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Abstract

Characterization of Quantum
Information Through Catalytic

Quantum Randomness

Seok Hyung Lie

Department of Physics and Astronomy

The Graduate School

Seoul National University

We generalize the theory of catalytic quantum randomness by Boes et al.

to delocalized and dynamical settings. Our result is twofold. First, we ex-

pand the resource theory of randomness (RTR) by calculating the amount

of (Rényi) entropy catalytically extractable from a correlated or dynamical

randomness source. In doing so, we show that no entropy can be catalyt-

ically extracted when one cannot implement local projective measurement

on randomness source without altering its state. The RTR, as an archetype

of the ‘concave’ resource theory, is complementary to the convex resource

theories in which the amount of randomness required to erase the resource

is a resource measure. As an application, we prove that quantum operation

cannot be hidden in correlation between two parties without using random-

ness, which is the dynamical generalization of the no-hiding theorem. On
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the other hand, we study the physical properties of information flow. Popu-

larized quotes like “information is physical” by Landauer or “it from bit” by

Wheeler suggest the matter-like picture of information that can travel from

one place to another with the definite direction while leaving detectable

traces on its region of departure. To examine the validity of this picture,

we focus on that catalysis of randomness models directional flow of infor-

mation with the distinguished source and recipient. We show that classical

information can always spread from its source without altering its source

or its surrounding context, like an immaterial entity, while quantum infor-

mation cannot. Using the framework developed in this dissertation, we sug-

gest an approach to formal definition of semantic quantum information and

claim that utilizing semantic information is equivalent to using a partially

depleted information source. By doing so, we unify the utilization of se-

mantic and non-semantic quantum information and conclude that one can

always extract more information from a not completely depleted classical

randomness source, but it is not possible for quantum randomness sources.

Keywords : Quantum information, Resource theory, Randomness

Student Number : 2016-20311
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Chapter 1

Introduction

Flow of information is a key criterion that decides which processes are

allowed and which are not in physical theories. For example, there are os-

tensibly faster-than-light phenomena such as phase velocity (or even group

velocity [1]) of electromagnetic wave, expansion velocity of far galaxies due

to Hubble’s law [2] and collapse of wave function shared between space-

like regions, but they are not forbidden by relativity because it is widely

considered that those phenomena are not accompanied by faster-than-light

propagation of information [3]. Moreover, oftentimes it is said that nothing

can escape black holes, but black holes evaporate by emitting Hawking ra-

diation. A common justification of this is that Hawking radiation does not

convey information of objects fallen into the black hole. These examples

suggest that information flow is not only as real as flow of any matter as

Landauer said “information is physical,” but also has enough independency

that warrants focus for its own.

However, what is information, exactly? How is it different from other

materialistic entities? Can information propagate from its source to a target

without visiting any other regions like a particle, or must it spread to multi-

ple regions like wave? Although we intuitively have vague idea about what

information is, answering this question in a universally satisfactory way is

highly difficult considering the sheer vastness of information science. The
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advent of quantum information theory burdens the already complicated the

field of information science with more mystery, and makes us ask the same

questions for quantum information.

Quantum information is frequently identified with quantum state and

displacement of a quantum state is interpreted as an information flow, but

this approach is unsatisfactory since it is not quantum state per se, but the

variance of quantum state by some information source is what carries in-

formation. This observation asks for a dynamical approach to information

flow, namely, that identifies information flow with a quantum channel with

nonzero capacity, which has been taken in studies on localizable and causal

quantum operations [4].

While largely successful, the picture of information as a varying quan-

tum state and the resultant measurement outcome change treats quantum

systems merely a medium for communication of classical information and

overlooks the nature of ‘quantum information’ itself. Treating pure quan-

tum states informative is contradictory with the perspective of the Shannon

information theory [5], where information is identified with randomness.

Especially, considering state-dependent restrictions on causality in recent

proposals for black hole information paradox such as the Hayden-Preskill

protocol [6], the necessity for investigating (semi-)causality in the (partially)

static setting is growing lately. Interpreting randomness as information pro-

vides a picture that can satisfactorily describe information localized in a

region of spacetime and its propagation, as one can assign entropy to each

region from their quantum state.

These two perspectives on information are complementary to each other:
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Randomness of quantum state represents the internal information, or infor-

mation inside a quantum system, and the current state of a quantum sys-

tem represents the external information, or information one has about the

system. The latter is often too implicit and heavily depends on the context,

hence it is hard to locate and quantify. On the contrary, advantage of internal

information is that it is easy to locate and track its presence and propaga-

tion. Therefore, to model the directional (quantum) information flow from

a source to a unique target, we employ the theory of catalytic quantum ran-

domness and generalize it further to a broader class of randomness sources

such as correlated and dynamical sources.

The resource theory, a framework in which a certain physical aspect

is abstracted as a resource to analyze the property in question systemati-

cally, has been immensely successful in quantum physics and quantum in-

formation science. A resource theory identifies resourceful objects (states,

operations, etc.) by defining what is considered free, meaning that it is easy

to perform or prepare, and treating everything that is not free as resource-

ful. There are many examples of properties for which resource theoretical

approach was successful; entanglement [7], coherence [8], non-Gaussianity

[9], and many more. These generic resource theories have one thing in com-

mon. They are either convex or admit convexification. Note that a resource

theory is convex when the set of free objects is convex.

The convexity condition is considered natural in many cases; in many

recent works [10, 11, 12] on unified approach to resource theory with resource-

independent methods, it is assumed that the free set is convex. A com-

mon justification is that simply forgetting information, a common method

5



of physically implementing convex sum, cannot generate useful resources.

However, this assumption is by no means always justified. Indeed, there are

non-convex resource theories such as that of correlation. Statistically mixing

two states without correlation can generate correlation, and especially, since

the convex hull of the set of all states without correlation is the whole quan-

tum state set, the theory does not allow convexification to form a meaningful

resource theory.

More extremely, there are resource theories that are what we will say to

be concave. In these resource theories, the set of resourceful objects, not the

free objects, is convex (see FIG. 6). In this situation, forgetting information

has not only a potential to create resources, but also can never eliminate

resources.

The premise that destruction of information is resourceful is natural

in both fundamental and practical contexts. Fundamentally, the time evolu-

tion of a closed quantum system is given by unitary operations which are

invertible, thus it is often said that no quantum information is genuinely de-

structible (following the usual ‘state = information’ definition). This is the

very reason behind the long-lasting controversy on what will happen eventu-

ally to quantum information fallen into black holes [13]. Practically, in some

cryptographic settings where mutually distrustful participants are interact-

ing, it is impossible for one participant to persuade other participants that

some information was deleted from one’s data storage without some special

assumptions. (It is ridiculous to say “Hey, I just flipped a coin and I for-

got the outcome. Let’s bet on which side the coin was.” over text message.)

This is why one needs a special protocol for coin flipping by telephone [14]
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and more generally cryptographic primitives such as bit-commitment and

oblivious transfer.

Randomness represents both presence and absence of information de-

pending on perspective. The more random an information source is, the less

information one already has about the source, equivalently, the more infor-

mation the soure can yield. Hence, in a sense, forgetting information could

create randomness. Thus, an archetype of concave resource theory is the re-

source theory of randomness (RTR) [15, 16, 17, 18, 19, 20]. In the RTR,

pure states are considered free and unitary operations are free operations,

but none of them have convex structure. Moreover, there is no universally

resource-destroying map [21] since every locally randomness-decreasing

map should increase randomness globally [20]. On the other hand, the set

of mixed states and the set of unital maps, which are considered resourceful

in the RTR, are both convex.

Previously, in the RTR, only static and local quantum states with nonzero

entropy were considered as randomness sources, but in real life dynamical

or global randomness sources are commonplace. Most symbolically, secret

key randomly generated and shared by multiple agents is an example of de-

localized randomness source, and the simple action of rolling dice itself is a

dynamical source of randomness. In this dissertation, we extend the limit of

the RTR to encompass utilization of delocalized and dynamical randomness

sources by employing the Choi-Jamiołkowski isomorphism [22, 23] and the

language of dynamical resource theory [24].
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1.1 Preliminaries

1.1.1 Notations

Without loss of generality, we sometimes identify the Hilbert space

HX corresponding to a quantum system X with the system itself and use

the same symbol X to denote both. For any system X , X ′ is a copy of X

with the same dimension, i.e., |X| = |X ′|. When there are many systems

other than a system X , then all the systems other than X are denoted by

X̄ . However, the trivial Hilbert space will be identified with the field of

complex numbers and will be denoted by C. We will denote the dimension

of X by |X|. The identity operator on system X is denoted by 1X and the

maximally mixed state is denoted by πX = |X|−11X . For any Hermitian

matrix σ, λi(σ) denotes its i-th largest eigenvalue including degeneracy, i.e.,

it is possible that λi(σ) = λi+1(σ). For any Hilbert spacesX and Y ,X ≤ Y

denotes thatX is a subspace of Y . The space of all bounded operators acting

on system X is denoted by B(X), the real space of all Hermitian matrices

on system X by H(X). The set of all unitary operators in B(X) is denoted

by U(X). For any matrix M , MT is its transpose with respect to some fixed

basis, and for any M ∈ B(X ⊗ Y ), the partial transpose on system X is

denoted by MTX . For any M ∈ B(X), we let AdM ∈ L(X) be

AdM (K) :=MKM †.

The space of all linear maps from B(X) to B(Y ) is denoted by L(X,Y ) =

B(B(X),B(Y )) and we will used the shorthand notation L(X) := L(X,X).

8



The set of all quantum states on system X by S(X) and the set of all quan-

tum channels (completely positive and trace-preserving linear maps) from

system X to Y by C(X,Y ) with C(X) := C(X,X). Similarly we denote

the set of all quantum subchannels (completely positive trace non-increasing

linear maps) by C̃(X,Y ) and C̃(X) := C̃(X,X). We denote the identity

map on system X by idX . Let T : M 7→ MT be the transpose map, and

† : M 7→ M † be the adjoint map. For any N ∈ L(X,Y ), we define its ad-

joint N †(G) so that ⟨N †(G), H⟩ = ⟨G,N (H)⟩ for every G ∈ B(Y ) and

H ∈ B(X). We define the transpose N T (H) := (N †(H∗))∗, where G∗ is

the complex conjugation of G.

JN
XX′ is the Choi matrix of N ∈ L(X) defined as JN

XX′ := NX(ϕ+XX′)

where ϕ+XX′ = |ϕ+⟩⟨ϕ+|XX′ is a maximally entangled state with |ϕ+⟩XX′ =

|X|−1/2
∑

i |ii⟩XX′ . The mapping J : L(X) → B(X ⊗ X ′) defined as

J(M) := JM
XX′ itself is called the Choi-Jamiołkowski isomorphism [22,

23]. We call a linear map from L(X) to L(Y ) a supermap from X to

Y and denote the space of supermaps from X to Y by SL(X,Y ) and

let SL(X) := SL(X,X). Supermaps preserving quantum channels even

when it only acts on a part of multipartite quantum channels are called su-

perchannel [25, 26, 27, 28, 29, 30, 24] and the set of all superchannels from

X to Y is denoted by SC(X,Y ) and we let SC(X) := SC(X,X). We say

a superchannel V ∈ SC(X) is superunitary if there are U0 and U1 in U(X)

such that V(N ) = AdU1 ◦ N ◦ AdU0 for all N ∈ L(X).

The supertrace [31] is the superchannel counterpart of the trace op-

eration modelling the loss of dynamical quantum information, denoted by

Tr. The supertrace is defined in such a way that the following diagram is
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commutative:
L(X) C

B(X ⊗X ′) C

J

Tr

idC

Tr

. (1.1)

Here, we slightly abused the notations by identifying isomorphic trivial

Hilbert spaces C∗ ≈ C ≈ L(C) ≈ B(C ⊗ C) and letting J : L(C) →

B(C⊗ C) be identified with idC. Explicitly,

Tr[M] := Tr
[
JM
XX′

]
= Tr[M(πX)], (1.2)

for all M ∈ L(X). From (1.2), it is evident why the supertrace corresponds

to the loss of information of quantum channels as it is operationally equiva-

lent to the loss of input state (as the input state is assumed to be maximally

mixed) and the loss of output state (as the output state is traced out). Sim-

ilarly to partial trace, TrX is a shorthand expression of TrX ⊗ idX̄ , where

idY := idL(Y ). Note that the supertrace lacks a few tracial properties such as

cyclicity, i.e., Tr[A◦B] ̸= Tr[B ◦A] in general, however, it generalizes the

operational aspect of trace as the discarding action. For example, for every

quantum channel N is normalized in supertrace, i.e, Tr[N ] = 1.

In a similar way, we define the ‘Choi map’ J[Θ] ∈ L(X⊗X ′, Y ⊗Y ′)

of supermap Θ ∈ SL(X,Y ) in such a way that the following diagram is

commutative:
L(X) L(Y )

B(X ⊗X ′) B(Y ⊗ Y ′)

J

Θ

J

J[Θ]

. (1.3)

Throughout the paper, the direct sum symbol ⊕ for operators has two
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meanings: If Ai are already in the same space and mutually orthogonal,

then
⊕

iAi emphasizes such fact and it means simply
∑

iAi. If Bi are not

necessarily mutually orthogonal, or even repeated for different i, then
⊕

iBi

embeds the operators into a larger Hilbert space and make them mutually

orthogonal. One possible implementation is
⊕

iBi :=
∑

i |i⟩⟨i| ⊗Bi.

1.1.2 Superselection rule and C∗-algebra

It is customary to model a quantum state of system X with a density

matrix ρ in B(X), but it is not necessary to assume that a quantum system

has access to all of the full matrix algebra B(X). In general, a quantum

system can be modelled with a C∗-algebra [32, 33], and a finite dimensional

C∗-algebra is isomorphic to a direct sum of full matrix algebras by the Artin-

Wedderburn theorem [34, 35]. In other words, for every finite dimensional

C∗-algebra C, there exist finite dimensional Hilbert spacesXi such that C ≈⊕n
i=1B(Xi).

In fact, it is equivalent to saying that the system X is under supers-

election rules which means that there exists subspaces {Xi} of X called

the superselection sectors such that S(X) ⊆
⊕

iB(Xi). Therefore, one

can interpret that, at least for finite dimensional cases, a C∗-algebra C ≈⊕n
i=1B(Xi) represents a classical-quantum hybrid system in which a clas-

sical information i is not allowed to be in superposition. We call the vector

(|X1|, |X2|, · · · , |Xn|) the dimension vector of C and n the dimension rank

of C. To make the dimension vector unique, we assume that |X1| ≥ |X2| ≥

· · · unless there is a pre-defined order of Xi in the given context. When

the dimension rank is larger than 1, we say that C is partially classical When
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|Xi| = 1 for every i, we say that C is (completely) classical. If the dimension

rank is 1, we say that C is (totally) quantum.

Remember that ρAB is called a classical-quantum(C-Q) state when

ρAB can be embedded into the tensor product of C∗-algebras C ⊗ D where

C is classical, i.e., there is a basis {|i⟩A} of A such that ρAB has the form

ρAB =
∑
i

pi |i⟩⟨i|A ⊗ ρiB, (1.4)

for some probability distribution {pi} and quantum states ρiB ∈ S(B).

When the roles of A and B are switched, we call it Q-C, and if ρAB is

neither C-Q nor Q-C, then it is called Q-Q. As a generalization, we will call

ρAB partially classical-quantum (PC-Q) if ρAB can be embedded into the

tensor product of C∗-algebras C⊗D where C is partially classical, i.e., there

exists a projective measurement {Πi}ni=1 with n > 1 on A (ΠiΠj = δijΠi

and
∑

iΠi = 1A) that leaves ρAB unperturbed. In other words,

ρAB =
∑
i

(Πi ⊗ 1B)ρAB(Πi ⊗ 1B). (1.5)

If (1.5) holds, we also say that ρAB is generalized block-diagonal with re-

spect to A =
⊕

iAi where Ai = supp (Πi) [36]. If the roles of A and B are

reversed, we will call it Q-PC. If a bipartite state is both PC-Q and Q-PC,

then it is called PC-PC and, if it is neither PC-Q nor Q-PC, we will call it

totally quantum-quantum (TQ-Q).
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Chapter 2

Characterizations of catalytic
randomness

In this Chapter, we give an intuitive motivation for the study of resource

theory of catalytic randomness. See Ref. [20] for related discussion.

2.1 Internal and external information

There is one interpretation of information which considers that infor-

mation we have about systems is the information those systems carry. This

kind of interpretation requires or implicitly assumes a user outside of a sys-

tem, hence we will call it external information of the system. From this

perspective, randomness of a state is a noise. This is why when a pure state

becomes mixed, often it is said that information is destroyed [37]. Similarly,

this is why often the no-cloning theorem is interpreted to forbid copying

quantum information [38, 39], when the exact statement is that it is impos-

sible to copy an arbitrary single pure state. In this sense, a certain aspect

of external information of a system can be quantified with nonuniformity

[40]. However, it actually quantifies the capability of carrying information

rather than the amount of information per se. The external perspective often

implicitly assumes implications of a certain piece of information has about

other systems, say, n-photon state |n⟩ carries more energy than vacuum state
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|0⟩. However, this meaning heavily depends on its user and hence is highly

subjective.

