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Abstract 

 
With the growing popularity of the web platform and JavaScript, 

an interesting user experience called application (app) migration 

has been proposed for JavaScript programs. To enable a non-

breaking workflow across different devices, recent studies have 

proposed snapshot-based techniques in which an app’s runtime 

state is serialized into a text form that can be restored back later. A 

limitation of existing literature, however, is that they are based on 

old JavaScript specifications. Since major updates introduced by 

ECMASCript2015 (a.k.a. ES6), JavaScript supports various features 

that cannot be migrated correctly with existing methods. Some of 

these features are heavily used in today’s real-world apps and 

thus greatly reduces the scope of previous works. 

In this thesis, I will mainly introduce my work presented in [19]. 

In the paper, we analyzed ES6 features such as block scopes, 

modules, and class syntax that were previously uncovered in app 

migration. We presented an algorithm that enables migration of apps 

implemented with these new features. Based on the standards 

adopted in modern JavaScript engines, our approach serializes a 

running program into a scope tree and reorganizes it for snapshot 

code generation. We implemented our idea on the open source V8 

engine and experiment with complex benchmark programs of 

modern JavaScript. Results showed that our approach correctly 

migrates 5 target programs between mobile devices. Our framework 

could migrate the most complex app of source code size 213KB in 

less than 200ms in a X86 laptop and 800ms in an embedded ARM 

board, showing feasibility in resource-constrained IoT devices. I 

will also discuss possible use cases and research directions and 

conclude. 

 

Keyword : JavaScript, app migration, serialization, code generation 

Student Number : 2019-26414 
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Chapter 1. Introduction 

 

1.1. JavaScript App Migration 

 

Among various modern programming languages, JavaScript 

remains as one of the most pervasive scripting languages. 

According to recent survey results from StackOverflow ① , its 

popularity remains unsurpassed for several consecutive years. An 

important factor for this popularity is its compatibility with web 

browsers which are available in most mobile devices by default. 

Moreover, adoption of JavaScript outside web browsers has given 

rise to server-side or desktop apps that run in popular runtime 

environments such as Node.js or electron. Also, several smart 

device vendors support built-in web browers (e.g. Samsung Tizen, 

LG webOS), thus readily running web applications written in 

JavaScript. 

Wide platform pool of JavaScript makes it suitable for a cross-

device computing concept called liquid software [5, 6, 16] in which 

the workflow of interactions and services are continued across 

devices. While similar approaches were proposed for native mobile 

platforms [1], they lacked support for devices from different 

vendors. Yet, the high portability of web apps and freedom from 

predatory control of OS vendors exempt them from such issues. 

With a similar concept, [3, 13, 14, 15] proposed app migration 

frameworks for stateful web apps, in which browser sessions can 

be migrated across devices. Their main approach is to profile a 

running program’s states, such as the objects in JavaScript heap, 

and saving them into a text-formatted file (i.e. snapshot). 

Generating a snapshot as a JavaScript code enables a low-overhead 

framework for continuous user experience across a heterogeneous 

device pool. Later studies extended the techniques to IoT [8] and 

compute offload [7, 11], suggesting novel use cases like multi-

device web games and collaborative machine learning in browsers. 

                                            
① https://insights.stackoverflow.com/survey/2020/ 
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In order to implement app migration for JavaScript apps, previous 

works addressed important challenges raised by the dynamic nature 

of JavaScript. Notably, [15] suggested solutions for saving 

variables hidden inside a function closure. [13] extended this and 

proposed a scope tree building algorithm to save complex scope 

hierarchy of function closures. However, JavaScript language, as 

well as its ecosystem, has evolved significantly and has 

continuously been refined on a yearly basis. Modern JavaScript 

engines support by default various features② used in real-world 

web apps (e.g. slack, ebay, duckduckgo). These apps make heavy 

use of new language features (e.g. block scoping, class, module and 

new built-in types) introduced in ECMAScript2015 standards ③. 

This raise non-trivial issues to all prior works which, at their best, 

are based on the old ECMAScript5.1 standards. 

