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Abstract

Changes in Physiological Network
Connectivity of Body System in Narcolepsy
during REM Sleep

Dong Yeon Son
Interdisciplinary Program in Bioengineering
The Graduate School

Seoul National University

Background: Narcolepsy is marked by pathologic symptoms including excessive
daytime drowsiness and lethargy, even with sufficient nocturnal sleep. There are two
types of narcolepsy: type 1 (with cataplexy) and type 2 (without cataplexy). Unlike
type 1, for which hypocretin is a biomarker, type 2 narcolepsy has no adequate
biomarker to identify the causality of narcoleptic phenomenon. Therefore, we aimed

to establish new biomarkers for narcolepsy using the body’s systemic networks.



Method: Thirty participants (15 with type 2 narcolepsy, 15 healthy controls) were
included. We used the time delay stability (TDS) method to examine temporal
information and determine relationships among multiple signals. We quantified and
analyzed the network connectivity of nine biosignals (brainwaves, cardiac and
respiratory information, muscle and eye movements) during nocturnal sleep. In
particular, we focused on the differences in network connectivity between groups
according to sleep stages and investigated whether the differences could be potential

biomarkers to classify both groups by using a support vector machine.

Result: In rapid eye movement sleep, the narcolepsy group displayed more
connections than the control group (narcolepsy connections: 24.47 + 2.87, control
connections: 21.34 + 3.49; p = 0.022). The differences were observed in movement
and cardiac activity. The performance of the classifier based on connectivity

differences was a 0.93 for sensitivity, specificity and accuracy, respectively.

Conclusion: Network connectivity with the TDS method may be used as a
biomarker to identify differences in the systemic networks of patients with

narcolepsy type 2 and healthy controls.

Keyword: Sleep, Narcolepsy, Narcolepsy type 2, Brain, Connectivity, REM,

Time delay stability

Student Number: 2020-28681
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Introduction

1.1. Narcolepsy

Narcolepsy is a neurological disease characterized by excessive daytime
drowsiness and lethargy, hallucination, lowered concentration, and dysfunction of
the brain’s ability to control the sleep-wake cycle [1]. These symptoms can not only
affect individuals’ ability to work but also lower their quality of life [2]. Narcolepsy
is known to be related to rapid eye movement (REM) sleep and the brain’s control
of this state. Patients with narcolepsy fall into REM sleep suddenly in the daytime
and fall into REM sleep much faster at night, with REM sleep accounting for a higher
proportion of total sleep compared to healthy controls [3-6]. These clinical

differences imply that REM sleep is a crucial indicator for distinguishing narcolepsy.

Narcolepsy is divided into two types: type 1 (with cataplexy) and type 2
(without cataplexy). Both types present with symptoms of excessive daytime
drowsiness, but type 1 involves cataplexy, which causes sudden REM sleep in the

daytime. In addition, type 1 has a specific biomarker: hypocretin in the cerebrospinal



fluid (CSF), which chemically controls the nervous and endocrine systems, is used
to identify the cause of narcolepsy [6]. A hypocretin deficiency affects the body’s
ability to control the nervous and endocrine systems, leading to the symptoms of
narcolepsy and cataplexy. On the other hand, narcolepsy type 2 does not have
specific biomarkers to explain the causality of the pathological phenomenon [4,7].
Therefore, it is essential to identify biomarkers to interpret the symptoms of patients
with narcolepsy type 2. To establish new biomarkers, we focused on the interactions
of the body’s neurological and electronic systems and examined the differences
between patients with narcolepsy and healthy controls. For this, it was necessary to
quantify physiological differences in the body’s network between patients with
narcolepsy and controls with understandable metrics. (Narcolepsy type 2 will be

referred to as “narcolepsy” from now on.)



1.2. Physiological interactions in body system

We analyzed the differences between patients with narcolepsy and healthy
controls by focusing on the interactions of the physiological system during nocturnal
sleep. Physiological systems continuously interact within organs and coordinate their
functions through a feedback mechanism with variance of time. The interactions
change according to the regulatory effect of the nervous system, physiological states,
and pathological conditions [8-9]. Numerous studies have sought to determine the
physiological interactions of the human body during sleep. Studies on interactions
between the brain and heart show that brain-heart and brain-brain interactions have
their own causal directions and that brainwave and heart rate variability (HRV)
components affect each other [10]. Studies on cardiopulmonary interaction, which
represents the connection between the heart and respiration, have revealed different
aspects according to varying pathologic conditions. Unidirectional coupling from
breathing to cardiac activity increases during the wake state and during REM sleep
in patients with obstructive sleep apnea (OSA) when compared to controls [11].
Moreover, relative to controls, patients with depression showed a reduction in high-
frequency cardiopulmonary coupling and increment low-frequency coupling, both
of which indicate an unstable sleep state [12]. In research on insomnia, patients
showed a decreased linear relationship and coherence between delta brainwave
power and high-frequency power of HRV compared to controls [13]. These studies
indicate that clinical and pathological differences exist within interactions in the
human body. However, no proper studies, especially on narcolepsy type 2, have
examined physiological interactions between patients with narcolepsy and controls

from the aspect of systemic networks. Several studies have shown a partial



interaction between the brain and peripheral organs and differences in the sleep
structures and characteristics of REM sleep. It has been reported that the cortical
circuits of patients with narcolepsy dissociate motor components of the body during
REM sleep, leading to confusion between dreams and reality [14]. Research has
shown that, compared to healthy individuals, patients with narcolepsy show bursts
of theta rhythm brainwaves [15] and frequent movement of the submentalis muscle
[16] during REM sleep. As both patients with narcolepsy and controls show clinical
differences and experience pathologically different conditions and states during
sleep, there may be differences in both groups regarding the physiological
interactions of systemic networks. Therefore, we hypothesized that interactions in
the physiological systems of patients with narcolepsy differ significantly in REM

sleep, as do the sleep structures and characteristics.



1.3. Connectivity with time delay stability

Determining the differences in complex interactions within the brain and
peripheral sites is fundamental to analyzing and interpreting interactions between
narcolepsy and control groups [17]. We examined connectivity among biosignals
within the body to quantify and compare the strength of the connections. By
analyzing connectivity, relationships among biosignals that represent characteristics
of different body parts can be viewed as a network. Connectivity among biosignals
can be estimated via strength and stability, and the overall systemic connectivity can
represent the physiological state. Considering the time-variant and dynamic
characteristics of the system, we used the time delay stability (TDS) method based
on cross-correlation to quantify the connectivity using time. Although there are
numerous ways to analyze network connectivity, we chose the TDS method because
it is sensitive to temporal resolution and can be used to address the complex
relationships of multiple signals [8]. The TDS method can also be used to calculate
correlations between signals, and it is useful for determining stability with temporal
information. Thus, the TDS method can be used to compare connectivity among
multiple biosignals according to sleep stages and may also be used to explain these

physiologically complex systems.

Using the TDS method, we compared the connectivity of biosignal networks in
patients with narcolepsy and healthy controls during nighttime sleep [8,9,18]. We
selected data from polysomnography focused on the characteristics of narcoleptic
symptoms, including leg, chin and eye movements, cardiopulmonary function, and
electroencephalogram (EEG) information. With reference to sleep stages recorded

using polysomnography (PSG), we applied the TDS method to selected biosignals



for each stage of nocturnal sleep and compared the two groups. We evaluated all
possible connections to analyze the brain and peripheral feature connectivity for each
sleep stage. We aimed to evaluate the differences in connectivity in each sleep stage
and to determine the specific causality of physiological differences between patients

with narcolepsy and healthy controls [19].



1.4. Dissertation Qutline

This thesis consists of following chapters.

* Chapter 2 presents experimental environment and participants with
computational methods for analysis.

*  Chapter 3 describes results of our study and delineates interpretations of
the results as a discussion.

*  Chapter 4 summarizes limitations from the overall process of our study and

proposes suggestions.

This thesis is based on following scientific article that have been accepted for

publication:

D.Y. Son, et al. Changes in physiological network connectivity of body
system in narcolepsy during REM sleep. Computers in Biology and

Medicine. 2021;136. https://doi.org/10.1016/j.compbiomed.2021.104762

The author of this thesis contributed to the above study as follows: conception
and design of the experiments; data acquisition, analysis, and interpretations; and

wrote and reviewed the manuscript.
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Material and Methods

2.1. Participants

Twenty patients with narcolepsy type 2 and 15 healthy controls were included.
We excluded individuals with any sleep disorders other than cataplexy from the
narcolepsy group. Five individuals in the narcolepsy group who had obstructive
sleep apnea (OSA), periodic limb movement disorder (PLMD), depression,
schizophrenia, epilepsy, or physical or mental problems were excluded. Those taking
medications that could affect sleep were also excluded. Those diagnosed with
moderate or severe OSA and PLMD were excluded (apnea hypopnea index (AHI) >
15 times, periodic limb movement index (PLMI) > 25 times) [20-30]. Control group

participants also satisfied the above-mentioned inclusion criteria, except for the



narcolepsy criteria. After exclusion, 15 patients with narcolepsy (8 men and 7 women;
aged 24.8 + 8.23 years) and 15 controls (7 men and 8 women; aged 27.67 + 3.84
years) were included in the analysis [18,31,32,33]. All participants underwent
nighttime PSG, and the narcolepsy group underwent a daytime multiple sleep latency
test (MSLT) the day after PSG. Patients with narcolepsy satisfied the American
Academy of Sleep Medicine (AASM) criteria [34] for narcolepsy (average sleep
onset latency for all MSLTs < 8 min and number of sleep onset REM in all MSLTs
> 2) and were diagnosed [35] by a clinician from Seoul National University Hospital
in South Korea (Table 2-1). This study was approved by the Institutional Review

Board of Seoul National University Hospital (IRB No. 2101-120-1190).