In this framework, a state only represents the current status of a sys-

tem, and its change is considered to carry information in this interpretation.

It requires sender’s coding and receiver’s decoding, thus external informa-

tion tends to be more dynamical. In other words, one says that (external)

information at region A does not flow to region B via a map ΛA→B when

ΛA→B is constant, i.e.,

ΛA→B(ρ) = ΛA→B(σ), (2.1)

for every state ρ and σ. If it is not the case, one says that information flows

from A to B. Information source that provides information to be encoded is

often treated implicitly and assumed to be outside of information transmis-

sion processes.

However, there is another line of thought on information that focuses

on information contained inside a system, or the internal information. For

example, a cylinder filled with gas can be said to contain a lot of infor-

mation as one can learn a lot of data by inspecting the configuration of its

constituting gas molecules. Simply put, internal information is information

of a system when treated as a black box. The Shannon information theory

is built on the observation that acquisition of the state of a system is con-

sidered more informative when the state appears more random before the

acquisition. Hence, classically, the information content or surprisal I(x) of
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an event x ∈ X is defined as [5, 41]

I(x) = − log2 Pr[X = x], (2.2)

so that the average information content, or the Shannon entropy of proba-

bility distribution P is

H(P ) = −
∑
x∈X

P (x) log2 P (x). (2.3)

The von Neumann entropy of a quantum state ρ defined as

S(ρ) = −Tr[ρ log2 ρ], (2.4)

can be interpreted in the same fashion, so that S(ρ) represents the amount

of classical internal information of ρ. (We will elaborate on the meaning of

‘classical’ afterwards.) Internal information perspective treats information

explicitly, for example, since one can calculate the entropy of each local

system, it is easy to locate and quantify information. From this perspective,

randomness and information are identified, and maximally mixed states are

maximally informative states. Since the state completely decides internal

information of a system, the role of observer or context is minimal in this

interpretation.

From this perspective, correlation is formed when information propa-

gates from its source to other systems. Hence, when systemA andB initially

prepared in an uncorrelated state σA ⊗ ρB interact, one says that (internal)

information does not flow from A to B if, for any extension σAR with some
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reference system R, systems RB are still uncorrelated after the interaction.

If not, information propagates from A to B through the interaction.

These two interpretations look completely contradictory to each other,

however, they are actually two complementary views on information. For

example, classically, one way to measure external information is the relative

entropy D(P∥U) from the maximally uniform distribution U(x) = |X |−1,

where D(P∥Q) is the relative entropy that measures the statistical separa-

tion between two distributions and is given asD(P∥Q) :=
∑

x∈X P (x) log2(P (x)/Q(x)).

They are in the following clear-cut trade-off relation,

H(P ) +D(P∥U) = log2 |X |, (2.5)

for the case of the von Neumann entropy the same thing holds mutatis mu-

tandis, hence discussion about information inside or about a system are es-

sentially the same except for their opposite signs up to additive constant.

Moreover, two notions of information flows introduced above are ac-

tually equivalent to each other [20]; if internal information does not flow,

then neither does external information. Therefore, to treat information flow

on the same footing with any other flow of physical entities, we will first

characterize flow of internal information and try to explain all the other in-

formational phenomena in terms of internal information. This is in line with

relational approach to quantum mechanics by Rovelli [42] and Everett [43].

To treat the noisy aspect and the informational aspect of randomness neu-

trally, we will use ‘randomness’ and ‘information’ interchangeably so that

all the results can be used regardless of one’s interpretation of randomness.
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In this context, an information source stripped of its semantic mean-

ing is nothing but a randomness source. Hence, we can say that random-

ness captures the universal quantitative aspect of information independent

of their meaning, and Shannon information theory successfully quantifies

this non-semantic information with entropic quantities. Thus, in this dis-

sertation, we will use the term ‘randomness’ to emphasize this semantics-

independent quantitative aspect of internal information. This is what re-

ferred to as ‘Information-B’ among three types of information in the Hand-

book of Philosophy of Information [44]. (By Ref. [44], ‘Information-A’ fo-

cuses on semantics, and ‘Information-C’ focuses on algorithmic complex-

ity.) We will focus on the analysis of non-semantic information first, but we

will tackle the problem of analyzing semantic information in Section 3.4.

2.2 Catalytic randomness and information flow

In Introduction, we observed that information can be localized and dis-

placed, and takes an important role in physical theory, sometimes even more

important than ostensible material entities. Hence, it is natural to treat infor-

mation as a physical entity that a system can possess and to identify its

properties.

How is information different from other physical entities? First of all,

for information to be physically relevant, it should leave detectable effects

on its receiver, however, not every detectable change is made by informa-

tion. If someone breaks your window by throwing a rock to notify you, is it

information in the rock that broke the window? It is natural to conclude that
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information exchange merely accompanied the event and it is the kinetic

energy of the rock that broke the window. Like this example, in general,

exchange of information is mixed up with other physical effects.

What would a ‘pure’ information source that does not yield any phys-

ical resources other than information look like? For this to be possible, no

detectable change of physical resource in the source is allowed, therefore

its state should stay unchanged. It means that no detectable change can be

caused by the other system it is interacting with, equivalently, there is no

information flow from it into the source. We could say that this kind of inter-

actions have directional information flow in which information only flows

from a distinguished information source to its user and not the other way

around. This is the process we may call a purely information utilizing pro-

cess and we claim that it must satisfy the following mutually related criteria

(See FIG 1).

1. Random : The state of an information source must be random to be

informative.

2. Correlating : After a use of an information source, it forms correlation

with its user, altering their global state.

3. Directional : Information flows from an information source to its user

exclusively, not the other way around.

We already discussed why randomness is crucial for an information

source. Information usage is entropy extraction process, hence correlation

between a source and it user is naturally built in the process and the amount
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Figure 1: A book is a randomness (or information) source, but not every
usage of it is pure randomness utilization. For example, it is hard to say that
burning a book utilizes only the randomness of the book, as it leaves evi-
dently detectable physical traces on it. Intuitively it is clear that any usage
of a book that necessitates non-negligible physical alternation of the book is
not a pure information utilization. Therefore we claim that (pure) random-
ness utilization must not leave any locally detectable statistical change on
the randomness source.

of correlation formed can be interpreted as the amount of randomness ex-

tracted from the source [20].

Directionality criterion can be applied both on fundamental and various

practical levels. A person may not be able to read a book leaving absolutely

no traces (e.g. not perturbing molecular arrays of the book at all), but if the

trace is ‘practically’ (whatever that means in a given context) undetectable

so that its statistical state is left unchanged, then we consider that the person

only used the information content of the book on that practicality level. This

fact allows us to circumvent the question of fundamental nature of random-

ness in light of deterministic time evolution of classical/quantum mechanics

in closed systems, as there are events appear random on practical level re-

gardless of the underlying law of nature.

For example, even when one interacts with a cylinder filled with gas
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without altering any thermodynamic parameters such as temperature and

volume, another person who memorized all the configurations of molecules

of the gas is able to detect the change. However, to that person, the gas

was not random from the beginning. For a person to whom only the macro-

scopic quantities of the gas were known, the gas can still appear intact. If a

randomness source behaves the same way in every statistical aspect after an

interaction, we consider it unaffected.

Hence, in a purely information (or randomness) utilizing process, the

information carrier simply enters the interaction and leaves it while stay-

ing in the same quantum state. Nevertheless, the information carrier could

cause changes of other systems. This fits the definition of catalysis and the

carrier can be considered a catalyst. This is one of the main reasons why the

study on catalysis of randomness is motivated. Nonetheless, we intuitively

know that information itself can be ‘depleted’ for individual users [20]. For

example, a novel is no longer interesting once a reader finishes reading it

and remembers all the plot despite the fact that the book is physically un-

changed. This can be explained by the correlation built between the carrier

and the user, which is a purely informational quantity. On the other hand, the

memory of the reader initially prepared in a pure state becomes random after

forming correlation with other systems. Hence correlation-forming can be

interpreted as randomness extraction. These two observations motivate the

study of a theory that sounds contradictory on the surface level, the resource

theory of catalytic randomness.

In this dissertation, we will investigate the properties of quantum in-

formation flow by studying catalytic quantum randomness. One may claim
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that this type of ‘noninvasiveness’ is a characteristic of classical random-

ness and should not be required from quantum randomness, because of the

inherent perturbing nature of quantum measurement. However, such a claim

comes from confusing quantum information with quantum state. The latter

contains every physical description of a quantum system, be it informational

or not, and we are trying to characterize the former in this dissertation. In-

deed, one cannot interact nontrivially with a quantum system in a pure state

without perturbing it, but a system with zero entropy has no information to

provide in the first place. Therefore, a quantum information source must be

in a mixed state, and we know that we can extract information, measured by

entropy, without perturbing the mixed state [15, 16, 18, 19, 20].

Note that we do not concern ourselves with the issue of randomness

generation. Just as resource theory of entanglement cares more about ma-

nipulation of already existing entanglement rather than studying the proto-

col of entanglement establishment (which is different from entanglement

distillation), resource theory of randomness is more about utilization of

pre-existing randomness sources regardless of their generation mechanism.

Hence, ‘quantum randomness (source)’ in this dissertation is not related

to what conventionally referred to as quantum randomness, which usually

means a classical random variable generated by measuring a quantum sys-

tem, stored in classical memory. Quantum randomness in this dissertation

means the randomness of quantum systems enjoying its quantum coherence,

represented by mixed quantum states. This is the reason why one need not

answer the question of ‘what is the true origin of randomness?’ before us-

ing the resource theory of randomness, as users with different criteria for
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randomness can still use the same theory.
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Chapter 3

Resource Theory of Randomness

3.1 Catalytic randomness

In this Section, we summarize and review the results of the correla-

tional resource theory of catalytic randomness [20]. Suppose that A is al-

lowed to borrow a system B called catalyst in the quantum state σB to im-

plement a quantum channel N . A is allowed to interact with B but should

return the system B in its original state σB after every interaction. This can

be summarized as the following two conditions. When a bipartite unitary U

on systems A and B is used to implement a quantum channel ρ 7→ N (ρ)

with a catalyst σ for arbitrary possible input state ρ, i.e.

TrB AdU (ρA ⊗ σB) = N (ρ), ∀ρ ∈ S(A). (3.1)

The catalyst σ should retain its original randomness, i.e. spectrum, after the

interaction regardless of the input state ρ, i.e.

TrA AdU (ρA ⊗ σB) = σB ∀ρ ∈ S(A). (3.2)

The conditions above require the catalyst to be insensitive to dynamically

changing state of the target system. This dynamical definition can be re-

expressed in the Heisenberg picture and in the static setting; we can require
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the catalyst to be insensitive to the change of action on the target system.

Theorem 1. Condition (3.2) is equivalent to any of the following.

(i) For some state ρA ∈ S(A) and for every superchannel Θ ∈ SC(A),

the transformed bipartite quantum channel (ΘA⊗idB)(U) fixes the marginal

state σB , i.e.

TrA[(ΘA ⊗ idB)(U)(ρA ⊗ σB)] = σB. (3.3)

(ii) When ρA ∈ S(A) is given, for any ancillary system R, a unitary

operator U ∈ V(RA) and the state given as τRA = AdV (|0⟩⟨0|R ⊗ ρA), the

following holds.

TrA[idR ⊗ AdU (τRA ⊗ σB)] = τR ⊗ σ
(V )
B . (3.4)

Here, the marginal state σ(V )
B may depend on V .

A more detailed discussion on the condition given in terms of super-

channels can be found in Section 3.4.

We can see that one-way constraint on information flow is picture-

invariant, i.e., independent of the interpretation of randomness; Condition

(i) requires that system B is indifferent to the change of dynamical pro-

cess on A. Condition (ii) requires that no internal information of A, held

by R, is leaked to B. Therefore, we can use whichever picture that suits the

given situation to simplify expressions and unless specified otherwise, we

will consider catalysis of randomness in the form of (3.1) and (3.2).

The possible dependence of σ(V )
B on the process V hints that Condi-

tion (ii) only prohibits leakage of internal information. However, there is
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actually no external information leakage, because if there are two unitary

operators V1 and V2 that leads to different σ(V )
B , then by preparing an addi-

tional ancillary qubit prepared in |+⟩ state making it control which operator

among Vi is applied onRA, one can contradict Condition (ii). Moreover, by

Stinespring dilation, one can easily see that unitary operation AdV in Condi-

tion (ii) can be replaced by any quantum channel. These observations com-

bined yield Condition (iii) in the next Proposition, and also a completely

static characterization, Condition (iv). Considering the Choi-Jamiołkowski

isomorphism, Condition (iv) being equivalent to (i) is evident.

Proposition 2. Conditions in Theorem 1 are equivalent to the following

conditions.

(iii) When ρA ∈ S(A) is given, for any quantum channel N ∈

C(A,RA) with τRA := N (σA), we have

TrA[idR ⊗ AdU (τRA ⊗ σB)] = τR ⊗ σB. (3.5)

(iv) For any quantum ρRA state whose marginal state ρA is full-rank,

we have

TrA[idR ⊗ AdU (ρRA ⊗ σB)] = ρR ⊗ σB. (3.6)

The approach of Condition (iii) that treats the initial setup, the sub-

sequent interaction and the partial trace out as a superchannel that maps

interjected quantum channel into an outcome state is akin to the approach of

Modi [45] for dynamics of non-Markovian open quantum systems. The re-

quirement of full-rankedness of ρA in Condition (iv) is rather technical than
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physical, as the set of full-rank states is dense in the set of all states. How-

ever precisely one prepares a quantum state, there could be an infinitesimal

noise in the process that renders the prepared state full-rank.

Although the catalyst changes by some unitary operator V , any unitary

operator can be reverted by a deterministic agent and it is intuitive that ran-

domness of quantum state only depends on its spectrum, so we accept this

definition. We will call the bipartite interaction described in (3.1) and (3.2)

a catalysis or a catalysis process and a quantum channel that can be imple-

mented by catalysis a catalytic quantum map or channel. For example, the

quantum channel N in (3.1) is catalytic. We will call the bipartite unitary

operator used for catalysis a catalysis unitary operator.

We will say that U is compatible with σ (and vice versa) if (3.2) holds.

If (3.2) holds with the right hand side replaced with V σBV
† with some

unitary operator V onB, then they are said to be compatible up to local uni-

tary. Using an incompatible catalyst for a given catalysis unitary operator

will lead to change of the catalyst after the interaction. For the sake of con-

venience, we will often use the definition of the compatibility for the cases

where σB is an unnormalized Hermitian operator, too. Similar randomness-

utilizing processes were considered in previous works, under the name noisy

operations [46, 47, 40] or thermal operations. However, most studies were

focused on the implementation of the transition between two fixed quan-

tum states and the existence of a feasible catalyst for that task. Here, we are

more interested in the implementation of quantum channel, independently

of potential input state, with a given catalyst. However, later we will see that

this characterization is also relevant to state transitions, too. In the following
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Figure 2: Catalytic decomposition of a density matrix. A superselection rule
forbids between subspaces called superselection sectors, and each density
matrix has an eigenspace for each distinct eigenvalue. The intersection of
a superselection sector and an eigenspace is called a catalysis sector and it
plays an important role in calculating the catalytic entropies.

Theorem, we review the characterization of catalytic unitary operators and

compatibility.

Theorem 3 ([20]). A bipartite unitary operator U acting on system AB is

catalytic if and only if UTB is also unitary. Also, a catalytic unitary operator

U is compatible with σB if and only [U,1A ⊗ σB] = 0.

Unlike in resource theories with resource-destroying maps, in the RTR,

convertibility between randomness sources is not a very interesting problem

since they are either too trivial or too restrictive. Any two quantum states

are freely interconvertible if and only if they share the spectrum. If we ex-

pand to conversions under catalytic maps, then the problem becomes trivial

again since between any two quantum states ρ ≻ σ, there exists a random
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unitary operation F , which is also catalytic, such that F(ρ) = σ [48].

Therefore, focusing on how much and what kind of randomness is required

to implement certain tasks is much more important than merely asking if the

conversion exists.

Now we turn to the problem of quantifying the amount of resource

one can extract from a source. The amount of information extracted can be

quantified with the mutual information

I(A : B) = S(A) + S(B)− S(AB),

between A and B. However, under the catalysis constraints, the local state

of B is invariant and the entropy of global state is invariant, i.e., S(AB) =

S(ρA) + S(σB), hence the mutual information after catalysis is equal to

the entropy change of system A, i.e., ∆I(A : B) = S(N (ρA)) − S(ρA).

Therefore, we will count the entropy increase as the amount of extracted re-

source during catalysis of quantum randomness. This interpretation is con-

sistent with the view that treats randomness as noise. Generalizing this, we

interpret that randomness gained through catalytic maps is from the influx

of information. Thus, although there is no simple generalization of mutual

information for Rényi entropies, we will also use the Rényi entropies to

measure the extracted information from a randomness source.

It was shown in Ref. [19, 20] that non-degeneracy of eigenvalues of

a mixed state restricts catalysis of quantum randomness. Accordingly, the

catalytic Rényi entropy S⋄
α (σ) of order α ≥ 0 of an arbitrary quantum state

σ ∈ S(X) can be calculated from its spectral decomposition. By spectral
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decomposition, we mean σ =
∑

i λiΠi with eigenvalues λi of σ. Here, we

require ΠiΠj = δijΠi,
∑

i λiri = 1 and the injective mapping i 7→ λi ≥ 0.

