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Abstract

Accurately estimating hand/body pose from a single viewpoint under occlusion is chal-

lenging for most of the current approaches. Recent approaches have tried to address the

occlusion problem by collecting or synthesizing images having joint occlusions. How-

ever, the data-driven approaches failed to tackle the occlusion because they assumed

that joints are independent or they only used explicit joint connection.

To mitigate this problem, I propose a method that learns joint relations and refines

the occluded information based on their relation. Inspired by BERT in Natural Lan-

guage Processing, I pre-train a refinement module and add it at the end of the proposed

framework. Refinement improves not only the accuracy of occluded joints but also the

accuracy of whole joints. In addition, instead of using a physical connection between

joints, the proposed model learns their relation from the data. I visualized the learned

joint relation in this paper, and it implies that assuming explicit connection hinders the

model from accurately predicting joint locations accurately.
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Chapter 1

INTRODUCTION

3D Hand Pose Estimation problem is defined as inferring 3D pose given 2D image

which contains a hand. Hand pose estimation is one of the major problems in Com-

puter Vision tasks since hands are essential components in VR and AR fields. A set

of controllers or physical sensors are needed in VR and AR environments for the in-

teraction between human and these systems. A robust Hand pose estimation algorithm

can relieve the physical requirements, which leads our hands-free. However, learning

and predicting hand pose from an image is challenging due to occlusion, either self-

occlusion or mutual-occlusions between hand and object. Occlusion is the main cause

of accuracy drop since it limits the part of joint information. Recently introduced state-

of-the-art pose estimation algorithms [14, 37, 10, 4, 46, 13, 22, 21] show impressive

performance on hand pose estimation, but still suffer from occlusion problem. Another

algorithm [] solves the occlusion problem by contextual learning, and this dissertation

is based on it in which I was involved as the second author.

Recent approaches exploits large-scale datasets or synthetic data to mitigate the effect

of the occlusion, including diverse occlusion cases to augment training data [11, 9]. It

is realistically not possible to alleviate occlusion problem with data-driven approach

only because of combinatorially large number of ways in which occlusion can happen.
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In addition, earlier approaches to hand pose estimation assumed independent joints

[6, 7, 25, 27] or gave their model prior knowledge such as physical connectivity of

joints(bones) [22, 4, 2, 5, 21]. However, they overlook the hand skeleton’s implicit

connectivity, which affects the hand pose even though they are not explicitly con-

nected. To overcome this limitation of previous works, I tried to improve the accuracy

by representing the relation between hand joints. Hence, I refine the joints inferred

from the regression module by applying contextual learning. I propose a joint embed-

ding method, namely Joint Refinement Module, that captures comprehensive connec-

tivity between the joints and refines incorrect joints. Inspired by the Masked Language

Model of BERT [3] in Natural Language Processing (NLP), I found that refining joints

pose corresponds to a part of the fill-in-the-blank task of NLP. BERT successfully per-

forms the fill-in-the-blank task using contextual understanding. Inspired by BERT’s

context learning, I propose Joint Refinement Module that learns to capture joint con-

nectivity and refines the incorrect joints pose using joint relations. The joint relations

captured from the Joint Refinement Module give an intuition of where and how much

to attend visible joint features to recover and refine the incorrectly inferred joints. Wide

experiments on NYU [38] demonstrate advantage of the Joint Refinement Module in

3D Hand Pose Estimation task.
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Chapter 2

RELATED WORKS

Hand Pose Estimation (HPE) methods typically involve getting the features of the hand

image, and then regressing the hand pose from those features [20, 41, 15, 8, 42, 29,

36, 35]. Many of these methods, like [26] embed priors of the hand structure into their

method to guide the pose estimation. Oberwerger et. al, for example, use a bottleneck

layer to enforce learning of a lower dimensional space for representing hand pose.

