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Abstract

In this thesis, uncertainty estimation is performed under distributional shifts. The

goal of uncertainty estimation is to create reliable deep learning models which can

yield a confidence value with its prediction. Although several studies have been con-

ducted to quantify uncertainty in the deep learning models, recent studies have demon-

strated that the quality of uncertainty estimated using some traditional methods de-

grades in dataset shift situations. In this paper, we propose Contrastive Normalizing

Flow, a robust uncertainty estimation model under distributional shifts. The proposed

model estimates uncertainty in a latent space; An encoder trained with contrastive

learning maps images into the latent space. Then, a generative classifier models a pre-

dictive distribution with normalizing flows. In addition to this, distributionally robust

optimization is applied to the proposed model to improve a performance of out-of-

distribution detection. Two types of shifts are considered in experiments: covariate

shift and out-of-distribution. For these types of shifts, the experiments empirically

demonstrate that the proposed model improves the robustness of the classifier under

distributional shifts.
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Chapter 1

Introduction

The ultimate goal of artificial intelligence (AI) is to create human-level intelligence,

and one of the key features of human-level intelligence is generalization. Modern re-

search directions in AI have been made mainly by using deep learning, because it has

achieved great success in several areas such as image recognition and machine trans-

lation. However, one of the main problems of neural networks is that it lacks general-

ization ability: the networks tend to overfit to train data and find it difficult to predict

unseen data. To overcome this limitation, many researchers have attempted to give the

networks a generalization property for various tasks.

1.1 Motivation

Classification is one of the tasks that the researchers have struggled to generalize.

What is the meaning of generalization in classification? There are two implications.

First, the neural networks should be robust under covariate shift. Suppose I train the

network with training distribution p(x, y). Then, covariate shift indicates that p(x)

becomes different with the same conditional distribution p(y|x). As test distribution

is usually different from training distribution up to p(x), the networks typically face

covariate shift.
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The second implication is that the networks should predict what they do not know.

That means if the networks receive completely different data from the training distri-

bution, then they should yield low confidence with their predictions. This situation is

called out-of-distribution (OOD). In classification, confidence is usually estimated by

maximum softmax probability over the class. However, Guo et al. [6] revealed that

modern neural networks are likely to provide overconfidence of their predictions. In

other words, the networks incorrectly classify data with high confidence. This leads

to a requirement to adjust the network’s confidence more reliably, and this process is

called calibration.

One of the research directions that attempts to calibrate the prediction’s confi-

dence is uncertainty estimation. The word ’uncertainty’ here means uncertainty about

the prediction. As mentioned above, modern neural networks tend to yield unreliable

uncertainty estimates. Therefore, many researches on uncertainty have aimed to build

a model that yields more well-calibrated uncertainty.

Traditional methods to quantify uncertainty are divided into the two categories:

Bayesian and non-bayesian neural networks. Bayesian neural networks (BNNs) as-

sumes that the parameters of the networks follow probability distributions, and es-

timates a posterior distribution over the parameters. As the marginalization of like-

lihood is required to inference posterior distribution over the parameters, the exact

posterior cannot be evaluated. This leads to a study of BNN in the direction of how to

approximate the posterior accurately while reducing the computational cost. Stochas-

tic variational inference (SVI) approximates the posterior using Monte Carlo estimates

with an assumption that the posterior follows a diagonal Gaussian distribution [9]. SVI

allowed the Bayesian method to be applied to large-scale networks, which became the

basis of subsequent BNN methods, such as Probabilistic Back Propagation [8], BBB

[1], and Monte Carlo dropout [5].

Although these methods appear to yield reliable uncertainty estimates, a recent re-

search demonstrated that quality of uncertainty estimated by traditional methods such
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as Dropout [5], Ensemble [13], and BBB [1] tend to degrade in distributional shift sit-

uations [19]. In other words, the prediction confidences are likely to be overconfident

under a covariate or OOD shift. Especially, a reliable uncertainty estimation is more

important in real-world situation where the model typically receives the data different

from those of the training distribution. Therefore, recent researches to quantify uncer-

tainty have focused on ensuring a robustness of a neural network under distributional

shifts.