If there are superselection rules imposed on X , i.e. S(X) ⊆
⊕

iB(Xi)

for some mutually orthogonal subspaces Xi of X , then we require instead

that supp (Πi) ≤ Xf(i) for some unique subspace of B, Xf(i) and that i 7→

(λi, Xf(i)) is injective. We denote the rank of each block by ri := Tr[Πi].

Let the spectral decomposition satisfying these requirements be called the

catalytic decomposition of a quantum state and we call each supp (Πi) a

catalysis sector of σ (see FIG.2).

In this sense, a catalyst compatible with a catalytic unitary operator

could be considered a partially classical quantum system only whose classi-

cal information (the weight of each catalysis sector) is known.

For any σ with the catalytic decomposition σ =
∑

i λiΠi, define a

density matrix c (σ) given as

c (σ) =
⊕
i

λi
ri
1r2i

, (3.7)

where 1r2i = diag(1, · · · , 1) is the identity matrix of size r2i . It was shown in

Ref.[20] that any mixed state catalytically transformed from a pure state by

using randomness source σ majorizes c (σ) and catalytic transformation into

c (σ) from a pure state is also achievable. In other words, c (σ) is the most

random state that can be catalytically created with σ from a pure state. Let us

call c (σ) the randomness-exhausting output (REO) of σ. Since every Rényi

entropy is Schur-concave, and the maximum (global) entropy production of

a quantum channel is achieved with a pure state input [20], Sα (c (σ)) is
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the the maximum Rényi entropy catalytically extractable from randomness

source σ, and we call it the catalytic Rényi entropy S⋄
α (σ) of σ. S⋄

α (σ) has

the following explicit expression in terms of the catalytic decomposition of

σ.

S⋄
α (σ) :=

1

1− α
log2

[∑
i

λαi r
2−α
i

]
. (3.8)

The important extreme cases are the catalytic von Neumann entropy

lim
α→1

S⋄
α (σ) = S⋄(σ) := −

∑
i

λiri log2(λi/ri),

the min-catalytic entropy

lim
α→∞

S⋄
α (σ) = S⋄

min (σ) := − log2

[
max

i
λi/ri

]
,

and the max-catalytic entropy

lim
α→0+

S⋄
α (σ) = S⋄

max (σ) := log2

[∑
i

r2i

]
.

The catalytic entropies are important because of the following operational

meaning.

Theorem 4 ([20]). The maximum amount of catalytically extractable Rényi

entropy of order α ≥ 0 from a randomness source σ is its catalytic Rényi

entropy defined as S⋄
α (σ).

Although it is known that, for a given quantum channel, more entropy

is produced on a purification than on a mixed state, it could be still cum-
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bersome to find an input state that yields the maximum entropy production

for a given channel. However, if our intention is to check if the channel

produces entropy at all, then the following Proposition says that inputting a

maximally entangled state is enough. See Appendix for proof.

Proposition 5. A catalytic map cannot generate randomness with any input

state if and only if it cannot produce randomness by acting on a part of a

maximally entangled state.

3.2 Delocalized catalytic randomness

In the last Section, we only considered randomness sources that are in

isolation from other systems. In this Section, we generalize catalysis of ran-

domness to correlated randomness sources. The necessity of such a general-

ization naturally arises when multiple parties share correlated data to imple-

ment some delocalized information processing task. There are abundant ex-

amples of correlated randomness source. Multiple copies of the same book

are all correlated and altering one copy can be physically detected when the

copies are compared. People also share secret keys to encrypt another shared

data by using it. Oftentimes, one does not only use the information of the

system they are directly in contact with, but also utilize its relation with the

outer world. One may also only have access to small part of large system

but still want to restrict the information flow into the whole system.

Correlated information sources are also generic in the quantum set-

ting, too. Treating systems correlated with a given information source not

explicitly could cause huge confusion, as it was exemplified in the contro-
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versy around Mølmer’s conjecture [49]. A way to resolve the confusion is

explicitly take account of the correlation, especially the entanglement, be-

tween laser light and the laser device. A detailed discussion can be found in

Appendix.

The detailed setting of delocalized catalysis of randomness is as fol-

lows. Instead of one party, let there be two parties, Alice (A0) and Alex

(A1), separated in different laboratories. They start with an initial bipartite

state ρA0A1 , and they are provided with a bipartite state σB0B1 as a random-

ness source that they should return unchanged. Alice can only controlA0B0

and Alex can only control A1B1. They try to transform their initial state

into some other state N (ρA0A1) without altering the randomness source.

We allow no communication between them in this process because commu-

nication establishes new shared randomness sources between them.

In the quantum setting, Alice will apply unitary operator U0 to A0B0,

and Alex will apply U1 to A1B1. Just like the original catalysis scenario,

they are required to preserve σB0B1 after the interaction, regardless of their

initial state ρA0A1 . This requirement can be summarized as

TrB0B1 [AdU0⊗U1(ρA0A1 ⊗ σB0B1)] = N (ρA0A1), (3.9)

with some quantum channel N ∈ C(A0A1) and

TrA0A1 [AdU0⊗U1(ρA0A1 ⊗ σB0B1)] = σB0B1 , (3.10)

for all ρA0A1 ∈ S(A0 ⊗ A1). We will call this type of catalysis a delocal-
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ized catalysis of randomness and when it is needed to emphasize it, we call

σB0B1 in this situation the delocalized randomness source. We say that the

catalysis unitary operator pair (U0, U1) is compatible with σB0B1 if (3.10)

holds, and vice versa, and we say that they are compatible up to local unitary

when there exists some Vi ∈ U(Bi) for i = 0, 1 such that (3.10) holds with

the right hand side substituted with AdV0⊗V1(σB0B1). If we need to empha-

size, we will call the special case Vi = 1Ai for i = 0, 1 the canonical case.

When we focus on the action of each local party, we say that U ∈ U(A0B0)

is compatible with σB0B1 onB0 when (U,1A1B1) is compatible with σB0B1 .

We can observe that delocalized catalysis can be considered a special

case of catalysis of randomness. Thus, Theorem 3 applies here too, hence

U0⊗U1 must be catalytic, implying that U0 and U1 must be catalytic unitary

operators themselves. Also, for σB0B1 to be compatible with U0 ⊗ U1, it

must be that [U0 ⊗ U1, σB0B1 ] = 0. In local catalysis of randomness, a

randomness source cannot yield randomness if and only if it is a pure state.

Does the same result hold in delocalized catalysis too?

Now, we observe that, in delocalized catalysis, each party can only

interact locally with their shared randomness source without altering the

global state of it. Considering that no communication between them is al-

lowed, we could guess that each of them must leave the correlated source

intact, independent of each other’s action. What is the condition for this to

be possible? It was recently proved that if a subsystem is not even partially

classical, meaning that no nontrivial projective measurement can be imple-

mented on its local system, then the quantum state shared with it is sensitive

to changes caused by unital quantum channels [50].
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Lemma 6 ([50].). For any quantum state ρAB , (NA ⊗ idB)(ρAB) ̸= ρAB

for any unital channel NA ̸= idA if and only if ρAB is not a PC-Q state.

It is because quantum correlation can detect local randomizing distur-

bance and it hinders the catalytic utilization of the randomness source. From

these observations, we can identify the bipartite states that cannot yield ran-

domness and show that there are quantum states that are not pure but unable

to provide any randomness catalytically.

Theorem 7. No randomness can be catalytically extracted from a bipartite

quantum state if and only if it is totally quantum-quantum.

The reason why catalysis sectors were identified in local catalysis of

randomness was that they are the maximum subspace within which non-

trivial unital channels can be applied in an unconstrained fashion without

affecting the state of randomness source. (See FIG.2.) The same idea can

be applied in delocalized catalysis of randomness, and we should identify

the maximum subspaces within which local parties can apply unital chan-

nels without any constraint and the danger of altering the state of the given

randomness source.

At this point, we introduce the concept of essential decomposition,

which provides the canonical decomposition of a partially classical system

into classically distinguishable sectors (subspaces of the Hilbert space of

each local system) for a PC-Q state. In other words, when we say a PC-Q

state is ‘partially classical’, we mean that there is a local projective mea-

surement that does not perturb the state, and the essential decomposition

identifies what is the maximally informative measurement of such kind.
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Figure 3: Type I and type II subspaces of the essential decomposition of
A (Alice) for ρAB . Alice is quantumly correlated with B (Bob) on Type
I subspaces, hence ρAB resists the action of unital maps without leaving
detectable effects on it. But, Alice is uncorrelated with Bob on type II sub-
spaces, so an arbitrary unital channel can be applied to type II subspaces
without changing ρAB .

Definition 8. Let ρAB ∈ S(AB) be a bipartite quantum state. A =
⊕

iAi

is the essential decomposition of A for ρAB , (Πi := 1Ai) if

(i) For every i,

[Πi ⊗ 1B, ρAB] = 0. (3.11)

(ii) Each (Πi ⊗ 1B)ρAB(Πi ⊗ 1B) is either not a PC-Q state (i ∈ IA,

“type I”) or a product state of the form πAi ⊗ σB for some σ ∈ S(B)

(i ∈ IIA, “type II”) after normalization.

(iii) Whenever any projector P does not commute with some of Πi,

we have [P ⊗ 1B, ρAB] ̸= 0.
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If none of Πi is the identity operator on A, we say ρAB is a PC-Q state

with respect to the essential decomposition A =
⊕

iAi.

We will use the term “type I (or II)” for the indices i, the corresponding

components (AdΠi ⊗ idB)(ρAB) and the subspaces Ai accordingly. The es-

sential decomposition is unique: See Appendix A.5 for the discussion on the

uniqueness of essential decomposition. We will call the corresponding de-

composition of ρAB =
∑

i(AdΠi ⊗ idB)(ρAB) the essential decomposition

of ρAB on A.

Why are type I and type II separated? Non PC-Q state are known to

be sensitive to the perturbations of unital maps [50], thus it is impossible

to interact through a catalytic unitary operator without leaving detectable

effects. Hence, non PC-Q components are separated as type I. Any PC-

Q state can be further decomposed into non PC-Q state, but if it is in a

product state, then they can yield quantum advantage as we will see soon,

thus they are separated as type II. On the other hand, the essential decom-

position is related with the structure of entropy non-increasing state under

unital channels [51, 52], in which there are only two types of components,

one which only permits unitary operations (corresponding to type I), and

the other which permits any unital subchannel but should be the maximally

mixed state (corresponding to type II).

The essential decomposition captures the intuitive idea of ‘classical

sectors’ of PC-Q states as the following Theorem shows. It says that any

‘randomizing transformation’ acting on the partially classical part of a PC-Q

state, represented by unital maps, that preserves the whole state must respect
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the classical structure of the partially classical system. Additionally, it says

that the unital map can act nontrivially only when there is no correlation in

each classical sector.

Theorem 9. A unital channel N ∈ UC(A) fixes a quantum state ρAB

that is PC-Q with respect to the essential decomposition A =
⊕

iAi (let

Πi := 1Ai) with corresponding type index sets IA and IIA if and only if

N preserves every subspace Ai and acts trivially on Ai when i ∈ IA.

See Appendix A.6 for a deeper analysis of essential decomposition.

Now we introduce a bipartite generalization of catalytic decomposition that

we will call the delocalized catalytic decomposition through the essential

decomposition.

Definition 10. Let ρAB be a bipartite quantum state with the essential de-

compositions of A =
⊕

iAi and B =
⊕

iBi, with ΠA
i := 1Ai and

ΠB
j := 1Bj . The type index sets for each decomposition are given as IA,

IIA, IB and IIB , respectively. The delocalized catalytic decomposition

(DCD) of a bipartite quantum state ρAB ∈ S(AB) is the spectral decom-

position of the following form,

ρAB =
⊕
i,j

(ΠA
i ⊗ΠB

j )ρAB(Π
A
i ⊗ΠB

j ). (3.12)

Since the essential decompositions are unique for A and B respec-

tively, the DCD is also unique for ρAB . This definition is slightly more com-

plicated than the definition of the catalytic decomposition for single-partite

systems, but it is required to identify the basic building blocks of a delocal-
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ized randomness source. Most notably, each component in the DCD is still

compatible with any catalysis unitary operators of the original catalysts, just

as every component in the catalytic decomposition of single-partite catalysts

is compatible with any catalysis unitary operator compatible with the cata-

lyst before the decomposition. (See Appendix for more information.) This

observation leads us to the following definition of the delocalized catalytic

Rényi entropy.

Definition 11. For the DCD of ρAB given in (3.12), we let τi := |0⟩⟨0| if

i ∈ IA and let τi := πTi , where Ti = C|Ai|2 if i ∈ IIA. Similarly, we let

κj := |0⟩⟨0| if j ∈ IB and let κj := πKj , where Kj = C|Bj |2 if j ∈ IIB .

Also, let pij := Tr
[
(ΠA

i ⊗ΠB
j )ρAB

]
. Then, the delocalized catalytic Rényi

entropy S⋄⋄
α (ρAB) of ρAB is defined as the following way.

S⋄⋄
α (ρAB) := Sα

⊕
i,j

pijτi ⊗ κj

 . (3.13)

Here, we call the state d(ρAB) :=
⊕

i,j pijτi⊗κj the delocalized randomness-

exhausting output (DREO) of ρAB .

Just like the catalytic entropies, the delocalized catalytic entropies also

have the same kind of operational meaning.

Theorem 12. The maximum Rényi entropy that can be catalytically ex-

tracted from a delocalized randomness source σB0B1 is its delocalized cat-

alytic Rényi entropy.

Hence, we successfully quantified the amount of catalytically extractable

randomness in the delocalized setting. This analysis of static but delocal-

38



ized randomness sources can be directly applied to dynamical randomness

sources through the Choi-Jamiołkowski isomorphism in the next Section.

Note that if there is no correlation in the delocalized randomness source,

i.e., σB0B1 = σB0 ⊗ σB1 , then there are no type I subspaces in the essential

decompositions, so delocalized catalysis simply reduces to two independent

local catalyses with S⋄⋄
α (σB0 ⊗ σB1) = S⋄

α (σB0) + S⋄
α (σB1).

We remark that multipartite generalization of delocalized catalysis or

randomness is straightforward. Each party in delocalized catalysis behave

locally and there are no collective maneuvers needed. Hence, the delocal-

ized catalytic decomposition is simply the collection of the essential de-

composition of each party, so for an N -partite quantum state ρ12···N , with

each partyX = 1, 2, · · · , N , one can partition theN parties intoX : X̄ and

find the essential decomposition. The rest of procedures, e.g. calculating the

catalytic entropies and implementing the catalysis, are immediate once the

delocalized catalytic decomposition is found.

3.3 Dynamical catalytic randomness

So far, we have only considered static randomness sources, whose clas-

sical examples include random number tables and secret keys. In a more

realistic situation, however, dynamical sources of randomness are common.

For example, when a group of people are playing a tabletop board game,

they do not usually play the game with a random number table prepared in

advance; they roll a dice to generate randomness on the spot. For example,

a record of the result of a previously (|X|-faced) dice roll can be modelled
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Figure 4: Comparison of three types of catalysis of quantum randomness.
Randomness represented by dices enters the interaction and leaves it locally
unchanged but correlated with the system. As it can be seen from diagrams
(b) and (c), delocalized catalysis and dynamical catalysis of randomness are
intimated related; rotating one diagram by 90 degrees makes it very similar
to the other one.

by a static state, i.e., the maximally mixed state πX , but the action of rolling

a dice can be modelled by the depolarizing map R ∈ C(X),

R(ρ) = πX Tr[ρ], (3.14)

for any initial state ρ of the dice with classical system X . Even in this case,

we claim that the requirement of catalytic randomness utilization still holds.

In other words, if you have no idea for which game it is used and only ob-

serve the dice rolling, then you should not acquire any information of the

actual game play. This ‘information non-leaking’ property is very important

for characterizing pure randomness utilization [20], and we require that a

randomness source must not remember for which operation it was used and

must retain its probabilistic properties regardless of the result of the imple-

mented operation. See Section 2 for more discussion. This requirement can

be formulated as follows.
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When one tries to catalytically transform a quantum channel N into

Θ(N ) by using a quantum channel R as a randomness source, we assume

that only applying bipartite unitary operators to input and output systems of

N and R is allowed as no randomness producing operation is allowed other

than R. (See Section 4.2.) We will model the complete loss of information

about a dynamical quantum process with the supertrace, denoted by Tr,

which represents completely losing information on input and output system

of a given process, i.e. Tr(N ) := Tr[N (πX)]. (See Section 1.1.1.)

