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Abstract 

The aim of this study was to characterize the removal of 

contaminants from aqueous solution using a Metal-organic framework 

(MOF). The MOF is a porous crystalline complex made by a strong 

coordination bond between a metal cluster and an organic linker, which 

has large surface area, structural flexibility. MIL-100(Fe) was 

synthesized at room temperature with Iron (Fe) and Trimesic acid 

(H3BTC). MIL-100(Fe) has environmental-friendly nature, high water 

stability, and great adsorption capacity. 

In this study, the MIL-100(Fe) was applied as an adsorbent to 

removal of Rhodamine B (RhB) and Diclofenac (DCF) from aqueous 

solution. Batch experiments were conducted for RhB and DCF, 

respectively under single-parameter and multi-parameter experiment 

conditions. The maximum adsorption capacity for RhB is 61.845 mg g-1 

and DCF is 414. 581 mg g-1. The main mechanisms are π-π interaction 

and electrostatic attraction for RhB removal, and π-π interaction and 

hydrogen bonding for DCF removal. 
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Further, Response surface methodology (RSM) and Artificial neural 

network (ANN) were employed to model and optimized the RhB and 

DCF removal in the range of the CCD matrix as multi-parameter models. 

In RSM modeling, the cubic regression model was developed for RhB 

removal and the regressor variable of pH had a larger coefficient value 

indicating that pH had a highest impact on the RhB removal rate. The 

optimum RhB removal rate was found at pH 5.3, adsorbent dose 2.0 g L-

1, initial RhB concentration 73 mg L-1 through the prediction of the 

modeled ANN with topology 3:8:1. The optimum DCF removal rate was 

found at initial pH 6.1, adsorbent dose 0.5 g L-1, initial DCF 

concentration 63 mg L-1, temperature 22 ℃ through the prediction of the 

modeled ANN with topology 4:7:6:2. 

Study results indicate that the MIL-100(Fe) synthesized at room 

temperature shows high adsorption capacity for RhB and DCF removal 

from synthetic water, and the RSM and ANN model could be 

successfully optimize and predict for RhB and DCF removal as multi-

parameter models. 
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1. Introduction 

1.1. Background 

Water environment is polluted by byproducts of various industries, 

including agriculture or by chemicals generated from people's lives. 

Various pollutants such as heavy metals, radioactive substances, organic 

dyes, and pharmaceuticals and personal care products exist in water. As 

an example, the continuous use of fertilizers has significantly contributed 

to increase the level of heavy metals and metalloids in soil and 

groundwater. Fertilizers contain phosphates for the growth of crops, and 

the level of phosphate is increasing due to excessive discharge from 

agricultural runoff into the water. The high level of phosphate 

concentration can cause eutrophication of water which ultimately leads 

to imbalance of aquatic ecology (Nehra et al., 2019). As another example, 

heavy metal contamination such as chromium (Cr), arsenate (As), 

antimony (Sb), and lead (Pb) of surface water or groundwater occurs by 

wastewater discharge from leather, paint, textile, dyeing industries. 

Heavy metal pollution has long been regarded as a series issue of 

environmental pollution due to its easy accumulation, poor degradability, 
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and biologically related toxicity (Fang et al., 2018). Since other 

pollutants such as dyes or pharmaceuticals also adversely affect the 

aquatic environment and aquatic organisms in various ways, treatment 

of contaminants is essential.  

Several processes including biological, physical and chemical are 

used for treating wastewater. Currently, methods used for contaminants 

removal from aqueous solutions include ion exchange, chemical 

precipitation, coagulation/flocculation, membrane filtration, 

photocatalytic degradation, adsorption and so on. Amongst them, 

adsorption method is more frequently applied because of low cost, easy 

application, environmental friendliness, and high efficiency (Fang et al., 

2018; Zhang et al., 2019(1); Zhang et al., 2019(2)). Further, an effective 

adsorbent for contaminants removal should have high performance, 

rapid adsorption, cost effectiveness, good water stability, and 

environmental friendliness. 
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1.1.1. Metal-organic framework (MOF) 

Granular or powdered activated carbon is commonly used in water 

and wastewater treatment as an adsorbent, relatively new adsorbents 

such as carbon nanotubes, graphene-based adsorbents, and metal-organic 

frameworks (MOFs) have been investigated recently for removal of  

various contaminants from aqueous solutions (Joseph et al., 2019). 

MOFs are three-dimensional crystalline complex made by a strong 

coordination bond between a metal (Fe, Zn, Zr, Cu, Al etc.) and an 

organic linker (Trimesic acid, Phthalic acid etc.) (Feng et al., 2018; 

Kokcam-Demir et al., 2020). MOF is a porous material, and have an easy 

tunability in their shape and pore size (Å - nm) by employing various 

organic linkers and metal ions (Zhou et al., 2014). It has high adsorption 

capacity due to its large specific surface area, has structural flexibility, 

and has the advantage of easy modification like attachment of functional 

group (-OH group, -NH2 etc.), magnetizing MOF (Fe3O4@MIL-

100(Fe)), widening of the specific surface area through calcination etc. 

MOF is a material that can be used not only as an adsorbent, but also for 

various purposes such as gas storage, drug delivery, sensors, and 

catalysts (Furukawa et al., 2013; Tehrani et al., 2017). Among them, 



４ 

 

focusing on the MOF as an adsorbent, MOF is capable of adsorbing 

various target substances such as heavy metals (As, Pb, Hg, Cd, Cr etc.), 

radioactive substances (U, Se, Cs etc.), nutrients like nitrate or phosphate 

ion, organic dyes (Methylene blue(MB), RhB etc.), and pharmaceuticals 

and personal care products (Ibuprofen, DCF etc.) (Cai et al., 2016; Seo 

et al., 2016; Wang et al., 2017; Zhan et al., 2018; Zhang et al., 2019; 

Esrafili et al., 2019a, 2019b). The nomenclature of MOF is determined 

by the type of metals and organic linkers and structural topology, and is 

also named after the organization that synthesized the MOF. In this study, 

MIL (Materials of Institut Lavoisier)-100(Fe) was selected among the 

various MOFs and synthesized for removal of RhB and DCF from 

aqueous solutions. MIL-100(Fe) is a MOF made using Iron (Fe) and 

Trimesic acid (H3BTC). MIL-100(Fe) has environmental-friendly nature, 

greater specific surface area, and higher water stability than other MOF-

based adsorbents (Fang et al., 2018; Nehra et al., 2019; Zhang et al., 

2019). The most conventional MIL-100(Fe) synthesis is conducted by 

hydrothermal synthesis method at temperatures as high as 150 – 180 ℃. 

However, MIL-100(Fe) synthesized at room temperature has a simpler 

process, does not require an apparatus such as Teflon-lined steel 
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autoclave and heating mantle, and has a yield of about 2 – 3 times higher 

than hydrothermal synthesized MIL-100(Fe). Guesh et al. (2017), which 

synthesized MIL-100(Fe) at room temperature, conducted a study to 

remove Methyl orange using MOF as a photocatalyst. 
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1.1.2. Contaminants 

Organic contaminants including dye, humic acid, phenolic 

compounds, surfactants, and pharmaceuticals are important pollutants in 

wastewaters. The presence of organic contaminants in water may 

produce toxic chemicals during disinfection. In this study, dye and 

pharmaceutical, which are widely used in industry and have the potential 

to adversely affect the health of aquatic organisms and human health due 

to their toxicity, were selected as target substances to be adsorbed among 

contaminants that pollute water. 

The first contaminant is Rhodamine B (RhB), which is an organic 

dye that is widely used in industries such as textile industry, leather 

dyeing factory, rubber or paint making factory. In the case of RhB, it is 

widely used as a tracer because of its colorant or a fluorescent material. 

Organic dyes generated in industrial can cause water pollution by giving 

it color, and especially RhB have toxic and carcinogenic (Bagheri et al., 

2013; Sharma et al., 2017), so it can significantly affect aquatic 

organisms and human health as well (Zhu et al., 2016; Fan et al., 2018). 

The process of treating the organic dye is essential because in general, 
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dyeing wastewater is a non-degradable wastewater that is not easily 

treated by a biological treatment process, and it must meet the standards 

for discharge of industrial wastewater. Among the treatment 

technologies, adsorption is widely applied for the removal of dyes in 

wastewater due to its simplicity and cost-effectiveness (Haque et al., 

2011; Adeyemo et al., 2012; Zhu et al., 2016; Fan et al., 2018). The pka 

value of RhB is 3.7, molar weight is 479 g mol-1, and chemical structure 

of RhB is presented in Fig. 1. As shown in Fig. 1a, it exhibits the 

properties of cationic dye at acidic pH because of its amino xanthene 

group (N+), and it exhibits the properties of zwitterionic dye at pH > 4 

due to deprotonated carboxyl group (COO-) in Fig. 1b.  
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Fig. 1. Chemical structure of Rhodamine B (RhB): (a) at acidic pH; 

(b) at neutral pH(>4) 
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The second contaminant is one of pharmaceutical, Diclofenac (DCF). 

DCF is one of the nonsteroidal anti-inflammatory drugs (NSAIDs) which 

is remedy prescribed worldwide and classified as over-the-counter drug. 

DCF is widely used to treat pain and inflammation such as gout and 

arthritis, and is used by oral administration or by administration to the 

skin (an idiomatic name is Voltaren) (Antunes et al., 2012; Ghemit et al., 

2019). DCF has a high solubility in water and a pka value of 4.15, and 

molecular weight of 296 g mol-1 (Wu et al., 2020). The spillage of waste 

drugs into the environment became known for the first time in the 1970s 

when the Environment Protection Agency (EPA) of the United States 

published a report on the presence of waste drugs in the environment. It 

is detected from soil, rivers, groundwater or even drinking water and 

several drugs have been designated as potential water pollutants (Benotti 

et al., 2009). According to a drug consumption survey conducted by the 

Agency for Healthcare Research and Quality (AHRQ) in the U.S. in 

2020, DCF was ranked among more than 8 million prescriptions 

annually for the last 5 years as of 2018. As the amount of consumption 

is shown, it can be confirmed that there is a steady demand for it. The 

annual output of DCF was 5989 kg by the National Institute of 
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Environmental Sciences’ net domestic drug production survey (Oh et al., 

2009). An average of 1276 ng L-1 was also detected in the discharged 

water from the sewage treatment facility. If it exceeds 1000 ng L-1, a risk 

assessment is required (Oh et al., 2009). Pharmaceutical cause potential 

adverse effects on human health and the ecosystem even at very low 

concentrations (Wang et al., 2019; Zhu et al., 2019; Wang et al., 2020). 

Several methods including ozonation, photo-fenton oxidation, 

biodegradation, photocatalyst, electrochemical degradation, and 

adsorption have been applied to remove DCF from water and wastewater 

(He et al., 2014; Wang et al., 2016; De et al., 2017; Wang et al., 2017; 

Wang et al., 2019; Wang et al., 2020(1); Wang et al., 2020(2); Zhuan et 

al., 2020; Liu et al., 2021). Adsorption is considered a promising method 

for removal of DCF from water because it is simple, cost-effective, and 

easy to operate (Binaeian et al., 2020). Chemical structure of DCF is 

presented in Fig. 2. Fig. 2a is the DCF form before dissolving in water 

and Fig. 2b is the undissociated soluble form and/or undissociated 

precipitated form. 
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Fig. 2. Chemical structure of Diclofenac sodium (DCF): (a) before 

dissolving in water; (b) undissociated soluble form and/or 

undissociated precipitated form 
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1.1.3. Multi-parameter model 

In the application of the MOF-based adsorbents for removal of 

contaminants, multi-parameter modeling approaches such as response 

surface methodology (RSM) and artificial neural network (ANN0 can be 

used to predict and optimize the adsorption process. 

RSM is a mathematical and statistical technique that is employed to 

model the effects of various input parameters and their interactions on 

the output variable and to obtain optimal conditions for the response 

variable (Jahed Armaghani et al., 2014; Apostolopoulou et al., 2020). In 

the RSM approach, a parametric model is developed based on the 

polynomial equation to optimize the adsorption process variables and to 

predict the target response (Sharma et al., 2015; Sharafi et al, 2019; 

Samadi-Maybodi et al., 2020). 

ANN is a modeling technique that imitates the human neural system 

to process self-learning. The ANN architecture is composed of input 

layer, hidden layer, and output layer and small intelligent computational 

units called ‘neuron’ to model the nonlinear complex systems. In the 

ANN approach, a non-parametric model, which is expressed with 
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transfer functions in hidden layer and output layer respectively, weights, 

and biases, is developed for prediction of the adsorption process 

(Esfandiari et al., 2017; Gadekar et al., 2019). 

In this study, based on the results of single-parameter experiments 

and multi-parameter experiments for the adsorption of RhB and DCF by 

MIL-100(Fe, multi-parameter models, RSM and ANN, were used to 

predict and optimize for the RhB and DCF adsorption process.  
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1. 2. Objective 

The objective of this study is to investigate adsorption of organic 

contaminants, RhB and DCF, from aqueous solution using a MIL-

100(Fe). 

The MIL-100(Fe) was synthesized at room temperature for simpler 

synthesis process and higher yield than hydrothermal synthesized MOF. 

The synthesized MIL-100(Fe) at room temperature was conducted 

various characterizations to analyze physical and chemical properties. 

