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Abstract

Phase-change memory (PCM) announces the beginning of the new era of mem-

ory systems, owing to attractive characteristics. Many memory product manufacturers

(e.g., Intel, SK Hynix, and Samsung) are developing related products. PCM can be ap-

plied to various circumstances; it is not simply limited to an extra-scale database. For

example, PCM has a low standby power due to its non-volatility; hence, computation-

intensive applications or mobile applications (i.e., long memory idle time) are suitable

to run on PCM-based computing systems.

Despite these fascinating features of PCM, PCM is still far from the general com-

mercial market due to low reliability and long latency problems. In particular, low re-

liability is a painful problem for PCM in past decades. As the semiconductor process

technology rapidly scales down over the years, DRAM reaches 10 nm class process

technology. In addition, it is reported that the write disturbance error (WDE) would be

a serious issue for PCM if it scales down below 54 nm class process technology. There-

fore, addressing the problem of WDEs becomes essential to make PCM competitive

to DRAM. To overcome this problem, this dissertation proposes a novel approach that

can restore meta-stable cells on demand by levering two-level SRAM-based tables,

thereby significantly reducing the number WDEs. Furthermore, a novel randomized

approach is proposed to implement a replacement policy that originally requires hun-

dreds of read ports on SRAM.

The second problem of PCM is a long-latency compared to that of DRAM. In

particular, PCM tries to enhance its throughput by adopting a larger transaction unit;

however, the different unit size from the general-purpose processor cache line fur-
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ther degrades the system performance due to the introduction of a read-modify-write

(RMW) module. Since there has never been any research related to RMW in a PCM-

based memory system, this dissertation proposes a novel architecture to enhance the

overall system performance and reliability of a PCM-based memory system having

an RMW module. The proposed architecture enhances data re-usability without intro-

ducing extra storage resources. Furthermore, a novel operation that merges commands

regardless of command types is proposed to enhance performance notably.

Another problem is the absence of a full simulation platform for PCM. While the

announced features of the PCM-related product (i.e., Intel Optane) are scarce due to

confidential issues, all priceless information can be integrated to develop an architec-

ture simulator that resembles the available product. To this end, this dissertation tries

to scrape up all available features of modules in a PCM controller and implement a

dedicated simulator for future research purposes.

keywords: Computer Architecture, Non-Volatile Memory, Phase-Change Memory,

Writ Disturbance, Read Disturbance, Read-Modify-Write, Memory Simulator
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Chapter 1

INTRODUCTION

1.1 Limitation of Traditional Main Memory Systems

With the advent of in-memory database [1], [2], [3] and deep learning applications [4],

the total footprint in the main memory becomes considerable in a computing system,

thereby requiring more than a hundred gigabytes of main memory devices.

Although Moore’s law has propelled the industry to scale down the semiconductor

process technology, the law becomes no longer available due to physical rationales.

For example, the DRAM of DDR5 generation still maintains a 10 nm class process

technology in order to guarantee the reliability of the device (e.g., sensing margin on

the cell capacitor) as DDR4 does [5].

In contrast, the byte-addressable non-volatile memory (NVM) device garners at-

tention as the next-generation main memory because the NVM does not require capac-

itors that occupy a considerable area in a traditional DRAM device [6]. The cell array

of the byte-addressable NVM device is comprised of resistive materials rather than the
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Table 1.1: Summary of various byte-addressable memory devices

Features DRAM STT-MRAM FeRAM PCM

Electric charge Magnetized dir- Polarization of Different states

Mechanism in capacitors ection on magn- ferroelectric m- with heat prog-

etic materials aterials ramming

Non-volatility No Yes Yes Yes

Cell size 6F2 - 10F2 6 - 50F2 4 - 20F2 4 - 12F2

Read latency 50 ns 10 ns 10 ns 50 ns

Write latency 50 ns 50 ns 50 ns 500 ns

Endurance >1E+15 >1E+15 1E+12 1E+8

Standby power Refresh No No No

high-latency NAND gates. Phase-change memory (PCM), spin-torque transfer mag-

netic RAM (STT-MRAM), and ferroelectric RAM (FeRAM) are representative candi-

dates for the NVM-based main memory. In particular, PCM is closest to deployment

in the commercial market owing to its high scalability compared to other candidates

(see Table 1.1) [7], [8].
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1.2 Phase-Change Memory as Main Memory

1.2.1 Opportunities of PCM-based System

PCM gains attention as the next-generation NVM, owing to its non-volatility, high-

endurance, and scalability [9], [10], [11]. These characteristics allow new non-volatile

memories to replace existing main memory or storage by adding a flexible new mem-

ory layer for the current computer architecture hierarchy. In recent years, software-

defined memory has been announced to utilize NVM as high-speed storage or ex-

panded main memory interchangeably [12], [13], [14], [15]. In particular, applications

of in-memory databases require data to be persisted with lower latency; hence, a high-

performance database can be developed by employing PCM as a non-volatile main

memory [16], [17], [18], [19], [20], [21], [22], [23].

Furthermore, another attractive characteristic of PCM is its low standby power, as

shown in Table 1.1. Unlike DRAM, PCM does not require (or rarely requires) refresh

operations for data retention due to its non-volatility. Although PCM has a high dy-

namic power (i.e., read power and write power) compared to that of DRAM, the low

standby power can be leveraged for a computation-intensive application or a platform

having a long idle time duration (e.g., mobile devices). For example, the inference pro-

cess of convolutional neural network (CNN) has extremely high data locality, thereby

incurring a few accesses on the main memory. In such a case, PCM can be a suitable

main memory device for achieving low power while hiding the longer latency with

small data buffers.

In recent years, 3D-XPoint, which is originated from PCM [24], has been proposed

as a gap filler between memory and conventional storage systems [25], [23]. These

products have been tested in various environments for evaluating the performance and
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exploring their suitable applications, such as scientific calculation, enterprise database,

high-performance computing system, and etc. [26], [27], [28], [29], [30], [31], [32]. In

conclusion, leveraging and enhancing PCM-related technology with currently avail-

able main memory devices is crucial to attaining low-latency and extra-scale memory-

oriented computing systems in the future.

1.2.2 Challenges of PCM-based System

Despite its characteristics of non-volatility, latency, and high-endurance, which make

PCM superior to NAND flash storage and DRAM, PCM is still not ready to be widely

commercialized due to three major problems: lower cell reliability than DRAM, higher

latency than DRAM, and lack of a well-established simulation platform.

First of all, there are several kinds of reliability issues in PCM, such as cell en-

durance [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46],

[47], [48], [49], [50], resistance drift [51], [52], [53], [54], [55], [56], [57], and read/write

disturbance [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69]. Write

disturbance error (WDE) is one of the major problems, which delays its massive com-

mercialization [59], [58], [60], [61], [62]. WDE is an interference problem on adjacent

cells similar to row-hammer in DRAM [70], [71], [72], [73], [74], [75]. This problem

must be addressed as the highest priority because it would be exacerbated as the tech-

nology scales down [60]. Additionally, applications of the in-memory database directly

store data in NVM by utilizing cache-line flushes [23], [20], [19], [17], [18]. This kind

of application would incur frequent write operations, thereby making cells vulnerable

to WDEs. Therefore, mitigating the write disturbance notably with negligible overhead

is requisite.

The second problem is a high latency for a write operation that requires no less

4



than 500 ns - 1000 ns, which is much slower than that of DRAM [76], [77], [78],

[79]. The high latency can be compensated with the improved throughput. The high

throughput can be achieved by increasing the size of a memory transaction (i.e., page

size) rather than using the conventional 64 B, as explained in [10]. In [10], it is pointed

out that a 512 B page offers a good trade-off between delay and energy consumption.

Furthermore, doubling bit width has been widely adopted for enhancing the bandwidth

in high bandwidth memory (HBM) or flash memory devices [80], [81], [82], [83], [84].

However, the conventional general-purpose processor typically adopts a 64 B cache

line, which is also the basic access unit of a main memory system for each transaction.

Therefore, a read-modify-write (RMW) operation is essential to handle the size gap

between a PCM (i.e., larger than 128 B) and a cache line size (i.e., 64 B) [85]. The

redundant read operation in RMW for write access causes performance degradation

and read disturbance errors. Therefore, it is necessary to enhance the performance of

the PCM-based memory system having an RMW module.

Another problem is that there is no well-established PCM simulation platform

for academic research purposes. Although Intel has manufactured several PCM-based

products (e.g., Intel Optane DCPMM and Intel Optane SSD) [86], [27], Intel does not

publish any well explained data-sheet for the product due to confidential issues, unlike

DRAM or NAND storage devices. Therefore, state-of-art memory architecture simu-

lators for PCM (e.g., NVMain [87], [88]) still lag behind the currently available indus-

trial products. Even though the PCM has similar cell array structure as DRAM, the cell

characteristics of PCM result in completely different memory controller architecture.

For example, since PCM has limited cell endurance, address remapping is required

with an additional subsystem that comprises an address translation mechanism. Fur-

thermore, a larger transaction unit (i.e., larger than 64 B) is required for a PCM-based

5



memory system due to higher latency than that of DRAM; hence, a read-modify-write

(RMW) module is also necessary to fill the gap of units between the traditional proces-

sor and the PCM-based memory system. Thus, a practical PCM controller simulator

needs to takes these characteristics into consideration for more rigorous academic re-

search purposes instead of merely modulating timing parameters in a simulator that is

only composed of a command scheduler.
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1.3 Dissertation Overview

This dissertation is to resolve challenging issues of PCM mentioned in Section 1.2.2 by

developing the technologies of submodules in a PCM controller system, considering

reliability, performance, and practicality. The following items summarize the key ideas

of each contribution:

• IMDB (Chapter 3) leverages an SRAM-based table to record the data patterns

and restores the WDE-vulnerable data on demand. The replacement policy ded-

icated to IMDB originally requires numerous read ports for an SRAM; however,

a novel randomized selection can eliminate this overhead.

• RMW in a PCM-based system (Chapter 4) incurs significant performance

overhead along with more read disturbance errors. This chapter provides a reli-

able boosting scheme that notably reduces such performance overhead by lever-

ing existing resources in a practical PCM controller system.

• PCMCsim (Chpater 5) is an all-inclusive simulator for a modern PCM con-

troller, which incorporates all existing features that Intel publicly announces.

The simulator also includes the most recent JEDEC DDR4 specification. Fur-

thermore, the simulator provides a structured programming model and a con-

tention behavioral model for future academic research.

Please note that each chapter listed above is generally composed of motivation,

description of the scheme, evaluation, further discussion of the scheme, and the sum-

mary of the scheme. In addition, Chapter 2 explains necessary previous studies. Lastly,

Chapter 6 concludes all contents of the dissertation.
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Chapter 2

BACKGROUND AND PREVIOUS WORK

2.1 Phase-Change Memory

Top electrode
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H
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Figure 2.1: Different cell states of phase-change memory under different temperature.

(a) amorphous state, (b) crystalline state.

PCM is a resistive memory device having two physical states, namely amorphous

and crystalline, as shown in Figure 2.1. While the amorphous state (i.e., RESET) is

achieved by heating the electrode on the cell above 600 degrees Celsius for a short
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Figure 2.2: Illustration of PCM. (a) Front rank of a 8 GB PCM DIMM module, (b)

architecture of a 4 Gb PCM device.

time, the crystalline state (i.e., SET) is achieved by supplying 300 degrees Celsius,

followed by a longer quenching time than the amorphous state [77], [89], [90].

An 8 GB dual-rank DIMM module is illustrated in Figure 2.2 (a), in which Fig-

ure 2.2 (b) shows the detailed structure of a 4 Gb PCM device in the module. The

device consists of eight subarrays, and each subarray is composed of eight MATs (8K

wordlines and 4K bitlines for each MAT). First of all, main wordline drivers activate a

subarray in each bank, and the row address is commonly fed into sub-wordline drivers

(SWD) in the activated subarray for selecting a row that carries 4 Kb data. Subse-

quently, the selected 4 Kb data are sensed by bitline sense amplifiers (BLSA) and
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Figure 2.3: WDE in a PCM cell array. The hatched pattern is a disturbed cell.

transferred through global bitlines (shaded arrow in the figure). Each column multi-

plexer (MUX) obtains 4 Kb data from global bitlines and outputs 8-bit data to global

sense amplifiers (S/A) using the column address. This output procedure means that

eight consecutive bitlines comprise one column. Finally, 8-word data are transferred

to the data bus in burst mode if eight data pins per device are assumed, and totally 64

B are carried out since eight devices are driven symmetrically by a single command.

For a write operation, data on write drivers (W/D) are written back to the cell array

with differential write [37]. Please note that the industry has presented that the PCM

cells are organized such that they overlap with bitlines. Thus, WDEs mainly occur on

adjacent materials patterned on a common bitline due to the simpler heat dissipation

along bitlines [64].

2.2 Mitigation Schemes for Write Disturbance Errors

2.2.1 Write Disturbance Errors

Write disturbance error (WDE) is caused by the resistance shift from the amorphous

state to the crystalline state [59], [58], [66], [69]. As shown in Figure 2.3, WDEs
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occur on an idle cell adjacent to the cell under RESET operations [59], [58]. Since

the intensity of current during a SET operation is nearly half of that during a RESET

operation, an idle cell’s temperature next to the programmed cell would be higher than

those under SET (but lower than those cells under RESET). As a consequence, a phase

transition may occur on that idle cell.

Awareness of the occurrence of WDEs is also crucial for modeling WDEs in a

simulator. Instead of randomly triggering errors, the study in[67] shows that an amor-

phous cell gradually shifts to the crystalline state due to heat transfer to neighbors,

thereby incurring WDEs. The study also explains that a cell can be programmed in

different time frames, which means that WDEs can occur regardless of the idle time

duration between consecutive writes. From this perspective, previous studies have re-

ported that a WDE occurs when a cell experiences more than 5K-10K RESET pulses

[62], where the number of pulses is referred to as the WDE limitation number in this

study. In particular, this number assumes the worst case in which a WDE is triggered

statically when the number of neighboring RESET pulses reaches the WDE limitation

number. In this study, we assume that the WDE limitation number is 1K (i.e., WDEs

occur when the cell is exposed to 1K of 1-to-0 neighboring flips), according to the

value reported by [62].

While WDEs are caused by heat dissipation on neighbors, rowhammer errors

in DRAM occur when a row experiences more than 139K neighboring activations

[72], [75]. Thus, the occurrence mechanism of WDEs seems to be similar to that of

rowhammer in DRAM except for rationale in physics. However, schemes for miti-

gating rowhammer cannot be applied to PCM. A recent and representative study in

[75] manages activation counters as a table and triggers refresh when the threshold is

reached. Since the numbers of both activations and victim rows are bounded within
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Figure 2.4: Step-by-step illustration of VnC. The yellow colored number represents

the flipped bit exposed to WDE.

a refresh interval, the table size and threshold can be determined with mathematical

deduction. Furthermore, the refresh is not obligatory in PCM; hence, one counter is

allocated per PCM line, resulting in an impractical design option.

2.2.2 Verification and Correction

To reduce the number of WDEs to a manageable level, several mitigation schemes have

been proposed previously. One of the representative and solid methods is verification-

and-correction (VnC), which can completely eliminate WDEs with a simple approach

[58]. As shown in Figure 2.4, VnC basically follows the process of ”read-write-read”:

1. Before writing the objective line, two neighbors of the objective line are read to
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obtain the ”answer” of correct data.

2. Objective data is written while dissipating the heat on two neighbors. In this

example, a bit of the upper line is disturbed.

3. Two neighbors of the objective line are read again, which are verified against the

”answer” obtained in step-1.

4. Since VnC confirms that an error has occurred in the upper line, step-1 to 3 of

VnC are performed on the upper line.

According to the description above, VnC requires at least four read operations for

guaranteeing data integrity. Furthermore, four read operations VnC must be strictly

ordered by one write command. In conclusion, VnC significantly degrades the system

performance (i.e., more than 50%).

2.2.3 Lazy Correction

Since VnC incurs considerable performance overhead, lazy correction has been pre-

sented for reducing such an overhead while ensuring the data integrity as well [58].

As shown in Figure 2.5, lazy correction is built on top of an additional chip, called the

error-correction pointer (ECP) chip. An ECP chip is used for storing positions of worn-

out cells [43], in which the locations of disturbed cells are also temporarily stored. As

shown in Figure 2.5, red colors in the normal data field represent the bit positions hav-

ing WDEs. The ECP field in the orange color records the bit positions of those errors.

The data can be directly written to the device without VnC until entry overflow in the

ECP chip. Consequently, the correction process of VnC can be deferred as late as pos-

sible until the correction entries become full. Still, four initial read operations of the
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ECP field in the orange color records the bit positions of those errors.

original write command are unavoidable. Furthermore, cells in the ECP chip must be

well insulated to guarantee no WDEs; hence, lazy correction inefficiently requires two

different process technologies for manufacturers (i.e., a larger one for ECP devices

and a normal one for normal devices). Therefore, lazy correction is less feasible to be

adopted in the industry due to the limitation of the ECP chip.

