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Abstract 

Study on Exceptional Point of Non-Hermitian 

Chiral Plasmonic Nanomaterials 

Yae-Chan Lim 

Department of Materials Science and Engineering 

The Graduate School 

Seoul National University 

Discovery of parity-time symmetry (PT-symmetry) has made a huge 

impact on non-Hermitian physics. It not only redefined the concept of 

quantization in quantum dynamics, but expanded the scope of the mathematical 

physics from real to complex analysis. Also, the PT-symmetric non-Hermitian 

concept can be applied in photonics due to the similarity of the Schrödinger 

equation and Maxwell’s equation. Most of the time, the application of non-

Hermitian physics to photonics is achieved by two coupled system with gain and 

loss. Two coupled system makes a Hamiltonian of 2  2 matrix, and its 

eigenvalues are found to be square roots of a complex quantity, which forms a 

Riemann surface in complex plane.  

The introduction of non-Hermitian physics to photonics brought out 

numerous applications utilizing its topology and singularity. For example, a 

recent research reported asymmetric mode switching depending on the 

propagation direction of light. Furthermore, the concept of non-Hermiticity has 
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been realized even in plasmonics, and it provided a novel approach for 

ultrasensitive molecular sensing. Park and coworkers demonstrated the 

symmetry-breaking-induced exceptional points in plasmonic system through the 

fabrication of coupled nanorods array. They modulated near-field and far-field 

coupling by controlling the displacement along x-axis between the coupled rods 

and the periodicity along y-axis. The mode interference of two hybridized 

plasmon modes produced two topologically intertwined modes which coincide at 

the exceptional point. They also compared the sensitivity of the fabricated EP 

sensor with the conventional DP sensors, and reported a record sensitivity of 

4,821 nm per RIU. 

Based on the lessons gained from non-Hermitian Plasmonics, we 

focused on the extension of the understanding of non-Hermitian physics to chiral 

plasmonics. Chiral Plasmonic nanomaterials possess spin-dependent optical 

properties which can be modulated by the handedness of circular polarization of 

light. These chiroptical properties have facilitated a variety of optical 

applications utilizing chiral phenomena. While a lot of applications have been 

realized by the top-down fabrication, Lee and coworkers reported the solution-

based synthesis method of chiral plasmonic nanoparticle fabrication. The 

synthesized chiral nanoparticles possess strong optical activity via the mixing of 

electric and magnetic dipole in their gap structure. Therefore, the 

implementation of the non-Hermiticity to the chiral nanoparticle arrays is 

believed to make a significant impact in the field of chiral plasmonics. 

However, the complex optical properties have inhibited the rigorous 

analysis of the nanoparticles, so the simplified description of the chiral 

nanoparticle is required. Born-Kuhn model is the simplest model describing 

chiral materials by using two orthogonally coupled oscillators. In order to 

understand the interrelationship between non-Hermiticity and chiral plasmonic 
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nanomaterials, it is important to establish the fundamental theoretical 

background. In that sense, Born-Kuhn model can be a useful tool to explore in 

more detail as its dimension is easily modulated. Therefore, our research has 

focused on the demonstration of the exceptional point of Born-Kuhn by 

theoretical and numerical procedures. 

For the theoretical approach, coupled mode theory (CMT) has been 

utilized to describe the coupled plasmon modes. We adopted the mutual coupling 

constant to the regular dynamic equation of plasmon mode, and due to the chiral 

nature of the mutual coupling constant of the Born-Kuhn model, different 

exceptional points appear for LCP and RCP incidence. 

Numerical demonstration has been successively conducted to 

corroborate the theoretical prediction. A finite element method (FEM) based 

Maxwell’s equation solver, COMSOL, has been utilized during the procedure. 

The displacement and periodicity of the array structure of Born-Kuhn model 

were modulated, and S-parameters were obtained under LCP and RCP incidence. 

In accordance with the theoretical prediction, the exceptional point changed its 

location according to the LCP and RCP incidence. 

This result indicates the potential application for ultrasensitive chiral 

molecule sensing. According to the perturbation theory regarding the exceptional 

point, the mode shift is proportional to the square root of the perturbation. Thus, 

if we assume that the system is located at the exceptional point for LCP 

incidence but not for RCP incidence, the system is more sensitive for LCP. As 

chiral sensitivity is defined as the difference of the mode shifts for LCP and RCP, 

the Born-Kuhn model can amplify the chiral sensitivity so that it can be utilized 

for an ultrasensitive chiral molecule sensor. 

In conclusion, this thesis focused on the fundamental understanding of 
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the role of chiral nanomaterials in non-Hermitian photonics. In addition, the 

theoretical description of the non-Hermiticity of chiral plasmonic resonators has 

been accomplished. Furthermore, the demonstration of spin-controlled EP 

diagram implies the potential application for ultrasensitive biomolecule sensing. 

Keywords: Non-Hermitian physics, PT-symmetry, Exceptional point, Chiral 

plasmonics, Coupled mode theory 

Student Number: 2019-24094 
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Chapter 1. Introduction  

1.1 Non-Hermitian Physics 

In quantum physics (also in classical physics), Hamiltonian is used to 

describe the time evolution of a system. However, adequate boundary conditions 

are required for complete description, and depending on the boundary conditions, 

the system is determined whether closed or open.1 A closed system is one that its 

boundary is not in contact with its environment, so the total probability of the 

system is preserved in time. 

 
2) (( , | 0., ) |

d d
P x t dx dx

dt dt
x t

 

− −
= =   (1.1) 

In conventional quantum physics, it is also called a Hermitian system because the 

Hamiltonian of the system is Hermitian, which means the Hamiltonian H  is the 

same as its conjugate transpose 
†H . One of the most significant features of the 

Hermitian Hamiltonian is that its eigenvalues are always real. On the other hand, 

an open system (or non-Hermitian system) is one that is subject to the influence of 

its environment, so the total probability changes in time. The Hamiltonian of the 

open system is not Hermitian, which is 
†H H , and its eigenvalues are not real 

in general. This is why people had not addressed non-Hermitian systems for a 

long time. However, Bender and Boettcher found that even a non-Hermitian 

Hamiltonian can have real eigenvalues if it has a symmetry under simultaneous 

parity and time-reversal operation, which is called “PT-symmetry”.2  

In order to evaluate the symmetry of a system, parity and time-reversal 

operation are used. The parity operation flips the sign of the spatial coordinates 

of the system, and the time-reversal operation reverses the time flow of the 
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system. The action of both parity and time-reversal operator on a wavefunction 


 gives,3 

 .PT =  (1.2) 

Since the square of the combined parity and time-reversal operator is unit 

operator, 
2( )PT = 1

, a multiplication of (1.2) by PT  gives, 

 

2

2

* 2 .