Batch experiments were conducted to investigate adsorption of RhB 

and DCF from aqueous solution under single-parameter experimental 

and multi-parameter experimental conditions. Further, multi-parameter 

modeling was conducted through response surface methodology (RSM) 

and artificial neural network (ANN). Using the modeled RSM and 

ANN, the removal rate was predicted within the range of conditions, 

the factor having the greatest influence for adsorption was predicted, 

and the optimum condition showing the highest removal rate was 

derived. 
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2. Literature Review 

2.1. Adsorption of contaminants from aqueous solution 

using MOFs 

Water-stable MOFs have been applied for contaminant removal 

from aqueous solutions as an adsorbent. Some researchers have 

synthesized water stable MOF-based composites with carbon 

nanotubes, graphene, and metal nanoparticles for application to water 

and wastewater treatment (Torad et al., 2014; Aslam et al., 2017; Liu et 

al., 2018; Mahmoodi et al., 2019). 

Cai et al. (2016) has performed selective adsorption of arsenate 

using MIL-100(Fe) and adsorption-desorption recycling three times, 

which has remaining 86% adsorption efficiency. Nasrollahpour et al. 

(2017) has conducted hexavalent chromium removal from water by Ag 

based MOFs. The adsorbents are MIL-100(Fe), Fe3O4@MIL-100(Fe), 

and IL-MIL-100(Fe), which is used acidic chloroaluminate (IL) in this 

study. Fang et al. (2018) has performed adsorption of chromium by 

MIL-100(Fe), which is introduced by Na2CO3 as mineralizing agent 

and shows improved qualities and higher adsorption capacity than the 
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precursor, MIL-100(Fe). Georgiou et al. (2018) has performed 

adsorption of arsenite using MIL-100(Fe) with calcinated at 600, 800, 

and 900 ℃ and comparison with other As adsorption Fe/carbon 

materials. Nehra et al. (2019) has conducted adsorption of phosphate 

using MIL-100(Fe), which is synthesized with the agents, ammonium 

molybdate and N,N-Dimethylformamide (DMF). Vo et al. (2019) has 

performed CO selective adsorption with Cu-doped MIL-100(Fe). 

Although MIL-100(Fe) adsorbed CO2 better than CO, Cu-doped MIL-

100(Fe) showed selective CO adsorption compared to CO2 due to π 

complexation between CO and Cu. Zhang et al. (2019(1)) has 

performed Pb removal from water using modified MIL-100(Fe), ED-

MIL-100(Fe) and conducted comparison of using or not fulvic acid 

(FA). Zhang et al. (2019(2)) has conducted removal of antimonite and 

antimonate from water using five Fe-based MOFs, which are Fe-BTC, 

MIL-100(Fe), MIL-101(Fe), MIL-53(Fe), and MIL-88C(Fe).
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Table 1 . Studies for contaminants adsorption from aqueous solutions using MOFs 

Reference Type of MOF Type of contaminant 

Maximum adsorption 

capacity (mg g-1) 

Cai et al. (2016) 
MIL-100(Fe) Arsenate (As) 

27.0 

Nasrollahpour et al. (2017) 
Ag-MOF Chromium (Cr) 

285.7 

Fang et al. (2018) 
MIL-100(Fe) Chromium (Cr) 

46.0 

Georgiou et al. (2018) 
MIL-100(Fe) Arsenite (As) 

120.0 

Nehra et al. (2019) 
MIL-100(Fe) Phosphate 

93.6 

Vo et al. (2019) 
Cu-doped MIL-100(Fe) CO 

86.8 

Zhang et al. (2019) 
ED-MIL-100(Fe) Lead (Pb) 

378.8 

Zhang et al. (2019) 
MIL-101(Fe) Antimonate (Sb) 

472.8 
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2.2. Dye adsorption using MOFs 

MOF-based adsorbents have been tested for the removal of various 

organic dyes, including methyl orange, methylene blue, methyl red, 

rhodamine 6G, rhodamine B, crystal violet, and acid orange 10 in 

aqueous solutions (Haque et al., 2011; Huo et al., 2012; Tan et al., 2015; 

Zhao et al., 2015; Ayati et al., 2016; Duan et al., 2016; Liu et al., 2016; 

Yilmaz et al., 2016; Zhu et al., 2016; Abbasi et al., 2017; Aslam et al., 

2017; Fan et al., 2018; Wei et al., 2018). These studies confirmed that 

MOFs synthesized by hydrothermal synthesis method are effective 

porous crystallized adsorbents for removing dyes from water. 

Duan et al. (2016) has performed comparison of adsorption 

properties of rhodamine 6G (R6G), RhB, and Reactive red 120 (RR 120) 

dyes from aqueous solution using a nanoscale material MIL-100(Fe) 

(NMIL-100(Fe)), which is synthesized at 140 ℃ and has 3.94 nm of 

average pore diameter. Liu et al. (2016) has performed adsorptive 

removal of RhB from aqueous solution by a magnetic MIL-100(Fe) 

(Fe3O4/MIL-100(Fe)), which is synthesized at 200 ℃ by mixing ferric 

chloride, sodium acetate, and ethylene glycol in prepared MIL-100(Fe). 

Yang et al. (2016) has conducted adsorption of RhB using a MIL-68(In)-
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NH2/graphite oxide (GO) composites (In-MOF@GO), which is 

synthesized using Indium and dispersing GO powder in a well-dissolved 

indium nitrate/BDC-NH2 mixture. Jin et al. (2018) has performed 

comparison of adsorption efficiency of malachite green (MG), congo red 

(CR), rhodamine b (RhB), methylene blue (MB) and methyl orange (MO) 

from aqueous solution by MOF-based adsorbent. In this study, nickel (Ni) 

nanoparticles encapsulated in porous carbon/carbon nanotube hybrids 

(Ni/PC-CNT) with Ni/Zn-MOF precursor was used as an adsorbent, 

which has magnetic properties. Zhang et al. (2018) has conducted rapid 

and selectively adsorption of cationic dyes such as MB, crystal violet 

(CV), RhB in a mixed solution of positively, neutral (phenol red (PR)), 

and negatively-charged (MO) dyes. In this study, Zn-MOF with 

decorated pore surface was used for selectively adsorption of dye from 

aqueous solution. Cui et al. (2019) has synthesized gel-like Zr-MOF(bpy) 

and ZnO/Zr-MOF(bpy) nanocomposite for adsorption of RhB from 

aqueous solution. ZnO/Zr-MOF has high adsorption capacity of 462.3 

mg g-1 on RhB adsorption and high surface area of 2141.188 m2 g-1. Li 

et al. (2019) has performed adsorption and catalytic degradation of RhB 

from water by cal-ZIF67/AC. Cal-ZIF67/AC was made using ZIF-67 
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loaded onto commercial activated carbon (AC) pellets and calcined at 

800 ℃. Further, it showed high activity in effective activation of 

peroxymonosulfate (PMS) to produce sulfate radicals for oxidative 

degradation of RhB. Jarrah et al. (2020) has performed adsorption of 

cationic dyes such as RhB and MB from aqueous solution using 

encapsulation of K6P2W18O62 into magnetic nanoporous Fe3O4/MIL-

101(Fe), which has magnetic properties and has high stability, 

recoverability. Navarathna et al. (2020) has used MIL-53(Fe)/magnetic 

and magnetite/biochar composites (MOF-MBC) as adsorbent and 

photocatalyst for RhB removal. These studies confirmed that MOFs 

synthesized by hydrothermal synthesis method were effective adsorbents 

for removing dyes in water, but they were limited to calculating the 

maximum adsorption capacity of adsorbents. 
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Table 2 . Studies for dye adsorption from aqueous solutions using MOFs synthesized by hydrothermal method 

Reference Type of MOF Type of dye 

Maximum 

adsorption 

capacity (mg g-1) 

Initial 

concentration of 

dye (mg L-1) 

Duan et al. (2016) 
NMIL-100(Fe) RhB 

76.69 - 

Liu et al. (2016) 
Fe3O4/MIL-100(Fe) RhB 

28.36 0-400 

Yang et al. (2016) MIL-68(In)-NH2/graphite 

oxide(GO) composites 
RhB 

267 2-200 

Yilmaz et al. (2016) 
MIL-53(Fe) Methyl red 

183.5 25-400 

Zhu et al. (2016) 
MIL-101(Fe) Methylene blue 

473.7 1-40 

Aslam et al. (2017) 
Fe3O4@MIL-100(Fe) Methylene blue 

221 20-400 



22 

 

Fan et al. (2018) 
Fe3O4@MIL-100(Fe) AO10 

39.7 25-50 

Jin et al. (2018) 
Ni/PC-CNT (Ni/Zn-MOF) RhB 

395 20-350 

Wei et al. (2018) 
Fe-MOFs Congo red, Orange Ⅱ 

95.98%, 99.57% 

(removal rate) 

- 

Zhang et al. (2018) 
Zn-MOF RhB 

3.75 2-20 

Cui et al. (2019) 
ZnO/Zr-MOF(bpy) RhB 

918.9 10-50 

Li et al. (2019) 
Cal-ZIF-67/AC RhB 

46.2 - 

Jarrah et al. (2020) P
2
W

18
O

62
@Fe

3
O

4
/MIL-

101(Fe) 
RhB 

68.49 25-250 

Navarathna et al. 

(2020) 

MIL-53(Fe)/Magnetite bochar 

composites 
RhB 

55 5-1000 
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2.3. Pharmaceutical adsorption using MOFs 

Several researchers have applied MOFs, functionalized MOFs, and/or 

MOF-based composites as adsorbents for removal of DCF from aqueous 

solutions (Bhadra et al., 2017; Luo et al., 2018; Li et al., 2019; Zhuang 

et al., 2019a, b; Karami et al., 2020; Miao et al., 2020; Tran et al., 2020). 

Hasan et al. (2016) has performed DCF adsorptive removal from water 

by Zr-based MOF. In this study, UiO-66(Zr) and functionalized UiO-66s 

(with SO3H/NH2) were applied in the adsorption and compared to AC. 

Bhadra et al. (2017) has performed adsorptive removal of ibuprofen (IBP) 

and DCF from water using MOF-derived porous carbon prepared at 

1000 ℃ (PCDM-1000). Further, comparisons of IBP and DCF 

adsorptive removal with PCDM-1000, ZIF-8, and activate carbon (AC) 

were conducted in this study. Luo et al. (2018) has investigated the 

adsorption ability of a porous Cu-based MOF for chlorpromazine 

hydrochloride (CLF) and DCF.  The porous Cu-based MOF based on a 

pentacarboxylate ligand 2,5-bis-benzoic acid (H5L) has been selected as 

a adsorbent. Zheng et al. (2018) fabricated Fe3O4@MIL-100(Fe) 

magnetic composites for adsorptive removal of DCF. This Fe3O4@MIL-

100(Fe) showed a relatively high maximum adsorption capacity of 
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377.37 mg g-1 compared to its low specific surface area of 198.47 m2 g-

1. Li et al. (2019) also has used Fe3O4@MIL-100(Fe) for aqueous DCF 

removal through adsorption and photodegradation. The Fe3O4@MIL-

100(Fe) in this study has high surface area of 1244.62 m2 g-1, an excellent 

maximum adsorption capacity for DCF of 400 mg L-1, and high 

elimination of TOC (87.8%) was observed during the DCF 

mineralization process through TOC analyzer. Liu et al. (2019) prepared 

a copper (Cu)-based MOF (Cu(BTTA)]n·2DMF) for DCF adsorption. 

This adsorbent selectively adsorbed to DCF in a mixed solution of DCF, 

CLF and amodiaquin dihydrochloride (ADQ), and showed a high 

maximum adsorption capacity of 650 mg g-1. Zhuang et al. (2019) has 

performed adsorption of DCF using MIL-100(Fe) and theoretically 

calculated adsorption mechanism through structure simulation using 

density functional theory (DFT) in quantum chemistry package 

GAMESS (general atomic and molecular electronic structure system). 

Karami et al. (2020) has investigated a competitive co-adsorption of 

naproxen (NAP) and DCF from water using a MIL-53(Al). Single-

component experiments for each of NAP and DCF, and binary 

experiments were performed. The calculated maximum removal 
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capacities were found to 297 and 422 mg g-1 for NAP and DCF, 

respectively.  Tran et al. (2020) has performed uptake application of 

Mn2(BDC)2(DMF)2-derived MnO@C nanocomposite for antibiotic 

contaminants involving tetracycline (TCC), ciprofloxacin (CFX), DCF, 

and chloramphenicol (CAP) in aqueous solution. Although these studies 

show that MOFs synthesized by hydrothermal synthesis method are 

effective adsorbents for the removal pharmaceuticals from water, there 

is a limitation in that they only calculate the maximum adsorption 

capacity. Further, DCF has a characteristic of precipitation when the pH 

is less than 4 - 5, and there was no paper mentioning the precipitation of 

DCF according to pH among the papers in Table 3. For substances that 

precipitate in a specific pH range, such as DCF, if modeling is performed 

through ANN based on adsorption experiments, not only the removal 

rate due to adsorption but also the removal rate due to precipitation can 

be considered. Therefore, when fitting the adsorption model equation 

through a single-parameter adsorption experiment, the experiment 

should be conducted only under conditions where no precipitation occurs, 

and a study that can calculate the removal rate considering precipitation 

through multi-parameter modeling is also required.  
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Table 3 . Studies for pharmaceutical adsorption from aqueous solutions using MOFs synthesized by hydrothermal 

method 

Reference Type of MOF 

Type of 

pharmaceutical 

Maximum 

adsorption 

capacity 

(mg g-1) 

Initial 

concentration of 

pharmaceutical 

(mg L-1) 

Initial pH 

Hasan et al. (2016) UiO-66(Zr) Diclofenac 189 - 5.4 

Moradi et al. 

