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Many researchers in chemical engineering have been using analytical and 

computational models to predict the behaviors of systems and use these models 

to process optimization, design and control. However, until now, researchers 

are still forced to compromise on model fidelity and accuracy. Although high 

fidelity models can improve the model accuracy, simulating these models is 

usually time-consuming, making it difficult to perform optimization. In this 
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thesis, computationally efficient strategies about two system are introduced 

which can maintain model fidelity but effectively reduce the calculation time.

Polymer reactor is selected for the first system and we focused on polymer 

kinetics. A hybrid approach that combines the method of moments and Monte 

Carlo simulation to predict the molecular weight distribution of low-density 

polyethylene for a continuous stirred tank reactor system is proposed. A 'Block,' 

which is repeating reaction group, is introduced for the calculation cost-

effective simulation. This model called the 'block Kinetic Monte Carlo' is ~10 

to 32 times faster than Neuhaus’s model. The model can be applied to any 

steady state system and provide a calculation cost reduction effect, where one 

reaction is much faster than others; for example, the propagation reaction. 

Furthermore, we perform a case study on the effects of the system temperature 

and initiator concentration on the MWD and reaction rate ratio. Based on the 

simulation results of 180 case studies, we determine a quantitative guideline for

the appearance of shoulder, which is a function of the rate ratio of reactions to 

the propagation reaction.

Computational fluid dynamics (CFD) based reactor system is selected for 

the second system. CFD is an essential tool for solving engineering problem

that involves fluid dynamics. Especially in chemical engineering, fluid motion 

usually has extensive effects on system states such as temperature and 

component concentration. However, due to the critical issue of long 

computational times for simulating CFD, application of CFD is limited for 

many real-time problems such as real-time optimization and process control. In 

this study, we develop the surrogate model of Continuous stirred tank reactor 
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(CSTR) with Van de Vusse reaction using Physics-informed neural network 

(PINN) which can train the governing equations of system. We propose PINN 

architecture that can train every governing equation which chemical reactor 

system follows and can train multi-reference frame system. Also, we investigate 

that PINN can resolve the problem of neural network that needs lots of training 

data, are easily overfitted and cannot contain physical meaning. Furthermore, 

we modify the original PINN suggested by Raissi in order to solve the memory 

error and divergence problem with two methods: (1) Mini-batch training; (2) 

Weighted loss function. We also suggest a similarity based sampling strategy 

where the accuracy can be improved up to 5 times over the random sampling. 

This work can provide the guideline for developing the high performance 

surrogate model of chemical process.
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Chapter 1

Introduction

1.1 Research motivation

With the development of computer and sensor technology, the demand for 

sophisticated control and optimization for high value-added industries is 

increasing. To achieve this, modeling the industrial level process with high 

fidelity is essential. However, until now, each unit was mainly modeling as 1 or 

2-dimensional model to simulate the entire process. This is because the 

difference at the small scale can be neglected when simulating industrial level 

process, but it cannot be ignored in some cases. In particular, the chemical 

reactor which is one of the most important units in a chemical process the 

hydrodynamics of internal flow has a large effect on the system behavior in 

many cases. In a continuous stirred reactor (CSTR) with a stirrer inside, the 

performance of the reactor varies depending on how well the internal fluid is 

mixed. In the case of an autoclave reactor, several baffles are installed to divide 

the reactor into multi-zone and control the flow in order to easily adjust the 

properties of the product. Since many types of reactors simply cannot reflect 

their characteristics with 1 or 2 dimensional models, a flow model on a 

microscopic scale must be considered. However, as the modeling scale gets 

smaller, the simulation time increases, making it difficult to model industrial 

level processes and impossible to perform the optimization, control and design. 

For example, computational fluid dynamics (CFD), which is the only technique 
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that can simulate the hydrodynamics, is difficult for industrial applications 

because the simulation time takes at least hours to months.

In order to solve this problem, various methodologies have been introduced 

to reduce the calculation time. One of the most representative method for 

simulating a chemical reactor is the multi-compartment model. It can 

significantly reduce the calculation time compared to solve the hydrodynamics 

(e.g. mass balance, momentum conservation, turbulence model) and kinetic 

model (e.g. heat conservation, species transport equation) together in mm or 

μ m scale of mesh. This is a method of simplifying the flow by combining 

several meshes into one compartment and solving kinetic model separately. It 

allows the simulation of the reactor with a reasonable level of calculation time 

while considering the fluid flow information. However, the multi-compartment 

model is not suitable to perform optimization because it still takes an hour-level 

calculation time, but it requires a new simulation every time the operation 

condition changes. Another method is to develop a surrogate model that can be 

reproduced in a short time by learning the simulated results using a machine 

learning technique. Surrogate model can learn the features of the model by 

extracting the pattern from the simulation result, and has the advantage of being 

able to predict the untrained area. However, since most machine learning 

models are data-driven models that ignore the underlying laws of physics 

governing the system, it cannot be sure that the result at the untrained area is 

still physically meaningful.