One of the researches that attempts to solve this problem employs distributional

shift data during the training phase for the purpose of reducing a prediction confidence

over the shifted data. Malinin et al. [16] modeled a predictive distribution using the

Dirichlet distribution. They trained the model in a way that the training distribution

got closer to an unsymmetric Dirichlet distribution, and OOD approached closer to

a flat Dirichlet distribution. Then the resulting model was able to yield a high and

low confidence for the training and OOD data, respectively. However, this method

requires OOD data during the training phase to derive the predictions of OOD input

with low confidence, which is not always possible. Moreover, as all data except the

training data corresponds to OOD data, it is desirable that the resulting model yields a

low confidence for all data remote from the training distribution. However, it may be

possible that a robustness of the resulting model over OOD cannot generalize beyond

the provided OOD data. In other words, the prediction confidence can be overconfident

to OOD data, not provided in the training phase.

Posterior Network (PostNet) [3] solved the above problem by using an encoder

and normalizing flows. They assumed that a predictive distribution follows the Dirich-

let distribution, and updated the concentration parameters of the Dirichlet distribution

based on a density value p(z | y = c) estimated by normalizing flows. Their motiva-

tion is that the encoder would embed examples belonging to the same class into close

latent positions in the latent space, and the flow would assign the examples to higher

density values if the corresponding latent positions are close to the clusters generated
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by the encoder. It follows that OOD examples are naturally assigned to a low density

value due to a far distance between the latent positions of OOD examples and clus-

ters. However, a recent research [17] demonstrated that normalizing flows failed to

detect OOD data. They empirically showed that a flow-based model tended to assign

a higher likelihood to OOD data than training one. To solve this problem, [12] trained

a flow-based model with OOD data such that the model assigned a low likelihood to

provided OOD data. Although their method succeeded in yielding the desired results,

their scope was restricted within the provided OOD data, the same as [16].

1.2 Contribution

The objective of this thesis is to generalize classification such that a trained network

is robust under a covariate and OOD shift. The proposed method is extended from

PostNet in a sense that a basic structure of the proposed model is the same as PostNet,

but the proposed model overcomes some limitations of PostNet.

First, contrastive learning is employed to train an encoder as a means of increasing

a clustering performance of the encoder. The better clustering, the more likely the

similar inputs are to be lumped together in the latent space and the further OOD inputs

are to be moved away from the clusters. It follows that the better clustering leads to a

more reliable uncertainty estimation.

Second, the Dirichlet distribution is adopted as a base distribution of conditional

normalizing flow to increase an expressivity of a flow-based model. As in PostNet, the

role of the proposed normalizing flow is to estimate a conditional density p(z | y = c).

We increase expressivity of the conditional normalizing flow by replacing the base

distribution from the Gaussian mixture to the Dirichlet distribution, which leads to

estimating more accurate conditional density. An ablation study will demonstrate that

the Dirichlet based normalizing flow improves calibration upon the Gaussain mixture

based normalizing flow.
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Finally, distributionally robust optimization (DRO) is used to train the proposed

model to improve OOD detection performance. With DRO, the proposed model can

detect OOD data even if the model have not seen those data in the training phase.

An ablation study will demonstrate that the proposed DRO method can improve OOD

detection performance without provided OOD data during training.
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Chapter 2

Related Works

2.1 Supervised Contrastive Learning

Contrastive learning is a learning framework in which similar inputs are mapped into

close areas in the latent space [4]. In a supervised setting, contrastive learning as-

sumes that the inputs from the same categories are similar; hence the trained model

places the same class together in the latent space [11]. Let E : X ! Z be an

encoder that maps the inputs to the latent space. Then for each iteration, the mini-

batch set D = {xi, yi}ni=1 is independently sampled from the training distribution