(2016) 

Fe3O4@MIL-100(Fe) Ciprofloxacin 322.6 50-250 6.0 

Bayazit et al. 

(2017) 

MIL-101(Cr) Ciprofloxacin 63.3 5-35 - 

Bhadra et al. 

(2017) 

PCDM-1000(Zn) Diclofenac 400 25-100 - 
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Chen et al. (2017) UiO-66(Zr) Tetracycline 46.4 10-100 - 

Li et al. (2017) ZIF-8 Ciprofloxacin 416.7 3-100 6.0 

Naeimi et al. 

(2017) 

MIL-53(Fe) Doxycycline 322 - - 

Gadipelly et al. 

(2018) 

MOF-5(Zn) Ciprofloxacin 98.2 10-250 - 

Luo et al. (2018) Cu-MOF Diclofenac 490 500-1300 7.0 

Mirsoleimani et al. 

(2018) 

MOF-5(Zn) Tetracycline 233 35-75 7.0 

Xiong et al. (2018) MIL-53(Fe) Tetracycline 364.4 1-200 - 

Zheng et al. (2018) Fe3O4@MIL-100(Fe) Diclofenac 377.4 20-140 - 
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Li et al. (2019) Fe3O4@MIL-100(Fe) Diclofenac 400 60-140 6.2 

Liu et al. (2019) Cu-MOF Diclofenac 650 100-1600 - 

Sun et al. (2019) UiO-66(Zr) 

Ibuprofen, 

Naproxen 

111.4, 72.5 - - 

Xiong et al. (2019) MIL-53(Fe) Doxycycline 397.2 5-150 - 

Zhuang et al. 

(2019) 

MIL-100(Fe) Diclofenac 1021 60-400 6.0 

Karami et al. 

(2020) 

MIL-53(Al) Diclofenac 422 5-600 - 

Olawale et al. 

(2020) 

[Cu(Glu)2 (H2O2)]H2O-

MOF 

Ciprofloxacin 61.4 5-30 - 
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Tran et al. (2020) 

Mn2(BDC)2(DMF)2-

derived MnO@C 

Diclofenac 92.4 10-40 - 
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3. Materials and Methods 

3.1. Synthesis of MIL-100(Fe) at room temperature 

Iron(Ⅱ) chloride tetrahydrate (FeCl24H2O, 99%) and trimesic acid 

(H3BTC, 95%) were purchased from Sigma-Aldrich (Saint Louis, MO, 

USA). Sodium hydroxide (NaOH) and ethyl alcohol (C2H5OH, 94.5%) 

were obtained from Duksan Pure Chemicals (Ansan, Republic of 

Korea) and Daejung Chemicals & Metals (Siheung, Republic of 

Korea), respectively. The ultrapure water was purified by a Milipore 

Milli-Q water purification system. 

The MIL-100(Fe) was synthesized at room temperature following 

the procedures described in Guesh et al. (2017) and Fig. 3. First, NaOH 

(24.0 mM) and H3BTC (8.0 mM) were dissolved in 30 mL of deionized 

water (DW) (solution (①)). Second, FeCl24H2O (12.07 mM) was 

dissolved in 96 mL of DW (solution (②)). Solution (①) was added 

dropwise to solution (②), stirred for 24 h at room temperature, and 

centrifuged at 4000 rpm to obtain the solid product. Then, the solid was 

washed several times with DW and ethyl alcohol, and dried overnight 

at 90℃ in a vacuum drying oven (SH-VDO-08NG, Samheung, Seoul, 
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Republic of Korea) to obtain the final MIL-100(Fe) product. MOF 

synthesized at room temperature has the advantage that it requires 

fewer instruments and has a much simpler synthesis process than the 

hydrothermal synthesis method used in previous studies. 
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  Fig. 3. A schematic diagram of the MIL-100(Fe) synthesis process at room temperature 
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3.2. Characterization of MIL-100(Fe) 

Several instruments were used to analyze the physical and chemical 

characteristics of the MIL-100(Fe). A field emission scanning electron 

microscope (FESEM, Supra 55VP, Carl Zeiss, Oberkochen, Germany) 

was employed to examine the surface morphology. Furthermore, an 

energy dispersive X-ray spectroscopy (EDS) pattern was determined using 

FESEM to confirm the constituent elements of adsorbent and their ratio. 

The X-ray diffraction (XRD) pattern was obtained using powder X-ray 

diffractometry (D8 Advance, Bruker, Billerica, MA, USA) with the 2θ 

range from 2˚ to 20˚. An electrophoretic light scattering (ELS) 

spectrophotometer (ELSZ-1000, Otsuka Electronics, Tokyo, Japan) was 

employed to measure the zeta potential and particle diameter. Nitrogen gas 

(N2) adsorption-desorption analysis was conducted using a surface area 

analyzer (BELSORP-MAX, MicrotracBEL, Osaka, Japan) to determine 

the Brunauer-Emmett-Teller (BET) surface area, average pore diameter 

and total pore volume. A thermogravimetric analyzer (Discovery TGA, TA 

Instruments, New Castle, DE, USA) was used for thermogravimetric 

analysis (TGA) by heating the MIL-100(Fe) to 800 ℃ with a heating rate 

of 10 ℃ min-1. The changes of components before and after adsorption 

experiments were obtained using X-ray photoelectron spectrometer (XPS, 
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AXIS SUPRA, Kratos Analytical Inc., Manchester, U.K). Furthermore, 

Fourier-transform infrared (FTIR) spectra was determined using a 

spectrophotometer (Nicolet 6700, Thermo Scientific, Waltham, MA, 

USA) using KBr pellets for analyzing chemical bonding before and after 

adsorption processes. 

Water stability of the MIL-100(Fe) was analyzed in deionized water 

(DW) and RhB, DCF solution. The stability tests were performed in 

duplicate at the solution pHs of 2, 7, and 12. 80 mg of the MIL-100(Fe) 

was added into 40 mL of DW and RhB, DCF solution (100 mg L-1) in 

polypropylene conical tubes and stirred in a shaking incubator (Daihan 

Science, Seoul, Republic of Korea) at 150 rpm and 30 °C for 24 h, 

respectively. After reaction, the amount of Fe leaching from the MIL-

100(Fe) was quantified using Inductively Coupled Plasma-Optical 

Emission Spectrometry (ICP-OES) (iCAP 7000, Thermo Fisher Scientific, 

Waltham, MA, USA).  
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3.3. RhB adsorption from synthetic water 

3.3.1. Single-parameter experiments for RhB removal 

A Stock solution (200 mg L-1) was prepared by Rhodamine B (Sigma-

Aldrich, Saint Louis, MO, USA). Batch adsorption experiments were 

conducted with polypropylene conical tubes containing 50 mL RhB 

solution (Initial RhB concentration = 50 mg L-1, Initial pH = 4) and 50 mg 

MIL-100(Fe) (adsorbent dose = 1.0 g L-1). All batch tests were performed 

in a shaking incubator (Lab. Companion IS-971R) at 150 rpm and 30 °C for 

24 h in duplicate. The range of RhB initial concentration was 10 - 100 mg 

L-1, adsorbent dose was 0.01 - 0.1 g. The pH range of dye solution was 2 - 

12 and the temperature range was 20 - 40 °C (Table 4.). 

After the reaction, the samples were filtered through a 0.45-μm 

membrane filter. The concentrations of RhB were determined by a UV-Vis 

spectrophotometer (Genesys 10S, Thermo Scientific, Waltham, MA, USA) 

at a wavelength of 470 nm based on the calibration curve obtained from the 

spectra of the RhB standard solutions, and the curve is fitted with a linear 

fit (Fig. 4.). The equilibrium adsorption capacity was calculated as 
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𝑞𝑒 =
(𝐶0 − 𝐶𝑒)𝑉

𝑚
 

where, 𝑞𝑒 (mg g-1) represents the adsorption capacity; 𝐶0 (mg L-1) is 

the initial RhB concentration; 𝐶𝑒  (mg L-1) is the equilibrium RhB 

concentration; V (L) is the volume of solution; m (g) is the weight of 

adsorbents. Further, the removal rate (removal efficiency, E (%)) was 

calculated as 

𝐸 =
(𝐶0 − 𝐶𝑒)

𝐶0
× 100 
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Table 4. Batch experiment conditions for RhB removal 

Conditions 

Experiments 
Dosage (g/L) 

Contact time 

(min) 

Initial 

concentration 

(mg/L) 

Temperature 

(℃) 
Initial pH 

Equilibrium 1 1440 
10, 20, 30, 40, 

50, 60, 80, 100 
30 4 

Kinetic 1 

2, 5, 10, 15, 30, 

60, 120, 240, 

360, 480, 600, 

720, 1440 

50 30 4 

Temperature 1 1440 50 20, 30, 40 4 

pH 1 1440 50 30 2, 4, 6, 8, 10, 12 
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Fig. 4 Calibration curve obtained with RhB standard solutions 
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3.3.2. Multi-parameter experiments for RhB removal 

Multi-parameter experiments for RhB removal were performed based on 

the single-parameter experiments. The single parameter experiments are 

performed by changing only one variable, such as dosage, contact time, 

initial contaminant concentration, temperature, and initial pH, and the multi-

parameter experiments are performed by changing several variables at the 

same time. First, an experimental design was performed using the central 

composite design (CCD) method. The number of experimental points (N) 

were calculated using the following formula (Nair et al., 2014): 

𝑁 = 2𝑘 + 2𝑘 + 𝑐𝑝 (13) 

  

where, k is the number of input variables, 2𝑘 is the number of factorial 

points, 2𝑘 is the number of axial points, and cp is the number of center 

points. Experimental range and level of input variable for RhB adsorption in 

the CCD approach are presented in Table 5. In this study, input variables 

including pH (A), adsorbent dose (B), and initial RhB concentration (C) 

were chosen as five levels and labeled as -2 to +2 for RhB adsorption. The 

response parameter was the removal rate of RhB. The range of input 

variables was determined based on the preliminary adsorption experiments 



40 

 

described in the Section 3.3.1. The CCD matrix in Table 6 was obtained 

using the Design Expert software (version 12, Stat-Ease, Minneapolis, MN, 

USA). Based on the CCD matrix, adsorption experiments were conducted in 

duplicate for each experimental point for RhB (N=30).
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Table 5. CCD levels of input variables (α=2) for RhB adsorption 

 

  

Input variable Unit Symbol 
Levels 

-α -1 0 +1 +α 

pH - A 2 3 4 5 6 

Dosage g/L B 1 1.5 2 2.5 3 

Initial RhB 

concentration 
mg/L C 50 75 100 125 150 
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Table 6. Designed matrix conditions for RhB adsorption 

 

  

Ex. Initial pH 

MIL-100(Fe) 

dosage 

(g/L) 

Initial RhB 

concentration 

(mg/L) 

Experimental point 

1 2.0 2.0 100 

Axial point 

2 4.0 1.0 100 

3 4.0 2.0 50 

4 4.0 2.0 150 

5 4.0 3.0 100 

6 6.0 2.0 100 

7 3.0 1.5 75 

Factorial point 

8 3.0 1.5 125 

9 3.0 2.5 75 

10 3.0 2.5 125 

11 5.0 1.5 75 

12 5.0 1.5 125 

13 5.0 2.5 75 

14 5.0 2.5 125 

15 4.0 2.0 100 Center point 
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3.4. DCF adsorption from synthetic water 

3.4.1. Single-parameter experiments for DCF removal 

A Stock solution (1000 mg L-1) was prepared by Diclofenac sodium 

(Sigma-Aldrich, Saint Louis, MO, USA). Batch adsorption studies were 

performed with polypropylene conical tubes containing 50 mL of the DCF 

solution (Initial DCF concentration = 80 mg L-1, Initial pH = 7) and 10 mg 

MIL-100(Fe) (adsorbent dose = 0.2 g L-1). All duplicate samples were stirred 

in a shaking incubator at 150 rpm, 30 °C for 24 h. The range of DCF initial 

concentration was 20 - 1000 mg L-1, pH range of dye solution was 5 - 12 and 

the temperature range was 10 - 50 °C (Table 7.). 

The designed pH condition is to experiment in a range where DCF does 

not precipitate. Depending on solution pH, DCF exist as DCF- (dissociated 

soluble form), DCF-H(aq) (undissociated soluble form), and/or DCF-H(s) 

(undissociated precipitated form) in aqueous solutions. The DCF distribution 

was calculated based on the following acid-base equilibrium formula: 

Ka =
[DCF−][H+]

[DCF − H]
,    pKa = −log(Ka) 

(1) 

 

where, Ka is the acidic dissociation constant (DCF pKa = 4.15). The 
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solubility of DCF (DCF-H) was calculated based on the following equation: 

SH = S0 (1 +
Ka

[H+]
) 

(2) 

 

where, SH is the solubility of DCF-H (mg L-1) and S0 is the intrinsic 

solubility of DCF-H (= 2.37 mg L-1). According to the equations, the species 

distribution of DCF when the total DCF concentration is 80 mg L-1 is shown 

in Fig. 5. As an example, DCF was composed of DCF- (87.6%), DCF-H(aq) 

(12.4%), and DCF-H(s) (0%) at pH 5. 