2.2.4 Data Encoding-based Schemes

To reduce the high-cost four read operations incurred by VnC, previous studies have

tried to utilize data encoding methods to reduce WDE-vulnerable patterns. Therefore,

we can expect fewer or no VnC operations.

Data INsulation framework (DIN) [59] proposes a ”codebook” that encodes con-

tiguous 0s in a compressed pattern to eliminate patterns vulnerable to WDEs. However,

the encoded data need to be in the range of the length of the cache line (i.e., 512 bits);
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Figure 2.6: Illustration of ADAM. No harmful WDEs exist in this example because

unused bits are free to be damaged.

otherwise, this approach must fall back on the VnC scheme, which incurs significant

performance degradation in that case.

MinWD [61] encodes write data into multiple candidates with special shift opera-

tions. Subsequently, it elects the least aggressive form from all candidates, which is a

final form that is written to the PCM device. However, this method requires additional

bits as an indicator of the shift operation, incurring at least 12.5% storage overhead

(i.e., 64-bit/512-bit=12.5%).

Architecture for Write DisturbAnce Mitigation (ADAM) [60] observes that fre-

quent pattern compression (FPC) can highly compress the cache line data in most CPU

applications. This work compresses all cache lines with on-the-fly FPC and aligns the

line to the right and left alternately; hence, the number of valid bits on adjacent rows is

lowered, as shown in Figure fig-ADAM. However, encoding schemes strongly depend

on the data patterns of the applications, leading to limited mitigation performance (i.e.,

53% WDE reduction).

In conclusion, data encoding-based schemes can be leveraged without VnC. How-

ever, decoupling from VnC leads to lower system reliability, thereby requiring the use

of error-correction coding (ECC).
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2.2.5 Sparse-Insertion Write Cache

Volatile data caches (e.g., SRAM) can enhance both the throughput and reliability of

a system by storing frequently updated data. Sparse Insertion Write Cache (SIWC)

leverages a write cache that inserts data probabilistically and absorbs bit flips [62],

as shown in Figure 2.7. Since data vulnerable to WDEs would be stored in the write

cache, the victims of WDEs become safe. However, it introduces several megabytes

of volatile memory to obtain a high hit ratio. Furthermore, even if the write cache is

embedded in the memory module, the supercapacitor required for data flush upon sys-

tem failure has to be expanded as the volatile region enlarges. Typically, a commercial

non-volatile dual in-line memory module (NVDIMM) guarantees that the volatile data

must be flushed within 100us [91]. Therefore, the cache capacity must be reduced to

an affordable value. Moreover, it is reported that WDEs likely occur when cells are

exposed to RESET for specific times [62], but it does not utilize such a feature, which

is key for highly reducing WDEs.
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2.3 Performance Enhancement for Read-Modify-Write

2.3.1 Traditional Read-Modify-Write
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Figure 2.8: An RMW module in a PCM-based system. (a) Overview of an RMW-

enabled PCM module, (b) detailed view of the simple RMW module.

As explained in Section 1.2.2, a read-modify-write (RMW) module is required in

a PCM-based system to fill the transaction unit gap between the conventional CPU (64

B) and the PCM-based memory system (≥ 128 B). In the hatched region in Figure 2.8

(a), the RMW module behaves as a front-end module and processes the command from

the CPU. It first reads multiple data blocks as a transaction unit (or a page size) of the

PCM for each access, where each data block has a length of 64 B. If the type of the

input command is read, it directly responds to the desired block with the block offset

indicated by the transaction address. On the other hand, the write command requires to
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overwrite the desired block in the prior read data first and then writes the whole page-

sized data back to the demanding physical address. From the output of the RMW, the

controller converts the command into atomic commands for device access, such as

precharge, activation, read, and write.

The baseline model of the RMW is depicted in Figure 2.8 (b) with details. There

are three bits of flags for RMW operation, READ, WRITE, and WAS WRITE. For READ

and WRITE, these are used to indicate types of commands which are carried on com-

mand lines to signal read-enable and write-enable in DDR interface, respectively. For

WAS WRITE, it means that the original command is WRITE after the type conversion

(see step-1 in the next paragraph). When a command from the LLC is delivered to the

RMW, the following steps are conducted:

1. The command is first delivered to the read request generator, which converts the

types of all the incoming requests to READ. According to the original type of

the command:

• If the type is READ, a newly defined flag, WAS WRITE, is set to “0”.

• If the type is WRITE, WAS WRITE is set to “1” to “remember” its original

command as WRITE.

The command conversion is achieved with a concise bit flipping logic, spending

no more than one clock cycle in the baseline system.

2. The converted command is stacked to the input queue (denoted by InputQ) when

waiting for the dispatch, whereas the command data is stored in the data buffer

if it is WRITE.

3. When the dispatched command in the previous step comes back with read data
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as the size of the page size in the PCM, it is stacked to the modification queue

(denoted by ModifyQ).

4. Flag WAS WRITE is then checked for proceeding to the next step according to

the original command type:

• If the bit is “1”, the modification data in the data buffer overwrites the read

data brought from the PCM. Subsequently, the flag bits of WRITE and WAS

WRITE are set to ”1” and ”0”, respectively.

• If the bit is “0”, one of the data blocks is selected according to the transac-

tion address because the original type of the command is READ.

The command is then passed to the response queue (denoted by RespQ).

5. The command in the RespQ prepares write-back or read-response depending on

the original command type. As both the write-back command and the request

from the InputQ access the same input port of the memory controller, they are

arbitrated under the first-come-first-serve (FCFS) policy.

2.3.2 Write Coalescing for RMW

The redundant read operation in RMW for write access causes performance degrada-

tion. As no RMW scheme for a PCM has been studied so far, schemes proposed for

other devices (e.g., DRAM) are carefully investigated. In general, write coalescing is

one of the representative operations for an RMW module in a DRAM-based system

[92], [93]. Write coalescing targets on graphics applications or GPUs. These applica-

tions directly access DRAM to update small-sized pixel values (e.g., 32-bit), thereby

incurring RMW and updating 64 B data finally. Since these applications update con-

secutively aligned pixels, write coalescing can effectively merge several 32-bit write
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commands into a few 64 B write commands. For example, updating 16 pixels incurs

16 read commands and 16 write commands originally, whereas only 1 write command

is necessary if the write coalescing is applied. Therefore, the write coalescing can sig-

nificantly enhance system performance if graphics applications dominate the system.

In contrast, normal applications have few consecutive write operations. Further-

more, 64 B write commands are more frequent in normal applications. Thus, lowering

the performance overhead of RMW is not crucial in a DRAM-based system in gen-

eral if there is no graphics application running on the system. However, on the other

hand, there is a page size gap in a PCM-based computing system, as explained in

Section 1.2.2. Therefore, the performance degradation due to RMW in a PCM-based

system becomes notable.
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2.4 Architecture Simulators for PCM

2.4.1 NVMain
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Figure 2.9: Architecture of NVMain that simulates a 4-rank NVM system.

NVMain, specifically NVMain 2.0, is an event-driven NVM simulator that is widely

used in PCM-related research [18], [40], [94]. As shown in Figure 2.9, NVMain con-

sists of the basic memory controller architecture, interconnect module, and device ob-

jects (e.g., rank, bank, subarray, and etc.). In particular, NVMain describes the device

objects down to cell-level, in which the endurance model of NVMs is included as

well. Furthermore, different from the first version in [87], NVMain 2.0 [88] intro-

duces advanced address translators and memory object hooks. The former enables the

remapping of the logical address to the physical device address by predefining the ad-

dress field in the configuration file. The latter facilitates the programmers to snoop the

in-flight memory requests and change them dynamically during run-time. However,

NVMain only supports JEDEC DDR3 specifications. It is noteworthy that DDR4 be-

comes populated in recent memory-related research [95]. Furthermore, self-refresh is

one of the important features not only in DRAM but also PCM because data retention

issues also exist in PCM; however, self-refresh is not implemented in NVMain (i.e.,
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only parameters of tXS and tXSDLL are provided without functional behaviors).

2.4.2 Ramulator

Ramulator is a representative cycle-level DRAM simulator that supports DDR4 [96].

Although Ramulator is a cycle-level simulator, it leverages a curiously recurring tem-

plate pattern (CRTP) feature in C++ that can significantly reduce the lookup overhead

of virtualized functions, yielding fast simulation time than other existing memory ar-

chitecture simulators. Ramulator has validated its timing correctness against Micron’s

DDR3 RTL model written in Verilog. However, Ramulator shows low flexibility con-

cerning parameter configurations. In order to reduce the simulation time as much as

possible, Ramulator embeds device parameters (e.g., timing or channel width) in the

dedicated data structures written in the source code. That is, if a user would like to

analyze the behavior of a new memory architecture that does not exist in the mar-

ket with various sensitivity analyses, all desired configurations must be first written

in the source code, followed by re-compilation to different binary files for different

configurations. Consequently, lower productivity is inevitable, considering plenty of

experiments in industry or academic research.

2.4.3 DRAMsim3

DRAMSim2 [97] has been widely utilized in various memory-related research, even

in NVMs [98], [19], [23]. However, DRAMSim2 only supports DDR3 as the latest

standard, which shows low feasibility for both industry and academic research. Fur-

thermore, other simulators (e.g., Ramulator) have low accessibility due to their com-

plexity. To overcome this problem, DRAMsim3 [99] is presented in recent years (i.e.,

2020). Different from DRAMSim2, DRAMsim3 introduces various important features

22



for recent DRAM devices (i.e., DDR4):

• Bankgroup timings is an essential feature in DDR4. While a DDR4-based

DRAM device internally has the same prefetch size as DDR3 (i.e., 8n), it can

maximally yield the throughput of 16n prefetch size by accessing different bankgroups

at a time [100], [101]. However, the constraints of accessing the same bankgroups

are slightly longer due to the contention on the local sense amplifier. In DRAM-

sim3, bankgroup timings are introduced for simulating DDR4-based devices.

• Flexible address mapping becomes important recently due to some security

issues (i.e., Rowhammer [74], [73]). Therefore, secure address mapping is re-

quired to prevent the exploitation of such malicious attacks. In DRAMsim3, an

arbitrary address mapping module is implemented to allow researchers to ex-

plore such kinds of issues.

• Bank-level refresh is common in recent DRAM devices. As the density of

DRAM devices becomes higher, more rows must be refreshed with one refresh

command. However, refreshing more rows across all banks (i.e., all-bank re-

fresh) yields higher instant power, leading to unexpected power-down in a com-

puting system. Thus, bank-level refresh features, such as per-bank refresh, are

introduced in DRAMsim3.

Still, DRAMsim3 is a cycle-level memory simulator without necessary features

(i.e., address remapping subsystem or read-modify-write process) for a PCM con-

troller, hindering the rapid growth of PCM-related research.
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Chapter 3

IN-MODULE DISTURBANCE BARRIER

In the first dissertation, we propose write disturbance error (WDE) mitigation

scheme in a PCM module. WDE appears as a serious reliability problem prevent-

ing PCM from general commercialization. WDE occurs on the neighboring cells of a

written cell due to heat dissipation. Previous studies for the prevention of WDEs are

based on the write cache or VnC while they often suffer from significant area over-

head and performance degradation. Therefore, an on-demand correction is required

to minimize the performance overhead. In this chapter, an in-module disturbance bar-

rier (IMDB) mitigating WDEs is proposed. IMDB includes two sets of SRAMs into

two levels and evicts entries with a policy that leverages the characteristics of WDE.

In this work, the comparator dedicated to the replacement policy requires significant

hardware resources and latency. Thus, an approximate comparator is designed to re-

duce the area and latency considerably. Furthermore, the exploration of architecture

The short version of this chapter is originally presented in Design Automation Conference (DAC),

work-in-progress (WIP) session, 2020 [102].
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Table 3.1: Performance of randomized VnC

Probabilities of VnC
WDE reduction Speedup

both rows upper row lower row

0% 50% 50% 23% 57%

75% 12.5% 12.5% 30% 18%

80% 10% 10% 36% 17%

90% 5% 5% 36% 15%

95% 2.5% 2.5% 43% 15%

99% 0.5% 0.5% 46% 14%

parameters is conducted to obtain cost-effective design. The proposed work signifi-

cantly reduces WDEs without a noticeable speed degradation and additional energy

consumption compared to previous methods.

3.1 Motivation

The necessity of reducing the performance overhead of VnC. VnC, the most com-

mon solution to WDEs, triggers read operations to read two neighboring data before

the objective data is updated. Subsequently, two neighbors are read again after the

write operation for verification. Finally, VnC is performed iteratively if WDEs occur

on the neighbors. As a result, the performance is degraded markedly with these itera-

tive read operations. A naive approach to reduce the number of VnC operations is to

perform VnC randomly. Specifically, one of the three operations is executed randomly

(see the first three columns in Table 3.1). As shown in Table 3.1, random VnC yields a

14% speedup compared to normal VnC and a WDE reduction rate of 46% compared to

a raw machine (i.e., no WDE mitigation scheme). This occurs because PCM does not
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Figure 3.1: Illustration of RLC. (a) overview, (b) mechanism of data structures.

require a refresh operation by default (or an infrequent refresh compared to DRAM),

causing cells scarcely to be restored. In contrast, a high speedup (i.e., 57%) is attain-

able at the expense of reliability. Moreover, the operations of VnC (i.e., pre-write read,

write, and post-write read) are strictly ordered; hence, the speedup is not notable even

when a probabilistic approach is applied. As a result, a new on-demand approach is

required because even the randomized approach shows low mitigation performance

and a low speedup in PCM-based systems.

Limitation of VnC-based schemes. As a naive approach for reducing the fre-

quency of VnC, the verified data verified can be stored in a reliable memory region,

such as an SRAM. As shown in Figure 3.1, a row-latching VnC (RLC) can be an intu-

itive approach to address this problem. RLC consists of a data latching buffer (DLB)

and a row pattern profiler. Both data structures are implemented with SRAM. The for-

mer caches data in a first-in-first-out (FIFO) manner, whereas the latter records the

number of 1-to-0 bit flips that easily causes WDEs. When a write command is ready

to issue verification read commands for VnC, the command first directly access DLB

for checking the existence of verification data (i.e., neighbors’ data). If the data exists

in DLB, the verification read for that neighbor is skipped. Moreover, if the data of

the write command exists in DLB, it is directly updated. Therefore, RLC can reduce

26



2.90
3.06
3.22
3.38
3.54
3.70
3.86
4.02
4.18
4.34
4.50

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

N
or

m
al

iz
ed

 n
um

be
r 

of
 R

E
A

D
s

Sp
ee

du
p

Number of entries in DLB

speedup
reads

Figure 3.2: Speedup and the number of read commands compared to VnC.

the number of read commands significantly. Please note that data in DLB is promoted

from the entries in the row pattern profiler. Figure 3.2 shows the speedup and the num-

ber read commands concerning different numbers of entries in DLB. As shown in the

figure, the number of reading commands does not reduce from 1024-entry due to the

strictly ordered commands by VnC.

The necessity of reducing the cache burden. Cache-based schemes mitigate

WDEs by temporarily storing write data into dedicated SRAM. Although a cache-

based scheme (i.e., SIWC [62]) can significantly reduce the number of WDEs on PCM

compared to those in previous studies, this strategy requires high-capacity SRAM be-

cause it indiscriminately caches write data. Furthermore, data adjacent to cached ad-

dresses remain vulnerable to WDEs. To overcome these challenges, it is necessary to

store the data that likely incur WDEs (i.e., WDE aggressors) and restore cells adja-

cent to these aggressors. Fortunately, WDE aggressors can be predicted with the WDE

limitation number; hence, time-consuming VnC operations are unnecessary.

In conclusion, this dissertation proposes a comprehensive approach that determin-
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istically restores cells that are seriously vulnerable to WDEs on demand and stores

only the data of WDE aggressors in a small-sized cache to prevent upcoming WDEs

in a PCM module. Thus, it is one of the industry-friendly approaches.
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3.2 IMDB: In Module-Disturbance Barrier

3.2.1 Architectural Overview

Processor PCM module

DRAM 
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(AIT)

Media controller

Main
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Barrier 
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AppLE

PCM media devices

IMDB

Integrated
memory 

controller (iMC)

Cores & Caches

Figure 3.3: Architectural overview of IMDB.

Figure 3.3 depicts the overall architecture, where NVM commands are dispatched

from the integrated memory controller (iMC) in the host. For the PCM module, the

media controller generates micro-commands and schedules commands to available

banks in the media devices. A DRAM cache is only used for storing address indirection

table (AIT) [91], [103]. The proposed module, IMDB, is located between the media

controller and media devices for the prevention of WDEs.

As shown in Figure 3.3, IMDB consists of a main table, a barrier buffer, and Ap-

pLE. Firstly, the main table manages the addresses of WDE aggressors. The number of

1-to-0 bit flips is calculated and accumulated in the table when a write address hits in

the table. Otherwise, the dedicated replacement policy supported by AppLE, which re-

duces the overhead incurred by multi-port SRAM, selects a victim entry within the ta-

ble and replaces it with the new address. When the number of bit flips on the aggressor

exceeds the pre-defined threshold, IMDB generates rewrite commands for data that are

adjacent to the aggressor. As explained in Section 2.2.1, an idle cell in amorphous state
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(i.e., RESET) gradually shifts to crystalline state if it is exposed to high-temperature

several times. Then, a WDE happens when this cell completely turns into crystalline

state. Therefore, the rewrite command is introduced and used for restoring such par-

tially shifted cells back to amorphous states before the occurrences of WDEs. Subse-

quently, IMDB migrates the information from the main table to the barrier buffer that

comprises a few data entries, reducing WDEs further. Even though the barrier buffer’s

entry has longer data than that of the main table, the barrier buffer costs less SRAM

capacity because it manages much fewer entries. Figure 3.3 shows the swapping mech-

anism between two tables, by which WDE aggressors are managed as long as possible

within IMDB.