This calculation time problem occurs frequently not only in hydrodynamics 

simulation, but also when simulating a kinetic model. For example, when the 
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geometry of a molecule affects the reaction, such as polymer reaction, detail 

information about the molecule must be considered when simulating kinetics. 

In order to consider the geometry of the molecule, the order of arrangement of 

the atoms constituting the molecule must be simulated together, so the 

simulation scale become smaller in atomic unit and the simulation time is 

exponentially increased.

Modeling is performed at multiple scales, and it is often necessary to 

simulate at a microscopic level. However, it takes at least hours to days to 

perform the simulation with high fidelity. In this thesis, we introduce strategies 

to reduce the calculation time while maintaining the fidelity in modeling 

chemical reactor system.

1.2 Research objective

Among several computationally intensive modeling system, this thesis will 

cover a polymer kinetic model and a CFD based reactor model. For the polymer 

kinetic model, the target polymer is Low density polyethylene (LDPE), and its 

properties depend largely on the branches connected to the chain. For this 

reason, in order to accurately predict the characteristics of LDPE (e.g. Weight 

average molecular weight, Number average molecular weight, Molecular 

weight distribution, Polydispersity index , Melt index and etc), the geometry 

information of the polymer chain must be simulated together. A hybrid 

approach that combined stochastic approach and deterministic approach was 

used and a Kinetic Monte Carlo (KMC) was used as a stochastic approach, and 

a method of moment (MoM) technique was used as a deterministic approach. 

In order to reduce the calculation time, a new technique called Block KMC will 
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introduced by grouping the reaction series into 7 independent repeating Block. 

In chapter 2, we will show detailed description of methodology, verification 

and case study result for predicting molecular weight distribution of LDPE in

CSTR. In addition, an analysis of how the newly proposed model can shorten 

the calculation time compared to the existing method will introduced.

In chapter 3, more robust and precise surrogate model development strategy 

for CFD-based reactor model is introduced. CFD simulation is always a time 

consuming step in modeling process that hinders industrial application, so the 

surrogate model of CFD simulation is necessary when performing process 

optimization or finding optimal design. As the deep learning technique 

develops, the performance of learning by extracting patterns from data has 

improved, and the trained model can implement the original data in a very short 

time. However, the chemical process is governed by fundamental laws of 

physics such as mass balance, momentum conservation and heat balance. Most 

deep learning models ignore the physical laws and learn only patterns of data, 

so the prediction results in the untrained domain cannot be trusted. Ultimately, 

in order to perform process optimization, any condition must be simulated in 

real time. When the surrogate model is used, the prediction result in the domain 

that has not been learned is inevitably used, and in this domain it is still unsure 

whether the surrogate model satisfies the physical laws. In order to solve this 

problem, a physics informed neural network (PINN) that can learn not only the 

patterns of data but also the fundamental laws of physics was introduced. In the 

chapter 3, we will introduce the detailed procedure for developing a surrogate 

model for CSTR with Van de Vusse reaction using PINN. In addition, there will 

be an analysis of the performance difference between the PINN model and 
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purely data driven model, and how fast the calculation time is compared to the 

CFD simulation.

1.3 Outline of the thesis

This thesis consists of four chapters. Chapter 1 explains research motivation, 

objective and thesis outline with associated publications to clarify the relative 

papers and co-authors. In Chapter 2 and Chapter 3, we introduce methodologies 

to reduce the calculation time for two different modeling systems, one is 

polymer kinetic modeling and the other is CFD based chemical reactor system. 

Chapter 4 deals with the contribution of each project, which summarizes the 

results and their potential to be applied to other projects and systems. Future 

work is also suggested to intrigue other researchers and provide a guideline for 

their further research on the topic treated in this thesis.
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Chapter 2

Molecular weight distribution modeling 

of LDPE in a continuous stirred-tank 

reactor using coupled deterministic and 

stochastic approach

2.1 Introduction

Low-density polyethylene (LDPE) is produced under a high-pressure by 

free-radical polymerization. Unlike high-density polyethylene (HDPE), which 

has scarce branching, LDPE has high-density long-chain branches owing to the 

scission and chain transfer reactions. Because of its features, LDPE has a low 

tensile strength and high ductility, which improves flexibility and transparency. 

Therefore, LDPE can form various shapes and produce most films and plastic 

bags.

There are several factors that represent the physical properties of polymers, 

such as Mn (number average molecular weight), Mw (weight average 

molecular weight), MI (melt index), molecular weight distribution (MWD), and 

polydispersity index (PDI). Other properties only represent the average value; 

whereas, MWD shows the weight ratio of each polymer component. The shape 

of the MWD allows us to predict the polymer processability and product quality. 