Before considering the most general case, we first analyze a simpler

case where the target channel N and the randomness source channel R act

at the same time. In other words, they act on their respective systems in

parallel. Formally, we say a superchannel Θ ∈ SL(A) is catalytic when

there is a bipartite superunitary operation Ω ∈ L(AB) and a channel R ∈

C(B) such that

TrBΩ(N ⊗R) = Θ(N ), (3.15)

and

TrAΩ(N ⊗R) = Tr[N ]R, (3.16)

for all N ∈ C̃(A). (See Section A.1 for a discussion on the set of N .) We

will call the whole process a (dynamical) catalysis and say that R is used as

a randomness source (channel) or a catalyst. If a superunitary operation Ω

can be used to implement a catalytic superchannel, then it is called a cataly-

sis superunitary operation, or it is said to be catalytic. A randomness source

channel R and a catalysis superunitary operation Ω is said to be compatible
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with each other when (3.15) and (3.16) hold for some superchannel Θ and

every N ∈ C(A).

Since a superunitary Ω can be decomposed into the actions of preuni-

tary U0 and postunitary U1 [24], i.e., Ω(N ) = AdU1 ◦ N ◦ AdU0 , therefore

(3.15) and (3.16) can be expressed as TrB[AdU1 ◦N ⊗R◦AdU0 ] = Θ(N )

and TrA[AdU1 ◦ N ⊗ R ◦ AdU0 ] = R. By considering the Choi matrices,

we get the following expressions

TrBB′ [AdU1⊗UT
0
(JN

AA′ ⊗ JR
BB′)] = J

Θ(N )
AA′ , (3.17)

and

TrAA′ [AdU1⊗UT
0
(JN

AA′ ⊗ JR
BB′)] = JR

BB′ , (3.18)

for all N ∈ C̃(A). Note that every ρXX′ ∈ S(X ⊗ X ′), there exists a

M ∈ C̃(X) such that JM
XX′ ∝ ρXX′ , and vice versa. It follows that (3.17)

and (3.18) are equivalent to the following requirements, in turn:

TrBB′ [AdU1⊗UT
0
(ρAA′ ⊗ JR

BB′)] = J[Θ](ρAA′), (3.19)

and

TrAA′ [AdU1⊗UT
0
(ρAA′ ⊗ JR

BB′)] = JR
BB′ , (3.20)

for every ρAA′ ∈ S(A ⊗ A′). Here, U1 acts on AB and UT
0 acts on A′B′.

Now, we can observe that (3.15) and (3.16) are only a special case of (3.9)

and (3.10) after some change of notations, thus we can conclude that Ω is

catalytic if and only if UTA
0 ⊗UTB′

1 is unitary. It is equivalent to saying both
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U0 and U1 are catalytic themselves.

Theorem 13. A superunitary operation Ω : N 7→ AdU1 ◦ N ◦ AdU0 is

catalytic if and only if both U0 and U1 are catalytic. Also, Ω is compatible

with R if and only if U0 ⊗ UT
1 is compatible with JR

BB′ , i.e.,

[U1 ⊗ UT
0 ,1AA′ ⊗ JR

BB′ ] = 0. (3.21)

The vanishing commutator condition (3.21) follows from Theorem 3.

When E(ρ) = πB Tr[ρ] is the depolarizing map on B, its Choi matrix is

JE
BB′ = πB⊗πB′ , therefore [U1⊗UT

0 ,1AA′⊗JE
BB′ ] = 0 for any U0 and U1.

It implies that, similarly to that every catalysis unitary operator is compatible

with the maximally mixed state, every catalysis superunitary operations is

compatible with the depolarizing map. In other words, a fair (quantum) dice

roll can always provide randomness without leaking information.

There could be many possible measures of randomness extracted from

randomness source, but from the formal similarity of static and dynamical

catalysis, we will use Sα
(
J
Θ(N )
AA′

)
− Sα

(
JN
AA′
)
, for every α ≥ 0, as a

measure of extracted randomness. When α = 1, Sα
(
JN
AA′
)

is called the

map entropy Smap(N ) of channel N [51, 53]. Theorem 13 immediately

yields an upper bound to the amount of randomness catalytically extractable

from a randomness source channel R ∈ C(B), namely, Sα
(
J
Θ(N )
AA′

)
−

Sα
(
JN
AA′
)
≤ S⋄

α

(
JR
BB′
)
, where JR

BB′ is interpreted to be an element of

B(B ⊗ B′) without any superselection rule. However, unitary operators of

the form U1⊗UT
0 are not of the most general form of 4-partite unitary oper-

ator that can act onAA′BB′, it is not evident if S⋄
α

(
JR
BB′
)

is the maximally
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extractable Rényi entropy extractable from R, counted with the increase of

the Rényi entropy of the Choi matrix.

However, from its equivalence with delocalized catalysis of random-

ness, we can simply use the delocalized catalytic entropies to measure the

maximally extractable randomness of arbitrary channel.

Definition 14. The catalytic Rényi entropy S⋄
α (R) of a quantum channel

R ∈ C(B) is

S⋄
α (R) = S⋄⋄

α

(
JR
BB′
)
. (3.22)

The framework of dynamical quantum randomness encompasses the

static quantum randomness too. Any static randomness source modelled as

a quantum stat σB can be described as preparation channel P(α) = ασ

in C(C, B), whose Choi matrix is simply J P
CB = σ, hence S⋄

α (P) =

S⋄⋄
α

(
J P
CB

)
= S⋄

α (σ).

We, now, leave a remark on a more general case of catalysis of dynam-

ical quantum randomness. In general, a target channel and a randomness

source channel need not be applied simultaneously, and one preceding an-

other is obviously possible. For example, if we assume that the randomness

source is applied after the target channel, then we should modify the cataly-

sis conditions as follows. For all N ∈ C̃(A),

TrB U3 ◦ RB ◦ U2 ◦ NA ◦ U1 = Θ(N ), (3.23)

and

TrA U3 ◦ RB ◦ U2 ◦ NA ◦ U1 = Tr[N ]R, (3.24)
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with some superchannel Θ ∈ SC(A) and some unitary operations Ui ∈

U(AB) for i = 1, 2, 3. One can see that the unitary operation U2 in the

middle hinders the transforming this process into a delocalized catalysis

process. Although we can show that U1 must be a catalytic unitary operation

by tracing out both sides of (3.24), still many other parts of this process

is left for further inquiry. Hence, we leave the complete characterization

of dynamical catalysis of this type as an open question for the moment.

Nonetheless, when there is no randomness in the randomness source R, i.e.,

if R is a unitary process, then one can rump U2◦RB◦U1 into a single unitary

operation, hence it reduces to the dynamical catalysis discussed before, with

trivial randomness source, idB . This fact will be used when we prove the no-

stealth theorem in a later section.

3.4 Partially depleted catalyst and semantic in-
formation

In previous Sections, we have observed that randomness captures the

probabilistic aspect of information that is independent of its semantics. How-

ever, the everyday notion of information heavily depends on the semantic

properties of information, hence one might find that the discussion of pre-

vious Sections misses a large portion of discussion on information. Indeed,

the semantic side and the quantitative side of information are notorious for

being hard to unify. Nevertheless, in this Section, we venture into the realm

of semantic information and attempt to spell out the formalism of semantic

information in our framework of catalytic randomness.
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Floridi [54] defines semantic information as well-formed, meaningful

and truthful data. As Shannon’s approach to information, which we take in

the quantum setting, is probabilistic rather than propositional, we will focus

on the ‘meaningful’ part. This definition immediately assumes the existence

of reference systems that are related with the carrier of semantic informa-

tion, as data cannot be meaningful when it is isolated from the outer world.

For example, we consider a recipe for some dish meaningful because the

recipe is correlated with the properties of the ingredients, which appear ran-

dom in the Bayesian sense to those who are a novice at cooking. Another

example is maps; a map is meaningful compared to any other picture be-

cause it corresponds to the geography of the real world.

Therefore, we will try to be value-neutral when it comes to deciding

what counts as meaningful and claim that the existence of correlation be-

tween information carrier and the object you are going to interact with, the

target system, is the key characteristic of semantic information in the con-

text of our formalism. The situation is similar with delocalized catalysis of

randomness, but there is an important difference that interaction between in-

formation source and target system is allowed and the correlation between

the two systems need not be preserved because the target system is now

allowed to be altered. Recall that only the state of information source is

required to be preserved in our definition of (pure) information utilization.

One of the most typical example is Szilard’s engine. Suppose that a gas

molecule G in a piston can be either of two states of being in the left half

of the piston |l⟩G or being in the right half |r⟩G. Let the molecule be in the
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maximally mixed state,

ρG =
1

2
|l⟩⟨l|G +

1

2
|r⟩⟨r|G . (3.25)

A common precondition of Szilard’s engine is the acquisition of informa-

tion about the position of the molecule. Acquisition of information requires

the existence of a information carrier that gets correlated with its reference,

hence we spell it out as C, i.e.,

1

2
|“l”⟩⟨“l”|C ⊗ |l⟩⟨l|G +

1

2
|“r”⟩⟨“r”|C ⊗ |r⟩⟨r|G . (3.26)

The states |“l”⟩C and |“r”⟩C are orthogonal to each other and contain the

classical information about the state of G. By conditioning on the state of

C, we can initialize the moleculeG by applying a reversible process, so that

the final state of CG is

(
1

2
|“l”⟩⟨“l”|C +

1

2
|“r”⟩⟨“r”|C

)
⊗ |r⟩⟨r|G . (3.27)

As one can see, we only used the system C as an information source so

the state of C is left unaltered but that of G is changed. Observe that the

end result is the mere transfer of entropy from G to C, which is the key

observation needed to solve Maxwell’s demon problem.

Our way of modelling semantic information requires two systems, the

information source that only provides information and the target system that

can be physically affected. If we admit this asymmetry between them, then

we need a mathematical characterization of their difference. This distinction
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is important as Korzybski said “A map is not the territory” [55].

As we have seen in Theorem 1, we could expect that there exist differ-

ent characterizations of semantic information in each pictures, dynamical

(Heisenberg) and static (Schrödinger). To construct the dynamical charac-

terization, let us go back to the example of Szilard’s engine. When we used

the information source, our initial intention was initializing the position of

the gas molecule. However, we could always change our mind and do what-

ever we want with the information we acquired from the source other than

initializing the gas molecule into the right half of the cylinder. We claim that

this alternation of plan, strictly happening to the action on the target system,

must not affect the information source. This requirement, which is a gen-

eralization of Condition (i) of Theorem 1, can be expressed concretely as

follows.

Definition 15 (S:A). We say that a bipartite unitary operation U = AdU

with U ∈ U(AB) utilizes (semantic) information of B in a bipartite state

σAB when for any superchannel Θ ∈ SC(A), UΘ := (ΘA ⊗ idB)(U) does

not affect B, i.e., there exists ηB ∈ S(B) such that for all Θ ∈ SC(A),

TrA[UΘ(σAB)] = ηB. (3.28)

We remark that such ηB in (3.28) must be unitarily similar to σB . (See

Appendix.) For the static characterization, imagine that we redistribute the

information of systemA to a larger joint systemRA by applying some chan-

nel NA→RA. Because of the correlation formed between R and A, when

static information of A is leaked to B by the interaction between A and B,
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there will be a change in the correlation between R and B. Based on this

speculation, we can formulate the following Definition in the same spirit

with Condition (iii) of Proposition 2.

Definition 16 (S:B). We say that a bipartite unitary operation U = AdU

with U ∈ U(AB) utilizes (semantic) information of B in a bipartite state

σAB when for any state τRAB = (NA→RA ⊗ idB)(σAB) with a quantum

channel NA→RA, we have

TrA[(idR ⊗ U)(τRAB)] = (idR ⊗ AdV )(τRB), (3.29)

with some V ∈ U(B).

Alternatively, since we have already developed the definition of using

only information of a local system in a multipartite quantum state, one may

rather import the definition of delocalized catalysis of randomness and claim

the following.

Definition 17 (S:C). We say that a bipartite unitary operation U = AdU with

U ∈ U(AB) utilizes (semantic) information of B in a bipartite state σAB

when U is compatible with σAB on B up to local unitary as a delocalized

catalyst.

The main result of this Section is that these seemingly different defini-

tions of semantic information are equivalent. In other words, utilization of

semantic information is fundamentally not different from delocalized catal-

ysis of randomness. Hence, ‘using only information of system B in cor-

related systems ABC · · · ’ can be universally discussed without paying at-
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tention to which is allowed to be altered and which system is used as an

information source other than B. This can be concretely expressed as fol-

lows.

Theorem 18. Definitions (S:A), (S:B) and (S:C) are equivalent.

Proof is in Appendix. This result unifies many notions of information

usage introduced so far as it will be demonstrated afterwards. So, we will

simply drop ‘semantic’ when we refer to this type of information usage. First

of all, we can observe that non-semantic (quantum) information is a special

case of semantic information by considering uncorrelated σAB = σA ⊗ σB .

Without loss of generality, unless we explicitly state ‘up to local uni-

tary’, we will only consider the ‘canonical’ cases; we assume that no non-

trivial unitary operation is applied on B after the interaction for the sake of

simplicity.

One can observe that this characterization of semantic information uti-

lization is actually equivalent to catalysis of partially depleted randomness

source, the characterization of which was an open problem raised in Ref.

[20]. It is because now we consider randomness sources that are initially cor-

related with the target system, and we concluded that randomness sources

are consumed by forming correlation with its user. It is in contrast with the

previous Sections where randomness sources were assumed to be initially

in a product state with the target system. Therefore, we can consider utiliza-

tion of semantic information is also in the formalism of catalytic quantum

randomness.

We already know that a bipartite state σAB that is not Q-PC cannot
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yield catalytic randomness on B. Hence, we get the following Corollary

which shows that utilization of semantic quantum information is impossi-

ble when you cannot use non-semantic quantum information when you are

required not to disturb the information source, just as it is in the classical

setting.

Corollary 19. If σAB is not Q-PC, then no non-product bipartite unitary

operation can utilize only semantic information of B in σAB .

An important example of quantum state that is not Q-PC is pure states

with full Schmidt rank. Hence, as pure states were not useful for delocalized

catalysis of randomness, they also do not allow utilization of pure semantic

information. Note that the requirement of full Schmidt rank can be circum-

vented by limiting the local Hilbert spaces to the support of each marginal

state, as they are the only physically relevant Hilbert spaces.

One may wonder, since utilization of information of B in σAB allows

information flow from A to AB and from AB to B, if it is possible to cir-

cumvent the restriction of one-way information flow by breaking the process

in two steps so that one has net flow of information from A to B. Indeed,

even if M and N are catalytic unitary operators compatible with σB , the

same need not hold for their composition NM .

However, such circumvention is impossible after all; one lesson we

learned from the observations of previous Sections is that one should be ex-

plicit about reference systems when one treats information from the internal

information perspective. First of all, if system A starts from the maximally

mixed state uncorrelated with any other systems, then the action of arbitrary
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catalytic unitary compatible with the state of B does not change the state of

joint system AB. This is mainly because, without a method to track infor-

mation that was originally stored in A, the ostensible information exchange

between A and B yields no detectable difference.

Especially, if we start from an initial state ρRA ⊗ σB where R is a

reference system of A and apply a catalytic unitary MAB , then the infor-

mation source B gets correlated with RA in the tripartite state σRAB :=

(idR ⊗ AdM )(ρRA ⊗ σB). Any unitary that utilizes the information of B in

σRAB must be compatible with it on B, so, due to the following Corollary

of Theorem 18, the marginal state on RB does not change after the second

step; it stays in the product state σRB = σR ⊗ σB , which means that no

information in A has been transferred to B.

Corollary 20. If 1R ⊗ UAB with U ∈ U(AB) utilizes only semantic infor-

mation of B in σRAB , then we have

TrA[AdUAB
◦ LA(σRAB)] = TrA[LA(σRAB)], (3.30)

for any L ∈ L(A). Especially, when L = idA, we get

TrA[AdUAB
(σRAB)] = σRB. (3.31)

Even after this observation, we should remark that Definitions (S:A-C)

do not guarantee that there is no influx of information into the randomness

source at all. Information that was encoded in the correlation between the

source and the target system can be concentrated into the source.
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For example, in the Szilard engine example we discussed, ((3.25)-

(3.27)), if we call the purifying system of (3.26) R, then I(R : C) increases

from 1 bit to 2 bits in the course of interaction between C and G, although

we interpreted that no physical property other than information of C was

used in the interaction. This is not because information flowed from G to C,

but because the quantum entanglement of CG withR was concentrated into

C after the interaction, albeit it was not accompanied by information flow

form G to C.

We can interpret Definition (S:B) as that we characterize usage of (pure)

semantic information ofB in σAB as an interaction in which no information

in AB that is also present in A flows to B. Corollary 21 easily follows from

Definition (S:B). Proof is given in Appendix.

Corollary 21. If a bipartite unitary operation U = AdU with U ∈ U(AB)

utilizes (semantic) information of B in a bipartite state σAB , then, for any

extension of σRAB such that I(R : A) = I(R : AB), we have

TrA[(idR ⊗ U)(σRAB)] = σRB. (3.32)

As it was shortly discussed in Ref. [20], a randomness source correlated

with a target system can absorb randomness as demonstrated in the exam-

ple of Szilard engine initializing a gas molecule. This is impossible with

uncorrelated randomness sources since they can only increase the amount

of randomness in the target system. Now, with the complete characteriza-

tion of information usage in correlated quantum system, we can quantify

the amount of randomness that a given source can absorb or yield.
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Theorem 22. The least disordered state onA that can be made from σAB us-

ing B as an information source is
∑

j

(∑
i piλj(σ

i
A)
)
|j⟩⟨j|A where σAB =∑

i piσ
i
AB is the essential decomposition of σAB on B.

