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Abstract

Topologiacal semimetals are novel materials that exhibit many fascinating

properties, and they are at the center of the spotlight in the condensed mat-

ter physics studies, as their electronic structure near the band touching point

gives rise to the unique quasiparticles that does not follow the Drude model of

free electrons. Furthermore, their topological nature assures that such quasi-

particles are robust against small perturbations, making them great platforms

to test various physical behaviors of those non-conventional excitations. With

that motivations, this thesis is devoted to studying the semiclassical electronic

transport and electron-mediated magnetism of Dirac materials.

First, we derive the semiclassical anisotropic multi-band Boltzmann trans-

port equation that was extensively used throughout the thesis.

Then we turn to investigating the transport properties of multi-Weyl semimet-

als and the few-layer black phosphorus in various phases using anisotropic multi-

band Boltzmann transport equation. Multi-Weyl semimetals are topological

semimetals with anisotropic band dispersion (linear on one axis; nonlinear on

the other two axes) and their chiral charge is larger than one. Black phospho-

rus is normally a semiconductor, but recent studies have shown that its band

gap can be tuned to show multiple phases (insulator phase, semi-Dirac tran-

sition point, and Dirac phase). We studied these materials using anisotropic

multi-band Boltzmann transport theory and discovered their characteristic chi-

ral charge, band dispersion, and band gap sign signature on the carrier density-

dependent and the temperature-dependent conductivity calculations.

We also examine the magnetic field effect on the semiclassical transport, as
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the external magnetic field couples with the Berry curvature, it gives rise to the

anisotropy when the system is isotropic.

Finally, we look into the Ruderman–Kittel–Kasuya–Yosida (RKKY) inter-

action in three-dimensional (3D) isotropic chiral semimetals to study the power-

law effect on the charge carrier spin-mediated magnetism in 3D semimetals.

We calculated the transition temperature and temperature- and power-law-

dependent static susceptibilities, and discovered that the magnetic ordering of

dilute magnetic impurities on 3D chiral semimetals are always ferromagnetic.

Keywords: electronic conductivity, semiclassical Boltzmann transport theory,

few-layer black phosphorus, Weyl semimetals, multi-Weyl semimetals, RKKY

interaction
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Chapter 1

Introduction

We are used to studying a physical system as a simplified model. Making a

model (or an assumption) that captures the essence of the system while min-

imizing the discrepancy between the model and the reality has always been

the centerpiece of physics itself. The isotropic band dispersion assumption is

one of them; the beauty and ease of the calculation made the isotropic band

dispersion assumption into a de facto standard approach when we study any

new condensed matter systems. In most cases, the isotropic band assumption

is shown to be valid in wide range of materials near the band touching point.

A case in point: the semiconductor physics, one of the most predominant ap-

plications of the transport studies that shaped the modern civilization, mostly

uses a band-insensitive Drude formalism and garnered huge success.

However, when we have a tool that works tremendously well in some condi-

tions, we may succumb to the pitfall of overly trusting it. In this case, the pitfall

would be blindly using the isotropic formalism, even when the anisotropic band

dispersion is fundamentally governing many physical phenomena such as charge

1



transport or optical behaviors, i.e. the band dispersion relation is not suitable

for the isotropic effective model even at low Fermi energy.

Then when does this fundamental anisotropy prevail in the transport signa-

ture? There would be many examples, but the topological materials in general

are great examples of anisotropic band dispersion relations as they have sym-

metry conditions that add in more complexity. On top of that, the symmetry

conditions make the band crossing points robust against external perturbations,

which means that such anisotropic band structure does not break down easily.

Topological materials include topological insulators and topological crys-

talline insulators [1, 2], and topological semimetals such as Weyl and Dirac

semimetals [3, 4]. Higher-order topological insulator [5] is also recently sug-

gested topological material.

We mainly focused on the topological semimetals, whose band crossing

points are protected by various symmetry conditions. Multi-Weyl semimetals

are Weyl semimetals with higher chiral charge, and their band crossing points,

i.e. multi-Weyl points are protected by point-group symmetries [6].

We also studied the black phosphorus, which is an allotrope of phosphorus

that is in sheet-like structure, stacked layer-by-layer with Van der Waals force

[7, 8]. In few-layer black phosphorus, one of the most noticeable features is that

their band gap size is tunable with various methods [9–20] and in some cases,

even be inverted to create stable Dirac points.

Magnetic field-driven anisotropy in the semiclassical transport regime was

also examined. In topological materials where a nonvanishing Berry curvature

is present, the magnetic field couples with the Berry curvature and this coupling

makes the isotropic analysis on the transport unsuitable.

With these motivations, we delve into the extended version of semiclassilcal

Boltzmann transport theory with anisotropic, multi-band systems in mind and
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demonstrate its capabilities in Dirac materials, where the band crossing point

is protected by the symmetry conditions. We then sidetrack a little bit and

study the dilute magnetic impurities in a hypothetical Dirac-like materials with

arbitrary band dispersion power-law.

This thesis is organized as follows:

In chapter 2, we will briefly review the Boltzmann transport theory and

introduce the anisotropic, multi-band extension of the relaxation time approx-

imation.

In chapter 3, we look into the DC conductivity in multi-Weyl semimetals,

which are topological semimetals with anisotropic energy dispersion relation.

We calculate the conductivity using the formulations that developed above and

show the characteristic density and temperature power-law dependence behav-

ior for their conductivity.

In chapter 4, we study the DC conductivity in a few-layer black phosphorus

with multi-band, anisotropic Boltzmann transport theory. Again, we calculate

the conductivity and examine its Fermi energy, temperature power-law depen-

dence. Additionally, we also consider how the phase of a few-layer black phos-

phorus that defined by the band-gap tuning parameter sign affects its transport

signatures.

In chapter 5, we explore the magnetic field effect in the semiclassical trans-

port equation and investigate the field-driven anisotropy. We formulate the

anisotropic Boltzmann transport theory for the magnetotransport, and argue

that the magnetic field-driven anisotropy necessitates the usage of anisotropic

transport equation even when the original system is isotropic.

In chapter 6, we investigate the Ruderman–Kittel–Kasuya–Yosida (RKKY)

interaction in magnetic impurities on a 3D chiral gas, which is a hypothetical

extension of 3D Dirac-Weyl semimetals with arbitrary power-law relations. We
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found that regardless of the power-law, RKKY magnetization of the magnetic

impurities are ferromagnetic.

Finally in chapter 7, we conclude this thesis with a summary.

4



Chapter 2

Semiclassical Boltzmann transport
theory

2.1 Boltzmann transport theory for isotropic, single-

band non-magnetic systems

Semiclassical Boltzmann transport theory is essentially a theory of obtaining

non-equilibrium distribution function when the external field (be it electric field,

magnetic field, or thermal gradient) is applied to the system. The particles in a

phase-space volume of ∆r∆k would be “transported” to the new phase-space

volume ∆r′∆k′ when the field is applied, but the collision between the particles

(or impurities) would change the number of particles that were supposed to

arrive at the destination in the phase space (some might be scattered out,

while others might be scattered in). The charge carrier can be scattered from

the impurities, other charge carriers, or phonons, but we mainly focus on the

impurity scattering.
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The Boltzmann equation is given by(
df

dt

)
coll

=
∂f

∂t
+ ṙ · ∇rf + k̇ · ∇kf, (2.1)

where f is the non-equilibrium distribution function, ṙ · ∇rf is the diffusion

term, k̇ · ∇kf is the force term, and
(
df
dt

)
coll

is the collision integral term.

When there is no thermal gradient or magnetic field present, the diffusion

term vanishes. On top of that, if we assume that the total number of charge is

invariant, then the time derivative term would vanish. Equation of motion of

the Bloch electrons then can be simplified as(
df

dt

)
coll

= k̇ · ∇kfk. (2.2)

If we assume that k dependence only enters fk = f
(0)
k + gk (gk ≡ fk − f

(0)
k ,

f
(0)
k is the equilibrium Fermi-Dirac distribution) via energy dispersion ε(k) and

ignoring the higher-order terms such as ∇kgk, the right-hand side becomes

k̇ · ∇kf ≈ qE ·
∂f

(0)
k

ℏ∂k
= qE · vk

∂f
(0)
k

∂εk
, (2.3)

where we have used k̇ = qE for non-magnetic systems. Collision term
(
df
dt

)
coll

is given by (
df

dt

)
coll

= −
∫

ddk′

(2π)d
Wkk′(fk − fk′), (2.4)

where d is the dimension of the system, Wkk′ = 2π
ℏ nimp|Vkk′ |2δ(εk − εk′) is

the transition rate from k to k′ for an elastic impurity scattering (which was

calculated from Fermi’s golden rule) with the impurity potential Vkk′ and the

impurity density nimp.

In isotropic, single-band non-magnetic systems, we can use simple relax-

ation time approximation. Relaxation time approximation suggests that the

non-equilibrium distribution function fk relaxes back to equilibrium after time
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τk from the collision with the impurities, i.e. −fk−f
(0)
k

τk
= −gk

τk
=
(
df
dt

)
coll

. From

Eq. (2.3) and Eq. (2.4), we can see that

gk = qE · vkτkS(0)(εk) (2.5)

1

τk
=

∫
ddk′

(2π)d
Wkk′(1− cos θkk′), (2.6)

where S(0)(εk) ≡ −∂f
(0)
k

∂εk
, and θkk′ is the angle between k and k′. Only the cosine

term remains as the integral cancels out the k-perpendicular parts (and we

have assumed the isotropic, angle-independent energy dispersion εk). The (1−

cos θkk′) term also accounts for the forward- or backward-scattering balancing.

To calculate the conductivity, we now turn to current density equation

J = gq

∫
ddk

(2π)d
ṙfk = gq

∫
ddk

(2π)d
vk

(
f
(0)
k + gk

)
,

(2.7)

where g is the degeneracy factor. As the integral of vkf
(0)
k vanishes, we get

J = gq

∫
ddk

(2π)d
vkgk = gq2

∫
ddk

(2π)d
vk (E · vk)S(0)(εk)τk. (2.8)

From the Ohm’s law, i.e. J = σE, we can calculate the conductivity tensor σij

as

σij = gq2
∫

ddk

(2π)d
v
(i)
k v

(j)
k S(0)(εk)τk, (2.9)

where i is the direction of the response current, and j is the direction of the

electric fieldE. Note that for the DC conductivity where i = j, σii ∼ D(εk)v
2
kτk,

which is the Einstein relation (D(εk) is the density of states).

2.2 Boltzmann transport theory for anisotropic, multi-

band non-magnetic systems

In anisotropic, multi-band systems, many assumptions that made the calcula-

tions simple as seen in Section. (2.1) do not hold anymore. Instead of using
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τk defined from the relaxation condition, i.e. −gk
τk

=
(
df
dt

)
coll

, we fall back to

making ansatz of solution gk that extends upon the relaxation condition. We

assume gk would take a form such as

gαk = q

(
d∑

i=1

E(i)v
(i)
kατ

(i)
kα

)
S(0)(εkα), (2.10)

where α is the band index. Note that the relaxation time τ is now also has the

directional dependence, and if we remove the directional dependence and the

band-dependence in Eq. (2.10), we would get Eq. (2.5) and it would also satisfy

the original relaxation condition −gk
τk

=
(
df
dt

)
coll

. The Boltzmann equation k̇ ·

∇kfk =
(
df
dt

)
coll

then becomes

qE · vkαS(0)(εkα) =
∑
α′

∫
ddk′

(2π)d
Wαα′

kk′ (gαk − gα
′

k′ ). (2.11)

where we have also extended the collision integral equation to account for multi-

band nature of the system. Expanding gαk with ansatz Eq. (2.10), we finally get

the relaxation time equation as

1 =
∑
α′

∫
ddk′

(2π)d
Wαα′

kk′

(
τ
(i)
kα −

v
(i)
k′α′

v
(i)
kα

τ
(i)
k′α′

)
. (2.12)

We can numerically solve Eq. (2.12) for τ
(i)
kα by either angle discretization

method or Fourier coefficient method. Both numerical methods would involve

making the integral equation into solving linear system (e.g. Pτ = 1, where P

is a matrix, τ and 1 are vectors), and if there are total Nα of the bands, the

dimension of the solution τ would increase Nα-fold.

The conductivity tensor σij for anisotropic, multi-band system then becomes

σij = gq2
∑
α

∫
ddk

(2π)d
v
(i)
kαv

(j)
kαS

(0)(εkα)τ
(j)
kα . (2.13)
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Chapter 3

Transport properties of
multi-Weyl semimetals

3.1 Introduction

There has been a growing interest in three-dimensional (3D) analogs of graphene

called Weyl semimetals (WSMs) where bands disperse linearly in all directions

in momentum space around a twofold point degeneracy. Most attention has

been devoted to novel response functions in elementary WSMs which exhibit

a linear dispersion; however, recently it has been realized that these are just

the simplest members of a family of multi-Weyl semimetals (m-WSMs) [6, 21,

22] which are characterized instead by double (triple) Weyl-nodes with a linear

dispersion along one symmetry direction but quadratic (cubic) dispersion along

the remaining two directions. These multi-Weyl nodes have a topologically pro-

tected charge (also referred to as chirality) larger than one, a situation that can

be stabilized by point group symmetries [6].

Noting that multilayer graphenes with certain stacking patterns support

9



two-dimensional (2D) gapless low energy spectra with high chiralities, these m-

WSMs can be regarded as the 3D version of multilayer graphenes. One can ex-

pect that their modified energy dispersion and spin- or pseudospin-momentum

locking textures will have important consequences for various physical prop-

erties due both to an enhanced density of states (DOS) and the anisotropy

in the energy dispersion, distinguishing m-WSMs from elementary WSMs. In

this chapter, we demonstrate that this emerges already at the level of dc con-

ductivity in the strong scattering limit described by semiclassical Boltzmann

transport theory. The transport properties of conventional linear WSMs have

recently been explored theoretically by several authors [23–32], and there have

been theoretical works on the stability of charge-neutral double-Weyl nodes

in the presence of Gaussian disorder [33–35] and the thermoelectric transport

properties in double-Weyl semimetals[36]. However, as we show below, the den-

sity and temperature dependences of the dc conductivity for m-WSMs require

an understanding of the effect of anisotropy in the nonlinear dispersion on the

scattering. We develop this theory and find that it predicts characteristic power-

law dependences of the conductivity on density and temperature that depend

on the topological charge of the Weyl node and distinguish m-WSMs from their

linear counterparts.

3.2 Model

The low-energy effective Hamiltonian for m-WSMs with chirality J near a single

Weyl point is given by [6, 21, 37]

HJ = ε0

[(
k−
k0

)J

σ+ +

(
k+
k0

)J

σ−

]
+ ℏvzkzσz, (3.1)
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where k± = kx ± iky, σ± = 1
2 (σx ± iσy), σ are the Pauli matrices acting in

the space of the two bands that make contact at the Weyl point, and k0 and

ε0 are the material-dependent parameters in units of momentum and energy,

respectively. For simplicity, here we assumed an axial symmetry around the kz

axis. The eigenenergies of the Hamiltonian are given by ε± = ±ε0
√
k̃2J∥ + c2zk̃

2
z ,

where k̃ = k/k0, k̃∥ =
√
k̃2x + k̃2y, and cz = ℏvzk0/ε0, thus the Hamiltonian

HJ has a linear dispersion along the kz direction for kx = ky = 0, whereas a

nonlinear dispersion ∼ kJ∥ along the in-plane direction for kz = 0. Note that the

system described by the Hamiltonian in Eq. (3.1) has a nontrivial topological

charge characterized by the chirality index J [6]. [See Sec. A.1 in the appendix

A for the eigenstates and DOS for m-WSMs.]

3.2.1 Boltzmann transport theory in anisotropic systems

We use semiclassical Boltzmann transport theory to calculate the density and

temperature dependence of the dc conductivity, which is fundamental in under-

standing the transport properties of a system. Here we focus on the longitudinal

part of the dc conductivity assuming time-reversal symmetry with vanishing

Hall conductivities. The Boltzmann transport theory is known to be valid in

the high carrier density limit, and we assume that the Fermi energy is away

from the Weyl node, as shown in experiments [38, 39]. The limitation of the

current approach will be discussed later.

For a d-dimensional isotropic system in which only a single band is involved

in the scattering, it is well known that the momentum relaxation time at a

wavevector k in the relaxation time approximation can be expressed as [40]

1

τk
=

∫
ddk′

(2π)d
Wkk′(1− cos θkk′), (3.2)

where Wkk′ = 2π
ℏ nimp|Vkk′ |2δ(εk − εk′), nimp is the impurity density, and Vkk′
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is the impurity potential describing a scattering from k to k′. The inverse

relaxation time is a weighted average of the collision probability in which the

forward scattering (θkk′ = 0) receives reduced weight.

For an anisotropic system, the relaxation time approximation Eq. (3.2) does

not correctly describe the effects of the anisotropy on transport. Instead, cou-

pled integral equations relating the relaxation times at different angles need

to be solved to treat the anisotropy in the nonequilibrium distribution [41,

42]. The linearized Boltzmann transport equation for the distribution function

fk = f (0)(ε) + δfk at energy ε = εk balances acceleration on the Fermi surface

against the scattering rates

(−e)E · vkS(0)(ε) =

∫
ddk′

(2π)d
Wkk′ (δfk − δfk′) , (3.3)

where S(0)(ε) = −∂f (0)(ε)
∂ε , f (0)(ε) =

[
eβ(ε−µ) + 1

]−1
is the Fermi distribution

function at equilibrium, and β = 1
kBT

. We parametrize δfk in the form:

δfk = (−e)

(
d∑

i=1

E(i)v
(i)
k τ

(i)
k

)
S(0)(ε), (3.4)

where E(i), v
(i)
k , and τ

(i)
k are the electric field, velocity, and relaxation time

along the i-th direction, respectively. After matching each coefficient in E(i),

we obtain an integral equation for the relaxation time,

1 =

∫
ddk′

(2π)d
Wkk′

(
τ
(i)
k −

v
(i)
k′

v
(i)
k

τ
(i)
k′

)
. (3.5)

For the isotropic case [τ
(i)
k = τ(ε) for a given energy ε = εk], Eq. (3.5) reduces

to Eq. (3.2). [See Sec. A.2 in Appendix. A for applications of Eq. (3.5) to m-

WSMs.] The current density J induced by an electric field E is then given

by

J (i) = g

∫
ddk

(2π)d
(−e)v(i)k δfk ≡ σijE

(j), (3.6)
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where g is the degeneracy factor and σij is the conductivity tensor given by

σij = ge2
∫

ddk

(2π)d
S(0)(ε)v

(i)
k v

(j)
k τ

(j)
k . (3.7)

For the calculation, we set g = 4 and vz = v0 ≡ ε0
ℏk0 .

3.3 Density dependence of dc conductivity

Consider the m-WSMs described by Eq. (3.1) with chirality J and their dc

conductivity as a function of carrier density at zero temperature. Due to the

anisotropic energy dispersion with the axial symmetry, for J > 1 the conduc-

tivity also will be anisotropic as σxx = σyy ̸= σzz.

We consider two types of impurity scattering: short-range impurities (e.g.,

lattice defects, vacancies, and dislocations) and charged impurities distributed

randomly in the background. The impurity potential for short-range scatterers

is given by a constant Vkk′ = Vshort in momentum space (i.e., zero-range delta

function in real space), whereas for charged Coulomb impurities in 3D it is given

by Vkk′ = 4πe2

ϵ(q)|q|2 , where ϵ(q) is the dielectric function for q = k − k′. Within

the Thomas-Fermi approximation, the dielectric function can be approximated

as ϵ(q) ≈ κ
[
1 + (q2TF/|q|2)

]
, where κ is the background dielectric constant,

qTF =
√

4πe2

κ D(εF) is the Thomas-Fermi wave vector, and D(εF) is the DOS

at the Fermi energy εF. The interaction strength for charged impurities can

be characterized by an effective fine structure constant α = e2

κℏv0 . Note that

qTF ∝ √
gα.

Figure 3.1 shows the density dependence of the dc conductivity for charged

impurity scattering at zero temperature. Because of the chirality J , m-WSMs

have a characteristic density dependence in dc conductivity, which can be un-

derstood as follows. From Eq. (3.7), we expect σii ∼ [v
(i)
F ]2/V 2

F , where v
(i)
F is
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the Fermi velocity along the ith direction and V 2
F is the angle-averaged squared

impurity potential at the Fermi energy εF.

For m-WSMs, the in-plane component with kz = 0 and out-of-plane com-

ponent with kx = ky = 0 for the velocity at εF are given by v
(∥)
F = Jv0r

1− 1
J

F and

v
(z)
F = v0cz, respectively, where rF = εF/ε0. (See Sec. A.1 in Appendix. A.)

For charged impurities, in the strong screening limit (gα≫ 1), VF ∼ q−2
TF ∼

D−1(εF) ∼ ε
− 2

J
F , thus we find

σxx ∼ ε
2(1− 1

J )
F ε

4
J
F ∼ n

2(J+1)
J+2 , (3.8a)

σzz ∼ ε
4
J
F ∼ n

4
J+2 . (3.8b)

Here, the DOS is D(ε) ∼ ε
2
J , thus εF ∼ n

J
J+2 . In the weak screening limit

(gα ≪ 1), we expect VF ∼ ε−2ζ
F with 1

J ≤ ζ ≤ 1, because the in-plane and out-

of-plane components of the wavevector at εF are k
(∥)
F = k0r

1
J
F and k

(z)
F = k0rF/cz,

respectively. Thus, we find

σxx ∼ ε
2(1− 1

J )
F ε4ζF ∼ n

2(J−1)+4Jζ
J+2 , (3.9a)

σzz ∼ ε4ζF ∼ n
4Jζ
J+2 . (3.9b)

(See Sec. A.2 in Appendix. A for the analytic expressions of the dc conductivity

for short-range impurities and for charged impurities in the strong screening

limit, and a detailed discussion for charged impurities in the weak screening

limit.)

Figure 3.2 illustrates the evolution of the power-law density dependence of

the dc conductivity as a function of the screening strength characterized by

gα. Note that ζ = 1
J in Eq. (3.9) gives the same density exponent as in the

strong screening limit in Eq. (3.8). Thus, as α increases, the density exponent

evolves from that obtained in Eq. (3.9) with decreasing ζ within the range

1
J ≤ ζ ≤ 1. Here, nonmonotonic behavior in the density exponent originates
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from the angle-dependent power law in the relaxation time, which manifests in

the weak screening limit. (See Sec. A.2 in Appendix. A for further discussion.)

Similarly, for short-ranged impurities, VF is a constant independent of den-

sity; in this case we find

σxx ∼ ε
2(1− 1

J )
F ∼ n

2(J−1)
J+2 , (3.10a)

σzz ∼ ε0F ∼ n0. (3.10b)

The anisotropy in conductivity can be characterized by σxx/σzz. Figure 3.3

shows σxx/σzz as a function of density for m-WSMs. Thus, as the carrier density

increases, the anisotropy in conductivity increases. Interestingly, σxx/σzz for

both short-range impurities and charged impurities in the strong screening limit

is given by

σxx/σzz ∼ ε
2(1− 1

J )
F ∼ n

2(J−1)
J+2 . (3.11)

Note that for arbitrary screening, ζs for σxx and σzz in Eq. (3.9) are actually

different, thus not cancelled in σxx/σzz and the power-law deviates from that in

Eq. (3.11). (See Sec. A.2 in Appendix. A for the analytic/asymptotic expressions

of the density dependence of σxx/σzz.)