 

1.2. Purpose of Research 

 

Our work [19] tackles the problem of migrating runtime states of 

ES6 JavaScript programs. We analyze the major language features 

defined in ES6 specifications and discuss the main challenges in app 

migration. Our work expands scope tree building by [13] to support 

two new variable scopes introduced by block scoping and module 

system. Based on analyses of scope trees, we propose methods for 

restoring class syntax included in modern JavaScript programs 

together with new built-in types. We implement our work as a 

JavaScript module and tested our idea using 5 modern benchmark 

programs. Experimental results in two different mobile devices 

show that our approach correctly migrates all programs with 

minimal overhead, suggesting feasibility of in resource-constrained 

environments. In short, our paper following made contributions: 

– To the best of our knowledge, it is the first study on runtime 

migration of ES6 JavaScript. We analyze the challenges raised by 

                                            
② https://kangax.github.io/compat-table/es6/ 
③ http://www.ecma-international.org/ecma-262/6.0/ 
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new languages features and propose new ways to serialize and 

restore their states. 

– We evaluate our work on complex benchmark programs written 

in ES6. Experiments in 2 different mobile devices show the app 

migration causes low time overhead and is thus feasible in 

resource-constrained devices. 

– We show that the size of restoration code generated by our 

framework is comparable to previous state-of-the-art. We 

further analyze different ES6 programs based on the generated 

scope trees and snapshot codes. 



 

 ４ 

Chapter 2. Background 

 

2.1. Snapshot-based Approach 

 

Several recent works on JavaScript app migration have proposed 

capturing the application state at JavaScript level [3,14,15,13,8]. As 

JavaScript engines save variables of the global scope as the global 

object’s properties, their values can be accessed by enumerating 

these properties cleverly. After each element state is serialized at a 

source device, a snapshot code can be generated to restore their 

values at the target device. When this code is executed at the target 

device, original global scope state can be migrated with minimal 

overhead, allowing the user to resume execution of the app from 

the serialized state. Since this simplifies the process of restoring an 

app as opposed to native-level solutions [9, 2], we follow the 

state-of-the-art approach proposed by [13] and incrementally 

build on this baseline study throughout the paper.  

 

2.2. Function Closure and Scope Tree 

 

During a program’s runtime, the JavaScript engine manages a 

call stack to save the context, a.k.a. the execution context, in which 

the code is executed. Each execution context consists of a lexical 

environment (LE) whose environment record saves the set of 

variables, functions, etc. bound to the LE. Another component of an 

LE is a reference to the outside LE, which is referred to as 

“outer”, together defining the variable’s scope. 

As a JavaScript code makes some function call, the JavaScript 

engine dynamically creates a new execution context and a 

corresponding LE. Then, the function is dynamically bundled with 

its outer LE in which it is defined as a closure. These closures are 

discussed as a major challenge in previous works on JavaScript app 

migration. In fact, to preserve a function’s state completely, we 
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Figure 1. Scope Chain and Scope Tree Example 

need to save and restore the “outer” LE accessed by the 

function’s closure which is internally managed by JavaScript 

engines. To tackle this issue at JavaScript level, [15] modified the 

JavaScript engine to gain direct access to the internal 

property ’Scope’ to recursively obtain the chain of LEs, a.k.a. 

scope chain. This enables a function to be restored together with 

the original context. 

As demonstrated in later works, however, migrating functions is 

more challenging when multiple closures share the same LEs. For 

example, Figure 1 illustrates two functions print and reset that  

reference the same variable msg via their closures. In this case, 

simply saving the LE of each function will not restore the whole 

program correctly. If the relationship between two closures is not 

captured, restoring each scope chain will generate multiple copies 

of shared contexts. Thus, the whole scope hierarchy needs to be 

serialized to prevent unexpected breakdowns in mysterious cases.  

To mitigate this problem, [13] proposed combining all the scope 

chain information into a single data structure called scope tree. 

Figure 1c shows an example scope tree generated for Figure 1. In 

this scope tree, “print” and “reset” become child nodes of the 

same node because they are defined inside the local scope of 
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wrapper. Afterwards, traversing this tree in pre-order generates a 

restoration code for the original program state. 