It is noteworthy that the architecture in Figure 3.3 is built on top of a practical PCM

product. In recent years, products attempt to support expanded memory with special

drive technology [14], [27]. Furthermore, some products are manufactured with the

NVDIMM, which can be operated as main memory[86]. In particular, the architecture

in this study stems from the latter. Therefore, it is reasonable to design IMDB based

on such a baseline architecture in this study.

3.2.2 Implementation of Data Structures

Figure 3.4 shows the detailed architecture of IMDB, where each plane is allocated

for every PCM bank; hence, all IMDB planes operate concurrently at the bank level

without contention issues. An IMDB plane consists of two tables, namely a main table

and a barrier buffer, where the following subsections describe implementations of each

table in detail.
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Figure 3.4: Implementation of four IMDB planes. Each IMDB plane is assigned to

each PCM bank operation.

Main Table

The main table is implemented with a set of SRAMs, where the entry is updated by

control logics. In particular, four fields exist in the table for estimating the degree of

WDE of a write address:

• Row & Col: It contains the row and column addresses in a bank that are currently

being managed.

• ZeroFlipCntr: Eight sub-counters are in the field, each of which counts the num-

ber of bit flips from 1 to 0 and manages one 64-bit word in a 64 B cache line.

• MaxZFCIdx: It indicates the index of sub-counter of ZeroFlipCntr holding the

maximum value. It is updated in control logics after reading an entry. It is used

for comparing the maximum value of the ZeroFlipCntr with the threshold value
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for rewrite operations.

• RewriteCntr: An 8-bit counter represents the frequency of rewrite operations on

the address of Row & Col.

A per-bank IMDB plane is assigned to each bank; hence, bank parallelism is en-

sured to lower the contention on IMDB. Furthermore, because one command is al-

lowed to IMDB at a time, no serialized queue is necessary for IMDB, preventing re-

source redundancy. The command is handled by a 3-state finite state machine (i.e.,

IDLE, HIT, MISS) in control logics, where the varying latency due to multiple cases is

factored in the simulator. After a command is inserted, IMDB operates in two different

ways whether the address is found in the table or not:

• If the address is found in the main table, the state transits to HIT. Meanwhile,

two data, i.e., the new write-data and the previously written data already read in

the controller, are passed to control logics. Subsequently, the number of 1-to-0

bit flips is counted by integrated counters (see Section 3.3.2) and accumulated

to the corresponding ZeroFlipCntr. When the maximum value of ZeroFlipCntr

surpasses the predefined threshold, two rewrites on adjacent wordlines are gen-

erated and sent to the write queue in the media controller. Accordingly, the value

of RewriteCntr increases. As system reliability is critical, the highest priority is

conferred to the rewrite request.

• If an address is not found in the main table, an insertion is required while con-

verting the state to MISS. The probabilistic insertion method is leveraged in this

study, where infrequent accesses are filtered out with probability p to reduce

evictions from the SRAM. When insertion is required, our proposed replace-
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ment policy determines the victim (explained in Section 3.3), and thereby the

new address can replace the victim entry.

In the proposed design, two parameters, (1) the threshold of generating rewrite

commands and (2) the probability p, are necessary. First of all, we decide the threshold

of generating rewrite commands in the main table as ”WDE limitation number/2-1”

because two rows can disturb a row. Thus, if we assume WDE limitation number of

1K, as in[62], the threshold becomes 511, making the bit width of each ZeroFlipCntr

as 9. In order to justify the formula of the threshold value, we have evaluated the

performance with different threshold values. Compared with the calculated value from

the formula (i.e., 511), our evaluation indicates that threshold values of 1023, 2047,

and 4095 increase the number of WDEs by 14.9×, 64.4×, and 142×, respectively.

This is because the rewrite generation is triggered later than the occurrence of WDEs.

Besides, speed and energy vary by 0.01% because the rewrite operation occupies less

than 0.1% of all write operations. Therefore, overly augmenting the threshold will

degrade the WDE mitigation performance.

The other parameter, p, indicates the probability of inserting a new missed address

into the main table. Increasing the probability incurs more frequent entry replacement

in the table detecting WDE aggressor, losing the opportunity to rewrite the victims

of WDEs. In contrast, decreasing the probability makes “long-term” attacks lose the

chance to be in the table. As shown in Figure 3.5, our experiments regarding differ-

ent insertion probabilities show that p=1/128 yields the least WDEs; hence, we select

p=1/128.

As shown in Figure 3.4, the main table employs two types of SRAMs. First, a

dual-port content-addressable SRAM (CAM) is allocated as Row & Col fields. Sec-

ond, a multi-port SRAM, consisting of ZeroFlipCntr, MaxZFCIdx, and RewriteCntr,
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Figure 3.5: Absolute number of WDEs regarding different insertion probabilities.

has multiple read ports for obtaining all entry contents at once to apply the proposed

replacement policy (see Section 3.3.1). However, since the use of multi-port SRAMs

causes significant overhead, we propose AppLE, which enables the replacement policy

with a DPSRAM without speed degradation (see Section 3.3.2).

Barrier Buffer

The barrier buffer is leveraged to store the data with frequent 1-to-0 bit flips. For a

read request, the barrier buffer is capable of serving commands directly. For a write

command, if the address hits on the barrier buffer, the data are updated in the barrier

buffer directly. Otherwise (i.e., if an address only hits on the main table), the normal

operation of the main table is performed, as explained in the previous subsection.

As shown in Figure 3.4, the green-boxed entry in the main table is the data fre-

quently exposed to 1-to-0 flips. It is invalidated and promoted to the barrier buffer

when RewriteCntr updates (i.e., rewrite occurs in the main table). The barrier buffer

inherits the address and RewriteCntr information from the main table. If the barrier
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buffer is not full, the promoted entry can be directly placed in the barrier buffer. The

promoted entry replaces the least frequently used (LFU) entry that is bounded by the

blue box in the figure; hence, FreqCntr is required for the replacement policy, as in

[104]. The LFU entry data are sent back to the media controller for writing back the

dirty data, and this information is demoted to the main table. Because the demoted

addresses have been WDE aggressors before, the number of rewrites is reserved in

RewriteCntr. RewriteCntr provides historical information with which to obtain a rea-

sonable victim candidate in the main table (explained in Section 3.3.1). It should be

noted that the 8-bit of RewriteCntr is a generously selected bit width to prevent over-

flow based on our experiments.

To implement the barrier buffer, a dual-port CAM-based SRAM and a dual-port

SRAM are employed for Row & Col and data & RewriteCntr & FreqCntr, respectively.

The energy consumption is negligible because only a small number of entries in the

barrier buffer is enough to provide high WDE mitigation performance, as shown in

Section 3.5.7. The sensitivity analysis of the number of entries would be shown in

Section 3.5.5.

In terms of speed degradation, although the swapping mechanism (i.e., promotion

& demotion) incurs additional latency, this latency is negligible. In detail, two cycles

are required for reading contents from the main table and barrier buffer sequentially.

Then, one cycle is necessary for writing swapped contents back to the tables again.

In summary, a total of three cycles of latency are required for swapping; hence, the

proposed method would not incur noticeable speed degradation (see the detailed results

in Section 3.5.7).

The barrier buffer function seems to be similar to that of the previous caching

scheme (i.e., SIWC [62]); however, the barrier buffer is different from the previous ap-
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proach that cannot classify vulnerable patterns. To tackle this problem, our proposed

method appends a newly structured preprocessor (i.e., main table) that can detect WDE

aggressors and predict addresses vulnerable to WDEs. In particular, the detected ag-

gressors are promoted to a much smaller data cache (i.e., barrier buffer) than that of

the previous scheme. Thus, the proposed method can effectively reduce WDEs with

lower hardware complexity compared to previous caching schemes.

It is noteworthy that the SRAM is a more suitable media acting as the barrier

buffer rather than DRAM. If the on-die DRAM acts as the barrier buffer instead of

using SRAM, swapping contents between the main table and the barrier buffer requires

several cycles to transfer the contents between the two types of media. In contrast, the

proposed method requires fewer cycles. When an address in the main table is detected

as a WDE aggressor, the rewrite command is sent to the media controller instantly.

Subsequently, the address is ready for promotion to the barrier buffer, and an entry for

demotion is selected in the barrier buffer. Finally, the contents of the two entries are

swapped into each buffer simultaneously. Given that this three-step process incurs two

sequential reads and two concurrent writes on SRAMs, 3 cycles of latency are required

for swapping. The proposed method would not incur noticeable speed degradation, as

shown in Section 3.5.7.

3.2.3 Modification of Media Controller

The media controller is modified slightly to support IMDB in two aspects. First, ac-

quiring previously written data is necessary to count bit flips. Thus, a pre-write read

operation is performed ahead of a write command for this purpose. To temporarily

store the previous data, the controller holds one more data buffer to carry the old data

and introduces additional bits for distinguishing prepared commands from unprepared
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ones. The pre-write read request has a higher priority than write requests but a lower

priority than normal read requests because write requests in the controller mainly drain

when the queue is full. Second, a merge operation is introduced, by which the rewrite

command can coalesce with a same-address write command. It is noteworthy that a

rewrite operation entirely writes all bits of data. Thus, the excessive number of rewrites

may incur cascaded WDEs on neighbor data lines, whereas the merge operation can

address this issue.
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3.3 Replacement Policy
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Figure 3.6: A toy example showing malicious attacks. 0xDEAD evicts insufficiently

baked 0xBEEF, which is vulnerable to WDEs with gradual 1-to-0 bit flips.

This section describes implementation details of the replacement policy for the

main table. Furthermore, AppLE is proposed to address the issue of multi-port SRAM

incurred by the policy.

3.3.1 Replacement Policy for IMDB

A replacement (or eviction) policy is required in the main table based on the knowledge

of WDEs. One of the representative indicators showing the vulnerability of WDE is

the number of 1-to-0 bit flips, which is accumulated in ZeroFlipCntr. The other one

is RewriteCntr, which records the historical occurrences of rewrite operations on the

victims of WDEs. Therefore, we exploit ZeroFlipCntr and RewriteCntr to define the

replacement policy.

When the input command requests a new entry in the main table, the policy is ready

to select the victim entry. The victim candidate is defined as a less urgent aggressor,

thereby selecting the minimum value of ZeroFlipCntr. However, more than two can-

didates may exist if the table has entries with the same values of ZeroFlipCntr. Since
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Figure 3.7: Energy, latency, and area of a 256-entry SRAM having multiple read ports,

which is extracted from CACTI [105]. (a) energy, (b) latency and area.

the aggressiveness of WDEs varies with historical information (i.e., RewriteCntr), the

entry containing the minimum of RewriteCntr is finally selected as the replaced entry.

To prevent ”cold-start” that incurs early eviction from the table, this study confers

prior knowledge to prevent the entry from early eviction. Since the policy prioritizes

the present vulnerability using ZeroFlipCntr, the recently inserted but insufficiently

”baked” entry can easily be evicted from the main table. Although RewriteCntr con-

tains the historical information, it would be useless if the entry is newly inserted and

evicted right away unluckily (see example in Figure 3.6). To tackle this problem, the

prior knowledge, which is simply defined as the number of zeros in each data block, is

initialized ZeroFlipCntr in the main table.

It is noteworthy that a module, namely integrated counter, is required to perform

the above processes. The integrated counter provides mainly two functions. First, it

counts the number of 0s of newly inserted data, which is then directly used as prior

knowledge of ZeroFlipCntr. Second, it counts the number of 1-to-0 bit flips of the

accessed address in the table, where the counted value is added to the ZeroFlipCntr.

As a result, the integrated counter is implemented as Figure 3.8, where eight counter
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Figure 3.8: Integrated counters for eight ZeroFlipCntrs.

blocks are required to count each 64-bit word in 64 B concurrently. Our hardware

synthesis results show that the area of all integrated counter blocks accounts for 0.15%

of the typical DRAM memory controller, i.e., PARDIS [106]. The complexity of the

PCM controller is obviously higher than that of the DRAM controller because the

PCM controller requires more submodules (e.g., the wear leveling and the interface of

DRAM AIT). Therefore, the integrated counter occupies only a small area in the PCM

module.

3.3.2 Approximate Lowest Number Estimator

The eviction policy requires the numbers of read ports and entries on the main table

to be equal, which increases latency, area, and energy overheads. If a 256-entry main

table is assumed, 255 tree-structured dual-input comparators are necessary for latency

minimization (i.e., 8 cycles). However, our evaluation results in Figures 3.7 (a) and (b)

indicate that a large number of read ports on an SRAM can significantly increase both

energy, latency, and area. As a result, an SRAM with 256 read ports is an infeasible

implementation considering such aspects of overhead.

To reduce such aspects of overheads, this study introduces a sampling-based com-

parator, namely AppLE. The basic concept of AppLE is to bind a few entries (e.g., 8
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entries) as a group, yielding 32 groups. Subsequently, each group randomly generates

a number ranging from 0 to 7. The generated number is added to the value of group-

index×8, which becomes the main table’s input address for obtaining a sampled entry.

Consequently, the victim candidate is selected among sampled entries according to

replacement policy.

A naive and impractical approach to implementing AppLE is to treat each group

as a read port, as shown in Figure 3.9 (a). According to the latency results in Figure 3.7

(a), since the typical I/O frequency of DDR4 is around 800 MHz [107], the maximum

target number of read ports is set to 32. Still, the area of a 32-port SRAM is 105×
larger than that of a single read port SRAM. Moreover, SRAMs consisting of dozens

of read ports are unusual in terms of industrial manufacturing. Therefore, regarding

the number of groups as the number of read ports is infeasible to implement AppLE.
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To resolve this problem, this study proposes a practical design with DPSRAM

(i.e., one read and one write), as shown in Figure 3.8. It treats the number of groups

as the number of cycles; hence, sampled entries can be obtained from one read port

by incrementing the group counter over multiple cycles. However, the challenge of

this approach is the latency incurred by multiple read operations to obtain sampled

entries from the main table. Nevertheless, this challenge can be addressed by hiding

the latency. As shown in Figure 3.9 (c), IMDB becomes idle after issuing a write

command (explained in Section 3.2.2). The idle state after dispatching a write com-

mand maintains for 150 ns (i.e., 120 cycles at 800MHz), which is the write latency

of a modern PCM device [59]. Therefore, the latency of AppLE can overlap with the

idle state of IMDB. Because the worst case of the replacement policy is observing

all ZeroFlipCntrs and ReWriteCntrs sequentially, the maximum number of groups for

implementing AppLE without additional latency should be 32. Consequently, AppLE

only requires one comparator, a data register for storing the temporal results, and a

register for counting group index. Since the group size determines the randomness and

mitigation performance, we present the sensitivity analysis in Section 3.5.6.
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3.4 Putting All Together: Case Studies

IMDBIMDB

Media controller
Write request Q

…

pre ADDR
1 0xBABE

0 1 0xBEEF

Read request Q

+
priority ADDR

LOW 0xBEEF
NORMAL 0xCAFE

Data 
buffer
Data 

buffer

WRITE[0xBEEF]

READ[0xBEEF]

V Address ZeroFlip
Cntr

Rewrite
Cntr

1 0xBABE 0 0

0 1 X
0xBEEF 8 0

CMD[0xBEEF]
Data:0x3040 Control logicIntegrated 

counter

Main table

Barrier 
buffer

V Address ZeroFlip
Cntr

Rewrite
Cntr

1 0xBABE 4 0

1 0xDEAD
0xBEEF 0 8 0

CMD[0xBEEF]
Data:0x3040 Integrated 

counter

Main table

Barrier 
buffer

IMDB

V Address ZeroFlip
Cntr

Rewrite
Cntr

1 0xBABE 0 0
1 0xBEEF 511 0 1

V Address Rewrite
Cntr

Freq
Cntr DATA

1 0xFADE 1 125 0x0
1 0xCAFE 2 0 0x0206

Main table Barrier buffer

Control logicCMD[0xBEEF]
Data:0x3040

Rewrite 
generatorCMD[0xBDEF]

CMD[0xBFEF]
EVICT[0xCAFE]

Data: 0x0206
Swap entry 

contents

AppLE
Victim index

Integrated 
counter

PCM devices

IMDB DATA[0xBEEF]

…

(a)

(b) (c)

(d)

DEV 0 DEV 1 DEV 7

Figure 3.10: Operation of IMDB in different cases. (a) data preparation on the media

controller, (b) Filling the non-empty main table, (c) replacement on the main table, (d)

promotion and demotion.

In this section, a toy example is explained, combining all modules explained above.