Many of these methods, like [15] which use regression, also have an intermediate

stage of predicting the 2D heatmap for each joint. Sinha et al [32] use a separate

pose regressor for each finger Mueller et al. [23] observed that since many early hand

pose datasets are in third person view, methods explicitly tackling self occlusions are

uncommon because they mostly happen in first person view. Further, in their paper

[23] they propose a two stage pipeline to localize and then regress the hand pose in

first person view. In [16], the authors use priors of hands under clicking actions to

robustly estimate the occluded fingertip position. [30] also use priors by incorporating

task and viewpoint specific synthetic training exemplars in their detection framework.

[39, 34, 28] model object and hand together to further constrain the search space to

help predict full pose under occlusion. [33] propose using bio-mechanical priors to

further constrain the search space for hand pose.
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Skeleton Feature Learning. Graph representation has been widely adopted to model

the human skeleton [4, 19, 22, 21] because of its simplicity and existence of a robust

feature extraction algorithm, namely Graph Convolutional Network (GCN) [18]. Cai

et al. [2] apply GCN to spatio-temporal graph for 3D pose estimation. Yan et al. [43]

propose ST-GCN for skeleton-based action recognition by combining spatial graph

convolutions and temporal convolutions. Also, Doosti et al. [4] introduce graph U-Net

to estimate 3D hand pose from 2D pose. However, a skeleton graph doesn’t capture

all the connectivities. There are semantic connectivities between the joints that can

not be represented by bone connectivity. Therefore, modeling semantic connectivity is

the critical aspect of skeleton feature learning. Thus, Multi-Scale Graph Convolutional

Network (MS-GCN) [21] have been proposed to capture long-range dependencies of

the joint feature using higher-order polynomials of the adjacency matrix. Still, it suf-

fers from a biased weighting problem, that closer nodes have more possible walks

than the actual K-hop neighbors due to cyclic walks. Liu et al. [22] directly address

this problem by removing redundant walks of MS-GCN. Otherwise, Zao et al. [45]

introduce semGCN that learn semantic information between the joints using different

weighting matrices for each joint feature channel.
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Chapter 3

PRELIMINARIES

3.1 Attention Mechanism

Attention mechanisms [1] explicitly model interactions between inputs. This property

of attention for finding interactions between joints is used for the proposed method. A

scaled dot-product attention [40] can be formulated as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (3.1)

where matrices Q, K and V represent query, key, and value respectively. dk denotes

dimension of key vector. Fig 3.1 (left) shows how the mechanism is calculated.

3.2 Transformer

As most of the recent architectures which show state-of-the-art performance in the

NLP task are based on Transformer Architecture [40], it has been a de-facto standard

in NLP. Transformer exploits Attention mechanism in both encoder and decoder so

that it can represent contextual meaning in sentences and infer next word by consider-

ing contextual meaning. Transformer also takes advantage of parallelism by applying
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Figure 3.1: Attention Mechanisms, Figure from [40]

Multi-Head Attention mechanism. Fig 3.1 (right) illustrates how the Multi-Head At-

tention works and Fig 3.2 illustrates Transformer architecture.

3.3 Masked Language Model

This dissertation is mostly inspired by the word embedding method of BERT. It shows

an impressive performance in NLP tasks such as general language understanding and

question and answering. The BERT [3] is a stacked Transformer Encoder [40] which

contains a Multi-Head Self-Attention module that captures connectivity between the

input elements. To fully comprehend a sentence, the individual meaning of the words

is not sufficient, but the model must understand how words correlate in the context of

the sentence. The BERT learns the context of words through the mask inference task

and provides the probability distribution of words. BERT is pre-trained on two unsu-

pervised tasks: 1) Masked Language Model (MLM) and 2) Next Sentence Prediction.

Especially, MLM is to predict randomly selected masked words in a sentence, and
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BERT is trained better to comprehend the grammar and syntax of text while predicting

masks.
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Figure 3.2: Transformer Architecture, Figure from [40]

8



Chapter 4

Method

4.1 Problem Definition

3D Hand Pose Estimation problem can be defined as inferring 3D joint locations given

2D images. Hence, the objective function is to minimize the Euclidean distance be-

tween the predicted value and the ground truth.