 

2.3. Limitations of Previous Works 

 

Although previous works incrementally addressed important 

issues in JavaScript app migration, modern JavaScript apps rely on 

newer complex features to which existing approaches do not 

provide solutions. We analyzed new specifications in ES6 standards 

not addressed in previous approaches, specifically focusing on 4 

features prevalent in modern JavaScript apps and frameworks: 

block scoping, module system, class syntax, and new data types. 

 

2.4. ES6 Features and Issues in App Migration 

 

Block Scoping Prior to ES6, a JavaScript variable was declared with 

keyword var and scoped to the innermost surrounding function 

(a.k.a. function-scoped). This means variables were available 

anywhere within the function it is declared. On the other hand, ES6 

introduced a new variable type called block-scoped variables as a 

core update. Declared with keywords let or const, these variables 

follow a more common convention of other languages and are 

scoped to any innermost block that surround them and cannot be 

accessed until their lexical bindings are evaluated. 

 

Module System ES6 standards introduced a new module system to 

JavaScript which allows splitting a large piece of code into multiple 

files using built-in syntax. This replaced previous platform-

specific module implementations④⑤ and has been shipped into all 

major JavaScript engines as the de facto standard. A module’s 

code is stored in a separate file, each containing a set of 

declarations and 

                                            
④ http://www.commonjs.org/ 
⑤ https://github.com/amdjs/ 
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Figure 2. ES6 Module Example 

statements which may be accessed from another module as read-

only. In practice, programmers specify an entry point module and 

explicitly load it, for example, via a ⟨script type="module"⟩ tag into 

an HTML file of a web app. 

JavaScript engines execute modules differently from regular 

scripts, so the same code can have different semantics depending 

on whether it is loaded as a script or module. For example, calling 

this keyword at top-level will give different results in a script 

(global object) and module (undefined). Thus, ES6 app migration 

needs to preserve such semantics of modules. 

Internally, the JavaScript engine creates a new LE, a.k.a. 

ModuleScope whenever a new module’s code is executed, thereby 

isolating each module’s scope. In perspective of a scope tree, this 

means that each module’s top-level bindings are saved in a 

separate node. The challenge here is that the scope tree alone 

cannot capture the order of each module’s declaration (i.e. 

relationship between the modules). For example, Figure 2b shows 

scope tree generated for the code of Figure 2a. Both ModuleScope 

nodes save the same function bar, but we cannot identify in which 

module this function was first declared. 
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Figure 3. Incorrect Restoration of Class Definitions 

Class Syntax ES6 also defined class definitions as a special function 

type while reserving several keywords to mimic syntax like class-

based languages on top of JavaScript’s object-based nature. A 

class’s constructor function is differentiated from normal functions 

and is bound to a new BlockScope generated for that class. 

Subclassing in ES6 classes is done with the extends keyword, for  

which the JavaScript engine evaluates the parent class and 

dynamically links the child class’s constructor and prototype to 

their parent class counterparts. 

In order to save and restore class definitions for app migration, 

naively treating them as regular functions and capturing their states 

using a scope tree will not preserve the syntactic order between 

different classes. More specifically, the extends keyword used in 

class subclassing requires that a parent class’s BlockScope is 

evaluated before executing a child class’s BlockScope. 

Due to JavaScript’s dynamic nature, however, such order 

between subclassing classes are often not captured automatically. 

Figure 3a is a source code of two class variables whose 

declarations (line 1-2) and definitions (line 4-5) are in different 

order. If we restore this app like using a scope tree [13], identifier 

Circle will be restored before Shape. Because dependencies 
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between the two identifiers are not explicit, a generated snapshot 

code (Figure 3b) will raise a syntax error when it is executed (line 

1). Identifying such dependencies becomes more challenging if 

classes are defined in different scopes (e.g. in different lexical 

blocks) or if parent classes are defined by arbitrary expressions. 

Thus, we need a new strategy that can generalize and account for 

such new syntax.  
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Figure 4. High-level Overview 

 

Chapter 3. Proposed Approach 

 

In Figure 4, we show a high-level overview of our framework 

presented in [19]. Given a target app, we save its module structure 

into a JSON file (“module dep.json”) with a lightweight static 

analysis (module profiler) which is loaded together for later use. 