We consider both the short-range and charged impurities by adding their

scattering rates according to Matthiessen’s rule assuming that each scattering

mechanism is independent. At low densities (but high enough to validate the

Boltzmann theory) the charged impurity scattering always dominates the short-

range scattering, while at high densities the short-range scattering dominates,

irrespective of the chirality J and screening strength.

3.4 Temperature dependence of dc conductivity

In 3D materials, it is not easy to change the density of charge carriers by gat-

ing, because of screening in the bulk. However, the temperature dependence
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of dc conductivity can be used to understand the carrier dynamics of the sys-

tem. The effect of finite temperature arises from the energy averaging over the

Fermi distribution function in Eq. (3.7), and the temperature dependence of

the screening of the impurity potential for charged impurities [43, 44].

From the invariance of carrier density with respect to temperature, we ob-

tain the variation of the chemical potential µ(T ) as a function of temperature T .

Then the Thomas-Fermi wavevector qTF(T ) in 3D at finite T can be expressed

as qTF(T ) =
√

4πe2

κ
∂n
∂µ . In the low- and high-temperature limits, the chemical

potential is given by

µ

εF
=


1− π2

3J

(
T
TF

)2
(T ≪ TF),

1
2η( 2

J )Γ(2+
2
J )

(
T
TF

)− 2
J

(T ≫ TF),
(3.12)

whereas the Thomas-Fermi wave vector is given by

qTF(T )

qTF(0)
=


1− π2

6J

(
T
TF

)2
(T ≪ TF),√

2η
(
2
J

)
Γ
(
1 + 2

J

) (
T
TF

) 1
J

(T ≫ TF),

(3.13)

where TF = εF/kB is the Fermi temperature, and Γ and η are the gamma

function and the Dirichlet eta function [45], respectively. (See Sec. B.4 in Ap-

pendix. A for the temperature dependence of the chemical potential and Thomas-

Fermi wave vector.) In a single-band system, qTF(T ) always decreases with T
−1

at high temperatures, whereas in m-WSMs, qTF(T ) increases with T
1
J because

of the thermal excitation of carriers that participate in the screening.

Figure 3.4 shows the temperature dependence of dc conductivity for charged
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impurities. We find

σxx(T )

σxx(0)
=


1 + Cxx

(
T
TF

)2
(T ≪ TF),

Dxx

(
T
TF

)2+4ζ− 2
J

(T ≫ TF),

(3.14a)

σzz(T )

σzz(0)
=


1 + Czz

(
T
TF

)2
(T ≪ TF),

Dzz

(
T
TF

)4ζ
(T ≫ TF).

(3.14b)

As discussed, ζ varies within 1
J ≤ ζ ≤ 1 and approaches 1

J in the strong screen-

ing limit (gα ≫ 1). Here, the high-temperature coefficients Dii > 0, whereas

the low-temperature coefficients Cii change sign from negative to positive as α

increases. For short-range impurities, we find

σxx(T )

σxx(0)
=


1 + Cshort

xx

(
T
TF

)2
(T ≪ TF),

Dshort
xx

(
T
TF

) 2(J−1)
J

(T ≫ TF),

(3.15a)

σzz(T )

σzz(0)
=


1− e−TF/T (T ≪ TF),

1
2 +Dshort

zz

(
T
TF

)− 2+J
J

(T ≫ TF).

(3.15b)

Here, Cshort
xx < 0 and Dshort

ii > 0. Note that for J = 1, Eq. (3.15a) becomes

constant, and reduces to Eq. (3.15b) if next order corrections are included.

(See Sec. A.4 in Appendix. A for the analytic/asymptotic expressions of the

temperature coefficients, and the evolution of Cii as a function of gα.)

To understand the temperature dependence, we can consider a situation

where the thermally induced charge carriers participate in transport. Then the

temperature dependence in the high-temperature limit can be obtained simply

by replacing the εF dependence with T in Eqs. (3.8)-(3.10), which describe the

density dependence of dc conductivity. Similarly as in Fig. 3.3, σxx(T )/σzz(T )

also increases with T at high temperatures.

17



For the charged impurities at high temperatures, and neglecting the effect of

phonons, the conductivity increases with temperature, and mimics an insulating

behavior. By contrast, for short-range impurities at high temperatures, σzz(T )

decreases with temperature and approaches 0.5σzz(0), thus showing a metallic

behavior. Interestingly, σxx(T ) shows contrasting behavior for J > 1 and J = 1,

increasing (decreasing) with temperature for J > 1 (J = 1) showing insulating

(metallic) behavior at high temperatures.

3.5 Discussion

We find that the dc conductivities in the Boltzmann limit show characteris-

tic density and temperature dependences that depend strongly on the chirality

of the system, revealing a signature of m-WSMs in transport measurements,

which can be compared with experiments. In real materials with time reversal

symmetry, multiple Weyl points with compensating chiralities will be present.

The contributions from the individual nodes calculated by our method are addi-

tive when the Weyl points are well separated and internode scattering is weak.

Our analysis is based on the semiclassical Boltzmann transport theory with the

Thomas-Fermi approximation for screening and corrected for the anisotropy of

the Fermi surface in m-WSMs. The Boltzmann transport theory is known to

be valid in the high density limit. At low densities, inhomogeneous impurities

induce a spatially varying local chemical potential, typically giving a minimum

conductivity when the chemical potential is at the Weyl node [31] and the prob-

lem is treated within the effective medium theory. Note that the Thomas-Fermi

approximation used in this work is the long-wavelength limit of the random

phase approximation (RPA), and neglects interband contributions to the po-

larization function [31], thus deviating from the RPA result at low densities.
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Both simplifications become important in the low-density limit, which will be

considered in our future work.
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Figure 3.1 Density dependence of dc conductivity (a)-(c) σxx and (d)-(f) σzz for

charged impurities with gα = 1000. Here, σ0 and n0 are density-independent

normalization constants in units of conductivity and density, respectively, de-

fined in Appendix. A. Red dashed lines represent analytic forms in the strong

screening limit given by Eq. (A.24) in Appendix. A.
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Figure 3.2 (a)-(c) d log σxx/d log n and (d)-(f) d log σzz/d log n as a function of

the screening strength gα for charged impurities. Red dashed and blue dashed-

dotted lines represent the density exponents obtained from ζ = 1
J (or in the

strong screening limit) and ζ = 1 in Eq. (3.9), respectively. Here, n = n0 is used

for the calculation.
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Figure 3.3 σxx/σzz as a function of density for m-WSMs with J = 1, 2, 3 for (a)

short-range impurities, (b) charged impurities with gα = 1000, and (c) charged

impurities with gα = 1. Dashed lines in (b) represent analytic forms in the

strong screening limit given by Eq. (A.24) in Appendix. A.
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Figure 3.4 Temperature dependence of dc conductivity (a)-(c) σxx and (d)-(f)

σzz for charged impurities with gα = 1000. The insets in each panel show the

low temperature behavior. Red dashed and blue dashed-dotted lines represent

fitting by Eq. (3.14) with ζ = 1
J in the high- and low- temperature limits,

respectively.
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Chapter 4

Transport properties of few-layer
black phosphorus in various
phases

4.1 Introduction

Since the discovery of graphene [44, 46], which is a carbon allotrope of two-

dimensional (2D) honeycomb lattice, 2D materials have been one of the most

active research areas in condensed matter physics. Black phosphorus (BP) is

a 2D material with van der Waals layered structure composed of phosphorus

atoms, and it has recently attracted considerable attention [7, 8]. As a layered

semiconductor in its natural form, BP has a tunable band gap, and manipula-

tion of its band gap through various methods has been validated by multiple

theoretical and experimental reports [9]. Notable examples of the band gap tun-

ing include thickness change [10, 11], strain control [12], pressure [13], electronic

gating [14–16], and chemical doping [17]. Some of the band gap manipulation

methods [13, 17] demonstrated that the band gap can be tuned to zero, showing
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the semi-Dirac state with a combination of linear and quadratic dispersions [47],

which is also predicted in TiO2/VO2 heterostructures [48, 49]. Furthermore, the

band gap can be inverted, leading to the Dirac semimetal phase [18–20].

Due to its anisotropic electronic band structure, BP shows many peculiar

transport properties such as large in-plane anisotropic transport [50, 51]. The

effects of temperature [14, 52, 53], the number of layers [14], and substrate [52]

on the anisotropic transport properties of BP have been studied experimen-

tally. Furthermore, the transport properties of BP have been studied theoreti-

cally [54–59], demonstrating its anisotropic nature in energy- and temperature-

dependent transport. However, there has been no systematic study on the

anisotropic transport of BP in each phase, fully considering the anisotropy

of the system and the interband scattering. In this study, we theoretically in-

vestigate the transport properties of BP in the gapped insulator phase, gapless

semi-Dirac transition point, and Dirac semimetal phase. Using the semiclassical

Boltzmann transport theory generalized to anisotropic multiband systems, we

calculate the dc conductivity as a function of the carrier density and temper-

ature for each phase. We determine that each phase shows the characteristic

density and temperature dependence, which can be used as a transport signa-

ture of BP in different phases.

The rest of this chapter is organized as follows. In Sec. 4.2, we describe our

model Hamiltonian and develop the Boltzmann transport theory in anisotropic

multiband systems. In Sec. 4.3, we present the dc conductivity of BP in each

phase as a function of density at zero temperature. In Sec. 4.4, we provide the

temperature dependence of dc conductivity at a fixed density. We conclude our

chapter in Sec. 5.5 with discussions on the dominant scattering source, the effect

of potential fluctuations at low densities, and the effect of the parabolic term

omitted in the current model.
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4.2 Methods

4.2.1 Model

By expanding the tight-binding lattice model of few-layer BP [8, 60, 61], the

corresponding low-energy effective Hamiltonian can be obtained as [62–66]

H =

(
ℏ2k2x
2m∗ +

εg
2

)
σx + ℏv0kyσy, (4.1)

where m∗ is the effective mass along the zigzag (x) direction, v0 is the band

velocity along the armchair (y) direction, εg is the size of the band gap (which

will be used as a tuning parameter), and σx and σy are the Pauli matrices. The

eigenenergies of the Hamiltonian are given by ε± = ±
√(

ℏ2k2x
2m∗ +

εg
2

)2
+ ℏ2v20k2y;

thus, the Hamiltonian H has a direct band gap for εg > 0, a semi-Dirac band

touching point at (kx, ky) = (0, 0) for εg = 0, or two Dirac points at (kx, ky) =

(±
√

m∗|εg|
ℏ2 , 0) for εg < 0. The characteristic energy scales along the zigzag and

armchair directions are given by ε0 =
ℏ2k20
2m∗ and ℏv0k0, respectively, where k0 =

a−1 and a is the lattice constant. We introduce the dimensionless parameters

∆ =
εg
2ε0

and c = ℏv0k0
ε0

, which represent a gap tuning parameter and the ratio

of the characteristic energy scales along the zigzag and armchair directions,

respectively. Throughout the chapter, we use c = 1 and the spin degeneracy

g = 2 for the calculation. We will discuss the effect of higher-order terms omitted

in Eq. (4.1) in Sec. 5.5.

Figure 4.1 shows the energy dispersion and the corresponding Fermi surface

of few-layer BP in each phase. Initially, few-layer BP without band gap tuning

is in the gapped insulator phase, as shown in Fig. 4.1(a). As the band gap εg

decreases (for example, upon applying a perpendicular electric field), eventu-

ally it vanishes and the system is described by the semi-Dirac Hamiltonian in

Eq. (4.1) with εg = 0, as shown in Fig. 4.1(b). If the band gap decreases even
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Figure 4.1 (a)-(c) Energy dispersions and (d)-(f) the corresponding Fermi sur-

faces of few-layer BP for the (a), (c) insulator phase, (b), (e) semi-Dirac tran-

sition point, and (c), (f) Dirac semimetal phase.

further and becomes negative (εg < 0), band inversion occurs, which has been

achieved experimentally using surface doping [18, 19] and external pressure [20]

In the gapped insulator phase, the inherent anisotropy of the system is less

evident and the system at low densities resembles typical semiconductors with

a different effective mass in each direction. At the semi-Dirac transition point,

the energy dispersion becomes linear (quadratic) along the armchair (zigzag)

direction, as shown in Fig. 4.1(e). At the Dirac semimetal phase, the anisotropy

in the energy dispersion becomes more pronounced and the Fermi surface vastly

changes its shape depending on the value of the Fermi energy εF. For εF < εg/2,

the Fermi surface becomes two distinct lines, as shown in Fig. 4.1(f), whereas
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for εF > εg/2, the two Fermi surfaces become joined completely, forming a

closed line. At εF = εg/2, a van Hove singularity occurs in the density of states

(DOS), as explained below.
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Figure 4.2 (a)-(c) Calculated DOS and (d)-(e) the carrier density as a function

of Fermi energy for the (a), (c) insulator phase, (b), (e) semi-Dirac transition

point, and (c), (f) Dirac semimetal phase. Here, ∆ ≡ εg
2ε0

is the band gap tuning

parameter, and g = 2 and c = 1 are used for calculation.

Figure 4.2 shows the DOS and the carrier density as a function of Fermi

energy for each phase. At the semi-Dirac transition point, the DOS is simply

given by D(ε) ∼ ε1/2 [Fig. 4.2(a)], and the carrier density (which is an en-
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ergy integral of the DOS up to εF) is given by n ∼ ε
3/2
F [Fig. 4.2(d)]. (See

Appendix A.1 for the detailed derivations of the DOS and the carrier density.)

In the gapped insulator phase, both DOS at εF and carrier density vanish for

εF < εg/2, whereas for εF > εg/2, they follow those of the semi-Dirac transition

point as εF increases [Figs. 4.2(b) and 4.2(e)]. In the Dirac semimetal phase,

when εF is very small, the system resembles a typical 2D Dirac semimetal such

as graphene; thus, D(ε) ∼ ε1. As εF increases and approaches εg/2 near the

top of the inverted band, the band dispersion effectively becomes hyperbolic

paraboloid with a different sign in each direction in momentum space. Subse-

quently, a van Hove singularity occurs in the DOS, diverging logarithmically

with D(ε) ∼ − log(|∆| − ε)−1 [67]. If εF increases further, the DOS and the

carrier density follow those of the semi-Dirac transition point with a discontin-

uous energy derivative in the DOS at the van Hove singularity [Figs. 4.2(c) and

4.2(f)].

Notably, as the energy dispersion and the Fermi surface are anisotropic, and

the Fermi energy can cross multiple bands, we cannot naively use the conven-

tional Boltzmann transport theory assuming an isotropic single-band system.

Thus, the anisotropic multiband Boltzmann transport theory is necessary to

calculate the dc conductivity of such systems, as explained in Sec. 4.2.2.

4.2.2 Boltzmann transport theory in anisotropic multiband sys-

tems

We use semiclassical Boltzmann transport theory to calculate the density and

temperature dependence of the dc conductivity of few-layer BP in each phase

in the presence of impurities, assuming elastic scattering (see Sec. 5.5 for the

limitation of the current approach). In the Boltzmann transport theory, electron

states are described by the non-equilibrium distribution function f = f(r,k; t).
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Its time rate of change is balanced out by the collision term, which represents

the total scattering probability per unit time, i.e., df
dt =

(
df
dt

)
coll

.

We assume a spatially homogeneous system without explicit time depen-

dence in the distribution function, i.e., f = fk. Thus, the time derivative of the

distribution function is given by df
dt = k̇ · ∂fk∂k , whereas the collision term is given

by (
df

dt

)
coll

= −
∫

ddk′

(2π)d
Wkk′(fk − fk′), (4.2)

where Wkk′ = 2π
ℏ nimp|Vkk′ |2δ(εk − εk′) is the transition rate from k to k′ for

an elastic scattering with the impurity potential Vkk′ and the impurity density

nimp. In the presence of a uniform electric field E, ℏk̇ = (−e)E, and to the

leading order in E,

dfk
dt

≈ (−e)E ·
∂f

(0)
k

ℏ∂k
= (−e)E · vk

∂f
(0)
k

∂εk
, (4.3)

where vk = 1
ℏ
∂εk
∂k and f

(0)
k = f (0)(εk) =

[
eβ(εk−µ) + 1

]−1
is the Fermi–Dirac

distribution function at equilibrium with β = 1
kBT

and the chemical potential

µ. Assume that, to the leading order in E, the non-equilibrium distribution

function fk is given by fk ≡ f (0)(ε) + δfk at energy ε = εk. Thus, from
df
dt =(

df
dt

)
coll

, we obtain

(−e)E · vkS(0)(ε) =

∫
ddk′

(2π)d
Wkk′(δfk − δfk′), (4.4)

where S(0)(ε) = −∂f (0)(ε)
∂ε . If the Fermi energy crosses multiple energy bands,

Eq. (4.4) is generalized to [68, 69]

(−e)E · vkαS(0)(ε) =
∑
α′

∫
ddk′

(2π)d
Wαα′

kk′

(
δfαk − δfα

′
k′

)
, (4.5)

where α and α′ are band indices.

30



We parameterize δfαk in the following form [41, 42, 70]:

δfαk = (−e)

(
d∑

i=1

E(i)v
(i)
kατ

(i)
kα

)
S(0)(ε), (4.6)

where E(i), v
(i)
kα, and τ

(i)
kα are the electric field, velocity, and relaxation time, re-

spectively, along the ith direction for each band. After matching each coefficient

in E(i), we obtain the following integral equation for the relaxation time:

1 =
∑
α′

∫
ddk′

(2π)d
Wαα′

kk′

(
τ
(i)
kα −

v
(i)
k′α′

v
(i)
kα

τ
(i)
k′α′

)
. (4.7)

This is a coupled integral equation relating the relaxation times at different

angles in different bands, which correctly considers the anisotropy and multiple

bands of the system. Note that, for an isotropic single-band system [τ
(i)
kα = τ(ε)

for a given energy ε = εkα], Eq. (4.7) is reduced to the well-known expression

for the relaxation time given by [40]

1

τk
=

∫
ddk′

(2π)d
Wkk′(1− cos θkk′). (4.8)

The current density J induced by an electric field E is thus given by

J (i) = g
∑
α

∫
ddk

(2π)d
(−e)v(i)kαδfkα ≡

∑
j

σijE
(j), (4.9)

where σij is the conductivity tensor given by

σij = ge2
∑
α

∫
ddk

(2π)d
S(0)(ε)v

(i)
kαv

(j)
kατ

(j)
kα . (4.10)

We find that the Hall conductivity (i ̸= j) vanishes, thus we consider only the

diagonal part of the dc conductivity (i = j).

4.3 Density dependence of dc conductivity

Using the anisotropic multiband Boltzmann transport theory developed in Sec. 4.2.2,

we calculate the dc conductivity of few-layer BP as a function of the carrier
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density or Fermi energy at zero temperature for each phase: the semi-Dirac

transition point (∆ = 0), gapped insulator phase (∆ > 0), and Dirac semimetal

phase (∆ < 0), all of which can be expressed by Eq. (4.1).

As for the impurity potential, we consider two types of impurity scattering:

short-range impurities and long-range Coulomb impurities (or charged impuri-

ties). Short-range impurities originate from lattice defects, vacancies, disloca-

tions, etc., and their potential form is given by a constant in momentum space,

Vkk′ = Vshort, as they are approximately represented by the delta function in

real space. For charged impurities distributed randomly in the background, the

impurity potential is given by Vkk′ = 2πe2

ϵ(q)|q| in 2D, where ϵ(q) is the dielectric

function for q = k − k′. Within the Thomas–Fermi approximation, ϵ(q) can

be approximated as ϵ(q) ≈ κ (1 + qTF/|q|), where κ is the background dielec-

tric constant, qTF = 2πe2

κ D(εF) is the Thomas–Fermi wave vector, and D(εF)

is the total DOS at the Fermi energy εF (including all the contributions from

the bands crossing εF and the spin degeneracy). The interaction strength for

charged impurities can be characterized by an effective fine structure constant

α0 = e2

κℏv0 . Note that qTF ∝ gα0. Thus, the screening strength for Coulomb

impurities is also characterized by α0.

4.3.1 Semi-Dirac transition point

First, let us consider the semi-Dirac transition point (∆ = 0). Figure 4.3 shows

the Fermi energy dependence of dc conductivity at the semi-Dirac transition

point. The characteristic density or Fermi energy dependence of the dc conduc-

tivity can be understood as follows. From Eq. (4.10) with τ
(i)
F ∼ D−1(εF)/V

2
F ,

we expect σii ∼ D(εF)[v
(i)
F ]2τ

(i)
F ∼ [v

(i)
F ]2/V 2

F , where τ
(i)
F and v

(i)
F are the relax-

ation time and velocity, respectively, at the Fermi energy along the ith direction,

and V 2
F is the angle-averaged squared impurity potential at the Fermi energy.
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At the semi-Dirac transition point, D(εF) ∼ ε
1/2
F , and the Fermi velocity in each

direction is given by v
(x)
F ∼ ε

1/2
F and v

(y)
F ∼ ε0F, from which we can deduce the

power-law behavior of the dc conductivity. (See Appendix A.1 for the detailed

derivations of the power-law dependences.)

For short-range impurities, VF is a constant independent of density; in this

case, we obtain

σxx ∼ εF ∼ n
2
3 , (4.11a)

σyy ∼ ε0F ∼ n0. (4.11b)

For charged impurities, in the strong screening limit (gα0 ≫ 1), VF ∼ q−1
TF ∼

D−1(εF) ∼ ε
− 1

2
F ; thus, we obtain

σxx ∼ ε2F ∼ n
4
3 , (4.12a)

σyy ∼ εF ∼ n
2
3 . (4.12b)

At general screening strength, the power-law behavior is determined by the

competition between the screening wave vector and the momentum transfer.

We present the numerically calculated power-law behavior for the semi-Dirac

transition point and for the other phases in Fig. 4.6.

4.3.2 Insulator phase

Figure 4.4 shows the Fermi energy dependence of the dc conductivity in the

insulator phase (∆ > 0). In the insulator phase, the power-law dependence of

the dc conductivity at low densities becomes similar to that of 2D electron gas

(2DEG) with a different effective mass in each direction. (See Appendix B.3.1

for detailed derivations.)

For short-range impurities, the power-law dependence of the dc conductivity
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at low densities is given by

σxx ∼ εF, (4.13a)

σyy ∼ εF. (4.13b)

For charged impurities, in the strong screening limit, at low densities, we obtain

σxx ∼ εF, (4.14a)

σyy ∼ εF. (4.14b)

Note that, as the Fermi energy or the carrier density increases, the power-

law dependence becomes similar to that of the semi-Dirac transition point.

4.3.3 Dirac semimetal phase

Figure 4.5 shows the Fermi energy dependence of the dc conductivity in the

Dirac semimetal phase (∆ < 0). In the Dirac semimetal phase, the power-law

dependence of the dc conductivity at low densities becomes similar to that of

graphene but with a different Fermi velocity in each direction. (See Appendix

B.3.2 for detailed derivations.)