10 SE=an



Table 2-1. PSG information for participants with narcolepsy and controls

Narcolepsy Controls P

In PSG (N=15) (N=15)
Males/Females 8/7 7/8
Age (years) 24.8+8.23 27.67+3.84 N.S.
Body mass index 26.1+5.08 22+ 3.89 N.S.
TRT (min) 509.73 £27.27 433.97+30.87 <0.001
TST (min) 462.67 +£48.78 398.17 £ 39.81 <0.001
TWT (min) 47.07 + 33.84 35.8+16.93 N.S.
SE (%) 90.66 + 6.78 91.61+4.2 N.S.
WASO (min) 42.5+33.91 28.6 +17.01 N.S.
SOL (min) 4.57+5.24 5.37+3.64 N.S.
LS (%) 63.14 + 8.83 71.47 + 6.65 0.009
DS (%) 11.84+7.13 7.93+4.97 N.S.
REM (%) 25.02+6.13 20.58 +5.27 0.049
REM latency (min) 25.53+£36.19 100.37 + 54.54 <0.001
PLMS (events/h) 4.15+8.14 2.47+4.32 N.S.
Al (events/h) 1.09+1.4 0.13+£0.15 0.016
HI (events/h) 5.53+7.48 1.06 £ 1.03 0.035

In MSLT
Mean SOL 3.65+3.61 -
Mean SOREMP 3.33+1.07 -
TRT =Total recording time; TST = Total sleep time; TWT = Total wake time; SE = Sleep efficiency;
WASO = Wake after sleep onset; SOL = Sleep onset latency; LS = Light sleep; DS = Deep sleep
(Slow wave sleep, SWS); PLMS = Periodic limb movements during sleep; Al = Apnea index; HI =
Hypopnea index; SOREMP = Sleep onset REM period; N.S. = Not significant

1 AM=1T



2.2. PSG recording and data

All participants underwent nighttime PSG, and the narcolepsy group underwent
additional daytime MSLT at the Center of Sleep and Chronobiology of Seoul
National University Hospital. Before both the PSG and MSLT, clinicians checked
the signals of participants to obtain the reference readings for several situations like
breathing, switching body position, eye blinking, and other signal checks.
Participants in both groups slept between 7 and 8 hours during the night time for
PSG, and the narcolepsy group slept an additional 5 times for 20 minutes during the
day for MSLT. During PSG and MSLT, we collected 20 signals via electrodes and
sensors. These included an accelerometer for body position, six EEG from the right
and left of the frontal, central, and occipital lobes; two electrooculograms (EOGs)
from the left and right eyes, three electromyograms (EMGs) from the left and right
tibialis anterior and submental muscles, an electrocardiogram (ECG) from the heart,
oxygen saturation from pulse oximetry, thoracic and abdominal movement from a
piezoelectric sensor, nasal-oral airflow temperature and pressure. All signals were
sampled at 500 Hz using the NEUVO system (Compumedics Ltd., Victoria,
Australia) for PSG records, and each sleep stage was scored in 30-second epochs.
Sleep stages were scored by trained PSG technologists based on the AASM manual
[34], and two clinicians checked the results and diagnosed the participants. We
converted five sleep stages (N1, N2, N3, REM, and WAKE) into four sleep stages:
light sleep (LS), deep sleep (DS), REM, and WAKE by grouping N1 and N2 as LS,
and N3 as DS. Based on the different characteristics of patients with narcolepsy
regarding brain activity, body movement, eye movement, and cardiopulmonary

function [5], we used EEGs from the brain, EOGs from the eye, EMGs from the leg

12 A = LH



and facial parts, and ECGs of heart and respiration information to evaluate their

connectivity.
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2.3. Data processing

From the selected signals, we derived nine features for further analysis using
the TDS. These included heart rate from the ECG (HR), movement power from the
chin and leg EMG (CHIN, LEG), respiration rate from the pressure transducer
airflow (RESP), eye movement power from the EOG (EYE), and four spectral

powers of delta (3), theta (0), alpha (o), and beta () from the EEG.

Before we applied the TDS method, feature signals were derived or calculated
for each of the 1-s windows, and the window was shifted by 0.5 s. Thus, nine feature
signals were derived for every 0.5 s to represent temporal variation of their

connectivity with maximal temporal detail [36].

EEG: From the central lobe channel of the EEG, we performed frequency analysis
and obtained the periodogram for the spectral range of delta (0.5~3.5 Hz), theta
(3.5~7 Hz), alpha (7-13 Hz), and beta (13-20 Hz). We chose to use the central lobe’s
EEG signal as we hypothesized that this difference would come from the difference
in characteristics of the motor control sections between the narcolepsy patients and
controls and the motor cortex, which controls the motor control area, is located in
the central lobe. Moreover, we confirmed that there were no significant differences
according to brain areas in our study. EEG brain waves were obtained in a 1-s

window (500 Hz), and the processing window was shifted by 0.5 s in every iteration.

ECG: ECG R-peaks from QRS waves were detected with a peak detection algorithm
and double-checked after automated processing of the algorithm. Heart rates were
obtained with a 2-s window and a 1-s shift process, as the instantaneous heart rate

could be calculated by the interval of successive heartbeats, and at least two beats

14 A 2-TH



were needed to calculate heartbeats. After obtaining the heart rates, we resampled

them to satisfy the 1-s window with a 0.5-s shift.

Respiration: Usual respiration rates are approximately 12-20/min in adolescents and
adults. This means that one respiration cycle requires at least 5-6 s. It is not possible
to obtain respiration rates with a 1-s window. Therefore, we derived the respiration
rates using 5-s, 10-s, 15-s, and 30-s windows and resampled them to a 1-s window.
Respiration rates for different windows were calculated using the auto-correlation
method from a pressure transducer airflow sensor with a filter range of 0.15 to 0.5
Hz, and they were compared by correlation with the reference respiration rate
derived from a 30-sec window. Pearson’s correlation coefficient was adopted for 5-
s, 10-s, and 15-s windows, and each showed 0.653+0.08, 0.535+0.11, 0.381+0.17 in
patients with narcolepsy and 0.676+0.11, 0.57+0.13, 0.379+£0.16 in controls
respectively. As a 5-s window lost a large amount of information, we chose to use a

10-s window and resampled it into a 1-s window with a 0.5-s shift.

EMG and EOG: EMG information from the facial submentalis muscle (CHIN) and
tibialis anterior muscle (LEG) and EOG information from bilateral eyes (EYE) were
used to obtain movement information in normalized form, and the square root of the
average of the squared data from the absolute value of the signal was extracted every

iteration with a 1-s window and a 0.5-s shift.
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Data Preprocessing
9 features selected (a, B, 0, 6, CHIN, LEG, HR, RESP, EYE)

Stable classification
Label ‘stable’ based on time delay for every connection in each epoch

Threshold tuning

Threshold tuning with percentile selection in whole sleep stages

Feature significance analysis
Find connections which have significant effect

\

Compare number of connections between narcolepsy and control groups according to sleep stages
and analyze which features make the difference and find their causalities

Figure 2-1. Overall pipeline flowchart that shows the entire procedure to analyze network

connectivity in the narcolepsy and control groups.
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2.4. Time delay cross-correlation

To analyze the transition between sleep stages and determine the effect of
physiological connectivity in greater temporal resolution, one epoch (30-s signal)
was shifted by 15-s to create a 30-s window with 15-s shift for every iteration. As
the second shift was not compatible with the number of sleep stages from 30-s
epochs (double the number of sleep stages), epochs that shared the latter 15 s of the
previous stage and the first half of the latter part of the sleep stage were labeled using
the score of the previous stage (Figure 2-3). Each sample of processed sleep-feature
data represented 1 s of their connectivity information with 0.5-s time resolution. This
means one epoch consisted of 60 sample points. To obtain the connectivity
information of an epoch, cross-correlation was conducted for all nine biosignals. As
nine features were selected, there were 36 cases of cross-correlation (Complete graph

with 9 points; ¢C, = 36, Figure 2-2).

Figure 2-2. Complete graph with 9 points could make 36 connection.
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Data within one epoch were normalized to zero mean and unit standard
deviation to maintain constant trends throughout the data. After normalization, cross-
correlation was performed. Cross-correlation revealed the scores of the correlation
coefficient between two data with a sliding dot product method, that is, by shifting
data within a window (2-1). We found the time index that had the maximum absolute
value of the correlation score to consider positive and negative correlations. We
nominated the time index with the maximum value of cross-correlation as the time

delay of the corresponding epoch (2-2).

L Xi—X) (Yilt]-YED

Yarlt] = = ,—n <t < n 2-1)
/zy(xi—)?)z /zﬁyi[t]—m)
T = argmax{yxy[t]} (2-2)

where, X, Y = signals to compare; Y[t] = time shifted signal with t; n = length of signals;

Yxy [t] = time shifted Pearson’s correlation coefficient; 7 = time delay index.

In short, we used time delay cross-correlation to determine the time delay
between two signals by moving the data and finding the maximum score of the
correlation coefficient in each epoch. We restricted the range to find the maximum
time delay index in a small time area from -5 to 5 s to finely investigate physiological
changes among the biosignals of each epoch (Figure 2-4). Indices of time delay were
stored and used to calculate the time delay stability for whole biosignal combinations

depending on the sleep stages.
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Figure 2-3. Thirty-second window shifted by 15 seconds with overlapping
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Figure 2-4. Example of time delay index acquisition between two signals

Theta brain wave and heart rate (HR) signals of one epoch are extracted from one participant,
and the time delay method is applied. (a) Extracted information is shown from one epoch of
each signal, theta EEG band power and HR. (b) After applying cross-correlation between two
signals, correlation-coefficient values are obtained depending on the time delay for the
restrict area from -5 to 5 seconds. (c) The absolute value is applied to the result of cross-
correlation within the restricted window and time delay index, which represent the highest

correlation-coefficient is stored.
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2.5. TDS methods

Time delay stability (TDS) can quantify interactions among biosignals by
considering temporal variations in physiological networks and connectivity within
the body. TDS can show how people maintain their states stably and how strongly
the connections are between organs. In addition, it can reveal the synchronization of
signals by comparing the correlation scores using time information within an epoch.
This allows us to identify the complex networks of body interactions and understand
systemic connectivity. To calculate the TDS, the time delay index for each epoch was
loaded with the scored sleep stage. Each epoch had 36 time delays for all possible
combinations of the two features. We classified as “stable” each network of signals
containing segments with a length of five successive sleep epochs. Based on time
delay of the first epoch in segment (t), if more than four epochs from the segment
had time delay indices within the range of t-1 to t+1 s ([t-1, T+1]), then the first
epoch was labeled “stable”. This procedure was repeated with a five-epoch window
and a unit epoch shift. All 36 networks had their own “stable” classification using
the above criteria and were packed within each epoch. This means that every sleep

epoch had 36 networks, each labeled as stable or not stable (Figure 2-5).

