

Additional replication, erasure coding [16], or a hybrid approach [25] may

be applied to ensure data recoverability. Still, this requires either extra remote

memory or computation.
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Chapter 3

Motivation

3.1 Limitations of Existing Techniques

Pure zswap behaves like a temporary caching layer between DRAM and the

backing store. If most of the memory pages are not compressible, Zswap becomes

a redundant overhead layer for the backing store, wasting extra CPU cycles and

energy. In the worst case (thrashing), the zswap layer may become the critical

bottleneck contributing to page restore latency.

Recent software-defined far memory [15] secures extra memory space by

utilizing zswap to apply in-memory compression. However, only a small frac-

tion of memory contents are subject to compression. It does not dramatically

improve memory pressure since it solely relies on DRAM to accommodate mem-

ory contents. It also causes additional computational overhead by attempting

to compress all pages requested by the swap system. Moreover, Google’s work

requires hand-tuning or sophisticated machine learning model to optimize sev-

eral parameters that affect the efficiency of the system and it is generally not
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applicable in other environments.

Memory disaggregation through high-speed interconnect tackles the conven-

tional memory limitation caused by node-centric architectures. Since the remote

memory is available as a fast swap device, the optimized page fault handler [14]

for fast devices resolves the problems that the current demand paging shows.

However, outsourcing one’s memory to other nodes extends the failure domain

from a single machine to remote machines. In addition, memory contents are

visible from other nodes. Therefore, memory disaggregation must consider addi-

tional fault tolerance or security aspects. In this case, redundant use of remote

memory or computation is necessary.

3.2 Tiered Storage as a Promising Alternative

RapidSwap implements far memory by leveraging the tiered storage concept.

It does not attempt to make any modifications to the original memory con-

tents which consume CPU cycles. It physically alleviates memory pressure by

migrating memory pages by their temperature, which allows more condensed

use of the memory resources. Also, placing unnecessary pages in the cheaper

improves the overall TCO. Our work does not consume any network resources

or send any memory contents to other nodes. This greatly contributes to con-

fining the failure and security domain to the local machine. RapidSwap only

utilizes temporal and spatial locality to efficiently act as far memory.

Table 3.1 summarizes recently proposed system designs that aim at lowering

memory pressure. All of these systems leverage page-sized granularity. All of

the previous works may require additional CPU or network resources to directly

compress data to either save storage capacity or the amount of the data trans-

ferred through the network. Some of these works may utilize memory on remote

10



nodes and may require additional fault tolerance or security considerations. On

the other hand, RapidSwap confines the failure domain to the local node only

and does not require any fault tolerance techniques which consume additional

computational resources.

Type Granularity Failure Domain Overhead

Software-defined Far Memory [15]

Page

Local CPU

Hydra [16] Remote CPU & Network

RackMem [14] Remote Network

RapidSwap Local -

Table 3.1: Comparison of various work that lowers memory pressure.
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Chapter 4

RapidSwap Design and
Implementation

4.1 RapidSwap Design

RapidSwap utilizes different non-volatile devices in the storage hierarchy by

the performance of each storage entity. Figure 4.1 shows the overall architec-

ture of RapidSwap. The two core components of RapidSwap are the Storage

Frontend and the Storage Backend layer.

4.1.1 Storage Frontend

RapidSwap contains a storage frontend, which exposes the tiered storage as a

single device to the swap handler. The main role of the swap frontend is to swap

in/out pages from/to different storage devices. Therefore, the storage frontend

maintains the relevant metadata of mapping between the virtual address and

its actual location in the storage hierarchy. Storage frontend groups and man-

ages pages into certain sized slabs for spacial locality. As RapidSwap aims to

12



Swap Handler

Storage Backend

User Space
App App App

Kernel Space

St
or

ag
e 
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nd I/O Handler

Hot/Cold Classification

Allocation Migration

NVDIMM PCIe SSDDRAM SATA SSD ...

Figure 4.1: Overall RapidSwap architecture.
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lower the TCO, it is also responsible for (1) classifying swapped-out pages into

hot/cold pages and (2) keep them in appropriate storage backends according

to their temperatures.