For short-range impurities, the power-law dependence of the dc conductivity

at low densities is given by

σxx ∼ ε0F, (4.15a)

σyy ∼ ε0F. (4.15b)

For charged impurities, in the strong screening limit, at low densities, we obtain

σxx ∼ ε2F, (4.16a)

σyy ∼ ε2F. (4.16b)
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Near the van Hove singularity, εF ≈ ±εg/2, the DOS diverges logarithmi-

cally [67] and it dominates the overall power-law behavior of conductivity [69].

Therefore, for short-range impurities, the conductivity becomes

σxx ∼ [− log (|∆| − εF)]
−1 , (4.17a)

σyy ∼ [− log (|∆| − εF)]
−1 . (4.17b)

For charged impurities, due to the dominant contribution from the diverging

Thomas–Fermi wave vector qTF ∝ D(εF), the conductivity is largely given by

the square of the DOS as follows:

σxx ∼ [log (|∆| − εF)]
2 , (4.18a)

σyy ∼ [log (|∆| − εF)]
2 . (4.18b)

As the Fermi energy or the carrier density increases further, the power-law

dependence of the dc conductivity becomes similar to that of the semi-Dirac

transition point, as in the insulator phase.

Figure 4.6 shows the evolution of the Fermi-energy power law of the dc

conductivity as a function of the screening strength α0 for each phase in the

low carrier density limit. For the insulator phase and the semi-Dirac transition

point, the Fermi-energy exponent decreases, whereas for the Dirac semimetal

phase, it shows a non-monotonic behavior with a dip structure, which originates

from the interband-like scattering between two distinct Fermi surfaces shown in

Fig. 4.1(f). As the screening strength increases, all the Fermi-energy exponents

approach the corresponding power law estimated in the strong screening limit.

4.4 Temperature dependence of dc conductivity

We can apply the anisotropic multiband Boltzmann transport theory developed

in Sec. 4.2.2 to the dc conductivity at finite temperature. In Eq. (4.10), the fi-
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nite temperature affects the conductivity through the Fermi distribution and

the temperature-dependent screening for the charged impurity potential. At fi-

nite temperatures, the chemical potential of the system also deviates from the

Fermi energy εF due to the broadening of the Fermi distribution function. From

the invariance of carrier density n with respect to temperature T , we obtain

the temperature dependence of the chemical potential µ(T ). For charged impu-

rities, the finite temperature Thomas–Fermi screening wave vector is given by

qTF(T ) =
2πe2

κ
∂n
∂µ for 2D systems. (See Appendix B.4 for the detailed derivation

of the temperature dependence of the chemical potential and Thomas–Fermi

wave vector). In this section, we calculate the dc conductivity of few-layer BP

as a function of the temperature for each phase. The detailed derivation of the

temperature-dependent conductivity is presented in Appendices B.5 and B.6.

4.4.1 Semi-Dirac transition point

From the power-law dependence of the DOS, D(ε) ∼ ε1/2 at the semi-Dirac

transition point [Fig. 4.2(a)], we can obtain the asymptotic behaviors of µ(T )

and qTF(T ) in a relatively straightforward manner. In the low- and high-temperature

limits, the chemical potential at the semi-Dirac transition point is given by

µ

εF
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

1
2η( 1

2)Γ(
5
2)

(
T
TF

) 1
2

(T ≫ TF),
(4.19)

whereas the Thomas–Fermi wave vector is given by

qTF(T )

qTF(0)
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

2η
(
1
2

)
Γ
(
3
2

) (
T
TF

) 1
2

(T ≫ TF),

(4.20)

where Γ is the Gamma function and η is the Dirichlet eta function [45]. In

a single-band system, qTF(T ) typically decreases with the temperature at high
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temperatures, whereas at the semi-Dirac transition point, qTF(T ) increases with

the temperature due to the thermal excitation of carriers participating in the

screening.

Figure 4.7 shows the temperature dependence of the dc conductivity at

the semi-Dirac transition point, normalized by the zero-temperature conduc-

tivity value in each direction. For short-range impurities, we determine that

the asymptotic behavior is given by

σxx(T )

σxx(0)
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

log 2
(

T
TF

)
(T ≫ TF),

(4.21a)

σyy(T )

σyy(0)
=


1− e−TF/T (T ≪ TF),

1
2 + 1

8η( 1
2)Γ(

5
2)

(
T
TF

)− 3
2

(T ≫ TF).
(4.21b)

For charged impurities, the asymptotic behavior is given by

σxx(T )

σxx(0)
=


1 + Cxx

(
T
TF

)2
(T ≪ TF),

Dxx

(
T
TF

)2
(T ≫ TF),

(4.22a)

σyy(T )

σyy(0)
=


1 + Cyy

(
T
TF

)2
(T ≪ TF),

Dyy

(
T
TF

)
(T ≫ TF),

(4.22b)

where Cii (Dii) indicates the low- (high-) temperature coefficients. In the strong

screening limit, the coefficients become Cxx = 0, Dxx = π2

6 , Cyy = −π2

4 , and

Dyy = log 2. As the screening strength decreases, the high-temperature coeffi-

cientsDii remain positive, whereas the low-temperature coefficients Cii decrease

and we expect that the initially negative or vanishing Cii would eventually be-

come positive in the weak screening limit. (See Appendix B.5 for the detailed

derivations of the coefficients Cii and Dii.)

The temperature dependence in the high-temperature limit can be easily
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understood by replacing εF with T in the Fermi energy dependence of dc con-

ductivity [Eqs. (4.11) and (4.12)]. At high temperatures, σyy(T ) for short-range

impurities decreases with the temperature, showing a metallic behavior. Oth-

erwise, the conductivities increase with the temperature, showing an insulating

behavior. Note that the high-temperature asymptotic form for charged impu-

rities is obtained by considering the effect of the energy averaging and that of

the temperature-dependent screening separately. It correctly predicts the tem-

perature power-law dependence but not the coefficients in the asymptotic form,

showing a discrepancy with the numerical result, as the effect of temperature

cannot be simply separated into the energy averaging and the temperature-

dependent screening at high temperatures.

4.4.2 Insulator phase

Figure 4.8 shows the temperature dependence of the dc conductivity in the

insulator phase with the fixed Fermi energy of εF = 1.1ε0, which corresponds

to the low-density limit. At zero temperature, the insulator phase in the low-

density limit can be effectively considered as a gapped 2DEG (with anisotropic

effective masses). Similarly, at finite temperatures, the temperature-dependent

conductivity of the insulator phase in the low-density limit resembles that of

the gapped 2DEG system (blue dash-dotted lines in Fig. 4.8), especially in the

low-temperature limit. In the high-temperature limit, the power-law behav-

ior of the temperature-dependent conductivity for the insulator phase becomes

similar to that of the semi-Dirac transition point [Eqs. (4.21) and (4.22)], be-

cause thermally excited carriers above the gap contribute to the conductivity.

(See Appendix B.6 for the temperature dependence of the chemical potential,

Thomas–Fermi screening wave vector, and conductivity of the gapped 2DEG

system.)
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In the high-density limit, the temperature dependence of dc conductivity in

the insulator phase resembles that of the semi-Dirac transition point.

4.4.3 Dirac semimetal phase

Figure 4.9 shows the calculated temperature-dependent conductivity in the

Dirac semimetal phase, with the fixed Fermi energy of εF = 0.01ε0, which cor-

responds to the low-density limit. At low densities, the Dirac semimetal phase

can be effectively considered as graphene (with anisotropic velocities); thus,

we can understand its temperature-dependent conductivity behavior using the

result of graphene. (See Appendix B.6 for the temperature dependence of the

chemical potential, Thomas–Fermi screening wave vector, and conductivity of

graphene.) For graphene with short-range impurities, the asymptotic form of

the temperature-dependent conductivity becomes

σgp(T )

σgp(0)
=


1− e−TF/T (T ≪ TF),

1
2 + 1

16 log 2

(
T
TF

)−2
(T ≫ TF),

(4.23)

whereas for charged impurities in the strong screening limit, the asymptotic

form of the temperature-dependent conductivity becomes

σgp(T )

σgp(0)
=


1− π2

3

(
T
TF

)2
(T ≪ TF),

π2

6

(
T
TF

)2
(T ≫ TF).

(4.24)

Similar to the result of the semi-Dirac transition point, the high-temperature

asymptotic form for charged impurities correctly captures the temperature

power-law dependence (but not the exact coefficient value, as discussed in

Sec. 4.4.1).

Figure 4.10 shows the temperature dependence of the dc conductivity in

the Dirac semimetal phase immediately below the van Hove singularity point,
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exhibiting a nonmonotonic behavior with temperature. As explained earlier, the

temperature dependence of the dc conductivity is determined by the energy

averaging with S(0)(ε) broadened by temperature, and by the temperature-

dependent screening for charged impurities. Thus, if the Fermi energy is near

the van Hove singularity, the distance between the Fermi energy and the van

Hove singularity sets an important energy scale for the temperature dependence,

kBT1 ≡ ||εF| − |εg||. For charged impurities, the conductivity first increases,

showing a peak at T1, and thereafter decreases, showing a dip at T ch
2 ∼ 0.5TF

corresponding to the minimum of qTF(T ), mainly following the temperature

dependence of the screening wave vector qTF(T ) [Fig. B.3(e) in the Appendix].

For short-range impurities, the conductivity first decreases, showing a dip at

T1, and thereafter increases, showing a peak at T sh
2 ∼ 0.25TF. These dips and

peaks are from the temperature-dependent evolution of the chemical potential

µ(T ) [Fig. B.3(b) in the Appendix], shifting the central point of the energy

averaging.

In the high-density limit, the temperature dependence of dc conductivity in

the Dirac semimetal phase resembles that of the semi-Dirac transition point.

4.5 Discussion and conclusion

When we consider both short-range and charged impurities, assuming that each

scattering mechanism is independent, the total scattering rate is obtained by

adding their scattering rates in accordance with Matthiessen’s rule. Note that

the scattering mechanism with a higher scattering rate (or equivalently a lower

conductivity) dominates the resulting conductivity. From the obtained Fermi-

energy power-law dependence of dc conductivity, we can determine the dom-

inant scattering mechanism. At the semi-Dirac transition point, we can ob-
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serve from Eq. (4.11) and Figs. 4.6(a) and (d) that, for both σxx and σyy, the

Fermi-energy power law for short-range impurities is always smaller than that

of charged impurities. This indicates that, at low densities, charged impurities

are dominant over short-range impurities, whereas at high densities, short-range

impurities are dominant over charged impurities. In the insulator phase, at low

densities, the system can be approximated as a 2DEG and the Fermi-energy

power laws for short-range and charged impurities are almost comparable (ex-

cept in the no-screening limit) as shown in Eq. (4.13) and Figs. 4.6(b) and

(e). At high densities, the power-law dependence follows that of the semi-Dirac

transition point; thus, short-range impurities dominate over charged impuri-

ties. In the Dirac semimetal phase, at low densities, the Fermi-energy power

law for short-range impurities is always smaller than that of charged impuri-

ties as shown in Eq. (4.15) and Figs. 4.6(c) and (f); thus, charged impurities

are dominant over short-range impurities as in the case of graphene. At high

densities, short-range impurities become dominant over charged impurities, fol-

lowing the trend of the semi-Dirac transition point. Note that, near the van

Hove singularities, charged impurities are highly screened due to the enhanced

DOS, and thus, short-range impurities are dominant over charged impurities

[69].

Our analysis is based on the semiclassical Boltzmann transport theory,

which is known to be valid in the high-density limit. At low densities, the

effect of potential fluctuations induced by spatially inhomogeneous impurities

becomes important, which is not captured by our approach assuming a spa-

tially homogeneous system. At the semi-Dirac transition point or in the Dirac

semimetal phase, the potential fluctuation is expected to result in a minimum

conductivity [31, 71, 72]. In the insulator phase, if the band gap is sufficiently

large, the effect of the potential fluctuation might be limited. The interplay
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of the impurity potential fluctuation, temperature, and band gap would be an

interesting future research direction.

Finally, we wish to mention the additional parabolic term γ
ℏ2k2y
2m∗ σx omitted

in Eq. (4.1) along the armchair (y) direction beyond the lowest order [73]. This

term could affect the dc conductivity, especially at high densities above the

crossover Fermi energy εcrF = 2m∗v2

γ , where the effective Hamiltonian in Eq. (4.1)

is no longer valid. For example, at the semi-Dirac transition point with εF ≫ εcrF ,

the parabolic term becomes dominant over the linear term along the armchair

direction; thus, σxx and σyy will follow those of (anisotropic) 2DEG.

In summary, we calculate the dc conductivity of few-layer BP as a function of

the density and temperature using the anisotropic multiband Boltzmann trans-

port theory, which is essential when the effect of anisotropic energy dispersion or

interband scattering becomes important. We find that the dc conductivities in

the Boltzmann limit show characteristic density and temperature dependence

in each phase, which could be used as a signature of the tunable electronic

structure of BP in transport measurements.
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Figure 4.3 Calculated dc conductivities (a)-(c) σxx and (d)-(f) σyy as a func-

tion of Fermi energy at the semi-Dirac transition point (∆ = 0) for (a), (d)

short-range impurities, (b), (d) charged impurities with α0 = 1000, and (c), (f)

charged impurities with α0 = 1. Here, σ0 =
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Figure 4.4 Calculated dc conductivities (a)-(c) σxx and (d)-(f) σyy as a function

of Fermi energy in the insulator phase with ∆ = 1 for (a), (d) short-range

impurities, (b), (d) charged impurities with α0 = 1000, and (c), (f) charged

impurities with α0 = 1.
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Figure 4.6 (a)-(c) d log σxx/d log εF and (d)-(f) d log σyy/d log εF as a function

of α0 for charged impurities in each phase. The red dashed lines represent the

Fermi energy exponents obtained in the strong screening limit. Here, εF = ε0

for the semi-Dirac transition point, εF = 1.01ε0 for the gapped insulator phase,

and εF = 0.01ε0 for the Dirac phase are used for the calculation.
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Figure 4.7 Calculated dc conductivities (a)-(c) σxx and (d)-(f) σyy as a function

of the temperature at the semi-Dirac transition point (∆ = 0) for (a), (d)

short-range impurities, (b), (d) charged impurities with α0 = 1000, and (c),

(f) charged impurities with α0 = 1. Here, if the temperature is normalized

by TF = εF/kB, the result is independent of εF at the semi-Dirac transition

point. The blue dashed-dotted lines and red dashed lines represent fitting by

the corresponding asymptotic form [Eqs. (4.21) and (4.22)] in the low- and

high-temperature limits, respectively.
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for (a), (d) short-range impurities, (b), (d) charged impurities with α0 = 1000,

and (c), (f) charged impurities with α0 = 1. Here, εF = 1.1ε0 is used for the

calculation. The blue dashed-dotted lines represent the result for the gapped

2DEG system (see Appendix B.6), and the red dashed lines represent power-law

fitting by the asymptotic form of the semi-Dirac transition point [Eqs. (4.21)

and (4.22)] in the high-temperature limit.
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Figure 4.10 Calculated dc conductivities (a)–(c) σxx and (d)–(f) σyy immedi-

ately below the van Hove singularity point as a function of the temperature in

the Dirac semimetal phase with ∆ = 1 for (a), (d) short-range impurities, (b),

(d) charged impurities with α0 = 1000, and (c), (f) charged impurities with

α0 = 1. Here, εF = 0.9ε0 is used for the calculation.
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Chapter 5

Semiclassical Boltzmann
magnetotransport theory in
anisotropic systems with a
nonvanishing Berry curvature

5.1 Introduction

The magnetic field effect on the transport behavior has always been a significant

topic to study in the condensed matter physics. By adding another tuning knob

(magnetic field) to the electronic transport experiment, we can essentially gain

another dimension to our understanding on the material of interest. In this

regard, the magnetotransport measurement done on a system can be a great

tool to reveal many fascinating features that the material hides. The quantum

Hall effect [74], for example, which is one of the most important discoveries in

the last century, has been brought to light by magnetoresistance experiments.

Especially, the topological materials with nonvanishing Berry curvature such

as Weyl semimetals or topological insulators display many interesting magne-
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totransport behaviors such as negative magnetoresistance (MR). The negative

MR in Weyl semimetals [10, 16, 75–89] along with the negative MR in topo-

logical insulators [90–100] have received a great amount of attention over the

last decade. Not only the negative MR behavior, but the magnetotransport

research in general on the topological materials, e.g. Weyl semimetals, multi-

Weyl semimetals, or topological insulators, have also enjoyed a fair share of

awareness. These magnetoresistance researches mostly fall under either one of

two categories: strong magnetic field regime where the Landau level limited

quantum magnetotransport is predominant [101–108], or the weak magnetic

field regime where the charge transport can be described by the semiclassical

formalism [36, 75, 76, 109–122].

Most of the works that studied the semiclassical magnetotransport theory

utilize the simple isotropic relaxation time approximation. However, this prac-

tice can turn out to be problematic when the band dispersion of the system

is highly anisotropic and the system can no longer be approximated to be an

isotropic system. Furthermore, in a magnetotransport context, this isotropic

approximation can induce another trouble of not being able to account for

the anisotropy that arises from the coupling between the magnetic field and

the Berry curvature. Fundamentally, we are faced with two different sources

of anisotropy that can affect the electronic transport: the band dispersion-

originated anisotropy and the magnetic field-driven anisotropy. We believe that

laying foundations on how to properly study these anisotropies of the system is

one of the mainstays in the semiclassical magnetotransport theory, be it from

the band dispersion anisotropy or the field-driven anisotropy that arises from

the Berry curvature coupling with the magnetic field.

With these motivations, we formulate the fully anisotropic Boltzmann mag-

netotransport equation that incorporates the energy dispersion-originated anisotropy
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as well as the magnetic field-driven anisotropy. Although there has been some

studies that considered field-dependent anisotropic relaxation time [16, 123],

our approach utilizes more generally applicable form in calculating the relax-

ation time itself. We expanded the relaxation time into anisotropic, direction-

dependent formalism and built the transport theory with minimum amount

of assumptions. We solve the Boltzmann equation and calculate the nonequi-

librium distribution function by introducing an ansatz that encompasses the

electric field, the magnetic field, and the Berry curvature effect coherently. Our

method can be applied to any configuration of magnetic field, not just parallel

or perpendicular to the electric field direction, as long as the field strength is

weak enough that the semiclassical approximation is valid. We calculate the

anisotropic relaxation time that is defined by the impurity scattering, and sug-

gest the method to obtain the magnetoconductivity with the anisotropic relax-

ation time.

This chapter is organized as follows. We summarize the isotropic Boltzmann

magnetotransport equation for the systems without the Berry curvature and

demonstrate the relaxation time equation in the electron gas system in Sec. 5.2.

Then in Sec. 5.3, we present our main result, which is the Boltzmann transport

equation that can be applied in the systems with the intrinsic anisotropy as well

as the magnetic field-driven anisotropy. We follow that up with the conductivity

equations in Sec. 5.4, and finally, we conclude our chapter in Sec. 5.5 with

discussions.
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5.2 Magnetotransport equation in electron gas sys-

tems

First, we recapitulate the magnetotransport relaxation time equation for an

isotropic electron gas without the Berry curvature [124]. In this case, the equa-

tion of motion takes a simple form [40]:

ṙ = vk (5.1)

ℏk̇ = qE +
q

c
vk ×B, (5.2)

where r is the three-dimensional (3D) position vector, k is the crystal momen-

tum, q is the electric charge, E is the electric field, B is the magnetic field,

vk = 1
ℏ∇kε̃k, ε̃k ≡ εk − mk · B, εk = ℏk2

2m is the electronic band dispersion

relation of an electron gas, m is the effective mass of an electron, and mk is the

orbital magnetic moment, which vanishes for a single-band electron gas with

no Berry curvature [109, 125–128].

The Boltzmann transport equation can be written as

df

dt
=

(
df

dt

)
coll

, (5.3)

where f is the nonequilibrium distribution function, and df
dt is the equation of

motion given by
df

dt
=
∂f

∂t
+ ṙ · ∇rf + k̇ · ∇kf, (5.4)

with fk = f
(0)
k + gk (f

(0)
k is the equilibrium Fermi-Dirac distribution function

and gk is the part where the field-dependent terms are contained), and
(
df
dt

)
coll

is the collision integral term which is given by(
df

dt

)
coll

= −
∫

ddk′

(2π)d
Wk′k (gk − gk′) , (5.5)
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where d = 3 is the dimension of the system, Wk′k = 2π
ℏ nimp|Vk′k|2δ(εk′ − εk) is

the transition rate given by the Fermi’s golden rule, with the impurity potential

Vk′k, the impurity density nimp and δ(εk) is the Dirac delta function.

Now, we assume that f is spatially homogeneous (in this case, no tem-

perature gradient or nonuniform electric field) and there is no explicit time

dependence. Then the Eq. (5.3) becomes

df

dt
= k̇ · ∇kf =

(
df

dt

)
coll

. (5.6)

Noting that f
(0)
k = f (0)(εk), the nonequilibrium distribution function fk and

its k gradient can be written as

∇kfk = ∇kf
(0)
k +∇kgk = ℏvk

∂f
(0)
k

∂εk
+∇kgk, (5.7)

Then the equation of motion becomes

−ℏk̇ · vkS(0)(ε) + k̇ · ∇kgk

= −qE · vkS(0)(ε) +
q

ℏc
(vk ×B) · ∇kgk, (5.8)

where S(0)(ε) ≡ −∂f
(0)
k

∂εk
, and we neglected the higher-order electric field terms.

Then the Boltzmann equation becomes

qE · vkS(0)(ε)− q

ℏc
(vk ×B) · ∇kgk

=

∫
ddk′

(2π)d
Wk′k (gk − gk′) . (5.9)

How would we define and calculate the additional term gk is the main con-

cern in solving the Boltzmann equation. When there is no magnetic field present,

we often utilize the simple relaxation time equation, i.e. −gk
τk

=
(
df
dt

)
, where we

assume the system relaxes back to the equilibrium from the impurity scattering
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with the relaxation time τk. We extend the relaxation time equation to incorpo-

rate the additional contribution from the magnetic field so the additional term

gk is given by

gk = qE · vkτkS(0)(ε) +
q

ℏc
τk(∇kgk ×B) · vk

≡ vk ·Gk, (5.10)

where Gk = qEτkS
(0)(ε) + q

ℏcτk(∇kgk ×B). Then Gk can be written as

Gk = G
(0)
k +

µ0
c
(∇vgk ×B), (5.11)

where G
(0)
k = qEτkS

(0)(ε), and µ0 = qτk
m is the mobility of an electron gas

system. Using an assumption that Gk is independent of vk, ∇vgk = Gk. Then

we have

Gk = G
(0)
k +

µ0
c
(Gk ×B). (5.12)

Taking the vector product of µ0

c B to each side of Eq. (5.12),

µ0
c
Gk ×B =

µ0
c
G

(0)
k ×B +

µ20
c2

(Gk ×B)×B

=
µ0
c
G

(0)
k ×B +

µ20
c2

(Gk ·B)B − µ20
c2
B2Gk, (5.13)

and taking the inner product of µ0

c B to each side of Eq. (5.12),

µ0
c
Gk ·B =

µ0
c
G

(0)
k ·B +

���������:0
µ20
c2

(Gk ×B) ·B. (5.14)

Then we can obtain a closed form of Gk as [124]

Gk =
G

(0)
k + µ0

c (G
(0)
k ×B) +

µ2
0

c2
(G

(0)
k ·B)B

1 +
µ2
0

c2
B2

, (5.15)

which, in turn, gives the expression for gk as

gk = vk ·Gk (5.16)

= qτkS
(0)vk ·

E + µ0

c (E ×B) +
µ2
0

c2
(E ·B)B

1 +
µ2
0

c2
B2

.
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Putting gk back in Eq. (5.9), we get

df

dt
= qE · vkS(0)(ε) +

q

ℏc
(∇kgk ×B) · vk

= vk ·Gk, (5.17)

and finally, equating with the collision integral terms, we get

vk ·Gk (5.18)

=

∫
ddk′

(2π)d
Wk′kτk (vk ·G− vk′ ·G) ,

where we have used ∇kgk = ℏ
qµ0G. If we assume that τk in µ0 =

qτk
m is invariant

under the electric field change, so that the equality Eq. (5.17) holds for all G,

we would get

1

τk
=

∫
ddk′

(2π)d
Dk′Wk′k (1− cos θ) , (5.19)

where θ is an angle between k and k′. Eq. (5.19) takes the exactly the same

form as the nonmagnetic cases [40].