0xBEEF (row=0xBE, column= 0xEF) is an assumed target to incur WDEs.

Data preparation. As shown in Figure 3.10 (a), the controller receives a write

command. The command waits for the data already stored in the PCM device to pre-

pare to count 1-to-0 flips in IMDB ( 1©). Once the old data arrives through the read

phase of the media controller ( 2©), the command, along with new and old data, is
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issued to IMDB ( 3©).

Filling the non-empty main table. In this case, misses occur in both the barrier

buffer and the main table; however, the main table may have a vacant space for the

input command. Therefore, an entry is directly allocated for an address (i.e., “cold-

start miss”), as shown in Figure 3.10 (b) ( 4©). The number of zeros in the write data is

recorded in ZeroFlipCntr as prior knowledge to prevent early eviction. If subsequent

commands access the same address, the number of 1-to-0 bit flips is counted and added

to the ZeroFlipCntr ( 5©).

Replacement on the main table. In comparison to the previous case, the main

table is full in this case, activating the replacement policy for a new address, 0xBEEF.

As shown in Figure 3.10 (c), the entry of 0xDEAD has the minimum of ZeroFlipCntr,

which is determined by AppLE ( 6©). Subsequently, 0xDEAD is replaced by 0xBEEF

( 7©).

Entry promotion and demotion. As shown in Figure 3.10 (d), when repetitive

writes on 0xBEEF cause ZeroFlipCntr to reach the threshold, rewrite commands on

neighbors (i.e., 0xBDEF and 0xBFEF) are sent to the media controller ( 8©). Mean-

while, the barrier buffer demotes an entry to the main table. The eviction command is

generated from the demoted entry and sent to the media controller ( 9©). After the de-

moting and promoting entries are read, they are interchangeably stored. In particular,

the promoting entry additionally stores data to further prevent WDEs (10©).
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3.5 Evaluation

3.5.1 Configuration

Table 3.2: Simulation configurations

Simulator Device Description

gem5

Cores Out-of-order, 4-core, 2 GHz

L1 cache

I-cache: 2-way set associative,

D-cache: 4-way set associative,

each has a capacity of 64 KB.

L2 cache
Shared last-level cache. 16-way

NVMain

set associative, 1 MB.

Media Separated write queue and read

controller queue (64-entry), FR-FCFS.

PCM

Read: 100 ns, RESET: 100 ns, SET: 150 ns

Write disturbance limitation: 1K

Size: 8 GB (2-rank, 2-bank/rank)

As shown in Table 3.2, the environment is built upon NVMain [88]. The energy

per access on PCM and CAM-based SRAM is obtained from NVSim and CACTI,

respectively (i.e., both configured with 22 nm technology) [108], [105]. It should be

noted that CAM-based SRAM is configured as a fully associative cache. The proces-

sor is configured according to a mobile processor; hence, a relatively small L2 cache

is considered as the LLC [109]. This can lead to tougher memory traffic on the PCM.

Nonetheless, we select workloads with a wide range of misses per thousand instruc-

tions (MPKI) (see Table 3.3). Therefore, evaluating the proposed method under various

45



Table 3.3: Information of workloads

Workloads Description MPKI

SPEC::bzip2 General compression 11.98

SPEC::sjeng Artificial intelligence (chess) 0.89

SPEC::h264ref Video compression 1.65

SPEC::gromacs Biochemistry 5.49

SPEC::gobmk Artificial intelligence (go) 6.65

SPEC::namd Biology 1.09

SPEC::omnetpp Discrete event simulation program 6.99

SPEC::soplex Linear programming optimization 21.31

pmix1 Queue, Hashmap, B-tree, Skiplist 10.24

pmix2 Queue, B-tree, RB-tree, Skiplist 11.10

pmix3 Hashmap, RB-tree, Queue, Skiplist 8.95

pmix4 RB-tree, Hashmap, B-tree, Skiplist 10.12

forms of traffic is possible. In addition, this study conducts trace-based simulations,

which is done in previous studies [60], [61], to reduce the simulation time because

more than 400 experiments for sensitivity analyses are required. Because the traces

are extracted in the system-emulation mode in gem5, OS-related writes do not exist in

the traces.

Table 3.3 shows the workloads and associated MPKI on the last-level cache. Typ-

ical workloads from SPEC CPU 2006 consisting of various MPKI are evaluated. Fur-

thermore, synthesized persistent workloads (prefixed as “pmix”), which perform ran-

dom insertions and deletions, simulate realistic in-memory database workloads be-

cause persistent workloads would generally be executed under an NVM-based main
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memory system [16], [17], [18].

3.5.2 Architectural Exploration

Design parameters, specifically the number of entries in the main table (Nmt), the

number of entries in the barrier buffer (Nb), and the group size dedicated to AppLE

(Ng), are crucial when seeking a cost-effective architecture for IMDB. As explained

in the previous section, the latency of AppLE can be entirely hidden by the IDLE state

of IMDB from Ng =32 (see Figure 3.7), which also holds for Ng <32. Moreover, 64

is determined as the maximum number of entries in the barrier buffer to guarantee that

no more than 10% of the flush time (i.e., 100 us) is consumed. As a result, the trade-off

function of IMDB is defined as follows:

T = W (Nmt, Nb, Ng) +A(Nmt, Nb) + S−1(Nb),

where Ng ≤ 32, Nb ≤ 64

(3.1)

where W , A, and S are the number of WDEs, the area, and the speedup (i.e., ex-

ecution time normalized to the baseline [58]), respectively. Based on Eq (3.1), this

section evaluates the effectiveness of the prior knowledge and determines the main ta-

ble size (Nmt). Subsequently, sensitivity analyses concerning the number of entries in

the barrier buffer (Nb) and the group size for AppLE (Ng) are conducted to determine

the cost-effective parameters. Finally, these parameters are applied and compared to

previous studies.
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Figure 3.11: Performance according to different replacement polices. (a) normalized

WDE, (b) speedup.

3.5.3 Effectiveness of the Replacement Policy

Before exploring the proposed architecture, verifying the effectiveness of the proposed

policy is necessary. Figure 3.11 (a) shows the normalized WDE with different replace-

ment policies (i.e., LRU and the proposed method). Please note that barrier buffers

are not applied for a more straightforward comparison. The conventional LRU pol-

icy mainly retains recently accessed entries. Thus, the address close to WDEs can be

evicted if it is not accessed for a long time. Many applications, such as bzip2, gobmk,

gromacs, and persistent workloads, have this kind of access pattern; hence, the number

of WDEs increases higher than the baseline. In contrast, the proposed policy observes

the number of bit flips within ZeroFlipCntrs and evicts addresses having a few bit
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flips. Furthermore, RewriteCntrs keep tracks of the long-term history by recording the

number of restorations performed on WDE aggressors. Therefore, the proposed policy

considers both short and long-term information, yielding lower WDEs than the LRU,

as shown in Figure 3.11 (a). However, the LRU only shows 3× lower WDEs than the

proposed policy on namd. This is because namd has high spatial locality and temporal

locality. We find that namd achieves a 70% higher row buffer hit rate than an applica-

tion of a similar MPKI (i.e., sjeng). Accordingly, namd achieves 7.7× higher hit ratio

in the main table when the LRU is adopted. Therefore, the primary reason for the lower

mitigation performance than the LRU on namd is the lower number of hits in the main

table. However, such a performance gap on namd would be mitigated with parameter

optimization in the following subsections.

Figure 3.11 (b) presents the speedup, which is defined as the execution time of the

baseline over the execution time of the objective method [58]. Both methods provide

similar performance outcomes, where the proposed method shows 0.002% lower per-

formance than the LRU policy. From this perspective, the proposed replacement policy

efficiently rewrites data vulnerable to WDEs and thereby yields far fewer WDEs with-

out compromising the speed.

3.5.4 Sensitivity to Main Table Configuration

Figures 3.12 (a) and (b) show the normalized WDE regarding different numbers of

entries in the main table. Both figures show that WDEs generally decrease as the num-

ber of entries increases. In particular, as shown in Figure 3.12 (a), while the number

of WDEs exceeds that in the baseline when the number of entries is fewer than 256,

the number decreases sharply from 2048 entries. This is because the small-sized ta-

ble hardly manages data patterns and incurs unnecessary rewrite commands. On the
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Figure 3.12: Normalized WDEs regarding different numbers of entries in the main

table. (a) normalized WDEs without prior knowledge, (b) normalized WDEs with prior

knowledge.

other hand, as shown in Figure 3.12 (b), the 256-entry main table with prior knowl-

edge yields a result equivalent to that of the 2048-entry table without prior knowledge.

In other words, the proposed method yields an eightfold increase in the efficiency of

the WDE mitigation performance.

Figure 3.13 presents the average normalized WDE and the capacity required for the

main table, and the probabilistic insertion scheme discussed in Section 3.2.2 is already

adopted for both configurations. As shown in Figure 3.13, the normalized WDE is

95% lower than the case without prior knowledge at 256 entries. Furthermore, the

main table’s capacity significantly increases from 512 entries; hence, 256 entries can

be selected as an appropriate number of entries in the main table, considering the

trade-off between the performance and the area. In summary, from this subsection, the

number of entries in the main table is fixed at Nmt =256.

50



0

24000

48000

72000

96000

120000

0.0

0.2

0.4

0.6

0.8

1.0

16 32 64 128 256 512 1024 2048 4096 8192

M
ai

n 
ta

bl
e 

(b
its

)

N
or

m
al

iz
ed

 W
D

E

Number of entries

WDE-prior[x]
WDE-prior[o]
Main table (bits)

95% lower

Figure 3.13: Average normalized WDE and SRAM capacity.

3.5.5 Sensitivity to Barrier Buffer Size

Figure 3.14 (a) shows the number of WDEs with different numbers of entries (i.e., size)

in the barrier buffer. For clarity, the results are normalized to the temporal base con-

dition; that is, the main table consists of 256 entries with the prior knowledge. Please

note that Figure 3.14 (a) only shows benchmarks still having WDEs under the tempo-

ral base condition. As shown in this figure, most benchmarks yield significantly fewer

WDEs with the 4-entry barrier buffer. On the other hand, WDEs in gobmk decrease

when the 64-entry barrier buffer is applied because some addresses have extremely

long-period write patterns, which are hardly concerned by the proposed policy regard-

less of the size of the barrier buffer. However, AppLE resolves this problem, as shown

in the following subsection.

Figure 3.14 (b) shows the average normalized WDE of the benchmarks mentioned

above. Because the speedup does not increase markedly according to the number of

entries, S−1 is referred to as a constant in Eq (3.1). Furthermore, the capacity of the

barrier buffer is at least three times as small as the main table for Nb ≤16 (see bit

widths of tables in Figure 3.4(a)), which makes the capacity of the barrier buffer neg-

ligible compared to the main table. Therefore, analyzing W in Eq (3.1) is sufficient

to obtain a cost-effective architecture, thereby selecting Nb =8 as the trade-off point
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Figure 3.14: Sensitivity to the number of entries in barrier buffer. (a) normalized WDE,

(b) average performance.

because the WDE decreases stably from 8 entries (i.e., 76.5%).

3.5.6 Sensitivity to AppLE Group Size

Figure 3.15 (a) presents the absolute number of WDEs with different numbers of

groups. Here, the barrier buffer is not applied for straightforward analysis, and 256

groups mean that AppLE is not applied. As presented in Figure 3.15 (a), WDEs lower

with fewer groups for most benchmarks. Furthermore, AppLE has the potential for

avoiding “tricky patterns”. The worst-case behavior for WDEs can be caused by repet-

itive 0 and 1 pulses on the same address, which incurs WDEs on 512×2=1024 bits.

However, the main table can easily detect such a pattern because it manages the num-

ber of 1-to-0 bit flips and generates rewrite operations on vulnerable addresses. In
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Figure 3.15: Sensitivity to group numbers in AppLE. (a) WDE, (b) speedup, (c) energy.

contrast, a trickier way to induce WDEs is incurring 1-to-0 bit flips on an address (say

”A”) with a long period (e.g., gobmk). Furthermore, a large number of unrepeated ad-

dresses except ”A” are programmed in this long period (i.e., ABC...ADE...A...). This

tricky pattern confuses the main table and frequently replaces entries; however, AppLE
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binds a few entries as a group, and only one entry randomly becomes a replacement

candidate within a group. Therefore, the adversarial address hardly gets evicted from

the table for larger group size. The graph of gobmk in Figure 3.15 (a) shows that the

group size of 8 (i.e., the number of groups is 32) yields lower WDEs than the case

without AppLE. However, WDEs increase significantly from 2 groups on average (see

bold red graph in the figure). In particular, the fully randomized replacement policy

(i.e., one group) shows 15× more WDEs than the case without AppLE, indicating that

the fully randomized replacement policy is less reliable than this study. As a result, we

can select Ng =4 or 8 as appropriate design parameters for AppLE.

Figure 3.15 (b) presents the speedup regarding different numbers of groups. In this

study, AppLE is executed sequentially within the idle state. If AppLE is not applied,

at least the latency of 256 cycles is induced by the comparison of counts. Even the

latency can be hidden within the write latency (i.e., 120 cycles), at least 136 remaining

cycles slow down the performance by 15%, as shown in the figure. In contrast, AppLE

lowers the number of execution cycles, which is shorter than the write latency; hence,

no performance degradation is incurred by the replacement policy.

Figure 3.15 (c) shows the energy consumption in the SRAM, which is normalized

to the case without AppLE. In general, the energy decreases as the number of read

ports shrinks. In particular, the energy decreases by 1.7% when the number of read

ports lowers from 32 to 16. Furthermore, the SRAM energy accounts for 0.8% of the

total energy. Thus, applying AppLE has no negative effect on energy consumption.

3.5.7 Comparison with Other Studies

From sensitivity analysis in previous subsections, the cost-effective IMDB is selected

as IMDB(e256b8g8), which consists of 256 entries in the main table, 8 entries in the
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Table 3.4: Performance of different mitigation schemes

Schemes WDEs Speedup Energy

SIWC-size [62] 0.7276 1.0417 0.9467

ADAM [60] 0.5341 0.9807 1.1765

Lazy correction [58] 0.1925→0 0.3628 2.1773

SIWC-entry [62] 0.0885 1.0628 0.8951

IMDB(e256b8g4) 2.08E-3 0.9561 0.9937

IMDB(e256b8g8) 4.39E-4 0.9560 0.9941

barrier buffer, and a group size of 8. The group size of 4 is denoted as IMDB(e256b8g4).

These configurations are compared to the following schemes (see details in Section 2.2):

• Lazy correction [58]: This scheme defers subsequent VnC by temporarily stor-

ing errors in an error correction pointer (ECP) chip. Each entry of the chip

records multiple error pointers of one PCM line. In this study, we assume that

10 pointers are handled.

• ADAM [60]: This scheme aligns the compressed data in the device alternately to

avoid data pattern that is vulnerable to WDEs.

• SIWC [62]: This scheme sparsely caches write data in an SRAM to reduce the

number of WDEs. In particular, SIWC-size indicates that the SRAM capacity is

identical to that of IMDB, and SIWC-entry holds entries in an amount equal to

that of IMDB.
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Write Disturbance Errors

The second column in Table 3.4 shows normalized WDEs. SIWC-entry presents 87.84%

lower WDEs than SIWC-size (i.e., 0.0885 vs. 0.7276) because the mitigation perfor-

mance strongly depends on the cache size. ADAM is effective only if the compression

ratio exceeds 0.5; hence, ADAM shows inferior performance, 0.5341, on average. Lazy

correction yields a normalized WDE value of 0.1925. However, it is noteworthy that

lazy correction shows temporal WDEs in run-time, which can be corrected with ECPs.

In comparison to previous methods, IMDB(e256b8g4) reduces WDEs to 2.08E-3.

Specifically, there are 256× and 43× fewer WDEs compared to ADAM and SIWC-

entry, respectively. IMDB (e256b8g8) yields 1218× and 202× better WDE mitigation

performance than ADAM and SIWC-entry, respectively. Moreover, these configura-

tions show comparable WDE mitigation performance to the case that the main table

consists of 2048 entries without barrier buffers. While a 2048-entry main table requires

108b×2048×4-bank =864KB of SRAM, the combinational approach yields superior

WDE mitigation performance with 16KB of SRAM, which is four times smaller than

SIWC (see Section 3.6).

Speedup

The third column in Table 3.4 presents the speedup compared to the baseline. Lazy

correction shows the lowest speedup (i.e., 0.36×) due to at least four read operations

even the performance is already enhanced with a high-cost ECP device. Although

the proposed method rewrites two neighbors, these operations are performed in an

on-demand fashion instead of incurring four read operations per write operation, as

VnC does. Therefore, the proposed method can outperform lazy correction. The speed

of ADAM degrades by about 2% due to encoding and decoding processes of FPC.
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In SIWC-entry and SIWC-size, slightly higher performance is achieved because the

SRAM serves commands.

On the other hand, two configurations of the proposed method degrade approxi-

mately 4% speed degradation on average due to pre-write read and rewrite operations,

where the performance difference between the two configurations is only 0.3%. How-

ever, the waiting cycles for memory systems constitute 12% of execution time in the

baseline, according to our evaluation. Consequently, the proposed method degrades

the performance of the overall system only by 0.48%. Although SIWC-entry shows

a slightly higher speedup, the WDE mitigation performance is much worse than the

proposed method, resulting in a system with low reliability. As a result, we can obtain

a more reliable PCM-based computing system with negligible performance overhead.