( ) )

( ) ( )

( ) ( )(

|

)(

)

|

(PT

PT PT

PT PT P

T

T

P 

  

  

    

=

=

=

= =

 (1.3) 

Therefore, we obtain 2| 1| =  where the eigenvalue is a pure phase, 
ie  = . The 

phase angle   can be chosen such that 1 = . For a system described by a 

Hamiltonian having PT-symmetry, the following relation between the 

Hamiltonian and its PT-reflected one is required: 

 1( ) ( ) ( ) ( ) .PTH PT H PT PT H PT H−= = =  (1.4) 

Also, the PT operator commutes with the Hamiltonian: 

 ( ) ( ).PT H H PT=  (1.5) 

If the PT-operator and the Hamiltonian share a common eigenfunction, the effect 

of the PT-operator on the Hamiltonian equation H E =  gives, 
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*

*

( ) ( )

( ) ( ) ( (

( )

) )

.

PT H PT E

H PT PT E PT PT

H E

E

P

E

T

 

 

 

 

=

=

=

=

 (1.6) 

This confirms that the eigenvalue of PT-symmetric Hamiltonian is real, since it 

is equal to its complex conjugate, *E E= . 

A Hamiltonian is composed of kinetic and potential energy, 

 
2

2 ( ).
2

H V
m

 += − r  (1.7) 

Each action of parity operator and time-reversal operator on the Hamiltonian 

gives, 

 

2
2

2
2 *

),
2

(

( ).
2

m

T

PHP

m

V

VHT

= − +



−

+= −

r

r

 (1.8) 

Thus, a combined parity and time-reversal operation reveals that 

 
2

2 *( ).(
2

) ( )PT H P
m

T V− + −= r  (1.9) 

This confirms that the condition for a Hamiltonian having PT-symmetry is 

* )( () VV = −r r , which means the real part of the potential function should be 

even while the imaginary part should be odd.  
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The finding of PT-symmetric Hamiltonian has a significant implication 

since it expanded the mathematical description of physical theories from real to 

complex analysis.4 This complex generalization of the conventional quantum 

physics allows us to address the physical phenomena in complex domain and 

reappraise the conventional theories based on the Hermitian mechanics. One of 

the most remarkable case is the quantization of energy. Since Planck discovered 

the quantized energy states from the black-body radiation, it has been a long-

held belief that all energy states are quantized. However, the extension of the 

parametric domain describing the energy states let us realize that the energy 

states are, in fact, intertwined with each other and the quantization of energy is 

just a projection on the real domain. 

 

Figure 1 Finding of PT-symmetry in non-Hermitian system results in the 

complex extension of quantum mechanics. 
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1.2 Non-Hermitian Photonics 

While the implementation of parity-time symmetry is conceptually 

striking, experimental verification in quantum systems still remains challenging 

due to the difficulty of the demonstration of PT-symmetry in non-Hermitian 

quantum mechanical systems. Thanks to the flexibility of photonics that can be 

controlled conveniently, the exploration of PT-symmetric non-Hermitian physics 

has found ground in photonics.5–7 Although the physical origins of the 

Schrodinger equation and Maxwell’s equation is different, transforming an 

equation with some premises makes their mathematical structures similar.8 

When we start with the four Maxwell’s equations, 

 

0,

0,

,

,

t

t

  =

  =


  = −




  =



D

B

B
E

D
H

 (1.10) 

and the constitutive relations of a non-magnetic medium give, 

 
0

0

,( )

,

=

=

D r E

B H
 (1.11) 

where ( )r is the relative permittivity of the medium. If we use the vector 

identity, 

 
2 ,( ) =    − A A A  (1.12) 

the electric field has the following relation: 
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 2 .( ) =    − E E E  (1.13) 

A curl of 3rd equation in (1.10) gives, 

 
2

0 0 2

2

0 0 2

( ) ( )

( )

( ) .

t t

t t

t

 



 
   =   − = −  

 

 
= −   = −

 


= −



B
E B

D
H

E
r

 (1.14) 

Also, inserting the 1st relation in (1.11) on the 1st equation in (1.10) gives, 

 
0

0

)( ( )

( ) ( ) ,( ) 0



+=

 =  

   =

D r E

E r r E
 (1.15) 

and 

 
( )

(log ( )).
( )


  = −  = − 

r
E E E r

r
 (1.16) 

Thus, the first term on the right-hand side in (1.13) is: 

 ( ) ( (log ( ))).  = − E E r  (1.17) 

Inserting (1.14) and (1.17) on (1.13) gives a vector wave equation: 

 
2

2

0 0 2
( ) ( (log ( )))

t



 = −−  



E
E r E r  (1.18) 

For certain cases characterized by  



[여기에 입력] 

7 

 ( ),⊥ E r  (1.19) 

(1.18) becomes a Helmholtz equation: 

 
2

2

0 0 2
( ) ) 0.(

t
−


 =


r E  (1.20) 

For simplicity, if we consider x-polarized light propagating the medium in z-

direction, it becomes a scalar wave equation, and considering a monochromatic 

harmonic wave, ˆ, ) ( )( i t

xE t E e e−=r r , (1.20) changes into 

 
2

2

2
( ) ) 0.( E

c


+ =r  (1.21) 

The electric field propagating in z-direction is expressed by 

 0 0 ,( ) ( )
ik n z

E e=r r  (1.22) 

where ( ) r  is a wave amplitude and 0n  is bulk refractive index of the medium. 

This changes (1.21) into 

 
2

2

0 0 2
ˆ ( ) ) 0(( )zik n e

c


+ + =r  (1.23) 

In a stratified or cylindrical symmetric medium, the electric permittivity 

becomes a function of transverse coordinate, )( ) ( ⊥=r r , and it is the square of 

the transverse refractive index profile, 
2 )( ) (n⊥ ⊥=r r . 

In a paraxial regime, the slowly varying amplitude ( ) r  satisfies the following 

equation 
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 2 2 2

0 0 0 02 ( 0.)( )zik nn n k  ⊥ ⊥ +  −+ =r  (1.24) 

Therefore, we can make a Schrödinger-like wave equation9 

 
2 2

2 0
0

0 0 0

( )1
.

2
i

n n
k H

z k n n


 ⊥

⊥

 −
= −  − = 

  

r
 (1.25) 

This shows the refractive index in photonics acts as a potential in quantum 

mechanics, and non-Hermitian optical system requires complex refractive 

indices. Therefore, PT-symmetry of the system is achieved by balanced optical 

gain and loss. 

Let us consider the simplest case of two-coupled system with balanced 

gain and loss. The Hamiltonian for the coupled system can be formulated by 

2×2 matrix:10 

 
*

,
i

H
i

  

  

+ 
=  

− 
 (1.26) 

where   is a detuning parameter,   is a gain or loss coefficient, and   is a 

coupling strength. The eigenvalues of the Hamiltonian are 
2 2| |    = − , 

and the system possesses two phases: PT-symmetric ( | |  ) and PT-broken 

phase ( | |  ). If gain and loss contrast is small compared to the coupling 

strength, two real eigenvalues appear and the corresponding eigenstates respect 

PT-symmetry. However, when the gain and loss contrast grow bigger, two 

complex conjugate eigenvalues appear and they lose PT-symmetry. The 

transition point at | | =  is called an exceptional point, where two eigenstates 

coalesce to become degenerate. 
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Figure 2 (a) Two coupled system composed of gain and loss. (b) Real and 

imaginary part of the eigenmodes as a function of the gain and loss coefficient. 