For example, a narrow MWD enhances the polymer quality and a wide MWD 

allows for easier processing. The shoulders and tails of the MWD contain 

information about the density of chain branching. Short chain branching 
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reduces the density of polymer[1] and long-chain branching increases the 

sensitivity of melt viscosity. [2] To produce a polymer with the desired physical 

properties and improve the process productivity, an MWD prediction model is 

essential.

Many studies have been conducted to predict the MWD. MoM is the most 

popular method for predicting the average molecular weight.[3]–[6] This 

method has been widely used by many research groups to develop kinetic 

models for conventional free radical polymerization, coordination 

polymerization and others for linear and branched polymers.[7]–[11] One of 

the main advantages of the MoM is that it simplifies the theoretically infinite 

number of mass balance equations of chain species into a much smaller set of 

equations. In this method, information about individual chains is ignored for 

simplification, so only the average properties of the polymer can be calculated. 

By dividing an entire range of molecular weights into a limited number of 

intervals, the method of moments is capable of predicting molecular-weight 

distributions.[12] However, a large number of moments are required to obtain 

a detailed information on MWD. Well and Ray segregated the polymer 

distribution into a large number of ‘segments,’ so that the model can predict the 

detailed shape of MWD and reveal the kinetic effects for the existence of MWD 

shoulder.[12] Because the model requires a minimum of 75 segments, at least 

400 variables should be considered, which makes it difficult to find a solution. 

Another approach suggested by Pladis and Kiparissides is based on the ‘classes,’ 

in which the total polymer population is discretized according to the number of 

branches.[13] They assumed that the distribution of classes followed a log-

normal distribution, which is not justified. In addition, MoM cannot explicitly 
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implement scission. In an environment where the production conditions exceed 

300 °C, the chain scission becomes dominant owing to the high-temperature 

sensitivity. [14] Because the molecules split differently depending on their 

topology, moments including scission points must be introduced to simulate the 

scission. In this case, the number of moments increase exponentially, making 

the problem difficult to solve. Therefore, in most studies on MoM, a random 

scission mechanism that does not require the chain topology information has 

been adopted. In addition, the MoM model requires a closure relationship 

assumption[15] to solve the scission. The model error accumulates due to the 

ambiguous implementation of the chain scission.

In contrast to MoM, the Monte Carlo (MC) technique can accurately 

implement scission based on the topological information. Numerous studies 

have been conducted to investigate the effect of chain scission on the physical 

properties of polymers using the MC technique. [16]–[24] Gillespie proposed 

the Kinetic Monte Carlo (KMC) algorithm, which has been applied to many 

other studies. [25] However, this method cannot be directly applied to 

continuous reactors, in which chains with different residence times exist. Tobita 

first proposed an individually branched polymer chain methodology. He 

introduced the concept of a primary chain to which all branch points are 

connected and assumed that the primary chain is severed. [26] It can simulate 

chains with different residence times and predict the MWD in various types of 

reactors, such as continuous stirred tank reactors (CSTRs), tubular reactors, and 

tanks-in-series reactors. [27], [28] However, this approach requires the prior 

knowledge of the branch density and segment length following the Flory 
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distribution. [29] Moreover, the MC simulation has an issue of exorbitant 

computational time, which is not suitable for industrial applications.

Studies have been conducted to reduce the computation time by combining 

deterministic methods with stochastic techniques. [18], [30]–[32] Meimaroglou 

proposed a kinetic/topology MC algorithm for a multizonal tubular reactor. [18]

The topological information of the macromolecule was obtained by the MC 

algorithm with the kinetic model of the tubular reactor. This method does not 

require any assumptions about the distributions of live and dead polymers, but 

the model cannot be extended to CSTR because all macromolecules have the 

same residence time. [33] Neuhaus developed a hybrid model that coupled 

deterministic and stochastic approaches that could be applied to the tubular and 

autoclave reactors. [32] The single macromolecule approach (SMMA) 

introduced in the model allows the parallel computation of large molecule 

ensembles and reduces the computation time efficiently. In Eckes’s study[32], 

polymer chains that are combined with the macromolecules via termination by 

combination are sampled from the previously stored chain data. Although this 

approach is valid for tubular reactors, it encounters a recursion in the CSTR 

reactor. This is because the chain to be combined may have a longer residence 

time than the macromolecules. In addition, to achieve sufficient accuracy, 10 

million molecules must be simulated. This requires approximately 1 h even 

with parallelized computation, which is not practical for industrial applications.

[30]

Both the approaches have technical issues, such as MoM cannot implement 

the topological scission, and MC is computationally intensive. Therefore, this 
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study proposes a hybrid model approach consisting of the MoM and KMC for 

a CSTR. The proposed model can implement the scission, resolve the recursion, 

and significantly reduce the calculation time. The model is validated with the 

model proposed by Neuhaus[30] by comparing its performance and calculation 

time. In addition, we extensively explored the MWD under various operating 

conditions and analyzed the effect of each element reaction. Given this, we can 

determine the effect of each reaction mechanism on the existence of the 

shoulder in MWD.