After the reaction, the samples were filtered through a 0.45-μm 

membrane filter. The concentrations of DCF were determined by a UV-Vis 

spectrophotometer at a wavelength of 274 nm based on the calibration curve 

obtained from the spectra of the DCF standard solutions (Fig. 6.). 
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Table 7. Batch experiment conditions for DCF removal 

Conditions 

Experiments 
Dosage (g/L) 

Contact time 

(min) 

Initial 

concentration 

(mg/L) 

Temperature 

(℃) 
Initial pH 

Equilibrium 0.2 1440 

20, 30, 50, 

100, 300, 500, 

1000 

30 7 

Kinetic 0.2 

5, 15, 30, 60, 

120, 240, 360, 

480, 720, 1440 

80 30 7 

Temperature 0.2 1440 80 
10, 20, 30, 40, 

50 
7 

pH 0.2 1440 80 30 5, 6, 8, 10, 12 
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Fig. 5. Species distribution of DCF in response to solution pH at a total DCF 

concentration of 80 mg L-1 
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Fig. 6. Calibration curve obtained with DCF standard solutions 
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3.4.2. Multi-parameter experiments for DCF removal 

Multi-parameter experiments for DCF removal were performed based on 

the single-parameter experiments. An experimental design was performed 

using the CCD method like RhB removal. Experimental range and level of 

input variable for DCF adsorption in the CCD approach are presented in 

Table 8. In this study, input variables including initial pH (A), adsorbent dose 

(B), and initial DCF concentration (C), and temperature (D) for DCF 

adsorption were chosen as five levels and labeled as -2 to +2. The response 

parameter was the removal rate of DCF and final pH. The range of input 

variables was determined based on the preliminary adsorption experiments 

described in the Section 3.4.2. The CCD matrix in Table 9 was obtained 

using the Design Expert software. Based on the CCD matrix, adsorption 

experiments were conducted in duplicate for each experimental point for 

DCF (N=56). 
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Table 8. CCD levels of input variables (α=2) for DCF adsorption

Input variable Unit Symbol 
Levels 

-α -1 0 +1 +α 

pH - A 5.0 6.5 8.0 9.5 11.0 

Dosage g/L B 0.4 0.6 0.8 1.0 1.2 

Initial RhB 

concentration 
mg/L C 20 40 60 80 100 

Temperature ℃ D 10 20 30 40 50 
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Table 9. Designed matrix conditions for DCF adsorption 

 

  

Ex. 
Initial 

pH 

MIL-

100(Fe) 

dosage 

(g/L) 

Initial DCF 

concentration 

(mg/L) 

Temperature 

(℃) 

Experimental 

point 

1 5.0 0.8 60 30 

Axial point 

2 11.0 0.8 60 30 

3 8.0 0.4 60 30 

4 8.0 1.2 60 30 

5 8.0 0.8 60 10 

6 8.0 0.8 60 50 

7 8.0 0.8 20 30 

8 8.0 0.8 100 30 

9 6.5 0.6 40 20 

Factorial point 

10 6.5 0.6 80 20 

11 6.5 0.6 40 40 

12 6.5 0.6 80 40 

13 6.5 1.0 40 20 

14 6.5 1.0 80 20 

15 6.5 1.0 40 40 

16 6.5 1.0 80 40 

17 9.5 0.6 40 20 

18 9.5 0.6 80 20 

19 9.5 0.6 40 40 

20 9.5 0.6 80 40 

21 9.5 1.0 40 20 

22 9.5 1.0 80 20 

23 9.5 1.0 40 40 

24 9.5 1.0 80 40 

25 8.0 0.8 60 30 

Center point 
26 8.0 0.8 60 30 

27 8.0 0.8 60 30 

28 8.0 0.8 60 30 
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3.5. Data analysis for single-parameter experiments 

After the adsorption studies, the equilibrium data were fitted by the 

isotherm models of Langmuir, Freundlich and Redlich-Peterson model. The 

equations of each model can be presented as follows: 

 

where 𝑞𝑒 indicates the amount of contaminant adsorbed at equilibrium, 

𝐶𝑒 is the equilibrium concentration of contaminant in the aqueous solution, 

𝑄𝑚 is the maximum adsorption capacity, 𝐾𝐿 is the Langmuir constant, 𝐾𝐹 

is the Freundlich constant, 
1

𝑛
 is the Freundlich constant related to the 

adsorption intensity, 𝐾𝑅 is the Redlich-Peterson constant, 𝑎𝑅 is the Redlich-

Peterson constant related to the affinity, and g is the Redlich-Peterson constant 

related to the adsorption intensity.  

The adsorption kinetic data was fitted by Pseudo-first model, Pseudo-

𝑞𝑒 = 
𝑄𝑚𝐾𝐿𝐶𝑒

1 + 𝐾𝐿𝐶𝑒
 (3) 

𝑞𝑒 = 𝐾𝐹𝐶𝑒

1
𝑛 (4) 

𝑞𝑒 = 
𝐾𝑅𝐶𝑒

1 + 𝑎𝑅𝐶𝑒
𝑔 (5) 
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second model and Elovich model. The equations of each model can be 

presented as follows: 

 

where, 𝑞𝑡  is the amount of contaminant adsorbed at time t, 𝑞𝑒  is the 

amount of contaminant adsorbed at equilibrium, k1 is the pseudo first-order 

rate constant, k2 is the pseudo second-order rate constant, α is the initial 

adsorption rate constant, and β is the Elovich adsorption constant.  

The coefficient of determination coefficient (R2), chi-square coefficient 

(χ2), and sum of the absolute errors (SAE) were used as error function to 

analyze the sorption data and fit to the model: 

𝑞𝑡 = 𝑞𝑒(1 − e−k1𝑡) (6) 

𝑞𝑡 = 
𝑘2𝑞𝑒

2𝑡

1 + 𝑘2𝑞𝑒𝑡
 (7) 

𝑞𝑡 =
1

𝛽
ln(𝛼𝛽) +

1

𝛽
ln 𝑡 (8) 

R2 = 
∑ (𝑦𝑐 − 𝑦𝑒̅)𝑖

2𝑚
𝑖=1

∑ (𝑦𝑐 − 𝑦𝑒̅)𝑖
2 + ∑ (𝑦𝑐 − 𝑦𝑒)𝑖

2𝑚
𝑖=1

𝑚
𝑖=1

 (9) 
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where, 𝑦𝑐 is the calculated adsorption capacity from the model, and 𝑦𝑒 

is the measured adsorption capacity from the experiments. 

Furthermore, the thermodynamic data were analyzed by the following 

equations: 

𝛥𝐺0 = 𝛥𝐻0 − 𝑇𝛥𝑆0 (12) 

𝛥𝐺0 = −𝑅𝑇𝑙𝑛𝐾𝑒 (13) 

𝑙𝑛𝐾𝑒 = 
𝛥𝑆0

𝑅
−

𝛥𝐻0

𝑅𝑇
;𝐾𝑒 =

𝑎𝑞𝑒

𝐶𝑒
 (14) 

 

where, ∆𝐺0 is the change in Gibb’s free energy, ∆𝑆0 is the change in 

entropy, ∆𝐻0 is the change in enthalpy, T is the temperature (℃), R is the gas 

constant, and 𝐾𝑒 is the equilibrium constant.  

χ2 = ∑ [
(𝑦𝑒 − 𝑦𝑐)

2

𝑦𝑐
]
𝑖

𝑚

𝑖=1
 (10) 

SAE =  ∑ |𝑦𝑐 − 𝑦𝑒|𝑖

𝑚

𝑖=1
 (11) 
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3.6. Multi-parameter modeling through RSM and ANN 

3.6.1. Response surface methodology (RSM) 

RSM was applied to analyze the RhB adsorption data obtained from the 

designed experiments. The influence of the input variables on the RhB 

removal rate was modeled by the following cubic polynomial equation 

(Saldana-Robles et al., 2014; Boudechiche et al., 2017): 

𝑦

= 𝛽0 + ∑𝛽𝑖𝑥𝑖

𝑘

𝑖=1

+ ∑𝛽𝑖𝑖𝑥𝑖𝑖
2

𝑘

𝑖=1

+ ∑𝛽𝑖𝑖𝑖𝑥𝑖𝑖𝑖
3

𝑘

𝑖=1

+ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

+ ∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑘

𝑘=𝑗+1

𝑘−1

𝑗=𝑖+1

𝑘−2

𝑖=1

+ 𝜖 

(15) 

 

where, y is the output value (RhB removal rate), 𝑥𝑖 , 𝑥𝑗 , and 𝑥𝑘  are the 

input variables, 𝛽0, 𝛽𝑖, 𝛽𝑖𝑖, and 𝛽𝑖𝑖𝑖 are the regression coefficients for 

intercept, linear, quadratic, and cubic term, respectively, 𝛽𝑖𝑗 and 𝛽𝑖𝑗𝑘 are 

the cross-product term coefficients, 𝜖 is the error associated with the 

adsorption experiments, and 𝑘 is the number of input variables (= 3). For 

the RSM modeling, the input variables were normalized in the range of -1 to 
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1 to avoid the scaling effect using the following equation: 

𝑥𝑛 = 2 ×
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
− 1 

 

(16) 

 

where, 𝑥 is the input value, 𝑥𝑚𝑖𝑛 is the minimum value of 𝑥 , 𝑥𝑚𝑎𝑥 is 

the maximum value of 𝑥. The RSM model was developed based on equation 

(15) using the Design Expert software. The analysis of variance (ANOVA) 

test was performed to evaluate the fitness of the developed RSM model to 

the RhB adsorption data based on the fisher value (F-value), probability 

value (P-value), and coefficient of determination value (R2):  

𝑅2 = 1 −
∑ (𝑦𝑖,𝑝𝑟𝑒 − 𝑦𝑖,𝑜𝑏𝑠)

2𝑁
𝑖=1

∑ (𝑦𝑖,𝑜𝑏𝑠 − 𝑦𝑎𝑣𝑒)2𝑁
𝑖=1

 (17) 

 

where, 𝑦𝑖,𝑝𝑟𝑒, 𝑦𝑖,𝑜𝑏𝑠, and 𝑦𝑎𝑣𝑒 are the predicted value, observed value, and 

average value of RhB removal rate, respectively. 
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3.6.2. Artificial neural network (ANN) 

ANN was used to modeling for the RhB and DCF adsorption data from 

the designed experiments. The ANN architecture for the RhB and DCF 

adsorption is illustrated in Fig. 8. The ANN model was composed of three 

layers (input, hidden, and output layers). The input layer could include 

various input variables like pH, adsorbent dose, initial contaminant 

concentration, temperature, whereas the hidden and output layers could 

contain a number of neurons for each layer (Jahed Armaghani et al., 2017; 

Mahmoodi et al., 2019). For the ANN modeling, the input variables were 

also normalized in the range of -1 to 1. 

The effect of the input variables (A, B, C etc.) on the RhB or DCF 

removal rate and final pH for DCF adsorption (𝑦) were modeled by the 

following formula (Ghaedi et al., 2015; Baziar et al., 2017): 

𝑦 = Purelin [𝒘𝑂 × Tansig (𝒘𝐻 × [
𝐴
𝐵
𝐶
] + 𝒃𝐻) + 𝒃𝑂] 

 

(18) 

 

where, wH and wO are the weight values of hidden layer and output layer, 

respectively, and bH and bO are the bias values of hidden layer and output 

layer, respectively. The hyperbolic tangent sigmoid transfer function (Tansig) 
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was used as a transfer function for the hidden layer, whereas the linear 

transfer function (Purelin) was used for the output layer. The ANN model 

was developed based on equation (18) using the MATLAB nntool (R2019b, 

MathWorks, Natick, MA, USA). The mean squared error (MSE) was used as 

an error function: 

MSE =
1

𝑁
∑ (|𝑦𝑖,𝑝𝑟𝑒 − 𝑦𝑖,𝑜𝑏𝑠|)

2𝑁

𝑖=1
 (19) 

  

The Levenberg-Marquardt algorithm was selected for the modeling 

process because it could result in the smaller MSE value (Baziar et al., 

2017). In the ANN model development, a total data points (N = 30 for RhB, 

and N = 56 for DCF) were randomly divided into three subsets including 

training set (60%), validating set (20%), and testing set (20%). In the training 

phase, 60% of data points were used to adjust the weight and bias values for 

reducing the error between the observed outputs and the predicted outputs 

(Ghaedi et al., 2017; Gadekar et al., 2019). In the validating phase, 20% of 

data points were used to prevent overfitting (Ma et al., 2019). In the testing 

phase, the remaining 20% of data points were used to evaluate the fitness of 

the developed ANN model to the experimental data. 
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Fig. 7. Schematic diagram of experimental design and modeling analysis 

with the tools
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Fig. 8. Artificial neural network (ANN) architecture 
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4. Results and Discussion 

4.1. Characterization of MIL-100(Fe) 

FESEM images of MIL-100(Fe) according to various pH are shown in 

Fig. 9. The synthesized MIL-100(Fe) has an octahedral shape as shown in 

the Fig. 9, except for (f) at pH 12. At pH 12, much of the MIL-100(Fe)’s 

crystalline structure has collapsed. The EDS spectra is presented in Fig. 10. 

The MIL-100(Fe) consists of carbon (C), oxygen (O), and iron (Fe) with the 

weight percentages of 47.3%, 34.6%, 18.1%, respectively. 

