

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

Slice Counts Search for Real-Time

Guarantee and Better Schedulability of

GPU

GPU의실시간보장및더나은스케줄링

가능성을위한슬라이스수탐색

2021년 8월

서울대학교대학원

컴퓨터공학부

박하연

Abstract

Slice Counts Search for Real-Time

Guarantee and Better Schedulability of

GPU

Hayeon Park

Department of Computer Science and Engineering

The Graduate School

Seoul National University

This paper proposes a conditionally optimal slice counts searching algorithm to im-

prove GPU’s real-time guarantee and better schedulability. Despite the growing im-

portance of GPUs due to the recent advances in deep learning, there is still a lack

of technology to utilize them in real-time. This paper assumes a GPU as a unipro-

cessor and uses non-preemptive EDF to schedule GPU kernels. Additionally, solving

the schedulability degradation problem caused by non-preemptive uniprocessor as-

sumption through searching the slice count of each kernel that makes the GPU task

set to be schedulable.

keywords : Real-Time Systems, GPU, Task Slicing

Student Number : 2019-28371

i

Contents

1 Introduction 1

2 Related Works 3

3 Real-Time Gaurantee of GPUs through Non-Preemptive Uniprocessor Assumption 5

4 Problem Description 9

5 Slice Counts Search 11

5.1 Blocking point, blocking tolerance, and blocking candidates 13

5.2 Searching slice counts for a task set 14

5.3 Stop conditions . 18

5.4 Optimality of the slice counts search 18

5.5 Applying slice counts search in Real System 20

6 Experiment Results 21

6.1 Simulation Experiment . 21

6.2 Implementation Results . 23

7 Conclusion 25

References 26

ii

List of Figures

1 Response time of GPU tasks . 7

2 Difference of average response time of GPU kernels 8

3 CPU/GPU Mixture Task Model . 10

4 Example of deadline miss due to the priority inversion 11

5 Blocking tolerance . 13

6 The process of slice counts search 16

7 CPU/GPU multi-segments task set 21

8 Simulation result . 22

9 Response time of GPU segments before and after slicing 23

iii

1 Introduction

Emerging cyber-physical systems such as autonomous driving vehicles require mas-

sive computations for object classification, localization, and deep learning, etc. Fur-

thermore, those computations need to be finished before tight deadlines. Thus, it is

inevitable to use GPUs that has massive internal parallelism with thousands of inter-

nal cores. However, once a computational unit called a GPU kernel starts executing

on the GPU, all other GPU kernels should wait until the current GPU kernel com-

pletes. That is, the GPU is a non-preemptive resource from the GPU users’ point of

view. Therefore, if there are multiple concurrent real-time tasks that uses the GPU,

the overall schedulability is significantly reduced because of the non-preemptivity of

the GPU.

In order to address this issue, the lastly released NVIDIA GPUs with Pascal or

more advanced architecture provide preemption functions. However, they are not vis-

ible from the programmer’s point of view and hence hard to be used for the real-time

guarantee. Also, those GPUs with the preemption functions are employed only in

expensive high-end NVIDIA boards such as xxx. Most of cost-effective GPUs that

are popular in the market do not provide preemption functions. Targeting such cost-

effective non-preemptive GPUs, recent works [1–4] propose task slicing mechanisms

that slice a long GPU kernel into short slices so that the non-preemptive duration of

the GPU can be reduced to improve the real-time schedulability. Such slicing mech-

anisms can be realized outside of the GPU without changing GPU internals such as

GPU internal scheduling and GPU drivers. Thus, they are attractive approaches that

can be practically used for a wide spectrum of various GPUs whose internals are

1

mostly hidden. However, it is not well studied how to optimally slice GPU kernels

for guaranteeing the schedulability of multiple concurrent real-time tasks.

This paper proposes a conditionally optimal slicing algorithm that optimally de-

cides slice counts for GPU kernels issued from multiple real-time CPU tasks. For this,

we model the GPU as an non-preemptive uniprocessor and GPU kernels issued from

CPU tasks as a set of sporadic GPU tasks that are scheduled by the non-preemptive

EDF on the uniprocessor. For such a GPU task set, we propose a polynomial(?) com-

plexity algorithm that incrementally compares the time-demand and time-supply for

the non-preemptive EDF scheduling of the given GPU task set to compute the toler-

able priority inversion durations due to non-preemption until the deadlines. From the

tolerable priority inversion durations, the proposed algorithm determines the maxi-

mum possible slice sizes of the GPU tasks under the constraints of the tolerable pri-

ority inversion durations. Finally, the proposed algorithm determines the minimum

slice count of each GPU task to minimizes the slice overhead such that each slice

becomes smaller than the maximum possible size. Although, our slicing algorithm is

just for the schedulability of the GPU tasks, we explain how it is used for improving

the overall schedulability of the entire system in practical cases where each real-time

task consists of a interleaved sequence of CPU segments and GPU segments.

In addition, we formally prove that our slicing algorithm is optimal for the schedu-

lability under the conditions that (1) the slices are scheduled on a uniprocessor by the

non-preemptive EDF, (2) the slicing overhead is proportional to the slice count, (3)

a GPU kernel is evenly partitioned into slices. Our extensive experiments by both

simulation and actual implementation shows that our optimal slicing can improve the

schedulability upto 73%.

2

The rest of this paper is organized as follows. Section II presents related works.

Section III shows the assumption for guaranteeing real-time of all type of GPU, Sec-

tion IV formally defines our problem of task set slicing. Section V describes the

feasibility test of non-preemptive EDF and how to find the optimal slice count of

each task. Section VI reports our simulation experiment, and the conclusion of the

paper is described in Section VII.