I/O Handler and Allocation

The storage frontend manages metadata of all allocated slabs. When any piece

of data in the far memory needs to be accessed, the swap handler requests

the I/O handler in the swap frontend with the unique id of the slab and the

virtual address. The I/O handler then calculates the relative offset of the page

within the slab and requests the appropriate storage backend for the physical

read or write access to the storage device. The I/O handler is responsible to

turn on the accessed bit when a slab is accessed. Slabs are not allocated until

they are first-accessed (lazy-loaded). In this case, the allocation task. A new

slab is always allocated from the fastest device available.

accessed

accessed

T && !accessed T && !accessed

Hot Warm Cold

allocated

Figure 4.2: State transition diagram of RapidSwap temperatures.
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Hot/Cold Classification

During the lifetime of RapidSwap, Hot/Cold classifier repeatedly checks the

accessed bit of all slabs every second and categorizes them into one of the

following three states: hot, warm, and cold. If a slab is found accessed, it is

marked as hot. Slabs that have not been accessed more than T seconds are

classified as cold. Warm is an intermediate state between hot and cold. Warm

slabs are given the grace period for T seconds before they are recognized as

cold and reside where they are before the physical migration. The access history

is tracked and recorded by the hot/cold classifier. Newly allocated slabs are

considered hot. Figure 4.2 shows the state diagram.

Migration

After every slab has its temperature, migration is performed. The migration

task promotes slabs from slower to faster devices if a slab has been identified

as hot. On the other hand, if a slab becomes cold, it is downgraded to a slower

device. Migration is not practiced to those who are shown as warm. Warm

slabs are given T seconds grace period before being downgraded. Slabs that

are in the uppermost or lowermost of the hierarchy are not the subjects of

promotions/downgrades.

4.1.2 Storage Backend

Storage backend serves as a uniform abstraction for physical storage devices.

Currently, RapidSwap recognizes 6 different storage types as shown in Table 4.1.

During the storage backend driver provisioning, it automatically gathers the

information about the device and calculates the maximum number of slabs

that the device can accommodate.
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Priority Name Details

0 DRAM vmalloc’d memory region

1 PMEM Persistent memory

2 RMEM Remote memory

3 PCIE NVMe in PCIe interface

4 SSD SSD in SATA interface

5 HDD HDD in SATA interface

Table 4.1: RapidSwap storage types.

Function Details

alloc() allocate a new slab from the device

dealloc() free the slab from the device

read() read from the specific page of the slab

write() write to the specific page of the slab

sg read() (optional) read from N pages of the slab

sg write() (optional) write to N pages of the slab

Table 4.2: Storage backend APIs.

When the storage backend has been loaded, it registers itself to storage

frontend. Storage frontend performs several checks to identify the device char-

acteristics such as allocation, 4K read/write, and deallocation latencies. When

the device is fully investigated, storage frontend puts the storage backend in the

list of the device and sorts the list by the performance of the storage devices.

Storage frontend fully manages storage devices during the RapidSwap lifetime.

Each storage backend must implement the following mandatory APIs as shown

in Table 4.2.
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4.2 RapidSwap Implementation

4.2.1 Swap Handler

Memory allocations and all related requests for RapidSwap are given from the

swap handler. To use far memory, the swap handler must call relevant functions

given by the swap frontend. In this thesis, we implemented our custom swap

handler. Our version of the swap handler retains the individual metadata to

transparently manage the virtual memory area of the user-space applications.

After user applications register their memory through the system-call interface,

they can access the allocated memory through conventional load/store instruc-

tions. The swap handler is based on our previous work [14].

The memory area managed by the swap handler is equal to the size of

an individual page in the Linux kernel. The swap handler retains a pre-defined

number of pages that can reside in the local memory. It could allocate new pages

until the number of allocated pages reaches the limit. Once the local pages are

full, some pages will be selected and will be swapped out to far memory. Swap

in/out interface is exposed by RapidSwap’s storage backend.

User applications could request RapidSwap-managed virtual memory area

by calling the mmap() system-call and providing the required memory size.

To minimize the latency caused by selecting the wrong page and inducing its

frequent swap-in/out to far memory, it precisely selects the victim page. Swap

handler maintains 2 different page pool lists for pages: active, and inactive.

Victim pages are selected from the inactive page pool. However, if the number

of the required pages exceeds the number of reclaimable pages, victim pages

will be selected from the active page pool. Active, or inactive classification is

done in z-score based algorithm. The classification is transparently handled by

the background kernel thread.