2.2 Methodology

To simulate polymerization in a steady-state reactor, such as CSTR, we 

developed a model that combined MoM and KMC. First, the bulk polymer 

concentration was calculated using a mass balance and moment equation. Then, 

the detailed molecular weight distribution was derived using KMC. The newly 

proposed model is based on the ‘Single Macromolecule Approach’ (SMMA) 

and we named the single macromolecule as ‘target chain’. The concept of the 

target chain model is illustrated in Figure 2.1.

2.2.1 Polymer reaction mechanism

LDPE is produced by free-radical polymerization, and the elementary 

reactions are presented in Table 2.1. ��  represents a live polymer chain of 

length n, whose radical is located at the end of the chain. ��,��� represents a 

secondary radical polymer chain of length n, whose radical is located in the 

middle of the chain. Finally, �� represents a dead polymer chain of length n. 
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To avoid any confusion, we use different reaction names for the same class of 

reactions depending on the type of molecule that we track. In the case of the 

chain transfer to polymer, when the target chain is a live polymer, we name it 

���,�  while the reaction is named ���,�  when the target chain is a dead 

polymer. Sometimes, the chain transfer to solvent or chain transfer agent (CTA) 

and backbiting reactions are also involved in free radical polymerization. [34]

However, the effect of the backbiting reaction on the molecular weight 

distribution is negligible [35], and the chain transfer to solvent or CTA has an 

effect similar to that of the chain transfer to the monomer. Therefore, these two 

reactions are not considered in this study. The most important reaction for 

LDPE to have high-density branches is the chain transfer to polymer. As shown 

in Figure 2.2, a dead polymer becomes a secondary radical chain by obtaining 

a radical from a live polymer chain. Then, the propagation and beta scission 

occur sequentially in the secondary radical chain. When propagation occurs, 

the chain lengthens and forms long-chain branches. When beta scission occurs, 

the chain is split into two smaller molecules. Because of these two reactions, 

the MWD broadens. The beta scission includes two types of pathways: random 

scission and chain-end scission. Among these, the random scission is selected 

because it is more dominant in the simulated reaction. The kinetic parameters 

of each reaction are listed in Table 2.2.
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Figure 2.1 Concept of target chain 

model.
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Table 2.1 Elementary reactions of free radical polymerization.

�� Initiation �
�∗��
�⎯⎯� 2��

��,� Propagation
�����,���� +�

��
�⎯� ����

��,�

�� Termination �� + ��
��
�⎯� ����

���,� Chain transfer to polymer �� + ��
���
�⎯⎯� �� + ��,���

���,�

��� Chain transfer to monomer �� +�
���
�⎯⎯� �� + ��

�����,� Beta scission ��,���

�����
�⎯⎯⎯⎯� �� + ����

�����,�
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Figure 2.2 Schematic of chain transfer to polymer reaction.
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Table 2.2 Kinetic parameters of LDPE.

� = � ∙ exp �−
� + � ∗ ∆�

��
�

�(�/��� ∙ �) �/�(�) ∆�(���/���)

�� 1.06 ∗ 10�� 17972 2.5077

�� 1.14 ∗ 10� 3584 −19.7717

�� 3 ∗ 10� 1213 13.0443

��� 2.92 ∗ 10� 5580 −20.06

��� 1.67 ∗ 10� 4549 4.3937

����� 1.04 ∗ 10�� 10108 −19.27



16

2.2.2 Reactor model

The most common reactor type for LDPE polymerization in industry is the 

autoclave reactor, but it is inappropriate for analysis with the proposed model 

because of the complex fluid dynamics and operation. Therefore, in this 

research, a model is developed in a series of CSTRs, each of which has one 

input and one output, and exhibits homogeneous temperatures and pressures. 

Because the autoclave reactor shows a similar behavior to the system composed 

of a series of CSTRs, the model can be extended to an autoclave reactor in 

practice.

The model consists of both deterministic and stochastic parts. In 

deterministic part, the bulk polymer properties are calculated using MoM. Then, 

the calculated values are passed on to the stochastic part and are used to 

calculate the probability of each reaction. Based on these probabilities, the 

polymer chain length is determined stochastically using the MC technique.

2.2.3 Deterministic part

The steady-state information of the polymer properties in CSTR can be 

calculated using a set of equations involving the momentum equation and mass 

balances. The equations for the initiator, monomer, live polymer, dead polymer, 

and secondary live polymer are presented below:

�[�]

��
=
�

�
[�]�� − ����[�] − ������,�[�] − �����[�] −

�

�
[�] (2-1)
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�[�]

��
=
�

�
[�]�� − ���[�] −

�

�
[�] (2-2)

�[��]

��

= �(� − 1)(2���[�] + �����[�])

− ���[��] − [����] − �����,���[�] − k�[��]�� − ���[��]��

− ���[��][�] + ����� � �����,��

�

�����

−
�

�
[��]

(2-3)

d[��]

��

= �� �[��][����]

���

���

− ������[��] + ���[��]�� + ���[��][�]

+ ����� � �����,��

�

�����

−
�

�
[��]

(2-4)

d�����,��

��

= −�������,��[�] + ������[��] − ����������,�� −
�

�
[����,�]

(2-5)

From these equations, the information on the polymer weight distribution is 

summed up with a couple of moments. From the definition of moment, the 0th, 
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1st, and 2nd moments of the live polymer, dead polymer, and secondary radical 

polymer are calculated as in Eqs (2-6)–(2-8).