2 Related Works

A lot of research has been conducted to improve the schedulability of GPUs by iden-

tifying characteristics of resources and utilizing them well. TimeGraph[5] proposed

a method for priority-based scheduling by identifying the trade-off between through-

put and response time to improve the scheduling capability of graphical GPU tasks.

ElasticKernel[6] was proposed to solve the fact that all resources are not used when

GPUs are running, and research on scheduling performance improvement through

partitioning of Streaming Multiprocessors(SM) in GPUs was also done[7]. Refer-

ences [8, 9] raised a problem with basic GPU scheduling and introduced a method to

help select the appropriate GPU task during scheduling by tracking GPU usage at the

OS or hypervisor level.

Memory contention is one of the major causes of GPU performance degradation.

To solve this problem, Gdev[10] virtualized the GPU runtime to run inside the OS so

that multiple GPU contexts share GPU memory and GPUs execute multiple logics.

GPUfs[11] extends the area that developers can optimize by enabling GPU file I/O by

extending the CPU buffer cache to the GPU memory area. GDM[12] allows different

applications to share GPU resources by performing GPU memory management at

3

the OS level. Sigamma[13] suggested a method to minimize memory contention in

an integrated GPU (iGPU) where the GPU and CPU share system memory. However,

methods of improving the efficiency of GPU resource usage cannot be any solution

to the problem of deterministic task blocking, and there are limitations in achieving

the purpose of a real-time guarantee of GPUs.

Various studies related to activation of preemption in GPU have also been con-

ducted to solve such a problem. Reference [14] introduced a method to make data

transmission preemptible by splitting a memory copy. However, there is a constraint

that GPU code execution excluding data transmission is still non-preemptible. The

SM in the GPU is scheduled in block units, and in one SM, the same instruction is

executed for different data used by the scheduled block. Considering these character-

istics, various methods to activate preemption by slicing GPU tasks to the block group

level have been introduced[1–4]. These methods improve scheduling performance by

slicing tasks with specified granularity and making the GPU itself non-preemptive in

reality but making the tasks operate as if they were preemptive. These solutions have

an advantage in that they have limited preemption, but because the preemption point

is limited, it is difficult to guarantee that the target task set is always schedulable.

As a result, it is impossible to directly use the various studies related to preemp-

tive uniprocessor[15–20]. Also, these methods have a weakness in that they have

slice overhead. To minimize this overhead, various methods to solve through hard-

ware extension have been studied.[21–23] Although these efforts, real-time is still not

guaranteed on GPUs because they do not slice task sets witn considering real-time

constraints.

For NVIDIA GPUs, Pascal and later architectures provide pixel/thread level pre-

4

emption. Based on this function, research has been conducted to minimize slicing

overhead and enable single block-level preemption at any time.[4] Also, by utiliz-

ing the preemption of NVIDIA GPU, Earliest Deadline First(EDF) scheduling is

performed for GPU tasks, and for misbehaving tasks, a Constant Bandwidth Server

(CBS) is used to enable real-time scheduling of GPUs.[24] However, these methods

are difficult to apply practically because these methods cannot be used for all types

of GPU which pixel/thread level preemption mechanism is not supported.

Motivated by these limitations, in this paper, we will introduce a task set slicing

algorithm to obtain maximum real-time schedulability by slicing a task set applied to

all types of GPUs.

3 Real-Time Gaurantee of GPUs through Non-Preemptive

Uniprocessor Assumption

This section introduces the fact that, when assuming a GPU as a non-preemptive

uniprocessor, it is relatively easy to guarantee real-time performance of the GPU in

all types of GPUs, and in some cases, it is more effective compared to the case where

it is not applied.

The fact that it is difficult to take advantage of preemption on GPUs is one of the

biggest obstacles to real-time guarantees on GPUs. Since GPU is basically focused

on maximizing throughput, predictability is very low. To solve this problem, it is

necessary to use a real-time scheduling algorithm for GPU kernels. In general, a

preemption-based scheduler is often used when constructing a real-time system in a

CPU environment. Still, it is very difficult to utilize the preemption function because

5

the GPU does not provide a preemption function or is very limited and not visible

at the user-level. There is a case of implementing deadline-based scheduling that can

be preempted for a specific GPU, but this has a limitation applicable to only a few

Nvidia GPUs that provide a hypervisor function.

The second hindrance is that what is known about the internal scheduling policy

of the GPU is limited, and there is no way to manipulate it. The theoretical operation

method of the GPU is publicly disclosed, but the details of the implementation level

are not known. This fact causes the user to be unable to predict the exact operation of

the GPU. This problem is noticeable when performing concurrent kernel execution.

Although the GPU itself can execute multiple kernels at the same time, it is not easy

to predict exactly in what order the input kernels will be executed. Also, since it is

also impossible to assign each kernel to a specific SM, it is also impossible to apply

global scheduling assuming the SMs in the GPU as one processor.

These problems can be easily solved by assuming that the GPU is a non-preemptive

uniprocessor. Since the GPU operates with its own non-preemptive policy, it can be

seen that the non-preemptive assumption is valid. In addition, from the viewpoint

of implementing the scheduler by itself, the non-preemptive assumption is relatively

simple to implement compared to the preemption-based scheduling, and the schedul-

ing overhead is small. It has great advantages in terms of assumptions. Also, in the

case of the uniprocessor assumption, it is a realistic option that can be applied in re-

ality. Crucially, this assumption has meaning in that it can be applied to all types of

GPUs.