P (x, y). Next, D is augmented with two random transformations t1 and t2 obtained

from the augmentation distribution T , thereby resulting in an augmented minibatch

set D̃ = {x̃i, ỹi}2ni=1 where x̃2i�1 = t1(xi), x̃2i = t2(xi), and ỹ2i�1 = ỹ2i = yi for

i = 1, 2, ..., n. Subsequently, the following objective is minimized over D̃ as follows:

`CT (x, y) = �
2NX

j=1
i 6=j

1[yi=yj ]
· log exp (zi · zj/⌧)P2N

k=11[i 6=k] · exp (zi · zk/⌧)
, (2.1)

where z = E(x). The indicator function 1[yi=yj ]
ensures that the numerators of the

log arguments represent the similarity between the latent variables belonging to the

same class. This induces the networks to learn parameters such that the inputs are

clustered based on their classes.
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2.2 Normalizing Flows

Normalizing flows can express a complex probability distribution using multiple trans-

formations from a simple distribution. One of the advantages of a flow-based model is

that it can evaluate an exact likelihood, thereby enabling an exact density evaluation.

Let x 2 Rd be a continuous random variable with density pX : Rd ! [0,1). Normal-

izing flows is defined with invertible and differentiable transformations fi : Rd ! Rd,

and its marginal likelihood pX (x) is evaluated as follows:

log pX (x) = log pZ(z) + ⌃n
i=1 log

����det
@fi(zi)

@zi

���� , (2.2)

where zi = fi(zi�1), z0 = x, zn = z, and pZ(z) is a base distribution of normalizing

flows. As the above equations, the evaluation of the likelihood requires the Jacobian de-

terminant of the transformations, which restricts the allowable transformations within

invertible and differentiable functions. The bijective transformations limit an expres-

sivity of the flows; a flow-based model cannot modify the dimension of the variables

during the transformations and other techniques are required to model discrete data.

2.3 Variational Autoencoder

A variational autoencoder (VAE) is also a generative model to express a probability

distribution with a neural network. Unlike a flow-based model, VAE can learn a pos-

terior distribution over the latent variables with a dimension reduction. As the true

posterior is intractable, it approximates the posterior with a variational distribution.

This leads to an objective of VAE becoming evidence lower bound as follows:

log pX (x) = Eq(z|x)[log p(z)] + Eq(z|x)


log

p(x | z)
q(z | x)

�
+ Eq(z|x)


log

q(z | x)
p(z | x)

�

� Eq(z|x)[log p(x | z)]� DKL[q(z | x)kp(z)],
(2.3)

where DKL represents a KL-divergence. While VAE can reduce the dimension of the

input space, its objective is a lower bound of the marginal likelihood, which does not

guarantee a global optimal solution.
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2.4 SurVAE Flows

Surjective VAE Flows (SurVAE Flows) is a framework to link a gap between normal-

izing flows and VAE using surjective transformations [18]. As a surjective transfor-

mation is not invertible, the framework replaces an inverse function with a stochastic

transformation. The two types of transformations are considered in the framework:

generative surjection whose forward function (z ! x) is a deterministic surjective

function (x = f(z)) and backward function (x ! z) is a stochastic transformation

(z ⇠ q(z | x)), and inference surjection whose forward function is a stochastic trans-

formation (x ⇠ p(x | z)), and backward function is a deterministic surjective function
�
z = f

�1(x)
�
. For inference surjection, marginal likelihood can be exactly calculated

as follows:

log pX (x) = log pZ(z) + Eq(z|x)


log

p(x | z)
q(z | x)

�
. (2.4)

Using these transformations, the author proved that Equation (2.2) can be obtained

from the first line of Equation (2.3). It implies that SurVAE Flows framework can

bridge the difference between VAE and normalizing flows. Under this framework, a

surjective transformation can be used as a component of normalizing flows, thereby

allowing to use functions unavailable in normalizing flows such as dimension reduc-

tion and quantization. This leads to increasing an expressivity of a flow-based model.
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Chapter 3

Methods

This chapter describes a proposed method to quantify uncertainty. Unlike other un-

certainty estimation models, the proposed method estimates uncertainty in the latent

space.