Energy

The fourth column in Table 3.4 shows the normalized energy. Lazy correction con-

sumes 2.18× more energy compared to the baseline due to overheads of VnC. It is

45.87% higher than ADAM, which is 1.18× higher than the baseline. Despite the full

elimination of WDEs in lazy correction, lazy correction performs more operations than

others, thereby consuming more energy. Meanwhile, the write cache of SIWC-size ab-

sorbs write operations on highly accessed addresses because persistent workloads have

relatively high locality due to cache line flush instructions, reducing the write energy

consumption. Thus, SIWC-size consumes about 5% less energy compared to the base-

line. Furthermore, the energy can be lowered by about 10.5% compared to the base-

line with a larger number of entries, as declared by SIWC-entry; however, it should

be noted that the WDE mitigation performance is not as excellent as the proposed

methods. Although IMDB (e256b8g8) presents 9% higher energy consumption com-
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pared to SIWC-entry, this outcome is still 0.59% lower than the baseline owing to the

on-demand rewrite operation and the “tiny” barrier buffer. Furthermore, the proposed

method consumes 54.4% less energy than lazy correction. These outcomes demon-

strate that the proposed method mitigates WDEs in a more energy-efficient way.
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3.6 Discussion
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Figure 3.16: FITs when different ECC schemes are applied to (a) IMDB, (b) baseline.

Synergy with ECC schemes. In general, error-correcting codes (ECC) are proac-

tively being employed in memory products that have reliability-related problems. In

our case, ECC logic is placed on the media controller for system expandability. To

observe the system reliability, we evaluated failure-in-time (FIT), which is the number

of corrupted bits in an hour [110], [111]. Commonly, Figure 3.16 shows that FITs de-

crease when the correction capability of ECC enhances. In particular, Figure 3.16(a)

shows that 0-FIT can be achieved when ECC4 (i.e., 4-bit error correction) and ECC8

(i.e., 8-bit error correction) are applied to IMDB (e256b8g8) and IMDB (e256b8g4),

respectively. A (552, 512)-BCH code that is capable of correcting 4 errors [112] only

incurs 1.5ns of latency (i.e., <1 cycle at 800MHz), according to the latency formula
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in [113]. Therefore, only a minuscule amount of latency is required when IMDB

is assisted by ECC. In contrast, evaluation results show that 0-FIT can be achieved

only when the ECC capable of correcting 256-bit errors is applied to the baseline, as

shown in Figure 3.16(b). However, such a correction capability is infeasible in practi-

cal products. In conclusion, IMDB can reduce the burden on the hardware area of ECC

schemes significantly.

Discussion of SRAM capacity against SIWC. Considering the capacity of SRAM

for the proposed method and a write cache-based study (i.e., SIWC) in a four-bank

PCM system, the latter requires 256×64 B×4-bank=64 KB of SRAM if 256 addresses

are managed per bank. On the other hand, for the proposed method, the main table en-

try has 25 b+8 b+72 b+3b=108b, and the barrier buffer entry has 64 B+25 b+8 b+8

b=553 b (see Figure 3.4. Therefore, the proposed method requires 256×108 b≈3.4 KB

of SRAM on the main table per PCM bank, and the barrier buffer consumes 8×553

b≈0.6 KB of SRAM per PCM bank (see Section 3.5.5). Consequently, (3.4 KB+0.6

KB)×4-bank=16 KB of SRAM translates to 2 KB per 1 GB of PCM. If 256 addresses

are managed, the proposed method consumes 4× smaller SRAM area than SIWC,

and the gap enlarges as the number of managed addresses grows. Besides the SRAM

capacity, introducing SRAM as a data region requires considering the hold-up time

constraint of supercapacitors. In particular, SIWC only holds dirty data; hence, flush-

ing 256 volatile data requires 150 ns×256 flushes / 100us=38.4% of flush time at most

(i.e., all row buffer miss commands on a single bank), where the value of 100us comes

from [91]. In contrast, flushing data in the barrier buffer only requires 150 ns×8 flushes

/ 100 us=1.2%. In conclusion, the proposed design mitigates more WDEs without in-

creasing energy or area from the supercapacitors.

Consideration of the security. Security problem should be considered for the ap-
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plicability of the reliability scheme. A straightforward idea to attack the PCM with

the proposed IMDB is exploiting or learning the replacement policy, which requires

timing information of hit and miss on the main table [114], [115]. However, both

types of latency are hidden within the write latency of PCM and appear to be equal

from the user’s perspective because AppLE can hide the miss latency as described in

Section 3.3.2. Furthermore, the threshold value triggering rewrite operation must be

known by the attacker to exploit the replacement policy. This is because we have to

evict the objective entry before generating rewrite commands. However, the rewrite

command is fed back to the media controller and rescheduled like a normal write com-

mand described in Section 3.2.2. In conclusion, triggering WDEs by exploiting the

replacement policy in this “black box” is extremely difficult.

Handling power failure. In the proposed architecture, a strategy to handle power

failures is required when using the barrier buffer. Because the main table only stores

write patterns instead of data, data flush is not required. In contrast, the barrier buffer

holds the overly flipped data and flushes contents upon system failure. When a power

failure occurs, supercapacitors power the ADR domain [91], [103]. IMDB enters the

flush mode and generates write requests with the barrier buffer. Requests are sequen-

tially sent to the write queue in the media controller. Subsequently, all commands by-

pass the flush-mode IMDB to ensure data persistence. However, we have shown that

8 data entries in the barrier buffer are sufficient for the final design in Section 3.5.5,

which is equivalent to only 1.2% of the time constraint of the supercapacitors. There-

fore, the proposed method can be adopted with a low burden on the supercapacitors.

Expandability to other NVMs. The proposed method can easily be extended to

other types of NVMs (e.g., ReRAM). In ReRAM, increasing the programming volt-

age will enhance the performance because the access latency is inversely proportional
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to the voltage [116]. However, unselected cells are biased at half of the programming

voltage on neighbors; hence, the resistances of such cells can easily be affected by

higher biasing voltage. As a result, the resistance of a cell can be corrupted by a

neighboring cell, like WDE in PCM. According to the earlier work [117], the volt-

age across the cell strongly depends on the position of the write drivers in the circuit;

hence, many studies overcome write reliability issues in ReRAM by re-architecting

the device [116], [118], [117]. Furthermore, [116] declares that this issue also results

from accumulative write operations. Therefore, the proposed method can be applied to

ReRAM as well if the rewrite threshold is moderately modulated.
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3.7 Summary

This chapter proposes an on-demand table-based method reducing WDEs within a

PCM module. The proposed method leverages SRAM tables to manage variations of

write data, by which highly vulnerable addresses are rewritten. It declares that the

table-based method requires a dedicated replacement policy, and prior knowledge of

0s in write data can enhance the WDE mitigation performance. Subsequently, AppLE

efficiently downsizes the number of read ports on SRAMs that are incurred by the

proposed policy to reduce both area and energy overhead incurred by the overloaded

multi-port SRAMs. It is also demonstrated that the LRU and the fully randomized re-

placement policy are less reliable than the proposed method. Moreover, a tiny amount

of SRAM absorbs further bit flips, allowing the offloading of the supercapacitor burden

required on system failures. Consequently, several rigorous sensitivity analyses con-

cerning design parameters are conducted to obtain a cost-effective architecture. The

analysis shows that the proposed work reduces WDEs by 1218×, 439×, and 202×
compared to ADAM, lazy correction, and SIWC-entry, respectively, while maintaining

the speed and energy consumption that are similar to those of the baseline.
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Chapter 4

INTEGRATION OF AN RMW MODULE

IN A PCM-BASED SYSTEM

In the second dissertation, we propose an architecture that enhances the perfor-

mance of the PCM-based system with an RMW module. PCM comprises memory

cells that have a limited lifetime and higher access latency than DRAM. The page size

of a PCM is preferred to be larger than 128 B to fill the latency gap between two mem-

ories and to reduce the metadata overhead incurred by wear leveling. As the cache line

size in a general-purpose processor is 64 B, a read-modify-write (RMW) module is

required to be placed between the processor and the PCM, which in turn induces a

performance degradation. To reduce such an overhead and enhance the reliability of a

device, this chapter presents a new RMW architecture. The proposed model introduces

a DRAM cache in the RMW module, which minimizes redundant read operations for

This chapter is an improved work that is originally published in IEEE Transactions on Computers,

2019 [90].
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Figure 4.1: Normalized cycles when the RMW module is applied to the PCM-based

system.

write operations by prefetching the entire transaction unit instead of merely caching

the 64 B requested data. Furthermore, a typeless merge operation is performed with

the proposed cache by gathering multiple commands accessing consecutive addresses,

irrespective of whether they are READ or WRITE. Simulation results indicate that the

proposed method enhances the speed by 4.2× and the read reliability by 58% as com-

pared to the baseline.

4.1 Motivation

Effectiveness of the existing write coalescing scheme. Figure 4.1 shows the normal-

ized cycles when the write coalescing scheme explained in Section 2.3.2 is applied to

the PCM-based system, where general CPU applications (i.e., SPEC CPU 2006) are

executed on the system. As shown in the figure, the write coalescing scheme yields

only 0.01% speedup compared to the simple RMW explained in Section 2.3.1. We
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found that the number of write coalescing accounts for 0.004% of total write com-

mands. This is because the write coalescing scheme focuses on graphics applications,

as explained in Section 2.3.2; however, normal CPU applications have few numbers

of consecutive write commands. Furthermore, the commands of write-after-read and

read-after-write are much more common in normal CPU applications. Thus, an RMW

architecture in the PCM-based main memory that runs normal CPU applications must

be devised to overcome the limitation of write coalescing schemes.

Unavoidable page size gap and its side effects. Page size in a PCM-based mem-

ory system must be larger than 64 B to enhance the throughput of the memory system,

as explained in Section 1.2.2. In contrast, the cache line size of a general-purpose pro-

cessor is 64 B, leading to speed degradation due to the page size gap. It is noteworthy

that experiments held in previous PCM-related studies assume that the cache line size,

commonly 64 B for a general-purpose processor, matches the page size of the PCM de-

vice without considering the non-symmetric case for practical usage [34], [10], [119],

[120]. Furthermore, an RMW module in the PCM-based system substantially lowers

the reliability due to read disturbance introduced by redundant read operations [65].

Thus, it is crucial to drill down a PCM-based system equipped with an RMW module.

To resolve the above-mentioned problems, an architecture incorporating the private

DRAM cache of the PCM as a part of the RMW is proposed and to further boost up the

performance with a simple operation to minimize the read-modify-write operations.
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4.2 Utilization of DRAM Cache for RMW

An RMW architecture that fully interacts with the DRAM cache in a PCM-based mem-

ory system is proposed. The proposed work is built upon the baseline RMW described

in the previous section. The proposed architecture is called cache-based RMW here-

after in this chapter.

4.2.1 Architectural Design

Figure 4.2 (a) shows an example organization of the proposed cache-based RMW. A

256 B page is used in this design so that each cache entry consists of four data blocks

(i.e., cache lines from LLC). T-bit implies the type of a command accessing one of the
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data blocks, and DATA is a temporal field storing valid data. Therefore, the proposed

cache does not need the data buffer in Figure 2.8. Besides, each entry additionally

requires two flag bits, V-bit and U-bit, for managing the buffered data:

• V-bit: It shows the data validity of an entry, which can be indicated with one bit

because the whole page data is fetched together by request.

• U-bit: It means that the entry is under update on the PCM. It prevents writing or

reading to/from the entry with the addresses having different block offsets.

The repeated field structure in the cache shown in Figure 4.2 (b) makes it possi-
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ble for the RMW to pre-fetch and store neighboring data so that a single command

is enough to acquire the demanding data block when required. Moreover, the read

reliability of the system can be enhanced when the RMW interacts with the DRAM

cache.

Because the cache is implemented with a DRAM, an address decoder is needed

to decode the command address to the index of the cache. The decoder is built with a

lookup table (LUT), as illustrated in Figure 4.3. The LUT receives the address (except

for block offset) as the input and generates the index to the cache as the output. Thus,

the LUT has the same number of entries as the cache does. The demanding cache index

is determined by comparing the command address with the Tags in the LUT with a set

of XOR gates. Subsequently, the concatenated output of all the XOR gates becomes

a one-hot code for index multiplexer, which is continuously fed to the address port of

the cache. Besides, the existence of the requested data in the cache is confirmed by

summing up the XOR results as the found-flag.

The concept of the RMW described in this section is somewhat similar to the RMW

operations for DRAM access, although there exists a slight difference for handling a

PCM instead of a DRAM. For example, the difference from the RMW in [121] is

organized as follows:

• RMW in [121]: the system defines DRAM as the main memory, so it addition-

ally needs a data buffer for temporarily storing the write-data and flush the data

once the command is processed.

• RMW in the proposed method: it places a PCM as the main memory and addi-

tionally uses a private DRAM cache for the PCM, which is originally allocated

for an address indirection table (AIT) that remaps the logical address to the
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Input: For the command on the head of InputQ
found = AddressDecoder(command.address)
if found

if !found_entry.V
wait for the response of previous command

else if command.type == WRITE
if !found_entry.U

found_entry.dirty TRUE
else

wait for the response of command
else

put the command in RespQ
else 

add an entry to the cache with LRU policy
new_entry.U TRUE
new_entry.V FALSE
Issue command in the next cycle

Algorithm 1 Process in RMW cache

Figure 4.4: Pseudo code of the proposed cache-based RMW.

physical address. It leverages the cache as a table for the RMW, including the

data buffer, and reuses the data instead of flushing it right away, by which the

resource overhead for the data buffer reduces with the existing resource.

4.2.2 Algorithm

A pseudo-code is presented to show the command process of the proposed structure as

described in Figure 4.4. The command process is performed in two different manners

according to the found-flag:

70



1. If found is ”0” (miss), the command is inserted to an available entry in the cache

according to the LRU policy. The [V, U]-bit pair is set to ”01”. If the replacement

does not occur immediately, the command stays in the InputQ and waits for the

availability of the cache entry.

2. If found is ”1” (hit), the command is processed in one of the three possible

manners according to its type and status:

• If the entry is valid (V-bit=1) and the command is READ, the command is

directly responded to the host CPU, where U-bit is reset to ”0”.

• If the entry is valid and the command is WRITE, the dirty bit is set to “1”

for writing data back to the PCM when newly written data replaces the

data. The U-bit is asserted to avoid a write-after-write (WAW) data hazard.

• If the entry is invalid (V-bit=0), it means that the entry is under update (U-

bit=1). Thus, the command stays in the InputQ and waits for the response

of the previous command.

When the first read command returns from the PCM, the data field of the corre-

sponding entry is loaded with the read data, and the valid bit (V-bit) is set to ”1”. The

U-bit is reset to ”0” because the entry update is complete.

Since the proposed design frequently offloads redundant read operations, the read

disturbance is also reduced significantly. Depending on the characteristics of work-

load, it may not offer a noticeable improvement in the operation speed. For example

if a command with cache miss is under process on the PCM device, all the commands

behind the miss-command in the InputQ are constrained in the queue. This problem

is critical for a large miss penalty (called a “stuck-in-queue” problem). In particular,
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if the locality of an application is low, frequent cache misses result in performance

degradation. A novel operation, called typless merge, to effectively mitigate this prob-

lem would be explained in the next section.
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4.3 Typeless Command Merging

4.3.1 Architectural Design
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Figure 4.5: Cache table and RMW module supporting merge operation. (a) overall

architecture, (b) modified data structure of DRAM cache region.

To mitigate the “stuck-in-queue” problem, the typeless merge operation, which

merges commands without any regard to the command type, is proposed to drain com-

mands clogged in the InputQ. Figure 4.5 (a) shows the overview of the modified archi-

tecture. Apart from the DRAM cache region that already exists in cache-based RMW,

two more modules, namely Merge and De-merger, are added in the enhanced architec-

ture. The former merges multiple commands regardless of command types and record

the merging information into the DRAM cache. In contrast, the latter disassembles the
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merged command for responses to the host.

Figure 4.5 (b) shows the details of the new entry structure and the modified RMW

along with an example, which will be explained in detail in the next subsection below.

As shown in the figure, M-bit is an additional bit in each block field of the cache. It

indicates an entry that represents multiple commands accessing the same address but

different block offsets (i.e., different cache lines). For example, if the M-bits in block-0

and block-2 are set to “1”, they would represent two commands generated by a CPU

and will be merged into a single command regardless of it being READ or WRITE.

4.3.2 Algorithm

To implement the merge operation, the pseudo-code of Algorithm 1 in Figure 4.4 is

slightly modified, as shown in Figure 4.6. Furthermore, pseudo-codes implementing

both merge operation and de-merge operation (i.e., Algorithm 2 and Algorithm 3, re-

spectively) are explained in Figure 4.7.

Modification of Algorithm 1: The operation handling the false case of the V-bit in

Algorithm 1 is slightly modified (see Figure 4.6). The command on the head is merged

with the accessing entry if it is invalid (V-bit=0), disregarding the state of the U-bit.