17



4.2.2 Storage Frontend

The main objective of the storage frontend is to expose far memory as a single

storage device to the swap handler. The swap handler may request the storage

frontend to swap in/out pages from/to the far memory. Storage frontend does

not allocate space in the far memory until the relevant region is initially ac-

cessed. When the region is first accessed, the swap handler allocates 1 MiB-sized

slab in the fastest among the available storage devices. Lazy-loaded slabs are

initially allocated from the fastest storage devices among the available resource

pool.

Hot/cold classification is done based on the access history. When a slab is

accessed, the I/O handler turns on the accessed bit. Classification task will run

every second and check whether the accessed bit is true in every single slab. If

then, classification task marks the slab as hot and turns off the bit. If a specific

slab is found accessed every time, it will continuously stay as hot slab. If the

slab hasn’t been accessed, it is considered warm. Warm slabs are given grace

periods of T seconds and stay in the current storage tier. Every slab contains

the metadata to record the time since the last access. If a slab hadn’t been

accessed for T seconds, classification task marks it as cold. Hot or cold slabs

are subject to migration.

Migration task is responsible for the relocation of all slabs. It checks the

list of all allocated slabs and migrates accordingly. If a slab is marked hot, it

will be moved to the fastest among the storage hierarchy. On the other hand,

if a slab is considered cold, migration task will move this slab to the slower

and cheaper device. During the slab relocation, migration task will 1) read the

target slab from the source device, 2) de-allocate the slab from the old device, 3)

allocate a new slab to the target device, 4) lock the memory for synchronization
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Figure 4.3: Average performance degradation by different slab sizes during when

the local memory is limited to 30% of the benchmarks’ RSS.

and relocate the memory contents, and finally 5) fix the relevant metadata and

unlock the memory region. Slabs that are already at the top or bottom of the

hierarchy will stay as long as it is hot/cold.

Slab Size

Slab size in RapidSwap determines the granularity for the allocation and migra-

tion. Smaller size is suitable for fine-grained control, but incurs more metadata

overhead than the larger slab size. To select the best value, we have evaluated

multiple slab sizes. In a strict environment where the local memory size is lim-

ited to 30% of the benchmarks’ resident set size (RSS), 1MiB size allows us the

best performance. Our observation is drawn in Figure 4.3.
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Figure 4.4: Miss-ratio curve as represented in CDF.

Migration Policy

We have selected the value T as 5 since the probability that the accessed page

will be accessed again within 10 seconds is 98% for the workload that heavily

accesses the memory. As RapidSwap retains intermediate warm temperature,

it will take 10 seconds for a slab to become cold. Figure 4.4 shows miss-ratio

curve in our experimental settings.

4.2.3 Storage Backend

The storage backend serves as an abstraction layer between the storage frontend

and the physical storage devices. A single backend exists for each device. Storage

backends must implement the following 4 APIs: alloc(), dealloc(), read(), and

write(). Storage backend does not keep any metadata regarding the allocation or

slab usage – storage frontend is responsible for keeping all the relevant records.

Based on the device characteristics, read or write is implemented in either

load/store (memcpy) or block-based approach.
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Chapter 5

Results

5.1 Experimental Setup

Workloads’ evaluations involve two entities – YCSB server and client. YCSB

server node has Intel Xeon Silver 4215R CPU with 64GB DRAM. The node

contains 1x960GB Intel 905P Optane NVMe PCIe (SSD) and 1x128GB Intel

Optane Persistent Memory 200 Series (PMEM). The server runs Ubuntu Server

20.04 with modified QEMU-KVM v4.2 to use our custom swap handler. A

virtual machine running redis database requests and allocates memory from

the swap handler through custom QEMU. An external node runs YCSB client

to generate queries for evaluations. Persistent memory and PCIe SSD comprise

a two-tier far-memory hierarchy for RapidSwap. We evaluate 6 different core

workloads provided by the Yahoo! Cloud Serving Benchmark (YCSB) [3].

Table 5.1 summarizes the evaluated workloads and their characteristics.