4.2 3D Hand Pose Estimation Framework

Instead of directly predicting 3D joints from images, I decompose the problem into 2D

estimation from images and 3D regression from estimated 2D locations. Moreover, I

add a refinement module in the final stage. Hence, my proposed framework consists

of three modules; Dense Representation Module, 3D Regression Module, and Joint

Refinement Module.
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Figure 4.1: Proposed framework

4.2.1 Dense Representation Module

I first extract feature F ∈ R256×64×64 from input image X . ResNet50 [12] trained on

ImageNet [31] is used as the image encoder. Then, image feature map F that comes

from image encoder is fed to Stacked HourGlass network [24] which returns heatmap

H ∈ R14×64×64. As heatmaps contains dense representation for 14 joints, I can get

J2D ∈ R14×2 by simply applying argmax function to H. Fig 4.2 shows an example

of heatmap H. In addition, I also get the confidence vector C ∈ R14×1 of argmax

points which has far lower value in case of occlusion. For training, I use a fixed sized

Gaussian blob centered at ground truth 2D joint locations J2D
GT as a ground truth heat

mapsHGT . L2 loss is applied to minimize the loss betweenH andHGT .

LH = ‖H −HGT ‖22, (4.1)

4.2.2 3D Regression Module

3D Regression Module outputs joint locations J3D ∈ R14×3 given H . A linear layer

predicts value of offset d ∈ R14×1 from H . Then, by combining J2D and d, I finally

10



get J3D. L2 loss function is applied to reduce the 3D joint location error.

LJ3D = ‖J3D − J3D
GT ‖22, (4.2)

4.2.3 Joint Refinement Module

The Joint Refinement Module refines J3D which comes from the 3D Regression Mod-

ule and outputs Ĵ3D which has exactly the same dimension with J3D. Implementation

of Joint Refinement Module follows that of BERT; however, the output is logit vector

in Joint Refinement Module whereas the output is probability vector in BERT. Fig 4.3

visualizes the architecture of Joint Refinement Module. Before end-to-end training,

this module is pre-trained with J3D
GT . Pre-training details will be described in equation

4.3. For training, L1 loss is applied to reduce the error between Ĵ3D and J3D
GT . I also

utilize confidence vector C to reflect confidence information while fine-tuning J2D.

C−1 is defined as a element-wise reciprocal vector of C which can be formulated as

4.3.

C−1 = (1/C1, 1/C2, ..., 1/CN ) (4.3)

I use C−1 as a weight for refinement since lower confidence literally means that the

Stacked HourGlass network is not confident for its output. Hence, the Hadamard prod-

uct is used to reflect the confidence of the Stacked HourGlass network.

LR = ‖C−1 � (Ĵ3D − J3D
GT )‖1 (4.4)

During end-to-end training, Joint Refinement Module is fine-tuned with other modules.

4.3 Pre-training

As my proposed framework consists of three modules, each module can be pre-trained.

I choose the best pre-training option by experimenting with all possible combinatorial
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cases. Experiments show that fine-tuning the entire architecture with the pre-trained

Stacked HourGlass network and pre-trained Joint Refinement Module acquires the

best performance. The pre-training process also reduces convergence time during the

end-to-end training.

4.3.1 Stacked HourGlass

Image feature F , the output of the freezed ResNet50 encoder, is invariant during the

training. This means the Stacked HourGlass network has invariant input values during

the training so that caching image feature F reduces calculation. Hence, I cached the

image feature F as a file and fed it to the Stacked HourGlass network during the pre-

training. The equation 4.1 is used to pre-train the Stacked HourGlass network. I stack

only one HourGlass network in this framework due to the GPGPU memory limitation.

Pre-training hyperparameters are written in Table 4.1.