These problems can be solved by assuming that a GPU is a non-preemptive

uniprocessor. Because GPU itself operates with a non-preemptive policy, assuming

6

(a) Localization task

(b) LiDAR data clustering task

(c) Vision object detection task

Figure 1: Response time of GPU tasks

it as a non-preemptive processor is valid. Additionally, non-preemptive assumption

makes it relatively simple to implement scheduler than preemptive based scheduling.

Also, the uniprocessor assumption is the realistic option to build a real-time system

of a GPU. Crucially, these assumptions are meaningful in that they can be adapted to

all types of GPUs.

The increase of response time caused by assumptions can be seen as indispens-

able to gain predictability, and rather it decreases in specific cases. Figure. 1 shows

the response time of GPU tasks used for autonomous driving in Autoware.AI when

all tasks are executed simultaneously. The whole profiling process was conducted on

the Nvidia Xavier with Ubuntu 18.04. The left side graphs are the case use the default

Ubuntu scheduler. The right side is the case of adapting non-preemptive assumptions

and use EDF scheduling. The horizontal line of each graph represents the average

response time of each process. The software level non-preemptive uniprocessor EDF

7

(a) GPU kernels in localization task

(b) GPU kernels in LiDAR data clustering task

(c) GPU kernels in vision object detection task

Figure 2: Difference of average response time of GPU kernels

scheduler is used for profiling.

As can see in the graph, the average response time always becomes smaller when

using non-preemptive uniprocessor assumption. The reason why response time re-

duction has occurred is that the reduction of memory contention. Since the L2 cache

is shared by all SMs, the concurrent kernel execution causes more memory con-

tention. However, if GPU operates as a non-preemptive uniprocessor, there is a rel-

atively small chance to cause L2 cache miss, although the L2 cache size of Nvidia

Xavier is only 512KB. Therefore, in the case of the computation unit of GPU is not

enough to execute many tasks simultaneously, the assumptions can reduce the re-

sponse time of the task. The one more important difference between cases is that the

response time variance at the non-preemptive uniprocessor case is much smaller than

the default case. This phenomenon increases the predictability of tasks, and it makes

the system more reliable. However, some peak points are created at assumption case

because the response time can be greatly increased when a lot of GPU kernels exist

8

in the task and priority inversion is occurred frequently.

Figure. 2 shows the difference in average response time of each GPU kernel in

tasks in the same environment. The x-axis represents the specific id of each GPU

kernel, and the y-axis represents the difference calculated by subtracting the default

case from the non-preemptive uniprocessor case. Since priority inversion occurs by

non-preemption and only one kernel can be executed simultaneously, the average re-

sponse time of most kernels is slightly increased. Still, the average response time is

decreased dramatically in some kernels. Because the decreasing amount is relatively

much huge than increments, the total response time of the task is reduced. This phe-

nomenon shows that the overhead of the L2 cache is significantly huge in the GPU,

and it can be reduced by non-preemptive uniprocessor assumption.

However, as seen in the peak points in the non-preemptive uniprocessor case,

it can produce deadline miss that cannot be avoidable because the non-preemptive

duration is increased than before. This problem can be solved by slicing the GPU

kernels. It can be conducted in many different ways, i.e., block-level slicing or divide

the GPU operation into some pieces. The best way to find the slice count of each

GPU kernel is introduced in the rest of the paper.

4 Problem Description

In this paper, we consider a system with a multiple CPUs and a single GPU that run

a set Γ of n sporadic tasks.

Γ = (τ1,τ2, · · · ,τn)

9

0

0 P1

C
cpu
1,1

C
gpu
1,1 C

cpu
1,2

C
gpu
1,2 C

cpu
1,3

D
cpu
1,1 D

gpu
1,1 D

cpu
1,2 D

gpu
1,2 D

cpu
1,2

C
cpu
2,1 C

gpu
2,1 C

gpu
2,2 C

cpu
2,2

D
cpu
2,1 D

gpu
2,1 D

gpu
2,2 D

cpu
2,2

P2

τ1

τ2

Figure 3: CPU/GPU Mixture Task Model

Each task τi is represented as a 3-tuple τi = (Pi,Ci,Di), Pi is the minimum inter-

release time, Ci is the worst case execution time, and Di(Di ≤ Pi) is the relative dead-

line. Typically, each CPU segment in a task that uses GPUs is interleaved by single

or multiple GPU segments that corresponding to GPU kernels in CUDA. Therefore,

they can be represented as a CPU/GPU mixture model like Fig. 3.

A k-th CPU segment is represented by τ
cpu
i,k = (Pi,C

cpu
i,k ,D

cpu
i,k) and a k-th GPU

segment is represented by τ
gpu
i,k = (Pi,C

gpu
i,k ,D

gpu
i,k). Because they are included in τi,

minimum inter-release time of each segment is same with Pi. All segments except

last one are precedence constraints for each other and it makes segments in the same

task cannot be executed simultaneously.

Problem Description: For all GPU segments in Γ, our problem is to find the SC,

set of slice counts for each GPU segment, that makes all GPU segments are scheduled

by non-preemptive EDF on the GPU with meeting their deadline.

A slice count for a GPU segment τ
gpu
i,k is represented by sci,k and the SC consists

of slice counts of all GPU segments. When a segment τ
gpu
i,k is sliced to m pieces, a

overhead due to the slicing is denoted by Oi,k(m) and assume that the original com-

putation amount C
gpu
i,k and the slicing overhead Oi,k(m) together is evenly partitioned

10

0 t ′ t

τ1

τ2

τ3

Figure 4: Example of deadline miss due to the priority inversion

into m slices. Therefore, each slice size becomes

C
gpu
i,k +Oi,k(m)

m

and it is the maximum non-preemptive duration may cause the priority inversion to

other GPU segments with earlier deadline.