Benchmark types A, B, C, and F are evaluated when their access patterns were

given as both zipfian and uniform. For zipfian pattern, 80% of total accesses
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Workload Type Request Distribution Details

A: Update Heavy Zipfian / Uniform 50% Reads, 50% Writes

B: Read Mostly Zipfian / Uniform 95% Reads, 5% Writes

C: Read Only Zipfian / Uniform 100% Reads

D: Read Latest Latest1 Read from the fresh data

E: Short Ranges Zipfian & Uniform2 95% Scans, 5% Writes

F: Read-Modify-Write Zipfian / Uniform 50% Reads, 50% Read-Modify-Writes

Table 5.1: YCSB core workloads. [3]

Phase Properties Value Details

Loading recordcount 1000000 Total number of records to insert in the dataset

Transactions

target 100000 Target throughput (operations/sec)

threadcount 8 Number of client threads

operationcount 1000000

Number of operations to execute
operationcount3 50000

Table 5.2: YCSB client parameters for evaluation.

will be intensively made on the 20% of total data. Workload D predominantly

reads from freshly inserted data that is not physically contiguous. Workload E

mostly scans the entire database since the initiating key is selected in zipfian

and the length of scan is chosen by uniform distribution.

Table 5.2 shows our parameters to run the workloads with YCSB clients.

YCSB workloads are separated into 2 phases, loading and transactions. In the

loading phase, the YCSB client will prepare the redis database that is active in

the VM by inserting records. When the database is ready in the transactions

1Requests lately inserted data
2Scan starting key selected as zipfian, scanning done in uniform distribution
3For workload E
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phase, we begin the evaluation. The performance of RapidSwap is evaluated

by measuring the query response latency as reported by YCSB client. Memory

scarcity is simulated by artificially limiting the YCSB benchmark to a certain

percentage of the benchmark’s overall maximum memory requirements (resident

set size, RSS). RapidSwap is compared to vanilla Linux paging to the NVMe

PCIe SSD, RackMem [14] with an NVMe PCIe SSD Backend, and compressed

DRAM to mock the prior work by Google [15].

5.2 RapidSwap Performance

5.2.1 Degradation over DRAM

Figure 5.1 and 5.2 presents the performance degradation of various far memory

implementations with local memory limits 80, 70, 60, and 50 percent. As the

amount of data kept in DRAM is reduced, all implementations experience higher

performance degradations. In the average case, Linux vanilla paging to an SSD

performs worst, followed by RackMem paging to the same SSD (thanks to its

optimized page fault handling), and then zswap. RapidSwap outperforms the

other approaches in almost all configurations.

Performance degradation of workloads A, B, C, and F are presented in Fig-

ure 5.1. The left half of the figure represents zipfian distribution (zip) where

the right half stands for uniform distribution was given to the same workloads

(uni). As expected, the distribution of the accesses has a significant effect on

performance. The uniform access distribution of each workload causes signifi-

cant slowdowns in restricted DRAM scenarios. However, even under these strict

conditions, RapidSwap manages to maintain DRAM performance when the lo-

cal memory is allowed more than 70% in almost all scenarios except workload F,

where it shows degradation of less than 5%. The performance penalty induced
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zipfian Vanilla+SSD RackMem+SSD Compressed DRAM RapidSwap

Local: 50% 25% 22% 19% 8%

Local: 60% 10% 9% 8% 2%

Local: 70% 7% 0% 3% 0%

Local: 80% 4% 0% 2% 0%

uniform Vanilla+SSD RackMem+SSD Compressed DRAM RapidSwap

Local: 50% 51% 49% 41% 22%

Local: 60% 29% 24% 18% 10%

Local: 70% 16% 2% 6% 1%

Local: 80% 13% 3% 4% 1%

Table 5.3: Average performance degradation when workloads are executed with

zipfian and uniform distributions under different local memory sizes.

by RapidSwap in zipfian distribution is less than 13% even at 50% DRAM.

Figure 5.2 shows the performance degradation of workloads D, and E. These

workloads retain special access patterns. Workload D simulates user status up-

dates and yields minimal degradation for all designs in every configuration.

The degradation patterns resemble similar trends shown in zipfian distribu-

tions. Threaded conversations scenario is represented by workload E, where it

accesses most of the database and presents a larger working set. Workload E

acts as uniform distributions. In the rest of the paper, we group these two

workloads as zipfian or uniform.