5.3 Magnetotransport equation in anisotropic systems

with a nonvanishing Berry curvature

Up until this point, we have only considered the isotropic, single-band system

without Berry curvature, namely an isotropic electron gas. Removing this re-

striction, we can account for the anisotropy from the electronic band structure,

as well as the anisotropy that arises from the external magnetic field coupled

with the Berry curvature of the system.

The semiclassical equation of motion for a Bloch electron in a system with

nonvanishing Berry curvature is given by [129]

ṙ = vk − k̇ ×Ωk (5.20)

ℏk̇ = qE +
q

c
ṙ ×B, (5.21)
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where Ωk is the Berry curvature. Solving the recursive equation, we get

Dkṙ = vk − q

ℏ
E ×Ωk − q

ℏc
(vk ·Ωk)B (5.22)

ℏDkk̇ = qE +
q

c
vk ×B − q2

ℏc
(E ·B)Ωk, (5.23)

where Dk = 1 − q
ℏc(Ωk ·B). The magnetic field and the Berry curvature also

modifies the density of states, and the volume element ∆V0 → ∆V0/Dk [109–

111]. Therefore, any integral over a Brillouin zone must get an additional Dk

to account for this change.

Writing the equation of motion of an arbitrary system with Eq. (5.23), we

get

df

dt
= −ℏk̇ · vkS(0)(ε) + k̇ · ∇kgk

= − 1

Dk

[
qE +

�
����*0

q

c
vk ×B − q2

ℏc
(E ·B)Ωk

]
· vkS(0)(ε)

+
1

Dk

q

ℏc
(vk ×B) · ∇kgk

= −qE · vmod
k S(0)(ε) +

q

ℏc
(vk ×B) · ∇kgk

Dk

= −qE · vmod
k S(0)(ε) +

q

ℏc
(vmod

k ×B) · ∇kgk, (5.24)

where vmod
k ≡

[
vk − q

ℏc(Ωk · vk)B
]
/Dk is the modified velocity. Then the

Boltzmann equation becomes

qE · vmod
k S(0)(ε)− q

ℏc
(vmod

k ×B) · ∇kgk

=

∫
ddk′

(2π)d
Dk′Wk′k (gk − gk′) , (5.25)

which takes a similar form as the Eq. (5.9), but the velocity vk was swapped

out for the modified velocity vmod
k , and the collision integral got an additional

Dk′ from the modified volume element.
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Similar to Eq. (5.10) in the previous section, we introduce an ansatz for the

gk that extends upon the Eq. (5.10). The modified ansatz for the gk is given by

gk = q

(
d∑

i=1

E(i)v
mod(i)
k τ

(i)
k

)
S(0)(ε)

+
q

ℏc

d∑
i,j,k

ϵijkτ
(i)
k v

mod(i)
k

∂gk
∂k(j)

B(k)

≡
d∑

i=1

v
mod(i)
k τ

(i)
k G(i), (5.26)

where ϵijk is a Levi-Civita symbol, τ
(i)
k is the relaxation time, and

G(i) = qE(i)S(0) +
q

ℏc

d∑
j,k

ϵijk
∂gk
∂k(j)

B(k). (5.27)

Introducing inverse mass tensor M̃ [130], where

M̃ij =
1

ℏ
∂v

mod(j)
k

∂ki
, (5.28)

then Eq. (5.27) becomes

G(i) = G
(i)
0 +

q

c

d∑
j,k

ϵijkM̃jl
∂gk

∂v
mod(l)
k

B(k), (5.29)

where G
(i)
0 ≡ qE(i)S(0). Introducing the relaxation time tensor T, where

T =


τxk 0 0

0 τyk 0

0 0 τ zk

 , (5.30)

and the field strength tensor F (whose action onto a vector is equivalent to

taking a cross product, i.e. a × B = Fa, a is an arbitrary three-dimensional

vector),

F = ϵijkB
(k) =


0 Bz −By

−Bz 0 Bx

By −Bx 0

 , (5.31)
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then Eq. (5.27) can be further simplified as

G(i) = G
(i)
0 +

q

c

[
FM̃

∂gk

∂vmod
k

]
i

= G
(i)
0 +

[
F
µ

c
G
]
i
, (5.32)

where µij = q
∑d

l=1 M̃ilTlj is the mobility tensor. Here, we have assumed that

G is independent of vmod
k which holds for low magnetic field, i.e. ∂gk

∂vmod
k

=∑d
i=1 τ

(i)
k G(i) (from Eq. (5.26)). Then Eq. (5.32) becomes

G = G0 + F
µ

c
G

=
(
1− Fµ

c

)−1
G0 ≡ NG0, (5.33)

where 1 is a 3× 3 identity matrix, and N =
(
1− Fµ

c

)−1
. Now we can express

gk as

gk =

d∑
i=1

v
mod(i)
k τ

(i)
k G(i) =

d∑
i,j=1

v
mod(i)
k τ

(i)
k NijG

(j)
0 . (5.34)

We now re-arrange the equation of motion k̇·∇kf with the quantities defined

above. Using ∇kgk = ℏ
qµG, we would get

df

dt
= qE · vmod

k S(0)(ε) +
q

c

(
M̃TG×B

)
· vmod

k

=
[
qS(0)(ε)E + F

µ

c
G
]
· vmod

k

= vmod
k ·G. (5.35)

Putting gk back to the collision integral equation, we now write down the Boltz-

mann equation as

df

dt
=

d∑
i=1

v
mod(i)
k G(i) (5.36)

=
d∑

i=1

∫
ddk′

(2π)d
Dk′Wk′k

(
v
mod(i)
k τ

(i)
k G(i) − v

mod(i)
k′ τ

(i)
k′ G

(i)
)
,
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where we have assumed that G only depends on k through ε(k) for the elastic

scattering, which gives G = G′. Using that G = NG0 = qS(0)NE, we can

group Eq. (5.35) into the linear equation for G.[∫
ddk′

(2π)d
Dk′Wk′k

(
vmod
k T− vmod

k′ T′
)
− vmod

k

]
·G = 0

(5.37)

and as Eq. (5.37) must hold for all E, the terms inside the bracket must be

zero. Then we obtain∫
ddk′

(2π)d
Dk′Wk′k

(
vmod
k T− vmod

k′ T′
)
= vmod

k , (5.38)

or alternatively,∫
ddk′

(2π)d
Dk′Wk′k

(
τ
(i)
k −

v
mod(i)
k′

v
mod(i)
k

τ
(i)
k′

)
= 1, (5.39)

which is a coupled integral equation for τ
(i)
k .

Notice that Eq. (5.39) has exactly the same form as the nonmagnetic anisotropic

relaxation time equation [70, 131], except the velocity gets modified, i.e. v
(i)
k →

v
mod(i)
k and the integral gets an extra Dk term.

5.4 Magnetoconductivity

The current density J is given by

J = gq

∫
ddk

(2π)d
Dkṙfk

= gq

∫
ddk

(2π)d

[
vk − q

ℏ
E ×Ωk − q

ℏc
(vk ·Ωk)B

]
×
(
f
(0)
k + gk

)
. (5.40)

where g is the spin degeneracy factor. Working out each term, we get (note that

vkf
(0)
k vanishes after the integral)

J = J IAHE + JAHE + JCME + Jext, (5.41)
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where

J IAHE = −gq
2

ℏ

∫
ddk

(2π)d
E ×Ωkf

(0)
k , (5.42)

is the intrinsic anomalous Hall effect (AHE) term,

JAHE = −gq
2

ℏ

∫
ddk

(2π)d
E ×Ωkgk, (5.43)

is the AHE term,

JCME = −gq
2

ℏc

∫
ddk

(2π)d
(vk ·Ωk)Bf

(0)
k , (5.44)

is the intrinsic CME current term, and

Jext = gq

∫
ddk

(2π)d
Dkv

mod
k gk, (5.45)

is the extrinsic current term. Ignoring the intrinsic terms and the higher-order

terms, we are only left with the Jext. Writing down the Ohm’s law, we get

Jext
i = σextij Ej = gq

∫
ddk

(2π)d
v
mod(i)
k gk, (5.46)

where σextij is the conductivity tensor as a response to the extrinsic field.

If we were to consider the isotropic system with magnetic field, then gk will

be given by Eq. (5.16). By matching coefficients of E, we get

σextij = gq2
∫

ddk

(2π)d
DkS

(0)τkv
mod(i)
k

1 + µ2

c2
B2

(5.47)

×
[
v
mod(j)
k − µ

c
(vmod

k ×B)(j) +
µ2

c2
(vmod

k ·B)B(j)

]
.

If we consider the anisotropic system with magnetic field, then gk will be

given by Eq. (5.34). Again, by matching coefficients of E for each row of σext ·E,

we get

σextij = gq2
∫

ddk

(2π)d
DkS

(0)v
mod(i)
k (vmod

k TN)(j)

= gq2
d∑

l=1

∫
ddk

(2π)d
DkS

(0)v
mod(i)
k Nljτ

(l)
k v

mod(l)
k . (5.48)
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For anisotropic, multi-band systems, Eq. (5.48) would become

σextij = gq2
∑
α

∫
ddk

(2π)d
DkαS

(0)v
mod(i)
kα (vmod

kα TN)(j) (5.49)

= gq2
∑
α

d∑
l=1

∫
ddk

(2π)d
DkαS

(0)v
mod(i)
kα Nljτ

(l)
kαv

mod(l)
kα .

If we consider the system without the magnetic field, N = 1, vmod
k = vk,

and Dk = 1.

σextij = gq2
∫

ddk

(2π)d
S(0)v

(i)
k v

(j)
k τ

(j)
k , (5.50)

or for multi-band systems,

σextij = gq2
∑
α

∫
ddk

(2π)d
S(0)v

(i)
kαv

(j)
kατ

(j)
kα , (5.51)

which are anisotropic, or anisotropic multi-band conductivity equation that are

consistent with the nonmagnetic cases [70, 131].

5.5 Discussion

We derive the semiclassical magnetotransport equations, as well as the relax-

ation time equation, with the least possible amount of assumptions imposed to

obtain the compact closed form of the nonequilibrium distribution function. We

calculated the field-dependent, anisotropic relaxation time τ
(i)
k as a solution to

the nonequilibrium distribution function fk = f
(0)
k + gk, and studied how the

impurity scattering and the magnetic field affect the transport behavior.

We developed the extended Boltzmann transport theory that can not only

be applied when the system is inherently anisotropic, i.e. the band dispersion is

anisotropic, but can also be utilized when the system is made to be anisotropic

with its Berry curvature and the magnetic field coupling. Even when the band

dispersion of the system is isotropic, we suggest that the magnetic field and
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the Berry curvature makes the distribution of the electrons anisotropic so that

their movement can no longer be described in an isotropic formalism, as the

band velocity vk gets the additional magnetic field-originate terms when there

is a nonvanishing Berry curvature present. Using our formalism, any anisotropy

of the system can be properly assessed regardless of its origin.

For the scattering mechanisms, we only considered the elastic scattering

sources that conserve energy. When the scattering becomes inelastic, e.g. electron-

phonon scattering, it can be shown that the modified detailed balance equation

Wkk′f
(0)
k′ (1 − f

(0)
k ) = Wk′kf

(0)
k (1 − f

(0)
k′ ) [132, 133] would apply and the final

expression of τ
(i)
k would become∫
ddk′

(2π)d
Dk′Wk′k

(
τ
(i)
k −

v
mod(i)
k′

v
mod(i)
k

τ
(i)
k′

)(
1− f

(0)
k′

1− f
(0)
k

)
= 1.

(5.52)
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Chapter 6

Diluted magnetic Dirac-Weyl
materials: Susceptibility and
ferromagnetism in
three-dimensional chiral gapless
semimetals

6.1 Introduction

In recent years, there has been substantial interest in three-dimensional (3D)

Weyl/Dirac semimetals, which have relativistic linear energy dispersion [4, 23,

24, 107, 134–136]. These systems are effectively 3D versions of graphene which

is the quintessential 2D Dirac system. The magnetic properties of Dirac-Weyl

semimetals have been studied theoretically, demonstrating the possibility of

magnetic ordering of the dopant magnetic impurities at zero temperature with

and without spin-orbit coupling [137–139]. Mechanisms for various magnetic

ordering in topological materials have been investigated, demonstrating that

magnetically doped semiconductors with the strong spin-orbit interaction can
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have ferromagnetic ordering through the mechanism of van Vleck paramag-

netism [140, 141]. The spin susceptibilities in Weyl and Dirac semimetals have

been calculated, investigating the effect of the magnetic texture and associated

physical properties [142–145].

The indirect exchange interactions between magnetic impurities through

carriers of a host material (i.e., Ruderman-Kittel-Kasuya-Yosida (RKKY) in-

teraction [146–149]) in semimetal systems has become an interesting issue. Since

the low energy dispersion in condensed matter systems can be nonlinear as in

2D multilayer graphene [150, 151] and 3D multi-Weyl semimetals [6], it is also

interesting to find the effects of arbitrary band dispersion and finite tempera-

ture on the magnetic properties of 3D gapless systems in the presence of random

magnetic impurities (i.e. in addition to the expected linear gapless chiral disper-

sion of Dirac systems). Moreover, the nonlinear energy dispersions of itinerant

carriers result in an interesting behavior of the RKKY interaction between mag-

netic spins, which provides a more complete picture of the qualitative nature

of magnetic properties in gapless semimetals with arbitrary band dispersion.

In particular, it is useful to know whether 3D Dirac-Weyl gapless semimetals

could magnetically order at finite temperatures through the RKKY coupling,

and how the resultant magnetic transition temperature depends on the band

carrier energy dispersion.

In this chapter, we study the magnetic properties of 3D gapless electron-

hole systems at finite temperatures with arbitrary band dispersion, focusing on

the possibility of long-range ordering in the magnetic moments that are em-

bedded in the system. To study the carrier-mediated indirect RKKY exchange

interaction among the random magnetic impurities with the itinerant carriers

mediating the magnetic interaction between the impurities, we calculate the

temperature-dependent response functions and the corresponding long-range
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magnetic coupling between dilute random magnetic impurities. We mainly fo-

cus on the dilute impurity limit, which is different from the strong disorder

limit in which strong enough disorder may induce a phase transition to a metal-

lic state [27, 152–154]. The effects of finite temperature, disorder, and carrier

mean-free path on the RKKY interaction are also considered systematically in

our current work, but we do not consider the topic of disorder-induced quan-

tum phase transition since our focus is on magnetic properties and not disorder

physics. Especially, we study the role of the ultraviolet momentum cutoff, which

is necessary in gapless semimetals, demonstrating that it fundamentally modi-

fies the characteristic power-law behavior of the RKKY interaction. Inclusion of

the mean-free path in the theory allows us to make a specific prediction about

the dependence of the magnetic behavior of the system on the carrier trans-

port properties [155]. A smooth interpolation between long-range and short-

range magnetic interactions is possible by varying the cutoff parameter R in

the range of the RKKY interaction, which is related to the localization length

of the carriers in semimetals [156–158].

By considering all these effects together within one comprehensive mean-

field theory, we calculate the ferromagnetic transition temperature in the frame-

work of a finite-temperature self-consistent field approximation [156] for the fer-

romagnetism in 3D gapless semimetals. We find that in 3D gapless semimetals,

the ferromagnetic ordering between magnetic impurities induced by the RKKY

exchange interaction is favored with enhanced magnetic coupling, as the en-

ergy dispersion has a higher power-law. Our results indicate that within the

experimentally accessible range of parameters, ferromagnetic ordering between

magnetic impurities is possible in gapless 3D semimetals. Ferromagnetism in

3D semimetals, as predicted in our theory, can be utilized in spintronics ap-

plications if our predictions are validated experimentally. We predict that it
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should be possible to experimentally induce long-range finite-temperature fer-

romagnetic ordering in 3D Dirac-Weyl materials by magnetically doping the

system.

This chapter is organized as follows. In Sec. 6.2, we describe our model and

calculate the finite-temperature static susceptibilities. In Sec. 6.3, we provide

the calculated results of the effective magnetic coupling through RKKY inter-

action in 3D chiral gapless semimetals. The conclusions are provided in Sec. 6.4

with a discussion on the momentum-cutoff effect on long-range oscillations.

6.2 Model

To describe the 3D chiral gapless semimetals, including Weyl/Dirac semimetals,

we introduce the following Hamiltonian with an isotropic energy dispersion

characterized by a positive integer N [37]:

H = ε0

(
|k|
k0

)N

k̂ · σ, (6.1)

where σ represents the Pauli matrices acting in the space of the two bands

near the band touching point, and ε0 and k0 are materials dependent constants

with dimensions of energy and wave vector, respectively. We note that the in-

troduced Hamiltonian describes a gapless electron-hole system with arbitrary

energy-band dispersion. Even though the real systems with the Hamiltonian

except a linear dispersion (N = 1) may not be available currently in 3D, it is

interesting to obtain the magnetic properties for both linear and nonlinear en-

ergy dispersions to develop intuition about the dispersion dependence of RKKY

interactions. Also, rapid development in the materials science may lead to such

materials with nonlinear dispersion in the future, making our theory for the

nonlinear dispersion of experimental relevance. Here, for simplicity, we assume

that the Pauli matrices describe the pseudospin degrees of freedom rather than
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real spin degrees of freedom, focusing on the effect of the arbitrary energy dis-

persion. We will discuss the effect of the real spin texture in the Discussion

and Conclusion section. The energy dispersion of the Hamiltonian is given by

ελ,k = λε0

(
|k|
k0

)N
, where λ = ±1 is the band index for the conduction (valence)

band. Note that the Hamiltonian with N = 1 corresponds to Weyl semimetals

with linear energy dispersion. We assume that the system is intrinsic with the

Fermi energy at the band touching point, which we take to be the zero of en-

ergy. We are thus considering undoped intrinsic Dirac-Weyl systems with the

chemical potential pinned at the Dirac-Weyl point.

Carrier-mediated RKKY indirect exchange interaction between local mo-

ments is proportional to the static carrier susceptibility. At finite temperatures,

the static susceptibility is given by

χ(q, T ) = −g
∑
λ,λ′

∫
d3k

(2π)3
fλ,k − fλ′,k′

ελ,k − ελ′,k′
Fλ,λ′(k,k′), (6.2)

where g is the total (e.g., spin, valley, etc.) degeneracy factor, fλ,k =
[
eελ,k/kBT + 1

]−1

is the finite-temperature Fermi-Dirac distribution function for the λ-band and

wave vector k, the chiral factor Fλ,λ′(k,k′) is the square of the wavefunction

overlap between |λ,k⟩ and |λ′,k′⟩ states, and k′ = k + q. For the 3D chiral

gapless system described by Eq. (6.1), Fλ,λ′(k,k′) = 1
2

(
1 + λλ′ cos θk,k′

)
for all

N , where θk,k′ is the angle between k and k′. Note that F arises entirely from

the chirality of the system.

Dividing the sum in Eq. (6.2) into interband (λ ̸= λ′) and intraband (λ =

λ′) contributions, the static susceptibility can be decomposed into χ(q, T ) =

χ+(q, T ) + χ−(q, T ), where χ± denote the interband (+) and intraband (−)

contributions, respectively. With the density of states (DOS) at T = 0,DN (q) =
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gq3−NkN0
2π2Nε0

, the normalized susceptibility χ± can be rewritten as

χ±(q, T )

DN (q)
=

N

4

∫ ∞

0
x2dx

∫ π

0
sin θdθ

(1∓ cosψ)

xN ± (x′)N

×
[
tanh

(qx/k0)
N

2T/T0
± tanh

(qx′/k0)
N

2T/T0

]
, (6.3)

where θ is the angle between k and q, and ψ is the angle between k and k′ = k+

q. In Eq. (6.3), x = k/q, x′ = k′/q =
√
1 + 2x cos θ + x2, cosψ = (x+cos θ)/x′,

and T0 = ε0/kB. Note that for N = 1, a finite (ultraviolet) momentum cutoff is

required for the convergence of the integral. For the calculation, we set g = 4

and k0 = a−1, where a is the lattice constant of the system.

At zero temperature (T = 0), due to the phase-space restriction, the in-

traband part χ− vanishes and only the interband part χ+ contributes to the

total susceptibility. In the long wavelength limit (q → 0), the susceptibility

approaches the DOS and χ+(q, T = 0) ∝ q3−N , which diverges for N ≥ 4 as

q → 0. At finite temperatures (T ̸= 0), we obtain χ+(q, T ) ∝ q3/T for q → 0.

Thus, the q = 0 singularity of χ+(q, T = 0) for N ≥ 4 disappears. In addition,

due to the thermal excitation of electrons and holes, χ− also contributes to the

susceptibility at finite temperatures even for the undoped system under con-

sideration. Thus, for T ̸= 0, the total susceptibility at q = 0 becomes finite for

all N . Specifically, we find that χ−(q → 0, T ) ∝ T
3−N
N , which shows the same

power-law dependence as the DOS, DN (ε) ∝ ε
3−N
N with energy ε replaced by T .

Therefore, as temperature increases, the total susceptibility at q = 0 increases

for N = 1, 2, remains constant for N = 3, and decreases for N ≥ 4. These

analytical findings are helpful in understanding our detailed numerical results

presented in the rest of this chapter.

Figure 6.1 shows the calculated static susceptibility as a function of the wave

vector for several temperatures. For N = 1, 2, the susceptibility increases with

temperature, whereas for N ≥ 4, it decreases with temperature, as expected.
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Interestingly, for N ≥ 3, the finite-temperature result in the T → 0 limit is

different from the zero-temperature value, i.e., χ(0, T = 0) ̸= χ(0, T → 0). Note

that for N = 3, the DOS DN (q) becomes constant and χ(0, T → 0) approaches

the constant DOS, whereas χ(0, T = 0) can be obtained from Eq. (6.3). For

N = 3, we find that χ(0, T = 0)/χ(0, T → 0) ≈ 0.8229. This T = 0 non-

analyticity in the N = 3 susceptibility follows from the fact that the DOS has

a ‘kink’ structure at N = 3 with DN (ε) increasing (decreasing) as a function of

increasing energy for N < 3 (N > 3).