The implementation of non-Hermitian system in photonics has brought 

out numerous applications such as asymmetric mode switching,11 negative 

refraction,12 orbital angular momentum micro-laser,13 and optical spin black 

hole.14 Doppler and his coworkers demonstrated asymmetric mode switching 

depending on the propagation direction with a systematically deformed 

waveguide. They utilized the chirality of adiabatic transition, which refers to 

differential responses with respect to the encircling direction and the initial 

condition. Since an infinitesimally small nonadiabatic coupling can be 

exponentially amplified in the gain medium, it causes the gain eigenvector to 

dominate and the breakdown of adiabaticity. The slow variation of boundary 

parameters along the propagation direction makes the wave encircle the 

exceptional point, and right propagation results in counter-clockwise encircling 

while left propagation results in clockwise encircling. As a result, the output 

mode is determined by the propagation direction in the waveguide.11 Negative 

refraction, typically demonstrated by the bulk double-negative metamaterials, is 

also realized by the PT-symmetric non-Hermitian medium,12 and the ring with 

alternative PT-symmetric media generates optical vortex via the unidirectional 

power oscillation at the exceptional point.13 Intriguingly, we can create optical-
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spin black hole, where arbitrary polarization states converge into left-handed 

circular polarization, with strong LCP chirality near the exceptional point.14 

 

Figure 3 Previous research of non-Hermitian photonics. (a) Asymmetric mode 

switching. (b) Negative refraction. (c) Orbital angular momentum micro-laser. 

(d) Optical-spin black hole. 
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1.3 Non-Hermitian Approach for Plasmonics 

Recently, the PT-symmetric non-Hermitian concept is attracting increasing 

interest in the field of plasmonics due to its potential for novel applications such 

as ultra-sensitive molecular sensing. In principle, a PT-symmetric Hamiltonian 

requires balanced gain and loss. Practically, the realization of an ideal gain and 

loss balanced system is nearly impossible due to inescapable manufacturing 

imperfections. It is only recently that people found that the PT-symmetric features 

can also be realized in the imbalanced gain and loss by subtracting gain or loss 

offset.15 For example, the Hamiltonian of the two coupled pumped system can be 

represented by 

 

1

*

2

*

,
2 2

2
0

2

0

T G PTH H H

ii

i

i

i

i

  

  

 
 

 
 

+ −

+ −

 
= = +



+

+

+

−

 
 

   
+   

= +  
   +   
   

 (1.27) 

where 1 2  + = +  is the sum of gains, and  1 2  − = −  is the gain contrast. The 

total Hamiltonian TH  is divided into a gain offset GH  and a PT-symmetric 

Hamiltonian PTH . This is called an “active” PT-symmetric system. Likewise, a 

passive PT-symmetric system is composed of coupled imbalanced lossy system. 

In the case of two coupled dissipative system, a PT-symmetric Hamiltonian is 

achieved by subtracting the loss offset LH : 
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ii
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i

  

  

 
 

 
 

+ −

+ −

 
= = +



−

−

+

−

 
 

   
−   

= +  
   −   
   

 (1.28) 

This shows that plasmonic materials which has appreciable dissipation losses 

can be forged into passive PT-symmetric systems. 

 In their seminal paper of 2020, Park and coworkers investigated the 

exceptional point of plasmonic coupled rods array.16 They utilized two nano-rods 

in optically different environment, and observed an exceptional point by 

controlling the displacement between the coupled nano-rods and the periodicity 

of the array. The coupled system creates hybridized plasmon modes composed of 

bonding and anti-bonding mode. The upper rod is displaced from the lower one 

along the lateral direction, and it interacts not only with its counterpart but with 

other lower one of the neighboring unit. As a consequence, the anti-bonding 

mode feels attraction with its neighbor while the bonding mode feels repulsion. 

This causes the interference of the bonding and anti-bonding mode since the 

attraction lowers the energy of the anti-bonding mode whereas the repulsion 

increases the energy of the bonding mode.  
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Figure 4 (a) Schematic of coupled nanorods array. (b) Hybridization of the 

coupled plasmon modes. (c) Mode interference between bonding and anti-

bonding mode. 

The system can be described by the following 2×2 matrix of Hamiltonian: 

 
1

*

2

,H
i

i

  

  −

 
=  

 

−
 (1.29) 

where   is the detuning of each plasmon rod,   is the coupling strength of the 

coupled rods, and 1 , 2  stand for the loss coefficient of the upper and lower 

rod, respectively. The modulation of the coupling strength and the loss 

coefficients dictates the eigenstates and makes the exceptional point. The 

displacement xd  is related to the coupling strength  , and as xd  increases,   

decreases because the coupling strength gets weaker. The in-plane periodicity yP  

is related to the loss coefficient 1 , and as yP  increases, 1  decreases because it 

reduces the number density of lower rods. The real and imaginary parts of the 

eigenmodes of the plasmonic array refer to the resonance frequency and the loss 

rate, and Fig. 5 represents them as a function of xd  and yP . The hybridization of 

the coupled resonators allows two hybrid modes to be intertwined with each 

other and generate an exceptional point where both the resonance frequency and 

loss rate become degenerate. 
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Figure 5 The resonance frequency (left) and loss rate (right) as a function of 

lateral shift xd  and the y-direction periodicity yP  

The existence of a plasmonic exceptional point is demonstrated by 

analyzing the behavior of resonance frequency and the loss rate as a function of 

xd  and yP . For yP = 400 nm, a crossing of the resonance frequency and an anti-

crossing of the loss rate are observed, which is represented by blue lines in Fig. 6 

(a). On the other hand, an anti-crossing of the resonance frequency and a 

crossing of the loss rate are observed for yP = 430 nm, which is represented by 

green lines in Fig. 6 (a). This confirms that the exceptional point exists between 

400 nm and 430 nm for yP . 
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Figure 6 (a) EP Diagram of the resonance frequencies and loss rates. Real and 

imaginary part of the plasmon modes as a function of xd  (b) for yP = 400 nm, (c) 

for yP = 430 nm. 

This plasmonic exceptional point allows us to demonstrate cutting-edge 

optical applications, in particular, ultra-sensitive biomolecular sensors. 