This is because the merged command is to be split into original commands again, and

the corresponding responses are to be responded to the CPU. Since there is only one

”if” case added to the algorithm, it is implemented using a 2-input multiplexer with a

slight modification in the hardware.

Merger (Algorithm 2): As shown in Figure 4.7 (a), the Merger ensures that the

commands generating new entries in the cache are not issued immediately. It waits for

commands that access the same address but different block offsets. As shown in the

algorithm, the waiting time is determined by the pending threshold, which is chosen
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Input: For the command on the head of InputQ
found = AddressDecoder(command.address)
idx = ExtractBlockOffset(command.address)
if found:

if !found_entry.V:
if !found_entry[idx].M

found_entry[idx].M  TRUE
Record data if command.type == WRITE

else
wait for the response of prev. command

else if command.type == WRITE:
if !found_entry.U:

found_entry.dirty  TRUE
else:

wait for the response of command
else:

put the command in RespQ
else:

add an entry to the cache with LRU policy
new_entry.U  TRUE
new_entry.V  FALSE

Algorithm 1 Process in RMW cache (modified)

Figure 4.6: Algorithm 1 for merge operation in which the modified part is shaded.

by the experiments. If there is no command for merging within the pending thresh-

old in InputQ, it is dispatched right away for PCM access. When searching for the

commands for merging, the Merger identifies the commands satisfying the conditions

in the pseudo code and sets all the M-bits to ”1”, which means that the command is

merged with that entry. Because the commands are merged into one entry, the through-
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Input: ModifyQ, latched cache entry
head = ModifyQ.head
for each block in latched_entry do

if block.M
block.M  FALSE
Generate a response satisfying block info
push.the response into RespQ

end for   
latched_entry.U  FALSE
latched_entry.V  TRUE

Algorithm 3 De-merger

(b)

(a)

Input: InputQ
head = InputQ.head
if pending cycle  pending threshold:

dispatch the request right away
for each cmd in InputQ do

if same address and different block offset
idx = Extract-Block-Offset(cmd.address)
if !latched_entry[idx].M 

latched_entry[idx].M   TRUE
Record data if command.type == WRITE

end for   

Algorithm 2 Merger

Figure 4.7: Pseudo-codes for implementing (a) Merger and (b) De-merger.

put of the system can be significantly improved. As a result, the Merger can hide the

miss penalty at the expense of simple logic, as shown in the algorithm.
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De-merger (Algorithm 3): The merged commands that are returned from the

PCM must be retrieved with the information recorded in the cache. As demonstrated

in Figure 4.7 (b), the De-merger checks the M-bit of each block field in the entry and

retrieves the commands merged in the InputQ with the assertion of the V-bit. Finally,

all the disassembled commands are pushed into the RespQ for responses. Moreover,

the ordering can also be maintained if an additional L-bit is added to each block field

of the entry. The description for this bit is given in the following sub-section.
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4.4 An Alternative Implementation: SRC-RMW

The implementation explained in the previous section (or [90]) is a straightforward

approach without considering the hardware cost and its practicality. In particular, the

implementation in [90] further requires an address decoder logic having a multi-ported

SRAM on which the number of ports is equal to the number of entries of the cache.

Therefore, such an SRAM is infeasible in the industry, as mentioned in the previous

chapter. To overcome this challenging point, this dissertation further proposes a split

region cache for RMW (SRC-RMW), which only uses the DRAM cache without in-

troducing an additional SRAM resource.

4.4.1 Implementation of SRC-RMW

DRAM cache (AIT region)
Physical 
address Index U

Block3 Block2 Block1 Block0
RSVD

V M T V M T V M T V M T

0xCAFE 2 0 0 0 X 0 0 X 0 1 W 0 1 X X

Address RSVD

0xBEEF X

DRAM cache (Index region)

Block3 Block2 Block1 Block0

[0xCAFEC0] [0xCAFE80] [0xCAFE40] [0xCAFE00]

DRAM cache (Data region)

Same number 
of entries as 
data region

AIT region

Data region

Index region

DRAM cache 

RSVD

8B

64B 4

8B

0xBEEF

2

2

Figure 4.8: Implementation of SRC within a DRAM cache.
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Figure 4.8 shows the implementation of SRC within a sole DRAM cache. SRC

leverages two aspects of the DRAM cache that is originally dedicated to AIT. First, an

AIT has 8 B for each entry in which only a few bits are used as the physical address

field; hence, we can utilize the remaining reserved bits of an AIT entry to store the

RMW metadata (e.g., M-bit mentioned in Section 4.3.1). Second, taking 8 GB of PCM

as an example, the PCM controller requires 1 GB of AIT for translating each 64 B

page. The size of AIT shrinks down to 256 MB if a PCM-based system adopts 256 B

as a transaction unit. Therefore, we can leverage the remaining area (i.e., 768 MB) of

the DRAM cache to store page data read from the PCM media. Consequently, SRC

can be divided into three regions as follows:

• AIT region: It stores the physical address, index of the data region, and RMW

metadata, including U-bit, V-bit, T-bit, and M-bit. Since RMW metadata is in-

corporated in the AIT region, both address translation and metadata reference

can be performed simultaneously without accessing the DRAM cache twice.

Please note that the metadata layout slightly differs from the layout in Figure 4.2

(b) or Figure 4.5 (b). V-bit is allocated for every block in a page because the page

data and the metadata decouple in SRC. Therefore, it is also necessary to store

the index information for directly accessing the data region without traverse.

• Data region: It merely stores page data that is brought from the PCM media.

• Index region: It stores the host address that is mapped to the index of the data re-

gion, which means this region has the same number of entries as the data region.

This region is introduced for invalidating a data region entry with one DRAM

access. For example, SRC-RMW needs to invalidate and replace the contents of

index-2 that is assigned to the address-0xBEEF (physical address is 0xCAFE),
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as shown in Figure 4.8. If no index region exists in SRC, the replacement policy

must examine all index fields in the AIT region, leading to significant perfor-

mance degradation. Therefore, the introduction of the index region can eliminate

such a high-cost overhead by translating the index ”inversely.”

4.4.2 Design Constraint

The bit width of RMW metadata grows as both the capacity of PCM and the page size

enlarge, thereby occupying more bits in an AIT entry. The total bit width, including the

physical address and the RMW metadata, can be formulated as the following equation:

BitsAIT = BitsphysicalAddress +BitsMetadata,

where BitsphysicalAddress = log2 capacity − log2 pageSize,

BitsMetadata = log2N +
pageSize

64
× 3 + 1

(4.1)

where N denotes the number of data region entries. Moreover, 3 and 1 denote al-

located bits for (V-bit, M-bit, T-bit)-pair per block data and U-bit, respectively. Fig-

ure 4.9 shows the bit occupation map in an AIT entry for an 8 GB PCM-based system,

according to Eq 4.1. In this figure, the number of data region entries and the page size

grow vertically and horizontally, respectively. The configurations in the red region are

infeasible because the bit widths of these configurations are larger than 8 B (i.e., the

full width of an AIT entry). Therefore, the page sizes for an 8 GB PCM-based sys-

tem can be fixed as 128 B, 256 B, and 512 B, as shown in Figure 4.9 (a). Still, we

have evaluated the performance of all possible page sizes as sensitivity analyses in

Section 4.6. It is noteworthy that Eq 4.1 shows that the PCM capacity is wrapped by

a logarithm operation, leading to less sensitivity by the capacity. Figure 4.9 (b) shows
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(a)

(b)

Figure 4.9: Bit occupation map in an AIT entry for (a) an 8 GB PCM-based system,

(b) a 512 GB PCM-based system.

the occupation map of a 512 GB PCM device, which is the largest capacity in currently

available Optane products [86]. Our results in Section 4.6 show that 256 B is an appro-

priate page size considering the trade-off between speedup and energy consumption.

Therefore, SRC-RMW is suitable for a wide range of PCM capacities.

81



4.5 Case Study
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Figure 4.10: A case study of merge process.

In this example, a PCM with a page size of 256 B is assumed, and the command at

the head of the InputQ is accessing address 0x0. The pending threshold of the Merger

is chosen as eight. For better understanding, Figure 4.10 illustrates the work-flow of

merging:

1. 0x0-command first generates a new entry for the cache due to cache miss. During

the generation, the M-bit is set to “1” to indicate that the block is occupied.

2. Subsequently, commands 0xC0 and 0x80 are delivered into the InputQ within

the pending cycle of the Merger. Concurrently, the Merger matches the address
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Figure 4.11: A case study of de-merge process.

of the incoming command and the cache entries.

3. The data of the commands are recorded into the generated entry in step-1 with

assertions of the M-bit and the U-bit.

4. After the predefined pending cycle exceeds, the 0x0-command is dispatched to

the media controller.

When the response of the 0x0-command returns to RMW, it is first queued into the

ModifyQ for the de-merging process. Figure 4.11 depicts the process of de-merging:

5. The 0x0-command at the head of the ModifyQ is redirected to the De-Merger
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for command decomposition.

6. All the M-bits in the cache are identified to determine the merged commands.

Although two WRITE commands are merged in the entry, it is unnecessary to

issue all of them to the PCM because this may be inconsistent with the purpose

of the merge operation. Thus, the last WRITE command merged is issued. Mean-

while, the U-bit and V-bit are set to 0 and 1 after decomposition, respectively.

7. Finally, the decomposed commands are stored into the RespQ for direct response

or write-back to the host CPU or the media, respectively.
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4.6 Evaluation

4.6.1 Configuration

Table 4.1: Simulation configurations

Simulator Device Description

gem5

Cores Out-of-order, 4-core, 2 GHz

L1 cache

I-cache: 2-way set associative,

D-cache: 4-way set associative,

each has a capacity of 64 KB.

L2 cache
Shared last-level cache. 16-way

NVMain

set associative, 1 MB.

Media Separated write queue and read

controller queue (64-entry), FR-FCFS.

Interconnect 32-entry asynchronous FIFO

PCM
Read: 50 ns, Write: 1000 ns

Size: 8 GB (2-rank, 2-bank/rank)

DRAM cache
Read: 10 ns, Write: 10 ns

Replacement policy: LRU

In this chapter, two simulators are used to build the baseline system. First, an out-

of-order 4-core processor with L2 last level cache (LLC) having 64 B line size is

configured in gem5 based on ARM Cortex A53 as shown in Table 4.1. Subsequently,

the PCM system with memory controller, banks, and rank models is built with NVMain

[88]. The RMW module is additionally implemented for cycle-accurate simulation of

RMW operations. For the configuration of timing parameters in NVMain, the read

latency (i.e., tRCD, or row-to-column delay) is set to 50 ns; the wite latency (i.e., tWP,

or write pulse time) is set to 1000 ns. Please note that the baseline for normalization

85



Table 4.2: Information of synthesized workloads

Name Included benchmarks

SPEC::mix1 lbm, leslie3d, astar, gcc

SPEC::mix2 lbm, leslie3d, astar, bzip2

SPEC::mix3 leslie3d, astar, bzip2, gcc

SPEC::mix4 astar, bzip2, gcc, GemsFDTD

SPEC::mix5 mcf, lbm, gcc, bzip2

SPEC::mix6 mcf, gcc, GemsFDTD, povray

pmix1 B-tree, hash-map, queue, skip-list

pmix2 queue, B-tree, RB-tree, skip-list

pmix3 hash-map, queue, RB-tree, skip-list

pmix4 B-tree, hash-map, RB-tree, skip-list

is the model having a 64 B page size and a DRAM cache.

Trace-based simulation is conducted to reduce the simulation time. Trace files of

workloads are extracted from gem5 in system emulation mode, and the detailed infor-

mation of the workloads is described in the next subsection. Each line of the trace file

is extracted from the output path of the LLC. The trace line consists of a CPU cycle,

type, command address, and command data (both read and write), and each trace line

is recognized as one memory command. Due to the behavioral differences between

gem5 and NVMain even when the same timing parameters are chosen, the command

cannot flow into the NVMain at the cycle inscribed in the trace file. Therefore, an in-

terconnect module containing a 32-entry buffer is used to synchronize the behavioral

differences between the two systems.

As shown in Table 4.2, six out of the ten workloads get mixed from the eight

benchmarks of SPEC CPU 2006 to fit in the number of simulated cores. The bench-
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Table 4.3: Implemented persistent data structures

Name Description of behavior

Queue Enqueue and de-queue nodes among 128 queues randomly

Hash-map Insert and delete hashed keys among 128 hash tables randomly

B-tree Insert and delete tree nodes among 128 trees randomly

RB-tree Insert and delete tree nodes among 128 trees randomly

Skiplist Insert and delete list nodes among 128 lists randomly

marks are chosen according to their MPKIs (cache misses per thousand instructions)

to have a large bandwidth from CPU to PCM to simulate the case of serving multiple

clients in a server as in [122], [40], [123]. In this study, applications with high MP-

KIs lbm, leslie3d, mcf, gcc, and GemsFDTD comprise highly stressful workloads for

a PCM. The remaining benchmarks are selected for simulating the general-purpose

system that runs both high and low MPKI applications simultaneously. Because there

are four cores in the simulated system, as mentioned in Table 4.1, four benchmarks are

mixed to form a single workload that is executed in a parallel manner. Consequently,

both stressful and mild workloads can cover a wide range of applications.

As shown in Table 4.3, persistent data structures, B-Tree, RB-Tree, queue, Hash-

map, and skip-list programmed with cache line flush and memory fence operations,

are further implemented, where each of them contains 128 data structures and per-

forms random insertion and deletion [23]. These data structures are similar to those in

the previous studies for persistent operations [23], [16], [17], and skip-list is a basic

data structure of ZSET (or sorted sets)) in Redis [2]. Finally, the data structures are

combined to make four persistent workloads (prefixed as “pmix”) for evaluation to

simulate realistic workloads in servers as shown in the shaded rows of Table 4.2.
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4.6.2 Speedup
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Figure 4.12: Speed degradation rate with respect to different page size where 64B is

the baseline. The lower rate the worse performance.

The speed of the traditional RMW degrades as the page size increases because a

memory transaction of a larger buffer size requires a longer burst length. The simu-

lation results in Figure 4.12 verify the degradation. As shown in the figure, merely

enlarging the page size to 2 KB and applying the traditional RMW (i.e., Section 2.2.1)

degrades the performance by nearly 40%.

Figure 4.13 shows average speedup with respect to different numbers of entries in

the data region when the page size ranges from 128 B to 2 KB. The figure shows that

speedup saturates at 16K entries when the page size is 4 KB. On the other hand, 32

K-entry also becomes a saturation point when the page is smaller than 512 B. Since

we have explained that the feasible page sizes of SRC-RMW are 128 B, 256 B, 512 B

in Section 4.4.2, 32 K is selected as the final number of entries for SRC-RMW.

SRC-RMW achieves a speedup with an increase in the page size, as shown in
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Figure 4.13: Average speedup concerning different numbers of data region entries.

Figure 4.14. In each graph in Figures 4.14 (a)-(d), the left sub-graph shows the result

without typless merge, whereas the right sub-graph represents the improvements made

by the merging operations. As shown in the left sub-figures of Figures 4.14 (a)-(d),

the speedup increases as the cache capacity enlarges thanks to the enhanced cache hit

rate. The average speedups of 256 B page systems are 1.7×, 1.9×, 2.3×, and 2.7×
when there are 4 K, 8 K, 16 K, and 32 K entries in the DRAM cache, respectively. The

maximum improvement is 5.2× compared to the baseline on average when the entry

number is 4 K with 2 KB page size.

Some benchmarks have speedups smaller than 1 when the entry number is smaller

than 1024 for 128 B page. This degradation occurs due to the ”stuck-in-queue” prob-

lem as discussed in Section 4.2.2. To mitigate “stuck-in-queue” problem, the type-

less merge operation is applied to the SRC. The right sub-figures of Figures 4.14 (a)-

(d) show the speedup of the typeless merge operation ranging from 128 B to 2 KB

page size. As shown in these figures, the merge operation enhances the performance
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Figure 4.14: Speedup comparisons concerning different DRAM cache entry numbers.

(a) 4K-entry, (b) 8K-entry, (c) 16K-entry, (d) 32K-entry.

markedly. For a system with 256 B page, the speedup achieves 2.2×, 2.6×, 3.2×, and

4.2× when the numbers of the cache entries are 4 K, 8 K, 16 K, and 32 K, respec-

tively (see Figures 4.14(a)-(d)). The maximum speedup is 6.7× on average with 2 KB

page and 32 K-entry cache, which is significantly higher than the value of 5.2× that is

without typeless merge operation.
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4.6.3 Read Reliability

The proposed system yields significant performance improvement. Still, it is still in-

sufficient to show whether the proposed method is suitable for general use concerning

reliability or not. Another unexpected benefit of the cache-based RMW is device re-

liability. Read disturbance error (RDE) is a self-disturbance error caused by a glitz

on the sense amplifier. An RDE is fundamentally incurred by frequent and redundant

read operations on a specific cell itself. Since a cache filters out most of the commands

accessing neighboring addresses to prevent the commands from entering the PCM de-

vice, the number of RDEs can be highly reduced by applying the proposed method.