Proof can be found in Appendix. Theorem 22 shows that quantum cor-

relation is useless for catalytic randomness absorption. Only classical cor-

relation between A and B, which provides deterministic protocol to align

eigenbases of conditional states of A, can reduce the amount of randomness

in A without leaking any information of it to B. Why is it so? Classical

information can be copied and deleted, unlike quantum information, so re-

duction of randomness in A can happen without any change in B when it is

conditioned on classical data in B.

It is important that the results of this Section do not imply that pure en-

tangled states allow no utilization of semantic information of any form what-

soever. We expect that there is a multitude of information flow in generic

quantum interactions, but they are often too complicated and complex in

both directions, or, sometimes, in ambiguous directions. Therefore, to un-

derstand the nature of (quantum) information flow, we only focused on di-

rectional information flow, which also has characterization as pure informa-

tion usage. It is only that utilization of semantic information in pure multi-

partite states necessitates physical manipulation of information carrier.

We remark that our usage of the term semantic information may not

completely agree with others; we used the term to refer to information con-

tained in a system that is correlated with another system the agent is going

to interact with. This correlation differs from correlation among subsystems
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of a information source considered in delocalized catalysis of randomness.

Our definition of semantic information is not propositional, hence cannot be

true or false on its own. Hence, our semantic information does not satisfy

the criteria of Floridi [54]. One might think that our semantic information is

closer to what Floridi calls environmental information.

Nevertheless, well-formedness can be expressed in terms of syntax,

i.e. correlation between subsystems of information source like that between

a sentence and the language, and semantic information given as multipartite

state is meaningful as it is informative about the world outside of informa-

tion source and as truthful as the given state describes the physical reality.

This type of probabilistic and correlational definition was necessary for the

generalization to quantum semantic information. In summary, our ‘semantic

information’ does not refer to the essence of information that is exclusively

semantic but refers to information that could contain semantic content.

3.5 Superselection rules in delocalized and dy-
namical catalyses

The essential decomposition for bipartite states already identifies the

partition of the Hilbert spaces that should be essentially classically distin-

guishable, but there could be additional classical structure imposed by the

superselection rule of each system. This consideration was made in identi-

fying catalysis sector for static and local catalysis of randomness in Section

3.1. For delocalized catalysis of randomness, we modify Definition 10 suit-

ably.
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Definition 23. For systems A and B in state ρAB with the essential decom-

position A =
⊕

i∈IA∪IIA
Ai, suppose that there is a superselection rule

with the superselection sectors A =
⊕

j A
′
j . We let A◦

(i,j) := Ai ∩ A′
j for

i ∈ IIA and all j, and let {(i, j)}i∈IIA,j be the new IIA. Then, the finer

decompositionA =
⊕

i∈IA Ai⊕
⊕

k∈IIA
A◦

k is the essential decomposition

under the superselection.

Note that the superselection sectors cannot intersect nontrivially with

type I subspaces of essential decompositions as the quantum state in each

subspace cannot be a PC-Q state, hence no superselection rule can be non-

trivially imposed on it. Physically, superselection rules only limit the quan-

tum advantage that can be taken from type II subspaces by partitioning a

large uniform quantum states into the tensor product of smaller ones and

forbidding nonclassical interaction between them. Since the catalytic en-

tropies of quantum channels are defined through the delocalized catalytic

entropies of their corresponding Choi matrices, this new definition equally

affects the definition of the dynamical catalytic entropies.

Definition 23 provides a rather complicated way of treating random-

ness sources under superselection rules, but we show that actually it can be

unified within the formalism of delocalized catalysis of randomness. When

{Qi} are projectors onto superselection sectors of A, then any given cataly-

sis ρAB can be replaced with an extension ρEAAB given as

ρEAAB =
∑
i

|i⟩⟨i|EA
⊗ (AdQi ⊗ idB)(ρAB), (3.33)

when it is treated as a delocalized randomness source. It can interpreted that
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the classical observable i of A which is forbidden to be in superposition

should be treated as a piece of classical data correlated with the quantum

state being used as a catalyst. Thus, introduction of delocalized catalysis of

randomness nullifies the necessity of introducing C∗-algebra formalism to

discuss about catalysts under superselection rules.

3.6 The no-stealth theorem

We consider the following dynamical generalization of the no-hiding

theorem [56], or equivalently, the no-masking theorem[57]. Consider that

we want to hide a dynamical process N ∈ C̃(A) from two parties A and B

by applying a global superunitary operation Ω ∈ SC(AB). (Alternatively

one could an arbitrary consider multipartite channel N . See Appendix A.1.)

By hiding, we mean that both of the marginal processes are constant regard-

less of the process N , (See FIG. 5.) i.e.,

TrB[Ω(NA ⊗ idB)] = Tr[N ]E , (3.34)

and

TrA[Ω(NA ⊗ idB)] = Tr[N ]F , (3.35)

for some channels E ∈ C(A) and F ∈ C(B) and for all N ∈ C̃(A). As

discussed in Section 3.3, the duality between delocalized and dynamical

settings immediately yields that it is equivalent to the problem of hiding

a bipartite state ρAA′ , i.e., with some unitary operators U0 ∈ U(AB) and
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Figure 5: Suppose that input and output systems of a given quantum op-
eration are reversibly distributed to two systems. Is it possible to hide the
identity of the operation from the respective systems? In other words, is it
possible to implement quantum operations stealthily? The no-stealth theo-
rem says that it is impossible.

U1 ∈ U(A′B′), we want

TrBB′ [AdU0⊗U1(ρAA′ ⊗ ϕ+BB′)] = ηAA′ , (3.36)

and

TrAA′ [AdU0⊗U1(ρAA′ ⊗ ϕ+BB′)] = ζBB′ , (3.37)
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for some quantum states ηAA′ and ζBB′ . This type of processes were called

a randomness-utilizing processes in Ref.[19], and it was shown there that

every dimension preserving randomness utilizing process must be a cataly-

sis. Hence, we can set ζBB′ = ϕ+BB′ , which is a pure state. Also, because

the delocalized catalytic entropy of ϕ+BB′ is zero, ηAA′ cannot have larger

entropy than the input state ρAA′ , which can be chosen as a pure state, hence

ηAA′ must be pure as well. This immediately yields a contradiction, since

whenever ρAA′ is mixed, then the transformation ρAA′ 7→ ηAA′ decreases

the entropy, which is impossible with a catalytic map. Remember that every

catalytic map is unital, so it cannot decrease the entropy of the input state.

It follows that the original task of hiding arbitrary quantum process

N ∈ C̃(A) by unitarily distributing it to two parties is also impossible. In

short, a quantum process cannot be stealthy on a system with reversible

time evolution. Nevertheless, by using the resource theory of randomness

for quantum processes developed in Section 3.3, it is indeed possible to

hide quantum processes when there is a randomness source with enough

randomness.

3.7 Examples

First, any pure state shared between two parties is useless as a random-

ness source. Especially, the maximally entangled state, corresponding to the

identity channel through the Choi-Jamiołkowski isomorphism, cannot yield

any information without being perturbed.

On the contrary, every classical-classical (C-C) state can yield all of its
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entropy through catalysis. Suppose that a quantum state σccAB is a C-C state:

σccAB =
∑
i,j

p(i, j) |i⟩⟨i| ⊗ |j⟩⟨j| , (3.38)

with the superselection rules that forbid any superposition between basis

elements (i.e. {|i⟩}) for both systems. For σccAB , every Span{|i⟩} for both

systems is type II subspace with dimension 1, therefore the delocalized cat-

alytic entropies and the ordinary entropies are the same, i.e., S⋄⋄
α (σccAB) =

Sα (σ
cc
AB) = Sα ({p(i, j)}i,j) for all α ≥ 0.

This fact could be directly translated to classical-to-classical channels.

Suppose that B(B) is the C∗-algebra of |B|-dimensional diagonal matrices

and Rc ∈ C(B) is a classical channel;

Rc(ρ) =

|B|∑
i,j=1

p(j|i) ⟨i| ρ |i⟩ |j⟩⟨j| , (3.39)

for some conditional probability distribution p(j|i). Then its Choi matrix is

a C-C state, i.e., JRc
BB′ = |B|−1

∑
i,j p(j|i) |j⟩⟨j|B ⊗ |i⟩⟨i|B′ and JRc

BB′ , thus

S⋄
α (Rc) = Sα

(
JRc
BB′

)
= Sα

(
{|B|−1p(j|i)}i,j

)
for all α ≥ 0.

Next, suppose that systems have coarser superselection rules compared

to completely classical systems. Let A =
⊕

iAi and B =
⊕

j Bj be the

superselection sectors of two systems with ΠA
i := 1Ai and ΠB

j = 1Bj .

Consider any classically correlated state of the following form

σpcAB =
∑
i,j

p(i, j)πAi ⊗ πBj . (3.40)
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Then, the corresponding DREO is unitarily similar to

d
(
σpcAB

)
≈
∑
i,j

p(i, j)π⊗2
Ai

⊗ π⊗2
Bj
, (3.41)

hence we have S⋄⋄
α

(
σpcAB

)
= S⋄

α

(
σpcAB

)
and

S⋄⋄(σpcAB) = S(σpcAB) +
∑
i,j

p(i, j) log2(|Ai||Bj |)

when α = 1. This means that there is no impediment from the constraints

imposed by the delocalized setting when there is no type I subspaces in the

essential decompositions.

The channel counterpart is the following type of measure-and-prepare

channel from A to B with the superselection rules A =
⊕

iAi and B =⊕
j Bj ,

Rmp(ρ) =
∑
i,j

p(j|i) Tr
[
ΠA

i ρ
]
πBj , (3.42)

for any conditional probability distribution p(j|i). The Choi matrix of this

channel has the following spectral decomposition,

J
Rmp

BA =
∑
i,j

p(j|i)aiπBj ⊗ πAi , (3.43)

where ai := |Ai|/|A|. A special case is the completely depolarizing channel

with no superselection rules and trivial measurement, i.e.,

Rcp(ρ) = πB Tr[ρ]. (3.44)
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The catalytic entropy of this channel, which functions as the completely ran-

domizing quantum channel, is S⋄
α (Rcp) = 2 log2 |A|+2 log2 |B|. However,

if both systems A and B are classical, then the same channel Rcp now mod-

els “dice rolling”, and the catalytic entropy becomes the half; S⋄
α (Rcp) =

log2 |A|+ log2 |B|.

Conversely, let us consider the pinching channel n with respect to a

complete set of orthonormal projectors {Πi} on B such that
∑

iΠi = idB ,

i.e.,

Rd(ρ) =
∑
i

ΠiρΠi. (3.45)

In this case, the Choi matrix is of the randomness source is

JRd
BB′ =

∑
i

bi |Γi⟩⟨Γi| , (3.46)

where bi := |Bi|/|B|, |Γi⟩ = |Bi|−1/2(Bi ⊗ 1B′
i
)
∑

j |jj⟩BB′ with Bi =

supp (Πi). Here, every subspace Bi is either a type I or 1-dimensional type

II subspace. Hence, S⋄
α (Rd) = S⋄⋄

α

(
JRd
BB′

)
= Sα ({bi}) ≤ S⋄

α

(
JRd
BB′

)
for

all α ≥ 0. It means that even if there are multiple bi with the same value, i.e.,

even if JRd
BB′ has degeneracy, the quantum correlation between two systems

hinders the utilization of that correlation without leaving traces.
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Chapter 4

Discussion

4.1 Physicality of information

In the seminal article ‘Information is Physical’ (1991) [58], Landauer

argued that information is physical by reciting the observations that there

is no nontrivial minimal energy dissipation accompanying information pro-

cessing tasks such as computation, copying and communication. These ev-

idences imply that deletion of information is the only source of nontrivial

energy cost, which supports the view that a certain amount of energy nec-

essarily corresponds to a certain amount of energy, independent of how it

is processed, in favor of the perspective from which information is a phys-

ical entity similar to matter which is also equivalent to energy through the

mass-energy equivalence.

Certainly, Landauer’s argument irrefutably shows that the presence of

information in our physical universe is necessarily physical as Landauer said

“Information is not an abstract entity but exists only through a physical rep-

resentation” [59]. However, the problem with this almost tautological usage

of the term ‘physical’ is that it makes every physically perceivable abstract

concept physical. For example, money can only exist through physical notes

and coins or digitalized currencies in physical computers, and law must be

recorded on some physical representation and can only be enforced with
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physical methods by a government, which is also an abstract concept that

exists only through a physical manifestation. We can even say that every ab-

stract concept that involves information exchanges is physical if information

is physical. If every concept relevant to a physical agent counts as physical,

then this notion of physicality might not be very useful as there would be

virtually no nonphysical concept.

A more operational criterion for the physicality of concepts would be

asking if usage or action with/involving the concept requires detectable

change to physical representation of the concept that is unavoidable, even

in an approximate sense. Perhaps, the term material might be more appro-

priate to describe such a property since there are concepts of physical nature

that are not material by themselves. For example, ‘solidness’ is represented

by a hammer used to drive a nail into the wall, but the hammer, in the prac-

tical sense, is not detectably altered after the process. Clearly, ‘solidness’

is a property of physical nature but not a matter-like concept; ‘solidness’

did not depart from the hammer to the wall like a particle. Likewise, ev-

ery catalyst in chemistry and quantum resource theory is also not a physical

representation of material concept, albeit they might play a physical role in

the respective catalysis process. As a matter of fact, since the terms ‘phys-

icalism’ and ‘materialism’ are often used interchangeably [60], we will not

introduce another term and call the property simply ‘physicality’. This is the

perspective we take in this dissertation about information, and the argument

of Landauer ironically supports the claim that information is not physical

in our sense, as Landauer argued that energy cost of information processing

other than deletion can be made arbitrarily small.
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Our notion of physicality could be relative, as what is expected from an

operational concept. Naturally, physicality of information now depends not

only on the information storage but also on the method of utilizing it. For ex-

ample, software, in contrast to hardware, is usually considered nonphysical

because installation, execution and deletion of software leave no apparent

physical trace on the hardware it is running on. However, of course, it is true

not only that software accompanies physical traces on hardware detectable

with careful inspection, but also one can physically interact with software

through input and output devices, hence software is as physical as hardware

for its user equipped with proper devices.

We defined information as something that can spread from its source

without altering it, hence it is required to be nonphysical by definition. Is this

notion of information also relative? We first examine it for classical informa-

tion. Let us consider the classical version of catalytic randomness. Consider

interaction between system 1 and 2, where (i, j) represents the situation

where system 1 is in the state i and system 2 is in the state j. We want to

formulate a classical version of (3.1) and (3.2). Invertible classical operation

is permutation, thus we let f : (i, j) 7→ (f1(i, j), f2(i, j)) be a permutation

of states of the joint system of 1 and 2, where system 1 is a target system and

system 2 is a catalyst. When the initial probability distribution of system 2

is (pj), then the condition for f to be catalytic permutation compatible with

(pj) is ∑
j′:j=f2(i,j′)

pj′ = pj , (4.1)

for all i and j. Similarly to catalytic quantum randomness, f2(i, · ) must
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preserve every non-degenerate probability distribution, and can permutate

every degeneracy block of (pj) (the set of j with the same probability pj).

As a special case, for the completely uniform distribution, π2, every permu-

tation f such that f2(i, · ) is a permutation for every i is catalytic permuta-

tion compatible with π2. This fact may come off as weird to some readers,

because permuting the outcomes of an information source may seem to leak

information to the source. However, if the source is not correlated with any

other information sources you have, then there is no way to tell if the per-

mutation has taken place: You cannot tell if someone flipped the unknown

outcome of a random coin toss.

Even if permutation of degenerate states of catalyst is allowed in pure

information utilization, some readers might still wonder why would one

want to do that. Indeed, reading a message and scrambling the letters of

the message sound weird and look unnecessary when the purpose is sim-

ply extracting as much information as possible. In generic cases, however,

this permutation is accidental rather than intentional. One can consider each

state in each degeneracy block a microscopic state and each degeneracy

block of (pi) a macroscopic state. Turning a page of a book will disturb the

molecules in the paper even when it is done extremely carefully. But, if it can

be done in a macroscopically undetectable fashion, then the action only per-

mutes the microscopic states belonging to a same macroscopic state. Thus,

it still counts as pure information utilization on this macroscopicity level.

The intuition that the permutation is invasive is not wrong nonethe-

less, as manipulating a part of a correlated information source can indeed

leak information. If you tossed a coin and wrote down the outcome on a
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piece of paper, then then the coin and the paper are correlated. In this case,

if someone flips the coin, then you can detect it by referring to the paper.

Actually, this is exactly how classical secret sharing works; encoding in-

formation into correlation and correlation only. Nevertheless, if you cannot

access the paper, then interactions that might flip the coin can still count as

pure information utilization. This shows that physicality of classical infor-

mation is also relative, because the choice of the system that you will treat

as information source affects the physicality.