6.3 RKKY interaction and effective magnetic coupling

To study the effective magnetic coupling between random magnetic impurities

(which are treated as quenched classical magnetic moments), we consider the

carrier-mediated RKKY indirect exchange interaction. The indirect exchange

interaction between magnetic impurities can be accounted for by the interaction

between a localized (classical) spin Si of a magnetic impurity located at ri and

an itinerant electron spin s located at r. It is given by V (r) = JexSi ·sδ(ri−r),

where Jex is the local exchange coupling between the quenched impurity and the

itinerant carriers. (Jex, which depends on the nature of the magnetic impurities,

is an unknown parameter in our theory providing the overall magnitude of

the magnetic coupling in the system.) Then, the effective Hamiltonian that

describes the magnetic interactions between the classical Heisenberg spins Si

and Sj located at ri and rj , respectively, is given by

H = −
∑
i,j

JRKKY(ri − rj)Si · Sj , (6.4)

where

JRKKY(r, T ) =
[Jexa

3]2

4
χ(r, T ). (6.5)
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The RKKY range function χ(r, T ) is defined by the Fourier transform of the

static susceptibility χ(q, T ). For an isotropic system in 3D, it is given by

χ(r, T ) =
1

2π2

∫ ∞

0
q2dqj0(qr)χ(q, T ), (6.6)

where j0(x) is the spherical Bessel function of the first kind. Since the large

momentum cutoff qc is natural for a continuum theory, we set qc = a−1 in the

numerical calculation of the range function in Eq. (6.6).

Figure 6.2 shows the range functions for N = 1, 2, 3, 4 and for different

temperatures. For N = 1, 2, the magnitude of the oscillating range functions

increases with temperature, whereas for N ≥ 4, it decreases with temperature.

For N = 3, the range function is almost independent of temperature. These

behaviors for different N follow from the temperature dependence of the sus-

ceptibility, which is shown in Fig. 6.1. At large distances (r/a ≫ 1), we find

that the range function decays as cos(qcr)/r
2 for N ≤ 3, producing long-range

oscillations with a periodicity of 2π/qc in the spin density. (See Appendix D.1

for the detailed derivations.) We will discuss the implications of the cutoff qc in

the Discussion and Conclusion section (see Sec. 6.4).

The temperature-dependent effective coupling is given by the spatial average

of the RKKY interaction JRKKY,

Jeff(T ) =
1

Ωunit

∫
d3rJRKKY(r, T ), (6.7)

where Ωunit is the volume of a unit cell. In the dimensionless form, Eq. (6.7)

can be rewritten as

Jeff(T )

J
(0)
eff

=
1

D0(a−1)

∫
r2drχ(r, T ), (6.8)

where J
(0)
eff = 4π[Jexa

3]2D0(a
−1)/4Ωunit and D0 = D1(a

−1)/a3. Note that the

normalization factors J
(0)
eff and D0 are defined to be independent of both index

N and temperature T .
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In the presence of non-magnetic impurity scattering arising from uninten-

tional background disorder causing momentum relaxation, the RKKY interac-

tion should be cut off at distances larger than a characteristic disorder length

scale (i.e., the transport mean-free path), which is determined by the impurity

scattering. We include the disorder effect phenomenologically by including an

exponential damping at distances larger than the cutoff R in the range of the

RKKY interaction. Then, the effective coupling is modified as

Jeff(T ) =


1

Ωunit

∫
d3rJRKKY(r) (r < R),

1
Ωunit

∫
d3rJRKKY(r)e

− r−R
R (r > R).

(6.9)

(See Appendix D.2 for the detailed expression of the effective RKKY coupling

with exponential cutoff.) In this calculation, we use R = 100a, and our calcu-

lated results do not depend on the choice of R qualitatively. One should think

of R as a disorder-induced phenomenological effective carrier mean-free path

parameter, which provides a cutoff for the RKKY interaction range. R should

in general be smaller (larger) depending on the system being more (less) disor-

dered. As a matter of principle, R cannot really be very large since the magnetic

ordering phenomenon being studied here necessitates the presence of magnetic

impurities, which, in addition to providing the quenched magnetic moments for

ordering, also serve as momentum scatterers.

Figure 6.3 shows the calculated effective coupling as a function of temper-

ature for different values of N . The effective coupling decreases monotonically

with increasing temperature and increases with increasing N at a fixed tem-

perature. Since the effective coupling Jeff(T ) is positive, the magnetic moments

are expected to be ferromagnetically aligned.

From the temperature dependent effective coupling in Eq. (6.9), we calculate

the magnetic transition temperature of the intrinsic chiral 3D semimetals. For
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the Heisenberg classical spins, the mean-field transition temperature Tc is given

by [159, 160]

kBTc =
S(S + 1)

3
xJeff , (6.10)

where S and x = nimpa
3 are the spin and concentration of the local magnetic

moments, respectively, and nimp is the effective magnetic impurity density. Since

the calculated Jeff is a function of temperature, we calculate Tc self-consistently

from Eq. (6.10). In Fig. 6.3, the intersections between the dashed line [i.e.,

3kBT/[S(S + 1)x]] and solid lines [i.e., Jeff(T )] determine the transition tem-

perature for each N .

Figure 6.4 shows the self-consistently calculated transition temperature for

different values of N as a function of the exchange coupling Jex, the magnetic

impurity concentration x, and the degeneracy factor g. The ferromagnetic tran-

sition temperature increases monotonically with increasing Jex, x, and g for all

N . In particular, for N = 1, Tc increases quadratically with Jex, and linearly

with both x and g, as expected [159, 160]. However, for N > 1, the calculated Tc

shows non-trivial dependence on the parameters arising from self-consistency

even for small values of the parameters, due to the non-trivial behavior of the

temperature-dependent effective coupling shown in Fig. 6.3.

6.4 Discussion and conclusion

We studied theoretically the effective magnetic coupling between magnetic im-

purities and the consequent ferromagnetic transition temperature in 3D chiral

gapless semimetals with arbitrary energy dispersion. To calculate the RKKY

magnetic coupling range function, we introduced the momentum cutoff qc,

which is natural for the effective continuum model used in this work. We use the

inverse lattice constant as the natural ultraviolet momentum cutoff in the the-
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ory. As shown in Fig. 6.2, we find that for N ≤ 3, the envelope of the oscillatory

RKKY range function decays as r−2 and the period of the oscillation is 2π/qc.

This decaying pattern arises from the finite ultraviolet cutoff qc used in the

range function. If we set the cutoff to be infinite, then the range function loses

its oscillatory characteristics and monotonically decays as r−6+N , which gives

the typical r−5 decay for N = 1 [137, 138]. However, in the presence of a finite

qc, the overall behavior of the range function is determined by the competition

between the oscillatory r−2 term and the non-oscillatory r−6+N term. We find

that for N ≤ 3, the oscillatory r−2 decay dominates over the non-oscillatory

r−6+N term, but for N > 3 it is vice versa (see Appendix D.1 for the detailed

derivations). We note that the cutoff dependence of the effective coupling and

the corresponding transition temperature is insensitive to the precise quantita-

tive choice of qc. If the Pauli matrices in Eq. (6.1) refer to real spin degrees of

freedom, in addition to the Heisenberg-type spin-spin interaction term, there

appears the Ising-type spin-spin interaction term [137, 138]. The systematic

evaluation of the transition temperature in that situation is beyond the scope

of the current chapter, but we expect that the same power-law dependence

which is fundamentally affected by presence of the cutoff will appear in this

case. The study of the RKKY physics in the presence of both Heisenberg and

Ising couplings remains an interesting theoretical problem for the future.

In summary, we investigate the temperature dependent susceptibility, RKKY

interaction, and effective magnetic ordering for 3D chiral gapless semimetals

with arbitrary energy dispersion in the presence of dilute random magnetic

impurities. We find that in 3D chiral gapless semimetals, the ferromagnetic

ordering between magnetic impurities is favored with enhanced magnetic cou-

pling as the energy dispersion has a higher power-law. Our results indicate that

ferromagnetic ordering between magnetic impurities is possible in 3D gapless
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semimetals, arising entirely from the carrier-mediated indirect RKKY interac-

tion in the dilute impurity limit. This predicted ferromagnetic ordering between

magnetic impurities should be experimentally accessible with suitable magnetic

doping. Our theory is valid when quantum fluctuations and direct exchange cou-

pling between the impurity moments are negligible, which should be justified

for large impurity spins and dilute impurity concentrations. In this chapter,

we consider only the case of zero Fermi energy, and the effect of finite Fermi

energy would be an interesting future research direction. Our finding that even

the intrinsic undoped semimetallic system could be converted to a ferromagnet

by dilute magnetic doping has obvious experimental implications, which should

be explored in the laboratory.
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Figure 6.1 The calculated finite-temperature static susceptibility χ(q, T ) as a

function of wave vector for various temperatures T = 0, 0.02, 0.04, 0.06, 0.08,

and 0.1 T0, and for different values of N (a) N = 1, (b) N = 2, (c) N = 3, and

(d) N = 4. Here, T0 = ε0/kB, D1(a
−1) = gk0

2π2ε0a2
, and a = 0.343 nm (lattice

constant of TaAs). For N = 1, the finite momentum cutoff a−1 is used for the

convergence of the integral.
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Figure 6.2 The range function χ(r, T ) as a function of distance for different

values of N (a) N = 1, (b) N = 2, (c) N = 3, and (d) N = 4. In each figure,

the curves with different colors represent different temperatures T = 0, 0.1, 0.2,

0.3, 0.4, and 0.5 T0. Here, D0 = D1(a
−1)/a3. In this calculation, the ultraviolet

momentum cutoff qc = a−1 is used.
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Figure 6.3 The calculated effective coupling (solid lines) as a function of tem-

perature for different values of N = 1, 2, 3, 4. In this calculation, the ultraviolet

cutoff qc = a−1 and exponential cutoff R = 100a are used. Here, the nor-

malization factor J
(0)
eff = 4π[Jexa

3]2D1(a
−1)/4Ωunit is independent of N and

temperature T . The dashed line represents 3kBT/[S(S+1)x], and the intersec-

tions with Jeff(T ) indicate the transition temperatures solved self-consistently.

Here, Jex = 0.1 eV , x = 0.05 and S = 5/2.
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Figure 6.4 The calculated transition temperature Tc as a function of (a) the

exchange coupling Jex , (b) the magnetic impurity concentration x = nimpa
3,

and (c) the degeneracy factor g for different values of N = 1, 2, 3, 4. Here, for

fixed parameters, we used Jex = 0.1 eV, x = 0.05 and g = 4.
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Chapter 7

Conclusion

During my doctoral research period, I have mainly focused on developing semi-

classical Boltzmann transport theory that can be applied to multi-band, anisotropic

systems. We applied this theory on various systems such as multi-Weyl semimet-

als (m-WSMs), which are extension of Weyl semimetals with higher chiral

charge, and band-gap tunable few-layer black phosphorus. We have also studied

the transport behaviors from the magnetic field-driven anisotropy. We investi-

gated charge carrier spin mediated magnetization of magnetic impurities as

well, as known as Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction on 3-

dimensional (3D) chiral gas toy model. We summerize our findings down below.

For multi-Weyl semimetals, we developed the anisotropic Boltzmann trans-

port equation that can be applied in the materials with different power-law

dependences along its symmetry axes. Using this anisotropic transport equa-

tion, we calculated characteristic charge density, and temperature power-law

dependence of m-WSM in its conductivity along each direction.

We have also studied the Boltzmann transport theory on few-layer black
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phosphorus in various phases, extending our previous study on anisotropic sys-

tems to account for its multi-banded nature as well as its band anisotropy. We

showed that its tunable band-gap gives rise to many interesting features in the

electronic conductivity.

On top of that, we investigated the magnetic field-driven anisotropy and

its effect on magnetotransport in systems where the Berry curvature effect is

significant, e.g. Weyl semimetals. We argued that the external magnetic field

(coupled with the Berry curvature of the system) makes the distribution of

charged particles anisotropic, making the utilization of an anisotropic formula-

tion a necessity.

Finally, we considered the dilute magnetic impurities embedded on the 3D

chiral gas systems with arbitrary power-law dependence, where the impurities

are sparse enough so that the direct magnetization is ignored and only the

charge carrier spin-mediated indirect interaction is present. We found that the

magnetic alignment in such condition, the system becomes ferromagnetic re-

gardless of the dispersion relation power-law.
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Appendix A

Semiclassical Boltzmann transport
theory for multi-Weyl semimetals

A.1 Eigenstates and density of states for multi-Weyl

semimetals

Let us consider the eigenstates and density of states (DOS) for the low-energy

effective Hamiltonian of m-WSMs described by Eq. (3.1) in the main text:

HJ = ε0

 czk̃z k̃J−

k̃J+ −czk̃z

 , (A.1)

where k̃ = k/k0 and cz = ℏvzk0/ε0. To avoid difficulties associated with

anisotropic dispersions, we consider the following coordinate transformation

[37]

kx → k0 (r sin θ)
1
J cosϕ,

ky → k0 (r sin θ)
1
J sinϕ,

kz →
k0
cz
r cos θ,

(A.2)
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which transforms the Hamiltonian into the following form:

H = ε0r

 cos θ sin θe−iJϕ

sin θeiJϕ − cos θ

 . (A.3)

In the transformed coordinates, the energy dispersion is given by ε±(r) = ±ε0r

and the corresponding eigenstate is given by

|+⟩ =

 cos θ
2

sin θ
2e

iJϕ

 , (A.4a)

|−⟩ =

 − sin θ
2

cos θ
2e

iJϕ

 . (A.4b)

The Jacobian J corresponding to this transformation is given by

J =

∣∣∣∣∣∣∣∣∣
∂kx
∂r

∂kx
∂θ

∂kx
∂ϕ

∂ky
∂r

∂ky
∂θ

∂ky
∂ϕ

∂kz
∂r

∂kz
∂θ

∂kz
∂ϕ

∣∣∣∣∣∣∣∣∣ =
k30
czJ

r
2
J sin

2
J
−1 θ ≡ J (r, θ). (A.5)

Note that for the + band, the band velocity v
(i)
k = 1

ℏ
ε+,k

∂ki
can be expressed

as

v
(x)
k = Jv0r

1− 1
J sin2−

1
J θ cosϕ, (A.6a)

v
(y)
k = Jv0r

1− 1
J sin2−

1
J θ sinϕ, (A.6b)

v
(z)
k = czv0 cos θ, (A.6c)

where v0 =
ε0
ℏk0 .

The DOS at energy ε > 0 can be obtained as

D(ε) = g

∫
d3k

(2π)3
δ(ε− ε+,k)

= g

∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

J (r, θ)

(2π)3
δ(ε− ε0r)

=
gB
(
1
2 ,

1
J

)
4π2czJ

k30
ε0

(
ε

ε0

) 2
J

, (A.7)
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where g is the number of degenerate Weyl nodes. Here, we used the relation∫ π/2
0 dθ cosm θ sinn θ = 1

2B(m+1
2 , n+1

2 ), where B(m,n) = Γ(m)Γ(n)
Γ(m+n) is the beta

function and Γ(x) =
∫∞
0 dt tx−1e−t is the gamma function [45]. Note that the

Thomas-Fermi wavevector is determined by the DOS at the Fermi energy εF

given by

qTF =

√
4πe2

κ
D(εF) = k0

√
gαB

(
1
2 ,

1
J

)
πczJ

(
εF
ε0

) 1
J

, (A.8)

where α = e2

κℏv0 is the effective fine structure constant.

The carrier density is then given by

n =

∫ εF

0
dεD(ε) = n0

gB
(
1
2 ,

1
J

)
4π2cz(J + 2)

(
εF
ε0

) 2
J
+1

, (A.9)

where n0 = k30. Note that εF ∼ n
J

J+2 and D(εF) ∼ n
2

J+2 .

A.2 Density dependence of dc conductivity in multi-

Weyl semimetals at zero temperature

In this section, we derive the dc conductivity at zero temperature for 3D

anisotropic systems with an anisotropic energy dispersion which has an axial

symmetry around the kz-axis (i.e. independent of ϕ), as in the m-WSMs de-

scribed by Eq. (3.1) in the main text. To take into account the anisotropy of the

energy dispersion, we express the anisotropic Boltzmann equation in Eq. (4.7)

in the main text using the transformed coordinates in Eq. (A.5) assuming an
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axial symmetry around the kz-axis:

1 =

∫ ∞

0
dr′
∫ π

0
dθ′
∫ 2π

0
dϕ′

J (r′, θ′)

(2π)3
Wkk′

(
τ
(i)
k −

v
(i)
k′

v
(i)
k

τ
(i)
k′

)

=

∫ ∞

0
dr′
∫ π

0
dθ′
∫ 2π

0
dϕ′

k30r
′ 2J sin

2
J
−1 θ′

(2π)3czJ

[
2π

ℏ
nimp|Vkk′ |2Fkk′δ(ε0r − ε0r

′)

]
×

(
τ
(i)
k − d

(i)
kk′τ

(i)
k′

)
=

2π

ℏ
nimp

k30r
2
J

(2π)2czJε0

∫ 1

−1
d cos θ′(1− cos2 θ′)

1
J
−1

×
∫ 2π

0

dϕ′

2π
|Vkk′ |2Fkk′

(
τ
(i)
k − d

(i)
kk′τ

(i)
k′

)
, (A.10)

where d
(i)
kk′ = v

(i)
k′ /v

(i)
k and Fkk′ = 1

2 [1 + cos θ cos θ′ + sin θ sin θ′ cos J(ϕ− ϕ′)]

is the square of the wavefunction overlap between k and k′ states in the same

band. Let us define ρ0 =
k30

(2π)2czε0
, V0 =

ε0
k30
, and 1

τ0(r)
= 2π

ℏ nimpV
2
0 ρ0. Then with

µ = cos θ, we have

1 =
r

2
J

J

∫ 1

−1
dµ′(1− µ′

2
)
1
J
−1

∫ 2π

0

dϕ′

2π
|Ṽkk′ |2Fkk′

(
τ̃
(i)
k − d

(i)
kk′ τ̃

(i)
k′

)
, (A.11)

where Ṽkk′ = Vkk′/V0 and τ̃
(i)
k = τ

(i)
k /τ0.

Assuming τ̃
(i)
k = τ̃ (i)(µ) from the axial symmetry,

1 = w̃(i)(µ)τ̃ (i)(µ)−
∫ 1

−1
dµ′w̃(i)(µ, µ′)τ̃ (i)(µ′), (A.12)

where

w̃(i)(µ) =
r

2
J

J

∫ 1

−1
dµ′(1− µ′

2
)
1
J
−1

∫ 2π

0

dϕ′

2π
|Ṽkk′ |2Fkk′ , (A.13a)

w̃(i)(µ, µ′) =
r

2
J

J
(1− µ′

2
)
1
J
−1

∫ 2π

0

dϕ′

2π
|Ṽkk′ |2Fkk′d

(i)
kk′ . (A.13b)

Now let us discretize θ or equivalently µ = cos θ to µn (n = 1, 2, · · · , N)

with an interval ∆µ = 2/N . Then for τ̃
(i)
n = τ̃ (i)(µn), we have

1 = P (i)
n τ̃ (i)n −

∑
n′

P
(i)
nn′ τ̃

(i)
n′ , (A.14)
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where P
(i)
n = w̃(i)(µn) is an N -vector and P

(i)
nn′ = w̃(i)(µn, µn′)∆µ is an N ×N

matrix which relate the θ-dependent relaxation times. Note that Eq. (B.16) has

a similar structure for the multiband scattering [68] in which the relaxation

time can be obtained by solving coupled equations, which relate the relaxation

times for different energy bands involved in the scattering.

Then the dc conductivity at zero temperature is given by

σij = ge2
∫

d3k

(2π)3
δ(εk − εF)v

(i)
k v

(j)
k τ

(j)
k

= ge2
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ
k30r

2
J sin

2
J
−1 θ

(2π)3czJ
δ(ε0r − εF)v

(i)
k v

(j)
k τ

(j)
k

=
σ0
J

∫ ∞

0
drr

2
J

∫ 1

−1
dµ
(
1− µ2

) 1
J
−1
∫ 2π

0

dϕ

2π
δ(r − rF)ṽ

(i)
k ṽ

(j)
k τ̃

(j)
k ,

(A.15)

where σ0 = ge2ρ0v
2
0τ0, rF = εF/ε0, and ṽ

(i)
k = v

(i)
k /v0. Thus, from Eq. (A.6), we

have

σxx
σ0

=
Jr2F
2

∫ 1

−1
dµ
(
1− µ2

)
τ̃ (x)(µ), (A.16a)

σzz
σ0

=
c2zr

2
J
F

J

∫ 1

−1
dµ
(
1− µ2

) 1
J
−1
µ2τ̃ (z)(µ). (A.16b)

Note that τ0, v0, ρ0 and σ0 are the density independent normalization constants

in units of time, velocity, DOS, and conductivity, respectively. In addition, from

the axial symmetry around the kz-axis, σxx = σyy.

For the short-range impurities, Vkk′ is independent of density. Thus from

Eq. (B.14), ω̃(i)(µ) ∼ ε
2
J
F and τ̃ (i)(µ) ∼ ε

− 2
J

F at the Fermi energy εF. Note that

εF ∼ n
J

J+2 . Therefore we have

σxx ∼ ε
2− 2

J
F ∼ n

2(J−1)
J+2 , (A.17a)

σzz ∼ ε0F ∼ n0. (A.17b)
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For charged impurities in the strong screening limit, Vkk′ ∼ q−2
TF ∼ D−1(εF) ∼

ε
− 2

J
F , thus ω̃(i)(µ) ∼ ε

2
J
− 4

J
F and τ̃ (i)(µ) ∼ ε

2
J
F at εF. Therefore we have

σxx ∼ ε
2+ 2

J
F ∼ n

2(J+1)
J+2 , (A.18a)

σzz ∼ ε
4
J
F ∼ n

4
J+2 . (A.18b)

For charged impurities in the weak screening limit, from Vkk′ ∼ |k − k′|−2

and Eq. (A.2), we expect the potential average on the Fermi surface as VF ∼

ε−2ζ
F with 1

J ≤ ζ ≤ 1 (assuming no logarithmic correction), thus ω̃(i)(µ) ∼ ε
2
J
−4ζ

F

and τ̃ (i)(µ) ∼ ε
4ζ− 2

J
F at εF. Therefore, we have

σxx ∼ ε
2+4ζ− 2

J
F ∼ n

2(J−1)+4Jζ
J+2 , (A.19a)

σzz ∼ ε4ζF ∼ n
4Jζ
J+2 . (A.19b)

Here, ζs in σxx and σzz do not need to be the same, as explained later in this

section. Note that ζ = 1
J gives the same density exponent corresponding to the

strong screening limit.