We quantified stability of the networks and analyzed them for each of four sleep
stages. The TDS score was obtained by calculating a proportion of “stable”
classifications for each sleep stage during whole sleep. Every sleep stage (WAKE,
REM, LS, DS) received a TDS score by dividing the number of “stable”

classifications by the number of each sleep stage for every network.
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Figure 2-5. The above figure shows an example of “stable” classification of an epoch for the
connectivity of theta and HR signals. (a) Time delay indices of epochs are used to classify
“stable.” (b) From epoch one to ten, the labeling procedure is conducted based on the time
delay index of the first epoch in segments (t). We check whether the segments are stable for

every epoch.
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2.6. Threshold tuning

In previous research, TDS was used to create links between two signals. After
the threshold value was obtained, if the TDS score of each network was over the
threshold, two signals were connected by a link, and combinations of these
connections created a visualized topology. It showed a complex physiological system
depending on the sleep stages with quantified and visualized modalities [8]. However,
as there are many conditions and differences among an individual’s physiological
states, to minimize individual variations, we normalize the results of TDS according
to the participants. We derived the optimal threshold to build links between the
signals for each sleep stage. To apply the common threshold value to the four sleep
stages, the score distribution of the whole TDS without classification of sleep stages
was used to derive the threshold. The average TDS scores of 36 networks were sorted
without consideration of sleep stages, and the lower percentile was selected as the
possible threshold. The lower 10, 20, 30, 35, and 40 percentiles were selected to find
the optimal threshold and compare their performances in differentiating narcolepsy
from the controls. These thresholds, without consideration of sleep stages, were
applied to each sleep stage. If the TDS of a network was over the threshold, a link
was built between two signals. This made network connections for each sleep stage,
showed how the connections were comprised, and revealed how the changes
developed according to sleep stage. By summing the number of linked connections
of each sleep stage, we obtained the number of network connections and compared

it among sleep stages and between the two groups (Figure 2-6).
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Controls

Figure 2-6. Above are examples of network connections in patients with narcolepsy and
controls when a 30th percentile threshold is applied. Patients with narcolepsy and controls

have different connections, which are visualized as topologies.

The lower percentiles were fine-tuned to obtain the optimal threshold, and we
compared the number of connections. In previous research, healthy controls showed
a higher number of connections in the WAKE and LS stages, while the REM and DS
stages had fewer connections. When comparing sleep stages between the two groups,
there were significant differences between REM/DS and WAKE/LS (t-test p <0.001)
in each group [8]. Based on this, we changed the percentile for the threshold and
compared the number of connections in the groups. As a result, the threshold with
the lower 30th percentile showed the maximal difference and satisfied those
conditions. P-values revealed significant differences when we compared WAKE
with REM and DS (p < 0.001) and also when we compared LS with REM and DS

(p <0.05, p <0.01); these differences are similar to previously reported results [8].
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If the threshold exceeded the 30th percentile, it began to lose the network
connections information. A high threshold made it difficult to build links using the
TDS method. In the 35th percentile, there was no significant difference between
REM and LS. The higher the threshold used, the more significant the difference; the
information was eliminated so that we could not distinguish and compare the
differences among sleep stages. Additionally, when comparing patients with
narcolepsy and controls, there were significant differences in the number of network
connections during REM for all percentile thresholds except for 35th. In the 30th
percentile, we observed the largest significant difference (p-value of 10th: 0.031,
20th: 0.042, 30th: 0.022, 35th: 0.108, 40th: 0.047) (Figure 2-7). From these results,
we chose to use the lower 30th percentile to compare network connections and

analyze network connectivity between the groups.
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Figure 2-7. Number of connections in different sleep stages for different percentile

thresholds (* p < 0.05).
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2.7. Test-retest reproducibility

We could show the reliability and reproducibility of our method by using the
data from the MSLT (Multiple sleep latency test) which was done after the nighttime
PSG in patients with narcolepsy. Since the MSLT was repeated 5 times, for 20
minutes during daytime sleep, and each segment of the MSLT used the same process
as the PSG analysis, we could investigate the same participant 5 times to simulate
the test-retest procedure. However, since the MSLT has a short sleep time compared
to nighttime PSG, MSLT seldom has deep sleep. Since MSLT also could not show
enough light or REM sleep due to the short duration, we excluded any data which
could not make over 10 network connections. In patients with narcolepsy, we
conducted same procedures to get the number of network connections and we

compared distributions of five MSLT sleeps with analysis of variance (ANOVA).
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2.8. Brain and peripheral connections

As we used nine features to create a physiological network (Figure 2-6) and a
connection was made between two features, there was a total of 36 connections. We
classified features as brain or peripheral areas. The brain areas included delta (),
theta (0), alpha (a), and beta (p) features, which were classified using EEG data; the
other five features were classified as peripheral parts of the body. To analyze and
compare the number of connections between and within the brain and peripheral
areas, we defined three types of connections: brain-brain connections, brain-
periphery connections and periphery-periphery connections. We analyzed the
number of network connections not only for whole networks but also within and

between separated body parts.
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2.9. Effect of brain-brain connections according to brain areas

EEG signals in our study were measured from three brain areas: the central,
frontal, and occipital lobes. We chose to use the central lobe’s EEG signal as we
hypothesized that the difference between narcolepsy patients and controls would
come from the different characteristics of the cortex’s motor control regions and the

motor cortex, which controls the motion area, is located in the central lobe.

As EEG signals from different brain areas share similar trends, we hypothesized
there would no difference according to brain areas. However, to confirm that there
are no significant difference and to determine if there would be any reasonable
factors, we did additional analysis where we separated the signal by extracting
signals from different parts of the brain areas. We applied the same algorithm we did
during our assessment of the central lobe to three different parts of the brain areas:

frontal, occipital and central lobes, and analyzed their relationship.
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2.10. Feature significance analysis

As the narcolepsy and control groups showed differences in network
connectivity during nighttime sleep, there must be physiological distinctions in the
features according to sleep stages. To identify which feature connections differed and
influenced the number of network connections between the narcolepsy and control
groups, we conducted feature significance analysis by comparing TDS values for
whole connections among features of the two groups. The same threshold tuning and
normalization was conducted for each participant, as individuals have different
physiological characteristics and the variations may cause disturbance in the analysis.
Whole TDS values were normalized for each participant using the proportion method.
Thirty-six connections each had their own TDS value, and each connection was

normalized using the summation of whole TDS values (2-3).

TDS(connectiony)

Ny, Normalized TDS = X100 2-3
th Normalize %il[Tps(connectionn)] &

Normalized TDS values for patients with narcolepsy and controls were
compared according to sleep stage. We sought to determine which components
contributed to the difference in network connections between the two groups by

determining connections with significant differences.
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2.11. Network directionality with correlation

After analyzing the feature significance of each connection, we also compared the
network directionality by considering both the negative and positive correlations
from the time delay cross-correlation. As described in section 2.4, we determined the
time delay index from the absolute value of correlation, or mixed correlation [37].
However, by analyzing each positive and negative correlation, we could find the
directionality of each significant connection, which was helpful in interpreting the
difference in the characteristics between the patients with narcolepsy and controls
more specifically. Without applying the absolute value in time delay cross-
correlation, we extracted positive correlation values from the time delay cross-
correlation by selecting the maximum score with stored time delay index. Likewise,
negative correlation values were extracted from the minimum score of cross-
correlation with time delay index. We analyzed the connections’ correlation which
were classified as ‘stable’ from the mixed correlation and compared both the positive

and negative correlations according to time delay and sleep stages between the two

groups.
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2.12. Verifications of network connectivity as classifier

To verify that the network connectivity could be a potential biomarker to
distinguish patients with narcolepsy and controls, it should show better performance
as a classifier than unimodal feature’s performance from PSG. Although many
studies have tried to determine the unimodal difference between narcolepsy and
controls, their findings are inconsistent. Except for HRV and brain waves, the
features we used are not well studied. Furthermore, EMG as a biomarker only
showed any difference in previous studies when the RSWA was calculated from it
[16]. Based on these, we hypothesized that interactions among biosignals with
network connectivity could determine other explanations for the difference which

could help us to access causal relationships, with further research.

We extracted each data from the 9 unimodal biosignals and compared their
effect to distinguish narcolepsy and control groups during REM sleep. Furthermore,
we compared the number of network connections in both groups as classifier with
each of unimodal feature. We classified patients with narcolepsy and controls based
on the average number of narcolepsy features during REM sleep. In other words, we
classified narcolepsy and control groups during REM sleep using the average
number of each narcolepsy feature as threshold. After all, we evaluated their

performance with sensitivity, specificity, and accuracy to distinguish both groups.
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2.13. Classification with support vector machine

To verify if network connectivity with the TDS method could be a potential
biomarker, we conducted a simple classification between narcolepsy and control
groups. We extracted two features: the number of network connections and merged
TDS values from the significant connections affecting the number of connections
from section 2.10. The merged TDS was obtained by summing each feature’s TDS

value with a constant weight (2-4).

Features’ TDS = YN, (W X significant feature/ s TDS;) 2-4)

where, N= number of significant features, W= constant weight.