λ� =���[��] (2-6)

μ� =���[��] (2-7)

λ���,� =���[����,�] (2-8)

Each moment can be derived from Eqs. (2-1)–(2-8) with pseudo-steady state 

assumption, and the derived equations are given by:

���
��

= 2���[�] + ������,�[�] − ����
� − ������� + ���������,� −

�

�
��

(2-9)

���
��

= 2���[�] + ���� + �����[�] − ������ + ��(����,� + ����,�)

− ������� − �����[�] + �����
(�� + ��)

2
−
�

�
��

(2-10)



19

���
��

= 2���[�] + �����[�] + ��[�](2�� + ��)

+ �������,� + 2����,� + ����,��[�] − ������ − �������

− �����[�] + �����
(2�� + 3�� + ��)

6
−
�

�
��

(2-11)

���
��

=
��
2
��
� + �����[�] + ���������,� −

�

�
�� (2-12)

���
��

= ��(����) − ������� + ������� + �����[�]

+ �����
�����,� + ����,��

2
−
�

�
��

(2-13)

���
��

= ��(���� + ��
�) − ������� + ������� + �����[�]

+ �����
�2����,� + 3����,� + ����,��

6
−
�

�
��

(2-14)

�����,�
��

= −������,�[�] + ������� − ���������,� −
�

�
����,� (2-15)

�����,�
��

= −������,�[�] + ������� − ���������,� −
�

�
����,� (2-16)
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�����,�
��

= −������,�[�] + ������� − ���������,� −
�

�
����,� (2-17)

Given these equations, the problems cannot be closed because of μ� . 

Therefore, μ� is obtained using the closure technique suggested by Zabisky.

[36]

�� = �
��
��
�
�

�2���� − ��
� (2-18)

2.2.4 Stochastic part

In this section, we introduce a new stochastic algorithm called ‘Block KMC’. 

This method is based on the conventional KMC, and dramatically reduces the 

calculation time by introducing the concept of ‘Block’. Based on the steady-

state assumption, each algorithm step can be simultaneously simulated in block 

units, and the calculation time can be reduced because the propagation reaction 

is dominant compared to other reaction components. The detailed algorithm is 

described in the following subsections.

2.2.4.1 KMC

The typical algorithm of KMC was proposed by Gillespie, and a flowchart 

is shown in Figure 2.3. [25]
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Figure 2.3 Flow chart of KMC algorithm proposed by Gillespie.
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First, the stochastic rates are calculated based on the bulk polymer 

concentrations, and propensity functions are generated. Then, one reaction is 

selected with a random number between 0 and 1 based on these probabilities, 

and the state is updated with this reaction. Subsequently, the time is updated by 

marching forward over a single time interval. The simulation is repeated until 

the total time reaches the residence time.

It is difficult to directly apply this algorithm to our model because each 

polymer chain has a different residence time in the CSTR. Therefore, we 

employ the concept of a target chain and combine KMC with MoM. The 

detailed algorithm of the target chain model is shown in Figure 2.4.
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Figure 2.4 Flow chart of target chain model.
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The residence time distribution in CSTR is known as:

�(�) =
1

�
���(−�)

(2-19)

� =
�

�
(2-20)

The stochastic rates of each reaction are given as:

� = � ���� → � = ����������� ����, (2-21)

����������� = � for monomolecular reaction (2-22)

����������� =
�
�����
�

for bimolecular reaction between similar species

(2-23)

����������� =
2�

�����
�

for bimolecular reaction between different species

(2-24)

�� = 2�� ���������� (2-25)

�� =
2��

�����
� ���� (2-26)
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�� =
2���

�����
� ���� (2-27)

��� =
2���

�����
� ���� (2-28)

��� =
2���

�����
� ���� (2-29)

�� =
2�����

�����
� ����� (2-30)

The same type of reaction may have different stochastic rates depending on 

the type of chain. For example, the chain transfer to polymer can occur when 

the target chain is a live or dead polymer. The number of possible radical sites 

is the total length of all the dead polymer chains when the target chain is a live 

polymer. Hence, �� becomes ��/��. The number of possible radical sites is 

the length of the target chain when the target chain is a dead polymer because 

the target chain receives a radical from the surrounding live chain. Therefore, 

the probability of each reaction is determined, as described in Table 2.3.
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Table 2.3 List of possible reactions depending on the chain type and their probability.