Figure 4.15 shows the average normalized RDEs that represent the ratio of the bit

errors generated by SRC-RMW against the baseline. To cover technology variations,

six different bit error rates are chosen, i.e., 1E-2, 1E-3, 1E-4, 1E-5, 1E-6, and 1E-7. The

normalized values are represented by the bar graphs. The horizontal axis represents the

page size, whereas four cache sizes are chosen as 4 K, 8 K, 16 K, and 32 K entries,

respectively. The four graphs in Figure 4.15 represent the results for these four cache

sizes, respectively. In general, the number of RDEs decreases with the increase of the

DRAM cache entries. This is because more entries in SRC-RMW can provide a high

hit ratio, thereby lowering the number of read operations on the PCM media. Thus, a

small number of entries may yield higher RDEs than that of the baseline (e.g., 128 B

page with 4 K DRAM cache entries). Furthermore, the number of RDEs also decreases

with the increase of the page size. This is because the proposed model allows the

controller to prefetch and reuse the data as the size of the page increases. In particular,

a 256 B page shows 32% fewer RDEs than that of the 128 B page when the number

of entries is 4 K with the bit error rate of 1E-5. For a 256 page tested at the bit error

rate of 1E-5, the average errors are reduced by 30.2%, 39.9%, 49.4%, and 58.8% when
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Figure 4.15: Average normalized bit errors and bit errors/read command after applying

typeless merge concerning different DRAM cache entry numbers. (a) BER=1E-2, (b)

BER=1E-3, (c) BER=1E-4, (d) BER=1E-5, (e) BER=1E-6, (f) BER=1E-7.

the cache has 4 K, 8 K, 16 K, and 32 K entries, respectively, as compared to that of

the baseline. It is noteworthy that the variation of RDEs for different bit error rates is

similar to that of 1E-5.
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Figure 4.16: Average energy consumption of the proposed merge-operation where the

red line shows the average energy consumption of the baseline in this chapter.

4.6.4 Energy Consumption: Selecting a Proper Page Size

Figure 4.16 shows that the average energy consumption of a memory system generally

increases with the page size by adopting the SRC-RMW regarding different numbers

of DRAM cache entries. Furthermore, the energy consumption of different page sizes

is also measured for each DRAM cache size. The horizontal red line shows the en-

ergy consumption of the baseline. The energy consumption gradually decreases as the

number of DRAM cache entries increases. For a 4 K-entry DRAM cache with 256

B page, the increase of the energy consumption of SRC-RMW is about 11% while

the speed is improved by 2.2× compared to that of the baseline. The increase in en-

ergy consumption is relatively small because the main memory consumes about 11%

of a whole computing system [124]. As a result, the proposed method can achieve

2.2× of the speedup with a relatively small increase in energy consumption (about

1.21%=11%×11%) compared to the baseline.
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Figure 4.17: Comparison with different performance enhancement schemes. (a)

speedup, (b) energy consumption.

The page size should be chosen to achieve the best trade-off between energy con-

sumption and speedup. As shown in Figure 4.16, energy consumption increases for

most entry options when the page size is 512 B. For example, 4 K-entry DRAM cache
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with 512 B page yields 38.65% more energy consumption compared to the baseline,

which is 27% higher than that of 256 B page. Since the number of entries can be re-

duced as the system configuration (e.g., the resource usage of DRAM cache) changes,

it is necessary to choose a page size that yields notable speedup with a low energy

overhead. Therefore, 256 B is chosen as the optimal page size.

4.6.5 Comparison with Other Studies

It is necessary to show how SRC-RMW enhances the performance of RMW compared

to previous schemes. Therefore, this chapter applies the following schemes to SRC-

RMW rather than the traditional RMW for fair comparison:

• NonBlockBank [77]: A non-blocking PCM bank (NonBlockBank) design is

proposed in which the roles of a sense amplifier and a write driver in a bank are

separated. Therefore, they can work concurrently through a write-precedence

scheduling policy.

• FGNVM [125]: It is a device design that enables multiple activations at tile-

level, called Fine-Grained NVM (FGNVM), is proposed to exploit parallelism

for hiding more latency.

• WSHR [51]: It shows that the latency of write operation can be hidden by adopt-

ing “reads-under-write” methodology. This method introduces a write-status

hold register (WSHR) in a memory controller and four pages for executing mul-

tiple read commands in an overlapped manner (based on the LPDDR2 standard).

It leverages the stabilization time of write operations on PCM devices to hide the

latency by accessing multiple pages in a non-blocking way.
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The average speedups and average energy consumption of all schemes, including

proposed methods, are shown in Figure 4.17 (a) and (b), respectively. As shown in

Figure 4.17 (a), WSHR shows the highest speedup among previous schemes; however,

the proposed method (i.e., with typeless merge operation) achieves a 32.8% improve-

ment compared to WSHR. For energy consumption in Figure 4.17 (b), all schemes

show similar energy consumption except SRC-RMW without typeless merge opera-

tion. SRC-RMW consumes 11.9% lower energy than WSHR due to the decrease in

the number of processing read commands. Therefore, our typeless merge operation

yields the best performance concerning both speed and energy compared to previous

schemes.
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4.7 Discussion
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Figure 4.18: Normalized writes to the hottest position of the proposed merge-

operation: (a) the results for each benchmark when DRAM cache has 4096 entries,

(b) the results for different DRAM cache entries.

Effects on cell endurance. The lifetime is another important measurement of
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PCM characteristic, which is estimated by measuring the number of writes to the

hottest position (or the worst-case wear counts); this metric is used for quantifying

the effectiveness of wear-leveling in [126]. Figure 4.18 (a) shows the writes to the

hottest position of the proposed method equipped with a 32 K-entry DRAM cache

which is normalized to the baseline by increasing the page size from 128 B to 2 KB.

The wear-out reduces if the page size enlarges from 128 B to 512 B, owing to the

increasing data prefetching effect on the DRAM cache. The proposed method with a

256 B page and 32 K-entry DRAM achieves 68.6% reduction of the worst-case wear

counts compared to the baseline. Figure 4.18 (b) also shows that the proposed method

prevents wear-out more effectively as the DRAM cache size increases. In particular, an

8 K-entry DRAM cache yields lower wear-out for all page sizes compared to the base-

line; hence, 8 K-entry becomes the starting point that ensures higher system reliability

than that of the baseline.

Relevance of the page size concerning the cost. The selection of the page size in

Section 4.6.4 is compliant with the previous research that also chooses the transaction

unit to be no more than 256 B [10], [34], [39]. The selected trade-off increases the

speed by 2.2× and reduces total error occurrences by 58.8%, as it increases the energy

consumption by 11% when compared to the baseline for the 32 K-entry DRAM cache

with the typeless merge operation. The hardware cost of the merge operation is very

small because the 32 K-entry DRAM cache demands about 264 MB (256 MB for AIT

region + 8 MB for data region and index region), which saves 760 MB of DRAM cache

compared to the baseline (i.e., 64 B-page system).
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4.8 Summary

This chapter first proposes an RMW architecture utilizing a DRAM cache for enhanc-

ing read reliability and performance in a PCM-based system. However, it may in-

duce an unexpected performance degradation for some workloads due to the high miss

penalty of the cache in the PCM. Therefore, typeless merge, an operation for com-

bining the cache and RMW, is proposed, not only to compensate for the throughput

reduction as much as possible but also to achieve even improved performance. As a

result, the merge operation adopted in the 256 B page system with a 32K-entry DRAM

cache enhances the speed and read reliability by 2.2 × and 58.8%, respectively, on av-

erage. The DRAM cache requires approximately 8 MB of storage space, of which cost

is very small, as discussed in the previous section.
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Chapter 5

AN ALL-INCLUSIVE SIMULATOR FOR

A PCM CONTROLLER

In the last dissertation, we propose an architecture simulator that simulates a PCM

controller system. Architecture simulators have propelled the rapid development of

computer architecture research in past decades, owing to its high productivity. Still,

simulators of NVM do not appear to have rigorous and structured format due to a lack

of predefined specifications, such as JEDEC and ONFI. In particular, PCM is one of

the promising NVMs currently available in the market; however, its relating simulator

is still architected as a standalone scheduler without any necessary module that ensures

the reliability or throughput of the system. Furthermore, building such a simulator re-

quires to be formatted concerning the coding style. In this chapter, we implement an

all-inclusive PCM controller simulator (PCMCsim) that resembles the currently avail-

able product in the industry rather than a simple existing simulator while providing

a guideline to program a cycle-accurate module, including contention behavior, with

well-defined coding styles.
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5.1 Motivation
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Figure 5.1: Architecture of a NAND-based SSD controller system

The necessity of an all-inclusive simulator. State-of-art memory simulators, such

as NVMain [87], DRAMsim series [97], [99], and Ramulator [96], have been widely

utilized for NVM-related research, including PCM itself. However, existing simula-

tors cannot be directly used as PCM controller simulators because a PCM controller

must consist of the modules enabling device management and performance enhance-

ment. In particular, a PCM controller must translate host addressees to physical device

addresses to prevent wear-out or WDE problems. In [91], it is announced that a PCM-

based product, namely Intel Optane DCPMM, manages remapping mechanisms using

an address indirection table (AIT) with a dedicated DRAM subsystem. Furthermore,

PCM must compensate its higher latency than that of DRAM with an enlarged trans-

action unit, as discussed in Chapter 4; hence, an RMW module is also necessary for a

PCM controller, which is also mentioned in [90], [91]. It is noteworthy that a NAND-

based SSD controller has a similar command processing flow to that of PCM, which

processes all commands with firmware (i.e., flash translation layer), as shown in Fig-

ure 5.1. In contrast, a PCM controller processes host commands through a hardware
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processing path to maximize the host quality-of-service (QoS) [15]. In conclusion, we

need to implement a simulator dedicated to the PCM controller that comprises the

features mentioned above even though the publicized information is scarce.

The necessity of formatted programming models. An architecture simulator sig-

nificantly improves the industry productivity, owing to its robustness compared to RTL

models. However, the absence of formatted programming models in a simulator may

lag the development progress for a novice. In particular, although event-driven simu-

lators yield shorter simulation time compared to that of cycle-level simulators, event

scheduling that simulates the concurrent behaviors in hardware must be managed man-

ually. It is noteworthy that such management is not required in cycle-level simulators

because cycle-level simulators try to simulate every cycle with a much longer simu-

lation time than that of event-driven simulators, using a simple loop statement. Fur-

thermore, event scheduling for the contention behavior between multiple masters also

should be considered for cycle accuracy because the latency of a module generally

originates from such ”bottleneck” points. In short, an event-driven PCM controller

simulator that describes hardware contention behavior and provides the formatted pro-

gramming models is required for future PCM-related research.
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5.2 PCMCsim: PCM Controller Simulator

5.2.1 Architectural Overview
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Figure 5.2: Architectural overview of PCMCsim.

Figure 5.2 shows the overall architecture of PCMCsim. All requests from the host

processor first flow into a host interface, namely request receiver. For each request in

the request receiver, a unique ID is allocated for performing out-of-order scheduling.

After the ID allocation, requests get into AIT manager, which remaps a host address to

a physical address. AIT manager first stacks requests in a buffer and obtains translation

information stored in the AIT by accessing DRAM in the DRAM subsystem. Subse-

quently, translated requests flow into the RMW module, whereas the data of requests

are migrated from the write data buffer in the request receiver to the data buffer in

RMW. The RMW module reads as the transaction unit of PCM and writes the updated

data back to the PCM (explained in Section 2.3.1). Both read and write requests are

issued to the micro-command engine (uCMD engine) from the RMW module, which

decomposes requests into micro-commands that can be recognized by PCM devices.

Finally, micro-commands are scheduled and issued to the PCM devices, where

write data residing in data-path-unit (DPU) are signaled by issued micro-commands
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and dispatched to the devices as well. For a read request, request ID is retired when

the responded data goes back to the request receiver. For a write request, request ID is

retired once uCMD engine is ready to issue the final micro command.

Please note that the wear-leveling algorithm is triggered from the RMW module

when the metadata read from PCM reaches the predefined threshold. Thereafter, the

remapping request containing remapping information is issued to the AIT manager for

updating AIT in the DRAM subsystem.

5.2.2 Underlying Classes of PCMCsim

In this subsection, basic classes that comprise PCMCsim are explained in detail. Fur-

thermore, the formatted programming style of a module in PCMCsim is also explained

along with a toy example and intuitive pseudo-codes.

Component class

Component class is a parent class for all modules of PCMCsim that trigger event

scheduling. This class can be considered as a wrapper of a hardware module that

consists of basic functions for simulating various hardware behaviors. Followings are

commonly used functions or variables in this class:

• recvRequest( ), recvResponse( ): these functions receive requests and responses

from the connected modules, respectively.

• isReady( ): it checks the idleness of a connected module before issuing a com-

mand to that module.

• ticks per cycle: it is a variable that determines the frequency domain of this

module. PCMCsim assumes the frequency of 1 THz if this variable is set to 1.
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Figure 5.3: Illustration of event handling in PCMCsim.

In this chapter, we consider a ”tick” as 1 ps.

• registerCallback( ): this function is used for registering a callback function that

handles the reserved event at a specific timing. This function is one of the essen-

tial functions in an event-driven simulator.

• handle events( ): this function is a virtualized function that handles all reg-

istered callback functions at the current cycle. This function is automatically

called from GlobalEventQueue class (see explanation in the following subsec-

tion), which is a centralized event management class of PCMCsim.

GlobalEventQueue class

GlobalEventQueue class is a centralized event management class of PCMCsim. In

PCMCsim, all events are managed in a hierarchical manner, which highly utilizes the

standard template library (STL) of C++, namely map and set. GlobalEventQueue class

internally has a private object whose type is defined as map〈ncycle t, set〈Component*〉〉.
This object is comprised of pairs of sets of event-driven modules and timestamps. For

each timestamp, it indicates the moment that calls registered functions scheduled pre-

viously. For each component in set〈Component*〉, a module that has registered events
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Figure 5.4: Case study system implemented with underlying classes of PCMCsim.

is included in this set data structure. The event handling process with this object is

illustrated, as shown in Figure 5.3. As shown in the figure, the entry containing the

smallest timestamp in the event queue object is popped within the loop statement in

a member function of GlobalEventQueue. Subsequently, handle events( ) functions of

all component modules bound by this timestamp are handled in order.

It is noteworthy that GlobalEventQueue class manages all timestamps with ”tick”

resolution (i.e., 1 ps); hence, it is sufficient to instantiate one object of GlobalEven-

tQueue class for handling events among several frequency domains.

PipeBuffer class

PipeBuffer class is a module for simulating pipeline registers in a hardware system. A

pipeline is a common design strategy for enhancing hardware throughput with sequen-

tially connected registers; that is, several operations can be executed concurrently in

each pipelined register. Instances of PipeBuffer class can be connected to each other

to form a pipelined hardware system. Furthermore, this class can automatically ob-

serve whether the pipelined register system is stalled. Subsequently, the content of the
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Procedure: Module-A execution
/* Execute functions of the module */
stage-1_function( )
stage-2_function( )
stage-3_function( )

/* Proceed pipeline buffers */
proceed the contents in stage-1 pipeline buffer
proceed the contents in stage-2 pipeline buffer
proceed the contents in stage-3 pipeline buffer
output command = stage-3 pipeline buffer output

if output command is valid
Module-B.recvRequest(output commd)

if a content exists in one of the pipeline buffers
registerCallback(Module-A execution)

Figure 5.5: Pseudo-code for implementing the pipeline behavior of Module-A.

stalled register does not proceed to the next-stage register if the system is congested at

the output. In conclusion, this high-level abstract class enables a formatted program-

ming style for implementing user-defined modules.

Case study

Figure 5.4 shows an example system consisting of Component class, GlobalEven-

tQueue class, and PipeBuffer class. As shown in the figure, Module-A has a three-stage
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Procedure: Module-A/B execution
execute functions of Module-A or B
…

/* Register event of DPSRAM */
if last_wake_cycle == wake_cycle

and free_cycle < current cycle:
wake_cycle = current cycle + 1
registerCallback(DPSRAM, wake_cycle)

Procedure: DPSRAM
if callee == Module-A:
read SRAM contents

else if callee == Module-B:
read SRAM contents

/* Update timing */
last_wake_cycle = wake_cycle
free_cycle = MAX(free_cycle, current+tRD)
registerCallback(DPSRAM, free_cycle)

(a) (b)

Figure 5.6: Example pseudo-codes for implementing the contention behavior.

pipeline and is connected to Module-B. Local event in Module-A is a set of registered

events, which are finally handled in handle events( ). GlobalEventQueue behaves as a

centralized event handling platform for Module-A, Module-B, and Module-C.

Figure 5.5 shows pseudo-code for implementing the pipeline behavior of Module-

A. As shown in the figure, the functional part of each stage and the register proceeding

procedure are completely decoupled. Furthermore, the output request at the final stage

is issued to Module-B. If pipeline registers are checked as non-empty at the end of this

function, it is scheduled again for completing the task. The simple pseudo-code shows

that user-defined modules can be instantly implemented with underlying classes.