For the short-range impurities, it turns out that the relaxation time is in-

dependent of polar angles θ. Assuming τ (i)(µ) = τ (i) from the beginning, for

short-range impurity potential Vkk′ = Vshort, Eq. (B.12) reduces to

1

τ̃ (i)
=
r

2
J

J
Ṽ 2
short

∫ 1

−1
dµ′(1− µ′

2
)
1
J
−1

∫ 2π

0

dϕ′

2π
Fkk′

(
1− d

(i)
kk′

)
, (A.20)

where Ṽshort = Vshort/V0. Then we find that the relaxation time τ (i)(ε) at at

energy ε = rε0 is

1

τ̃ (x)(ε)
=

r
2
J

2J
Ṽ 2
shortB

(
1

2
,
1

J

)
− δJ1

r2

3
Ṽ 2
short, (A.21a)

1

τ̃ (z)(ε)
=

r
2
J

2J
Ṽ 2
shortB

(
1

2
,
1

J
+ 1

)
. (A.21b)
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From Eq. (B.18), finally we obtain

σxx
σ0

=
2Jr2F
3

τ̃ (x)(εF), (A.22a)

σzz
σ0

=
c2zr

2
J
F

J
B

(
3

2
,
1

J

)
τ̃ (z)(εF) =

Jc2z
Ṽ 2
short

. (A.22b)

Note that σxx/σ0 = Ṽ −2
short,

16
3π rFṼ

−2
short,

12
B( 1

2
, 1
3)
r

4
3
F Ṽ

−2
short for J = 1, 2, 3, respec-

tively, and the obtained analytic expressions are consistent with the density de-

pendence in Eq. (A.17). From Eq. (A.22), we find σxx/σzz =
1
c2z
, 8rF
3πc2z

,
4r

4
3
F

B( 1
2
, 1
3)c2z

for J = 1, 2, 3, respectively, and the anisotropy between σxx and σzz increases

as the Fermi energy or the carrier density increases.

For charged impurities in the strong screening limit, the impurity potential

becomes Vkk′ ≈ V strong
screen ≡ 4πe2

κq2TF
, having the same feature of the short-range

impurity potential. Thus, the relaxation time is also independent of polar angles

and similar analytic expressions can be obtained by replacing Ṽshort by Ṽ
strong
screen

in Eqs. (A.21) and (A.22), where Ṽ strong
screen = V strong

screen /V0 = 4παk20/q
2
TF. Then the

relaxation time is given by

1

τ̃ (x)(ε)
=

8π4c2zJ

g2B
(
1
2 ,

1
J

)r 2
J r

− 4
J

F − δJ1
4π4c2z
3g2

r2r−4
F , (A.23a)

1

τ̃ (z)(ε)
=

16π4c2zJ

(J + 2)g2B
(
1
2 ,

1
J

)r 2
J r

− 4
J

F , (A.23b)

thus, in the strong screening limit, we obtain

σxx
σ0

=
2Jr2F
3

τ̃ (x)(εF), (A.24a)

σzz
σ0

=
c2zr

2
J
F

J
B

(
3

2
,
1

J

)
τ̃ (z)(εF) =

g2B2
(
1
2 ,

1
J

)
16π4J

r
4
J
F . (A.24b)

Note that σxx/σ0 = g2

4π4c2z
r4F,

g2

12π3c2z
r3F,

g2B( 1
2
, 1
3
)

12π4c2z
r

8
3
F for J = 1, 2, 3, respectively,

and the obtained analytic expressions are consistent with the density depen-

dence in Eq. (A.18). Also note that σxx/σzz has the same form with that ob-

tained for short-range impurities.
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For charged impurities at arbitrary screening, the relaxation time in general

depends on polar angles for J > 1. In addition, as seen in Fig. 3.2 in the main

text, the density exponent shows non-monotonic behavior as a function of gα.

From Eq. (B.11), for a given wavevector k = (k0 (rF sin θ)
1
J , 0, k0cz rF cos θ) at

the Fermi energy, the average of the squared Coulomb potential on the Fermi

surface is given by

〈
V 2(θ)

〉
F
=

1

2

∫ 1

−1
d cos θ′(1− cos2 θ′)

1
J
−1

∫ 2π

0

dϕ′

2π
|Vkk′ |2. (A.25)

Then assuming
〈
V 2(θ)

〉
F

∼ r
−4ζ(θ)
F , we can obtain the angle dependent ex-

ponent ζ(θ) with 1
J ≤ ζ(θ) ≤ 1. Figure A.1 shows ζ(θ) for several values of

θ = 0, π/6, π/2. This angle-dependent power-law gives rise to a significant non-

monotonic behavior of τz and σzz in gα, which originates from the competition

between two inverse length scales, qTF ∼ r
1
J
F and k

(z)
F ∼ rF. Note that the in-

plane component of the wavevector k
(∥)
F ∼ r

1
J
F at the Fermi energy has the same

Fermi energy dependence with qTF, showing a monotonic-like behavior of τx

and σxx in gα. As gα increases, ζ(θ) eventually approaches 1/J irrespective of

θ, obtained in the strong screening limit.

A.3 Temperature dependence of chemical potential

and Thomas-Fermi wavevector in multi-Weyl semimet-

als

In this section, we derive the temperature dependent chemical potential and

Thomas-Fermi wavevector in a general gapless electron-hole system, and apply

the results to m-WSMs. Suppose that a gapless electron-hole system has a

DOS given by D(ε) = Cα|ε|α−1Θ(ε), where Cα is a constant and Θ(ε) is a step

function. For a d-dimensional electron gas with an isotropic energy dispersion
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ε ∼ kJ , α = d/J , whereas for m-WSMs, D(ε) ∝ ε
2
J from Eq. (A.7), thus

α = 2
J + 1.

When the temperature is finite, the chemical potential µ deviates from

the Fermi energy εF due to the broadening of the Fermi distribution function

f (0)(ε, µ) =
[
eβ(ε−µ) + 1

]−1
where β = 1

kBT
. Since the charge carrier density n

does not vary under the temperature change, we have

n =

∫ ∞

−∞
dεD(ε)f (0)(ε, µ) =

∫ ∞

0
dεD(ε)

[
f (0)(ε, µ) + f (0)(−ε, µ)

]
≡
∫ εF

−∞
dεD(ε).

(A.26)

Then the carrier density measured from the charge neutral point, ∆n ≡ n|µ −

n|µ=0, is given by

∆n =

∫ ∞

0
dεD(ε)

[
f (0)(ε, µ)− f (0)(ε,−µ)

]
≡
∫ εF

0
dεD(ε). (A.27)

Here, we used f(−ε, µ) = 1− f(ε,−µ).

Before proceeding further, let us consider the following integral:∫ ∞

0
dx

xα−1

z−1ex + 1
=

∫ ∞

0
dx
xα−1ze−x

1 + ze−x
= −

∫ ∞

0
dxxα−1

∞∑
n=1

(−z)ne−nx

t=nx
=

[∫ ∞

0
dt tn−1e−t

][
−

∞∑
n=1

(−z)n

nα

]
= Γ(α)Fα(z),(A.28)

where Γ(α) =
∫∞
0 dt tα−1e−t is the gamma function and Fα(z) = −

∑∞
n=1

(−z)n

nα .

Note that Γ(α) = (α − 1)Γ(α − 1) with Γ(1) = 1 and Γ(1/2) =
√
π, and

Fα(z) = z ∂
∂zFα+1(z).

Using the above result, we obtain

∆n = Cα(kBT )
αΓ(α)

[
Fα(z)− Fα(z

−1)
]
=
Cα

α
εαF, (A.29)

where z = eβµ, which is called the fugacity. Thus, finally we have

Fα(z)− Fα(z
−1) =

(βεF)
α

Γ(α+ 1)
. (A.30)
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By solving the above equation with respect to z for a given T , we can obtain

the chemical potential µ = kBT ln z.

At low temperatures, βµ→ ∞ thus z → ∞. Note that from the Sommerfeld

expansion [40]

lim
z→∞

∫ ∞

0
dx

H(x)

z−1ex + 1
≈
∫ βµ

0
dxH(x) +

π2

6

∂H(βµ)

∂x
, (A.31)

where H(x) is a function which diverges no more rapidly than a polynomial as

x→ ∞. Then for H(x) = xα−1 and using Eq. (A.28), Eq. (A.31) becomes

lim
z→∞

Fα(z) ≈
(βµ)α

Γ(α+ 1)

[
1 +

π2

6

α(α− 1)

(βµ)2

]
, (A.32)

whereas Fα(z
−1) = z−1 − z−2

2α + · · · vanishes as z → ∞. Thus, we can obtain

the low-temperature correction as

µ

εF
≈ 1− π2

6
(α− 1)

(
T

TF

)2

, (A.33)

where TF = εF/kB is the Fermi temperature.

At high temperatures, βµ→ 0 due to the finite carrier densities, thus z → 1.

From z ≈ 1 + βµ+ 1
2(βµ)

2 for |βµ| ≪ 1,

lim
z→1

Fα(z) ≈ η(α) + η(α− 1)βµ+
1

2
η(α− 2) (βµ)2 , (A.34)

where η(α) = Fα(1) is the Dirichlet eta function [45]. Thus, we have Fα(z) −

Fα(z
−1) ≈ 2η(α− 1)βµ, and obtain the following high-temperature asymptotic

form:
µ

εF
≈ 1

2η(α− 1)Γ(α+ 1)

(
TF
T

)α−1

. (A.35)

For m-WSMs, α = 2
J + 1 and we obtain

µ

εF
=


1− π2

3J

(
T
TF

)2
(T ≪ TF),

1
2η( 2

J )Γ(2+
2
J )

(
T
TF

)− 2
J

(T ≫ TF).
(A.36)
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Next, consider the temperature dependent Thomas-Fermi wavevector qTF(T ).

Note that in 3D, q2TF(0) =
4πe2

κ D(εF) and at finite T , q2TF(T ) =
4πe2

κ
∂n
∂µ . Thus

we have
q2TF(T )

q2TF(0)
=
∂εF
∂µ

=
Γ(α)

(βεF)α−1

[
Fα−1(z) + Fα−1(z

−1)
]
. (A.37)

For a given T , the chemical potential (or equivalently fugacity z) is calculated

using the density invariance in Eq. (B.52), and then qTF(T ) is obtained from

the above relation.

At low temperatures, µ(T ) is given by Eq. (A.33), thus

q2TF(T )

q2TF(0)
≈ Γ(α)

(βεF)
α−1

[
(βµ)α−1

Γ(α)

(
1 +

π2

6

(α− 1)(α− 2)

(βµ)2

)
+
��������:0(
z−1 − z−2

2α−1

)]

≈ µ

εF
+
π2

6

(α− 1)(α− 2)

(βεF)
2 ≈ 1− π2

6
(α− 1)

(
T

TF

)2

. (A.38)

At high temperatures, µ(T ) is given by Eq. (A.35), thus

q2TF(T )

q2TF(0)
≈ Γ(α)

(βεF)
α−1

[
2η(α− 1) + η(α− 3) (βµ)2

]
≈ 2η(α− 1)Γ(α)

(
T

TF

)α−1

. (A.39)

For m-WSMs, we find

qTF(T )

qTF(0)
=


1− π2

6J

(
T
TF

)2
(T ≪ TF),√

2η
(
2
J

)
Γ
(
1 + 2

J

) (
T
TF

) 1
J

(T ≫ TF),

(A.40)

where qTF(0) = qTF is given by Eq. (A.8).

Figure A.2 shows the temperature dependence of the chemical potential and

Thomas-Fermi wavevector in m-WSMs.
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A.4 Temperature dependence of dc conductivity in

multi-Weyl semimetals

From Eq. (4.10) in the main text, we can easily generalize the conductiv-

ity tensor at zero temperature to that at finite temperature. For f (0)(ε) =[
z−1eβε + 1

]−1
, S(0)(ε) = −∂f (0)(ε)

∂ε = βf (0)(ε)
(
1− f (0)(ε)

)
= βz−1eβε

(z−1eβε+1)2
. Then

the conductivity tensor at finite temperature is given by

σij(T ) = ge2
∫

d3k

(2π)3

(
−∂f

(0)(εk)

∂ε

)
v
(i)
k v

(j)
k τ

(j)
k

= ge2
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ
k30r

2
J sin

2
J
−1 θ

(2π)3czJ

βz−1eβε0r

(z−1eβε0r + 1)2
v
(i)
k v

(j)
k τ

(j)
k

=
σ0
J

∫ ∞

0
drr

2
J

∫ 1

−1
dµ
(
1− µ2

) 1
J
−1
∫ 2π

0

dϕ

2π

βε0z
−1eβε0r

(z−1eβε0r + 1)2
ṽ
(i)
k ṽ

(j)
k τ̃

(j)
k .

(A.41)

Thus from Eq. (A.6), we have

σxx(T ) = σ0
J

2

∫ ∞

0
dr r2

βε0z
−1eβε0r

(z−1eβε0r + 1)2

∫ 1

−1
dµ
(
1− µ2

)
τ̃ (x)(µ), (A.42a)

σzz(T ) = σ0
c2z
J

∫ ∞

0
dr r

2
J

βε0z
−1eβε0r

(z−1eβε0r + 1)2

∫ 1

−1
dµ
(
1− µ2

) 1
J
−1
µ2τ̃ (z)(µ).

(A.42b)

To derive the asymptotic behaviors of σii(T )/σii(0) at low and high tem-

peratures, let us rewrite Eq. (4.10) in the main text, in the following energy

integral form:

σii(T ) = ge2I

∫ ∞

0
dε

(
−∂f

(0)(ε)

∂ε

)
D(ε)[v(i)(ε)]2τ (i)(ε, T ), (A.43)

where I is a factor from the angular integration. Note that the factor I will be

canceled by σii(0) later. Assuming that τ (i)(ε, T ) can be decomposed as

τ (i)(ε, T ) = τ (i)(ε)g(i)
(
T

TF

)
, (A.44)
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where g(i)
(

T
TF

)
is the energy-independent correction term from the screening

effect with g(i)(0) ≡ 1, we can separate the contributions from the energy

averaging over the Fermi distribution and the temperature dependent screening.

SupposeD(ε) ∝ εα−1, v(i)(ε) ∝ εν , and τ (i)(ε) ∝ εγ . Then we can express σii(T )

as

σii(T ) = C

∫ ∞

0
dε

(
−∂f

(0)(ε)

∂ε

)
εα−1+2ν+γg(i)

(
T

TF

)
= C(kBT )

δΓ(δ + 1)Fδ(z)g

(
T

TF

)
, (A.45)

where C is a constant and δ ≡ α− 1+ 2ν + γ. Note that Eq. (A.45) reduces to

σii(0) = CεδF at zero temperature. Therefore, after eliminating C, we have

σii(T )

σii(0)
=

Γ(δ + 1)Fδ(z)

(βεF)δ
g(i)

(
T

TF

)
. (A.46)

For short-range impurities, g(i)
(

T
TF

)
= 1. For charged impurities at low temper-

atures, from the form of the low-temperature correction for the Thomas-Fermi

wavevector in Eq. (A.38), we expect

g(i)
(
T

TF

)
≈ 1−A(i)

(
T

TF

)2

. (A.47)

Note that A(i) depends on the screening strength, and in the strong screening

limit, from Eq. (A.40) we have A(i) = 2π2

3J . At high temperatures, however,

τ (i)(ε, T ) cannot be simply decomposed as Eq. (A.44). The energy averaging

typically dominates over the screening contribution [155], and the screening

correction g
(

T
TF

)
only gives a constant factor without changing the temperature

power. Assuming g(i)
(

T
TF

)
≈ 1 at high temperatures, then in the low and high

temperature limits, we have

σii(T )

σii(0)
=


1 +

[
π2

6 (δ − α)δ −A(i)
] (

T
TF

)2
(T ≪ TF),

Γ(δ + 1)η(δ)
(

T
TF

)δ
(T ≫ TF).

(A.48)
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Now, consider m-WSMwith α = 2
J+1. For short-range impurities, g(i)

(
T
TF

)
=

1, and from the energy dependence of the relaxation time in Eq. (A.21), γ = − 2
J .

Thus, we find

σxx(T )

σxx(0)
=


1 + π2

3

(
J−1
J

) (
J−4
J

) (
T
TF

)2
(T ≪ TF),

Γ(3− 2
J )η(2−

2
J )
(

T
TF

)2− 2
J

(T ≫ TF),

(A.49a)

σzz(T )

σzz(0)
=


1− e−TF/T (T ≪ TF),

1
2 + 1

8η( 2
J )Γ(

2
J
+2)

(
T
TF

)− 2+J
J

(T ≫ TF).
(A.49b)

For charged impurities in the strong screening limit, from Eq. (A.23), τ (i)(ε) ∼

ε−
2
J thus γ = − 2

J at low temperatures, whereas at high temperatures τ (i)(ε) ∼

ε−
2
J
+ 4

J because thermally induced charge carriers participate in transport giv-

ing γ = 2
J . Combining the temperature dependent screening correction with

A(i) = 2π2

3J at low temperatures, we find

σxx(T )

σxx(0)
=


1 + π2

3

(
J2−7J+4

J2

)(
T
TF

)2
(T ≪ TF),

Γ(3 + 2
J )η(2 +

2
J )
(

T
TF

)2+ 2
J

(T ≫ TF),

(A.50a)

σzz(T )

σzz(0)
=


1− 2π2

3J

(
T
TF

)2
(T ≪ TF),

Γ(1 + 4
J )η(

4
J )
(

T
TF

) 4
J

(T ≫ TF).

(A.50b)

For charged impurities at arbitrary screening, from the Fermi energy depen-

dence of the relaxation time discussed in Sec. A.2, γ = 4ζ− 2
J with 1

J ≤ ζ ≤ 1 at

high temperatures. Thus, we can express the low and high temperature asymp-
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totic forms as

σxx(T )

σxx(0)
=


1 + Cxx

(
T
TF

)2
(T ≪ TF),

Γ
(
3 + 4ζ − 2

J

)
ζ
(
2 + 4ζ − 2

J

) (
T
TF

)2+4ζ− 2
J

(T ≫ TF),

(A.51a)

σzz(T )

σzz(0)
=


1 + Czz

(
T
TF

)2
(T ≪ TF),

Γ(1 + 4ζ)η(4ζ)
(

T
TF

)4ζ
(T ≫ TF).

(A.51b)

As explained in Sec. A.2, ζs in σxx and σzz do not need to be the same. Note that

ζ = 1
J in Eq. (A.51) gives the same high-temperature exponent corresponding

to the strong screening limit in Eq. (A.50), and the temperature dependent

conductivity has the high-temperature asymptotic form given by Eq. (A.51)

with ζ which varies within 1
J ≤ ζ ≤ 1 and approaches 1

J in the strong screening

limit.

Figure A.3 shows the evolution of the low-temperature coefficients Cxx and

Czz in Eq. (A.51) for charged impurities as a function of the screening strength

gα. Above a critical gα, Cxx and Czz become negative, thus the conductivity

decreases with temperature, showing a metallic behavior. As gα increases fur-

ther, the low-temperature coefficients eventually approach Cxx = π2

3

(
J2−7J+4

J2

)
and Czz = −2π2

3J , as obtained in Eq. (A.50). The non-monotonic behavior in

the low-temperature coefficients Czz as a function of gα for J > 1 originates

from the angle-dependent power-law in the relaxation time, similarly as shown

in Fig. 3.2 in the main text.
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Figure A.1 Angle dependent exponent ζ(θ) for (a)-(c) J = 2 and (d)-(f) J = 3 as

a function of the screening strength gα at θ = 0, π/6, π/2. Blue dashed-dotted,

black solid, and red dashed lines represent n = 0.1n0, n0, 10n0, respectively.
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Figure A.2 Temperature dependence of (a)-(c) chemical potential and (d)-(f)

Thomas-Fermi wavevector for m-WSMs with J = 1, 2, 3. Red dashed and blue

dashed-dotted lines represent the asymptotic forms in Eqs. (A.36) and (A.40).
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Figure A.3 Low-temperature coefficients (a)-(c) Cxx and (d)-(f) Czz as a func-

tion of the screening strength gα for charged impurities. Red dashed lines rep-

resent the low-temperature coefficients in the strong screening limit given by

Eq. (A.50). Here, n = n0 is used for calculation.
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Appendix B

Semiclassical Boltzmann transport
theory of few-layer black
phosphorus in various phases

B.1 Eigenstates and density of states

In this section, we provide a detailed explanation on the model Hamiltonian of

few-layer black phosphorus (BP), and its various properties including density of

states (DOS). In the model Hamiltonian given by Eq. (4.1) in the main text, the

exact values of m∗ and v0 depend on the number of layers and the gap tuning

parameter. We introduce the normalization constants k0 ≡ a−1 and ε0 ≡ ℏ2k20
2m∗ ;

thus, the Hamiltonian becomes

H = ε0

 0 k̃2x − ick̃y +∆

k̃2x + ick̃y +∆ 0

 , (B.1)

where k̃ = k/k0, c = ℏv0k0/ε0, and ∆ ≡ εg
2ε0

. To avoid difficulties associated

with anisotropic dispersion, we consider the following coordinate transformation
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with

kx → αk0 (r cosϕ−∆)
1
2 ,

ky → k0
c
r sinϕ,

(B.2)

where α = ±1 represents each half of the Fermi surfaces. This Fermi surface

splitting is especially useful for the ∆ < 0 case where there are two distinct

Fermi surfaces (see Fig. 4.1(f) in the main text), accounting for the “interband”

scattering between these two surfaces. The maximum value of ϕ is thus given

by

ϕmax(r) =


arccos

(
∆
r

)
(∆ ̸= 0 and |∆| < r),

π (∆ < 0 and |∆| ≥ r),

π
2 (otherwise),

(B.3)

where ϕ ∈ [−ϕmax(r), ϕmax(r)]. This coordinate transformation changes the

Hamiltonian into the following form:

H = ε0r

 0 e−iϕ

eiϕ 0

 . (B.4)

In the transformed coordinates, the energy dispersion is given by ε±(r) = ±ε0r

and the corresponding eigenstates are given by

|+⟩ =
1√
2

 1

eiϕ

 , (B.5a)

|−⟩ =
1√
2

 −1

eiϕ

 . (B.5b)

The Jacobian J corresponding to this transformation is given by

J =

∣∣∣∣∣∣
∂kx
∂r

∂kx
∂ϕ

∂ky
∂r

∂ky
∂ϕ

∣∣∣∣∣∣ = k20r

2c
√
r cosϕ−∆

≡ J (r, ϕ). (B.6)
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Note that, for the + band, the band velocity v
(i)
k = 1

ℏ
∂ε+,k

∂ki
can be expressed as

v
(x)
k = 2αv0 cosϕ

√
r cosϕ−∆, (B.7a)

v
(y)
k = v0c sinϕ, (B.7b)

where v0 =
ε0
ℏk0 .