With the Features” TDS and the number of connections, we scattered their
distributions and classified them with a support vector machine (SVM), which finds
the best decision boundary to distinguish two groups by determining the maximum
margin between each nearest group’s data point. Margins represent the distance
between the decision boundary to support vectors, which were used to guide finding
the best decision boundary and usually located near to it. Thereafter, based on the
decision boundary from SVM, we investigated their performance as a classifier by

calculating the sensitivity, specificity, and accuracy.
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3

Results and Discussion

3.1. Results

3.1.1. Network connections between narcolepsy and control groups

After we applied the TDS method with a 30th percentile threshold, we found a
difference in the overall number of network connections during sleep. In the control
group, sleep stages showed the same trend as in previous research, with a higher
number of connections in WAKE and LS, and a lower number in REM and DS [8].
However, although they showed a trend similar to that of the controls, the narcolepsy
group showed a significantly higher number of connections in REM sleep (p = 0.022).
The narcolepsy group showed about three more connections (narcolepsy: 24.47 +

2.87, control: 21.34 £ 2.65) compared to control group (Figure 3-1).
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Figure 3-1. Network connections between narcolepsy and control groups (* p < 0.05).

For a more detailed analysis, we divide this whole network into three parts
(brain-brain, brain-periphery, and periphery-periphery) and compared the number of
connections between narcolepsy and control groups. As brain lobes are highly
connected and four areas have high correlation, almost every connection between
brain signals was over the threshold. As a result, brain-brain connections were fully
connected to each other; they did not affect the whole number of connections.
Meanwhile, the brain-periphery and periphery-periphery areas showed fluctuations
among sleep stages and between the two groups. As the difference between groups
was shown in whole connections of REM sleep, we focused on the REM sleep stage.
Brain-periphery networks in REM sleep showed a higher number of connections in
patients with narcolepsy compared to controls, but the difference was not significant
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(p = 0.135). However, periphery-periphery networks also showed a higher number
of connections in patients with narcolepsy than controls, and the difference was
significant in REM sleep (p = 0.0017). This shows that the overall number of
connections is more likely to be affected by brain-periphery and especially

periphery-periphery areas of physiological interactions in the body (Figure 3-2).

(a) Brain - Brain Networks (b) Brain - Periphery Networks (c) Periphery - Periphery Networks

P B »

=

R - ,

= 2 2

3 0 a

= 0 0

=

S 8 8 **

2 =]

S s 6 6

5

_§ 4 4 4

£ i ,

z , )

: WAKE REM DS i WAKE REM DS : WAKE REM LS DS

LS LS
= Narcolepsy # Control = Narcolepsy = Control = Narcolepsy # Control

Figure 3-2. Brain-brain network connections (a) do not show differences among sleep stages
or between the two groups. However, brain-periphery network (b) and periphery-periphery
network (c) connections have fluctuations, and the narcolepsy group shows significantly

higher connections than controls in periphery-periphery REM sleep (** p <0.01).
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3.1.2. Test-retest analysis for reproducibility

With data from daytime sleeps after the night time PSG of patients with

narcolepsy, we could retest our TDS based connectivity analysis multiple times to

ensure that our method has reproducibility. Table 3-1 shows the results of network

connections in MSLT which we compared the distribution of to determine whether

there was any difference between with ANOVA analysis. The F- and P-value scores

indicate that there is no significant difference among MSLT in every sleep state.

Although MSLT has different characteristics from nighttime PSG and therefore has

limitations to definitively show the test-retest reliability of PSG, this multiple

verification of MSLT in the same participants could be an indication of our methods’

reproducibility.

Table 3-1. Distribution of number of network connections in MSLT sleep with ANOVA analysis

MSLT1 MSLT2 MSLT3
WAKE REM LS WAKE REM LS WAKE REM LS
22.78 25.92 19.56 21.38 24.6 21.45 20 25.83 21.62
+4.73 + 6.49 +3.65 +4.97 +434 £5.69 +4.47 +5.15 +6.05
MSLT4 MSLT5 ANOVA F P
WAKE REM LS WAKE REM LS WAKE 0.449 0.772
21.8 24.58 20.27 22.8 26.17 20 REM 0.194 0.941
+5.47 +4.07 +3.96 +4.66 +5.81 +£3.58 LS 0.309 0.871
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3.1.3. Significant feature identification

To identify which components in a network affect the total number of
connections, we conducted a feature significance analysis. As the number of
connections differed in REM sleep, we focused on REM sleep connections and
visualized them using topology (Figure 3-3). Significant differences were observed
between HR and theta (0) brainwaves (p = 0.05), HR and eye movement (p = 0.026),
and chin movement and respiration rate (p = 0.043), and their values were higher in
patients with narcolepsy than in controls. Delta () and alpha (o) brainwaves (p =
0.0072) and delta (5) and theta (6) brainwaves (p = 0.03) also showed significant
differences, but they were higher in controls than in patients with narcolepsy. These
components may affect overall network connections; however, as brain-brain
networks usually exceed the thresholds, they do not affect the number of connections
(Figure 3-2). Therefore, we excluded brain-brain networks to identify the

components significantly affecting the number of connections (Figure 3-3-b).
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Figure 3-3. Network topologies of biosignals that appear significant difference. A dotted line
represents a connection with a significantly higher TDS in the narcolepsy group than in the
control group (p < 0.05), and a solid line represents a connection with a significantly higher
TDS in the control group than in the narcolepsy group. Brain-brain connections are shown in
(a), but as brain-brain connections do not affect the total number of network connections,

they are eliminated in (b).

Brain-periphery and periphery-periphery networks mainly affected the number
of connections among the 36 cases. The overall feature significances in REM sleep
are expressed with p-values and differences in connectivity in Figure 3-4. These
values show how the normalized TDS values of the connections differ between the
two groups. Although the brain-brain area reveals significant differences in a-8 and
0-6 connections, it does not affect networks; brain-brain connectivity was stronger
in controls than in patients with narcolepsy. On the other hand, the brain-periphery
and periphery-periphery areas usually show higher connectivity in patients with

narcolepsy, especially in 8-HR, HR-EYE, and CHIN-RESP connections.
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Figure 3-4. The matrix above shows the differences in feature connectivity and their p-values
in REM sleep. The number on upper part of the diagonal matrix shows significantly different
connections with p-values; the number on lower part of the matrix shows the differences in
normalized TDS values between the narcolepsy and control groups (* p < 0.05). The
narcolepsy group values are subtracted from the control group values; positive numbers
indicate the narcolepsy group has higher connectivity than the control group, and negative
numbers indicate the control group has higher connectivity than the narcolepsy group. The
connections with a-9, 6-0, 6-HR, CHIN-RESP, and HR-EYE reveal significant differences
and the matrix shows how they are distributed between the narcolepsy and control groups

during REM sleep.
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3.1.4. Effect of brain-brain connections according to brain areas

Even though we measured the EEG of the brain areas in different locations, they
had a high correlation-coefficient when their signals were compared. Because of the
high correlation, they could not make a difference in network connection as they
mostly exceeded the threshold (3.1.1, 3.1.3, Figure 3-2). However, to determine if
there are any meaningful information, we applied our network connectivity methods
with changed brain area. To confirm that there are no noteworthy differences in
connections with brain and peripheral areas, we compared distributions of network

connections during sleep in both of narcolepsy and control groups (Table 3-2).

The number of network connections does not show any significant difference
when compared to the results obtained from the central lobe, which we initially dealt
with in the previous result. The distributions were also similar in both the narcolepsy
and control groups. Other than the frontal lobe showing a marginally significant
difference (p = 0.07) between the two groups, no other results show significant
difference, and the central lobe during REM sleep showed the most meaningful
significant difference. Based on the results of the analysis of the other parts, we

confirmed that they do not show any significant difference among them.
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For detailed explanations, we analyzed the next process of significance analysis
with every brain EEG location. In the central lobe, we could get five significant
connections; a-9, 0-6, 0-HR, HR-EYE, CHIN-RESP during REM sleep (Figure 3-
5-b). In the frontal and occipital lobes, they also showed similar network of
significant features. Compared to the central lobe, the frontal lobe lost the HR-EYE
connection, and the occipital lobe lost the 6-6 connection. However, even though
they could not reach a significant difference (p < 0.05), they were marginally
significant (HR-EYE in frontal lobe p = 0.062, 6-3 in occipital lobe p = 0.056) on
their connections. Based on these results, we could find no remarkable differences
among three different brain areas in brain-periphery and periphery-periphery

connections.

We considered that the loss of HR-EYE in the frontal lobe is due to relatively
low frontal lobe activation as the visual function is mainly located in the occipital
lobe. With respect to the location, the central lobe could show both frontal and

occipital characteristics.

(a) Frontal lobe (b) Central lobe (C) Occipital lobe
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Figure 3-5. Connections of significant features from different brain area.
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In addition, under the assumption of possible meaningful brain-brain
connections among the three brain areas, we selected brain waves from different
parts of the brain lobes and analyzed their relationship. In Figure 3-5, there were
two meaningful connections: a-5, 0-6 and a marginal significance in the occipital
lobe. When we created a feature network, all features except 6 and § in the occipital
lobe had connections between 0-6 and 6-0. It means, that not only o-0 and 6-8
themselves are in the same brain area, but also between other brain area’s features.
For example, central lobe’s alpha (o) made connections with frontal lobe’s delta (5)
and occipital lobe’s delta (5). Even though the occipital lobe could not make
connections, they also showed marginal significances that were close to make
connections ( p < 0.08 ). Figure 3-6 shows network connections as topology and

Figure 3-7 describes their connections on the brain.

Inter-brain network

Frontal lobe Occipital lobe

Central lobe

Figure 3-6. Network connections of brain waves among three difference brain areas shown

as topology.
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Central lobe

Occipital lobe

Frontal lobe

Figure 3-7. Network connections of brain waves among three different brain areas displayed

over a brain scheme.