3.1 Uncertainty in the latent space

To do this, an input data is first mapped to a corresponding latent position through an

encoder trained with supervised contrastive learning Equation (2.1). Then the result-

ing encoder maps the inputs belonging to the same class into closed areas in the latent

space, which generates clusters for each class. As the encoder produces the clusters

based on the training distribution, it is likely to embed the shifted inputs into the latent

positions away from the clusters. Therefore, the proposed model estimates uncertainty

based on the distance from the clusters. In other words, the model assigns a low confi-

dence with its prediction if the latent position of the input is far from the clusters, and

a high confidence if the position is close to the clusters. The distance from the clusters

can be estimated through a conditional density pZ(z|y = k), which has a high value

at the latent position where kth class examples are gathered. Therefore, normalizing

flow is used to evaluate the conditional density pZ(z|y = k) explicitly.
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3.2 Dirichlet Normalizing Flows

Normalizing flows can be employed for a classification by using a conditional density

in the Equation (2.2) as follows:

L� (z, y) = log pZ(z|y = k;�)

= log pW(w|y = k) +
nX

i=1

log

����det
@fi (zi;�i)

@zi

���� .
(3.1)

Previous researches on conditional normalizing flows use the Gaussian mixture as a

base distribution of the flows [10]. However, the Gaussian mixture can only repre-

sent a symmetric mode of the data, thereby restricting the expressivity of a generative

model [2]. Therefore, we use the Dirichlet distribution as a base distribution of the

flows such that the proposed flows can represent an asymmetric mode as well as a

symmetric mode, which increases a flexibility of the flow-based model and evaluates

more accurate the conditional density in the latent space.

However, there is a constraint that the support of the Dirichlet distribution resides

in a simplex, �D�1 =
n
w |

PD
i=1wi = 1 and 0  w1, . . . , wD  1

o
. Therefore, the

proposed flow-based model is added with a positive increasing function and normal-

ization at the last layer of the flows. The problem is that a normalization operation is

a non-invetible function such that it cannot be used as a component of normalizing

flows. This motivates us to design a normalization layer in the SurVAE Flows frame-

work, which enables to utilize a normalization operation in the flow-based model.

Suppose that positive random variables v are given. Then, the following operation

can be used for normalizing v as a component of normalizing flows:

q(w | v) = �

✓
w � v

sum(v)

◆

p(v | w) =

Z
p(v | w, s)p(s | w)ds =

Z
� (v � sw) p(s | w)ds,

(3.2)

where ⇡ is one layer network with an activation function with the parameters  and

sum(v) = ⌃D
i=1vi. Equation (3.2) indicates that during the density estimation, v is
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deterministically transformed into w with w = v
sum(v) , and for the generative pro-

cess, w is stochastically transformed into v with v = sw where s is sampled from

Gamma(⇡ (w), 1). This normalization layer can be incorporated into normalizing

flows by replacing one of the log determinant terms in Equation (3.1) as follows:

log pZ(z|y = k;�) = log pW(w|y = k) +
n�1X

i=1

log

����det
@fi (zi;�i)

@zi

����

+ log pS(s | w)�D log (s) ,

(3.3)

where D = |Y|, s = sum(v).