According to the perturbation theory, a perturbed Hamiltonian can be expressed 

by a Taylor-series expansion. In a typical Hermitian system, the resonance mode 

is represented by a Taylor-series with respect to the perturbation , 

 2

0 1 2 ...,n n n n   = + + +  (1.30) 

and the second and higher order terms are neglected by assuming that the 

perturbation is sufficiently small. This results in the mode shift linearly 

proportional to the perturbation. However, in a non-Hermitian system which 

possesses an Nth order exceptional point, a Hamiltonian of the resonance mode 

can be expressed as: 

 
1/ 2/

0 1 2 ...N N

n n n n   ++= + . (1.31) 
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If we neglect higher order terms in the same manner, one can see that the mode 

shift is proportional to the Nth root of the perturbation. 

Stemmed from the properties of the exceptional point, the study 

evaluated the sensitivity of the plasmonic EP nano-sensor compared to the 

conventional DP sensor. They were functionalized with anti-immunoglobulin G 

(IgG) and tested with various concentrations. At large concentration, larger 

energy splitting for the DP sensor is observed. Then, as the concentration is 

decreased, larger splitting for the EP sensor is observed below a certain point. 

This result is consistent with the perturbation theory regarding the exceptional 

point mentioned above. It shows the EP sensor is more sensitive than the 

conventional sensors at lower concentrations, and it is believed to lower the 

detection limit and enable the exploration at small scales. 

 

Figure 7 (a) Comparison of mode shift between DP and EP sensor. (b) Mode 

shift as a function of perturbation for DP and EP sensor. 
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Chapter 2. Chiral Plasmonics 

2.1 Chirality and Chiral Plasmonics 

Chirality is the symmetry property of an object, which has its non-

superimposable mirror image.1 Mathematically, a chiral object is not overlapped 

by simple rotations or translations alone. Apart from the geometrical point of 

view, chirality also manifests itself in chemical properties. The chirality has 

started to get noticed since it played a crucial role in chemical and 

pharmaceutical industries. Thalidomide tragedy is a case in point.2 Thalidomide 

was firstly intended to treat morning sickness in pregnant women, but it caused 

serious side effects represented by birth defects. While the R-Thalidomide served 

the intended efficacy, the enantiomer S-Thalidomide caused the birth of 

deformed children. This suggests that synthesizing and separating pure chiral 

enantiomer is a crucial in chemical and pharmaceutical industry. 

Also, the chirality manifests itself while interacting with traveling light. 

The chiral molecules exhibit a different response to left or right circularly 

polarized (LCP and RCP) light, and different complex refractive indices were 

obtained for those polarization states.3 The difference in the real part results in 

the rotation of the linearly polarized light traveling through the medium, which 

is called optical rotatory dispersion (ORD). Also, circular dichroism (CD), which 

refers to the different absorption of LCP and RCP light, appears from the 

difference of the imaginary parts. CD and ORD spectroscopy are widely utilized 

for not only detecting chiral molecules but also studying the structures and 

conformation of macromolecules such as peptides or proteins.4 However, the 

chiroptical signals of those molecules are very weak, so a large amount of 

analyte is required for the studying.  
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In this context, plasmonic nanostructures have been utilized to solve 

many of these problems. Plasmonic materials such as gold, silver and platinum 

have their own intriguing optical properties originated from the plasmonic 

resonance.5 This resonance concentrates the electromagnetic radiation into the 

subwavelength scales, and induces strong electric field enhancement. Also, the 

resonances of individual particles can form collective modes by the near-field 

coupling and exhibit strong optical responses extending over the entire 

nanostructure. Therefore, Plasmonic nanomaterials can be utilized to enhance the 

weak chiroptical signals of chiral molecules. 

Chiral plasmonics has been emerged as an extension of these efforts. The 

integration of a chiral structure with a plasmonic material is required for this 

purpose, since plasmonic material exhibits intense structure-related optical 

responses stemmed from strong light-matter interaction. The chiral plasmonic 

nanostructures strongly distort electromagnetic nearfield and form a twisted field, 

which is called “superchiral field”.6 This superchiral field provides distinctly 

different optical environment for chiral molecules, and recent researches have 

utilized this concept to distinguish chiral molecules in the superchiral field 

region. Hendry and coworkers manufactured gold gammadion nanostructures 

and studied the secondary structures of proteins.7 This chiral spectroscopy 

methodology has been utilized to analyze the fingerprint of the three-

dimensional structures of biomolecules (Figure 8). 
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Figure 8 Chiroptical responses of the constructed gold gammadion 

nanostructures, (a) CD spectra for left- and right-handed PCM. (b) Electric field 

and optical chirality distribution at III. 
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2.2 Fabrication of Chiral Nanostructures 

The aforementioned chiral plasmonic nanostructure can be produced by 

various techniques, and many of them have been fabricated by top-down method 

such as e-beam lithography and direct laser writing.8–10 By virtue of the 

significant development of nano-fabrication techniques, top-down fabrication 

approach manufactures well-organized and complicated chiral nanostructures. 

Hentschel and coworkers generated chiral plasmonic oligomers using electron 

beam lithography.8 The chiral nanostructure was assembled by layer-by-layer 

stacking. On the first layer, 3 nano-discs were arranged to form an L-shape, and 

on the second layer, the fourth nano-disc was located on top of one of the nano-

discs which dictates the handedness of the nanostructure. Also, Gansel and 

coworkers fabricated three-dimensional helical structures using direct laser 

writing and electroplating.9 The constructed structures exhibit free-standing 

helical nano-morphology which are uniformly rotated around the vertical axis. 

Although a variety of chiral nanostructures have been constructed by Top-

down approach, Bottom-up approach has emerged to resolve the issue of limited 

resolution and high fabrication cost.11–13 The assembly of nanoparticles exhibits 

apparent chirality with respect to the orientation, and the chiroptical properties 

are directly related to the geometrical orientations of the constituent 

nanoparticles.  Therefore, the chiral self-assembly of nanoparticles can produce 

sophisticated chiral structures at the sub-wavelength scale. Wang and coworkers 

constructed chiral templates composed of nanofibril structures using a peptide 

sequence.11 When gold nanoparticles and the nanofibril structures were mixed 

together, the Au nanoparticles were arranged into a double helical structure along 

the template. Liedl and coworkers constructed DNA origami structures with 

plasmonic nanoparticles, and they exhibited strong CD signals originated from a 

three-dimensional helical arrangement.13 
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Despite of numerous trials for chiral nanostructure fabrication, large-scale 

and simple fabrication methods for three-dimensional chiral structures have been 

hard to be achieved. In this regard, Chirality transfer was proposed as a simpler 

and more effective alternative.14 Lee and coworkers synthesized chiral gold 

nanoparticles using chiral amino acids and peptides.15 The chiral molecules were 

attached to the surface of gold nanoparticles and induced asymmetric evolution 

of nanoparticles to form chiral morphologies. The synthesized nanoparticles 

featured strong chiroptical responses stemmed from the twisted chiral gaps. They 

exhibited giant dissymmetry factor of 0.2, even when dispersed in random 

orientation, and strong circular dichroic peak was observed at visible wavelength. 