*Brain image from: https.//www.twinkl.es/teaching-wiki/brain-for-kids

These analysis results indicate a delicate difference of connectivity according
to locations in brain lobes. As they are highly synchronized and have similar
waveform trends, the differences from the various brain areas may have a small

effect on network connections.

Therefore, based on the result of the similar trends and that central lobes showed
the highest significance, we decided to use central lobe’s EEG, as it could include

both frontal and occipital characteristics with the benefit of a central location.
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3.1.5. Network directionality with correlation

Three connections (6-HR, HR-EYE, CHIN-RESP) showed a significant effect
on overall network connectivity from the significant feature identification. For
further explanations of these connections, we considered directionality by analyzing
the positive and negative correlation. From time delay cross-correlation, we
extracted time delay indices and correlation values from stable epochs of three
connections during REM sleep (Figure 3-8). From the 6-HR connection, as it
showed superiority in positive side, we extracted a positive correlation for both
groups; however, patients with narcolepsy showed a significantly higher positive
correlation for the average value of all time delay indices (-5s ~ 5s, Figure 2-4-b)
when compared to controls (Narcolepsy: 0.382 =+ 0.118, Controls: 0.317 £0.122, p
= 0.05). From the HR-EYE and CHIN-RESP connections, as they showed
superiority in the negative side, we extracted negative correlations for both groups;
however, patients with narcolepsy showed significantly higher negative correlations
for the average values of all time delay indices when compared to controls (HR-EYE;
Narcolepsy: -0.459 + 0.126, Controls: -0.353 £+ 0.101, p = 0.023, CHIN-RESP;

Narcolepsy: -0.509 £ 0.092, Controls: -0.421 + 0.095, p = 0.018).

44 pa T



(@) (b) | ©

CHIN-RESP

=)
N

Correlation coeMicient
Correlation coeMicient
o

5 4 -3 2101 2 3 45 5 4 -3 2101 2 3 4 5 5 4 -3 2101 2 3 45
Time delay (sec) Time delay (sec) Time delay (sec)

Figure 3-8. Feature connections’ directionality based on the correlation and time delay. Three
connections which showed significant effect to network connections during REM sleep
between narcolepsy and control groups were analyzed according to the correlations’ direction
and time delay indices from -5s to 5s. The connections showed trends of distribution between
two signals according to time delay. (a) 6-HR with positive correlation and 6 precedes HR,
(b) HR-EYE with negative correlation and HR precedes EYE, (c) CHIN-RESP with negative
correlation and CHIN precedes RESP. Compared to controls, patients with narcolepsy

showed higher levels of correlation for both sides in all the three connections’ correlation.
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3.1.6. Performance comparison between unimodal biosignal and connectivity

To compare the performance of connectivity and unimodal features between the

narcolepsy and control groups, we extracted each signal from the 9 biophysical

features we used in our study and analyzed them (Table 3-3). We compared each

feature between the narcolepsy and control groups, and found that the only

significant difference among all sleep stages was the theta brain wave [15,49,50].

We also found marginally significant differences in the HR [53].

Table 3-3. Unimodal differences between patients with narcolepsy and controls in 9 features of biosignals

Alpha Beta Theta
WAKE REM LS DS WAKE REM LS DS WAKE REM LS DS
0.151 0.116 0.09 0.04 0.08 0.1 0.09 0.06 0.11 0.17 0.13 0.07
Narcolepsy
+0.08 +0.05 +0.03 +0.01 +0.06 +0.19 +0.19 +0.17 +0.03 +0.06 +0.04 +0.03
0.12 0.1 0.09 0.04 0.14 0.16 0.12 0.05 0.08 0.12 0.1 0.06
Controls
+0.06 +0.04 +0.04 +0.04 +0.08 +0.15 +0.11 +0.09 +0.03 +0.03 +0.02 +0.01
p-value 0.28 0.356 0.996 0.766 0.055 0.371 0.677 0.91 0.017* 0.019* 0.014* 0.02*
Delta CHIN LEG
WAKE REM LS DS WAKE REM LS DS WAKE REM LS DS
0.66 0.61 0.68 0.83 0.027 0.01 0.011 0.01 0.58 0.26 0.2 0.15
Narcolepsy
+0.1 +0.16 +0.17 +0.17 +0.026 +0.006 +0.007 +0.008 +0.15 +0.12 +0.08 +0.08
0.66 0.62 0.69 0.85 0.039 0.017 0.015 0.012 047 0.29 0.26 0.19
Controls
+0.13 +0.15 +0.14 +0.13 +0.045 +0.019 +0.009 +0.007 +0.21 +0.19 +0.12 +0.14
p-value 0.904 0.961 0.858 0.708 0415 0.279 0.307 0.484 0.608 0.768 0.635 0.509
HR RESP EYE
WAKE REM LS DS WAKE REM LS DS WAKE REM LS DS
71.84 68.07 66.01 66.4 16.4 17.35 16.03 16.26 0.061 0.04 0.032 0.035
Narcolepsy
+9.61 +8.09 +8.44 +9.38 +2.12 + 1.64 +2.12 +241 +0.064 +0.027 +0.026 +0.022
66.98 64.43 61.02 63.92 16.24 17.39 15.77 16.5 0.047 0.044 0.036 0.021
Controls
+491 +6.72 +5.88 +73 +1.78 +2 +1.9 +1.91 +0.008 +0.012 +0.009 +0.019
p-value 0.093 0.102 0.08 0.441 0.824 0.955 0.729 0.768 0.627 0.908 0.875 0.273
*p<0.05
. " -
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We performed additional analysis to investigate their performance as a classifier.
Based on the results in the Table 3-3, we classified patients with narcolepsy and
controls based on the average number of narcolepsy features during REM sleep. In
other words, we classified narcolepsy and control groups during REM sleep using

the average number of each narcolepsy feature as threshold.

As a result, we could calculate the sensitivity, specificity, and accuracy from
each unimodal feature. Additionally, we classified both groups based on the average
number of network connections during REM sleep (24.47), and we were able to
achieve 0.77 sensitivity, 0.71 specificity, and 0.73 accuracy, and described in the
Table 3-4. Result as classifier in Table 3-4 showed the highest performance in
network connection followed by theta brain waves, which showed significant

differences between groups.
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Table 3-4. Binary classification between patients with narcolepsy and controls based on
the average threshold

Sensitivity Specificity Accuracy

Alpha 0.55 0.53 0.53
Beta 0.53 0.53 0.53
Theta 0.75 0.67 0.7
Delta 0.6 0.55 0.57
CHIN 0.59 0.62 0.6
LEG 0.41 0.54 0.53
HR 0.64 0.58 0.6
RESP 0.5 0.5 0.5
EYE 0.57 0.56 0.57
c?:;:;fﬁn 0.77 0.71 0.73

Even though network connection got the highest performance as classifier

compared to other unimodal features, it remains insufficient as a potential biomarker.
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3.1.7. Classification performance with SVM

With unimodal signals and number of network connections, they could not
make noteworthy performance as a classifier to distinguish narcolepsy and control
groups during REM sleep. Some network features showed significant power affect
the number of network connections: a-9, 0-6, 6-HR, CHIN-RESP, HR-EYE during
REM sleep (Figure 3-3). We took TDS values from each network feature of REM
sleep and merged them by summing them with constant weight (2-4). After
calculating features’ TDS, we scattered participants’ data with two features: number
of connections and features’ TDS (Figure 3-9). As we stated, brain-brain
connections could not affect the number of network connections (Figure 3-2-a), we
did two types of analysis: with brain-brain (five features) and without brain-brain
(three features) connections. To find the best decision boundary to classify the groups,
we used an SVM. As a result, when brain-brain connections were included, the
sensitivity was 0.88, the specificity 1, and the accuracy 0.93. Without brain-brain
connections, it was a 0.93 for sensitivity, specificity, and accuracy, respectively.
These results show that the narcolepsy group has higher connectivity in brain-
periphery and periphery-periphery connections, but lower in brain-brain connections

in comparison to the control group during REM sleep.
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Figure 3-9. Distribution of participants with number of network connections and features’
TDS during REM sleep. (a) contains five features including brain-brain connections and (b)
contains three features not including brain-brain features. Solid lines represent the decision
boundary to distinguish the two groups and dotted lines the parallel lines apart from decision

boundary with margin distance. The number of connections multiplied by 0.1 to adjust scale

of the figures.
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3.2. Discussion

3.2.1. Differences between patients with narcolepsy and healthy controls

To analyze the differences in nocturnal sleep between patients with narcolepsy
and controls, we used the TDS method to quantify and compare network connectivity
values. Using data with minimized participant discrepancies, we found significant
differences in nocturnal REM sleep, which is known to differ in patients with
narcolepsy. TDS can be used to show relationships within a network how they persist
in different physiological states. By using nine biosignals, we were able to determine

the connectivity of the brain and peripheral areas during sleep.