Here, we derive the specific derivation of the Equation (3.3). Suppose random

variables z are transformed into positive random variables v by using n�1 functions of

normalizing flows. Then, the conditional density pZ(z|y = k) is calculated as follows:

log pZ(z|y = k;�) = log pV(v|y = k) +
n�1X

i=1

log

����det
@fi (zi;�i)

@zi

���� . (3.4)

Subsequently, v is transformed into the Dirichlet random variables using the proposed

normalization layer, and the conditional density log pV(v|y = k) is calculated by

Equation 2.4:

log pV(v | y = k) = log pW(w | y = k) + Eq(w|v)


log

p(v | w)

q(w | v)

�
. (3.5)

Surjection Forward Inverse Likelihood Contribution

Norm
v = sw

w = v
sum(v) log p(s|w)�D log(s)

where s ⇠ Gamma(⇡ (w), 1)

Table 3.1: Proposed Normlization layer in the SurVAE Framework
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Then, the expectation term in Equation (3.5) is calculated as follows:

Eq(w|s,v)q(s|v)


log

p(v | s,w)p(s | w)

q(w | s,v)q(s | v)

�
=

Z
q(w, s | v) log p(v | s,w)p(s | w)

q(w | s,v)q(s | v) dwds

=

Z
q(w, s | v) log �(v � sw)p(s | w)

�(w � v
s )�s,sum(v)

dwds

=

Z
q(w, s | v) log p(s | w)

sD · �s,sum(v)
dwds

✓
* �(v � sw) = �

⇣
w � v

s

⌘
· 1

|s|D

◆

=

Z
q(w | s,v)q(s | v) log p(s | w)

sD · �s,sum(v)
dwds

=

Z
�

⇣
w � v

s

⌘
�s,sum(v) log

p(s | w)

sD · �s,sum(v)
dwds

=

Z
�s,sum(v) log

p(s | w)

sD · �s,sum(v)
ds where w =

v

s

=

Z
�s,sum(v) log p(s | w)� �s,sum(v) log

�
s
D · �s,sum(v)

�
ds

= log p(s | w)�D log (s) where s = sum(v)

By substituting Equation (3.5) for log pV(v|y = k) in Equation (3.4), the Equation

(3.3) is obtained. Table 3.1 summarizes the proposed normalization layer.

In summary, random variables z are transformed into positive random variables

v by using normalizing flows, and the resulting v is transformed into the Dirichlet

random variables w by using the proposed normalization layer. For concentration pa-

rameters, we assign higher values to the kth dimension of ↵k. The parameter settings

of the conditional normalizing flows are described in the experimental section.

Until now, the Dirichlet normalizing flow is trained by maximizing log pZ(z|y =

ytrue) over the training distribution. As the encoder is trained by mapping the train-

ing distributions into near the clusters, the flow is likely to yield high density values

for data near the clusters. However, under distributional shifts, the encoder is likely to
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place the shifted data away from the clusters, because the encoder has not seen those

data. The flow is trained by maximum likelihood over the examples near the clusters

such that it is expected to assign a lower likelihood to the examples far from the clus-

ters. However, recent studies [12, 17] demonstrated that a flow-based model was likely

to assign higher likelihood to OOD data. Kirichenko et al. [12] mitigated this problem

by using OOD dataset during the training phase in a way that maximized likelihood

over the training data and minimized likelihood over OOD data. Although the result-

ing flow can distinguish between the training data and OOD data, an additional data is

required to give the flow an ability to distinguish, and the resulting flow could only de-

tect the provided OOD data. We overcome this limitations without an additional data

in the training phase. With the assumption that we possess only training data, our goal

is to enhance OOD detection performance without using OOD data. This motivates us

to consider distributionally robust optimization for OOD detection.

3.3 Distributionally Robust Optimization for OOD detection

The objective for this part is to reduce the prediction’s confidence of OOD data. As the

encoder is likely to embed OOD data into a latent position away from the clusters, all

we have to do is to encourage the model to yield low confidence over the examples far

from the clusters. This requires the examples away from the clusters during the train-

ing phase, but we only have the training data. Therefore, we virtually generate such

examples by using distributionally robust optimization (DRO) and use those examples

during the training phase.