Nonetheless, a question on the possibility of universally nonphysical

classical information still remains: Is it possible to utilize information of a

classical system regardless of its relation with the outer world? Indeed, ev-

ery permutation f that fixes every j, i.e. f2(i, j) = j for all i is compatible

with every extension of system 2, i.e. a combination of system 2 and any

system 3 that is arbitrarily correlated with system 2. Such a permutation

corresponds to simply ‘reading’ j and implementing a permutation on sys-

tem 1 conditioned on j. One can easily see that this action never changes the

joint probability distribution of system 2 and 3. This is the notion of clas-

sical information we are familiar with: information that can be freely read

and distributed and does not necessitate a nontrivial minimum amount of

physical effect on information carriers.

Does the same conclusion hold for quantum information? In our defini-

tion (see (3.2)), utilizing only information in quantum state σB means leak-

ing no information to it. In other words, we defined utilization of quantum

information to be nonphysical as well. However, just like classical informa-

tion sources, a quantum information source could be correlated with other
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systems, i.e., σB could be a marginal state of its extension σAB . We can

easily observe that interacting with a part of correlated information source

exactly corresponds to delocalized catalysis of randomness and Theorem 7

says that totally quantum-quantum (Q-Q) bipartite states cannot yield ran-

domness through delocalized catalysis. But, since every mixed state σB has

a totally Q-Q extension σAB , namely, its purification. Hence, every uti-

lization of quantum information can be detected by someone with enough

amount of side information; there is no universally nonphysical quantum in-

formation, contrary to classical information. This observation can be sum-

marized as follows.

Theorem 24. For any catalysis unitary U ∈ U(A0B0) compatible with σB0 ,

there exists an extension σB0B1 of σB0 such that (U0, U1) is not compatible

with σB0B1 for any U1 ∈ U(A1B1).

One of the goals of establishing the framework of catalysis of quantum

randomness is to distinguish ‘quantum state’ and ‘quantum information’,

two terms that are often mixed up in quantum information community. This

distinction is needed since quantum state describes every physically accessi-

ble properties of a quantum system, be it informational or not. Thus, accept-

ing this distinction, the no-cloning theorem only forbids cloning of quantum

state, not quantum information. In fact, the task of ‘cloning quantum infor-

mation’ must be carefully redefined. Nonetheless, the fact that there is no

universally nonphysical quantum information hints that the gist of the no-

cloning theorem still lives on for quantum information. The fact that cloning

and distribution of classical state can be freely done strongly suggests that
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classical information is a nonphysical entity operationally independent of its

physical representation, and vice versa. In contrast to this, quantum informa-

tion is firmly bound to its physical representation, which can be interpreted

to be strongly related to the fact quantum state is unclonable.

We may summarize the results of this Section with a slogan ‘quantum

information is physical from a broader perspective’ to emphasize the dif-

ference between classical and quantum information. In our formalism, pure

information utilization is required to be nonphysical for a given information

source in the first place, hence the slogan should be interpreted as that for

every pure quantum information utilization there exists an agent who per-

ceives it not as a purely informational interaction, whereas the same may

not hold for classical information. After all, as we pointed out, physicality

of information depends on its definition and perspective of user.

4.2 Concave resource theories

As it was briefly outlined in Introduction, we define concave resource

theory as a theory that consists of the state of resourceful states R (“the

resourceful set”) and the set of resourceful operations, operations that pre-

serve R, OR. Here, the resourceful set R is required to be convex, i.e., if

ρ, σ ∈ R, then λρ+ (1− λ)σ ∈ R for any 0 ≤ λ ≤ 1. Any state that is not

resourceful is called free. In contrast to the fact that usually the distance to

the concave set of free states is used as a measure of resource, it is natural to

measure how deep inside a state is placed in the resourceful set in a concave

resource theory. The most typical concave resource theory would be that of

69



Figure 6: Comparison of convex and concave resource theories. In a convex
resource theory, a statistical mixture of two free object is still free, and the
action of free operation can only draw a resourceful object closer to the
set of free objects. However, in a ‘concave’ resource theory, any statistical
mixture of two resourceful object is resourceful, and there is no universal
‘resource destroying operation’. However, there are resourceful operations
that never makes a resourceful object free.

entropies, whose resource measures are Schur-concave entropic quantities.

As entropic measures like the von Neumann entropy are already a well-

studied topic, one might consider concave resource theories are more or

less trivial. However, there could be still other types of resource theories of

randomness and the theory of catalytic quantum randomness is one of it.

Albeit it is a concave resource theory, catalytic entropies are not concave

functions. For example, slightly mixing the maximally mixed state with a

non-degenerate state significantly decreases its catalytic entropy because it

destroys the degeneracy of it.

Nevertheless, we could anticipate that superunitary operations must be

a part of free operations of generic concave resource theories. Our definition
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of superunitary operation does not have one of the most distinct characteris-

tics of the physical implementation of superchannels: the effect of memory

system. This is because discarding subsystem is no longer a free operation

in resource theory of randomness. There is only one exception and that is

discarding a quantum system that is not allowed to change it marginal state,

because discarding such a system will not lead to any leakage of informa-

tion, and that fits our definition of utilizing randomness and randomness

only. (See Section 2.)

The resource theory of randomness (RTR), as a concave resource the-

ory, has many implications that go against our intuition built from conven-

tional convex resource theories. The resource in the RTR is randomness,

which is not inherently a quantum property, hence not every object with

large quantumness is superior compared to its classical counterpart. For ex-

ample, a maximally entangle state shared by two parties, which is a very

useful resource in entanglement theory, is completely useless in delocalized

catalysis of randomness. In general, whenever there is quantum correlation

in a bipartite quantum state, there exists a type I subspace in the essential

decomposition, and it hinders catalytic extraction of randomness (See Sec-

tion 3.7). It is because states with quantum correlation are sensitive to the

action of local unital channels [50].

However, it does not mean that every quantumness is an obstacle in

randomness extraction. For example, local coherence is helpful for maxi-

mizing extractable randomness of type II subspaces. This is the very reason

why there are dimension-doubling effects in REO or DREO of randomness

sources. However, again, it does not mean that coherence is already present
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in the state helps catalysis of quantum randomness. When we say that local

coherence boosts catalytic quantum randomness, it means that exploiting

coherent quantum operation boosts the efficiency of catalytic randomness

extraction. The ambivalent roles of quantumness as presented here moti-

vates the further study of quantum randomness to reveal its true nature and

the extent of its power.

4.3 Randomness amplification

Suppose that there is a sequence of (classical or quantum) systems

(An)
∞
n=0, and the initial system is prepared in some state ρ0. At step n,

similarly with a Markov chain, only two adjacent systemsAn andAn+1 can

unitarily interact with the constraint that information must not flow from

An+1 to An. This means that catalysis of randomness should happen with

system An being the catalyst. Let ρn be the state of An after the interaction

with An−1. We will call this type of sequence a randomness chain.

Assume that A0 is the only initial randomness source, i.e, every An

with n ≥ 1 is prepared in a pure state. One observation we can make is

that, when every system An is classical, the amount of randomness never

increases with increasing n. This is because S⋄
α (ρn) = Sα (ρn) for classi-

cal systems but Sα (ρn+1) ≤ S⋄
α (ρn) by Theorem 4. On the other hand,

if every system An is quantum, then the amount of randomness can in-

crease exponentially over n. This is because S⋄
α (ρn) ≥ Sα (ρn) and even

S⋄
α (ρn) = 2Sα (ρn) is achievable. In other words, randomness amplifica-

tion is possible only in the chain of quantum systems.
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Interpretations of this observation could vary. One could conclude that

in classical chain, when information back-flow is not allowed, then the to-

tal amount of information measured by its randomness can only decay over

successive transmission between systems. It is fundamentally because clas-

sical systems cannot generate new randomness without shifting information

to other systems. However, in quantum systems, correlation can be formed

within a single system without requiring any randomness, in contrast to clas-

sical systems. Therefore, by using preexisting randomness, one can destroy

the correlation and create even larger randomness. As a result, quantum ran-

domness that was initially minuscule can be amplified to the macroscopic

randomness after the long chain of quantum systems, but no information has

flowed backward through the chain.

Because of the generalization developed in this dissertation, we can

see that the same phenomenon could also to a chain of quantum processes.

Analogously we can consider a sequence of quantum channels (Nn)
∞
n=0

where Nn ∈ C(An) and there exists a catalytic superchannel Θn such that

Θn(M) = Tr[Ωn(M ⊗ Nn)] with some catalysis superunitary operation

Ωn ∈ SL(An+1An) compatible with the catalyst Nn for every n ≥ 0 so

that Θn(Υn) = Nn+1 for some superunitary operation Υn ∈ U(An). It

means that all the randomness of Nn+1 is catalytically extracted from Nn,

hence there is no detectable effect left on the action of Nn alone by the

randomness extraction. We will call this a randomness chain of quantum

channels. For example, a depolarizing noise on a 1000-qubit quantum sys-

tem can be realized from a depolarising noise on a qubit system after about

10 steps along a randomness chain because of the exponential growth of
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randomness. Along with chaos, this type of quantum randomness amplifi-

cation might be one of the mechanisms realizing macroscopic disorder with

microscopic initial disorder. An interesting observation is that a chain of

completely dephasing channels cannot see this kind of randomness ampli-

fication because there are no type II subspaces that could yield quantum

advantage of randomness extraction (See Section 3.7).
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Chapter 5

Conclusions

Why is it important to understand what it means to use information and

information only? With the success of quantum information theory, there

has been a trend of calling the advantage of using quantum systems com-

pared to using classical systems for implementing the same task the advan-

tage of ‘quantum information’, even when it is accompanied by destruction

or deterioration of quantum systems. But after a moment’s thought, not ev-

ery quantum property is purely informational, and there is a necessity of

distinguishing the power of information and that of other physical prop-

erties. In this dissertation, following the gist of Shannon [5], we analyzed

randomness as information in the quantum setting.

We generalized the resource theory of catalytic quantum randomness

to delocalized and dynamical randomness sources. The delocalized and dy-

namical catalytic entropies were introduced to measure the catalytically ex-

tractable randomness within multipartite quantum states. In contrast to static

catalysis of randomness, not every mixed state can yield catalytic random-

ness in the delocalized setting for nonclassically correlated quantum states

are sensitive to the effect of catalytic maps. As an application, we proved

a no-go theorem that is a generalization of the no-hiding theorem [56], the

no-stealth theorem, that forbids unitarily hiding quantum processes by dis-

tributing it to two delocalized parties.
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Furthermore, we critically examined the slogan ‘information is physi-

cal’ by Landauer [58, 59], and concluded that when we focus more on uti-

lization of information rather than on mere presence of information, clas-

sical information is rather nonphysical, or can be made nonphysical with

proper optimization, independently of perspective. On the other hand, we

showed that utilization of quantum information cannot be universally deemed

to be nonphysical. It is essentially because quantum correlation, especially

entanglement of pure quantum state, is strong enough to remember every

action acted on a local system.

We also attempted to analyze semantic information in the context of

catalytic randomness, by focusing on the correspondence between informa-

tion’s meaning and correlation with other systems. By doing so, we showed

that non-semantic information, randomness, is a special case of semantic in-

formation and revealed that the usability of semantic information is exactly

same with that of non-semantic information.

Models of information used in this dissertation are rather too simple

to cover every aspect of information theory and one may find the defini-

tion of information given in this dissertation unsatisfactory or even disagree

with it. Nonetheless, we reckon that the framework developed here success-

fully captures a certain aspect of information as a relatively nonphysical

entity whose physical representation can affect the physical world without

being affected and is presented in a concise modern quantum information

language easily accessible by physicists. Indeed, the field of information

theory is so vast that a single definition of information cannot explain every

aspect of information as Shannon warned:
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“It is hardly to be expected that a single concept of information would

satisfactorily account for the numerous possible applications of this

general field.”

— Shannon (1953) [61].

As we have completed the characterization of maximum entropy ex-

tractable with exact catalysis, natural next steps include generalization to

approximate catalysis and the converse problem. By converse problem, we

mean characterizing randomness sources that can realize a given catalytic

map.

Characterizing tasks that can be done without altering randomness sources

is important for understanding the fundamental nature of randomness in

physics, but in practice, one can always use randomness in combination

with other physical properties, hence it would be interesting to study the

relation of the randomness cost and other costs of implementing quantum

processes.
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Chapter A

Appendix : Technical results

A.1 Issues of CP map input

In contrast to static catalysis, which requires the invariance of the state

of randomness source for every normalized input state, we required dynam-

ical catalysis the invariance of the randomness source channel for every CP

trace nonincreasing map in (3.16). However, in contrast to that every sub-

normalized quantum state can be made into a normalized one by simply

multiplying by some positive number, not every CP map can be made into

a quantum channel (CPTP map) in the same way. Hence, one might sus-

pect that requiring condition (3.16) for every N ∈ C̃(A) is too severe. In

this Section, we justify this condition. Alternatively, we could require the

following condition,

TrA [(idE0→E1 ⊗ Ω)(N ⊗R)] = TrA[N ]⊗R (A.1)

for every N ∈ C(AE0, AE1), where idE0→E1(L) = idE1◦L◦idE0 for every

L ∈ L(E0, E1). The differences are that now N is a multipartite channel,

and that output channels TrA[N ] ∈ C(E0, E1) and R ∈ C(B) are required

to be uncorrelated.

This is a well-motivated requirement, since superchannels can be ap-
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plied to a part of multipartite channels, and the requirement of informa-

tion non-leakage through Ω can be re-interpreted as the requirement of no

formation of correlation between the systems that did not interact directly

through Ω ∈ SC(AB). We remark that any CP trace nonincreasing map

can be a subchannel of another channel. It means that for any N0 ∈ C̃(A),

there exists some N1 ∈ C̃(A) such that N0 + N1 ∈ C(A). Also, for some

U ∈ U(AE0) and a POVM {M0,M1} with M0 +M1 = 1E0 on E0 and

Ni(ρ) = TrE0 [(1A ⊗Mi)AdU (ρ⊗ |0⟩⟨0|E0
)], (A.2)

for every ρ ∈ B(A) and i = 0, 1. Naturally, we can define the corresponding

channel N ∈ C(A,AE1) given as

N (ρ) := N0 ⊗ |0⟩⟨0|E1
+N1 ⊗ |1⟩⟨1|E1

. (A.3)

With this expression, (A.1) requires that

TrA [(idE0→E1 ⊗ Ω)(N ⊗R)] = σE1 ⊗R, (A.4)

with σE1 = Tr[N0] |0⟩⟨0|E1
+ Tr[N1] |1⟩⟨1|E1

. However, we can observe

that

⟨i|E1
N |i⟩E1

= Ni, (A.5)

for i = 0, 1, therefore by contracting |i⟩⟨i|E1
with the both sides of (A.4),
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using ⟨i|E1
σE1 |i⟩E1

= Tr[Ni], we get

TrAΩ(Ni ⊗R) = Tr[Ni]R. (A.6)

Since N0 was chosen arbitrarily in C̃(A), we can see that (A.1) implies

condition (3.16).

Conversely, let L‡ := †◦L◦† for any linear map L. We can see that any

linear map L can be decomposed into the Hermitian-preserving part LR :=

(L+L‡)/2 and the anti Hermitian-preserving part LI := −i(L−L‡)/2 so

that L = LR + iLI . Again, any Hermitian-preserving linear map H can be

expressed as the difference of two CP maps P and L so that H = P − N .

(It follows from the spectral decomposition of its Choi matrix.) Hence, if

(3.16) holds for every N ∈ C̃(A), by the linearity, it also holds for every

L ∈ L(A), so (A.1) follows. Therefore, (3.16) and (A.1) are equivalent.

A.2 Proof of Proposition 5

증명 Let C ∈ C(X) be a catalytic map. The entropy increase of a quan-

tum state σX by N cannot be larger than that of its purification |Σ⟩XX′

(TrX′ |Σ⟩⟨Σ|XX′ = σX) [20]. Therefore, the largest entropy production

happens on a pure bipartite state, and let |Ψ⟩XX′ be a pure state that achieves

the maximum entropy production by N . Note that every pure bipartite state s

related with a maximally entangled state |Φ⟩XX′ by the action of a local ma-

trix, i.e. there exists M ∈ B(X) such that |Ψ⟩XX′ = (1X ⊗MX′) |Φ⟩XX′ .

Note that N cannot generate any randomness if NX(|Ψ⟩⟨Ψ|)XX′ is pure,

i.e., rank 1. Since NX(|Ψ⟩⟨Ψ|XX′) = (idX ⊗ AdM )(NX(|Φ⟩⟨Φ|XX′)),
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if NX(|Φ⟩⟨Φ|XX′) is pure, then it follows that N cannot generate ran-

domness. Conversely, if N cannot generate randomness, then by definition

N (|Φ⟩⟨Φ|XX′) is pure.