The narcolepsy group showed a higher number of network connections during
REM sleep than the control group (Figure 3-1). Compared to controls, patients with
narcolepsy tended to maintain REM sleep with higher network connectivity among
brain and body parts. Using TDS, we were able to measure how the participants
maintained their states stably and how strong the connections were between organs.
Separation of networks into three parts revealed significantly higher differences in
the brain-periphery and periphery-periphery networks (Figure 3-2). -HR, HR-EYE,
and CHIN-RESP significantly affected changes in network connection numbers
(Figure 3-3). This means these connections had more power than others when

interpreting the differences between the narcolepsy and control groups.
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3.2.2. Analysis of nervous system with HRV

Connections that represent significant differences had physiological
relationships that support the causality of network differences in both groups. As HR
has a change in connections with 6 and EYE in common, we also analyzed HRV.
Before we accessed interactional relations with the heart to the brain and eyes, we
conducted HRV analysis in the time and frequency domains to identify how cardiac
information affects network connectivity independently within the autonomic
nervous system. From the ECG data, we extracted every heartbeat during whole
sleep using a self-developed automatic peak detection algorithm. The heartbeat was
calculated using the time interval between the R-peaks of consecutive beats (RRI).
This cardiac information was used to calculate parameters from the time and
frequency domains. From the time domain, we obtained four parameters: HR, the
standard deviation of RR intervals (SDNN), the root mean square of successive RR
interval differences (RMSSD), and the percentage of successive RRI differing by

more than 50 ms (pNN50) using the following equations:

RRI;—RRI
SDNN \/ZN — 3-1)
S N-1(RRI;41—RRI;)?
RMSSD = \/ Nl+11 - (3-2)

YN {IRRI;41—RRI;|>50 ms
pNN50 = =1{IRRli41 ~RRI} J 100 (3-3)
N

where, RRI = RR interval, N = number of RRI



In the frequency domain, by applying fast Fourier transform (FFT) to the RRI,
obtained the spectral power of the cardiac information. The spectral powers at the
frequency ranges 0.04~0.15 Hz (LF; low-frequency) and 0.15~0.4 Hz (HF; high-
frequency) were computed and normalized by dividing by the sum of the LF and HF.
Additionally, the ratio of the normalized LF power to the normalized HF power
(LF/HF) was extracted to examine the sympathovagal balance in the autonomic
nervous system. The whole these time and frequency domain parameters were
calculated within the range of a 90-s (three epochs) window. This was labeled the
first epoch sleep stage, because we also used a 90-s window to define “stable” in the
TDS method [38-39]. The window was shifted by 30 s (1 epoch) to calculate the

HRYV of every epoch and to perform an analysis based on sleep stage.

As a result, only RMSSD of the time domain in the REM sleep stage showed a
significant difference between groups (p = 0.0498) (Table 3-5). A smaller RMSSD
in the narcolepsy group indicates parasympathetic activation of the nervous system,
which could lead to a stabilized heartbeat. This means that a lowered variance of
heartbeat could lead to smaller fluctuations and induce higher synchronization in a
stable state with other features [40-43]. Other HRV parameters did not differ
significantly, but they followed the trends found in narcolepsy and control groups in

previous studies [44-46].
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Table 3-5. HRV of time domain from participants with narcolepsy and controls

Narcolepsy (N=15) Controls (N=15)
Time
HR RMSSD SDNN  pNN50 HR RMSSD SDNN  pNNSO
Domain
71.84 40.47 83.03 9.28 66.98 54.81 87.13 12.77
WAKE
+9.61 +17.89 +26.59 +7.08 +4.91 +28.99 +30.16 +9.02
68.07 38.9* 62.54 8.94 64.43 56.53 75.99 11.24
REM
+8.09 +15.81 +16.26 +6.38 +6.72 +36.41 +42.07 +9.19
66.01 44.29 55.96 10.83 61.02 61.46 68.85 16.04
Light Sleep
+8.44 +23.8 +19.95 +8.33 +5.88 +32.24  £30.09  £10.95
66.4 46.25 48.32 10.75 63.92 49.67 48.17 12.97
Deep Sleep
+9.38 +34.25 +26.13  *11.15 +7.3 +29.05 +27.88  +12.38

HR, Heart rate; RMSSD, Root mean square of the successive RR interval differences; SDNN, Standard deviation of the

RR intervals; pNN50, Percentage of successive RR intervals that differ by more than 50 ms.

* p <0.05 vs controls
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3.2.3. Causalities in network connections

After HRV analysis, we used cardiac information to analyze the physiological
relationships between connections. First in 6-HR connection, in REM sleep, it has
been reported that the theta power of EEG is higher compared to other stages, and
the theta rhythm is highly interrelated with heart rate with a positive correlation [47-
48]. In addition, as narcolepsy showed a burst of theta waves in REM sleep compared
to controls [15,49-50], a burst of theta waves and heart rate could result in differences
in connectivity between patients with narcolepsy and controls with higher correlation
coefficients. We found a significantly higher brainwave power of theta in REM sleep
than in other stages (p < 0.05) in both groups. In addition, the theta wave power in
patients with narcolepsy was significantly higher during REM sleep than in controls
(p = 0.019). Regarding the HR-EYE connection, heart rate and eye movement are
also closely related. It is known that a rise in heart rate induces a decline in ocular
pulse amplitude (OPA), which corresponds to eye movement [51]. Patients with
narcolepsy in our study tended to have a higher heart rate than controls (p = 0.102),
which could also cause differences in network connectivity related to the heart and
eye. We also compared the correlation between two signals by extracting the results
of time delay-based correlation coefficient values from cross-correlation [37]. The
0-HR connection showed a stronger positive correlation coefficient in patients with
narcolepsy when compared to controls (Figure 3-8-a, Narcolepsy: 0.382 + 0.118,
Controls: 0.317 £ 0.122, p = 0.05), and patients with narcolepsy also showed stronger
negative correlation coefficient values in the HR-EYE connection when compared
to controls (Figure 3-8-b, Narcolepsy: -0.459 + 0.126, Controls: -0.353 £ 0.101, p =

0.023). This might be interpreted to mean that different characteristics of the
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physiological relationships between patients with narcolepsy and controls in REM
sleep could lead to higher connectivity in the narcolepsy group. In addition, we
speculate that 6-HR and HR-EYE connections in patients with narcolepsy may have
stronger connectivity due to the effect of smaller RMSSD, which indicates smaller
fluctuations of heart rate and, in turn, more synchronized brain and peripheral

interactions compared to controls.

Additionally, in the CHIN-RESP connection, facial movement and breathing
have meaningful causality, as the movement of facial muscles can disturb the airflow
to the nasal or oral cavities [52-53]. In addition, the submentalis muscle (CHIN in
our study) is known to have different REM sleep without atonia (RSWA) in patients
with narcolepsy when compared to controls [16]. We calculated the phasic RSWA
based on the AASM criteria [34]. Each 30-s epoch was divided into mini-epochs of
3 s; we used phasic movement to obtain the proportion of mini-epochs, which have
more than four times higher EMG amplitude than the baseline EMG signal of the
submentalis muscle. As a result, patients with narcolepsy showed a significantly
higher proportion of phasic movement in their facial muscles during REM sleep than
controls (Narcolepsy: 10.95 % + 6.94 %, Controls: 3.38 % £ 1.07 %, p < 0.001). We
infer that the loss of atonia during REM sleep may induce frequent movement during
sleep, which, in turn, causes disturbances in breathing. The results of the correlation
coefficient from the cross-correlation of TDS also support this interpretation, with a
stronger negative correlation coefficient in patients with narcolepsy than in controls
(Figure 3-8-c, Narcolepsy: -0.509 £ 0.092, Controls: -0.421 + 0.095, p = 0.018).
Therefore, in narcolepsy, we conclude that facial movement changes airflow in

breathing. Facial movement and airflow may interact more closely and
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spontaneously with each other with higher correlation and temporal resolution,

which may lead to stronger connectivity with stability compared to controls.
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3.2.4. Effect of brain-brain connections

Even though we chose to interpret brain-periphery and periphery-periphery
connections, connections with brain-brain o-8, 6-6, which could not affect the
number of network connections, might have their own meaning in the two groups
during REM sleep. Unlike brain-periphery and periphery-periphery connections’
distribution in Figure 3-8, brain-brain connections showed distributions of
maximum time delay index mostly within a second, meaning that they are closely
related, within small temporal window. Brain-brain connections also showed
correlations’ directionalities, however, correlations in both a-8, 8- connections were
higher in the control group than in the narcolepsy group, unlike brain-periphery and
periphery-periphery connections (a3, Narcolepsy: 0.702 + 0.111, Controls: 0.823 +
0.125, p = 0.014), (8-3, Narcolepsy: 0.796 + 0.142, Controls: 0.891 + 0.177, p =
0.025). Based on these results, SVM performance with brain-brain area (Figure 3-
9-a) could produce remarkable results which suggest the possibility that brain-brain
networks could also indicate meaningful differences between groups during REM

sleep.
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3.2.5. Network connectivity as a biomarker and prospective utility

These results show that components reported as biomarkers to distinguish
narcolepsy are closely related to network connectivity. As patients with narcolepsy
are considered to have different eye and muscle movements and cardiac information,
0-HR, HR-EYE, and CHIN-RESP could be meaningful connections to validate their
connectivity using the TDS method [5,16]. Higher connectivity in narcolepsy-related
features supports the notion that differences (movement, cardiac information) in
physiological connections between patients with narcolepsy and controls could lead
to REM sleep stability, sustaining that state with increased connections. This
suggests strong network connectivity in body systems could lead patients with
narcolepsy to fall into REM sleep more easily and sustain a more stable REM state
than controls. These findings and the classification performance with SVM indicate
that network connectivity with the TDS method could be used as a useful biomarker
to identify systemic network differences between patients with narcolepsy type 2 and
controls. In addition, network connectivity could be used to determine causal
interactions and help us understand the relationships among the body’s system using
quantified metrics. We anticipate this study could be useful reference and help to
inspire new attempt to find adequate biomarkers in future studies to distinguish

narcolepsy type 2.

In future studies, by analyzing the variations among sleep stages in detail with
the TDS method, we can further examine network connectivity according to sleep
stage transition. It would be possible to determine how network connections in the
body change not only during sleep stages, but also during other transitions. There are

several studies that have shown the existence of time delay among biosignals during
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sleep, for example, changes in autonomic nervous system or brain-heart interaction
according to sleep stage transition with time delay [54-56]. Thus, further study could
reveal TDS trends that could be used to estimate the entering and escaping phases of
the REM sleep state. Furthermore, with established techniques, we could estimate
transitional changes in other states so that network connectivity could be used as a

biomarker for other states not just for narcolepsy or REM sleep stage distinction.
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Limitations

Our study analyzed differences in nocturnal sleep network connectivity between
narcolepsy and control groups. However, there were some limitations worthy of
consideration. First, although we have suggested several possible assumptions to
interpret the differences between the two groups, there are limitations to explaining
overall network connectivity; we only focused on significantly notable features.
There should be additional clinical support to strengthen our understanding of
complex human network systems. Second, the number of participants included may
be insufficient for universal application. Even though our sample size was sufficient
for analyzing statistical differences [33], larger study samples would support our
results and add more reliability. In addition, if we could conduct our study with a
large number of participants, we could increase the model’s robustness to classify
the narcolepsy and control groups. Third, to assess this method from a therapeutic
aspect, we should analyze changes in network connectivity for patients with

narcolepsy who are undergoing treatment. We should perform a follow-up study to
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determine whether this indicator is meaningful both before and after treatment.
Fourth, to strengthen our assertion that network connectivity could be a meaningful
biomarker, future studies should also analyze patients with narcolepsy type 1. Finally,
as narcolepsy is diagnosed by implementing daytime MSLT, this process should be
applied in daytime sleep. In this study, we also analyzed the differences in daytime
sleep. The appearance of REM during daytime sleep, which we sought to analyze, is
frequent in patients with narcolepsy but not in controls. This induces an imbalance

of data for comparison. To overcome this limitation, a larger sample is needed.