At first, we present how to search slice counts for the single task set and after that

address how it can be used for determining the SC for all GPU segments in Γ where

each task τi consists of an interleaved sequence of multiple CPU/GPU segments.

5 Slice Counts Search

This section denotes a task only as τi to focus on slice counts search for single task

set Γ without any other representation like τ
cpu
i,k and τ

gpu
i,k . Also, the slice overhead of

τi when sliced to m pieces is denoted by Øi(m).

The proposed slice counts search is motivated by the exact analysis method for

EDF on non-preemptive uniprocessor[25]. It uses discrete time units for clarity, but in

this paper, we consider continuous time for practicality. When L is the synchronous

busy period, the condition for the feasibility test is as follows.

11

For any general task set with U ≤ 1 is feasible, using EDF, if and only if

∀t ∈ S,h(t)≤ t

when

h(t) = max
D j>t

{Cj}+ ∑
Di≤t

(
1+

⌊ t −Di

Pi

⌋)
·Ci (1)

S = {∪n
i=1(k ·Pi +Di),k ∈ N}∩ [0,L) (2)

The h(t) represents a maximum processor demand at t. Unlike a processor de-

mand for the preemptive EDF, it has an extra load maxD j>t{Cj} for a processor de-

mand due to the priority inversion at 0. In the preemptive case, a maximum processor

demand at t is generated when all tasks are simultaneously released at 0 and all task

τ js whose D j > t are not involved to it. But in the non-preemptive case, when τ j

is released before the t and its absolute deadline is smaller than t, it creates non-

preemptive duration and others are blocked until it is finished. Therefore, maximum

extra load is generated when τ j whose Cj is biggest among tasks whose relative dead-

line is bigger than t is scheduled just before the 0. If there is no τi that Di > t, the

extra load becomes 0.

Because a processor demand at t only includes an execution of a job whose abso-

lute deadline is smaller than t, it looks like deadline miss due to the priority inversion

is not considered when blocking task’s absolute deadline is bigger than t. But when

deadline miss occurs at t although its demand is smaller than or equal to t by this

reason, there is no problem because it is always captured at some preceding time

point t ′. In Fig. 4, deadline miss is occurred but it meet the condition. But in the same

12

0 tk

(a)

(b)
Bk

Figure 5: Blocking tolerance

scenario, deadline miss is captured at t ′, so this task set is determined as not feasible.

Because all deadline miss scenarios can be converted to the worst case like Fig. 4, a

task set is always schedulable when it always meets the condition for all t ∈ S.

5.1 Blocking point, blocking tolerance, and blocking candidates

Before searching a slice count of each task, it is necessary to know that since a task

slicing only makes a non-preemptive task set to be pseudo-preemptive, its theoreti-

cal maximum schedulability is the same with a preemptive case. A slicing improves

schedulability by reducing the length of blocking duration which creates an extra

load. Therefore, if a deadline miss occurs when extra load is 0, a task set cannot be

schedulable by slicing. An extra load is 0 when t ≥max1≤i≤n{Di} and this fact allows

us to limit the time point which we need to consider during searching. In this paper,

we define the time point which an extra load exists as a blocking point and denote

each blocking point by tk. A tk is always smaller than tk+1.

The blocking tolerance Bk is the maximum value of a blocking duration causes

an extra load at blocking point tk with meeting the feasibility test condition. In Fig.

5(a), the grey bar represents the extra load and the white bar represents the processor

demand from all τi that Di ≤ tk. When excepts the extra load at h(tk) like Fig. 5(b), the

rest duration of h(t) can be the blocking tolerance. Therefore, the Bk can be calculated

13

as follows.

Bk = tk − ∑
Di≤tk

(
1+

⌊ tk −Di

Pi

⌋)
·Ci (3)

All τ js that D j > tk can be the candidates of the extra load at tk. We call them

blocking candidates at tk and denote them by Γblk
k in the rest of the paper. To meet the

test condition for all t ∈ S, not only the task which causes the maximum extra load

but all tasks in Γblk
k should be sliced to have a shorter execution time than Bk. Note

that Γblk
k+1 ⊂ Γblk

k is always holds because tk < tk+1 and Γblk
k is the set of τ js which

D j > tk.

5.2 Searching slice counts for a task set

Slice counts search is performed to all blocking points in order. When the current

blocking point is tk, following four step process is conducted.

• Step(1): Calculate the Bmin which is the min1≤i≤k{Bi}.

• Step(2): Select target tasks to search slice count in current blocking point.

• Step(3): Search the slice count of each target task with slicing overheads.

• Step(4): Update blocking tolerances of all blocking points that bigger than tk.

Because slicing overheads are used in step(3), we assume that slicing overheads are

given.

The Bmin is the key parameter that determines the slice count of each task. Every

task τi in Γ should have Ci smaller than or equal to the corresponding Bmin to meet the

test condition. It can be obtained by comparing Bmin at the previous blocking point

and current blocking tolerance.

14

When current blocking point is tk, all τ js included in Γblk
k+1 −Γblk

k cannot be the

blocking candidate of every tl > tk. Unlike need to be smaller than or equal to all

blocking tolerance at tk or earlier blocking points, these tasks have no responsibility to

be smaller than all Bls. Note that there is no difference whether satisfying all blocking

tolerance corresponding to before or at tk, or satisfying only Bmin when searching the

slice count. Therefore, the Γblk
k+1 −Γblk

k can be the set of target tasks needed to be

searching slice counts at tk, and we can search slice counts of them by leveraging

Bmin.