The app user can trigger app migration by calling a global function 

(“SaveSnapshot”) of our framework (“migrator.js”) to generate 

a snapshot code (“snapshot.js”). The user can load this snapshot 

code at the target device and restore original app state in the 

source device so that app execution can continue seamlessly. We 

now explain details of each stage. 

 

3.1. Module Profiling 

 

To restore a module structure in the target device, our 

framework statically analyzes the app source code and saves 

dependencies between different modules included in the app. This is 

because a static analysis can capture any complex relationship 

between ES6 modules that cannot be captured easily at runtime, 

such as two different JavaScript modules that have cyclic 

dependencies. As such, we add a module profiler stage in advance 

to app deployment. Given an app’s source code and its entry 
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module name, we generate a JSON file (“module dep.json”) that 

saves the dependency graph between modules. This dependency 

graph models each module as a node and variables imported to each 

module as an incoming edge. This file is later loaded with the target 

app to restore the relationship between different modules. 

 

3.2. Migrating Modified Built-in Objects 
 

Before loading some target app, our framework saves the initial 

states of JavaScript’s built-in objects such as Array, String, etc. 

This is an optimization to efficiently migrate JavaScript built-in 

objects based on the intuition that after a JavaScript engine 

initializes their properties, most built-in objects are rarely modified 

during program execution [12, 11]. Inspired by this observation, we 

do not serialize the unmodified properties redundantly and instead 

restore them at the target device via default engine startup. To 

save the other modified portion and minimize our snapshot code size, 

our framework loads our app migration script before the actual app 

is loaded by the JavaScript engine and immediately save initial 

states of  

built-in objects (step 2-a). At the actual app migration, we 

traverse these built-in object once again to find the properties that 

are modified from their initial states during app execution (step 2-

b) and generate a JavaScript code that restores these changes via 

assignment. 

 

3.3. Scope Tree Building 
 

Our framework saves global identifiers (e.g. variables, objects) 

that were created during app execution, together with their values 

and properties. If some object is found to be a function 

(LeafFunction), we traverse the scope chain and collect scope 

information (i.e. LEs) recursively up to the outermost scope 

(GlobalScope). At the end of each traversal, we update the scope 

tree with the collected information as in previous approaches [13] 
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so that closure variables and their relationships are serialized. At 

the end of this stage, the resulting scope tree can be composed of 5 

node types which we abbreviate as following:  

– G = GlobalScope; global scope of a program. 

– M = ModuleScope; top-level scope of a module. 

– F = FunctionScope; scope introduced by a function. 

– B = BlockScope; scope introduced by a block statement.  

– L = LeafFunction; function that starts a scope chain.  

 

 

3.4. Syntax-Aware Tree Re-ordering 

 

Once a scope tree is generated, we collect dependency 

information between tree nodes to address the issue raised by 

subclassing syntax in class definitions. More specifically, this 

dependency defines the order in which a parent class and a child 

class will be declared so that the extends clause (i.e. reference to 

the parent) in every class definition is evaluated without syntax 

error. By re-ordering the scope tree with respect to such 

dependency, we ensure that a parent class is present with the right 

values when evaluating the child. 

Once again, the challenge here is finding relationship between 

these class constructors, i.e. finding each class’s parent. Here, we 

exploit the prototype-based inheritance model of ES6 classes and 

inspect the internal links between JavaScript classes to find each 

class’s parent. Since every object in JavaScript, including class 

definitions, has an internal property named ’Prototype’, 

recursively following these links up to null give us its “prototype 

chain”. Based on this principle, we first iterate all observable class 

constructors and their parent class and locate their least common 

ancestor node in our scope tree. We then rearrange the two child 

branches to which the classes are bound, so that a pre-order depth 

first search reaches the parent class’s scope before the child’s. 



