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Exogenous expression 
of an allatotropin-related peptide receptor 
increased the membrane excitability in Aplysia 
neurons
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Abstract 

Neuropeptides act mostly on a class of G‑protein coupled receptors, and play a fundamental role in the functions of 
neural circuits underlying behaviors. However, physiological functions of some neuropeptide receptors are poorly 
understood. Here, we used the molluscan model system Aplysia and microinjected the exogenous neuropeptide 
receptor apATRPR (Aplysia allatotropin‑related peptide receptor) with an expression vector (pNEX3) into Aplysia neu‑
rons that did not express the receptor endogenously. Physiological experiments demonstrated that apATRPR could 
mediate the excitability increase induced by its ligand, apATRP (Aplysia allatotropin‑related peptide), in the Aplysia 
neurons that now express the receptor. This study provides a definitive evidence for a physiological function of a 
neuropeptide receptor in molluscan animals.
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Neuropeptides, the most diverse class of neurotransmit-
ters/neuromodulators, largely act on G-protein coupled 
receptors (GPCRs). Diversity arises in part from the pos-
sibility that a single neuropeptide precursor can gener-
ate multiple forms of active peptides, and a peptide can 
act on multiple GPCRs, which in turn might function 
through different signaling pathways [1]. Relatively sim-
ple model systems such as Aplysia are often used to study 
neuropeptide signaling. Earlier studies in model systems 

have focused on identifying neuropeptides and their bio-
activity [2, 3]. Recently, growing genetic information has 
facilitated studying both neuropeptides and their recep-
tors [4], e.g., expressing putative GPCRs in a cell line, and 
then testing activity of potential ligands on the recep-
tors. In such systems, both receptor expression in the 
CNS and the physiological and/or circuit activity of the 
ligands are demonstrated. A match between the recep-
tor activity of the ligands in the cell line and their physi-
ological activity in the CNS is evidence that the recep-
tor functions in the CNS. However, given that a peptide 
might act on multiple receptors, it is also necessary to 
demonstrate that the identified GPCR actually initiates 
the proper physiological activity in native neurons. Here, 
we used an expression vector [5, 6] to develop a method 
that expresses a peptide GPCR in native Aplysia neurons 
and examine whether the GPCR shows a physiological 
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activity. Our research utilizes Aplysia allatotropin-related 
peptide (apATRP) [2] and its receptor apATRPR [4] as an 
example.

The neuropeptide allatotropin was first found in tis-
sues of corpora allata in the insect Manduca sexta [7] 
and subsequently allatotropin-related peptides were 
characterized in Arthropoda, Annelida and Mollusca 
with various functions in different behaviors, including 
feeding. The allatotropin receptor was originally char-
acterized in Bombyx mori [8], followed by identification 
of other insect allatotropin receptors, e.g., in Manduca 
sexta [9]. Additionally, two allatotropin receptors in 
the annelid Platynereis [10] and one in Aplysia [4] were 
characterized. Interestingly, phylogenetic analyses have 
shown that protostome allatotropin and deuterostome 
orexin signaling systems are orthologous [11].

In Aplysia, apATRP (GFRLNSASRVAHGY-NH2) acts 
on the feeding motor circuit to enhance motor neuron 
B61/62 excitability. This increases B61/62 firing fre-
quency, thereby compensating for the short duration of 
B61/62 bursts during feeding motor programs elicited 
by an apATRP-positive command neuron [2]. B61/62 
firing frequency also increases after learning that food 
is inedible [12]. Recently, several ligands, including 
apATRP, were found to activate apATRPR in CHO-K1 
cells transiently transfected with apATRPR. Impor-
tantly, the pattern of activations of these ligands in the 
cell line matches their actions on B61/62 excitability, 
suggesting that apATRPR likely functions in the Aply-
sia CNS [4]. However, it is unknown whether apATRPR 
mediates the excitability increase in native Aplysia neu-
rons, given that there might be multiple apATRP recep-
tors in Aplysia. Here, we sought to determine whether 
apATRP is sufficient to mediate the ligand effect on 
native neurons by evaluating the ability of apATRP 
to activate apATRPR in Aplysia neurons that do not 
endogenously express apATRPR. To express apATRPR 
in neurons, we used a plasmid vector, pNEX3, which is 
an effective method to express exogenous proteins in 
cultured Aplysia neurons [5, 6]. Thus, we constructed 
the recombinant plasmid pNEX3-apATRPR (Addi-
tional file 1).

To demonstrate that apATRPR might function as an 
endogenous receptor of apATRP, we first sought to find 
a target neuron that did not natively express apATRPR 
in the buccal ganglia. We selected a larger neuron, B8 
(~ 150  μm), and examined B8 excitability changes in 
response to apATRP. apATRP increased B8 excitability 
(Fig. 1a, b), suggesting that B8 might contain a receptor(s) 
for apATRP. Therefore, B8 neurons were excluded. After 
testing several additional neurons, we found that another 
large neuron B1/B2 (~ 210 μm) did not respond to apA-
TRP (Fig. 1c, d), and it was used as the target neuron.