The slicing count of τ j at tk can be easily obtained by using the following equa-

tion.

sc j = argmin
m

{
m

∣∣∣
⌈Cj +O j(m)

m

⌉
< Bmin} (4)

When the task τ j is sliced at tk, the second term of the h(tl)(tl > tk) is increased

due to the slicing overhead of τ j. This fact highlights the need that decreases the

blocking tolerances of all tls. Note that τ j cannot be the blocking candidate at tl if its

slice count is searched at tk. The task which is not blocking candidates does not affect

extra overheads. When τ j is sliced to m pieces, the decrement value of the blocking

tolerance Bl can be calculated as follows.

(
1+

⌊ tl −D j

Pj

⌋)
·O j(m) (5)

This decrement value is calculated for every tl and subtracted from all corresponding

Bl . This process is called the blocking tolerance update.

Fig. 6 shows the example of slice counts search that includes various scenarios.

15

Γblk
k

Γblk
k

Γblk
k

Γblk
k

Γblk
k

Bk

Bk

Bk

Bk

Bk

t1

t1

t1

t1

t1

t2

t2

t2

t2

t2

t3

t3

t3

t3

t3

t4

t4

t4

t4

t4

τ1 τ1τ1

τ1 τ1

τ1

τ1

τ1 τ1τ1

τ1 τ1τ1

τ1τ1τ1

τ2

τ2

τ2

τ2

τ2

τ2

τ3 τ3τ3τ3

τ3

τ3 τ3τ3τ3

τ3 τ3τ3τ3

τ3 τ3τ3τ3

τ3τ3τ3τ3

τ4 τ4τ4

τ4

τ4 τ4τ4

τ4 τ4τ4

τ4 τ4τ4

τ4τ4τ4

Bmin

Bmin

Bmin

Bmin

sc2 = 2

sc1 = 2,sc4 = 3

sc3 = 1

(a) Initial state

(b) First iteration

(c) Second iteration

(d) Third iteration

(e) Last iteration

Figure 6: The process of slice counts search

16

Initial state(Fig. 6 (a)): In this example, there is four blocking points. A circle

below each tk is colored to black when the slice count search is performed to the

corresponding blocking point. Because this is the initial state now, no black circle

exists. Each blocking point has blocking candidates Γblk
k and blocking tolerance Bk.

The execution time of each task in Γblk
k is represented by a white bar. As mentioned

earlier, Γblk
k+1 ⊂ Γblk

k is always holds.

First iteration(Fig. 6 (b)): At first, Bmin is initialized by B1 because no other

blocking tolerance exists. The target tasks are wrapped in a dotted box. In this iter-

ation, the target task is τ2 because it is not included in Γblk
2 . Below the Bmin, slice

count is searched. The dark grey bar next to the execution time of τ2 represents the

slicing overhead O2(2). Because sum of C2 and O2(m) is within two pieces of Bmin,

sc2 becomes 2. Because the slicing overhead is added, the blocking tolerances of t2

to t4 are decreased. The decrement is represented by the dotted line in the figure.

Second iteration(Fig. 6 (c)): Because previous Bmin is shorter than B2, Bmin is not

updated in this iteration. Furthermore, there is no target tasks because Γblk
2 = Γblk

3 . In

this case, skip remain steps and move to next iteration.

Third iteration(Fig. 6 (d)): This iteration is almost same with first iteration. The

Bmin is updated to the B3 and target tasks is set to the τ1 and τ4. There is no difference

in slice count search when there is a single target task and multiple target tasks. The

sc1 and sc4 are set to be 2 and 4, and B4 is updated.

Last iteration(Fig. 6 (e)): The only difference between previous iteration and

current iteration is that the target tasks is same with Γblk
4 because there is no more

blocking points. The sc3 becomes 1 because C3 is smaller than updated Bmin.

17

5.3 Stop conditions

There are the two conditions that make it impossible to find the SC through the slice

counts search. Because the theoretical maximum schedulability of slicing on non-

preemptive EDF is the same as the case of preemptive EDF, the searching cannot

find the SC when preemptive EDF cannot schedule the task set. The extra load of

h(t) in Eq. 1 becomes 0 when the time point t ≥ max1≤i≤n{Di}. Therefore, if the test

condition is missed at any point t ≥ max1≤i≤n{Di}, there is no meaning to find the

SC. Also, since the basic rule of searching slice counts is finding the slice count which

makes the size of the slice becomes within the corresponding blocking tolerance, it

is also impossible to find the SC when any blocking tolerance Bk is smaller than 0.

5.4 Optimality of the slice counts search

The proposed slice counts search is conditinally optimal. The following theorem and

proof show that.

Theorem 1. The proposed slice counts search is optimal in terms of the feasibility

test for non-preemptive EDF on uniprocessor when the slicing overhead is propor-

tional to the slice count and execution time of each slice is evenly divided from the

original task. More specifically, if proposed approach cannot slice the task set that

makes the given task set to pass the feasibility test, no other task set slicing algorithm

do either.

Proof. The proof will show the optimality of the proposed approach by the following

three steps:

• Step 1: proposed approach always finds the minimum slice count for every task if

18

it is possible to make the task set feasible.

• Step 2: When t < Dmax, if the proposed approach cannot make the feasible task

set, no other task set slicing algorithm can do either.

• Step 3: When t ≥ Dmax, if the proposed approach cannot make the feasible task

set, no other task set slicing algorithm can do either.