The XRD pattern of the MIL-100(Fe) is shown in Fig. 11. In the XRD 

pattern for all pH ranges, the diffraction peaks centered at 3.4, 4.0, 4.8, 

6.3, 11.0 can be indexed to the (022), (113), (004), (333), and (428) planes 

of crystallized MIL-100(Fe), respectively. Comparing with MIL-100(Fe)-RT 

24h in the previous study (Guesh et al., 2017), which was synthesized at 

room temperature, it was confirmed that the characteristic peaks of MIL-

100(Fe) coincide.  

The ELS spectra of the MIL-100(Fe) with pH 2 to 12 is presented in Fig. 

12. According to the Fig. 12, a point of zero charge (pHpzc) of MIL-100(Fe) 

is 4.2. Furthermore, the MIL-100(Fe) had an average hydrodynamic diameter 
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of 4.3±0.9 μm. N2 adsorption-desorption analysis gave 1752.2 m2 g-1 for 

BET surface area, 1.67 nm for average pore diameter, and 0.73 cm3 g-1 for 

total pore volume of MIL-100(Fe) (Fig. 13.). 

As shown in Fig. 14, MIL-100(Fe) has three distinct weight losses in the 

range of 20 - 500 ℃ according to the TGA analysis. The first weight loss 

(15.1%) result from the loss of the water molecules from pores of the MIL-

100(Fe) in the range from 20 to 85 ℃. The second weight loss (15.4%) result 

from the evaporation of the water molecules in the 85 - 360 ℃ range. The 

final weight loss (44.7%) result from the combustion of the organic linker, 

trimesic acid, and collapsing of the MIL-100(Fe) framework in the range of 

360 – 500 ℃. The TGA curve indicates that the MIL-100(Fe) has thermal 

stability up to 360 ℃.  

The XPS spectra of the MIL-100(Fe) is presented in Fig. 15. In the wide 

scan (Fig. 15a), the peaks of Fe 2p (711.3 eV), O 1s (531.3 eV), and C 1s 

(284.3 eV) indicated the structural analogs of the MIL-100(Fe) structure. The 

high-resolution scan of C 1s (Fig. 15b) showed two peaks assigned to a 

benzene ring (284.3 eV) and carboxyl group (288.6 eV). 

In the FT-IR spectra of the MIL-100(Fe) (Fig. 16.), 2972 cm-1 peak 

corresponded to the O-H stretching (Mohammadifard et al., 2019), 1700 cm-1 
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and 1620 cm-1 peaks corresponded to the C=O stretching (Duan et al., 2016; 

Lee et al., 2017; Mohammadifard et al., 2019). 1365 cm-1 peak corresponded 

to the C=C bond, 759 cm-1 and 708 cm-1 peaks corresponded to the Fe-OH 

vibration (Lee et al., 2017; Mohammadifard et al., 2019). 

The Water stability of the MIL-100(Fe) in DW, RhB, and DCF solutions 

are presented in Table 10. A negligible amount of Fe ions were leached from 

the MIL-100(Fe) during the reaction, indicating that the MIL-100(Fe) had 

great water stability.
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Fig. 9. FESEM images of MIL-100(Fe) according to various pH: (a) at pH2; (b) pH4; (c) pH6; (d) pH8; (e) pH10; (f) pH12 

 

  

(a) pH 2 (b) pH 4 (c) pH 6 

   

(d) pH 8 (e) pH 10 (f) pH 12 
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Fig. 10. EDS spectra of the MIL-100(Fe) 
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Fig. 11. XRD pattern of the MIL-100(Fe) with various pH 
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Fig. 12. ELS spectra (zeta potential) of the MIL-100(Fe) 
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Fig. 13. N2 adsorption-desorption isotherms of the MIL-100(Fe) 
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Fig. 14. TGA curve of the MIL-100(Fe) 

  



69 

 

(a) 

 

(b) 

 

Fig. 15. XPS spectra of the MIL-100(Fe): (a) wide scan; (b) high-resolution 

scan of C 1s 
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Fig. 16. FT-IR spectra of the MIL-100(Fe) 
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Table 10. Reduced Fe ions mass percentage (%) after the reaction (24hr) 

 

  

after the reaction (24hr) 

 
Fe conc. 

(mg/L) 
Std. 

reduced Fe mass 

percentage (%) 

DI-water 0.110 0.155 0.030 

RhB 0.125 0.147 0.035 

DCF 0.016 0.023 0.004 
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4.2. Adsorption studies for RhB  

4.2.1. Single-parameter experiments for RhB removal 

The isotherm data is presented in Fig. 17a and isotherm model 

parameters of the Langmuir, Freundlich, Redlich-Peterson isotherm models 

are listed in Table 11. The Langmuir model was best fitted to the isotherm 

data with the parameter values of Qm = 61.845 (mg g-1) and KL = 0.282 (L 

mg-1). The Langmuir isotherm model assumes that the adsorbate is adsorbed 

on the adsorbent in a monolayer and adsorption occurs at certain 

homogeneous sites within the adsorbent. According to the Langmuir model, 

when equilibrium is reached, no further adsorption occurs (Wang et al., 

2020). Further, the maximum RhB adsorption capacity (Qm) from the 

Langmuir model was 61.845 mg g-1.  

The kinetic data is presented in Fig. 17b and kinetic model parameters of 

the pseudo-first, pseudo-second, Elovich kinetic models are listed in Table 

12. The Elovich model was best fitted to the kinetic data with the parameter 

values of α = 12.651 and β = 0.193. The Elovich model assumes that the 

activation energy increased with reaction time and the surface of the 

adsorbent was heterogeneous (Wang et al., 2020). The RhB adsorption 

reached equilibrium in 12 hours. 
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The thermodynamic data analyzed with the thermodynamic models are 

presented in Fig. 17c. and Table 13. The entropy (ΔS°) value of 137 J K-1 

mol-1 indicated that the entropy increased at the interface between solid and 

aqueous phases during the adsorption process. The enthalpy (ΔH°) value of 

35.4 kJ mol-1 indicated that RhB adsorption process was endothermic, 

increasing adsorption capacity with increasing temperature from 20 to 40℃. 

The Gibb’s free energy (ΔG°) values of - 4.82 to - 7.56 kJ mol-1 indicated 

that RhB adsorption process was spontaneous reaction. This result was in 

accordance with the studies Duan et al. (2016) and Navarathna et al. (2020), 

which had observed the endothermic reaction for RhB adsorption onto 

nanoscale MIL-100(Fe) and MIL-53(Fe) based hybrid adsorbent (MOF-

MBC), respectively. 

The adsorption data according to RhB solution pH shown in Fig. 17d. In 

pH range 4 to 10, high adsorption capacity is maintained around 45 mg g-1. 

At pH 2, it shows a little lower adsorption capacity than pH 4 – 10, and 

adsorption hardly occurs at pH 12. The main mechanism of RhB adsorption 

is π-π interaction between the benzene rings of RhB and MIL-100(Fe) in 

most pH ranges. At pH < 4.0, RhB exists in the protonated form (RhB-H+) 

(Liu et al., 2016). Therefore, strong electrostatic repulsion could occur 
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between positively charged RhB and positively charged MIL-100(Fe) (pHpzc 

= 4.2). In the range of pH 4 to 10, electrostatic attraction between positively 

charged aminoxanthene group of RhB and negatively charged MIL-100(Fe) 

(Moreno-Villoslada et al, 2006; Liu et al., 2016; Mahmoodi et al., 2019). As 

shown in the Fig. 9f, since the crystal structure of the MIL-100(Fe) is 

collapsed and the RhB is unstable, adsorption hardly occurs under highly 

alkaline conditions (Liu et al., 2016). Schematic diagram for RhB removal 

mechanism by the MIL-100(Fe) is shown in Fig. 18. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 17. Batch studies for RhB removal: (a) isotherm; (b) kinetic; (c) thermodynamic; (d) pH 
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Table 11. Model parameters of Langmuir, Freundlich, and Redlich-Peterson isotherm model obtained from model fitting 

for RhB isotherm data 

Model Langmuir isotherm model Freundlich isotherm model Redlich-Peterson model 

parameter 
Qm 

(mg/g) 

KL 

(L/mg) 
R2 χ2 SAE 

KF 

(L/g) 
1/n R2 χ2 SAE 

KR 

(L/g) 

aR 

(L/mg) 
g R2 χ2 SAE 

MIL-
100(Fe) 

61.845 0.282 0.922 5.336 155.668 22.384 0.243 0.804 15.213 38.070 17.492 0.284 0.999 0.922 5.351 155.676 
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Table 12. Model parameters of pseudo first, pseudo second, Elovich kinetic model obtained from model fitting for RhB 

kinetic data 

Model Pseudo first model Pseudo second model Elovich model 

parameter 
k1 

(1/min) 
qe 

(mg/g)  
R2 χ2 SAE 

k2 
(g/mg/min) 

qe 
(mg/g)  

R2 χ2 SAE α β R2 χ2 SAE 

MIL-
100(Fe) 

0.023 37.629 0.853 79.728 66.088 0.001 40.170 0.897 35.719 49.986 12.651 0.193 0.962 3.257 28.820 
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Table 13. Thermodynamic model parameters obtained from RhB adsorption 

experiments 

Temp 

(ºC) 

Adsorption 

capacity (mg g-1) 

ΔH° 

(kJ mol-1) 

ΔS° 

(J K-1 mol-1) 

ΔG° 

(kJ mol-1) 

20 43.3±0.5 35.4 137 -4.82 

30 43.6±0.7 35.4 137 -6.19 

40 45.5±0.1 35.4 137 -7.56 
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Fig. 18. Schematic diagram for RhB and DCF removal mechanism by the MIL-100(Fe) 
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4.2.2. Multi-parameter modeling using RSM 

The CCD matrix with three input variables is presented in Table 6 along 

with observed removal rates and predicted values from the RSM modeling. A 

third order polynomial equation (cubic regression model) was developed 

from the experimental data in terms of coded factors using RSM follows: 

𝑦

= 16.07𝐴 + 15.51𝐵 − 5.91𝐶 + 0.9722𝐴𝐵 + 2.7𝐴𝐶 + 7.52𝐵𝐶 − 10.14𝐴2

− 6.61𝐵2 + 1.8𝐶2 − 4.12𝐴𝐵𝐶 − 10.43𝐴2𝐵 − 31.49𝐴2𝐶 − 32.67𝐴𝐵2 + 84.32 

(20) 

 

The ANOVA results of full cubic regression model from RSM are presented 

in Table 15. The model F-value of 57.9 indicated that the developed cubic 

model was significant. The lack of fit p-value 0.220 is greater than the 

significance level of 0.05, which means that the model is good. The 

coefficient of determination value (R2) of 0.98 indicated good correlation 

between the observed and predicted removal rates. The adequate precision 

value of 22.5 also demonstrated that the developed RSM model was 

adequate to describe the RhB adsorption to the MIL-100(Fe) (Gadekar and 

Ahammed, 2019; Mahmoodi et al., 2019). The analysis showed that linear 

terms (A, B, C), quadratic cross-product term (BC), quadratic terms (A2, B2), 



81 

 

and cubic cross-product terms (A2B, A2C, AB2) had a large effect on the RhB 

adsorption to the MIL-100(Fe) due to their high F-values as well as low P-

values (< 0.05). Fig. 19. illustrates the diagnostic plot between observed and 

predicted removal rates, indicating that the prediction of the developed cubic 

model was acceptable.  

Fig. 20. presents the interaction effect of input variables (pH, adsorbent 

dose, and initial RhB concentration) on the RhB removal rate. The removal 

rate was influenced by the initial RhB concentration and adsorbent dose. At 

pH 4 and adsorbent dose of 2.0 g L−1, the removal rate decreased from 94.7 

to 79.7% with an increase of initial RhB concentration from 50 to 150 

mg L−1. As the adsorbent dose increased from 1.0 to 3.0 g L−1 at pH 4 and 

initial RhB concentration of 100 mg L−1, the removal rate increased from 

54.1 to 93.4% (Fig. 20a, 20b). The removal rate was also affected by solution 

pH. At the adsorbent dose of 2.0 g L−1 and initial RhB concentration of 100 

mg L−1, the removal rate increased from 44.8 to 88.4% with a change of pH 

from 2 to 6 (Fig. 20c, 20d). As presented in Table 15, the regressor variable 

of ‘A’ (pH) had a larger coefficient value (16.1) than ‘B’ (adsorbent dose) 

and ‘C’ (initial RhB concentration), indicating that pH had a higher impact 

on the RhB removal rate than other input variables.   
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Table 14. Observed removal rates and predicted values from RSM modeling 

for RhB adsorption 

Ex. 