Further experiments with proper control are warranted to examine the
characteristics of narcolepsy in detail and to better understand the mechanisms

behind physiological connections in the body.

62 ]



[1]

[2]

[3]

[4]

[5]

[6]

S

References

Nishino S. Clinical and neurobiological aspects of narcolepsy. Sleep Med.

2007;8(4):373-399. https://doi.org/10.1016/].sleep.2007.03.008

Jennum P, Knudsen S, Kjellberg J. The economic consequences of narcolepsy. J

Clin Sleep Med. 2009;5(3):240-245. https://doi.org/10.5664/jcsm.27493
Simon Green. Biological Rythms, Sleep and Hypnosis. Red Globe Press; 2011.

https://www.macmillanihe.com/page/detail/Biological-Rhythms-Sleep-and-

Hypnosis/?K=9780230252653

Eric Suni. Narcolepsy: What it is, its causes, and the steps that can help manage

it. Sleep Foundation; 2021. https://www.sleepfoundation.org/narcolepsy

Dauvilliers Y, Rompré S, Gagnon JF, Vendette M, Petit D, Montplaisir J. REM
sleep characteristics in narcolepsy and REM sleep behavior disorder. Sleep.

2007;30(7):844-849. https://doi.org/10.1093/sleep/30.7.844

Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet.

2007;369(9560):499-511. https://doi.org/10.1016/S0140-6736(07)60237-2

63 A 2T} 8

]

1

n’



[71 Zhang Z, Mayer G, Dauvilliers Y, et al. Exploring the clinical features of
narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Network
database with machine learning. Sci Rep. 2018;8(1):10628.

https://doi.org/10.1038/s41598-018-28840-w

[8] Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PCh. Network
physiology reveals relations between network topology and physiological

function. Nat Commun. 2012;3:702. https://doi.org/10.1038/ncomms1705

[9] Bassingthwaighte, James B, Liebovitch, Larry S, West, Bruce J. Fractal
Physiology. Oxford University Press; 1994,

https://doi.org/10.3389/fphys.2010.00012

[10] Faes L, Marinazzo D, Jurysta F, Nollo G. Linear and non-linear brain-heart and
brain-brain interactions during sleep. Physiol Meas. 2015;36(4):683-698.

http://doi.org/10.1088/0967-3334/36/4/683

[11] Yoon H, Choi SH, Kwon HB, et al. Sleep-Dependent Directional Coupling of
Cardiorespiratory System in Patients With Obstructive Sleep Apnea. /[EEE
Trans Biomed Eng. 2018;65(12):2847-2854.

http://doi.org/10.1109/TBME.2018.2819719

[12] Yang AC, Yang CH, Hong CJ, et al. Sleep state instabilities in major depressive
disorder: Detection and quantification with electrocardiogram-based
cardiopulmonary coupling analysis. Psychophysiology. 2011;48(2):285-291.

http://doi.org/10.1111/].1469-8986.2010.01060.x

64 2 X 2t gk



[13]Jurysta F, Lanquart JP, Sputaels V, et al. The impact of chronic primary insomnia
on the heart rate--EEG variability link. Clin Neurophysiol. 2009;120(6):1054-

1060. http://doi.org/10.1016/j.clinph.2009.03.019

[14] Terzaghi M, Ratti PL, Manni F, Manni R. Sleep paralysis in narcolepsy: more
than just a motor dissociative phenomenon?. Neurol Sci. 2012;33(1):169-172.

http://doi.org/10.1007/s10072-011-0644-y

[15] Lo Martire VC, Bastianini S, Berteotti C, Silvani A, Zoccoli G. High amplitude
theta wave bursts: a novel electroencephalographic feature of rem sleep and
cataplexy. Arch Ital Biol. 2015;153(2-3):77-86.

http://doi.org/10.12871/000398292015233

[16] Ferri R, Franceschini C, Zucconi M, et al. Searching for a marker of REM sleep
behavior disorder: submentalis muscle EMG amplitude analysis during sleep in
patients with narcolepsy/cataplexy. Sleep. 2008;31(10):1409-1417.

https://doi.org/10.5665/sleep/31.10.1409

[17] Fulong X, Karen S, Chao L, Dianjiang Z, Jun Z, Fang H. Resting-state brain
network topological properties and the correlation with neuropsychological
assessment in adolescent narcolepsy. Sleep. 2020;43(8).

https://doi.org/10.1093/sleep/zsaa018

[18] West GB, Brown JH, Enquist BJ. A general model for the origin of allometric
scaling laws in biology. Science. 1997;276(5309):122-126.

https://doi.org/10.1126/science.276.5309.122

65 : H 2 1_'.” (<]



[19] Zorick F, Roehrs T, Wittig R, Lamphere J, Sicklesteel J, Roth T. Sleep-wake
abnormalities in  mnarcolepsy. Sleep. 1986;9(1 Pt 2):189-193.

https://doi.org/10.1093/sleep/9.1.189

[20] Fulda S. Periodic Limb Movement Disorder: a Clinical Update. Curr Sleep

Medicine Rep. 2018;4(1):39—49. https://doi.org/10.1007/s40675-018-0107-6

[21] Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K. Evolving
functional network properties and synchronizability during human epileptic

seizures. Chaos. 2008;18(3):033119. https://doi.org/10.1063/1.2966112

[22] Garg H, Kohli A. Nonstationary-epileptic-spike detection algorithm in EEG
signal using SNEO. Biomedical FEngineering Letters 2013;3(2):80-86.

https://doi.org/10.1007/S13534-013-0090-2

[23] Bajaj V, Pachori RB. Epileptic seizure detection based on the instantaneous area
of analytic intrinsic mode functions of EEG signals. Biomed. Eng. Lett.

2013;3(1)17-21. https://doi.org/10.1007/s13534-013-0084-0

[24] Dodds KL, Miller CB, Kyle SD, Marshall NS, Gordon CJ. Heart rate variability
in insomnia patients: A critical review of the literature. Sleep Med Rev.

2017;33:88-100. https://doi.org/10.1016/j.smrv.2016.06.004

[25] Cheng YC, Huang YC, Huang WL. Heart rate variability in individuals with
autism spectrum disorders: A meta-analysis. Neurosci Biobehav Rev.

2020;118:463-471. https://doi.org/10.1016/j.neubiorev.2020.08.007

[26]Moon E, Lee SH, Kim DH, Hwang B. Comparative Study of Heart Rate

Variability in Patients with Schizophrenia, Bipolar Disorder, Post-traumatic

Stress Disorder, or Major Depressive Disorder. Clin Psychopharmacol Neurosci.

2013;11(3):137-143. https://doi.org/10.9758/cpn.2013.11.3.137

66 ] .-;':ﬂ -:”‘.i 1_” i



[27] Thapa R, Alvares GA, Zaidi TA, et al. Reduced heart rate variability in adults
with  autism  spectrum  disorder. Autism  Res. 2019;12(6):922-930.

https://doi.org/10.1002/aur.2104

[28] Kwon HB, Yoon H, Choi SH, Choi JW, Lee YJ, Park KS. Heart rate variability
changes in major depressive disorder during sleep: Fractal index correlates with
BDI score during REM sleep. Psychiatry Res. 2019;271:291-298.

https://doi.org/10.1016/j.psychres.2018.11.021

[29] Jurysta F, Lanquart JP, van de Borne P, et al. The link between cardiac autonomic
activity and sleep delta power is altered in men with sleep apnea-hypopnea
syndrome. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1165-

R1171. https://doi.org/10.1152/ajpregu.00787.2005

[30] Jurysta F, Lanquart JP, Sputaels V, et al. The impact of chronic primary
insomnia on the heart rate--EEG variability link. Clin Neurophysiol.

2009;120(6):1054-1060. https://doi.org/10.1016/j.clinph.2009.03.019

[31] Dauvilliers Y, Montplaisir J, Molinari N, et al. Age at onset of narcolepsy in two
large populations of patients in France and Quebec. Neurology.

2001;57(11):2029-2033. https://doi.org/10.1212/wnl.57.11.2029

[32] National Organization for Rare Disorders, Narcolepsy,

https://rarediseases.org/rare-diseases/narcolepsy/

[33] Hajian-Tilaki K. Sample size estimation in diagnostic test studies of biomedical
informatics. J Biomed Inform. 2014;48:193-204.

https://doi.org/10.1016/1.1b1.2014.02.013

[34]R. B. Berry, R. Brooks, C. E. Gamaldo, S. M. Harding, C. Marcus, and B.
Vaughn, The AASM Manual for the Scoring of Sleep and Associated Events:

67 34 “._, ] i

J], 11



Rules, Terminology and Technical Specifications. Darien, IL, USA: Amer. Acad.

Sleep Med; 2012. https://aasm.org/clinical-resources/scoring-manual/

[35] Lee JH. Diagnosis of Narcolepsy. J Korean Sleep Res Soc. 2009;6(1):9-14.

https://doi.org/10.13078/iksrs.09003

[36] Mukai J, Uchida S, Miyazaki S, Nishihara K, Honda Y. Spectral analysis of all-
night human sleep EEG in narcoleptic patients and normal subjects. J Sleep Res.