Proof of Step 1: When slicing is possible through the proposed approach, each

task in the input task set Γ is always sliced to the minimum number. When l > k,

target tasks for Fk are not always included in inversion candidates for all Fl . For

this reason, when slicing the target task of Fk, the size of the first term of h(tl) is

always increased, so the Ll value is decreased by Eq. 5. However, on the contrary, it

does not affect the inversion tolerance value at a point earlier than tk. The smaller the

number of slices, the smaller the slice overhead, resulting in a smaller reduction in the

inversion tolerance of the following points. proposed approach constantly searches

the minimum slice count that the target task can pass through all associated inversion

tolerances. This, in turn, makes the inversion tolerance that each task must pass as

large as possible and allows all tasks to have the smallest slice count.

Proof of Step 2: Suppose that proposed approach cannot be made feasible through

task set slicing for a set of tasks, but an arbitrary algorithm is possible when t < Dmax.

proposed approach always finds the smallest slice counts that make inversion duration

less than inversion tolerance for all tasks. Therefore, if using a different algorithm,

the slice count of each task is always greater than or equal to the case of the proposed

approach. If the slice count increases, it makes it harder to find the slice count to pass

the feasibility test increases because it reduces the size of the inversion tolerance that

19

other tasks must pass. Because of this fact, the above assumption is erroneous, so if

proposed approach cannot make a task set to be feasible, no other slicing algorithm

can do either.

Proof of Step 3: Similar to what proof of Step 2, suppose that proposed approach

cannot be made feasible through task set slicing for a set of tasks, but an arbitrary

algorithm is possible when t ≥ Dmax. In this case, it can be proved simply by using

the value of h(t). When t ≥ Dmax by Eq. 1, the value of h(t) is determined only by the

first term, and is proportional to the execution time of each task. proposed approach

always finds the minimum slice count for all tasks, so at all times when t ≥ Dmax, it

always has the smallest h(t) value than when slicing task set with another combina-

tion of slice count. Therefore, if slicing is impossible with proposed approach, slicing

is impossible with any other algorithm.

5.5 Applying slice counts search in Real System

The tasks that include GPU kernels in the real system can be seen as a CPU/GPU

multi-segment model like Figure. 7. Every CPU segment τ
cpu
i,k follows the task sched-

uler in CPU. All GPU segments τ
gpu
j,l follow the non-preemptive EDF as we assumes.

The deadline of each segment can be determined by any prior study for deadline

partition, i.e., prorating the task’s deadline based on the WCET of each segment.

For guaranteeing real-time of GPU, we need to consider all possible set GPU

segments. When the candidate of Γgpu is denoted as a Γ
gpu
j , all Γ

gpu
j can be generated

by finding all combination that would occur if one GPU segment was selected for

each task. Because multiple GPU segments in the same τi cannot be executed simul-

20

τ
cpu
1,1

τ
gpu
1,1

τ
cpu
1,2

τ
gpu
1,2

τ
cpu
1,3

τ
gpu
1,3

τ
cpu
1,4

τ1

τ
cpu
2,1

τ
gpu
2,1

τ
cpu
2,2

τ2

τ
cpu
n,1

τ
gpu
n,1

τ
cpu
n,2

τ
gpu
n,2

τ
cpu
n,3

τn

Figure 7: CPU/GPU multi-segments task set

taneously, only one GPU segment per τi is included in Γ
gpu
j . Therefore, if ni is the

number of GPU segments in τi, total number of Γ
gpu
j becomes n1n2 · · ·nn. Because a

slice count for a GPU segment can be different depending on the configuration of the

GPU segment set, the final slice count for each GPU segment should be determined

as a maximum value obtained while applying the slicing algorithm to all Γ
gpu
j .

6 Experiment Results

In this section, we show the effectiveness of the proposed algorithm by simulation

with synthetic tasks and actual implementation with real autonomous driving tasks.

6.1 Simulation Experiment

A synthetic task is used for whole simulation experiment. A task Ti = (Pi,Ci,Di) is

randomly generated as follows: (1) Pi is randomly generated from uniform[1000,2000].

(2) Ci is defined by multiplying the Pi and the task utilization. The task utilization is

21

(c)(a) (b)(a) α = 1.0 (b) α = 0.75 (c) α = 0.5

Figure 8: Simulation result

created by the Unifast algorithm[26] leveraging the predefined total utilization of task

sets. (3) Di is calculated by Ci +(Pi −Ci)α. The α is the predefined parameter which

represents the bias of the Di between Ci and Pi. It cannot be bigger than 1 or less than

0 because Di is always bigger than Pi and less than Ci. The slicing overhead Oi,sci
is

determined by 0.02 ·Ci · sci.

We generate 104 task set for each utilization, which has five tasks, and the total

utilization U is set in increments of 0.05 within the range of [0.1, 1.0). To show the

effectiveness of proposed algorithm, the schedulability of preemptive EDF and non-

preemptive EDF without slicing are also measured. All cases use the same input task

set. The feasibility test for whole cases uses the exact time analysis presented in [25].

Fig. 8 compares the schedulability of above three approaches for the whole spec-

trum of the task set utilization of 104 task set when α changes. The y-axis of the

graph represents the ratio of the number of schedulable task sets out of 104 task sets

in each case and the x-axis represents total utilization of task set.