Table 4.1: Pre-training hyperparmeters of Stacked HourGlass

Hyperparameter Value

OPTIMIZER Adam [17]

EPOCH 100

BATCH SIZE 32

LEARNING RATE 1e-4

LR DECAY Exponential

LR DECAY FACTOR 0.99

WARM-UP STEP 1000

# OF STACK 1
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4.3.2 Joint Refinement Module

Inspired by the method of BERT, I pre-train the Refinement Module using 3D joints

position with noised input. During the pre-training, input J3D
GT is perturbed by Gaussian

noise Z ∼ N (0, 1). The Joint Refinement Module learns the relation between the

joints as it learns the contextual meaning of words in Neural Language Processing. L2

loss is used for the pre-training Refinement Module. Pre-training hyperparameters are

written in Table 4.2.

Table 4.2: Pre-training hyperparmeters of Joint Refinement Module

Hyperparameter Value

OPTIMIZER Adam

EPOCH 500

BATCH SIZE 128

LEARNING RATE 1e-4

LR DECAY Cosine

WARM-UP STEP 1000

# OF LAYER 12

# OF HEAD 8

BERT DIMENSION 128

4.4 Training

End-to-end training works as a fine-tuning the whole framework. The total loss Ltotal
is as follows,

Ltotal = LH + λ1LJ3D + λ2LR (4.5)

where λ1 and λ2 are weight values for loss. Hyperparamters are written in Table 4.3

13



Table 4.3: Hyperparmeters of end-to-end training

Hyperparameter Value

OPTIMIZER Adam

EPOCH 100

BATCH SIZE 32

LEARNING RATE 1e-4

LR DECAY Exponential

WARM-UP STEP 1000

14



Figure 4.2: A sample of heatmap
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Figure 4.3: Joint Refinement Module
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Chapter 5

EXPERIMENTS

I evaluate the Joint Refinement Module with the NYU dataset. The experiment is im-

plemented by the open source machine learning framework PyTorch and performed on

a single GPGPU, NVIDIA 1080 TI.

5.1 Dataset

I use NYU dataset for the experiments. The NYU Hand Pose dataset [38] collects

comprehensive coverage of hand poses, containing 72,757 and 8,252 RGB-D frames

for training and evaluation. Each frame includes ground truth annotation of 3D joint

locations. The dataset presents a third-person view without the objects. I use a subset

of 14 hand joints following [8], to compare our results with other methods. It contains

9% of occluded joints on average according to [44]. Fig 5.1 is a sample of NYU dataset

and Fig 5.2 is an example of self-occluded case.
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5.2 Experimental Results

5.2.1 Quantative Results

I compare the 3D joint error of my proposed framework to AWR [14] which also

applies regression based method to solve Hand Pose Estimation problem. I report

the result in Table 5.1. My proposed framework outperformed AWR [14] method by

0.15mm. The results also shows that pre-trained refinement module improves 0.27mm

compared to the method without refinement module. Notably, refinement module didn’t

improve the accuracy of the framework when it had not been pre-trained. Applying re-

finement module without pre-training even deteriorates the accuracy of the framework.

In addition, I reported joint-wise error in Fig 5.3. It shows that refinement module im-

proves accuracy for all joints. From this results, I concluded that the refinement module

learns how to correct the error by pre-training.

Table 5.1: Pose estimation accuracy comparison against AWR[14]

Method 3D Joint Error(mm)

AWR Hourglass-1 [14] 7.70

Ours Hourglass-1 w/o refinement 7.82

Ours Hourglass-1 w/o pre-training 7.86

Ours Hourglass-1 7.55

5.2.2 Qualitative Results

I compare the 3D joint error of my proposed framework to AWR [14] which also

applies the regression-based method to solve the Hand Pose Estimation problem. I re-

port the result in Table 5.1. My proposed framework outperformed AWR [14] method

by 0.15mm. The results also show that the pre-trained refinement module improves

0.27mm compared to the method without the refinement module. Notably, the refine-
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ment module didn’t improve the accuracy of the framework when it had not been

pre-trained. Applying refinement modules without pre-training even deteriorates the

accuracy of the framework. In addition, I reported joint-wise error in Fig 5.3. It shows

that the refinement module improves accuracy for all joints. From these results, I con-

cluded that the refinement module learns how to correct the error by pre-training.