5.2.3 Implementation of Contention Behavior

Resource contention among multiple master modules is a common phenomenon in

a hardware system. For example, a 2-input multiplexer is required if a DPSRAM is

shared by two hardware modules, which is a generally applied design layout. There-

fore, it is necessary to provide a formatted programming style concerning the con-
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tention behavior. Figure 5.6 (a) and (b) show example pseudo-codes for implementing

this behavior. The example assumes that a DPSRAM is shared by two modules, i.e.,

Module-A and Module-B. Figure 5.6 (a) shows the access process of each module,

whereas Figure 5.6 (b) shows contention handling in the DPSRAM. For implementing

the contention behavior, three variables are necessary, as shown in the figure:

• wake time: this variable records the cycle moment when the function for access-

ing a shared resource (i.e., DPSRAM) is scheduled.

• last wake time: this variable records the cycle moment when the function for

accessing a shared resource is actually called.

• free time: this variable records the cycle moment with additive latency when the

function is is called. This additive latency determines the access latency of a

shared resource. In this example, tRD is used for indicating the read latency of

DPSRAM.

In summary, we can formally implement the hardware contention behavior by sim-

ply leveraging three variables, which define attributes of a multiplexer for a shared

resource, thereby improving the cycle accuracy of a simulator.

5.2.4 Modules of PCMCsim

This subsection explains implementation details of modules in PCMCsim that are

briefly mentioned in Section 5.2.1. Please note that details of wear-leveling are not ex-

plained due to confidential issues. Furthermore, we explain the details of the JEDEC-

based uCMD engine rather than the implementation used for correctness verification

in Section 5.3.1 due to confidential issues as well.

109



Write list
ID Addr. Data
0
…

Read list
ID Addr.
0
…

Write dataRequest Receiver
ID mapper FIFO

(WR Req.)

FIFO
(RD Req.)Hazard checker

Read response
Hazard hit read

FIFO

Figure 5.7: Implementation of request receiver.

Request Receiver

Figure 5.7 depicts the detailed architecture of request receiver. In particular, this mod-

ule gets host requests and is controlled by two kinds of data structures:

• ID mapper: Since a PCM controller can schedule host requests in an out-of-order

manner that is performed at the multiplexer at the output in the figure, ID must

be granted for each request to respond to the host correctly. In this study, both

read and write requests are separately managed for higher host QoS. Please note

that the hazard checker in the ID mapper detects the cases of read-after-write and

write-after-write and directly performs direct responses or updates, respectively.

• FIFO: In this module, three FIFOs are included. Two FIFOs at the right-hand

side of the figure are for storing read and write requests, which are scheduled in

an out-of-order manner. The final FIFO at the bottom of the figure is for storing

read response data. Please note that a write request ID retires once the request

and its data are dispatched to the next modules, namely AIT manager and RMW.
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AIT Manager

AIT manager performs address translation for accessing PCM media devices. Fig-

ure 5.8 shows the detailed implementation of the AIT manager. The request comes

from the request receiver first goes into the request buffer. The stacked requests in

the request buffer are not issued directly, which generates new requests for obtaining

physical address information from the DRAM subsystem, in which AIT is stored in

DRAM rather than PCM for reducing the translation overhead. After the physical ad-

dress information returns to the request buffer, the request goes into the host queue

(i.e., Host Q) after address translation in the address calculator.

As shown in Figure 5.8, one more manager, called remap manager, is implemented

for managing wear-leveling requests. A wear-leveling request comes from a micro-

controller unit (MCU) block, as shown in Figure 5.2. The address register in Figure 5.8

stores addresses that are being remapped. Subsequently, it signals AIT update logic for

generating requests for updating mapping information in AIT. After the corresponding
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entries in AIT are updated, AIT update logic generates and pushes remapping requests

into the remap queue (i.e., Remap Q).

It is noteworthy that significant performance overhead would be incurred by wear-

leveling. This is because the remap manager is stalled until the request buffer and the

Host Q and becomes empty for preventing data hazard between the host request and

the remapping request. We leave the task of reducing overhead as future work.

RMW

As mentioned in Section 2.3.1, an RMW module generally reads data as the page size

of the PCM device and responds or updates the partial data for the host processor.

The implementation of RMW is illustrated in Figure 5.9. The RMW module processes

requests as the following procedure:

• The RMW module gets requests from AIT manager and remap manager con-

currently. If a write request comes into the module, the module obtains its data

from the request receiver. It is noteworthy that PCMCsim implements further
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input ports for the scalability of the module.

• One of the arbitrated requests is then passed to the hazard checker to check

whether data having the same address exists in the global data buffer. If the

address and data are found in the data buffer, data is directly responded to the

host or updated according to the request type. Otherwise, the read request goes

into the host-read register (i.e., HostRD), whereas the write request goes into

RMW queues (i.e., a read queue for RMW and a queue for write-back).

• Finally, requests in HostRD and RMWQs are arbitrated and issued to the next

module, namely the uCMD engine. HostRD has the highest priority for a higher

host QoS, whereas the requests in RMWQs are arbitrated according to the watermark-

based policy. The watermark-based policy assumes that RMW-read requests

have higher priority than write requests, which are drained if the number of write

requests overflows in the queue. Please note that the write data is signaled by its

corresponding request when the request is ready to be issued. Subsequently, the

data goes to DPU through data buffer management logic.

uCMD Engine

In this dissertation, we explain one of the child classes of the uCMD engine class that

is implemented according to JEDEC DDR4 specification, as shown in Figure 5.10. An

uCMD engine decomposes requests from the RMW module to micro-commands that

are commonly used in a DDR4-based memory device, such as precharge and activa-

tion commands. According to the explained features, an uCMD engine also can be

instantiated as a DRAM subsystem for AIT.

As shown in Figure 5.10, the implementation of the engine originates from a
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practical DRAM controller IP design [127]. The requests in the request list are se-

lected according to the scheduler policy (e.g., FR-FCFS policy for leveraging row

hits in a device). According to its bank address, the selected request is decomposed

into micro-commands and pushed into the corresponding micro-command queue (i.e.,

uCMDQ). Subsequently, issuable timings of commands in uCMDQs are monitored by

two machines, called a rank machine and a bank machine. The former tracks rank and

activation-specific timings for monitoring inter-/intra-rank accesses and four-activation

window (FAW), respectively; the latter tracks other timing parameters to determine is-

suable commands according to the bank status. Concurrently, the arbitrator selects

one uCMDQ with bank-first round-robin policy or rank-first round-robin policy, from

which one command is issued at a time.

It is noteworthy that our uCMD engine supports both refresh operations (i.e., self-

refresh and auto-refresh) and the power-down operation. In particular, the auto-refresh

consists of the all-bank refresh, per-bank refresh, and fine-granularity refresh (FGR).

For power-down mode, PCMCsim supports both fast-exit mode and slow-exit mode,

which means it can be configured as DDR3 as well. Furthermore, the power model

is also included in PCMCsim according to calculation functions explained in [128].

In conclusion, these features indicate that our PCMCsim can be used for simulating
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both PCM and DRAM with modified configurations; hence, the generalizability is

guaranteed in the simulator for future research purposes.

DPU

DPU is a simple module that acts as a path for read data and write data from/to PCM

devices, as shown in Figure 5.11. The figure has an unallocated DPU ID list that is

used for conferring IDs for write data because the request information path and the

data path into the uCMD engine and the DPU, respectively. Once the write command

is ready to be issued to PCM, the uCMD engine instantly notifies DPU for dispatching

the write data to PCM as well. Simultaneously, the retired DPU ID returns back to

the unallocated DPU ID list for obtaining the next data from RMW. Please note that

we reflect the multi-bit ECC feature to PCMCsim for reliability-related research (e.g.,

WDE) because PCM has lower reliability than DRAM.
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5.3 Evaluation

5.3.1 Correctness of the Simulator

We have verified the functional correctness of our simulator against the traces ex-

tracted from the industrial RTL code, which implements the PCM controller based

on the architecture of PCMCsim. We have implemented a macro that verifies the cor-

respondence of commands between the output of PCMCsim and the output of RTL

traces. Please note that the output is probed at each module in the PCM controller.

Consequently, we have observed a functional accuracy of 99.5%. The slight discrep-

ancy originates from the different input timings on a request list. Table 5.1 shows

commands of RTL and PCMCsim at the request list in uCMD engine. The order dis-

crepancy between RTL and PCMCsim occurs for last two commands, i.e., [0xD5,

WRITE, 0x3300] and [0xCF, WRITE, 0x3480]. Different from RTL, PCMCsim shows

that [0xD4, WRITE, 0x3480] lags behind [0xCF, WRITE, 0x3300]. This is because

responses of corresponding RMW-READs of two WRITEs (i.e., 0x3300 and 0x3480)

Table 5.1: Commands of RTL and PCMCsim at the request list in uCMD engine

RTL PCMCsim

Request ID Type Address Bank Request ID Type Address Bank

0xCB WRITE 0x3200 9 0xCB WRITE 0x3200 9

0xCF RMW-READ 0x3300 9 0xCF RMW-READ 0x3300 9

... ...

0xD3 RMW-READ 0x3400 10 0xD3 RMW-READ 0x3400 10

0xD5 RMW-READ 0x3480 10 0xD5 RMW-READ 0x3480 10

... ...

0xD5 WRITE 0x3480 10 0xCF WRITE 0x3300 9

0xCF WRITE 0x3300 9 0xD5 WRITE 0x3480 10
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Table 5.2: Comparison with state-of-art memory simulators

Simulators Sim. type Standard
NVM features Low-power

AIT RMW Self-refresh Power-down

Ramulator [96] Cycle-level DDR4 × × ◦ ◦
DRAMsim3 [99] Cycle-level DDR4 × × ◦ ×

NVMain [88] Event-driven DDR3 × × × ◦
PCMCsim Event-driven DDR4 ◦ ◦ ◦ ◦

are interchanged in PCMCsim. In particular, we have found that the scheduling order

of bank machine is 10 and 9 for both cases; however, bank-10 opened by [0xD3, RMW-

READ, 0x3400] is closed after bank-9 opened by [0xCB, WRITE, 0x3200] is closed

in PCMCsim, which means that the bank machine first schedules the command head-

ing to bank-9 (i.e., [0xCF, RMW-READ, 0x3300]). The reason for this phenomenon is

the lack of cycle accuracy incurred by I/O buffer latency in RTL, which is unnecessary

in a simulator. Please note that all discrepancies stem from the same reason.

5.3.2 Comparison with Other Simulators

Table 5.2 shows the feature comparison with other simulators, namely DRAMsim3 and

NVMain. The first column shows the simulation type of the simulator. Since DRAM-

sim3 is a cycle-level simulator, it is the slowest among all simulators. We have ob-

served that PCMCsim is 16× faster than DRAMsim3 by executing traces of SPEC

CPU 2017 applications, whereas a similar simulation time is obtained compared to

NVMain. The second column shows the JEDEC standard that each simulator sup-

ports, in which PCMCsim is the first NVM simulator that supports DDR4 specifi-

cation compared to NVMain. The third column shows that only PCMCsim supports

necessary features for the next-generation NVM-based controller (i.e., AIT subsystem
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and RMW). Finally, the fourth column shows that DRAMsim and NVMain support

only one of the low-power operations. In particular, NVMain provides configurable

timing concerning self-refresh; however, the actual function behavior is not provided

in the simulator. In contrast, both operations are implemented in PCMCsim, thereby

enhancing the scalability of the simulator.

118



5.4 Summary

PCM is a promising byte-addressable NVM; however, no simulator that well describes

essential features for a PCM controller is available in the academic research area. This

chapter compiles all these features into one simulator, PCMCsim, including hardware

processing path, AIT that includes a complete DRAM subsystem, RMW, and ECC.

Furthermore, we provide a guideline for programming user-defined modules formally

as well as the resource contention behavior to enhance the research productivity. We

also implement features of DRAM; hence, directly instantiating a DRAM-based sys-

tem is possible without incorporating external DRAM simulators. PCMCsim yields

the functional accuracy of 99.5% with 16× simulation time reduction compared to a

state-of-art simulator.
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Chapter 6

Conclusion

The advent of applications having a tremendous memory footprint, such as in-memory

databases or deep learning, leads to increasing demand for large-capacity main mem-

ory. As the DRAM process technology reaches its limitation, PCM becomes a promis-

ing candidate as next-generation memory owing to its attractive physical characteris-

tics, particularly its high scalability and endurance. Still, PCM-related technologies in

the industry stagnate due to three problems: reliability problems, higher latency issues

than DRAM, and the absence of a simulation platform that incorporates the character-

istics of a PCM controller.

In this dissertation, we have completed mainly three tasks to overcome the prob-

lems mentioned above and contribute to a PCM-based main memory system. First of

all, a WDE mitigation scheme that introduces table-based management within a PCM

product (or module) is proposed. This is the first approach that leverages an announced

process parameter to restore WDE-vulnerable cells on demand. Secondly, we first con-

sider a more practical PCM controller architecture that incorporates an RMW module.
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A simple RMW module significantly degrades the performance of a PCM-based sys-

tem that runs normal CPU applications. Therefore, we leverage a part of the DRAM

region that already exists in a practical PCM-based product to enhance the overall

performance notably, including the read reliability. Lastly, we gather information nec-

essary for a practical PCM-based product, such as the AIT subsystem and the RMW

module, to build an all-inclusive PCM controller simulator. The proposed simulator

is verified against industrial RTL traces with high functional accuracy. Furthermore,

our simulator is flexibly configurable as both PCM and DRAM, which is suitable for

broader memory-related research in the future.

In conclusion, three novel contributions would establish a foundation for further

development of PCM-related technology and propel the popularization of PCM-related

products. This dissertation takes several practical aspects of a PCM controller into

consideration as much as possible. Therefore, we firmly believe that our work would

be helpful to both industry and academic research with growing interests in PCM.
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초록

상변화 메모리는(PCM) 매력적인 특성을 통해 메모리 시스템의 새로운 시대의

시작을 알렸다. 많은 메모리 관련 제품 제조업체(예 : 인텔, SK 하이닉스, 삼성)가

관련제품개발에박차를가하고있다. PCM은단순히대규모데이터베이스에만국

한되지 않고 다양한 상황에 적용될 수 있다. 예를 들어, PCM은 비휘발성으로 인해

대기 전력이 낮다. 따라서 계산 집약적인 애플리케이션 또는 모바일 애플리케이션

은(즉,긴메모리유휴시간) PCM기반컴퓨팅시스템에서실행하기에적합하다.

PCM의 이러한 매력적인 특성에도 불구하고 PCM은 낮은 신뢰성과 긴 대기 시

간으로 인해 여전히 일반 산업 시장에서는 DRAM과 다소 격차가 있다. 특히 낮은

신뢰성은지난수십년동안 PCM기술의발전을저해하는문제다.반도체공정기술

이수년에걸쳐빠르게축소됨에따라 DRAM은 10nm급공정기술에도달하였다.

이어서,쓰기방해오류 (WDE)가 54nm등급프로세스기술아래로축소되면 PCM

에심각한문제가될것으로보고되었다.따라서, WDE문제를해결하는것은 PCM

이 DRAM과동등한경쟁력을갖추도록하는데있어필수적이다.이문제를극복하

기위해이논문에서는 2-레벨 SRAM기반테이블을활용하여WDE수를크게줄여

필요에따라준안정셀을복원할수있는새로운접근방식을제안한다.또한,원래

SRAM에서수백개의읽기포트가필요한대체정책을구현하기위해새로운랜덤

기반의기법을제안한다.
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PCM의 두 번째 문제는 DRAM에 비해 지연 시간이 길다는 것이다. 특히 PCM

은더큰트랜잭션단위를채택하여단위시간당데이터처리량향상을도모한다.그

러나 범용 프로세서 캐시 라인과 다른 유닛 크기는 읽기-수정-쓰기 (RMW) 모듈의

도입으로인해시스템성능을저하하게된다. PCM기반메모리시스템에서 RMW

관련연구가없었기때문에본논문은 RMW모듈을탑재한 PCM기반메모리시스

템의 전반적인 시스템 성능과 신뢰성을 향상하게 시킬 수 있는 새로운 아키텍처를

제안한다.제안된아키텍처는추가스토리지리소스를도입하지않고도데이터재사

용성을향상시킨다.또한,성능향상을위해명령유형과관계없이명령을병합하는

새로운작업을제안한다.

또 다른 문제는 PCM을 위한 완전한 시뮬레이션 플랫폼이 부재하다는 것이다.

PCM 관련 제품(예 : Intel Optane)에 대해 발표된 정보는 대외비 문제로 인해 부족

하다. 하지만 알려져 있는 정보를 적절히 취합하면 시중 제품과 유사한 아키텍처

시뮬레이터를개발할수있다.이를위해본논문은 PCM메모리컨트롤러에필요한

모든 모듈 정보를 활용하여 향후 이와 관련된 연구에서 충분히 사용 가능한 전용

시뮬레이터를구현하였다.

주요어: 컴퓨터 아키텍처, 비휘발성 메모리, 상변화 메모리, 쓰기 간섭, 읽기 간섭,

읽기-수정-쓰기모듈,메모리시뮬레이터

학번: 2016-27167
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