In Fig. 8(a), α is 1.0 and it makes all tasks to have implicit deadline. Since pre-

emptive EDF is always schedulable when all tasks have an implicit deadline and

total utilization of task set is less than or equal to 1[15], it schedules all task sets

in this case. However, the schedulability of task set is decreased as total utilization

22

(a) Response time of τ
gpu
1,5 before slicing (b) Response time of τ

gpu
1,5 after slicing (c) Response time of τ

gpu
1,30 before slicing (d) Response time of τ

gpu
1,30 after slicing

Figure 9: Response time of GPU segments before and after slicing

is increased in the non-preemptive EDF case because priority inversion occurs. This

tendency is getting worse when relative deadlines are tighter. Relative deadlines are

in the 3/4 point and center point between the execution time and the minimum in-

ter release time in Fig. 8(b) and (c), respectively. In these cases, relative deadlines

can be less than minimum inter release time, and it makes task set cannot always be

scheduled when using preemptive EDF although total utilization is less than or equal

to 1. The smaller α sets the tighter deadline so it makes more hard to schedule the

task set. The maximum difference of schedulability between the proposed approach

and preemptive EDF is 7.1%. Their subtle difference is caused by slicing overhead,

and it can be reduced by using a more efficient task slicing method. The maximum

improvement on schedulability between sliced and not sliced task set when using

non-preemptive EDF is 73.7%. This result proves the fact that the theoretical maxi-

mum schedulability of the task set slicing algorithm is the same as preemptive EDF.

6.2 Implementation Results

A real workload experiment also has been conducted to verify practicality. Because

any real-time scheduler is not supported on GPU, we implemented a custom software

level non-preemptive EDF scheduler for the experiment. Scheduling is performed

23

by requesting the scheduling to the scheduler when the task reaches the start point

of a GPU segment and waiting until the task receives the authority. For reducing

the scheduling overhead as much as possible, scheduling was conducted based on

polling, and shared memory was used to communicate between tasks and the sched-

uler.

We used five real tasks which are used in autonomous driving: (1) τ1: LiDAR

sensor data based localization module, (2) τ2: LiDAR sensor data based object detec-

tion module, (3) τ3: darknet[27]-based vision object detection module. Same modules

supported in Autoware[28] is used, but code lines for the GPU scheduling and slic-

ing are added. The Pi and Di of each task were set to the frequency of sensor used

in it, and C
gpu
i,k was determined by profiling the WCET of each task. All D

gpu∗−
i,k was

defined by prorating the Di depending on the WCET of each segment.

The number of GPU segment in τ1, τ2, τ3 is 39, 21, 483, respectively. Total

395,577 GPU segment set candidates are generated, and 35,131 candidates cannot

pass the feasibility test before slicing. The maximum slice count for each GPU seg-

ment was searched, and slicing for the GPU segment was conducted by splitting the

GPU operation into several pieces. After slicing, all segment sets passed the feasibil-

ity test.

Fig. 9 shows the measured response time of τ
gpu
1,5 , τ

gpu
1,30. In each graph, the x-axis

is the iteration of each job, and the y-axis is its corresponding response time. The

horizontal line in the graph represents the relative deadline of each GPU segment.

All tasks are executed at the same time to measure the response time includes pri-

ority inversion. As can be seen in Fig. 9(a) and (c), deadline misses have occurred

when the slicing algorithm is not conducted. The average response time is lower than

24

the relative deadline, but sometimes it has relatively large peak values. This situation

seems to occur when the GPU segment, which has a large WCET, creates priority in-

version. Fig. 9 shows the effectiveness of slicing algorithm. No deadline miss occurs

after slicing because segments that cause peak value were sliced into several pieces

to reduce priority inversion.

7 Conclusion

In this paper, we consider the GPU as a non-preemptive uniprocessor and present a

conditionally optimal task set slicing algorithm that enhances the real-time schedu-

lability of GPUs. For this, we derive the essential properties necessary to search the

slice count from the feasibility test and define a term called inversion tolerance. Us-

ing these properties, we proposed a three-step task set slicing algorithm and proved

that it is always optimal under the condition that the slicing overhead is proportional

to the slice count. In addition, we prove the effectiveness of the proposed approach

through simulation.

To the best of our knowledge, the proposed algorithm is the first way that con-

siders a single GPU as a non-preemptive uniprocessor and transforms the task set to

improve schedulability while guaranteeing real-time. One of the significances of our

approach is that it can be applied to all types of GPUs.

In the future, we plan to apply our approach to practical application systems such

as autonomous driving so that they can be driven on embedded boards with limited

resources through optimization. In addition, we plan to expand into a way to utilize

GPUs more efficiently for multiple GPUs.

25

References

[1] Can Basaran and Kyoung-Don Kang. Supporting preemptive task executions

and memory copies in gpgpus. In 2012 24th Euromicro Conference on Real-

Time Systems, pages 287–296. IEEE, 2012.

[2] Jianlong Zhong and Bingsheng He. Kernelet: High-throughput gpu kernel ex-

ecutions with dynamic slicing and scheduling. IEEE Transactions on Parallel

and Distributed Systems, 25(6):1522–1532, 2013.

[3] Husheng Zhou, Guangmo Tong, and Cong Liu. Gpes: A preemptive execution

system for gpgpu computing. In 21st IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, pages 87–97. IEEE, 2015.

[4] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou. Effisha: A soft-

ware framework for enabling effficient preemptive scheduling of gpu. In Pro-

ceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 3–16, 2017.

[5] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. Time-

graph: Gpu scheduling for real-time multi-tasking environments. In Proc.

USENIX ATC, pages 17–30, 2011.

[6] Sreepathi Pai, Matthew J Thazhuthaveetil, and Ramaswamy Govindarajan. Im-

proving gpgpu concurrency with elastic kernels. ACM SIGARCH Computer

Architecture News, 41(1):407–418, 2013.

26

[7] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. Enabling and

exploiting flexible task assignment on gpu through sm-centric program trans-

formations. In Proceedings of the 29th ACM on International Conference on

Supercomputing, pages 119–130, 2015.