Chain type Possible Reaction Probability

� (Live Polymer) • ��,� • ��,� =
��,�

��,��������,�����

• �� • �� =
��

��,��������,�����

• ���,� • ���,� =
���,�

��,��������,�����

• ��� • ��� =
���

��,��������,�����

� (Dead Polymer) • ���,� • ���,� = 1

���� (Secondary radical Polymer) • ��,� • ��,� =
��,�

��,����,����,�

• �����,� • ��,� =
��,�

��,����,����,�

• �����,� • ��,� =
��,�

��,����,����,�



27

The reaction is determined based on the probabilities with random sampling, 

and the target chain is updated with this reaction. The only reactions that change 

the chain length are propagation and termination by combination. In the case of 

propagation, the length is increased by one, and in the case of termination by 

combination, the length is increased by the length of the surrounding live 

polymer. The molecular weight distribution of live polymers is assumed to 

follow the Schultz-Zimm form, which is the simplest form that can represent 

the bimodal distribution. [36] Parameters �  and ℎ  are inversely estimated 

from [�] and ��. Therefore, the live polymer chain that is combined with the 

target chain is sampled from the Scultz-Zimm distribution of the live polymer 

chain.

Time interval value is calculated by the reaction rate and random sampling. [25]

�� (�) =
��

ℎ
������ exp(−��) /Γ(ℎ) (2-39)

Δt = Q�
�� ∙ ln(

1

�����
) (2-40)

Q���� ������� = ��,� + �� + ���,� + R�� (2-41)

Q���� ������� = ���,� (2-42)

Q��������� ������� ������� = ��,� + �����,� + �����,� (2-43)
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2.2.4.2 Block KMC

The chain grown by the KMC algorithm has a certain pattern in the series 

of reactions. Because the possible reaction types vary depending on the chain 

type, seven types of blocks are repeated. These blocks are found by binding the 

reactions, whose chain type is reverted to the live polymer. The types of blocks 

and their appearance probabilities are listed in Table 2.4. A randomly selected 

sample from the series of reactions is shown in Figure 2.5. These reaction series 

can be combined into the blocks listed in Table 2.4. Each block is independent, 

and the appearance probability is constant. As, the number of blocks follows a 

binomial distribution, it is possible to directly determine the number of blocks 

in the whole series. The algorithm is shown in Figure 2.6.
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Table 2.4 Representation of Blocks and their appearance probabilities.

Block Chain type Probability

B1) R�,� � → � ��,� =
��,�

��,� + �� + ���,� + ���

B2 − 1) �� − ����,� − �����,��
�
− ���,� − ��,� � → (� → ����)

� → � �� =
��

��,� + �� + ���,� + ���

B2 − 2) �� − ����,� − �����,��
�
− ���,� − �����,�

B3 − 1) ���,� − ����,� − �����,��
�
− ���,� − ��,� � → (� → ����)

� → � ���,� =
���,�

��,� + �� + ���,� + ���
B3 − 2) ���,� − ����,� − �����,��

�
− ���,� − �����,�

B4 − 1) ��� − ����,� − �����,��
�
− ���,� − ��,� � → (� → ����)

� → � ��� =
���

��,� + �� + ���,� + ���

B4 − 2) ��� − ����,� − �����,��
�
− ���,� − �����,�
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Figure 2.5 Example of reaction series and the series replaced by Block.
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.

Figure 2.6 Flow chart of Block KMC algorithm.
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To determine the number of blocks, we need to know the total number of 

blocks. However, it is impossible to know the total number of blocks until the 

end of simulation, because the time interval depends on random numbers. 

Therefore, we introduce a unit step number to determine the number of blocks. 

The simulation is repeated by the unit step number until the time reaches the 

total residence time of the target chain. In this system, B1 is dominantly selected 

because the propagation is much faster than other reactions. This means that 

most of the unit step number is the number of B1 blocks. Because of these 

features, we can simulate much faster than the conventional MC algorithm. 

To calculate the length of the target chain, the number of blocks and the 

order of blocks must be determined. The algorithm used to set the order of 

blocks in the target chain model is as follows:

1) Generate ���+���+���+1 random numbers.

2) Normalize the random numbers so that the sum becomes 1, and multiply 

each number by ���.

3) Determine the position of remaining Blocks that will come to the site 

between the B1 groups based on their probabilities.
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Figure 2.7 Representation of Block series derived from Block KMC method.
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Because the number of B1 is much greater than that of the other blocks, the 

series of blocks takes the form of the remaining blocks between the B1 groups, 

as presented in Figure 2.8. By the first and second stages of the algorithm, we 

can determine the number of B1 blocks belonging to the B1 groups, which are 

represented as n�,� ,n�,� ,n�,� ,n�,� ,… in Figure 2.7. In the third stage, the 

remaining blocks are placed between the B1 groups.

Let us assume that t� is the average computation time per step, which 

consists of random sampling and updating the chain length. The conventional 

KMC technique requires approximately N ∙ t� computation time to simulate a 

total of N reaction series. In the Block KMC model, when the number of 

propagation reactions is N�, the first and second stages take (N − N� + 1) ∙

t�, and the third stage takes approximately (N − N�) ∙ t� computation time. 