Suppose that a Wasserstein ball of radius ⇢ > 0 centered at P (x) is given as

follows:

Br(P ) = {Q : Wc(P,Q)  ⇢} , (3.6)

where Wc(·, ·) is a Wasserstein distance between two probability distributions with a

transportation cost c. Then, the worst-case distribution within the ball can be obtained
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by solving the following DRO problem:

inf
Q2Br(P )

EQ [log p (E✓(x) | y = k)] , (3.7)

where P (x) is the training distribution. The solution of the above optimization prob-

lem is a shifted distribution Q(x) whose sample is embedded into a latent position

that has the lowest values of p(z|y = k) within Br(P ). It indicates that the samples

from Q(x) are away from the clusters. If the model is trained in a way that a predic-

tion entropy over the samples from Q(x) is increased, the resulting flow yields low

confidence predictions over the examples far from the clusters.

As the Equation (3.7) is intractable, the DRO problem is relaxed by using the

Proposition 1 from [21], and the relaxed optimization probelm is as follows:

inf
Q

EQ
⇥
log p

�
E✓

�
x0� | y = k

�
+ �c

�
x0
,x
�⇤

, (3.8)

where x ⇠ P (x),x0 ⇠ Q(x), � is a positive relaxation parameter and c(·, ·) is the `2

distance. Suppose that a mini-batch {xi}ni=1 is sampled from the training distribution

P (x). Then, the approximate solutions of the Equation (3.8) can be obtained by using

the following iterations:

xt+1
i = xt

i � ⌘ ·rx
⇥
log p

�
E✓

�
xt
i

�
| y = yi

�
+ �c

�
xt
i,x

0
i

�⇤
, (3.9)

where x0
i = xi and ⌘ is a step size. If T iterations are performed, the resulting

�
xT
i

 n
i=1

are approximate samples from Q(x) whose Wasserstein distance from P (x) is within

⇢. Subsequently, the prediction’s entropy over those examples can be increased by

maximizing the following objectives:

H�(z) = EQ(x) [� log pZ(z | y;�)] , (3.10)

where z = E✓(x). The learning algorithm is summarized in Algorithm 1.
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Algorithm 1 Pseudocode for the learning procedure
1: `CT (·) is supervised contrastive loss (1)

2: L�(·) is conditional log likelihood (4)

3: H�(·) is entropy (12), F�(·) is normalizing flow

4: Initialize ✓,�, 

5: for m = 1, 2, ..., do

6: Sample {xi, yi}ni=1 from p(x, y)

7: if m  threshold then

8: Minimize 1
n

Pn
i=1 `CT (E✓(xi), yi)

9: else

10: Generate {x0
i}ni=1 with (11)

11: Maximize 1
n

Pn
i=1 L� (zi, yi) +H�(z0i) where zi = E✓(xi), z0i = E✓(x0

i)

12: Maximize 1
n

Pn
i=1 log p (si|wi) where si = ⇡ (wi),wi = F�(zi)

13: end if

14: end for
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Chapter 4

Experiments

In this chapter, robustness of the proposed model is evaluated under distributional

shifts. The two types of shift are considered: a covariate shift (CIFAR-10-Corruption

and MNIST Rotation) and OOD shift. Moreover, ablation studies are conducted to

analyze the effect of the Dirichlet base distribution for calibration and the DRO for

OOD detection performance. The proposed model is compared with the baselines:

Dropout [5], Ensemble [13], BBB [1], and PostNet [3]. The rationale for the selection

is that Dropout, Ensemble, and BBB are traditional methods to quantify uncertainty

and the proposed model is inspired by PostNet, which is compared in the related works.

4.1 Evaluation Metric

1. Expected calibration error (ECE) measures the extent of matching between

the confidence and accuracy. A low ECE indicates that the classifier is well

calibrated, and yields reliable confidence with the predictions. Under covariate

shift, we estimate the quality of the predictive uncertainty based on the ECE.

2. FPR at 95% TPR represents false positive rate (FPR) that a negative example

(out-of-distribution) is incorrectly clas- sified as positive (in-distribution) when

true positive rate (TPR) is about 95%. A low FPR implies that a model has an

16



ability to discriminate between a positive and negative example.