[8] Konstantinos Menychtas, Kai Shen, and Michael L Scott. Disengaged schedul-

ing for fair, protected access to fast computational accelerators. ACM SIGARCH

Computer Architecture News, 42(1):301–316, 2014.

[9] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. Gpuvm: Why

not virtualizing gpus at the hypervisor? In 2014 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 14), pages 109–120, 2014.

[10] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. Gdev:

First-class {GPU} resource management in the operating system. In 2012

{USENIX} Annual Technical Conference ({USENIX}{ATC} 12), pages 401–

412, 2012.

[11] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. Gpufs: Inte-

grating a file system with gpus. In Proceedings of the eighteenth international

conference on Architectural Support for Programming Languages and Operat-

ing Systems, pages 485–498, 2013.

[12] Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, and Xiaodong Zhang.

Gdm: Device memory management for gpgpu computing. ACM SIGMETRICS

Performance Evaluation Review, 42(1):533–545, 2014.

27

[13] Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna.

Sigamma: Server based integrated gpu arbitration mechanism for memory ac-

cesses. In Proceedings of the 25th International Conference on Real-Time Net-

works and Systems, pages 48–57, 2017.

[14] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka

Ishikawa, and Ragunathan Rajkumar. Rgem: A responsive gpgpu execution

model for runtime engines. In 2011 IEEE 32nd Real-Time Systems Symposium,

pages 57–66. IEEE, 2011.

[15] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

[16] Joseph Y.-T. Leung and M.L. Merrill. A note on preemptive scheduling of

periodic, real-time tasks. Information Processing Letters, 11(3):115–118, 1980.

[17] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-real-

time sporadic tasks on one processor. In [1990] Proceedings 11th Real-Time

Systems Symposium, pages 182–190, 1990.

[18] Sanjoy K. Baruah, Rodney R. Howell, and Louis E. Rosier. Feasibility problems

for recurring tasks on one processor. Theoretical Computer Science, 118(1):3–

20, 1993.

[19] Ismael Ripoll, Alfons Crespo, and Aloysius K Mok. Improvement in feasibility

testing for real-time tasks. Real-Time Systems, 11(1):19–39, 1996.

[20] Laurent George, Paul Muhlethaler, and Nicolas Rivierre. Optimality and non-

preemptive real-time scheduling revisited. PhD thesis, INRIA, 1995.

28

[21] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro,

and Mateo Valero. Enabling preemptive multiprogramming on gpus. ACM

SIGARCH Computer Architecture News, 42(3):193–204, 2014.

[22] Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collabora-

tive preemption for multitasking on a shared gpu. ACM SIGARCH Computer

Architecture News, 43(1):593–606, 2015.

[23] Zhen Lin, Lars Nyland, and Huiyang Zhou. Enabling efficient preemption for

simt architectures with lightweight context switching. In SC’16: Proceedings

of the International Conference for High Performance Computing, Networking,

Storage and Analysis, pages 898–908. IEEE, 2016.

[24] Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Aingara Para-

makuru. Deadline-based scheduling for gpu with preemption support. In 2018

IEEE Real-Time Systems Symposium (RTSS), pages 119–130. IEEE, 2018.

[25] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and non-

preemptive real-time uniprocessor scheduling. PhD thesis, Inria, 1996.

[26] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedula-

bility tests. Real-Time Systems, 30(1-2):129–154, 2005.

[27] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[28] Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato

Hirabayashi, Yuki Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fu-

jii, and Takuya Azumi. Autoware on board: Enabling autonomous vehicles

29

with embedded systems. In 2018 ACM/IEEE 9th International Conference on

Cyber-Physical Systems (ICCPS), pages 287–296. IEEE, 2018.

30

요약(국문초록)

본 논문은 GPU의 실시간성 보장 및 더 나은 스케줄링 가능성을 위한

조건부 최적 슬라이스 카운트 탐색 알고리즘을 제안한다. 근래 딥러닝의

발전으로 인해 GPU의 중요성이 커지고 있음에도 불구하고, GPU를 실시

간으로 활용하기 위한 기술들은 아직 부족한 실정이다. 본 논문은 GPU를

단일프로세서로가정하고비선점형 EDF를 GPU커널의스케줄링에사용

한다.또한GPU task set을스케줄링가능하게만드는슬라이스카운트탐색

기법을 통해 비선점형 단일 프로세서로의 가정으로 인한 스케줄링 가능성

저하문제를해결한다.

주요어 :실시간시스템, GPU,태스크슬라이싱

학번 : 2019-28371

31

	1 Introduction
	2 RelatedWorks
	3 Real-Time Gaurantee of GPUs through Non-Preemptive Uniprocessor Assumption
	4 Problem Description
	5 Slice Counts Search
	5.1 Blocking point, blocking tolerance, and blocking candidates
	5.2 Searching slice counts for a task set
	5.3 Stop conditions
	5.4 Optimality of the slice counts search
	5.5 Applying slice counts search in Real System

	6 Experiment Results
	6.1 Simulation Experiment
	6.2 Implementation Results

	7 Conclusion
	References

<startpage>7
1 Introduction 1
2 RelatedWorks 3
3 Real-Time Gaurantee of GPUs through Non-Preemptive Uniprocessor Assumption 5
4 Problem Description 9
5 Slice Counts Search 11
 5.1 Blocking point, blocking tolerance, and blocking candidates 13
 5.2 Searching slice counts for a task set 14
 5.3 Stop conditions 18
 5.4 Optimality of the slice counts search 18
 5.5 Applying slice counts search in Real System 20
6 Experiment Results 21
 6.1 Simulation Experiment 21
 6.2 Implementation Results 23
7 Conclusion 25
References 26
</body>