A.3 Discssion on Mølmer’s conjecture

Mølmer’s conjecture [49] insists that the quantum state of laser light

should not be represented by a pure coherent state

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n⟩, (A.7)

but the mixed state

1

2π

∫ 2π

0

∣∣∣|α|eiθ〉〈|α|eiθ∣∣∣ dθ = e−|α|2
∞∑
n=0

|α|2n

n!
|n⟩ ⟨n| , (A.8)

because of the loss of phase information caused by inaccessibility of laser

device. Choosing to use the pure coherent state representation without con-

sidering correlated systems amounts to committing the preferred ensemble

fallacy [62, 63]. When it is stated that ‘a random pure state |ϕ⟩A is prepared’,

oftentimes it is assumed, very implicitly, that there exists a fixed preparation

protocol that produces |ϕ⟩A. This protocol can be classically identified with

a careful inspection, and be represented by an orthonormal basis {|“ϕ”⟩P }

that is orthogonal between each different state, even when |ϕ⟩A itself is not

orthogonal to each other, i.e., ⟨“ϕ”|“ψ”⟩ = 0 whenever ϕ ̸= ψ. In this case,
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the global quantum state of system AC is

∑
ϕ

p(ϕ) |ϕ⟩⟨ϕ|A ⊗ |“ϕ”⟩⟨“ϕ”|C , (A.9)

with some probability distribution p(ϕ). (One can replace the sum with an

integral when the probability distribution is not discrete.) If one runs the

same preparation protocol n times, then it becomes

∑
ϕ

p(ϕ) |ϕ⟩⟨ϕ|⊗n
A ⊗ |“ϕ”⟩⟨“ϕ”|C . (A.10)

Or, systems AC can even be entangled;

∑
ϕ

√
p(ϕ) |ϕ⟩A ⊗ |“ϕ”⟩C . (A.11)

Whether to treat the whole systemAC or systemA alone as the information

source depends on one’s choice and on a given situation. For example, if it

is implicitly assumed that there exists a referee who remembers the identity

of the random state |ϕ⟩A and if you treat the relation between the state and

the referee as a part of information you utilize, then the whole system AC

should be considered an information source. However, if system A is in

isolation from any context other than the distribution p(ϕ), then it is natural

to treat only system A as an information source.
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A.4 Proof of Theorem 7

증명 The assumption that no randomness can be catalytically extracted

from σB0B1 means that any catalytic unitary operators compatible with σB0B1

is a product unitary operator. Therefore, any action applied to σB0B1 is also

of the form of product unitary operations, i.e. σB0B1 7→ AdV0⊗W1(σB0B1)

with some V0 ∈ U(B0) and W1 ∈ U(B1). As a special case, assume that

U0 = 1A0B0 . It implies that V0 = 1B0 . Note that, in this case, W1 should be

also proportional to the identity operator. It is because, if W1 ̸∝ 1B1 , then

the random unitary operation given as 1
2(idB1 + AdW1) on B1 that is not a

unitary operation also fixes σB0B1 . This contradicts the previous result that

any action on σB0B1 should be a unitary operation. It is equivalent to saying

that whatever catalytic map is applied to system B1, if it fixes σB0B1 , then it

should the identity operation. This property is called sensitivity to catalytic

maps according to the definition given in Ref. [50]. As the set of catalytic

map is contained in the set of unital maps, and contains the set of random

unitary operations, by the results of Ref.[50], it follows that it is equivalent

to that σB0B1 is not a Q-PC state. The same argument can be applied when

the roles of B0 and B1 are switched, thus σB0B1 is neither a PC-Q state.

Conversely, assume that σB0B1 is totally Q-Q. Let U0 ∈ U(A0B0)

and U1 ∈ U(A1B1) be arbitrary catalytic unitary operators and N0 :=

TrA0 ◦ AdU0 ∈ UC(B0) and N1 := TrA1 ◦ AdU1 ∈ UC(B1) be induced

catalytic maps on B0 and B1 respectively. For σB0B1 to be compatible with

U0 and U1, N0 ⊗ N1 must fix σB0B1 . However, since catalytic maps can

never decrease the von Neumann entropy, it means that both N0 and N1
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fix the von Neumann entropy of σB0B1 . By Theorem 2.1 of Ref.[51], it is

equivalent to that both N †
0 ◦ N0 and N †

1 ◦ N1 fix σB0B1 . Since σB0B1 is

totally Q-Q, it is sensitive to unital channels on both sides [50], hence it fol-

lows that N †
0 ◦N0 = idB0 and N †

1 ◦N1 = idB1 . It is equivalent to that both

N0 and N1 are unitary operations, therefore U0 and U1 are product unitary

operators. It follows that no randomness can be extracted from σB0B1 .

A.5 Uniqueness of essential decomposition

Recall the three criteria, (i), (ii) and (iii) of Definition 8. Because

of (i) and (iii), any two essential decompositions of the same state should

commute with each other. (By saying decompositions commute with each

other, we mean that projectors corresponding to their subspaces are mutu-

ally commutative.) If their type I subspaces do not match, then, since ρAB

is still generalized block-diagonal with the intersections of both decompo-

sitions, some of type I component of ρAB permits further decomposition on

A, hence become a PC-Q state, which violates (ii).

If there is a mismatch of type II subspaces between two essential de-

compositions (However, their spans should match because they are the per-

pendicular complement of the span of the same type I subspaces because of

the previous paragraph), it leads to a violation of (iii) since there always

is a projector that commutes with one decomposition that does not with the

other. Say, A1 is a type II subspace of the first decomposition that intersects

with two type II subspaces of the second decomposition, A′
1 and A′

2. Pick

arbitrary |ϕ1⟩ ∈ A1 ∩ A′
1 and |ϕ2⟩ ∈ A1 ∩ A′

2, and let P be the rank-1
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projector onto |ϕ′⟩ := 2−1/2(|ϕ1⟩ + |ϕ2⟩). Since |ϕ′⟩ lies in A1 (on which

ρAB is proportional to the identity operator on A so that it commutes with

every operator on A1), P commutes with ρAB but it does not commute with

the projectors onto A′
1 or A′

2. Thus, the essential decomposition is unique.

A.6 Other results on essential decomposition

The following two Propositions are not directly used in the rest of Sec-

tion, but give insight into the structure of bipartite fixed points of quantum

channels.

Proposition 25. If the product of unital maps N ⊗M fixes a quantum state

ρAB , then they also fix every projector onto each of its eigenspaces, Πi.

Also, N fixes TrB Πi and M fixes TrAΠi.

Proposition 26. Assume that Π is a projector onAB such that TrB Π ∝ 1A

and TrAΠ ∝ 1B , and Π =
∑

iΠi where Πi is a projector supported on

B(ABi) with B =
⊕

iBi. If N ⊗ idB fixes Π, then it also fixes Πi.

증명 By applying M =
∑

i λiΠsupp(Bi) on B, with injective i 7→ λi, we

can transform Π into
∑

i λiΠi, so that they each Πi is a projector onto

eigenspaces corresponding to a unique eigenvalue, and N still preserves

this operator. Thus the unital map N⊗idB should preserve it. Consequently,

N (TrB Πi) = TrB Πi.

Proposition 27. A quantum state ρAB is PC-Q with respect to the essential

decomposition A =
⊕

iAi (let Πi := 1Ai) with corresponding type index

sets IA and IIA if and only if for any M ∈ B(A), [M ⊗ 1B, ρAB] = 0
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is equivalent to M =
(⊕

i∈IA αiΠi

)
⊕
(⊕

i∈IIA
Mi

)
for some complex

numbers αi for all i ∈ IA and some Mi ∈ B(Ai) for all i ∈ IIA (we will

say that “M is in the standard form”).

증명 Assume that ρAB is a PC-Q state given as in the statement of Propo-

sition. Let M ∈ H(A) commute with ρAB but be not of the form M =(⊕
i∈IA Πi

)
⊕
(⊕

i∈IIA
Mi

)
. It is impposible as it should be one of the

following cases.

(i) M is not block-diagonal with respect to the decomposition A =⊕
iAi: M has the spectral decomposition M =

∑
imiPi (mi is unique for

each i), but some Pi does not commute with some of {Πi}. Since ρAB com-

mutes with M ⊗1B , ρAB is also generalized block-diagonal with respect to

the eigenspaces of M , i.e., [Pi ⊗ 1B, ρAB] = 0 for all i. It violates (iii) of

Definition 8.

(ii)M is block-diagonal with respect to the decompositionA =
⊕

iAi,

but for some i ∈ IA, ΠiMΠi ̸∝ Πi: We assume [Πi⊗1B, ρAB] = 0 for all i

(See (i) above). LetMi := ΠiMΠi and ρi := (Πi⊗1B)ρAB(Πi⊗1B). We

have [Mi⊗1B, ρi] = 0, hence ρi is PC-Q state with respect to the nontrivial

eigenspaces of Mi. It violates (ii) of Definition 8.

For general M ∈ B(A), one can consider its real and imaginary parts

MR := (M +M †)/2 and MI := −i(M −M †)/2, which are Hermitian

operators commuting with ρAB themselves. The same argument applies to

each of them, and the desired result follows for M : A =
⊕

iAi cannot be

the essential decomposition of A for ρAB .

Likewise, let M be given as M =
(⊕

i∈IA Πi

)
⊕
(⊕

i∈IIA
Mi

)
but
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assume that [M ⊗ 1B, ρAB] ̸= 0. However, it is impossible if A =
⊕
Ai is

the essential decomposition for ρAB since type II components of ρAB only

can be in the form of πAi ⊗ σB for some σ ∈ S(B), so that M ⊗ 1B of the

standard form must commute with ρAB . It follows that A =
⊕

iAi cannot

be the essential decomposition of A for ρAB .

Conversely, A =
(⊕

i∈IA Ai

)
⊕
(⊕

i∈IIA
Ai

)
be an arbitrary non-

trivial decomposition of A with Πi := 1Ai . Assume that for any M ∈

B(A), [M ⊗ 1B, ρAB] = 0 is equivalent to M being in the standard form,

i.e. M =
(⊕

i∈IA αiΠi

)
⊕
(⊕

i∈IIA
Mi

)
for some complex numbers αi

for all i ∈ IA and some Mi ∈ B(Ai) for all i ∈ IIA. We check if the

decomposition A =
⊕

iAi satisfies the three criteria of Definition 8.

(i) Each Πi is obviously in the standard form, thus [Πi⊗1B, ρAB] = 0.

The decomposition is assumed to be nontrivial, thus no Πi is equal to 1A.

(ii) For some i ∈ IA, if (Πi ⊗ 1B)ρAB(Πi ⊗ 1B) is PC-Q, then, it

has its own essential decomposition of Ai =
⊕

j A
j
i , which can give a finer

decomposition of A and makes 1
Aj

i
⊗ 1B commute with ρAB even though

1
Aj

i
is not of the standard form. For some i ∈ IIA, if (Πi ⊗ 1B)ρAB(Πi ⊗

1B) ̸∝ 1Ai ⊗ σB for some σ ∈ S(B), there exists some W ∈ B(Ai) such

that [WA ⊗ 1B, ρAB] ̸= 0 even though it is of the standard form.

(iii) Any projector P on A that does not commute with some Πi is not

of the standard form, thus [P ⊗ 1B, ρAB] ̸= 0.

Here, we provide a proof of Theorem 9.

Theorem 9. A unital channel N ∈ UC(A) fixes a quantum state ρAB
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that is PC-Q with respect to the essential decomposition A =
⊕

iAi (let

Πi := 1Ai) with corresponding type index sets IA and IIA if and only if

N preserves every subspace Ai and acts trivially on Ai when i ∈ IA.

증명 If N preserves every subspace Ai and acts trivially on B(Ai) when

i ∈ IA, then N ◦ AdΠi = AdΠi for all i, so that N ◦ (
∑

i AdΠi) =
∑

iN ◦

AdΠi =
∑

i AdΠi . Therefore, ρAB , which is fixed by
∑

i AdΠi ⊗ idB , is

also fixed by N .

Conversely, assume that a unital channel N fixes a PC-Q quantum state

ρAB with the structure given in the assumption. Hence, for every Kraus

operator Kj of N , i.e., C =
∑

i AdKj , we have [Kj ⊗ 1B, ρAB] = 0

[64, 19, 20]. By Proposition 27, it follows that Kj =
(⊕

i∈IA α
(j)
i Πi

)
⊕(⊕

i∈IIA
K

(j)
i

)
for some complex numbers αi for all i ∈ IA and some

K
(j)
i ∈ B(Ai) for all i ∈ IIA. By the trace preserving condition,

∑
j K

†
jKj =

1A, we have
∑

j |α
(j)
i |2 = 1. From the forms of Kj , we can see that

C =
(⊕

i∈IA idAi

)
⊕
(⊕

i∈IIA
Ci
)

, with Ci =
∑

j Ad
K

(i)
j

for every

i ∈ IIA. It proves the desired result.

Lemma 28. For a unital channel N ∈ UC(A), if N † ◦ N (Πi) = Πi for

some partition of unity (i.e. {Πi} are projectors and
∑

iΠi = 1A), then

there exists U ∈ U(A) and M ∈ UC(A) such that N = AdU ◦ M and

M(Πi) = Πi for all i.

증명 As N is unital, N (Πi) ≺ Πi, but N † ◦ N (Πi) = Πi, i.e, S(πi) =

S(N (πi)) [51] where πi = |Πi|−1Πi. Because the von Neumann entropy is

strictly Schur concave [65], it means that there exists Ui ∈ U(A) such that

N (Πi) = AdUi(Πi). Hence 1A = N (1A) =
∑

iN (Πi) =
∑

i AdUi(Πi).
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From this we can deduce that
∑

i ̸=j Πi =
∑

i ̸=j Ad
U†
j Ui

(Πi). Thus,

Tr
[
ΠjAd

U†
j Ui

(Πi)
]
= Tr

[
AdUj (Πj)AdUi(Πi)

]
= 0

for any i and j. Hence {UiΠiU
†
i } is another partition of unity with the

same ranks, so there exists some unitary operator V ∈ U(A) such that

AdUi(Πi) = AdV (Πi). It follows that M := AdV † ◦ N is a unital channel

on A that preserves every Πi and N = AdV ◦M.

Corollary 29. A unital channel N ∈ UC(A) does not increase the entropy

of a quantum state ρAB that is PC-Q with respect to the essential decompo-

sition A =
⊕

iAi (Πi := 1Ai) with corresponding type index sets IA and

IIA if and only if N can be decomposed into N = AdV ◦ N ′ with some

unitary operator V ∈ U(A) and a unital channel N ′ that preserves every

subspace Ai and acts trivially on Ai when i ∈ IA.

증명 By Theorem 9 and Lemma 28, N can be decomposed into N =

AdV ′ ◦ M with some V ′ ∈ U(A) and a unital channel M ∈ UC(A) that

preserves every subspace Ai. Let pi := Tr[ΠiρA] and ρiAB := p−1
i (AdΠi ⊗

idB)(ρAB). Then, there exists Mi ∈ UC(Ai) such that (M⊗ idB)(ρiAB) =

(Mi⊗ idB)(ρiAB) because each ρiAB is supported onAi⊗B for every i. For

N to preserve the von Nuemann entropy of ρAB , it is required for every Mi

to preserve the von Neumann entropy of ρiAB . For type I indices, i.e., when

i ∈ IA, it means that M†
i ◦Mi fixes ρiAB [51]. However, since ρiAB is not

PC-Q as a state of AiB, it follows that Mi is a unitary operation on Ai (See

the proof of Theorem 7), i.e., Mi = AdWi for some Wi ∈ U(Ai). If we let
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V := V ′R where R :=
(⊕

i∈IA Wi ⊕
⊕

i∈IIA
Πi

)
and N ′ := AdR† ◦M,

then N = AdV ◦ N ′ is the desired decomposition of N .

Corollary 30. Let a delocalized catalysis unitary operator pair (U0, U1) be

compatible with a delocalized randomness source σB0B1 with the DCD

σB0B1 =
⊕
ij

(ΠB0
i ⊗ΠB1

j )σB0B1(Π
B0
i ⊗ΠB1

j ), (A.12)

and the essential decompositions B0 =
⊕

iB0i and B1 =
⊕

iB1i. It fol-

lows that there exist Wi ∈ U(Bi) for i = 0, 1 (ΠBi
k := 1Bik

) such that

Ui = (1Ai ⊗Wi) (
⊕

k Uik) where Uik ∈ U(AiBik) is a catalysis unitary

operator compatible with (ΠB0
k ⊗ 1B)σB0B1(Π

B0
k ⊗ 1B) for i = 0 and

(1A ⊗ΠB1
k )σB0B1(1A ⊗ΠB1

k ) for i = 1.

증명 Consider the maximally mixed initial state πA0 ⊗ πA1 for the catal-

ysis and let Ni ∈ UC(Bi) given as Ni := TrAi ◦ AdUi be the induced

catalytic map on Bi acting on the delocalized catalyst σB0B1 for i = 0, 1.

Since (U0, U1) and σB0B1 are compatible with each other, we have (N0 ⊗

N1)(σB0B1) = σB0B1 . It follows that both of Ni do not increase the en-

tropy of σB0B1 . By Corollary 29, the Kraus operators {Ri
k} of Ni all have

the form Ri
k = WiL

i
K where Wi ∈ U(Bi) is a unitary operator and Li

k is

the Kraus operator of another unital map in the standard form. However, we

recall that Ki
nm := |Ai|−1/2(⟨n|Ai

⊗ 1Bi)U0(|m⟩Ai
⊗ 1Bi) are the Kraus

operators of Ni for i = 0, 1. Let the standard form expression of Ki
nm given
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as follows:

|Ai|1/2Ki
nm =

⊕
k∈IBi

α
(i,n,m)
k ΠBi

k

⊕

 ⊕
k∈IIBi

K
(i,n,m)
k

 . (A.13)

Now, we let

Uik :=
∑
nm

|n⟩⟨m|Ai
⊗
(
α
(i,n,m)
k ΠBi

k

)
for k ∈ IBi and Uik :=

∑
nm |n⟩⟨m|Ai

⊗ K
(i,n,m)
k for k ∈ IIBi and the

desired result follows.