3. AUROC is the area under the ROC curve which shows a tradeoff between TPR

and FPR for each threshold. If a model yields a large AUROC, then it can dis-

tinguish a positive example from a negative one robust to threshold values.

4. AUPR is the area under the Precision Recall curve which shows a tradeoff be-

tween precision and recall for each threshold. For imbalanced datasets, a high

AUROC value can be obtained even if a model does not have a discrimina- tion

ability. Unlike AUROC, AUPR is robust to imbalanced datsets.

4.2 CIFAR-10-Corruption

Ovadia et al. [19] have made a benchmark for uncertainty quantification under dis-

tributional shifts, and this experiment follows their benchmark. The benchmark em-

ploys CIFAR-10-Corruption (CIFAR-10-C) [7] for evaluating the quality of uncer-

tainty based on the ECE. CIFAR-10-C is composed of CIFAR-10, transformed by 16

different types of perturbations whose shift intensity changes up to five levels.

Since the baselines in the benchmark are implemented with ResNet20-v1, the pro-

posed model adopts ResNet20-v1 as an encoder. Additionally, the proposed model

employs 6-layer Maksed Autoregressive flow (37,104 parameters) [20]. For the hyper-

parameters ↵k of the conditional base distribution for the class k, a higher value is

assigned to the kth dimension of ↵k:

↵ki =

8
><

>:

7.0, if k = i

0.5, otherwise
(4.1)

For Dropout, Ensembles, and BBB, a pretrained model is employed in the bench-

mark data. For PostNet, an official implementation code is used to train the model

over 200 epochs and the five best models based on the accuracy is selected. As CTNF

is composed of an encoder and flows, the encoder is trained for 300 epochs and then

17



the parameters of the flows are optimized for 3 epochs. For distributionally robust op-

timization, we set � = 1.5, step size ⌘ = 0.01 with 5 iterations. With these five models

for each method, the performance of the model is evaluated by three types of corrup-

tion: contrast, speckle noise, and Gaussian blur. The result is in the box plots, which

represent the accuracy and ECE for CIFAR-10-C, as shown in Figure 4.1

Figure 4.1: Comparison of accuracy and ECE on CIFAR-10. Shift intensity indicates

a strength of corruption on CIFAR-10.

Although Dropout, Ensemble, and BBB yield comparable low values of ECE when

the shift intensity is mild, their ECE values become larger at the highest shift. A large

ECE value at a higher shift indicates that the models yield unreliable predictions un-

der a large distributional shift. Also, the result reports a large change in ECE values

of PostNet. This is because the PostNet yields low ECE values on speckle noise and

gaussian blur type corruptions, but a high ECE value on contrast corruption. It in-
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dicates that the reliability of PostNet’s confidence depends on the corruption types.

CTNF continues to achieve low ECE values regardless of corruption types and shift

intensity. It shows that CTNF provides a consistently well-calibrated classification re-

sults. It follows that our model provides a more reliable uncertainty estimates under

distributional shifts.

4.3 MNIST Rotation

As in the CIFAR-10 experiment, the benchmark is used for the traditional methods

and the official implementation code is employed for PostNet. CTNF adopts LeNet

as an encoder [14], which has the same architecture in the benchmark. In addition, a

4-layer Maksed Autoregressive Flow is added. PostNet is trained for 50 epochs and the

five best models are selected based on the accuracy. Also, the encoder and flow of the

CTNF are trained for 40 epochs and 3 epochs, respectively. We set ↵ki = 6.0 if k = i,

and 0.5 if k 6= i. Also, ⌘ = 0.01 and � = 1.4 are assigned with 5 iterations for DRO.

The accuracy and ECE are evaluated while rotating MNIST images by increasing the

angle of rotation by 15 degrees.