Hence, the total computation time is approximately (2 ∙ (N − N�) + 1) ∙ t�. As 

expected, because N� is close to N, (2 ∙ (N − N�) + 1) ∙ t� is much smaller 

than the computation time of the conventional model N ∙ t�.

2.3 Result

2.3.1 Verification

To verify the Block KMC model, we compared the conventional KMC 

results with those of the proposed model. These are the results of three different 

cases by varying the temperature and amount of initiator. The ‘Unit Step 

Number’ is fixed at 50.
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Table 2.5 Operation conditions of Case1, Case2, and Case3.

Case 1 Case 2 Case 3

Temperature (K) 480 490 520

Initiator (mol/L) 10-7 10-6 10-7
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Figure 2.8 a) MWD results from conventional KMC and Block KMC models for each case b) MWD results 

depending on iteration number.
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From the simulation results, the target model shows over- and under-peaks 

in the region of small molecular weights. To determine the reason, we classify 

the chain according to the iteration numbers of the algorithm in Figure 2.6. In 

Figure 2.8, the red dotted line represents the iteration number of 1, the yellow 

and purple dotted lines represent the MWD when the chain iterates twice and 

thrice, respectively, and the green dotted line corresponds to the MWD when 

the chain iterates four or more times. The red, yellow, and purple lines exactly 

match the point at which the small peaks appear in the entire MWD. This 

indicates that an error occurs when the number of repetitions is small. This is 

because the algorithm shows a little oscillation when the total number of Blocks 

is smaller than the ‘Unit Step Number.’ The error appears until the number of 

repetitions is 3 in case the ‘Unit Step Number’ is 50. To address this issue, when 

the target chain is short, we set a small ‘Unit Step Number’ and increase it as 

the chain length increases. In this way, the model accuracy can be improved 

while maintaining the calculation time. The detailed setting of the unit step 

number is shown in Eq. (2-44). As a result, the modified model removed the 

small peaks and agreed with the conventional model, as shown in Figure 2.9.

⎩
⎪
⎨

⎪
⎧
Unit step number = 1 target chain length < 50

Unit step number = 20 50 ≤ target chain length < 500

Unit step number = 100 500 ≤ target chain length < 5000

Unit step number = 1000 5000 ≤ target chain length

(2-44)
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Figure 2.9 MWD results of Block KMC model in which ‘Unit Step 

Number’ is adjusted and compared with traditional KMC model.
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2.3.2 Reduction in calculation time

To quantify the time saved by the proposed model, we measured the average 

time required to simulate one target chain for each model. Figure 2.10 shows 

the average calculation time per chain according to the chain length. The blue 

dots are the Block KMC model results, and the red dots are the conventional 

KMC model results. Although the time difference between the two models is 

small in the short chain, the Block KMC model becomes much faster in the 

long chain. As discussed in the Block KMC part in Methodology section, 

although the conventional method takes N ∙ t� calculation time, the proposed 

algorithm only takes (2 ∙ (N − N�) + 1) ∙ t� . This implies that the new 

algorithm is 1/(2 ∙ �1 −
��

�
� +

�

�
)  times faster than the conventional KMC. 

This is because the unit step number is set much larger in the long chain section. 

LDPE typically has a molecular weight of less than 50,000 g/mol , which 

translates to 1,700 mol�� in terms of the number of monomers in the chain. 

Therefore, at least 10 to 32 times reduction effect can be expected when the 

chain length is approximately 1700. As shown in Figure 2.10, although the 

calculation time remains constant along the average chain length in the Block 

KMC model, the calculation time of the conventional method increases in 

proportion to the average chain length. This indicates that the proposed method 

has an advantage in simulating polymers with a high Mw.
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Figure 2.10 Average calculation time per one chain according to the 

average chain length for each model.
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2.3.3 Case study

Figure 2.11 shows the dependence of the molecular weight distribution on 

the temperature. As the temperature decreases, the formation of the shoulder is 

observed owing to the generation of more long chains.

Figure 2.12 shows the reaction ratio according to the temperature at various 

initiator concentrations. The rate ratio of termination to propagation reaction 

decreases with increasing temperature because the kinetic constant of 

termination is less sensitive to temperature, and the live polymer concentration 

decreases as the temperature increases.

R�
��

=
����

�

����[�]
=

k���
��[�]

(2-45)

The rate ratio of the chain transfer to polymer to propagation increases as 

the temperature increases. This is because the kinetic constant of the chain 

transfer to polymer reactions is more sensitive, and the dead polymer weight 

concentration increases with temperature. 