As shown in Table 5.3, RapidSwap’s average performance degradation in

zipfian+D scenarios is only 8% and 2% at 50% and 60% DRAM, whereas com-

pressed DRAM shows 19% and 8% under the same conditions. In uniform+E

scenarios, RapidSwap only suffers 23% and 10% slow down when the local mem-

ory limit is 50% and 60%. On the other hand, compressed DRAM presents 41%

and 10% degradation.
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Figure 5.1: Performance degradation of RapidSwap and prior works over

DRAM.
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Figure 5.2: Performance degradation of RapidSwap and prior works over DRAM

(continued).
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Figure 5.3: Throughput and the number of slabs resident in PMEM and SSD.

26



5.2.2 Tiered Storage Utilization

Figure 5.3 shows throughput and the utilization of the two storage tiers PMEM

and SSD used in the experiments. Each different color represents the percentage

of local memory over RSS of each benchmark, including LMEM where a sufficient

amount of local memory is given during the execution. The leftmost figure in

every row depicts the throughput for the first 30 seconds of execution of each

workload. The other two figures present the number of slabs on each device

over execution runtime.

Regardless of distributions, all workloads show near-DRAM throughput

when the local memory is given more than 70%. Throughput drops when the

local memory is limited for less than 60%. We observe that RapidSwap migrates

most pages to the slowest storage level. Spikes in the second half of the PMEM

graph indicate periods when slabs are brought in from slower storage due to

page faults. This is due to the frequent migration between the storage tiers. As a

consequence, the number of slabs over execution time in PMEM is larger than the

number of slabs resident in SSD. Workloads with uniform distributions show

similar trends.

Workload D with its latest access pattern shows a different picture. Limiting

the local memory does not impact the throughput of the workload. As the

workload only accesses the recently inserted data, the size of the working set is

relatively small for workload D, therefore keeping smaller slabs in PMEM allows

robust and cheaper operations.
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(b) YCSB D: Read Latest

Figure 5.4: Number of hits/misses and hit ratio of each workload by RapidSwap.

5.2.3 Hit/Miss Analysis

The number of hits/misses and its ratio is shown in Figure 5.4. We consider slab

hit if a requested data is available at our PMEM at the time of access. As expected,

the number of page faults handled by RapidSwap dramatically increases as

local memory became scarce. In all workloads except D shows similar trends

as workload A. The hit ratio drops when the responsibility of DRAM increases

as the page is mostly retained by DRAM and the request to the far memory

rarely occurs. Hit ratio of workload D stays stable (90%-92%) in all local memory

settings. More details are described in Table 5.4.
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zipfian Local: 50% Local: 60% Local: 70% Local: 80%

Workload A 95% 93% 79% 59%

Workload B 94% 93% 78% 56%

Workload C 94% 93% 82% 60%

Workload D 92% 90% 91% 90%

Workload F 94% 92% 77% 56%

uniform Local: 50% Local: 60% Local: 70% Local: 80%

Workload A 96% 95% 75% 50%

Workload B 95% 95% 83% 61%

Workload C 96% 94% 80% 66%

Workload E 97% 92% 80% 64%

Workload F 95% 94% 79% 54%

Table 5.4: Hit ratio by local memory limits of various YCSB workloads.

Storage Type Baseline Model $ per GB Reference

Server DRAM M386A8K40BM1-CPB (64 GB, LRDIMM) 9.36 [5]

Persistent Memory NMB1XXD128GPSU4 (128 GB, DDR-T) 3.59 [19]

PCIe SSD SSDPED1D015TAX1 1.66 [23]

Table 5.5: Baseline storage prices.

5.3 Cost of Storage Tier

To analyze and compare the benefits of RapidSwap regarding the cost of the

entire storage tier (DRAM, PMEM, and SSD), we surveyed the current market

price of the different storage backends. Table 5.5 shows our findings. The cost

is computed by first measuring the peak utilization (number of slabs) in the

different storage tiers. Then, we multiply this peak utilization by the cost of

the respective device to obtain the cost of the storage tiers. The total cost is

obtained by adding the cost of the allocated DRAM.
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(c) YCSB B: Read Mostly (zip)
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(d) YCSB B: Read Mostly (uni)

Figure 5.5: Cost-effectiveness of RapidSwap and Compressed DRAM.