Figure 4.2 shows a result for MNIST. Dropout, Ensemble and PostNet indicate

low ECE values and high accuracy when MNIST images are rotated slightly, but their

ECE values increase as we rotate the images. This implies that they tend to yield

overconfident predictions at large distributional shifts. CTNF has larger ECE values

than other methods when the rotation angle is 15 or 30 degrees; However, the ECE

values of CTNF barely change as the rotation angle increases. This implies that CTNF

decrease the prediction’s confidence as the image rotates and yield reliable confidence

at large distributional shifts.
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Figure 4.2: Comparison of (a) accuracy and (b) ECE on MNIST: We evaluate the

accuracy and ECE while rotating the images.

4.4 Out of distribution detection

First, the baselines and CTNF are trained in the same way as in section 4.2 and 4.3,

and these models are tested on various OOD datasets. We evaluate OOD detection per-

formance based on the FPR, AUROC, and AUPR using the threshold-based detectors

[15].

Table 4.1 summarizes OOD detection performance for each model. PostNet trained

with MNIST outperforms other models for F-MNIST, NotMNIST, and EMNIST. How-

ever, its performance degrades when trained with CIFAR-10. Although the proposed

method does not perform as well as PostNet on MNIST, OOD detection performance

of the CTNF on MNIST is comparable to other methods, and CTNF performs bet-
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ter than the baselines for SVHN, LSUN, and TinyImageNet. This implies that CTNF

consistently detects unseen OOD data well.

4.5 Ablation study

4.5.1 Effect of the Dirichlet distribution

In this subsection, the effects of the Dirichlet distribution as a base distribution of

normalizing flows is investigated. The accuracy and calibration error of our flow model

are compared by changing the base distribution of the flows. The two models are the

same except for the base distribution and normalization layer, and the DRO method

for this experiment is not used because we wish to analyze only the effects of the base

distribution. For the Gaussian mixture parameters, we randomly initialize the means

sampling from the standard normal distribution, and set the covariance matrices as an

identity matrix.

Figure 4.3 shows the accuracy and calibration error of the two models, whose base

distributions are different. The results show that the accuracy of the two models differs

little and the Dirichlet distribution achieves a lower ECE than the Gaussian mixture.

This indicates that the model with the Dirichlet base distribution yields a more reliable

uncertainty estimates under distributional shifts.

4.5.2 Effect of distributionally robust optimization

In this subsection, the effect of the DRO for OOD detection is analyzed. OOD detec-

tion performance using two models is compared: one with DRO and one without DRO.

Both models use the same pretrained encoder, but the flow is trained with or without

DRO.

Table 4.2 shows OOD detection performance of the two models. Without DRO,

the model cannot detect OOD examples well, as indicated by the high FPR and low

AUROC. When applied to DRO, the FPR is reduced and the AUROC is increased
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Figure 4.3: Comparison of accuracy and ECE differing by the base distribution of

conditional normalizing flows. We use three types of the corruption from CIFAR-10-

C: contrast, speckle noise, and gaussian blur.
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In OOD
FPR95 ↓ AUROC ↑

Base / +DRO

CIFAR10

SVHN 68.7 / 9.3 85.9 / 98.1

LSUN 67.0 / 26.6 85.0 / 94.7

TinyImageNet 71.8 / 17.1 84.7 / 96.1

Table 4.2: Comparison of FPR and AUROC of the proposed models with and without

DRO.

significantly. This verifies that the proposed DRO method can improve OOD detection

performance of the proposed model.

24



Chapter 5

Conclusion

In this paper, we presented contrastive normalizing flows (CTNF) which transform

the input to the latent points and make the predictions with their confidence in the

latent space. The Dirichlet distribution is used as the base distribution of conditional

normalizing flow. This increased the expressivity of conditional normalizing flow such

that the resulting flow yielded more reliable confidence than the Gaussian mixture

based flows. Also, distributionally robust optimization is applied to improve OOD

detection performance of CTNF. Through the ablation study, we empirically showed

that our distributionally robust optimization scheme could improve OOD detection

performance of the proposed model. In addition, the experiments demonstrated that

CTNF yielded reliable uncertainty estimates under distributional shifts.
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