Input variable 
RhB removal rate  

(%) 

Initial 

pH 

MIL-

100(Fe) 

dosage 

(g/L) 

Initial RhB 

concentration 

(mg/L) 

Observed 
Predicted 

from RSM 

1 2.0 2.0 100 48.4±0.49 47.7 

2 4.0 1.0 100 54.8±2.77 54.1 

3 4.0 2.0 50 95.3±0.57 94.6 

4 4.0 2.0 150 80.4±1.94 79.7 

5 4.0 3.0 100 94.0±1.07 93.3 

6 6.0 2.0 100 89.1±0.92 88.4 

7 3.0 1.5 75 85.8±0.81 86.4 

8 3.0 1.5 125 52.2±2.49 52.8 

9 3.0 2.5 75 91.3±0.57 91.9 

10 3.0 2.5 125 73.8±1.44 74.4 

11 5.0 1.5 75 84.6±2.33 85.2 

12 5.0 1.5 125 59.4±0.97 60.0 

13 5.0 2.5 75 95.8±0.15 96.4 

14 5.0 2.5 125 78.5±3.26 79.1 

15 4.0 2.0 100 85.6±5.67 84.3 
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Table 15. ANOVA results of full cubic regression model from RSM 

Source 
Coefficient 

estimate 

Sum of 

squares 

Degrees of 

freedom 

Mean 

square 
F-value P-value  

Model 
 

7556.85 13 581.3 57.91 
< 

0.0001 
significant 

Intercept 84.32       

A 16.07 1653.52 1 1653.52 164.73 
< 

0.0001 
 

B 15.51 1539.11 1 1539.11 153.33 
< 

0.0001 
 

C -5.91 223.62 1 223.62 22.28 0.0002  

AB 0.9722 2.42 1 2.42 0.241 0.6301  

AC 2.70 18.64 1 18.64 1.86 0.1918  

BC 7.52 144.94 1 144.94 14.44 0.0016  

A² -10.14 364.15 1 364.15 36.28 
< 

0.0001 
 

B² -6.61 154.93 1 154.93 15.44 0.0012  

C² 1.80 11.52 1 11.52 1.15 0.3  

ABC -4.12 17.41 1 17.41 1.73 0.2063  
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A²B -10.43 55.66 1 55.66 5.55 0.0316  

A²C -31.49 507.64 1 507.64 50.57 
< 

0.0001 
 

AB² -32.67 546.37 1 546.37 54.43 
< 

0.0001 
 

AC2 aliased 0 0     

B²C aliased 0 0     

BC2 aliased 0 0     

A3 aliased 0 0     

B3 aliased 0 0     

C3 aliased 0 0     

Residual  160.6 16 10.04    

Lack of fit  15.81 1 15.81 1.64 0.2201 
not 

significant 

Pure error  144.8 15 9.65    

R2 = 0.98; Adjusted R2 = 0.96; Predicted R2 = 0.93; Adequate precision = 22.50
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Figure 19. Diagnostic plot between observed and predicted removal rates 

from the RSM model 
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Figure 20. Interaction effect of input variables on the RhB removal rate: (a) 

2-D plot (at pH 4) between initial RhB concentration and adsorbent dose; (b) 

3-D plot (at pH 4) between initial RhB concentration and adsorbent dose; (c) 

2-D plot (at adsorbent dose of 2.0 g/L) between initial RhB concentration 

and pH; and (d) 3-D plot (at adsorbent dose of 2.0 g/L) between initial RhB 

concentration and pH 
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4.2.3. Multi-parameter modeling using ANN 

The three input variables set for ANN modeling for the RhB removal 

experiment are pH (A), adsorbent dose (B), and RhB initial concentration (C) 

normalized from -1 to +1, and the output variable is the RhB removal rate (%). 

The structure of the ANN model is shown in Fig. 21a, which is determined by 

the number of hidden layers and the number of neurons (Sharafi et al., 2019). 

In order to find the optimal ANN structure, the number of neurons in the 

hidden layer was adjusted from 6 to 10 and the topology with the minimum 

MSE value and R value close to 1. Furthermore, by increasing the number of 

hidden layers to 2, the number of neurons was adjusted from 6 to 10 (Table 

16.). 

The topology 3:6:1 was selected with the smallest MSE value (0.611), 

which means 3 input variables, 1 hidden layer, 6 neurons, and 1 output value. 

The values of weights (w) and biases (b) for each layer and neuron in equation 

(21) are tabulated in Table 17.  

𝑦

= ∑ {(
2

1 + exp [−2 ((𝐴 × 𝑤𝐴,𝑛 + 𝐵 × 𝑤𝐵,𝑛 + 𝐶 × 𝑤𝐶,𝑛) + 𝑏𝑛)]
− 1) × 𝑤𝑂,𝑛}

8

𝑛=1

+ 𝑏𝑂 

(21) 
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where, A, B, C are the input variables which is the pH, adsorbent dose, 

initial RhB concentration, respectively. 𝑤𝐴,𝑛, 𝑤𝐵,𝑛 and 𝑤𝐶,𝑛 are the weight 

of input A, B and C in hidden layer nth neuron, respectively. 𝑤𝑂,𝑛 is the weight 

in output layer, 𝑏𝑛 is the bias in hidden layer nth neuron, and 𝑏𝑂 is the bias 

in output layer. 

The value of observed removal rates and predicted values from ANN 

modeling are shown in Table 18. and linear fit for experimental and predicted 

removal rate are shown in Fig. 22. 

In other to further examine the predictability of the ANN model for the 

RhB removal, additional adsorption experiments were conducted in the 

experimental conditions, which were not previously included in Table 6. Four 

experimental conditions were randomly selected in the range of the input 

variables applied for the CCD matrix using the random number generator 

function (RAND) in Excel software (Microsoft, Redmond, WA, USA). 

Additional experiments were performed in duplicate for each condition (N = 

8). The observed and predicted from ANN model values are shown in Table 

19, and diagnostic plots between observed and predicted removal rates are 

shown in Fig. 23, which is demonstrated the ANN model shows a prediction 

accuracy of R2 = 0.821. 
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Furthermore, in order to determine the most influential input variable on 

the RhB removal rate, the impacts of three input variables were compared 

based on the following formulas (Samui et al., 2018): 

𝐼𝑖(%)

=

∑ [
|𝑤𝑖,𝑛| × |𝑤𝑂,𝑛|

∑ (|𝑤𝑖,𝑛| × |𝑤𝑂,𝑛|)
3
𝑖=1

]8
𝑛=1

max{∑ [
|𝑤𝐴,𝑛| × |𝑤𝑂,𝑛|

∑ (|𝑤𝑖,𝑛| × |𝑤𝑂,𝑛|)
3
𝑖=1

]8
𝑛=1 , ∑ [

|𝑤𝐵,𝑛| × |𝑤𝑂,𝑛|

∑ (|𝑤𝑖,𝑛| × |𝑤𝑂,𝑛|)
3
𝑖=1

]8
𝑛=1 , ∑ [

|𝑤𝐶,𝑛| × |𝑤𝑂,𝑛|

∑ (|𝑤𝑖,𝑛| × |𝑤𝑂,𝑛|)
3
𝑖=1

]8
𝑛=1 }

× 100 

(22) 

 

where, 𝐼𝑖 is the relative importance of each input variable (%), i is the 

input variable (A : i = 1, B : i = 2, C : i = 3), n is the number of neuron, 𝑤𝑖,𝑛 

is the weight of input variable ‘i’ in hidden layer nth neuron and 𝑤𝑂,𝑛 is the 

weight in output layer nth neuron. The relative importance of the input 

variable was in the decreasing order of pH (100%) > initial RB concentration 

(60.7%) > adsorbent dosage (46.7%) (Fig. 24.). The analyses showed that pH 

was the most important input variable affecting the RhB removal rate. 

Based on the ANN model, the optimal condition for the RhB adsorption 

was determined using the MATLAB nntool. Input variable conditions with 

the RhB removal rate exceeding 99.8% are shown in Table 20, and the 

condition showing the optimal removal rate (99.953%) was pH 5.3, 

adsorbent dose 2.0 g L-1, and initial RhB concentration 73 mg L-1.  
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Table 16. Comparison of network topologies with various hidden layers and 

neurons for RhB removal 

Topology MSE 
R 

Training Validating Testing All 

3:6:1 3.456 0.993 0.991 0.966 0.984 

3:7:1 27.964 0.993 0.961 0.974 0.887 

3:8:1 0.611 0.975 0.998 0.954 0.975 

3:9:1 9.194 0.988 0.988 0.211 0.961 

3:10:1 437.366 0.987 0.559 0.996 0.850 

3:6:6:1 8.868 0.990 0.979 0.977 0.987 

3:6:7:1 119.692 0.978 0.735 0.437 0.880 

3:6:8:1 84.410 0.989 0.845 -0.478 0.741 

3:6:9:1 32.813 0.998 0.973 0.424 0.966 

3:6:10:1 27.512 0.984 0.661 0.069 0.783 

3:7:6:1 224.319 0.988 0.880 0.876 0.897 

3:7:7:1 16.05 0.991 0.981 0.966 0.984 

3:7:8:1 33.407 0.841 0.652 0.845 0.801 

3:7:9:1 192.907 0.800 0.487 0.317 0.750 

3:7:10:1 93.817 0.994 0.836 0.867 0.947 

3:8:6:1 52.587 0.921 0.886 0.965 0.904 

3:8:7:1 86.346 0.995 0.905 0.981 0.966 

3:8:8:1 4.035 0.994 0.990 0.847 0.902 

3:8:9:1 19.936 0.902 0.678 0.989 0.918 

3:8:10:1 9.324 0.992 0.997 0.971 0.966 

3:9:6:1 5.867 0.985 0.999 0.991 0.988 

3:9:7:1 50.389 0.997 0.939 0.943 0.974 

3:9:8:1 631.141 0.592 -0.041 0.985 0.527 

3:9:9:1 16.821 0.996 0.985 0.957 0.983 

3:9:10:1 86.302 0.912 0.895 0.809 0.879 

3:10:6:1 125.318 0.706 -0.925 -0.064 0.575 

3:10:7:1 92.761 0.996 0.868 0.847 0.951 

3:10:8:1 22.430 0.992 0.974 0.972 0.979 

3:10:9:1 86.591 0.921 0.972 0.466 0.838 

3:10:10:1 4.722 0.895 0.950 0.971 0.915 
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Fig. 21. Schematic diagram of artificial neural network (ANN) structure: (a) for the RhB adsorption; and (b) DCF 

adsorption

(a)  

 
(b)  
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Table 17. Values of weights and biases for each layer and neuron in equation 

(17) 

Neuron 

(n =) 

Hidden layer Output layer 

wA,n wB,n wC,n bn wO,n bO 

1 2.3461 0.8756 -1.7888 -2.5596 0.7407 -0.1591 

2 -1.1418 -2.1424 -0.9696 2.3829 0.4764  

3 2.7816 0.7037 -0.6895 -1.3420 0.6192  

4 -3.0286 0.8979 0.7515 0.5915 1.0438  

5 -1.6036 -1.8158 -1.8032 -1.5282 -0.2951  

6 -2.5224 -0.6362 0.7804 -1.3894 -0.9984  

7 0.8832 1.4561 2.2611 2.0171 -0.7749  

8 1.6254 0.4477 -2.1502 2.9543 0.5799  

wA,n = weight of input A in hidden layer nth neuron, wB,n = weight of input B in hidden layer 

nth neuron, wC,n = weight of input C in hidden layer nth neuron, bn = bias in hidden layer nth 

neuron, wO,n = weight in output layer nth neuron, bO = bias in output layer.
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Table 18. Observed removal rates and predicted values from ANN modeling 

for RhB adsorption (Topology 3:6:1) 

Ex. 

Input variable 
RhB removal rate  

(%) 

Initial 

pH 

MIL-

100(Fe) 

dosage 

(g/L) 

Initial RhB 

concentration 

(mg/L) 

Observed 
Predicted 

from ANN 

1 2.0 2.0 100 48.4±0.49 48.4 

2 4.0 1.0 100 54.8±2.77 57.6 

3 4.0 2.0 50 95.3±0.57 95.3 

4 4.0 2.0 150 80.4±1.94 80.4 

5 4.0 3.0 100 94.0±1.07 86.6 

6 6.0 2.0 100 89.1±0.92 89.1 

7 3.0 1.5 75 85.8±0.81 86.6 

8 3.0 1.5 125 52.2±2.49 52.2 

9 3.0 2.5 75 91.3±0.57 90.8 

10 3.0 2.5 125 73.8±1.44 73.8 

11 5.0 1.5 75 84.6±2.33 91.1 

12 5.0 1.5 125 59.4±0.97 60.4 

13 5.0 2.5 75 95.8±0.15 96.0 

14 5.0 2.5 125 78.5±3.26 75.2 

15 4.0 2.0 100 85.6±5.67 85.7 
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Fig. 22. Linear fit for experimental and predicted RhB removal rate 
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Table 19. Additional experimental conditions along with observed and 

predicted from the ANN model values for RhB removal rates 

Exp. 

Input variable Removal rate (%) 

pH (A) 
Adsorbent 

dose (B) 

Initial 

RhB conc. 

(C) 

Observed 
Predicted-

ANN 

A1 3.1 1.5 107 60.629 59.130 

A2 3.0 2.0 60 87.851 85.587 

A3 4.1 2.7 72 95.072 95.687 

A4 4.2 2.5 121 75.049 86.882 

A5 3.1 1.5 107 68.751 59.130 

A6 3.0 2.0 60 88.661 85.587 

A7 4.1 2.7 72 96.184 95.687 

A8 4.2 2.5 121 82.544 86.882 
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Fig. 23. Diagnostic plot between observed and predicted values from 

additional experiments for RhB removal rate 
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Fig. 24. Relative importance of three input variables on the RhB removal rate 

  



98 

 

Table 20. Optimum condition for RhB removal by the MIL-100(Fe) from 

ANN model  

Input variable 
Removal rate  

(%) pH (A) 
Adsorbent dose 

(B) 

Initial RhB conc. 