5.4 Cost-effectiveness

While the total cost of the storage tier is an important indicator, it does not

consider the cost incurred by performance degradation. A more sensible metric

is thus the cost-effectiveness, i.e., performance per cost.

Figures 5.5 and 5.6 plot the cost-effectiveness of zswap and RapidSwap rela-

tive to a DRAM-only solution. The first observation is that RapidSwap achieves

significantly better cost-effectiveness than zswap for all workloads and all con-

figurations. Compared to DRAM, RapidSwap achieves an up to 40% higher

cost-effectiveness with 70% of the data kept in DRAM and 30% paged out.

As the amount of DRAM is reduced, workloads experience higher performance

degradation and require larger amounts of storage.
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(a) YCSB C: Read Only (zip)
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(b) YCSB C: Read Only (uni)
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(c) YCSB D: Read Latest
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(d) YCSB E: Short Ranges
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(e) YCSB F: Read-Modify-Write (zip)
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(f) YCSB F: Read-Modify-Write (uni)

Figure 5.6: Cost-effectiveness of RapidSwap and Compressed DRAM (contin-

ued).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Motivated by the broad availability of novel storage technologies and the short-

comings of existing approaches to resource overcommitment, we have presented

RapidSwap, an efficient hierarchical far memory implementation that is built for

diverse storage tiers composed of faster and slower devices. Paging only to local

devices, RapidSwap does not extend the failure domain such as disaggregated

memory approaches, and its awareness of the storage hierarchy allows it to

significantly outperform other techniques that swap out data locally.

Evaluated with a system equipped with Intel Optane memory and the Ya-

hoo! Cloud Serving Benchmark, RapidSwap achieves a 30% improvement in

cost-effectiveness at 70% local memory. RapidSwap demonstrates that proper

management of new memory technologies can yield significant cost savings in

data centers.
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6.2 Future Work

There are some potential improvements in this research. First, we must consider

application-specific memory management for practical research contributions.

There are a number of solutions suggested exploiting the miss-ratio curve. By

automatically adjusting the variable T in storage frontend with the assistance

of methods proposed by the research community, we will be able to achieve more

efficiency fine-tune the figure. Second, when a slab that is in the cold storage

is accessed, it incurs cold miss penalty. Leveraging bloom filter seems favorable

in grouping and identifying the spacial locality. In this way, we hope to apply

prefetching to reduce performance penalties. Lastly, we did not yet compare

RapidSwap against the memory mode configuration of PMEM, a hardware

black-box approach that offers similar functionality as RapidSwap, implemented

in hardware with cache-line granularity.
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요약

컴퓨팅 환경이 클라우드 환경을 중심으로 변화하고 있어 클라우드 제공자는 고

객이 제공하는 워크로드를 수용하기 위한 다양한 문제에 직면하고 있다. 오늘날

응용 프로그램은 일반적으로 많은 양의 메인 메모리를 요구한다. 기존 노드 중

심 아키텍처에서 DRAM을 사용하면 빠르게 데이터를 제공할 수 있다. 그러나,

물리적으로 DRAM을 일정 수준 이상 확장하는 것은 하드웨어 제한과 비용으로

인해 현실적으로 불가능하다. 본 논문에서는 DRAM에 가까운 성능을 제공하면

서도 총 소유 비용을 상당히 낮추는 효율적 far memory인 RapidSwap을 제시하

였다. RapidSwap은 데이터센터 환경에서 상변화 메모리 (phase-change memory;

persistent memory)를 활용하며 어플리케이션의 메모리 접근 빈도를 추적하여

자주 접근되지 않는 메모리를 느리고 저렴한 저장장치로 이송하여 이를 달성한

다. 여러 저명한 클라우드 벤치마크 시나리오로 평가한 결과, RapidSwap은 순수

DRAM 대비 약 20%의 운영 비용을 절감하며 약 30%의 비용 효율성을 지닌다.

RapidSwap은 새로운 스토리지 기술을 정교하게 활용하면 클라우드 데이터 센터

환경에서 운영비용을 상당히 저감할 수 있다는 사실을 보인다.

주요어: Far Memory, 가상 메모리, 스왑 시스템, 클라우드 데이터센터, 운영체제

학번: 2019-22487
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