In each hemi-ganglion of the buccal ganglion, there 
are one B1 and one B2 neuron. Thus, there are four B1/
B2 neurons on both sides of the buccal ganglion. We set 
up two groups: the plasmid pNEX3-EGFP mixture with 
fast green microinjected into B1/B2 neurons as the con-
trol group, and the plasmid pNEX3-EGFP and pNEX3-
apATRPR mixture with fast green microinjected into the 
contralateral B1/B2 neurons as the experimental group. 
Visualizing fast green with a regular light source con-
firmed that the plasmid injection was successful (Fig. 1e). 
After injection, we placed the buccal ganglion into cell 
culture until we observed that B1/B2 neurons exhibited 
green fluorescence (Fig.  1f–h), which took 1 to 3  days. 
Observing green fluorescence confirmed that neurons 
had expressed the EGFP in the control group and had co-
expressed the apATRPR and EGFP in the experimental 
group.

We next perfused apATRP into the recording dish and 
tested B1/B2 excitability. The results showed that B1/
B2 excitability in the experimental group was enhanced 
(Fig.  1i, j), and B1/B2 excitability in the control group 
showed no significant changes (Fig.  1k, l). This find-
ing indicated that the neuropeptide receptor, apATRPR, 
could mediate the excitability increase in native Aplysia 
neurons in response to its ligand, apATRP.

In this work, we have characterized physiological func-
tions of a neuropeptide receptor, apATRPR, expressed in 
Aplysia neurons. Our study provides a definitive evidence 
that apATRPR indeed mediates excitability increase 
in a neuron that does not express apATRPR, indicating 
that the neuropeptide receptor, apATRPR, is sufficient 
to mediate an excitability increase to its ligand, apA-
TRP, in Aplysia neurons. In terms of molecular mecha-
nisms underlying the excitability increase, we speculate 
that, similar to insects [9], through Gαs, apATRPR could 
increase cAMP, which could in turn act either to close K 
channels through PKA [13] or to activate cAMP-gated 
Na channels through a PKA-independent pathway (Addi-
tional file 1).

Taken together with earlier work showing that pNEXδ 
or pNEX3 can express GPCRs for glutamate, octopa-
mine and serotonin [13–15], pNEX, including pNEXδ 
and pNEX3, proves to be an effective plasmid to express 
GPCRs for both small molecule transmitters and neu-
ropeptides in Aplysia neurons. We expect that such a 
procedure could be readily applied to demonstrate physi-
ological functions of neuropeptide receptors in native 
neurons in model systems with reasonably large iden-
tifiable neurons, such as other molluscs, annelids and 
possibly some arthropods. Notably, compared with inver-
tebrate organisms such as C. elegans and Drosophila, life 
spans of molluscs and annelids are relatively long and life 
cycles are complex, making it difficult to use transgenes 
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Fig. 1 apATRP increased the excitability of B1/B2 neurons that were exogenously expressed with the receptor apATRPR. a, b apATRP increased 
B8 excitability at  10–5 M but not at  10–6 M (F(3, 6) = 14.89, p < 0.01, n = 3 individual neurons from three preparations). Bonferroni post hoc tests: 
*p < 0.05, **p < 0.01. Error bars, SE. c, d apATRP had no significant effect on B1/B2 excitability (F(3, 9) = 1.00, p > 0.05, n = 4 individual neurons from 
four preparations). Error bars, SE. e The caudal surface of a buccal ganglion viewed with a regular light source. B1/B2 and other neurons on the 
left side were microinjected with plasmids pNEX3‑apATRPR and pNEX3‑EGFP, and B1/B2 and other neurons on the right side were microinjected 
with only plasmid pNEX3‑EGFP. Arrows indicate the neurons injected with plasmids and expressed the EGFP protein (showed bright fluorescence 
under a fluorescence microscope, see panel f). Arrowheads indicate the neurons injected with plasmids but did not express the EGFP protein. 
f B1/B2 neurons on both sides showed bright fluorescence (green, arrows) under a fluorescence microscope. The left B1/B2 neuron expressed 
apATRPR and EGFP, and the right B1/B2 neuron expressed EGFP. Other neurons marked with arrowheads in (e) did not express injected genes. g, h 
A magnified view of the injected neurons in (f) showing left B1/B2 neuron (g) and right B1/B2 neuron (h). Scale bar in f: 500 μm (scale bar in f is for 
e and f); Scale bar in h: 200 μm (scale bar in h is for g and h). i, j At  10–6 M and  10–5 M, apATRP increased B1/B2 excitability (F(3, 9) = 44.84, p < 0.0001, 
n = 4 individual neurons from three preparations), which expressed the receptor apATRPR. Bonferroni post hoc tests: ***p < 0.001. Error bars, SE. k, 
l apATRP had no significant effects on B1/B2 neurons that do not express the receptor apATRPR (F(3, 6) = 1.60, p > 0.05, n = 3 individual neurons 
from three preparations). Bars in a, c, i and k denote current injections. Control groups and wash groups in a, c, i, k were perfused with high divalent 
saline only, whereas the experimental groups in a, c, i, k were perfused with the neuropeptide apATRP dissolved in high divalent saline
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to manipulate gene expression. Consequently, the proce-
dure described in this paper should be particularly use-
ful in these animals to study functions of genes in native 
neurons.
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