 

 １３ 

 

Figure 5. Tree Partitioning Example (UniPoker) 

3.5. Tree Partitioning 

 

As the next step, we restore the original partitioning of the 

source code so that each module’s code can be generated 

separately. Since every module creates its own LE whose “outer” 

element points at the global LE, a ModuleScope node in our scope 

tree forms its own subtree as a direct child of GlobalScope node. 

Separating each module is straightforward: we iterate children of 

the root node to find all ModuleScope nodes and split their subtrees 

from the original scope tree. 

To restore the relationship between module partitions, we 

examine the declarations saved in each module partition’s root 

node (i.e. ModuleScope node) and recursively map each 

ModuleScope to a node in our previously saved dependency graph 

(“module dep.json”), thus restoring the original relationship 

between them. Finally, generating a glue code (e.g. ⟨script 

type=“module”⟩) to load the entry module into global scope 

restores the original module structure of the application. As an 

example, Fig 5 shows tree partitions of a target app called UniPoker, 

originally composed of three code fragments. 

 

3.6. Snapshot Code Generation  

 

After our scope tree is reordered and partitioned, we generate a 

snapshot code for each scope tree partition. The final result of this 

stage will be multiple JavaScript files, each corresponding to a tree 
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Figure 6. Pseudo Code for Code Generation 

partition. Code for a partition can be generated by traversing the 

partition’s nodes in pre-order and applying an appropriate code 

generation scheme to each visited node. We implement function 

generateScope which generates code for a given node and 

recursively invokes itself until a leaf node is reached. In other 

words, invoking generateScope with some partition’s root node as 

argument returns its snapshot code. We show pseudo code of the 

code generator in Figure 6. 

In line 2, we first check the type of the visited node to select an 

appropriate code generation scheme. If the node type is BlockScope 
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(line 3) or a FunctionScope (line 13), we generate a wrapper code 

corresponding to the scope type, which generates code for a given 

node and recursively invokes itself until a leaf node is reached. In 

other words, invoking generateScope with some partition’s root 

node as argument returns its snapshot code. We show pseudo code 

of the code generator in Figure 6.  

In line 2, we first check the type of the visited node to select an 

appropriate code generation scheme. If the node type is BlockScope 

(line 3) or a FunctionScope (line 13), we generate a wrapper code 

corresponding to the scope type, i.e. lexical block statement (line 4 

& 11) or an immediately invoked function expression (line 14 & 21). 

Inside the wrapper code, we serialize the value of each closure 

variable and invoke generateScope for each child node in the scope 

tree. Note that variables are declared differently in each case so 

that they are bound to the correct LE type. 

When we visit a leaf node during a pre-order traversal (line 23), 

our code generator first checks if the function is a class (line 24), a 

method (line 26) or neither of two types (line 29). A class 

constructor is distinguishable lexically at JavaScript level by its 

keyword “class” while a method function is unique in that it does 

not have a “prototype” property. We again serialize its scope 

chain (i.e. node.function), process it with respect to the syntax of 

the type, and concatenate the resulting code. 

In generating the snapshot code, our framework adds supports for 

new data types introduced in ES6 which cannot be serialized with 

existing methods. One example is the new primitive type symbol, 

whose value is created by calling the function Symbol() with an 

optional stringargument (i.e.key). Since each symbol saves a unique 

valueeven if generated with the same key, we cannot serialize 

thesedata types into strings directly like other primitive types 

(i.e.with JSON.stringify()). We therefore introduce an auxiliary 

array named sym_ref that saves all distinct symbol values found 

during the whole serialization process, and save the mapping from 

each symbol variable to one of these values. We later restore this 

sym_ref and generate a reference codes when the symbol value is 
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called. 

Moreover, we propose an efficient way to migrate new standard 

built-in objects such as keyed collections (e.g. Map, Set). 

Whenever an occurrence of these types is found, our code 

generator adds a declaration an empty prototype of the built-in 

object and copies each element of the target object in the original 

insertion order using the corresponding built-in methods, e.g. 

Map.set("key", "value"). We apply a similar approach for a typed 

array object, but additionally save the subtype information (e.g. 