(C) 

5.3 2.0 73 99.953 

5.2 2.5 71 99.898 

5.9 2.2 90 99.887 

5.5 1.7 79 99.823 

5.5 2.0 81 99.817 
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4.3. Adsorption studies for DCF 

4.3.1. Single-parameter experiments for DCF removal 

In a similar way to fitting the RhB adsorption experiments, the DCF 

isotherm data is presented in Fig. 25a and isotherm model parameters of the 

Langmuir, Freundlich, Redlich-Peterson isotherm models are listed in Table 

21. The Langmuir and Redlich-Peterson model were best fitted to the 

isotherm data with the parameter values of Qm = 414.581 (mg g-1), KL = 

0.022 (L mg-1) and KR = 8.949 (L g-1), aR = 0.022 (L mg-1), g = 0.999, 

respectively. The Redlich-Peterson isotherm model is an empirical model 

that combines Langmuir and Freundlich models applied to homogeneous or 

heterogeneous adsorption studies. This model approaches the Langmuir 

model when g = 1 (Wang et al., 2020). Further, the maximum DCF 

adsorption capacity (Qm) from the Langmuir model was 414.581 mg g-1. 

The kinetic data is presented in Fig. 25b and kinetic model parameters of 

the pseudo-first, pseudo-second, Elovich kinetic models are listed in Table 

22. The Pseudo-second model was best fitted to the kinetic data with the 

parameter values of k2 = 0.000056 (g mg-1 min-1) and qe = 227.708 (mg g-1). 

In the pseudo second-order model, the adsorption rate and (qe - qt) are 

proportional to the second order. Furthermore, when initial DCF solution 
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concentration (C0) was low, the Langmuir kinetics model could be simplified 

to the Pseudo-second order model (Wang et al., 2020). The DCF adsorption 

reached equilibrium in 12 hours. 

The thermodynamic data analyzed with the thermodynamic models are 

presented in Fig. 25c. and Table 23. The entropy (ΔS°) value of 14.2 J K-1 

mol-1 indicated that the entropy increased at the interface between solid and 

aqueous phases during the adsorption process. The enthalpy (ΔH°) value of 

3.87 kJ mol-1 indicated that DCF adsorption process was endothermic, 

increasing adsorption capacity with increasing temperature from 10 to 50℃. 

The Gibb’s free energy (ΔG°) values of – 0.148 to – 0.716 kJ mol-1 indicated 

that DCF adsorption process was spontaneous reaction. This result was in 

accordance with the studies Zheng et al. (2018) and Zhuang et al. (2019), 

which had observed the endothermic reaction for DCF adsorption onto 

Fe3O4@MOF-100(Fe) magnetic composites and UiO-66-type MOFs, 

respectively. Contrarily, Luo et al. (2018) and Liu et al. (2019) were reported 

the exothermic reaction for DCF adsorption onto Cu-based MOFs. 

The adsorption data according to DCF solution pH shown in Fig. 25d. In 

pH range 5 to 10, the adsorption capacity gradually decreased from 281.2 to 

131.0 mg g-1. At pH 12, the removal capacity became negligible. The π-π 



101 

 

interaction between the benzene rings of DCF and MIL-100(Fe) and H-

bonding could play important roles in the DCF adsorption process. In the 

range of pH 5 to 10, it shows electrostatic repulsion due to the negative 

charges of DCF and MIL-100(Fe) surface. As the pH increases, the 

magnitude of the negative charge increases and the electrostatic repulsive 

force increases. Further, DCF adsorption onto the MIL-100(Fe) hardly 

occurs at pH 12 due to the instability of crystal structure of the MIL-100(Fe). 

Schematic diagram for DCF removal mechanism by the MIL-100(Fe) is 

shown in Fig. 18. 

Unlike RhB removal, where the difference before and after adsorption 

can be visually confirmed, DCF is not visible before and after adsorption. 

Therefore, XPS and FTIR before and after adsorption were additionally 

analyzed to confirm whether DCF was adsorbed to MIL-100(Fe) well. The 

wide scan XPS spectra of the MIL-100(Fe) before and after adsorption are 

shown in Fig. 26. In Fig. 26b, there are new peaks at 399.6 eV, 200.2 eV and 

201.8 eV, corresponding to N 1s, Cl 2p3/2 and Cl 2p1/2 from the DCF, 

respectively. Furthermore, in the FTIR spectra of the MIL-100(Fe) before 

and after adsorption (Fig. 27.), two additional peaks appeared at 762 cm-1 

and 3060 cm-1, corresponding to C-Cl stretching and C-H stretching from the 

DCF, respectively. Through the XPS and FTIR spectrum, we could confirm 
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adsorption of DCF onto the surface of the MIL-100(Fe).
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 25.Batch studies for DCF removal: (a) isotherm; (b) kinetic; (c) thermodynamic; (d) pH
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Table 21. Model parameters of Langmuir, Freundlich, and Redlich-Peterson isotherm model obtained from model fitting 

for DCF isotherm data 

Model Langmuir isotherm model Freundlich isotherm model Redlich-Peterson model 

parameter 
Qm 

(mg/g) 

KL 

(L/mg) 
R2 χ2 SAE 

KF 

(L/g) 
1/n R2 χ2 SAE 

KR 

(L/g) 

aR 

(L/mg) 
g R2 χ2 SAE 

MIL-

100(Fe) 
414.581 0.022 0.979 8.662 1048.726 47.587 0.337 0.839 71.659 294.720 8.949 0.022 0.999 0.979 8.678 1049.832 
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Table 22. Model parameters of pseudo first, pseudo second, Elovich kinetic model obtained from model fitting for DCF 

kinetic data 

Model Pseudo first model Pseudo second model Elovich model 

parameter 
k1 

(1/min) 

qe 

(mg/g)  
R2 χ2 SAE 

k2 

(g/mg/min) 

qe 

(mg/g)  
R2 χ2 SAE α β R2 χ2 SAE 

MIL-

100(Fe) 
0.011 196.771 0.968 141.642 113.287 0.000056 227.705 0.984 88.075 54.885 11.470 0.026 0.948 76.794 116.652 
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Table 23. Thermodynamic model parameters obtained from DCF adsorption 

experiments 

Temperature (K) ΔG° (kJ/mol) ΔS° (J/ K·mol) ΔH° (kJ/mol) 

283.15 -0.148 14.2 3.87 

293.15 -0.290 14.2 3.87 

303.15 -0.432 14.2 3.87 

313.15 -0.574 14.2 3.87 

323.15 -0.716 14.2 3.87 
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Fig. 26. The wide scan XPS spectra of the MIL-100(Fe): (a) before and; 

(b) after adsorption 
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Fig. 27. The FTIR spectra of the MIL-100(Fe) before and after adsorption 
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4.3.2. Multi-parameter modeling using ANN 

The four input variables set for ANN modeling for the DCF removal 

experiment are initial pH (A), adsorbent dose (B), DCF initial concentration 

(C), and temperature (D) normalized from -1 to +1, and the output variables 

are the DCF removal rate (%) and final pH. The structure of the ANN model 

is shown in Fig. 21b. In order to find the optimal ANN structure, the number 

of neurons in the hidden layer was adjusted from 6 to 10 and the topology with 

the minimum MSE value and R value closed to 1. Furthermore, by increasing 

the number of hidden layers to 2, the number of neurons in each layer was 

adjusted from 6 to 10 (Table 24.). 

The topology 4:7:6:2 was selected with the lowest MSE value (0.119), 

which means 4 input variables, 2 hidden layers, 7 neurons in the first-hidden 

layer, 6 neurons in the second-hidden layer, and 2 output value. The values of 

weights (w) and biases (b) for each layer and neuron in equation (23) are 

tabulated in Table 25. 

 

[

ℎ1,1

⋮
ℎ1,7

] = tansig([

𝑤⃗⃗ 1,1

⋮
𝑤⃗⃗ 1,7

] × [

𝑥1
𝑥2

𝑥3
𝑥4

] + [

𝑏1,1

⋮
𝑏1,7

]) (23) 
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[

ℎ2,1

⋮
ℎ2,6

] = tansig([

𝑤⃗⃗ 2,1

⋮
𝑤⃗⃗ 2,6

] × [

ℎ1,1

⋮
ℎ1,7

] + [

𝑏2,1

⋮
𝑏2,6

]) 

[
𝑓1
𝑓2

] = purelin([
𝑤⃗⃗ 𝑂,1

𝑤⃗⃗ 𝑂,2
] × [

ℎ2,1

⋮
ℎ2,6

] + [
𝑏𝑂,1

𝑏𝑂,2
]) 

 

where, 𝑤1,𝑛, 𝑤2,𝑛 and 𝑤𝑂,𝑛 are the weight of each input variable in first-

hidden layer nth neuron, second-hidden layer nth neuron and output layer nth 

neuron, respectively. 𝑏1,𝑛, 𝑏2,𝑛 and 𝑏𝑂,𝑛 is the bias in first-hidden layer nth 

neuron, second-hidden layer nth neuron and output layer nth neuron, 

respectively. 

The value of observed removal rates and predicted values from ANN 

modeling are shown in Table 26. and linear fit for experimental and predicted 

removal rate are shown in Fig. 28.  

In other to further examine the predictability of the ANN model for the 

DCF removal (removal rate and final pH), additional adsorption experiments 

were conducted in the experimental conditions, which were not previously 

included in Table 9. Three experimental conditions were randomly selected in 

the range of the input variables applied for the CCD matrix using the random 

number generator function (RAND) in Excel software (Microsoft, Redmond, 
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WA, USA). Additional experiments were performed in duplicate for each 

condition (N = 6). The observed and predicted from ANN model values are 

shown in Table 27, and diagnostic plots between observed and predicted 

removal rates and final pH are shown in Fig. 29, which are demonstrated the 

ANN model shows a prediction accuracy of R2 = 0.967 and R2 = 0.903, 

respectively. 

Furthermore, in order to determine the most influential input variable on 

the DCF removal rate, the impacts of four input variables were compared 

based on the formula (24) (Samui et al., 2018). The relative importance of the 

input variable was in the order of temperature (100%) > adsorbent dosage 

(90.2%) > initial pH (71.8%) > initial DCF concentration (59.3%) (Fig. 30.). 

The analyses showed that temperature was the most important input variable 

affecting the DCF removal rate. 

Based on the ANN model, the optimal condition for the DCF adsorption 

was determined using the MATLAB nntool. Input variable conditions with 

the DCF removal rate exceeding 99.5% are shown in Table 28, and the 

condition showing the optimal removal rate (99.9%) was initial pH 6.1, 

adsorbent dose 0.5 g L-1, initial DCF concentration 63 mg L-1, and 

temperature 22 ℃. 
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𝐼𝑖(%)

=

∑ [
|𝑤⃗⃗ (1)𝑖,𝑛| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|

(|𝑤⃗⃗ (1)| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|)
]7

𝑛=1

max{∑ [
|𝑤⃗⃗ (1)𝐴,𝑛| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|

(|𝑤⃗⃗ (1)| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|)
]7

𝑛=1 , ∑ [
|𝑤⃗⃗ (1)𝐵,𝑛| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|

(|𝑤⃗⃗ (1)| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|)
]7

𝑛=1 , ∑ [
|𝑤⃗⃗ (1)𝐶,𝑛| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|

(|𝑤⃗⃗ (1)| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|)
] , ∑ [

|𝑤⃗⃗ (1)𝐷,𝑛| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|

(|𝑤⃗⃗ (1)| × |𝑤⃗⃗ (2)𝑛| × |𝑤⃗⃗ (𝑂)𝑛|)
]7

𝑛=1
7
𝑛=1 }

× 100 

(24) 

 

𝐼𝑖 = relative importance of each input variable (%)  

i = input variable (A : i = 1, B : i = 2, C : i = 3, D : i = 4)  

n = number of neuron 

𝑤⃗⃗ (1)𝑖,𝑛 = weight of input variable ‘i’ in first hidden layer nth neuron  

𝑤⃗⃗ (2)𝑛 = weight of second hidden layer nth neuron  

𝑤⃗⃗ (𝑂)𝑛 = weight in output layer nth neuron 

  



113 

 

Table 24. Comparison of network topologies with various hidden layers and neurons for DCF removal 

Topology MSE 
R 

Topology MSE 
R 

Training Validating Testing All Training Validating Testing All 

4:6:2 1.563 0.99998 0.99945 0.99889 0.99972 4:8:6:2 5.010 0.97921 0.99943 0.99833 0.98471 

4:7:2 0.883 0.99998 0.99971 0.99958 0.99988 4:8:7:2 44.047 0.99919 0.98558 0.98893 0.99566 

4:8:2 35.090 0.97477 0.99149 0.99345 0.97934 4:8:8:2 0.375 0.99996 0.99988 0.99959 0.99989 

4:9:2 34.240 0.99690 0.98963 0.99693 0.99569 4:8:9:2 49.838 0.99998 0.98699 0.99957 0.99761 

4:10:2 1.780 0.99992 0.99948 0.99915 0.99968 4:8:10:2 1.371 0.99996 0.99959 0.99994 0.99990 

4:6:6:2 1.539 0.99997 0.99960 0.99504 0.99919 4:9:6:2 0.651 0.99991 0.99982 0.99819 0.99950 

4:6:7:2 3.875 0.99944 0.99886 0.99944 0.99932 4:9:7:2 97.258 0.99993 0.97009 0.96890 0.99091 

4:6:8:2 6.506 0.98663 0.99784 0.94417 0.98160 4:9:8:2 3.143 0.99803 0.99956 0.99729 0.99814 