This synthesis method is especially notable that the chiral structures can be 

elaborately controlled at nanometer scale. 

 

Figure 9 (a) Synthesis of chiral gold nanoparticles. (b) Calculated chiroptical 

distribution of the chiral nanoparticles17 

To understand the chiroptical properties of the synthesized 

nanoparticles, we conducted optical simulations using finite element method-

based three-dimensional Maxwell equation solver (COMSOL). The multipole 

analysis of the scattering of chiral nanoparticles under planewave incidence 

indicates that the chiroptical properties are derived from the interference of 

electric dipole and magnetic dipole moments. In terms of parity symmetry, the 

multipole moments can be categorized into odd and even parity, and electric 

dipole has odd parity while magnetic dipole has even parity. The interference of 
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odd and even parity multipole moments produce chiroptical responses.16 At 560 

nm, where the electric dipole moment is dominant, the polarization current 

density vectors are parallelly aligned to the electric field. On the other hand, at 

590 nm, the polarization current density vectors form current loops around the 

chiral gaps which leads to the formation of magnetic dipoles. However, due to 

the sophisticated structures of the chiral nanoparticles, it has been challenging 

for studying the mechanism of the chiroptical responses and utilizing them in the 

field of chiral plasmonics. This leaves the need for simplified models to describe 

the chiroptical phenomena. 

 

Figure 10 (a) Multipole analysis of the scattering cross-section of 432 helicoid 

III. Polarization current distribution (b) at 560 nm, (c) at 590 nm. 
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2.3 The Simplest Chiral Model: Born-Kuhn Model 

In this section, we are going to discuss the simplest theoretical model 

which describes the chiral objects. About a century ago, in order to describe chiral 

molecules, Born devised a coupled oscillator model based on the perturbation 

theory,17 and Kuhn reorganized the model and simplified it into two orthogonally 

oscillating coupled oscillators.18 Recently, Yin and coworkers applied the model 

into the plasmonic nanorods and suggested that it can be utilized for analytic 

studying.19  

This model is derived from the Drude-Lorentz model, which deals with a 

damped harmonic oscillation of an electron. Under an external electric field 0

ext
E , 

the motion of an electron u satisfies the following relation: 

  
2 2

0 0*
,ext i t

t t e
e

m

  − +  + = −u u u E  (2.1) 

where   is a damping coefficient, 0  is the natural frequency, e  is the charge 

of an electron, and 
*m  is the effective mass. This is widely used for analyzing 

the optical properties of metal nanoparticles. Born-Kuhn model couples two 

orthogonally aligned Drude-Lorentz oscillator. A resonator oscillates in x-

direction while the other oscillates in y-direction and they are separated by a 

distance d  in z-direction, which is the longitudinal direction of the incident 

electromagnetic wave: 
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They are bound with the coupling strength c , and the longitudinal 

displacement generates the chiroptic responses stemmed from the distinct phase 

delay for x- and y-direction. The Born-Kuhn model possesses two normal modes, 

which are bonding and anti-bonding mode, and each mode selectively responds 

to left- or right-handed circularly polarized light.  

 

Figure 11 (a) Devised Born-Kuhn model for the description of chiral molecules. 

(b) Mode hybridization of Born-Kuhn model. 
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2.4 Extended Born-Kuhn Models 

Although the Born-Kuhn model had successfully reproduced the 

chiroptical properties of the solution of chiral molecules, the pitfalls of the 

model have been clearly recognized when the behavior of the individual 

particles is considered. The configuration of chiral particles with respect to the 

incident light is strictly related to the optical responses, but the Born-Kuhn 

model cannot embrace the entire circumstances since the oscillators only covers 

two axes, i.e. x- and y-axis, in three-dimensional space. For instance, the Born-

Kuhn model displays vanished circular dichroic values when the light is incident 

at right angle.  

 

Figure 12 (a) Born-Kuhn model does not fully describe 3-dimensional chiral 

materials. (b) Optical properties of Born-Kuhn model are strongly dependent on 

the incidence direction. 

The problem can be resolved when we implement another oscillator in 

the model. Moreover, the oscillating directions are not restricted to x, y, or z 

direction to consider the anisotropic optical properties of the particles. For this 

model, we coined a term “extended Born-Kuhn model”. In this model, the 

motions of three oscillators positioned at 1r , 2r  and 3r can be formulated by three 

linear equations:20 
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where the oscillating vector 1u , 2u , 3u  and their unit vector 
1a , 

2a , 
3a  can 

point to arbitrary direction, and the wave vector k is parallel to the incidence 

direction. 

For convenience, a constant is implemented 
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Then, the equation can be simply expressed as a matrix equation: 
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If we derive the determinant, 
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The solutions of the extended Born-Kuhn model are found to be 
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This coupled motion of electrons generates oscillating current density: 
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and the extinction power is obtained in terms of the current density and the 

incident field 0

i t

inc e −=E E  from the reciprocity theorem,21 
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where we assume the uniform current density in the entire volume V  of the 

coupled system. The incident circularly polarized light is expressed as Jones 

vector: 
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0 0

1 1
1 1

, .

0 0
2 2

x x
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z z

E E

EE i E iE

E E

       
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= = − = = + =       
       
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E E E  (2.10) 

Therefore, the circular dichroism is obtained by 
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  *1
( .

2
)LCP RCP LCP RCPCD VPP −   −= = J E E  (2.11) 

The obtained circular dichroism result indicates that for normal incidence, the 

extended Born-Kuhn model displays the same responses as the Born-Kuhn 

model, but for oblique incidence, it shows stronger circular dichroism than the 

previous Born-Kuhn model. Furthermore, the CD response does not vanish for 

right angle incidence.  

 

Figure 13 (a) Implementation of the extended Born-Kuhn model. (b) 

Comparison of optical properties of Born-Kuhn model and the extended Born-

Kuhn model. 

In particular, we devised “432 Born-Kuhn model” to reproduce the 

optical properties of chiral nanoparticles. From a geometric point of view, the 

synthesized chiral nanoparticles possess 432 point group symmetry: 4-fold 

symmetry along <100> axes, 3-fold symmetry along <111> axes and 2-fold 

symmetry along <110> axes.22 The 432 Born-Kuhn model was designed to 

represent the 432 symmetry of the nanoparticles. It was constructed by the 

successive 3-fold rotation around [111] axis, 4-fold rotation around [001] axis 

and 2-fold rotation around [010] axis of the symmetry unit.  
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Figure 14 (a) 432 symmetry of 432 helicoid III. (b) Construction of 432 Born-

Kuhn model by the successive 3-fold, 4-fold, and 2-fold rotation. 
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2.5 Objective of Thesis 

The primary goal of this thesis is to establish fundamental understanding 

of the role of chiral plasmonic nanomaterials in non-Hermitian photonics. 