A.7 Proof of Theorem 12

증명 For the given randomness source σB0B1 , we again let

pij := Tr
[
(ΠB0

i ⊗ΠB1
j )σB0B1

]

and σij := p−1
ij (Ad

Π
B0
i

⊗ Ad
Π

B1
j

)(σB0B1). We first show that it is achiev-

able. To match the notations with (3.9) and (3.10), we set σB0B1 as our

delocalized randomness source. (Consider that A → B0 and B → B1 in

Definition 8 and 11.) We let B0 =
⊕

iB0i and B1 =
⊕

iB1i be their re-

spective essential decompositions. For the sake of simplicity, assume that

IBi = {1, 2, · · · , |IBi |} and IIBi = {|IBi | + 1, · · · , |IBi | + |IIBi |}

for i = 0, 1. Also, let the dimension of Ai be |IBi | +
∑

j∈IIBi
|Bij |2 for
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i = 0, 1. We use catalysis unitary operators

U0 =
∑
i∈IB0

Zi
0 ⊗ΠB0

i +
∑

i∈IIB0

|B0i|−1∑
j,k=0

Z
S0
i +j|B0i|+k

0 ⊗ E
(0i)
jk , (A.14)

and

U1 =
∑
i∈IB1

Zi
1 ⊗ΠB1

i +
∑

i∈IIB1

|B1i|−1∑
j,k=0

Z
S1
i +j|B1i|+k

1 ⊗ E
(1i)
jk . (A.15)

Here, E(im)
jk := ωjk

im

∣∣∣mi
j

〉〈
mi

k

∣∣∣, where ωim is the |Bim|-th root of the unity,

and {
∣∣∣mi

j

〉
} is an orthonormal basis of Bim. are an arbitrary orthonormal

unitary operator onB0i andB1i, respectively. Also,Zi =
∑

k |k ⊕ 1(mod |Ai|)⟩⟨k|

is the generalized Pauli-Z operator on Ai, and Si
k := |IBi | +

∑k−1
l=0 |Bil|2

assuming |Bi0| = 0 for i = 0, 1 . Now, we suppose that system A0A1 is

prepared in a maximally entangled state |ϕ+⟩A0A′
0
|ϕ+⟩A1A′

1
with auxiliary

systems A′
0 and A′

1. After the catalysis, the final state of A0A1A
′
0A

′
1 is

∑
i∈IB0

,
j∈IB1

pijϕ
i
A0A′

0
⊗ ϕj

A1A′
1
+

∑
i∈IB0

,
j∈IIB1

pijϕ
i
A0A′

0
⊗ Ξ1

j

+
∑

i∈IIB0
,

j∈IB1

pijΞ
0
i ⊗ ϕj

A1A′
1
+

∑
i∈IIB0

,
j∈IIB1

pijΞ
0
i ⊗ Ξ1

j .

(A.16)

Here, ϕmAiA′
i
:= AdZm

i
⊗ idA′

i
(ϕ+

AiA′
i
) are mutually orthogonal Bell states

for i = 0, 1. Also, Ξ0
i and Ξ1

j are given as

Ξ0
i :=

1

|B0i|2

|B0i|2−1∑
k=0

ϕ
S0
i +k

A0A′
0
, (A.17)
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and

Ξ1
j :=

1

|B1j |2

|B1j |2−1∑
l=0

ϕ
S1
j+l

A1A′
1
, (A.18)

for all i ∈ IIB0 and j ∈ IIB1 . Note that Ξ0
i and Ξ1

j are unitarily similar

with π
C|B0i|2 and π

C
|B1j |2 , respectively. Since every term in (A.16) is mu-

tually orthogonal to each other, it is unitarily similar to
⊕

i,j pijτi ⊗ κj in

(3.13), after the changes of labels.

Conversely, by Corollary 30, every component in the DCD of a de-

localized catalyst is compatible up to local unitary with the given pair of

catalysis unitary operators by itself. Let C be the catalytic map implemented

by the catalysis unitary operators U0 and U1 by using σB0B1 as the catalyst.

In other words, C(ρ) := TrB0B1 [(AdU0 ⊗ AdU1)(ρA0A1 ⊗ σB0B1)]. Now

we let Cij be given as Cij(ρ) := TrB0B1 [(AdU0 ⊗ AdU1)(ρA0A1 ⊗ σijB0B1
)],

which is a catalytic map by itself, then we have C =
∑

ij pijCij . For arbi-

trary pure initial state ρA0A1 (recall that the maximum entropy production

is made with a pure state input), we have the following.

C(ρ) =
∑
ij

pijCij(ρ) ≻
⊕
ij

pijCij(ρ)

≻
⊕
ij

pijτi ⊗ κj .

(A.19)

The first majorization relation follows from the fact that a convex sum of

quantum states always majorizes the direct sum of the same summands [66].

The last majorization relation follows because whenever k ∈ IBi , Ui can

only act unitarily onBik, hence no randomness can be extracted on that side,

and when l ∈ IIBi , then the catalyst is in a product state in that component,
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thus it simply functions as a single party randomness source. It means that

τl (or κl) functions as the REO. We also used the fact that a direct sum of

quantum states majorizes another when its individual summand majorizes

that of the other. Since every Rényi entropy of orderα ≥ 0 is Schur-concave,

the desired result follows.

A.8 Proof of Theorem 18

Let us first show that utilization of semantic information is a special

case of randomness utilization.

Lemma 31. If U ∈ U(AB) and σAB ∈ S(AB) are given as in Definition

15, then U is a catalysis unitary operator compatible with σB as a catalyst

up to local unitary.

증명 As any superchannel can be decomposed into pre- and post-processing

channels, (3.28) is equivalent to

TrA[U ◦ (NA ⊗ idB)(σAB)] = ηB, (A.20)

for any channel N ∈ C(A). Here, N is the partial trace of the arbitrarily

chosen pre-processing channel of ΘA→B in (3.28). By letting N be a state

preparation channel, i.e. N (ρ) = τATr ρ for every τ ∈ S(A), we get that

TrA[U(τA ⊗ σB)] = ηB, (A.21)

for any τ ∈ S(A). By the result of Ref. [19], there exists a unitary operator

V such that ηB = AdV (σB), thus by the definition given in (3.2), U is a
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catalysis unitary operator and it is compatible with σB up to local unitary.

As a side note, this Lemma provides a proof of the first part of Theorem

1. That is, if σAB is uncorrelated, i.e., σAB = σA⊗σB , then every catalytic

unitary operation compatible with σB as a catalyst utilizes only informa-

tion of B in σAB . It is because if σAB = σA ⊗ σB , then (A.20) becomes

equivalent to

TrA[U(ρA ⊗ σB)] = σB, (A.22)

for every ρ ∈ S(A) as the set {N (σA) | N ∈ C(A)} is same with S(A).

Since it is equivalent to (3.2), we get the desired result.

((S:B) ⇒ (S:A)) It immediately follows from the fact that any super-

channel can be decomposed into pre- and post- processes. Note that the

output of the transformed channel on A is immediately discarded, the post-

process is irrelevant. The process NA→RA can be considered the pre-process

of the superchannel Θ in (S:A).

((S:C) ⇔ (S:B)) Without loss of generality, we consider the canonical

case (without local unitary transformation on catalysts), if U ∈ U(AB) is

compatible with σAB on B, we have

TrA′ ◦AdUA′B (σAB) = TrA′ ⊗σAB. (A.23)

A simple change of system labels yields that for every L ∈ L(A) (by con-
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sidering it as linear map that maps from A to A′), we have

TrA ◦AdUAB
◦ LA(σAB) = TrA ◦LA(σAB). (A.24)

By inserting arbitrary quantum map N ∈ C(A,RA) into the position of LA,

we have the desired result

TrA ◦AdUAB
◦ NA→RA(σAB) = TrA ◦NA→RA(σAB). (A.25)

By choosing NA→RA = |ψ⟩⟨ψ|A⊗ idA→R for each state |ψ⟩ on A, one

can also show the converse.

((S:A) ⇒ (S:C)) We will use the following Lemma.

Lemma 32. For any constant superchannel Θ that maps channels in C(A,B)

to channels in C(C,D), meaning that Θ(N ) is same for every N ∈ C(A,B),

there exists a quantum channel P ∈ C(C,AD) such that

Θ(L) = (TrB ◦LA→B ⊗ idD) ◦ PC→AD, (A.26)

for any L ∈ L(A,B).

증명 A basis of L(A,B) is {Eij := Yj Tr
[
X†

i ·
]
}, where {Xi} and {Yj}

are orthonormal basis of B(A) and B(B) respectively that consist of trace-

less Hermitian operators except for X0 = |A|−1/21A and Y0 = |B|−1/21B .

Hence, every L ∈ L(A,B) has the expression of the following form,

L =
∑
ij

Eij Tr
[
Y †
j L(Xi)

]
. (A.27)
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Note that the span of C(A,B) coincides with the span of {Eij} excluding

Ei0 with i > 0. If we let Fij := Θ(Eij) ∈ L(C,D), we get the expression

Θ(L) =
∑
ij

Fij Tr
[
Y †
j L(Xi)

]
. (A.28)

By the condition that Θ is constant for quantum channels in C(A,B), there

exists some channel C ∈ C(C,D) such that Θ(N ) = C for all N ∈ C(A,B)

and

Θ(L) = C Tr[L(πA)] +
∑
i>0

Fi0Tr[L(Xi)]. (A.29)

Now, we let P ∈ L(C,AD) defined as

P := πA ⊗ C +
∑
i>0

Xi ⊗Fi0. (A.30)

From (A.29), we can see that if Q ∈ C(C,AE) and R ∈ C(BE,D) are

pre- and post-processing channels of Θ so that Θ(L) = R ◦ (L ⊗ idE) ◦ Q

for every L ∈ L(A), then PC→AD = (RA′E→D ⊗ idA)(τA′ ⊗QC→AE) for

some τ ∈ S(A′). Therefore, as a composition of quantum channels, P is

obviously a quantum channel. Moreover, by comparing (A.29) and (A.30) ,

we get the desired result

Θ(L) = (TrB ◦LA→B ⊗ idD) ◦ PC→AD. (A.31)

Indeed, as we can observe that the left hand side of (A.20) is a constant

superchannel when N is considered an input, we can apply Lemma 32.
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Therefore, there exists a quantum state (which is a special type of quantum

channel) τAB such that

TrA[U ◦ (LA ⊗ idB)(σAB)] = TrA[(LA ⊗ idB)(τAB)], (A.32)

for every L ∈ L(A). Equivalently, inputting a part of the swapping gate on

AA′, we get

TrA′ [ (UA′B ⊗ idA)(ρA′ ⊗ σAB)] = τAB, (A.33)

for all ρA′ ∈ S(A′). In other words, the mapping ρA′ 7→ τAB is constant. If

one interpret (A.33) as that UA′B⊗1A utilizes σAB as a randomness source,

by the result of Ref. [19], τAB must have the same spectrum, thus also the

same entropy, with σAB . Then, by Corollary 29, there exists a unitary oper-

ator V ∈ U(B) such that τAB = idA ⊗ AdV (σAB). This proves the desired

result.

A.9 Proof of Corollary 21

Let U := AdU . We will use the following Lemma.

Lemma 33 ([67]). If a tripartite state ρRAB satisfies I(R : A) = I(R :

AB), then, the Hilbert space of A has a direct sum structure of the form of

A =
⊕

iAi,K ⊗Ai,L and ρRAB can be decomposed into

ρRAB =
⊕
i

piρRAi,K
⊗ ρAi,LB, (A.34)
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where for each i, ρRAi,K
∈ R⊗Ai,K and ρRAi,LB ∈ Ai,L⊗B. Additionally,

it is equivalent to that I(A : B) = I(RA : B).

By Lemma 33, ρRAB has the form of (A.34). Therefore, its marginal

state on AB must have a form of

ρAB =
⊕
i

piρAi,K
⊗ ρAi,LB. (A.35)

Since each subspace Ai,K ⊗ Ai,L is orthogonal to each other, we can con-

struct quantum channels Ni ∈ C(Ai,K , RAi,K) such that Ni(ρAi,K
) =

ρRAi,K
. Therefore there exists a quantum map N :=

⊕
iNi ⊗ idAi,L

∈

C(A,RA) that maps ρAB into ρRAB .

A.10 Proof of Theorem 22

증명 The essential decomposition of σAB on B has the following form.

σAB =
∑
i∈IB

piσ
i
AB +

∑
i∈IIB

σiA ⊗ σiB. (A.36)

The marginal state of A after a general information utilization of B has the

following form.

∑
i∈IB

piAdVi(σ
i
A) +

∑
i∈IIB

piΦi(σ
i
A), (A.37)

where Φi are some catalytic maps on A and Vi ∈ U(A). Since unitary oper-

ations are a special case of catalytic maps, one can simplify the expression
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and get ∑
i

piΦi(σ
i
A). (A.38)

We claim that the probability distribution
(∑

i piλj(σ
i
A)
)

majorizes
(
λj(
∑

i pi(σ
i
A))
)
.

This is because of Fan’s Lemma [68].

∑
1≤j≤k

λj

(∑
i

piΦi(σ
i
A)

)
= max

P
Tr

[
P
∑
i

piΦi(σ
i
A)

]

= max
P

Tr

[∑
i

piPΦi(σ
i
A)

]
≤ max

P

∑
i

piTr
[
PΦi(σ

i
A)
]
,

(A.39)

where the maximization is over rank-k projectors P . Again by using Fan’s

Lemma [68], we get

∑
1≤j≤k

λj

(∑
i

piΦi(σ
i
A)

)
≤
∑
i

pi
∑

1≤j≤k

λj(Φi(σ
i
A)). (A.40)

From the relation between unital maps and majorization, we have Φi(σ
i
A) ≻

σiA for all i, hence
∑

1≤j≤k λj(Φi(σ
i
A) ≤

∑
1≤j≤k λj(σ

i
A) for all i and k.

Therefore, it follows that

∑
1≤j≤k

λj

(∑
i

piΦi(σ
i
A)

)
≤
∑
i

pi
∑

1≤j≤k

λj(σ
i
A), (A.41)

for all k. By choosing each Φi as a unitary operation that transforms σiA into∑
j λj(σ

i
A) |j⟩⟨j| for some common basis {|i⟩}, the catalytic transformation

of σA into
∑

j(
∑

i piλj(σ
i
A)) |j⟩⟨j| is achievable.
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국문초록

이논문에서는 Boes등에의해제시된양자임의도의촉매이론을일

반화하여 비국소적, 동적 상황에서 상관관계가 있거나 절차적인 임의도

원천을 활용할 수 있는 이론을 전개한다. 이 논문의 내용은 크게 두 가지

로 나뉜다. 첫째로, 임의도 자원이론을 확장해서 상관관계가 있거나 동

적인 임의도 원천으로부터 추출 할 수 있는 최대 Rényi 엔트로피의 값을

계산했다.그과정에,만약임의도원천이비침습적인국소측정행위를허

용하지 않는다면 비국소적인 임의도 촉매 작용을 통한 엔트로피 추출은

불가능함을 보였다. 임의도 자원이론은 ’오목한’ 자원 이론의 전형으로

서, 현재 양자자원이론의 지배적인 연구 대상이며 일반적으로 자원들이

그 자원을 삭제하는데 필요한 임의도의 양으로 측정되는 볼록한 자원 이

론에 상보적인 역할을 한다. 응용으로, 숨김-금지 정리의 동적 일반화인,

양자정보처리 과정은 단순히 그 입출력을 두 지역으로 분산시키는 것만

으로 숨길 수 없다는 암행-금지 정리를 증명했다. 두번째로, 정보 흐름의

물리적성질을탐구했다. Landauer의 “정보는물리적이다”혹은Wheeler

의 “그것은비트로부터”와같은유명한문구들은정보가한지점에서부터

다른 지점으로 흔적을 남기며 이동해야하는 물질과 같은 거동을 할 것이

라는 추측을 하게 한다. 이 추측을 검사하기 위해서, 임의도 촉매 작용이

정보의 일방통행을 묘사하는 과정임에 주목했다. 그 결과로 고전적인 정

보는 그 출발지나 그 주변 환경에 흔적을 남기지 않고 명확한 방향을 가

지고 전파될 수 있으나, 양자정보는 그렇지 못함을 보였다. 본 연구에서

개발된이론을이용해서,의미론적정보의물리적정의를내리는한접근

법을 제시했고, 그것이 부분적으로 사용된 촉매를 이용하는 것과 동치인
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과정임을 보였다. 그로부터 부분적으로 사용된 고전 임의도 원천으로부

터는언제든지정보를더추출할수있으나,양자임의도원천으로는그럴

수없음을보였다.

주요어 : 양자정보,자원이론,임의도

학번 : 2016-20311
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