4:6:9:2 0.718 0.99991 0.99978 0.99994 0.99989 4:9:9:2 186.735 0.96538 0.97606 0.98129 0.96832 

4:6:10:2 3.743 0.99998 0.99912 0.99843 0.99956 4:9:10:2 0.875 0.99983 0.99974 0.99906 0.99969 

4:7:6:2 0.119 0.99998 0.99996 0.99938 0.99988 4:10:6:2 0.925 0.99999 0.99976 0.99954 0.99988 

4:7:7:2 0.939 0.99990 0.99981 0.99986 0.99986 4:10:7:2 0.389 0.99992 0.99986 0.99998 0.99992 

4:7:8:2 1.395 0.99992 0.99965 0.99991 0.99987 4:10:8:2 35.807 0.98145 0.98867 0.98104 0.98217 

4:7:9:2 8.218 0.99966 0.99791 0.99731 0.99895 4:10:9:2 65.736 0.99996 0.97923 0.97732 0.99363 

4:7:10:2 0.318 0.99992 0.99989 0.99938 0.99978 4:10:10:2 0.328 0.99992 0.99991 0.99997 0.99992 
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Table 25. Values of weights and biases for each layer and neuron in equation (19) 

n 

Hidden layer 1 ( 𝑤⃗⃗ (1)) Hidden layer 2 ( 𝑤⃗⃗ (2)) Output layer( 𝑤⃗⃗ (𝑂)) 

𝑤⃗⃗ (1)𝐴,𝑛 𝑤⃗⃗ (1)𝐵,𝑛 𝑤⃗⃗ (1)𝐶,𝑛 𝑤⃗⃗ (1)𝐷,𝑛 b(1)n 𝑤⃗⃗ (2)𝑛 b(2)n 𝑤⃗⃗ (𝑂)𝑛 b(O)n 

1 0.63279 -0.29871 1.0963 -1.0941 -3.1067 -0.26584 -1.7312 -0.7483 -0.11563 0.62519 -0.53313 0.52169 -1.5352 1.1144 -0.73327 0.38917 -0.19588 -0.17002 -0.58567 1.2911 

2 1.2833 1.9841 -0.63807 2.1241 -1.0701 -0.65548 0.38708 -1.0705 0.12785 -0.77455 -0.8866 1.349 0.81811 -0.07601 0.17659 0.065514 -0.35362 0.59671 0.46051 0.508 

3 -0.95818 0.70398 -0.30837 2.6539 0.71392 0.36527 0.2364 0.7995 0.69437 -0.81419 0.32822 0.25989 -0.21014        

4 0.87943 -2.0162 1.1721 0.73209 0.57266 -0.8857 -0.02743 1.2862 1.1771 0.19621 -0.61172 -0.9731 -0.5144        

5 1.7033 1.519 0.58554 1.0936 0.46189 -0.02853 1.1366 -0.85273 0.65838 1.1558 -0.0337 -0.05001 -1.5589        

6 -0.6799 0.93057 2.1696 -0.22559 -1.2426 -0.69579 -0.96196 -1.0541 1.001 0.46281 0.67033 -0.90866 -1.6015        

7 -0.94945 -1.605 0.80626 -1.2467 -1.9396                
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Table 26. Observed removal rates, final pH and predicted values from ANN 

modeling for DCF adsorption (Topology 4:7:6:2) 

Ex. 

Input variable DCF removal rate (%) Final pH 

Initial 

pH 

MIL-
100(Fe) 

dosage 

(g/L) 

Initial DCF 

concentration 
(mg/L) 

Temperature 

(℃) 
Observed 

Predicted-

ANN 
Observed 

Predicted-

ANN 

1 5.0 0.8 60 30 87.9±0.05 87.7 4.62±0.02 4.69 

2 11.0 0.8 60 30 16.8±0.82 16.6 5.99±0.02 5.93 

3 8.0 0.4 60 30 77.7±0.15 77.7 5.02±0.02 5.15 

4 8.0 1.2 60 30 89.5±0.20 89.2 4.70±0.06 4.63 

5 8.0 0.8 60 10 85.4±1.51 86.8 5.38±0.08 5.46 

6 8.0 0.8 60 50 76.5±0.16 76.9 5.12±0.02 5.17 

7 8.0 0.8 20 30 75.2±0.44 75.5 4.53±0.03 4.62 

8 8.0 0.8 100 30 83.6±0.23 83.5 5.24±0.03 5.19 

9 6.5 0.6 40 20 86.4±0.36 86.6 5.08±0.02 5.01 

10 6.5 0.6 80 20 87.1±0.17 87.1 5.48±0.06 5.43 

11 6.5 0.6 40 40 76.8±0.12 77.9 4.73±0.01 4.86 

12 6.5 0.6 80 40 81.6±0.44 81.8 5.03±0.00 5.03 

13 6.5 1.0 40 20 90.0±0.55 90.1 4.74±0.03 4.69 

14 6.5 1.0 80 20 90.8±0.63 89.7 5.17±0.00 5.20 

15 6.5 1.0 40 40 80.1±0.08 80.1 4.53±0.00 4.58 

16 6.5 1.0 80 40 84.8±0.21 85.4 4.84±0.03 4.79 

17 9.5 0.6 40 20 70.8±0.89 70.8 5.32±0.02 5.34 

18 9.5 0.6 80 20 75.8±0.31 75.7 5.53±0.02 5.46 

19 9.5 0.6 40 40 71.7±0.48 71.5 5.09±0.00 4.95 

20 9.5 0.6 80 40 79.8±0.05 79.6 5.22±0.01 5.10 

21 9.5 1.0 40 20 78.1±2.14 78.5 5.14±0.01 5.16 

22 9.5 1.0 80 20 85.7±0.62 85.6 5.41±0.04 5.53 

23 9.5 1.0 40 40 76.0±0.24 76.2 5.05±0.04 4.90 

24 9.5 1.0 80 40 83.7±0.22 83.6 5.14±0.06 5.24 

25 8.0 0.8 60 30 86.3±0.11 86.4 4.93±0.01 4.95 

26 8.0 0.8 60 30 86.3±0.46 86.4 4.91±0.02 4.95 

27 8.0 0.8 60 30 86.6±0.58 86.4 4.92±0.01 4.95 

28 8.0 0.8 60 30 86.4±0.19 86.4 4.90±0.01 4.95 
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Fig. 28. Linear fit for experimental and predicted DCF removal rate and final 

pH 
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Table 27. Additional experimental conditions along with observed and predicted from the ANN model values for DCF 

removal rates and final pH 

Ex. 

Input variable DCF removal rate (%) Final pH 

Initial pH 

(A) 

Adsorbent 

dose (B) 

Initial DCF 

conc. (C) 

Temperatur

e 

(D) 

Observed Predicted Observed Predicted 

A1 8.2 0.7 62.0 42 80.3 77.8 4.86 4.91 

A2 5.3 0.8 51.1 28 85.7 82.6 4.74 4.69 

A3 6.0 0.7 82.4 37 87.1 83.7 4.88 5.08 

A4 8.2 0.7 62.0 42 80.1 77.8 4.82 4.91 

A5 5.3 0.8 51.1 28 87.3 82.6 4.71 4.69 

A6 6.0 0.7 82.4 37 87.2 83.7 4.87 5.08 
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Fig. 29. Diagnostic plots between observed and predicted values from 

additional experiments: (a) DCF removal rate; and (b) final pH 
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Fig. 30. Relative importance of four input variables on the DCF removal rate 
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Table 28. Optimum condition for DCF removal by the MIL-100(Fe) from ANN model 

Input variable 
DCF removal rate 

(%) Initial pH (A) 
Adsorbent dose 

(B) 

Initial DCF conc. 

(C) 

Temperature 

(D) 

6.1 0.5 63 22 99.9 

6.7 1.1 67 26 99.8 

8.0 1.1 47 22 99.7 

7.3 0.9 52 28 99.6 

6.6 0.9 64 31 99.5 
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5. Conclusions 

The most conventional MIL-100(Fe) synthesis is performed by 

hydrothermal synthesis method at high temperatures above 160 ℃. 

However, MIL-100(Fe) synthesized at room temperature has a simpler 

process, does not require an apparatus such as Teflon-lined steel 

autoclave, and has a yield of about 2 – 3 times higher that hydrothermal 

synthesized MIL-100(Fe). Characterization was performed to determine 

the physicochemical properties of the synthesized MIL-100(Fe), and 

applied as adsorbent to remove Rhodamine B (RhB) and Diclofenac 

(DCF) from aqueous solutions. 

Batch experiments was conducted for RhB and DCF under single-

parameter experiment and multi-parameter experiment conditions, and the 

adsorption mechanism was identified through pH experiments. In the case 

of RhB removal, π-π interaction and electrostatic attraction acted at pH 4 

- 10, and in the case of DCF removal, π-π interaction and hydrogen 

bonding acted. The maximum adsorption capacity for RhB is 61.845 mg 

g-1 and DCF is 414.581 mg g-1. 

Further, multi-parameter models were employed to model and 
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optimized the RhB and DCF removal by the MIL-100(Fe). The RSM 

model with cubic regression equation was developed for RhB removal. 

The regressor variable of pH had a larger coefficient value indicating that 

pH had a higher impact on the RhB removal rate than other input 

variables. The ANN model with the topology of 3:8:1 and 4:7:6:2 were 

developed to adequately model for RhB and DCF removal, respectively. 

The optimum conditions for RhB and DCF removal rate were predicted 

using the developed ANN model. The optimum RhB removal rate 

(>99.9%) was found at pH 5.3, adsorbent dose 2.0 g L-1, and initial RhB 

concentration 73 mg L-1 through the prediction of the modeled ANN. The 

optimum DCF removal rate (99.9%) was found at initial pH 6.1, 

adsorbent dose 0.5 g L-1, initial DCF concentration 63 mg L-1, and 

temperature 22 ℃ through the prediction of the modeled ANN. In 

addition, pH and temperature were the most important input variable 

affecting the RhB and DCF removal rate, respectively. 

This study demonstrated that the MIL-100(Fe) synthesized at room 

temperature, which has high surface area and great water stability, 

effective in removing RhB and DCF under experimental conditions as an 

adsorbent with high adsorption capacity. However, since MOF is required 
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a separated treatment process due to their powder form, there is a limit to 

practical application in the field. Therefore, adsorbent reforming to 

increase the practicality of MOF or adsorption experiments and modeling 

for actual industrial wastewater are required.  
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국문 초록 

본 연구의 목적은 금속-유기 복합체 (Metal organic 

framework, MOF)를 사용하여 수용액에서 오염 물질을 제거하는 

것이다. MOF는 금속 클러스터와 유기 링커 사이의 강력한 배위 결

합으로 만들어진 다공성 결정형 복합체로, 표면적이 크고 구조적 

유연성이 있다는 특성을 가지고 있다. MOF 중에서도 상온에서 합

성한 MIL-100(Fe)는 철 (Fe)과 Trimesic acid 를 사용하였고, 환

경 친화적이며, 수중 안정성이 높고, 높은 흡착효율을 보이는 흡착

제이다. 

본 연구에서는 MIL-100(Fe)를 흡착제로 사용하여 수중의

Rhodamine B (RhB)와 Diclofenac (DCF)를 제거하였다. 단일 매개 

변수 및 다중 매개 변수 실험 조건에서 RhB와 DCF 각각에 대해 

흡착 회분 실험을 진행하였다. MIL-100(Fe)을 이용한 RhB의 최대

흡착능은 61.845 mg g-1 이고, DCF의 최대흡착능은 414.581 mg 

g-1 이다. pH 실험 결과, RhB 흡착의 주된 메커니즘은 π-π 결합과 

정전기적 인력이며, DCF 흡착의 주된 메커니즘은 π-π 결합과 수소

결합이다. 

또한, 반응표면방법론 (RSM)과 인공신경망 (ANN)을 사용하여 

중심합성설계 (CCD) 매트릭스 조건 범위에서 RhB와 DCF 제거에 

대한 다중 매개 변수 실험을 모델링하고 최적화하였다. RSM 모델

링에서는 RhB 제거를 위해 3차 회귀 모델이 사용되었으며, 변수 
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중에서 가장 큰 회귀 변수 값을 갖는 pH가 RhB 제거율에 가장 큰 

영향을 미친다는 것을 나타낸다. ANN 모델링을 통한 최적의 RhB 

제거율을 보이는 조건은 3:8:1 의 ANN 구조에서 pH 5.3, 흡착제 

용량 2.0 g L-1, 초기 RhB 농도 73 mg L-1 이다. 최적의 DCF 제

거율을 보이는 조건은 4:7:6:2 의 ANN 구조에서 초기 pH 6.1, 흡

착제 용량 0.5 g L-1, 초기 DCF 농도 63 mg L-1, 반응온도 22 ℃ 

이다. 

본 연구 결과를 통해 상온에서 합성한 MIL-100(Fe)이 수중 

RhB와 DCF를 제거에 높은 흡착능을 보이는 효과적인 흡착제임을 

확인하였고, RSM과 ANN 모델이 다중 매개 변수 모델로서 RhB와 

DCF 제거를 최적화하고 예측하는 데 효과적인 모델임을 확인하였

다. 

 

주요어 : 금속-유기 복합체, MIL-100(Fe), 흡착, Rhodamine B, 

Diclofenac, 반응표면방법론, 인공신경망 
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