5.2.3 Computational Complexity

BERT has a computational complexity of O(n2). However, unlike the variable input

length in Natural Language Processing tasks, 3D Hand Pose Estimation problem has

fixed length input. Hence, Joint Refinement Module doesn’t allocate any redundant

memory. It has 1.6M learnable parameters, which is 5.2% of the total parameters. This

means Joints Refinement Module is computationally inexpensive while it improves

performance.
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Figure 5.1: An example of NYU dataset
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Figure 5.2: An example of occluded hand
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Figure 5.3: Error bar plot for NYU

Figure 5.4: Visualization of multi-head attention matrices, second layer
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Figure 5.5: Visualization of multi-head attention matrices, 4th layer

Figure 5.6: Visualization of multi-head attention matrices, 6th layer
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Figure 5.7: Visualization of multi-head attention matrices, 8th layer

Figure 5.8: Visualization of multi-head attention matrices, 10th layer
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Figure 5.9: Visualization of multi-head attention matrices, last layer
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Chapter 6

CONCLUSION

The experiment shows that Joint Refinement Module represents joint relation by learn-

ing attention weights between them. In lower layers, the module has a strong tendency

to focus on adjacent indices; however, in higher layers, the module focuses on wider

ranges. It is far different from the explicit connection between joints. Furthermore, my

proposed framework outperformed the existing method by simply applying the refine-

ment module. This means the previous assumption that each joint are only affected

by physically adjacent joint hinders the model from properly predicting occluded in-

formation. Learning joint relation from the data and predicting occluded information

based on joint relation is a far better approach because it doesn’t assume anything.

Hence, the unnecessary constraint doesn’t exist.

The experiment also implies that pre-training needs to capture comprehensive connec-

tivity of joints. My proposed model gets the best results with the pre-trained module.

However, when it was trained without a pre-trained model, the refinement module ex-

acerbated the performance. Due to this result, I concluded that it’s hard for the model

to understand the comprehensive connectivity of joints when it is directly trained in an

end-to-end manner.
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초록

3D Hand Pose Estimation 문제는 한 장의 2차원 image를 이용하여 3차원의 손

좌표를추정하는문제로, 2차원 image에서손의일부가가려지는경우들때문에현

존하는 접근방식으로 풀기에 까다로운 문제이다. 최근에 연구자들은 많은 양의 데

이터를 모으거나, 합성하여 이 문제를 해결하려 했다. 하지만, 이러한 데이터 기반

접근들은 각 관절들이 독립적이라 가정하고 문제를 풀거나, 물리적으로 드러나는

관절들의 연결 관계만 가지고서 문제를 해결하려 했기때문에 성능 향상에 한계가

있었다.

이러한 문제를 완화하기 위해, 손 관절의 3차원 좌표들 간의 관계를 학습시키고

이를 기반으로 미세조정을 하여 전반적인 성능을 끌어 올리는 방법을 이 논문에서

제안 한다. 자연어 처리 분야에서 가장 많이 쓰이는 BERT 모델에서 영감을 받았

으며, BERT를이용하여보이지않는손에대하여잘추정하도록하는모듈을추가

함으로써 기존에 있던 접근방식들 보다 더 좋은 결과를 실험에서 얻을 수 있었다.

또한,물리적인관절간의연결관계에갇혀있지않고,모델이데이터로부터각관절

간의영향력을파악하여위치를세부조정하게하였다.이렇게학습한연결관계를

시각화 하여 이 논문에 일부 소개하였고, 이를 통해 눈에 보이는 물리적인 연결관

계 뿐만 아니라 관계없어 보이는 관절들 간에도 영향을 주고받고 있다고 가정하는

것이훨씬더좋은접근방법임을관찰할수있었다.

주요어:컴퓨터비전, 3차원손좌표추정,자연어처리

학번: 2019-23476
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