The DOS at the semi-Dirac transition point (∆ = 0) at the energy ε > 0

can be obtained analytically as

D(ε) = g

∫
d2k

(2π)2
δ(ε− ε+,k)

= 2g

∫ ∞

0
dr

∫ π
2

−π
2

dϕ
J (r, ϕ)

(2π)2
δ(ε− ε0r)

=
2gk20

√
2K(1/2)

π2cε0

(
ε

ε0

) 1
2

, (B.8)

where g is the spin degeneracy, and the factor 2 originates from the dupli-

cate parts of the Fermi surfaces parameterized by α = ±1. Here, K(k) =∑∞
n=0 [(2n− 1)!!/(2n)!!]2 k2n is the complete elliptic integral of the first kind

with K(1/2) ≈ 1.854 [45]. Note that the Thomas–Fermi wave vector is deter-

mined by the DOS at the Fermi energy εF given by

qTF =
2πe2

κ
D(εF) =

4gα0k0
√
2K(1/2)

πc

(
εF
ε0

) 1
2

, (B.9)

where α0 =
e2

κℏv0 is the effective fine structure constant.

The carrier density is thus given by

n =

∫ εF

0
dεD(ε) = n0

4g
√
2K(1/2)

3π2c

(
εF
ε0

) 3
2

, (B.10)

where n0 = k20. Note that εF ∼ n
2
3 and D(εF) ∼ n

1
3 .

Figure 4.2 in the main text shows the calculated DOS and the carrier density

for each phase.
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B.2 Density dependence of dc conductivity in black

phosphorus

In this section, we derive the dc conductivity at zero temperature for 2D multi-

band systems with anisotropic energy dispersion. To consider the anisotropy of

the energy dispersion, we express the multiband anisotropic Boltzmann equa-

tion in Eq. (4.7) using the transformed coordinates in Eq. (B.6) as follows:

1 =
∑
α′

∫ ∞

0
dr′
∫ ϕmax(r′)

−ϕmax(r′)
dϕ′

J (r′, ϕ′)

(2π)2
Wαα′

kk′

(
τ
(i)
kα −

v
(i)
k′α′

v
(i)
kα

τ
(i)
k′α′

)

=
∑
α′

∫ ∞

0
dr′
∫ ′

r

dϕ′

(2π)2
k20r

′

2c
√
r′ cosϕ′ −∆

×
[
2π

ℏ
nimp|V αα′

kk′ |2Fαα′
kk′ δ(ε0r − ε0r

′)

](
τ
(i)
kα − d

αα′(i)
kk′ τ

(i)
k′α′

)
=

2π

ℏ
nimp

k20
2πcε0

∑
α′

∫ ′

r

dϕ′

2π

r

2
√
r cosϕ′ −∆

|V αα′
kk′ |2Fαα′

kk′

(
τ
(i)
kα − d

αα′(i)
kk′ τ

(i)
k′α′

)
,

(B.11)

where α = ±1 represents each half of the Fermi surfaces, d
αα′(i)
kk′ = v

(i)
k′α′/v

(i)
kα,

and Fαα′
kk′ = 1

2 [1 + cos(ϕ− ϕ′)] is the square of the wave function overlap be-

tween k and k′ states in the same conduction (or valence) band. Let us define

ρ0 =
k20

2πcε0
, V0 =

ε0
k20
, and 1

τ0(r)
= 2π

ℏ nimpV
2
0 ρ0, then we have

1 =
∑
α′

∫ ′

r

dϕ′

2π

r

2
√
r cosϕ′ −∆

×|Ṽ αα′
kk′ |2Fαα′

kk′

(
τ̃
(i)
kα − d

αα′(i)
kk′ τ̃

(i)
k′α′

)
, (B.12)

where Ṽ
αα′(i)
kk′ = V

αα′(i)
kk′ /V0 and τ̃

(i)
kα = τ

(i)
kα/τ0. Here,

∫ ′
r dϕ

′ represents an inte-

gration over −ϕmax(r) < ϕ′ < ϕmax(r). Thus, Eq. (B.12) becomes

1 =
∑
α′

[
w̃

(i)
αα′(ϕ)τ̃

(i)
α (ϕ)−

∫ ′

r

dϕ′

2π
w̃

(i)
αα′(ϕ, ϕ

′)τ̃
(i)
α′ (ϕ

′)

]
, (B.13)
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where

w̃
(i)
αα′(ϕ) =

∫ ′

r

dϕ′

2π

r

2
√
r cosϕ′ −∆

|V αα′
kk′ |2Fαα′

kk′ ,

(B.14a)

w̃
(i)
αα′(ϕ, ϕ

′) =
r

2
√
r cosϕ′ −∆

|V αα′
kk′ |2Fαα′

kk′ d
αα′(i)
kk′ .

(B.14b)

Since Eq. (B.13) holds for both α = ±1, we can rewrite it as

1 = w̃
(i)
11 (ϕ)τ̃

(i)
1 (ϕ)−

∫ ′

r

dϕ′

2π
w̃

(i)
11 (ϕ, ϕ

′)τ̃
(i)
1 (ϕ′) (B.15a)

+ w̃
(i)
1−1(ϕ)τ̃

(i)
1 (ϕ)−

∫ ′

r

dϕ′

2π
w̃

(i)
1−1(ϕ, ϕ

′)τ̃
(i)
−1(ϕ

′),

1 = w̃
(i)
−11(ϕ)τ̃

(i)
−1(ϕ)−

∫ ′

r

dϕ′

2π
w̃

(i)
11 (ϕ, ϕ

′)τ̃
(i)
1 (ϕ′) (B.15b)

+ w̃
(i)
−1−1(ϕ)τ̃

(i)
−1(ϕ)−

∫ ′

r

dϕ′

2π
w̃

(i)
−1−1(ϕ, ϕ

′)τ̃
(i)
−1(ϕ

′).

Now, let us discretize ϕ to ϕn (n = 1, 2, · · · , N) with an interval ∆ϕ =

2ϕmax(r)/N . Thus, for τ̃
(i)
nα = τ̃

(i)
α (ϕn), we have

1 = P (i) n
11τ̃

(i)
n1 −

∑
n′

P (i)nn′
11 τ̃

(i)
n′1

+ P (i) n
1−1τ̃

(i)
n1 −

∑
n′

P (i) nn′
1−1τ̃

(i)
n′−1, (B.16a)

1 = P (i) n
−11τ̃

(i)
n−1 −

∑
n′

P (i) nn′
−11τ̃

(i)
n′1

+ P (i) n
−1−1τ̃

(i)
n−1 −

∑
n′

P (i) nn′
−1−1τ̃

(i)
n′−1, (B.16b)

where P (i) n
αα′ = w̃

(i)
αα′(ϕn) is an N -vector and P (i)nn′

αα′ = w̃
(i)
αα′(ϕn, ϕn′)∆ϕ is an

N×N matrix, which correlates the different ϕ-dependent relaxation times for a

given (α, α′) combination. Note that Eq. (B.16) shares the basic structure with

the multiband scattering formula [68, 69] (which accounts for the scattering

between each half of the Fermi surface) and the anisotropic scattering formula
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[70] (which accounts for the scattering between different ϕ and ϕ′ points). Fur-

thermore, Eq. (B.16) is a 2N × 2N matrix equation with two independent

basis indices (α, ϕn), i.e., index α for each half of the Fermi surfaces and the

ϕ-discretization index n.

Thus, the dc conductivity at zero temperature is given by

σij = ge2
∑
α

∫
d2k

(2π)2
δ(εk − εF)v

(i)
kαv

(j)
kατ

(j)
kα

= ge2
∑
α

∫ ∞

0
dr

∫ ′

r
dϕ
k20rδ(ε0r − εF)v

(i)
kαv

(j)
kατ

(j)
kα

2(2π)2c
√
r cosϕ−∆

= σ0
∑
α

∫ ∞

0
dr

∫ ′

r

dϕ

2π

rδ(r − rF)ṽ
(i)
kαṽ

(j)
kα τ̃

(j)
kα

2
√
r cosϕ−∆

, (B.17)

where σ0 = ge2ρ0v
2
0τ0, rF = εF/ε0 and ṽ

(i)
kα = v

(i)
kα/v0. Thus, from Eq. (B.7), we

have

σxx
σ0

= 2
∑
α

∫ ′

rF

dϕ

2π
rF cos2 ϕ

√
rF cosϕ−∆τ̃ (x)α (ϕ),

(B.18a)

σyy
σ0

= c2
∑
α

∫ ′

rF

dϕ

2π

rF sin2 ϕ

2
√
rF cosϕ−∆

τ̃ (y)α (ϕ). (B.18b)

Note that τ0, v0, ρ0, and σ0 are the density-independent normalization constants

in units of time, velocity, DOS, and conductivity, respectively.

B.3 Low-density approximate models for the insulator

phase and Dirac semimetal phase

In this section, we derive the dc conductivity of low-density approximate mod-

els for the insulator phase and Dirac semimetal phase. Note that the only

anisotropy considered in these models is the anisotropy in the effective mass or

velocity with the same power-law dependence in momentum.
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B.3.1 Insulator phase at low densities

For the insulator phase, as well as the Dirac semimetal phase discussed later, the

DOS and carrier density do not follow the simple power-law behavior. There-

fore, we utilize approximate models to understand the asymptotic behavior of

dc conductivity at low densities. When |εF| > |εg| but the carrier density is suf-

ficiently small, the system can be approximated as a two-dimensional electron

gas (2DEG). From the series expansion at the minimum point of the conduction

band, we have

ε(k) = ε0

(
kx
k0

)2

+
ε0c

2

2∆

(
ky
k0

)2

≡ ℏ2k2x
2mx

+
ℏ2k2y
2my

, (B.19)

where mx =
ℏ2k20
2ε0

and my =
∆ℏ2k20
c2ε0

.

For comparison, we first consider a 2DEG with an isotropic energy disper-

sion given by

ε(k) =
ℏ2k2

2m
. (B.20)

As the system is isotropic, we can readily calculate the conductivity of each

case using the Einstein relation

σiso = e2D(εF)D, (B.21)

where D =
v2FτF
2 is the diffusion constant and D(ε) = gm

2πℏ2 is the DOS for the

isotropic 2DEG. The relaxation time at the Fermi energy τF is given by

1

τF
=

2πnimp

ℏ

∫
d2k′

(2π)2
|Vkk′ |2δ(ε− εF)(1− cosϕ′)

=
2πnimp

ℏ
m

2πℏ2

∫ 2π

0

dϕ′

(2π)
|Vϕ′ |2(1− cosϕ′)

≡ 2πnimp

ℏ
m

2πℏ2
V̄ 2
i2DEG, (B.22)
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where Vϕ′ is the angle-dependent potential on the Fermi surface and V̄ 2
i2DEG ≡∫ 2π

0
dϕ′

2π |Vϕ′ |2(1− cosϕ′) is the angle-averaged square of the impurity potential.

Therefore, the dc conductivity of the isotropic 2DEG is given by

σiso = e2
( gm

2πℏ2
)(v2F

2

)(
ℏ

2πnimp

2πℏ2

mV̄ 2
i2DEG

)
=

ge2ℏ
2πnimpV̄ 2

i2DEG

(
ℏ2k2F
2m2

)
=

ge2ℏεF
2πnimpmV̄ 2

i2DEG

, (B.23)

where vF = ℏkF
m and εF =

ℏ2k2F
2m2 .

Subsequently, let us consider the Fermi energy dependence of the dc con-

ductivity using the Einstein relation in Eq. (B.21). For short-range impurities,

V̄ 2
i2DEG is a constant independent of εF; thus, we have

σ ∼ εF. (B.24)

Here, we used v2F ∼ k2F ∼ εF. For charged impurities in the strong screening

limit, V̄ 2
i2DEG ∼ q−2

TF ∼ D−2(εF) is also a constant; thus,

σ ∼ εF. (B.25)

For the anisotropic 2DEG with different effective masses in each direction,

we introduce the following coordinate transformation [(kx, ky) → (k, ϕ)]:

kx →
√
mx

m
k cosϕ,

ky →
√
mx

m
k sinϕ,

(B.26)

which gives the Jacobian dkxdky =
√
mxmy

m kdkdϕ. The band velocity v
(i)
k = 1

ℏ
∂εk
∂ki

can be expressed as

v
(x)
k =

ℏk
√
mmx

cosϕ,

v
(y)
k =

ℏk
√
mmy

sinϕ.

(B.27)
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Subsequently, the energy dispersion becomes isotropic in the transformed

coordinates; thus, the DOS is given by

D(ε) =
g
√
mxmy

2πℏ2
. (B.28)

The relaxation time of the anisotropic 2DEG for k at the Fermi energy can

be obtained by solving the coupled integral equation [Eq. (4.7) in the main

text]. For short-range impurities or charged impurities in the strong screening

limit, the scattering potential Vkk′ = V0 is independent of the angle, thus it can

be shown that τ
(i)
k = τ

(i)
εk ≡ τ (i). Then the coupled equation can be simplified

as

1

τ (i)
=

2πnimp

ℏ

∫
d2k′

(2π)2
|Vkk′ |2δ(εk − εk′)

(
1−

v
(i)
k′

v
(i)
k

)

=
2πnimp

ℏ

√
mxmy

2πℏ2
V̄ 2
a2DEG, (B.29)

where V̄ 2
a2DEG ≡

∫ 2π
0

dϕ′

(2π) |V0|
2

(
1− v

(i)

k′

v
(i)
k

)
= |V0|2 is the angle-averaged square of

the impurity potential for the anisotropic 2DEG. Note that τ (i) is independent

of the direction i.

Therefore, the conductivity of the anisotropic 2DEG is given by

σij = ge2
∫

d2k

(2π)2
δ(εF − ε(k))v(i)v(j)τ (j)

=
ge2

√
mxmy

2πℏ2
τF

∫ 2π

0

dϕ

2π
v
(i)
F v

(j)
F , (B.30)

where τF is the relaxation time at the Fermi energy. When the electric field and
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the current density are along the x-direction, the conductivity σxx becomes

σxx =
ge2

√
mxmy

2πℏ2
τF

∫ 2π

0

dϕ

2π

[
v
(x)
F

]2
=

ge2
√
mxmy

2πℏ2
ℏ

2πnimp

2πℏ2
√
mxmyV̄ 2

a2DEG

× ℏ2

mmx

∫ 2π

0

dϕ

2π
k2F cos2 ϕ

=
ge2ℏεF

2πnimpV̄ 2
a2DEGm

m

mx
. (B.31)

Similarly, when the electric field and the current density are along the y-

direction, the conductivity σyy becomes

σyy =
ge2

√
mxmy

2πℏ2
τF

∫ 2π

0

dϕ

2π

[
v
(y)
F

]2
=

ge2ℏεF
2πnimpV̄ 2

a2DEGm

m

my
. (B.32)

Therefore, the dc conductivities for the anisotropic case are modified as

σxx = σiso
m

mx
, (B.33a)

σyy = σiso
m

my
. (B.33b)

Thus, for short-range impurities or charged-impurities in the strong screening

limit, the Fermi energy dependence of the dc conductivities for the anisotropic

2DEG follows that of the isotropic 2DEG given by Eqs. (B.24) and (B.25).

Note that, as the Fermi energy or the carrier density increases, the insulator

phase can no longer be approximated by a 2DEG model, and the energy disper-

sion follows that of the semi-Dirac transition point. Therefore, the power-law

dependence eventually follows that of the semi-Dirac transition point.
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B.3.2 Dirac semimetal phase at low densities

For the Dirac semimetal phase (∆ < 0), the series expansion at one of the band

touching points gives

H(k) =
ε0
k0

(
2
√
−∆kxσx + ckyσy

)
(B.34)

≡ ℏ (vxkxσx + vykyσy) ,

where vx = 2
√
−∆ε0
ℏk0 and vy = cε0

ℏk0 .

For comparison, we first consider an isotropic 2D Dirac semimetal with the

Hamiltonian given by

H(k) = ℏv (kxσx + kyσy) . (B.35)

The DOS is thus given by

D(ε) =
gk

2πℏv
=

gε

2πℏ2v2
. (B.36)

The relaxation time at the Fermi energy τF is given by

1

τF
=

2πnimp

ℏ

∫
d2k′

(2π)2
|Vkk′ |2Fkk′δ(ε− εF)(1− cosϕ′)

=
2πnimp

ℏ
kF

2πℏv

∫ 2π

0

dϕ′

2π
|Vϕ′ |2F (ϕ′)(1− cosϕ′)

=
2πnimp

ℏ
kF

2πℏv
V̄ 2
igp, (B.37)

where F (ϕ′) = 1
2(1 + cosϕ′) is the square of the wave function overlap and

V̄ 2
igp ≡

∫ 2π
0

dϕ′

2π |Vϕ′ |2F (ϕ′)(1−cosϕ′) is the angle-averaged square of the impurity

potential. Therefore, the dc conductivity of the isotropic Dirac semimetal is

given by

σiso = e2
(
gkF
2πℏv

)
v2

2

(
ℏ

2πnimp

2πℏv
kFV̄ 2

igp

)

=
ge2ℏv2

4πnimpV̄ 2
igp

. (B.38)
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Subsequently, let us consider the Fermi energy dependence of the dc con-

ductivity using the Einstein relation in Eq. (B.21). For short-range impurities,

V̄ 2
igp is a constant independent of εF; thus, we have

σ ∼ ε0F, (B.39)

whereas for charged impurities in the strong screening limit, V̄ 2
igp ∼ q−2

TF ∼

D−2(εF) ∼ ε−2
F ; thus,

σ ∼ ε2F. (B.40)

Note that, even in the weak screening limit, V̄ 2
igp ∼ k−2

F ∼ ε−2
F , and in general,

σ ∼ ε2F for charged impurities.

For the anisotropic Dirac semimetals with different velocities in each direc-

tion, we introduce the following coordinate transformation [(kx, ky) → (k, ϕ)]:

kx → v

vx
k cosϕ,

ky → v

vy
k sinϕ,

(B.41)

which gives the Jacobian dkxdky = v2

vxvy
kdkdϕ. The band velocity v

(i)
k = 1

ℏ
∂εk
∂ki

can be expressed as

v
(x)
k = vx cosϕ,

v
(y)
k = vy sinϕ.

(B.42)

Subsequently, the energy dispersion becomes isotropic in the transformed

coordinates; thus, the DOS is given by

D(ε) =
gvk

2πℏvxvy
=

gε

2πℏ2vxvy
. (B.43)

Similarly, using the same assumptions which were used in Eq. (B.29), for short-

range impurities or charged impurities in the strong screening limit, we can
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calculate the relaxation time of the anisotropic Dirac semimetals given by

1

τ (i)
=

2πnimp

ℏ

∫
d2k′

(2π)2
|Vkk′ |2Fkk′δ(εk − εk′)

(
1−

v
(i)
k′

v
(i)
k

)

=
2πnimp

ℏ
gvk

2πℏvxvy
V̄ 2
agp, (B.44)

where V̄ 2
agp ≡

∫ 2π
0

dϕ′

(2π) |V0|
2F (ϕ′)

(
1− v

(i)

k′

v
(i)
k

)
= |V0|2

4 is the angle-averaged square

of the impurity potential for the anisotropic graphene. Note that τ (i) for the

anisotropic Dirac semimetal is also independent of the direction i.

Therefore, the conductivity of the anisotropic Dirac semimetal is given by

σij = ge2
∫

d2k

(2π)2
δ(εF − ε(k))v(i)v(j)τ (j) (B.45)

=
ge2vk

2πℏvxvy
τF

∫ 2π

0

dϕ

2π
v
(i)
F v

(j)
F .

When the electric field and the current density are along the x-direction, the

conductivity σxx becomes

σxx =
ge2vk

2πℏvxvy
τF

∫ 2π

0

dϕ

2π

[
v
(x)
F

]2
=

ge2vk

2πℏvxvy
ℏ

2πnimp

2πℏvxvy
vkV̄ 2

agp

v2x

∫ 2π

0

dϕ

2π
cos2 ϕ

=
ge2ℏv2

4πnimpV̄ 2
agp

v2x
v2
. (B.46)

Similarly, when the electric field and the current density are along the y-

direction, the conductivity σyy becomes

σyy =
ge2vk

2πℏvxvy
τF

∫ 2π

0

dϕ

2π

[
v
(y)
F

]2
=

ge2ℏv2

4πnimpV̄ 2
agp

v2y
v2
. (B.47)

Therefore, the dc conductivities for the anisotropic case are modified as

σxx = σiso
v2x
v2
, (B.48a)

σyy = σiso
v2y
v2
. (B.48b)
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Thus, for short-range impurities or charged-impurities in the strong screening

limit, the Fermi energy dependence of the dc conductivities for the anisotropic

graphene follows that of the isotropic graphene given by Eqs. (B.39) and (B.40).

Near the van Hove singularities, where the energy dispersion can be ex-

panded as ε(k)/ε0 ≈ |∆| − k̃2x +
c2k̃2y
2|∆| , the DOS diverges logarithmically [67],

dominating the overall power-law behavior of the conductivity. Therefore, for

short-range impurities, the conductivity becomes

σxx ∼ [− log(|∆| − εF)]
−1, (B.49a)

σyy ∼ [− log(|∆| − εF)]
−1. (B.49b)

For the charged impurities near the van Hove singularities, the conductivity

becomes

σxx ∼ [log(|∆| − εF)]
2, (B.50a)

σyy ∼ [log(|∆| − εF)]
2. (B.50b)

Note that, as the Fermi energy or the carrier density increases, the power-

law dependence of the dc conductivity follows that of the semi-Dirac transition

point, as in the gapped insulator case.

B.4 Temperature dependence of chemical potential and

Thomas–Fermi wave vector in black phosphorus

In this section, we derive the temperature-dependent chemical potential and

Thomas–Fermi wave vector of few-layer BP. When the temperature is finite, the

chemical potential µ deviates from the Fermi energy εF due to the broadening

of the Fermi distribution function f (0)(ε, µ) =
[
eβ(ε−µ) + 1

]−1
where β = 1

kBT
.

As the charge carrier density n does not vary under the temperature change,
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we have

n =

∫ ∞

−∞
dεD(ε)f (0)(ε, µ)

=

∫ ∞

0
dεD(ε)

[
f (0)(ε, µ) + f (0)(−ε, µ)

]
≡

∫ εF

−∞
dεD(ε). (B.51)

Thus, the carrier density measured from the charge neutral point, ∆n ≡ n|µ −

n|µ=0, is given by

∆n =

∫ ∞

0
dεD(ε)

[
f (0)(ε, µ)− f (0)(ε,−µ)

]
≡

∫ εF

0
dεD(ε), (B.52)

where the first and second lines represent the carrier density evaluated at the fi-

nite and zero temperatures, respectively. Here, we used f(−ε, µ) = 1−f(ε,−µ).

By solving this equality in terms of µ, we can calculate the chemical potential

of the system for a given temperature T . See the Supplemental Material in [70]

for the simplified cases.

Subsequently, consider the temperature-dependent Thomas–Fermi wave vec-

tor qTF(T ). Note that, in 3D, qTF(0) = 2πe2

κ D(εF) and at finite T , qTF(T ) =

2πe2

κ
∂n
∂µ . Thus, we have

qTF(T )

qTF(0)
=

β

2D(εF)

∫ ∞

0
dεD(ε) (B.53)

×
[

1

1 + coshβ(ε− µ)
+

1

1 + coshβ(ε+ µ)

]
.

For a given T , the chemical potential is calculated using the density invariance

in Eq. (B.52), and subsequently, qTF(T ) is obtained from the above relation.

When the DOS is given by a simple power law with respect to energy, we

can analytically obtain the temperature dependence of the chemical potential
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and Thomas–Fermi wave vector, and their asymptotic behaviors at low and

high temperatures.