2003;12(1):63-71. https://doi.org/10.1046/].1365-2869.2003.00331.x

[37]Lin A, Liu KK, Bartsch RP, Ivanov PCh. Delay-correlation landscape reveals
characteristic time delays of brain rhythms and heart interactions. Philos Trans
A Math Phys Eng Sci. 2016;374(2067):20150182.

https://doi:10.1098/rsta.2015.0182

[38] Castaldo R, Montesinos L, Melillo P, James C, Pecchia L. Ultra-short term HRV
features as surrogates of short term HRV: a case study on mental stress detection
in real life. BMC  Med Inform  Decis Mak. 2019;19(1):12.

https://doi.org/10.1186/s12911-019-0742-y

[39] von Rosenberg W, Hoting MO, Mandic DP. A physiology based model of heart
rate variability. Biomed Eng Lett. 2019;9(4):425-434.

https://doi.org/10.1007/s13534-019-00124-w

[40] Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and
Norms. Front Public Health. 2017;5:258.

https://doi.org/10.3389/fpubh.2017.00258

[41]Berteotti C, Silvani A. The link between narcolepsy and autonomic
cardiovascular dysfunction: a translational perspective. Clin Auton Res.

2018;28(6):545-555. https://doi.org/10.1007/s10286-017-0473-7

68 : H 2 1_'.” (<]



[42] Bartsch R, Kantelhardt JW, Penzel T, Havlin S. Experimental evidence for phase

synchronization transitions in the human cardiorespiratory system. Phys Rev

Lett. 2007;98(5):054102. https://doi.org/10.1103/PhysRevl ett.98.054102

[43] Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-
vagal balance. Front Physiol. 2013;4:26.

https://doi.org/10.3389/fphys.2013.00026

[44] Ferini-Strambi L, Spera A, Oldani A, et al. Autonomic function in narcolepsy:
power spectrum analysis of heart rate variability. J Neurol. 1997;244(4):252-

255. https://doi.org/10.1007/s004150050080

[45] Aslan S, Erbil N, Tezer FI. Heart Rate Variability During Nocturnal Sleep and
Daytime Naps in Patients With Narcolepsy Type 1 and Type 2.J Clin
Neurophysiol. 2019;36(2):104-111.

https://doi.org/10.1097/WNP.0000000000000544

[46] Jurysta F, van de Borne P, Migeotte PF, et al. A study of the dynamic interactions
between sleep EEG and heart rate variability in healthy young men. Clin

Neurophysiol. 2003;114(11):2146-2155. https://doi.org/10.1016/s1388-

2457(03)00215-3

[47] Mensen A, Zhang Z, Qi M, Khatami R. The occurrence of individual slow waves
in sleep is predicted by heart rate. Sci Rep. 2016;6:29671.

https://doi.org/10.1038/srep29671

[48] Rowe K, Moreno R, Lau TR, et al. Heart rate surges during REM sleep are
associated with theta rhythm and PGO activity in cats. Am J Physiol.

1999;277(3):R843-R849. https://doi.org/10.1152/ajpregu.1999.277.3.R843

69 S B8 i)



[49] Bastianini S, Silvani A, Berteotti C, Lo Martire V, Zoccoli G. High-amplitude
theta wave bursts during REM sleep and cataplexy in hypocretin-deficient
narcoleptic mice. J Sleep Res. 2012;21(2):185-188.

https://doi.org/10.1111/1.1365-2869.2011.00945.x

[50] Bastianini S, Lo Martire V, Berteotti C, et al. High-amplitude theta wave bursts
characterizing narcoleptic mice and patients are also produced by histamine
deficiency in mice. J Sleep Res. 2016;25(5):591-595.

https://doi.org/10.1111/jsr.12404

[51]Jin Y, Wang X, Irnadiastputri SFR, et al. Effect of Changing Heart Rate on the
Ocular Pulse and Dynamic Biomechanical Behavior of the Optic Nerve
Head. Invest Ophthalmol Vis Sci. 2020;61(4):27.

https://doi.org/10.1167/i0vs.61.4.27

[52] Pavesi G, Medici D, Macaluso GM, Ventura P, Allegri I, Gemignani F. Unusual
synkinetic movements between facial muscles and respiration in hemifacial
spasm. Mov Disord. 1994;9(4):451-454.

https://doi.org/10.1002/mds.870090413

[53] MclIntosh, DN, Zajonc RB, Vig PS, Emerick SW. Facial movement, breathing,
temperature, and affect: Implications of the vascular theory of emotional
efference. Cognition and Emotion, 1997;11(2):171—

195. https://doi.org/10.1080/026999397379980

[54] Shinar Z, Akselrod S, Dagan Y, Baharav A. Autonomic changes during wake-
sleep transition: a heart rate variability based approach. Auton Neurosci.

2006;130(1-2):17-27. https://doi.org/10.1016/j.autneu.2006.04.006

70 ,-;"x--: :‘i 1_“ i



[55] Bassi A, Vivaldi EA, Ocampo-Garcés A. The time course of the probability of
transition into and out of REM sleep. Sleep. 2009;32(5):655-669.

https://doi.org/10.1093/sleep/32.5.655

[56] Long X, Arends J, Aarts RM, Haakma R, Fonseca P, Rolink J. (2015). Time

delay between cardiac and brain activity during sleep transitions. Applied

Physics Letters. 2015;106(14):143702. https://doi.org/10.1063/1.4917221

71 A 2T} 8



z 7w @79 QA AAd )
2

A srE JEY I

o7
Njo

ﬁo
<

o] ehi=

e

13237

5

EEA

M AR A

Fatol,

ofel 7]ut

to 269

Pt

°©

°©

A

A3 9k,
13

=]
T
Rd

s
e
NJo
o

oz (1549 273

309 e F

A=

ol
pig

B

o

BANZES BA

o1

7] wkstod

g Ko

|74

i

)
gl

A Z -]
= FHE
15 Atole] ol

=
T

o
Fol71

A

et
72

oFzt

o3 =}2]
YEQA 244

)
=

s

=

R

boiek 2t
Al

°©

3

]

A
Qi



+ 2.87,

Bolth (71 A} A 2447

[e)

=

PN
T

=

=]
E e a7y

Ay

Z2M AR
- UEfA9 o4

kYA
ar

]

97t A

A]

1
HA

= o
) Y

Aol

Eis

0.022). o]&

+ 349 p =

1 21.34

&

B’

o
N

i

)
gl

S

o

o
o

[e]
[e]

o
7N 2t

4

W, HEL =L

B

i

A=

= Eol% A

Aol

Eis

=

kYA
ar

AAIA

i

)
gl

HE S 9

&

g UEYT d4d4d0]

2 Bl A
=

Al

73

Holm, o}t Q1A 9

2020—-28681

H:

feig
o}

HoF



	Chapter 1. Introduction 
	1.1. Narcolepsy 
	1.2. Physiological interactions in body system
	1.3. Connectivity with time delay stability
	1.4. Dissertation Outline

	Chapter 2. Material and Methods
	2.1. Participants
	2.2. PSG recording and data
	2.3. Data processing
	2.4. Time delay cross-correleation
	2.5. TDS methods
	2.6. Threshold tuning
	2.7. Test-retest reproducibility
	2.8. Brain and peripheral connections
	2.9. Effect of brain-brain connections according to brain areas
	2.10. Feature significance analysis
	2.11. Network directionality with correlation
	2.12. Verifications of network connectivity as classifier
	2.13. Classification with support vector machine

	Chater 3. Results and Discussion
	3.1. Results
	3.1.1. Network connections between narcolepsy and control groups
	3.1.2. Test-retest analysis for reproducibility
	3.1.3. Significant feature identification
	3.1.4. Effect of brain-brain connections according to brain areas
	3.1.5. Network directionality with correlation
	3.1.6. Performance comparison between unimodal biosignal and connectivity
	3.1.7. Classification performance with SVM

	3.2. Discussion
	3.2.1. Differences between patients with narcolepsy and healthy controls
	3.2.2. Analysis of nervous system with HRV
	3.2.3. Causalities in network connections
	3.2.4. Effect of brain-brain connections
	3.2.5. Network connectivity as a biomarker and prospective utility


	Limitations
	References
	국문초록


<startpage>21
Chapter 1. Introduction  1
 1.1. Narcolepsy  1
 1.2. Physiological interactions in body system 3
 1.3. Connectivity with time delay stability 5
 1.4. Dissertation Outline 7
Chapter 2. Material and Methods 9
 2.1. Participants 9
 2.2. PSG recording and data 12
 2.3. Data processing 14
 2.4. Time delay cross-correleation 17
 2.5. TDS methods 20
 2.6. Threshold tuning 22
 2.7. Test-retest reproducibility 25
 2.8. Brain and peripheral connections 26
 2.9. Effect of brain-brain connections according to brain areas 27
 2.10. Feature significance analysis 28
 2.11. Network directionality with correlation 29
 2.12. Verifications of network connectivity as classifier 30
 2.13. Classification with support vector machine 31
Chater 3. Results and Discussion 32
 3.1. Results 32
  3.1.1. Network connections between narcolepsy and control groups 32
  3.1.2. Test-retest analysis for reproducibility 35
  3.1.3. Significant feature identification 36
  3.1.4. Effect of brain-brain connections according to brain areas 39
  3.1.5. Network directionality with correlation 44
  3.1.6. Performance comparison between unimodal biosignal and connectivity 46
  3.1.7. Classification performance with SVM 49
 3.2. Discussion 51
  3.2.1. Differences between patients with narcolepsy and healthy controls 51
  3.2.2. Analysis of nervous system with HRV 52
  3.2.3. Causalities in network connections 55
  3.2.4. Effect of brain-brain connections 58
  3.2.5. Network connectivity as a biomarker and prospective utility 59
Limitations 61
References 63
국문초록 72
</body>