Although there has been increasing number of researches on the non-Hermitian 

photonics, the non-Hermitian systems of plasmonic materials are not well 

understood. Moreover, the implementation of non-Hermitian concept to chiral 

plasmonics produces far more sophisticated circumstances to be analyzed. This 

thesis is a preliminary attempt to develop a theoretical framework of chiral non-

Hermitian photonics. Therefore, we focused on the analysis of non-Hermitian 

characteristic of chiral nanostructures, in particular, the behavior of exceptional 

points with respect to the chirality. First, for the sake of simplicity, the chiral 

nanostructures were reduced to Born-Kuhn model, which was discussed in 

Chapter 2.3. Then, we analyzed the Born-Kuhn model via theoretical and 

numerical methodologies. In theoretical approach, we applied coupled mode 

theory to investigate the exceptional point of the Born-Kuhn model. Depending 

on left- and right-handed circularly polarized light, different exceptional points 

were theoretically derived. In order to support the theoretical prediction, 

numerical calculation using finite element method-based Maxwell equation 

solver was conducted. We constructed the array of the Born-Kuhn model and 

tuned two parameters: the lateral displacement of the first and the second rod 

and the periodicity in y-direction, and calculated transmission coefficients (or S-

parameters) from the optical simulation. The exceptional points were obtained 

from the resulting transmission coefficients, and distinct exceptional points 

appeared under the illumination of the different circular polarization state. The 

results indicate that the exceptional points of chiral nanomaterials can be 

controlled by the spin state of the incident photons. 
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Chapter 3. Non-Hermitian Approach for Born-

Kuhn Model 

3.1 Coupled Mode Theory 

Before we discuss the theoretical demonstration of the exceptional point, 

in this section, coupled mode theory is briefly introduced. The coupled mode 

theory is a phenomenological approach to describe the coupling behavior of an 

optical resonator excited by a radiation (Figure 15 (a)).1 This can be widely 

utilized for modeling the optical properties of plasmonic particles.2 The time 

variation of the mode amplitude 1( )a t  of a single resonator is expressed by a 

first order differential equation, 

 1
1 1 1 1 0

1

( ) 1
( ) ( ) ( ),

da t
i a t a t f t

dt
 


= − − +  (3.1) 

where 1  is the resonance frequency, 1  is the decay time, and 1  is the 

coupling strength with the incident field 0f . 

Applying Fourier transformation, we obtained the mode amplitude and the 

external disturbance as a function of frequency: 
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By substituting them into (3.1), the mode amplitude can be written as a singular 

function: 
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 1 0
1

1

( )
( )

i f
a

 


 
=

−
, (3.3) 

where complex resonance frequency 
1 1

1

1
( )R Ii i   


= + = + −  is defined. The 

real part of 1  refers to the resonance position while the imaginary part to the 

width of the spectrum. The extinction cross-section corresponds to the imaginary 

part of the mode amplitude as shown in Figure 15 (b), and the spectral line shape 

is Lorentzian. 

 

Figure 15 (a) Schematic of the single plasmonic resonator in coupled mode 

theory and (b) its corresponding extinction spectrum 
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3.2 Theoretical Demonstration of the Exceptional Point 

In this section, we theoretically calculated the exceptional point of the 

Born-Kuhn model by deriving a set of equations describing the amplitudes of 

two coupled plasmon modes. We can expand the dynamic equation of a single 

resonator discussed in Chapter 3.1 as the linear equations of two coupled 

plasmon modes (Figure 16 (a)),3 

 

1
1 1 1 1 0 12 2

1

2
2 2 2 2 0 21 1

2

( ) 1
( ) ( ) ( ) ( ),

( ) 1
( ) ( ) ( ) ( ),

da t
i a t a t f t a t

dt

da t
i a t a t f t a t

dt

  


  


= − − + +

= − − + +

 (3.4) 

where the mutual coupling constants 12  and 21  are added. Then, we obtained 

the Fourier-transformed mode amplitudes and incident fields, and transformed 

the equations into a matrix equation: 

 
1 12 1 1

0

21 2 2 2

( )
( ).

( )

i a i
f

i a i

    


    

− −    
=    

− −    
 (3.5) 

Finally, we solved the matrix equation, and the resulting mode amplitude for 

each resonator is written as a sum of two singular functions, 

 1 1 2 2
1 2( ) , ( ) .

a a a a
a a 

       

+ − + −

+ − + −
= + = +

− − − −
 (3.6) 

These solutions indicate that the mutual coupling generates two hybrid modes, 

typically, bonding and anti-bonding mode, for each resonator. The resonance 

frequencies of the hybrid modes are distinct from the original modes, and the 

total extinction cross-section, which corresponds to the sum of the imaginary 
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parts of the mode amplitudes, 1 2 )(a a+ , shows two resonance peaks at −  and 

+  (Figure 16 (b)). 

 

Figure 16 (a) Schematic of Born-Kuhn model described by the coupled mode 

theory. (b) Extinction spectrum which has spectral peaks at −  and + . 

The resonance frequency of the anti-bonding and bonding mode can be 

calculated by comparing the coefficients of the following equation 

 1 2 12 21 ,( )( ) ( )( )         + −− −+− =−  (3.7) 

then we can derive a quadratic equation 

 , 2 ,

1 2 1 2 12 21) ( ) ( ) 0.(       + − + −− + + + =  (3.8) 

This gives the formal solutions to be found  

 , 21 2 1 2
12 21( ) .

2 2

   
  + − + −

=  −  (3.9) 

Since the value of 1 , 2  and also 12 , 21  are complex, the square root 

operation results in the formation of Riemann sheet in a complex plane. 
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Moreover, if we set   as the difference between the resonance frequencies of 

two resonators and   as the average of mutual coupling strength, we can make 

diagrams for the real and imaginary part of +  and −  in the parametric plane 

composed of   and   (see Figure 17). 

 

Figure 17 Diagrams for the real and imaginary part of the hybrid resonance 

frequencies +  and −  as a function of   and   

Both diagrams have a singular point at the same position, which is called 

exceptional point. Therefore, we can find the condition for the exceptional point 

 
21 2

12 21( )
2

 
 

−
= . (3.10) 

This confirms that the position of the exceptional point is directly related to the 

values of the mutual coupling constants. In the case of the Born-Kuhn model, its 

chiral nature is expected to cause different mutual coupling constant depending 

on the handedness of the incident circular polarization. In order to verity this, we 

conducted optical simulations for the Born-Kuhn model, and calculated the 

mutual coupling constants under the illumination of left- and right-handed 

circularly polarized light. 