Int8Array). The target object can then be declared in the 

restoration code with this subtype information and restored in a 

similar fashion. 
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Chapter 4. Evaluation 

4.1. Implementation and Setup 

 

We used the V8 JavaScript engine of the open-source chromium 

browser to implement and evaluate our work, as it is currently the 

most popular platform adopted by major browser (Google Chrome, 

Microsoft Edge) and non-browser platforms (Node.js, electron). 

We cloned the source code of a recent version chromium browser 

(version 82.0.4060.0, Feb 15, 2020) to add accesses to 

internal ’Scope’ property of functions. Our module profiler 

extends an open source npm 67 package built on Esprima 

JavaScript parser . The rest of the framework is implemented as a 

module named “migrator.js” so as to be easily plugged into other 

JavaScript apps for app migration support. “SaveSnapshot” 

function in the module is attached to a button click event to provide 

interactive interface. 

We compiled our modified V8 engine to experiment in two 

environments: (1) a X86 laptop with Intel Core i7-7700 3.6GHz 

CPU and 32GB memory (2) ODROID-XU4 embedded board with 

ARM Cortex-A15 Quad 2Ghz & CortexA7 Quad 1.3GHz CPUs, and 

2GB of memory, to simulate resource-constrained scenarios. We 

then adapted several programs from JetStream2 benchmark (Table 

1) that show various real-world usages of ES6 features. Original 

details of the benchmark can be found in [4]. Since we couldn’t 

find any standard benchmark for testing ES6 modules, we 

additionally split source codes of two target programs (UniPoker 

and ML) into multiple modules. 

We first downloaded source codes of the target apps, saved them 

in the source device, and adapted each app so that it imports our 

framework in advance of app loading. We loaded each app in our 

modified browser and executed app migration at 2 different 

execution points: (1) after a target app is fully loaded and (2) after 

program finished several iteration. The generated snapshot file is 

then loaded into a new browser session in a target device. 
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Table 1. target programs for app migration 

 

 

To ensure correctness of app migration, we first checked the 

runtime behavior of each benchmark program by resuming their 

execution after app migration multiple times. We also inspected all 

global identifiers in the original and new session and made sure their 

all values are preserved. Lastly for the 2 benchmarks written using 

ES6 modules, we checked if each module is properly split from each 

other with the correct import/export statements. Our inspection 

results showed that our snapshot codes restored the original 

program correctly. 

 

4.2. Scope Tree Analysis 

We summarized scope tree results of our benchmark programs in 

Table 2. Results of UniPoker and ML show that tree partitioning will 

yield 3 and 5 additional module partitions respectively, same as the 

original source codes. Compared to other programs, scope trees of 

Babylon and ML had relatively more complex structures (Fig. 7). 

For example, in the center of ML’s result we can observe a branch 

of length 5 (G-M-B-F-B) shared by 180 different leaf function 

nodes. We observed that most of the LE nodes in these complex 

tree structures are BlockScope nodes. In fact, a large portion of 

these nodes are created by class definitions and thus their child 

nodes are subject to syntax-aware re-ordering. 
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Table 2. Scope Tree Details       Table 3. Code Size Across Migration 

  

 

One of our framework’s limitations lies in supporting 

asynchronous features in JavaScript (e.g. Promise API) which is 

outside the scope of this paper. For now, we simply disable app 

migration when such features are detected and leave support for 

them as future research direction. Yet, it is worth mentioning that 

these features essentially do not add new scoping rules and thus 

will not break the semantics of our overall scope serialization 

process. 

 

4.3. Snapshot Code Sizes 

In our framework, a small snapshot code size is desirable because 

it can reduce time to transmit the snapshot code between devices 

and shorten app loading time in the target device. Table 3 shows 

the source code and snapshot code size at the two execution points. 

Intuitively, size increase will be relatively larger for complex scope 

trees with more LEs, since we restore each LE by generating 

reference codes that is not present in the original source.  

  Unlike other benchmarks whose snapshot code sizes are mostly 

consistent across all execution points, noticeable increase exists 

between snapshot1 and snapshot2 in Babylon. This is because in 

between the two snapshot points, Babylon read 4 JavaScript source 

codes from external files and loads them into memory, thus greatly 

increasing program state size.  