Consider a gapless electron–hole system with a DOS given by D(ε) =

Cα|ε|α−1Θ(ε), where Cα is a constant and Θ(ε) is a step function. Using the

results from the Supplemental Materials in Ref. [70], we can obtain

µ

εF
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

1
2η(α−1)Γ(α+1)

(
TF
T

)α−1
(T ≫ TF),

(B.54)

where TF = εF/kB is the Fermi temperature, η is the Dirichlet eta function, and

Γ is the gamma function [45]. For the temperature-dependent Thomas–Fermi

wave vector qTF(T ), we obtain

qTF(T )

qTF(0)
=


1− π2

6 (α− 1)
(

T
TF

)2
(T ≪ TF),

2η(α− 1)Γ(α)
(

T
TF

)α−1
(T ≫ TF),

(B.55)

For few-layer BP at the semi-Dirac transition point, the DOS is given by

D(ε) ∝ ε
1
2 ; thus, α = 3

2 . Thus, we have

µ

εF
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

1
2η( 1

2)Γ(
5
2)

(
T
TF

) 1
2

(T ≫ TF),
(B.56)

and

qTF(T )

qTF(0)
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

2η
(
1
2

)
Γ
(
3
2

) (
T
TF

) 1
2

(T ≫ TF),

(B.57)

where qTF(0) = qTF is given by Eq. (A.8).

Figure B.1, Figure B.2, and Figure B.3 show the calculated temperature

dependence of the chemical potential µ(T ) and Thomas–Fermi wave vector

qTF(T ) in various phases of BP using Eqs. (B.52) and (B.53), respectively.
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Figure B.1 Calculated temperature dependence of (a) chemical potential and (b)

Thomas–Fermi wave vector for the semi-Dirac transition point (∆ = 0). Here,

the black solid lines represent the numerical result, and the red/blue dashed

lines represent the high-/low-temperature asymptotic forms in Eqs. (B.56) and

(B.57). If the chemical potential and temperature are normalized by εF and TF,

respectively, the result is independent of εF at the semi-Dirac transition point.

B.5 Temperature dependence of dc conductivity at

the semi-Dirac transition point

Using Eq. (4.10) in the main text, we can generalize the conductivity tensor at

zero temperature to that at finite temperature. For f (0)(ε) =
[
z−1eβε + 1

]−1
,

where z = eµ is the fugacity, S(0)(ε) = −∂f (0)(ε)
∂ε = βf (0)(ε)

[
1− f (0)(ε)

]
=

βz−1eβε

(z−1eβε+1)2
. Thus, the conductivity at finite temperature is given by
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σij(T ) = ge2
∑
α

∫
d2k

(2π)2

(
−∂f

(0)(εk)

∂ε

)
v
(i)
kαv

(j)
kατ

(j)
kα

= ge2
∑
α

∫ ∞

0
dr

∫ ′

r
dϕ

k20r

2c
√
r cosϕ−∆

βz−1eβε0r

(z−1eβε0r + 1)2
v
(i)
kαv

(j)
kατ

(j)
kα

= σ0
∑
α

∫ ∞

0
dr

∫ ′

r

dϕ

2π

r

2
√
r cosϕ−∆

βε0z
−1eβε0r

(z−1eβε0r + 1)2
ṽ
(i)
kαṽ

(j)
kα τ̃

(j)
kα .

(B.58)

Thus, from Eq. (B.7), we have

σxx(T ) = 2σ0
∑
α

∫ ∞

0
dr

βε0z
−1eβε0r

(z−1eβε0r + 1)2

∫ ′

r

dϕ

2π
r cos2 ϕ

√
r cosϕ−∆τ̃α

(x)(ϕ),

(B.59a)

σyy(T ) = c2σ0
∑
α

∫ ∞

0
dr

βε0z
−1eβε0r

(z−1eβε0r + 1)2

∫ ′

r

dϕ

2π

r sin2 ϕ

2
√
r cosϕ−∆

τ̃ (y)α (ϕ).

(B.59b)

To derive the asymptotic behaviors of σii(T ) at low and high tempera-

tures, assume that the relaxation time can be decomposed into energy- and

temperature-dependent parts as τ (i)(ε, T ) = τ (i)(ε)g(i)
(

T
TF

)
where g(i)

(
T
TF

)
is the energy-independent correction term from the temperature-dependent

screening effect with g(i)(0) = 1. For short-range impurities, g(i)
(

T
TF

)
= 1. For

charged Coulomb impurities, we expect g
(

T
TF

)
≈ 1−A(i)

(
T
TF

)2
at low temper-

atures, whereas at high temperatures, the energy averaging typically dominates

over the screening contribution and we can assume g
(

T
TF

)
≈ 1. Suppose the

following power-law dependence: D(ε) ∼ εα−1, v(i)(ε) ∼ εν , and τ (i)(ε) ∼ εγ .

Subsequently, by rewriting Eq. (B.58) as an energy-integral form, we obtain the

asymptotic power-law behavior of the temperature-dependent conductivity at
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low and high temperatures as

σii(T )

σii(0)
=


1 +

[
π2

6 (δ − α)δ −A(i)
] (

T
TF

)2
(T ≪ TF),

Γ(δ + 1)η(δ)
(

T
TF

)δ
(T ≫ TF),

(B.60)

where δ = α − 1 + 2ν + γ. (See the Supplemental Material of Ref. [70] for the

detailed derivation of the power-law analysis of the temperature-dependent dc

conductivity.) For the semi-Dirac transition point (∆ = 0), α = 3
2 .

For short-range impurities, g
(

T
TF

)
= 1 and from the energy dependence of

the relaxation time, γ = −1
2 . Thus, from Eq. (B.59), the asymptotic behavior

is given by

σxx(T )

σxx(0)
=


1− π2

12

(
T
TF

)2
(T ≪ TF),

log 2
(

T
TF

)
(T ≫ TF),

(B.61a)

σyy(T )

σyy(0)
=


1− e−TF/T (T ≪ TF),

1
2 + 1

8η( 1
2)Γ(

5
2)

(
T
TF

)− 3
2

(T ≫ TF).
(B.61b)

Here, the extra terms in σyy(T )/σyy(0) were obtained through the next-order

expansion of the temperature corrections.

For charged impurities in the strong screening limit, A(i) = π2

6 , which is two

times the low-temperature coefficient π2

12 in Eq. (B.57), and γ = 1
2 . Thus, we

obtain

σxx(T )

σxx(0)
=


1 (T ≪ TF),

π2

6

(
T
TF

)2
(T ≫ TF),

(B.62a)

σyy(T )

σyy(0)
=


1− π2

4

(
T
TF

)2
(T ≪ TF),

log 2
(

T
TF

)
(T ≫ TF).

(B.62b)
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As the screening strength decreases, the low-temperature coefficient in Eq. (B.60)

increases, because the screening coefficient A(i) decreases whereas the other part

remains positive.

B.6 Temperature dependence of dc conductivity in

the low-density approximate models for the in-

sulator phase and Dirac semimetal phase

In this section, we present the temperature dependence of the chemical poten-

tial, Thomas–Fermi wave vector, and conductivity of the low-density approxi-

mate models for the insulator phase and Dirac semimetal phase, which are the

gapped 2DEG and graphene, respectively.

B.6.1 Insulator phase

We introduce the gapped 2DEG model system with the energy dispersion given

by ε(k) = ±ε0
[
∆+ (k/k0)

2
]
with ∆ > 0, to account for the thermal excitation

behavior involving the band gap between the valence and conduction bands,

similar to the insulator phase. Note that the effects of the difference between

the effective mass of each direction are canceled out by zero-temperature nor-

malization.

Figure B.4 shows the calculated dc conductivities as a function of the tem-

perature for the gapped 2DEG system in the low-density limit with εF = 1.1ε0

along with the result of the insulator phase with the same Fermi energy (see

also Fig. 4.8 in the main text). At low temperatures, the calculated results

of temperature-dependent conductivity in the insulator phase show a similar

behavior as that of the low-density approximate model. However, as the tem-

perature increases, the discrepancy between the two results increases, and in
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the high-temperature limit, the conductivity becomes similar to that of the

semi-Dirac transition point.

B.6.2 Dirac semimetal Phase

For graphene (which is an approximate model for the Dirac semimetal phase

in the low-density limit) from Eqs. (B.54) and (B.55) with α = 2, the low– and

high–temperature asymptotic behaviors for chemical potential are given by

µ

εF
=


1− π2

6

(
T
TF

)2
(T ≪ TF),

1
4 log 2

(
T
TF

)−1
(T ≫ TF),

(B.63)

whereas those for the Thomas–Fermi wave vector are given by

qTF(T )

qTF(0)
=


1− π2

6

(
T
TF

)2
(T ≪ TF),

2 log 2
(

T
TF

)
(T ≫ TF).

(B.64)

As shown in Figs. B.3(a) and B.3(d), the result of the low-density approximate

model and the numerically calculated result of the Dirac semimetal phase in

the low-density limit are consistent with each other. For short-range impuri-

ties, the asymptotic form of the temperature-dependent conductivity becomes

[Eq. (B.61) with γ = 0]

σgp(T )

σgp(0)
=


1− e−TF/T (T ≪ TF),

1
2 + 1

16 log 2

(
T
TF

)−2
(T ≫ TF),

(B.65)

whereas for charged impurities in the strong screening limit, [Eq. (B.61) with

γ = 2]

σgp(T )

σgp(0)
=


1− π2

3

(
T
TF

)2
(T ≪ TF),

π2

6

(
T
TF

)2
(T ≫ TF).

(B.66)

121



0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

0.5

1

1.5

2

2.5

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

0.5

1

1.5

2

2.5

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure B.2 Calculated temperature dependence of (a)-(c) chemical potential

and (d)-(f) Thomas–Fermi wave vector for the gapped insulator phase with

∆ = 1 at (a), (d) εF = 1.01ε0, (b), (e) εF = 1.1ε0, and (c), (f) εF = 1.5ε0.
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Figure B.3 Calculated temperature dependence of (a)-(c) chemical potential

and (d)-(f) Thomas–Fermi wave vector for the Dirac semimetal phase with

∆ = −1 at (a), (d) εF = 0.01ε0, (b), (e) εF = 0.9ε0, and (c), (f) εF = 1.1ε0.
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Figure B.4 Calculated dc conductivities as a function of the temperature for the

gapped 2DEG system in the low-density limit with ∆ = 1 for (a) short-range

impurities, (b) charged impurities with α0 = 1000, and (c) charged impurities

with α0 = 1. Here, εF = 1.1ε0 is used for the calculation. The red dashed lines

and blue dashed-dotted lines represent the conductivity of the insulator phase

(with the same Fermi energy) σinsxx and σinsyy , respectively.
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Appendix C

Magneto-thermoelectric transport
equation in anisotropic systems

When we take the thermal gradient into account, on top of E and B, the

equation of motion
(
df
dt

)
would be modified as

df

dt
= k̇ · ∇kfkr + ṙ · ∇rfkr

≈ ℏk̇ · vk
∂f

(0)
kr

∂εk
+ k̇ · ∇kgk + ṙ ·

[
∇rµ

∂f
(0)
kr

∂µ
+∇rT

∂f
(0)
kr

∂T

]

=

[
−ℏk̇ · vk + ṙ ·

(
∇rµ+

εk − µ

T
∇rT

)]
S(0)(ε)

+k̇ · ∇kgk, (C.1)

where T is the temperature, and µ is the chemical potential. As the thermal gra-

dient makes the system inhomogeneous, we can see that the position-dependent

terms such as ∇rfkr were recovered.
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Expanding the equation of motion Eq. (C.1), we get

df

dt
=

[
−ℏk̇ · vk + ṙ ·

(
∇rµ+

εk − µ

T
∇rT

)]
S(0)(ε) + k̇ · ∇kgk

=
S(0)

Dk

[
−qE · vk +

q2

ℏc
(E ·B)(Ωk · vk)

+
(
vk − q

ℏ
E ×Ωk − q

ℏc
(vk ·Ωk)B

)
·
(
∇rµ+

εk − µ

T
∇rT

)]
+
q

ℏc
(vk ×B) · ∇kgk

Dk

=
S(0)

Dk

[
−qE · vk +

q2

ℏc
(E ·B)(Ωk · vk)−

q

ℏ
(E ×Ωk) · ∇rµ

+
εk − µ

T
vk · ∇rT − q

ℏ
εk − µ

T
(E ×Ωk) · ∇rT

− q

ℏc
εk − µ

T
(vk ·Ωk)(B · ∇rT )

]
+

q

ℏc
(vk ×B) · ∇kgk

Dk

=
S(0)

Dk

[
vk ·

(
−qE +

εk − µ

T
∇rT

)
− q

ℏ
(E ×Ωk) ·

(
∇rµ+

εk − µ

T
∇rT

)
+
q2

ℏc
(E ·B)(Ωk · vk)

− q

ℏc
εk − µ

T
(vk ·Ωk)(B · ∇rT )

]
+

q

ℏc
(vk ×B) · ∇kgk

Dk
(C.2)

= −S(0)ṙ ·
(
qE + (εk − µ)

−∇rT

T

)
+

q

ℏc
(vk ×B) · ∇kgk

Dk

= −S(0)ṙ ·
(
qE + (εk − µ)

−∇rT

T

)
+

q

ℏc
(ṙ ×B) · ∇kgk,

where E = E − ∇rµ/q, and we have further ignored the higher-order electric

field terms for k̇ · ∇kgk.

Using the modified ansatz for gk,

gk =
d∑

i=1

[
qE(i)τ

(i)
k + (εk − µ)

−∇rT

T
τ
T (i)
k

]
ṙ
(i)
k S(0)(ε)

+
q

ℏc

d∑
i,j,k

ϵijkτ
(i)
k ṙ

(i)
k

∂gk
∂k(j)

B(k), (C.3)

where τ
(i)
k and τ

T (i)
k , are the magneto-thermoelectric transport relaxation times.
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It turns out that these relaxation times are equivalent for elastic scattering, i.e.

τ
(i)
k = τ

T (i)
k . Then we can write

gk =
d∑

i=1

ṙ
(i)
k τ

(i)
k G(i), (C.4)

where

G(i) = G
(i)
0 +

q

ℏc

d∑
j,k

ϵijk
∂gk
∂k(j)

B(k), (C.5)

where G
(i)
0 = q

[
E(i) + (εk − µ)t

]
S(0)(ε), and t = −∇rT

qT . Introducing the modi-

fied version of an inverse mass tensor M̃, where

M̃ij =
1

ℏ
∂ṙ

(j)
k

∂ki
, (C.6)

then Eq. (5.27) becomes

G(i) = G
(i)
0 +

q

c

d∑
j,k

ϵijkM̃jl
∂gk

∂v
mod(l)
k

B(k). (C.7)

Again, we solve the Eq. (C.7) recursively (using an assumption that G(i) is

independent of ṙ) to get

gk =
d∑

i=1

ṙ
(i)
k τ

(i)
k G(i) =

d∑
i,j=1

ṙ
(i)
k τ

(i)
k NijG

(j)
0 , (C.8)

where N =
(
1− Fµ

c

)−1
with its elements changed accordingly, from the defini-

tion in the main text.

Rewriting the equation of motion Eq. (C.2) in terms of gk, we get

k̇ · ∇kfr,k + ṙ · ∇rfr,k =

d∑
i,j=1

ṙ
(i)
k NijG

(j)
0 . (C.9)

Finally, we arrive at the Boltzmann equaion (assuming G = G′)

df

dt
=

d∑
i,j=1

ṙ
(i)
k NijG

(j)
0 (C.10)

=
d∑

i,j=1

∫
ddk′

(2π)d
Dk′Wk′k

(
ṙ
(i)
k τ

(i)
k − ṙ

(i)
k′ τ

(i)
k′

)
NijG

(j)
0 .
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Since we are only considering the terms that are linear in E, we ignore the

terms in ṙ and N that depends on E. Then ṙ → vmod
k . Carrying out the rest

of the equation, we get∫
ddk′

(2π)d
Dk′Wk′k

(
τ
(i)
k −

v
mod(i)
k′

v
mod(i)
k

τ
(i)
k′

)
= 1, (C.11)

which is the same form as Eq. (5.38) in the main text.

128



Appendix D

Diluted magnetic Dirac-Weyl
materials: Susceptibility and
ferromagnetism in
three-dimensional chiral gapless
semimetals

D.1 Cutoff dependence of the range function

To derive the asymptotic behavior of Eq. (6.6) at zero temperature, we use the

fact that the zero-temperature intrinsic polarization function χ(q, T = 0) is

proportional to the DOS, which is given by

χ(q, T = 0) ∝ qd−N , (D.1)

where d is the dimension of the system. Then, the range function χ(r) ≡

χ(r, T = 0) becomes

χ(r) = C

∫ qc

0
dqq2d−N−1fd(qr), (D.2)
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where C is a momentum- and position-independent constant. Here, fd(qr) is

defined by

fd(qr) =


J0(qr) (d = 2),

j0(qr) (d = 3),

(D.3)

where J0(x) and j0(x) =
sinx
x are the Bessel and spherical Bessel functions of

the first kind, respectively.

First, consider the 3D case. Using the following integral (see Eq. (3.761) in

Ref. [161]) ∫ 1

0
dxxµ−1 sin(ax) =

−i
2µ

[M(µ, µ+ 1, ia)− c.c.] , (D.4)

where a > 0, Re(µ) > −1, µ ̸= 0, and M(a, b, z) = 1F1(a; b; z) is the Kummer’s

confluent hypergeometric function, we obtain χ(r) as

χ(r)=
C

r6−N

−i(qcr)5−N

2(5−N)
[M(5−N, 6−N, iqcr)− c.c.] .

(D.5)

The asymptotic behavior of M(a, b, z) at a large z is given by (see p. 508 in

Ref. [40])

M(a, b, z) ≈ Γ(b)

[
ezza−b

Γ(a)
+

(−z)−a

Γ(b− a)

]
. (D.6)

Therefore, at large distances (qcr ≫ 1), χ(r) in 3D can be expressed as follows:

χ(r) ≈ A cos(qcr)

r2
+

B

r6−N
, (D.7)

where A and B are constants. When 6−N ≤ 2, i.e., N ≥ 4, the second term in

Eq. (D.7) dominates over the first term. Since the magnitude of the oscillating

term is smaller than that of the monotonic decaying term, the oscillation of

the range function mostly occurs at positive values. In contrast, for N ≤ 3, the

oscillating first term dominates. Therefore, the range function oscillates with a

period 2π/qc, and its amplitude decays as 1/r2.
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Similarly, for 2D, we find that when 4−N ≤ 3
2 , i.e., N = 3, 4, · · · , the range

function decays as 1/r4−N , while for N = 1, 2, it oscillates with a period 2π/qc,

and its amplitude decays as 1/r
3
2 . This result is consistent with Min et al. [158]

for 2D gapless semimetals.

D.2 Effective RKKY coupling with the exponential

disorder cutoff

From Eq. (6.9) in the main text, the normalized effective RKKY coupling with

exponential damping is given by

Jeff(T )

J
(0)
eff

=

∫ R/a

0
r̃2dr̃χ̃(r, T )

+

(∫ ∞

0
−
∫ R/a

0

)
r̃2dr̃χ̃(r, T )e−

r−R
R (D.8)

=

∫ R/a

0
r̃2dr̃χ̃(r, T )

(
1− e−

r−R
R

)
+ F (T ),

where r̃ = r/a, χ̃(r, T ) = χ(r, T )/D0, and

F (T ) ≡
∫ ∞

0
r̃2dr̃χ̃(r, T )e−

r−R
R , (D.9)

which can be rewritten as (see Eq. (6.623) in Ref. [161])

F (T ) ≡
∫ ∞

0
r̃2dr̃χ̃(r, T )e−

r−R
R (D.10)

=

∫ qca

0

q̃2dq̃

2
√

2q̃π3
2e (2q)

1
2 Γ(2)

R
√
π (1/R2 + q2)2

χ̃(q, T )

=

∫ qca

0

q̃2dq̃

π2
eR̃3χ̃(q, T )(
1 + q̃2R̃2

)2 ,
where q̃ = qa, R̃ = R/a, χ̃(q, T ) = χ(q, T )/D1(a

−1), and Γ is the gamma

function.
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국문초록

위상적 준금속은 많은 흥미로운 성질을 가진 새로운 물질으로서, 최근까지 응집물

질물리학 연구의 화제의 중심이 되어 왔다. 이는 전자띠가 만나는 지점에서 나타

나는준입자활성이드루드자유전자모델을따르지않기때문이기도하다.그리고

위상적 준금속은 위상적인 성질 덕분에 그러한 준입자 활성이 외부 섭동에 대하여

안정적이기 때문에 여기서 나오는 일반적이지 않은 활성에 대한 다양한 물리적

현상을 시험해보기 위한 훌륭한 시험대이기도 하다. 이러한 동기를 가지고, 해당

학위논문은 디락 물질에서 준고전적인 전자 수송 이론 및 전자 스핀에 의하여

매개되는 자화 현상에 대해 다룬다.

먼저 우리는 본 학위논문 전반에 걸쳐 사용되는 비등방적이고 다층전자띠 물

질에 적용가능한 준고전적인 볼츠만 수송 이론을 유도한다.

그런 다음 우리는 다중 바일 준금속과 다층 흑린의 전자수송현상을 앞서 유도

한 비등방, 다층전자띠 물질에 적용가능한 볼츠만 수송 이론을 통하여 연구한다.

다중 바일 준금속은 비등방적인 전자띠 구조를 가진 위상적 준금속으로서 (한 쪽

방향으로는 선형, 나머지 방향으로는 비선형적인 관계를 가진다) 카이랄 전하 값

이 1보다큰물질이다.흑린은통상적으로는반도체물질이나,최근연구로전자띠

간격을 자유롭게 조절 가능하며 이에 따른 여러 가지 상을 가질 수 있음이 밝혀

지게 되었다 (부도체 상, 반디락 상, 디락 상). 우리는 이러한 물질들을 비등방적,

다층띠 물질에 적용가능한 볼츠만 수송 이론을 통하여 연구하였으며, 각 물질들의

특징적인 카이랄 전하값, 전자띠 구조, 그리고 전자띠 간격의 부호에 따라서 전하

밀도 및 온도에 따른 전기 전도도의 변화를 계산하였다.

우리는 또한 자기장이 준고전적인 전자 수송에 미치는 영향에 대해서도 연구

하였다. 즉 외부 자기장이 물질의 베리곡률과 결합되어 발생하는 비등방성이 전자

수송에 미치는 영향을 조사하였다.
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마지막으로, 우리는 등방적인 3차원 카이랄 준금속 예시 물질에서 루더만-키

텔-카즈야-요시다 (RKKY)상호작용을연구하였다.우리는성기게배치된자기적

불순물들이 전자의 스핀에 의하여 매개되는 자화 현상및 자화 감수성, 임계 온도

를 멱수에 대하여 계산하였고, 멱법칙에 관계없이 해당 물질은 강자성을 띤다는

사실을 발견하였다.

주요어: 전기 전도도, 준고전적 볼츠만 수송 이론, 다층 흑린, 바일 준금속, 다중

바일 준금속, RKKY 상호작용

학번: 2014-22366
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