First, we constructed the Born-Kuhn model with two gold nano-bars. 
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The width, depth and thickness of the bars were 300 nm, 50 nm and 50 nm, 

respectively. They were orthogonally oriented and the upper bar was placed 60 

nm above the lower one as shown in Figure 18 (a). For Left- and right-handed 

circularly polarized light normally incident on the structure, the complex 

extinction cross-sections were calculated by rigorous multipole method.4 The 

resulting extinction cross-sections then were fitted as a sum of rational fraction 

polynomials5 

 ( ) n

n n

a
a 

 
=

−
 . (3.11) 

The mutual coupling constants were calculated from the values of hybrid mode 

amplitudes and complex resonance frequencies3 
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In Figure 18 (b), we observed distinct mutual coupling constants for left- and 

right-handed circularly polarized light, and the results revealed that the mutual 

coupling strength strongly depends on the circular polarization state.  
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Figure 18 Optical simulation of the Born-Kuhn model. (a) Schematic showing 

the dimensions for the constructed Born-Kuhn model. (b) Calculated mutual 

coupling constants for left- and right-handed circular polarization. 

Moreover, the validity of the simulation was confirmed by using 

parallelly coupled nano-rods which have achiral conformation. The width, depth 

and thickness of the rods were the same as the previous model. The lateral shift 

between the rods were 100 nm, and the upper rod is placed 60 nm above the 

lower one (see Figure 19 (a)). Likewise, we calculated the mutual coupling 

constants for both circularly polarization and found out that they were similar to 

each other (Figure 19 (b)). Therefore, we concluded that since the Born-Kuhn 

model has mutual chiral interaction which differently reacts to left- and right-

handed circular polarization, the position of the exceptional point also depends 

on the circular polarization state. 

However, we aware that our phenomenological approach has inherent 

limitations because it cannot support our theory without the simulation data, 

hence analytic approaches are needed to supplement the theory. Also, we have to 

consider more carefully if the coupled mode theory can be appropriately applied 

for this condition.6 
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Figure 19 (a) Optical simulation of the parallelly coupled rods. (a) Schematic 

showing the dimensions for the constructed model of parallelly coupled rods. (b) 

Calculated mutual coupling constants for left- and right-handed circular 

polarization. 
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3.3 Numerical Demonstration of the Exceptional Point 

In this section, numerical calculation has been conducted to substantiate 

the theoretical prediction discussed in Chapter 3.1. In order to demonstrate the 

exceptional point, we constructed the array structure of the Born-Kuhn model, 

and modulated the geometric parameters to generate the interference between 

two hybridized modes. Complex resonance frequency for each mode was 

obtained from the spectral analysis, and we drew EP diagrams for the real part 

(resonance frequency) and imaginary part (loss rate) of the complex resonance 

pulsation. The results indicates that there is clear difference in the position of the 

exceptional point for left- and right-handed circular polarization, which is 

consistent with the theoretical prediction. 

A commercial software solving Maxwell’s equations based on finite 

element method (COMSOL 5.6) has been used for the optical simulation. We 

modeled the periodic structures of the orthogonally aligned nanorods on a glass 

substrate (with refractive index of 1.45). A spacer (with refractive index of 1.5) 

was placed between the upper and lower rods to distinguish them in optically 

different environment. Light was coming from an air medium and normally 

incident on the structure, and we put perfectly matched layers (PML) on the top 

and the bottom of the simulation domain to absorb the residual field. To find the 

exceptional point of the Born-Kuhn model, two parameters were used for 

searching: the displacement between the upper and lower rod along x-direction 

xd  and the period along y-direction yP . While setting the dimensions of the 

Born-Kuhn symmetry unit, several points needed to be considered. First, each 

nanorod should have an appropriate aspect ratio to exhibit sufficient optical 

responses to be analyzed. Second, the vertical distance between the upper and 

lower rods should be close to have distinguished hybridized resonance 

frequencies. Therefore, the geometry of the Born-Kuhn was set up as shown in 
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Figure 20 (c).  

 

Figure 20 Optical simulation of the periodic Born-Kuhn model. (a) Schematic of 

the simulation setup. (b) Three-dimensional design for the periodic structure of 

the Born-Kuhn model. (c) The dimensions of the Born-Kuhn unit. 

An input and output ports were installed on the top and bottom 

boundaries between PML layers, respectively. In the port boundary setting, the 

incident light came from the input port and the transmitted electric field tE  was 

measured in the output port. We measured the transmission coefficients under 

the illumination of left- and right-handed circularly polarized light by the 

following S-parameter calculation, 
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where outE  was set to be the same as the incident polarization state. Then, the 

rational fitting of the complex transmission coefficient spectra gives,7 
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k k
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=  , where *2s fi =  (3.14) 

and the resonance frequency Rf  and the loss rate   can be obtained from the 

poles kA : 
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The existence of the exceptional point was confirmed by examining the 

positions of the resonance frequencies and the loss rates of two hybrid modes 

with regard to the displacement xd  and the periodicity yP . For instance, for yP = 

490 nm, we observed a crossing behavior of the resonance frequencies and an 

avoided crossing of the loss rates. However, for yP = 500 nm, 510 nm, the 

opposite trends appeared: an avoided crossing of the resonance frequencies 

while a crossing of the loss rates were observed. This indicates that there is an 

exceptional point where both the resonance frequencies and loss rates of the 

hybrid modes coalesce. 
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Figure 21 Resonance frequencies and loss rates under the illumination of left-

handed circular polarized light as a function of dx for (a) Py = 490 nm, (b) Py = 

500 nm and (c) Py = 510 nm  

We can create surface plots for the resonance frequencies and loss rates 

as a function of xd  and yP  to visualize the interference between two eigenmodes 

more clearly. The surfaces of the hybrid modes were intertwined, and one 

singular point, which refers to the exceptional point, was observed. Also, we 

obtained distinct positions of the exceptional point depending on the handedness 

of circular polarization. The position was found be xd = 48 nm and yP = 495 nm 

for left-handed circularly polarized light, and xd = 51 nm and yP = 505 nm for 

right-handed circularly polarized light. This implies that the exceptional can be 

tuned by the circular polarization state of the incident beam, and the numerical 

results corroborate the theoretical prediction. 
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Figure 22 EP diagrams of the resonance frequencies and loss rates for (a) left-

handed and (b) right-handed circular polarization 

Based on the theoretical prediction and numerical results, we suggest a 

potential application of the non-Hermitian Born-Kuhn model utilizing the 

tunability of the exceptional point. For example, it can produce a topologically-

driven design criteria for ultrasensitive chiral molecule sensing. If the structure is 

designed for having an exceptional point under LCP illumination, the optical 

state is not located at the exceptional point for RCP incidence since the 

exceptional point moved its position. Therefore, the system is more sensitive for 

LCP light when the perturbation is small. 
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Figure 23 (a) Different EP diagrams for LCP and RCP incidence. (b) Different 

mode shift as a function of perturbation for LCP (red) and RCP (blue) 
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Chapter 4. Concluding Remarks 

The notion of non-Hermitian physics and the exceptional point was first 

discussed within the field of quantum physics. However, the introduction of the 

concept in photonics resulted in an explosion of researches demonstrating novel 

features. Moreover, it was also introduced in the field of plasmonics, and a 

variety of research activities have been creating exotic applications. Still, for the 

implementation of the concept to chiral plasmonics, few attempts have been 

made. In this context, we developed a design principle for the demonstration of 

non-Hermitian chiral nanomaterials.  