  Another noticeable observation is that code size increase is 

unusually larger in ML compared to any other program. This is 

because ML’s source code heavily uses the eval() function for 

code compression, which has long been deprecated. Even including 
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Figure 7. Scope Tree Example (ML benchmark) 

such exceptional cases, the snapshot codes sizes are only 2.01X 

larger than the source code on average. This is comparable to 

previous state-of-the-art baseline result by [13], which reports 

1.97X code size increase for the Octane benchmark 2.0 based on 

ES5 syntax. Considering the extra lines of code added to support 

ES6 features (e.g. glue codes for restoring dependencies in 

modules and classes), we conclude that the snapshot size is 

reasonably small even for resource-constrained devices. 

 

4.4. Framework Time Overhead 

 

Loading the framework and serializing initial built-in object states 

was consistent across benchmarks: 93ms (std 1ms) in laptop and 

346ms (std 2ms) in ARM board, i.e. initial steps take similar times 

regardless of target apps. Fig 8 shows additional time overhead 

imposed by each stage. Total time spent for snapshot generation is  
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Figure 8. Breakdown of Our Framework’s Overhead (ms) 

 

less than 200ms in laptop and 800ms in ARM board in the worst 

case (ML). This is considered small enough for continuous 

progression in multi-device experience [13] and even for single-

device experience [10]. Thus, the time overhead is small enough to 

provide seamless experience across devices from a user-centric 

perspective, and feasible in resource-constrained environments. 

While built-in saving time is measured almost the same 

throughout all programs, the other 3 measurements are dependent 

on the source program itself and thus largely different by program. 

This is consistent to that of code sizes (i.e. the larger the snapshot 

size, the longer the framework took to generate it). Among the 

three items, time spent in reorder & partition was substantially 

lower than other stages in all cases, implying that extra steps for 

migrating ES6 features causes minimal extra overhead. 
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Chapter 5. Discussion 
 

5.1. Limitations 

 

This paper mainly discusses methods to save and restore major 

ES6 features such as block scoping, class definition, module 

structure, and several new built-in types. In addition to those 

discussed in this paper, ES6 standards introduced several popular 

features including arrow functions, new operators (rest, spread, 

for-of), template literals, and destructuring assignments. Since 

these features do not cause complex issues in app migration at 

function-level granularity, they are trivially supported by our 

framework.  

Our framework does not fully support migrating unresolved states 

of asynchronous language features like promises and async/await 

patterns. These two feature states are managed by engine internals 

that cannot be serialized easily at JavaScript level. The current 

implementation simply limits app migration when an un-resolved 

promise is present, but we leave this as an important future 

research direction. For other features in more recent ECMAScript 

standards that is not covered in this paper (e.g. BigInt type), we 

expect them to be supported easily since those minor updates do 

not break the semantics of our approach. For now, we leave it as 

future work. 

 

5.2. Alternative Approach 

 

Our work modifies the JavaScript engine source code in order to 

fully serialize a function closure. This design choice only requires 

minimal modifications to the engine source code (63 extra lines of 

code). Moreover, it is a common practice for smart device vendors 

to use their own customized version of major JavaScript engines, 

e.g. Samsung’s Tizen platform is implemented on the V8 engine.  

An orthogonal approach proposed by [8] and [14] instruments 
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the target app’s source code (a.k.a. instrumentation-based 

approach) so that the scope chain is exposed explicitly. An 

important issue of these approaches, however, is that the 

instrumentation process increases the original code size drastically. 

For example, results from a recent work [8] show that the source 

code size may increase by 74X in extreme cases. This greatly 

slows down the app loading and execution in resource-constrained 

devices. In contrast, our approach provides a more practical 

solution for migrating large apps between IoT devices with minimal 

overhead. 

 

5.3. Potential Use Cases 

 

This paper applies a snapshot-based approach to enable an 

interesting user experience called app migration. However, 

techniques discussed in our work can give rise to numerous other 

opportunities for JavaScript-based apps. One such example is [17] 

by Yeo et al. which applied a snapshot-based technique to shorten 

loading time of webapps. Their experiments show that saving a 

snapshot of a web app and using it as the app loading point can save 

77% of the initialization time. Their work was extended further by 

in [18] to cover challenging apps such as those with non-

deterministic behavior. Combined with these works, our work can 

extend the idea to reducing loading time of modern web applications. 

There are also other studies that applied snapshot-based 

approaches for designing distributed systems. Gascon-Samson et al. 

[8] designed a system in which stateful JavaScript app states can 

be transferred between different IoT devices in the form of a 

snapshot. Jeong et al. [11] proposed a snapshot-based approach 

towards offloading intensive web app computations from resource-

constrained devices to cloud servers with minimal overhead. They 

implement the idea to seamlessly offload compute-intensive 

webapp workloads using HTML5 web workers. Our work can 

extend these works with minimum overhead for supporting ES6 

features.
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Chapter 6. Conclusion 

 

In my work on snapshot-based migration of ES6 JavaScript, we 

addressed challenges in snapshot-based app migration of ES6 

JavaScript programs. We analyzed various features in ES6 

standards and proposed methods to handle them efficiently, 

including manipulation of the scope tree and code generation for 

new scope types and data types. We implemented our proposal on 

the open-source V8 engine as an easily pluggable module. 

Evaluation on complex ES6-based benchmark programs shows that 

our framework can generate reasonable size snapshots with little 

time overhead in mobile devices, which shows feasibility in 

resource-constrained IoT devices. By combining static and 

dynamic methods, our framework achieves better efficiency than 

purely static methods and can potentially be extended to web 

loading time acceleration or IoT applications.  
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Abstract 

 

최근 웹 플랫폼 및 자바스크립트의 인기와 함께, 자바스크립트로 

작성된 프로그램을 위한 앱 마이그레이션 기술이 연구된 바 있다. 이는 

이종의 기기 간에 연속적인 워크플로우를 제공해 새로운 사용자 경험을 

제공하는 기술을 일컫는다. 여러 선행 연구에서 스냅샷 기반 방법론을 

사용해 앱의 런타임 상태를 텍스트 형태로 직렬화 및 복원하는 시도를 

했다. 그러나, 기존 연구들은 구 버전 자바스크립트 상에서 진행됐다는 

한계가 있다. 이에 비해 ECMAScript2015 (ES6) 업데이트 이후 

자바스크립트에 다양한 기능이 도입되었기 때문에, 기존 방법들은 

오늘날 real-world 애플리케이션을 마이그레이션하기 어렵다. 

본 논문은 [19]에서 소개된 우리의 프레임워크를 소개한다. 우리는 

선행 연구에서 다뤄지지 않은 block scope, module, class syntax와 

같은 ES6의 주요 기능을 분석했으며 이러한 새로운 기능을 사용하는 

앱을 마이그레이션 하기 위한 알고리즘을 제안했다. 또한, 우리는 최신 

자바스크립트 엔진에 대한 분석을 통해 실행 중인 자바스크립트 

프로그램의 런타임 상태를 scope tree라는 자료구조 상에 직렬화하고, 

후처리를 거친 scope tree로부터 스냅샷 코드를 생성했다. 이러한 

방법론을 V8 자바스크립트 엔진인 상에 구현했으며, 복잡한 최신 

자바스크립트 기능을 사용하는 벤치마크 프로그램에 대해 실험했다. 

실험 결과를 통해 이러한 방법이 모바일 기기 간에 5개의 벤치마크 

프로그램을 성공적으로 마이그레이션 시킨다는 것을 보였다. 복잡도가 

가장 높은 앱 (ML 벤치마크, 소스 코드 크기 213KB)에 대한 실험에서 

프레임워크로 인한 시간 부하를 측정한 결과, X86 랩톱에서 200ms 

미만, ARM 기반 임베디드 보드에서 800ms 미만이었다. 이러한 결과를 

통해 자원이 제한된 IoT 기기 등에 대한 적용 가능성을 검증했으며, 

추가적으로 프레임워크의 활용 방안 및 향후 연구 방향에 대해 논의한다. 

 

Keyword : 자바스크립트, 앱 마이그레이션, 직렬화, 코드 생성 
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