For the sake of simplicity, Born-Kuhn model, the simplest chiral model, 

was utilized as a chiral nanostructure, and its geometric parameters xd  and yP  

were modulated to find an exceptional point. The real and imaginary part of the 

hybridized plasmon modes corresponds to the resonance frequency and loss rate, 

respectively, and they were obtained from the transmission coefficient data. We 

observed the resonance frequencies and loss rates of two hybrid modes being 

intertwined as a function of xd  and yP , and found the exceptional point where 

both the real and imaginary parts coalesce. Strikingly, the Born-Kuhn model 

exhibits distinct exceptional points for left- and right-handed circularly polarized 

light.  

We also developed a theoretical framework of analyzing the non-

Hermitian system utilizing coupled mode theory. We added mutual coupling 

constant which determines the chirality of the Born-Kuhn model and predicted 

different position of exceptional point for left and right-handed circular 

polarization. 

In conclusion, we found that the exceptional point of the Born-Kuhn 
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model can be tuned by the handedness of the circular polarization. We believe 

that the result can be generalized to chiral nanomaterials, and it has significant 

implication for the application of spin-controlled optical devices such as 

ultrasensitive chiral molecule sensing. 
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초  록 

 

홀짝성-시간 대칭성의 발견은 비-허미시안 (non-Hermitian) 

물리학 분야에서 큰 족적을 남겼다. 이는 양자역학의 ‘에너지의 양자화’

의 개념을 재정의했을 뿐만 아니라 수리물리학의 범위를 실해석학에서 

복소 해석학으로 확장시켰다. 또한, 사람들은 양자역학의 슈뢰딩거 방정

식과 전자기학의 맥스웰 방정식의 유사성을 확인하여 홀짝성-시간 대칭

성의 개념을 광학에 적용시켰다.  

이 비-허미시안 광학은 내재된 위상 기하적 특성과 특이점을 활

용한 수많은 연구들을 창출시켰다. 더 나아가, 비-허미시안의 개념은 플

라즈모닉스 분야에 적용되어 극도로 민감한 분자 센싱과 같은 새로운 분

야를 만들어가고 있다. 최근 UC, Berkeley의 한 연구진은 커플링된 금 

나노막대 배열을 제작해 플라즈모닉 시스템에서 특이점을 구현하는 데에 

성공했다. 그들은 나노막대 사이의 x-방향 거리와 y-방향의 주기적 거

리를 조절하여 근접장과 원거리장의 커플링을 제어하였고, 혼성화된 모

드의 간섭을 일으켜 특이점을 구현하였다. 또한, 기존의 센서 성능과의 

비교를 통해 더 낮은 농도에서 높은 민감도를 가짐을 확인하였다. 

비-허미시안 플라즈모닉스 분야의 연구들을 기반으로 우리는 비

-허미시안 물리학에 대한 이해를 카이럴 플라즈모닉스 분야로 확장시키

는 것에 초점을 맞췄다. 카이럴 플라즈모닉스 물질은 빛의 원형편광의 방

향에 따라 광학적 특성이 달라지는 카이럴 광학 특성을 가지고 있고, 이

를 통해 여러가지 광학 분야에 활용되고 있다. 최근 본 연구진은 용액 공
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정 기반의 카이럴 플라즈모닉 나노입자 합성을 보고한 바 있다. 합성된 

나노입자는 갭 (gap) 구조체에서 전기 쌍극자와 자기 쌍극자가 서로 얽

혀 큰 광학 활성도를 갖게 된다. 이러한 광학적 특성을 활용한다면 비-허

미시안 카이럴 나노입자 시스템의 구현은 카이럴 플라즈모닉스 분야에서 

큰 족적을 남길 것이라 기대된다. 

그러나 카이럴 나노입자의 복잡한 광학적 특성은 체계적인 분석을 

저해하여 본 연구에서는 카이럴 현상을 설명할 수 있는 가장 간단한 모델

인 Born-Kuhn model를 이용하였다. Born-Kuhn model은 서로 

수직으로 배열된 두 개의 나노막대로 이루어진 모델로써 기하학적 특성

을 조절하기 용이하기 때문에 비-허미시안 카이럴 플라즈모닉 현상을 분

석하기 위한 좋은 도구로 작용했다. 이를 통해, 본 연구에서는 이론적 접

근과 수치해석적인 접근 방법을 통해 Born-Kuhn model의 특이점 구

현을 진행하였다. 

이론적인 방법론으로는 커플링된 플라즈몬 모드를 설명하기 위해

coupled mode 이론이 사용되었다. Born-Kuhn model의 카이럴한 상호작용을 

표현하기 위해 상호 커플링 상수를 도입하였고, 좌회전편광과 우회전편광

에 대해서 상이한 특이점이 관찰될 것임을 예측했다. 이를 뒷받침하고자 수

치해석적인 방법을 이용하였고, 이를 위해 유한 요소 기법으로 맥스웰 방정

식의 해를 구하는 상용 소프트웨어인 COMSOL을 활용했다. Born-Kuhn 

model에서 상호 간의 거리와 주기적 배열을 조절하여 혼성화 모드의 위치

를 계산했고, 이론적 예측과 동일하게 좌회전편광과 우회전편광에 대해 다

른 특이점이 관찰되었다. 

본 결과는 비-허미시안 Born-Kuhn model이 극도로 민감한 카이럴 

분자 센싱에 활용될 수 있음을 시사했다. 섭동 이론에 따르면, 시스템이 특
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이점 위에 놓여있게 되면 외부 자극에 대해 선형적으로 반응하는 것이 아닌 

제곱근에 비례하여 반응하게 된다. 따라서 만약, 좌회전편광을 입사시켰을 

때 시스템이 특이점 위에 있게 된다면, 우회전편광보다 좌회전편광에서 더 

민감하게 반응하게 되는 것이다. 우리는 이러한 회전편광에 대한 민감도의 

차이를 이용해 카이럴 분자 센싱에 활용할 수 있다. 

본 학위 연구에서는 비-허미시안 광학에서 카이럴 나노물질의 광

학적 작용을 근본적으로 이해하기 위한 연구를 진행했다. 이를 통해, 비-

허미시안 카이럴 플라즈모닉 공진기의 광학적 특징에 대한 기초적인 이

론을 정립하였다. 더 나아가, 빛의 스핀에 따라 특이점이 조절되는 시스

템의 구현은 카이럴 분자의 센싱 분야에서 새로운 방법론을 제시해줄 것

이라 기대된다. 

 

주요어: 비-허미시안 물리학, 홀짝성-시간 대칭성, 특이점, 카이럴 플라즈모

닉스, coupled mode 이론 
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