R��

��
=
�������

����[�]
=
�����

��[�]
(2-46)

The rate ratio of beta scission to propagation increases as the temperature 

increases. This is because the kinetic constant of the beta scission is more 

sensitive, and the secondary radical concentration increases with temperature, 

while the live polymer concentration decreases.
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R�
��

=
������,�
����[�]

(2-47)

The rate ratio of chain transfer to monomer increases as the temperature 

increases because the rate constant of the chain transfer to monomer is more 

sensitive to temperature, and the ratio is constant even if the concentration 

changes.

R��
��

=
�����[�]

����[�]
=
���
��

(2-48)

The results of MWD according to the temperature can be interpreted by the 

ratio results of each reaction. MWD becomes narrower as the ratio of the chain 

transfer to polymer to the propagation increases with increasing temperature. 

This does not agree with the fact that the chain transfer to polymer broadens 

MWD. This means that the broadness of MWD is not determined only by the 

chain transfer to polymer, but also by the termination and beta scission. At low 

temperatures, as the termination reaction becomes dominant, the chains are 

combined to increase the proportion of long chains. At high temperatures, the 

beta scission predominates, and occurs better than the propagation in the 

secondary radical chain generated from the chain transfer to polymer. Therefore, 

the chain does not become a higher branched chain but breaks into smaller 

chains, which causes the left shift of MWD.
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Figure 2.11 Reaction ratio according to temperature at various 

initiator concentrations (a) 
��

��
, (b) 

���

��
, (c) 

���

��
, and (d) 

��

��
.
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Table 2.6 Temperature sensitivity of reaction mechanism.

Reaction mechanism Activation energy

J/mol

Temperature

sensitivity

Initiation decomposition 149,347 Highest

beta scission 83,997

Chain transfer to polymer 46,369

Chain transfer to monomer 37,802

Propagation 29,783

Termination 10,080 Lowest
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Figure 2.12 shows the dependence of the molecular weight distribution on 

the initiator concentration. As the initiator concentration increases, the 

formation of the shoulder is observed and the average chain length decreases.

The rate ratio of termination to propagation increases with increasing 

initiator concentration because the live polymer concentration increases as the 

initiator concentration increases. The rate ratio of the chain transfer to polymer 

to propagation also increases as the initiator concentration increases, because 

the dead polymer weight concentration increases as the initiator concentration 

increases. The rate ratio of beta scission to propagation increases as the 

temperature increases because the secondary radical concentration increases 

faster than the live polymer concentration. The rate ratio of the chain transfer 

to monomer is constant as the initiator concentration increases because the rate 

constant of the chain transfer to monomer does not depend on the concentration.

As the initiator concentration decreases, the MWD becomes narrower and 

shifts to the right. The plot shows a broad distribution because both long and 

short chains are produced as the termination and beta scission become faster. In 

addition, because the termination is more dominant than the beta scission under 

a low initiator concentration, the distribution plot moves to the right and the 

values of Mn and Mw also increase.
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Figure 2.12 Effect of initiator concentration on MWD.
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Table 2.7 Calculated properties of products at various initiator concentrations.

Initiator

concentration

Mn Mw PDI μ�, mol/L λ�, mol/L λ���,�, mol/L

5 ∗ 10�� 1.27 ∗ 10� 6.97 ∗ 10� 5.51 1.80 ∗ 10�� 8.01 ∗ 10�� 6.39 ∗ 10���

5 ∗ 10�� 3.35 ∗ 10� 1.67 ∗ 10� 5.14 5.55 ∗ 10�� 2.51 ∗ 10�� 6.12 ∗ 10���

5 ∗ 10�� 5.67 ∗ 10� 2.36 ∗ 10� 4.17 1.64 ∗ 10�� 7.72 ∗ 10��� 5.57 ∗ 10���

10��� 6.34 ∗ 10� 1.39 ∗ 10� 2.19 1.78 ∗ 10�� 8.53 ∗ 10��� 6.54 ∗ 10���
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Figure 2.13 Reaction ratio according to initiator concentration at 

various temperatures (a) 
��

��
, (b) 

���

��
, (c) 

���

��
, and (d) 

��

��
.
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2.3.4 Shouldering condition

Because each reaction affects the MWD in a complex manner, it is 

impossible to determine the condition in which a shoulder of the MWD is 

generated by only one reaction. Therefore, 180 cases were simulated by varying 

the temperature, initiator amount, and average residence time to determine the 

condition of the shoulder appearing. The range of operation conditions is listed 

in Table 2.8. In Figure 2.14, each reaction ratio is set as an axis. Blue and red 

dots represent the shouldered and non-shouldered cases, respectively. To 

formulate the reaction conditions in which the shoulders are generated, a flat 

plane is found that separates the blue and red dots through a linear support 

vector machine (SVM) technique. The hyperplane equation is given by Eq. (2-

49), and the model classification accuracy is 89%.
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Table 2.8 Range of operation condition

Operation condition Range

Temperature 480–520 K

Initiator concentration 5 ∗ 10��–10�� mol/L

Average residence time 10– 60 sec
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Figure 2.14 Shoulder plane for LDPE in CSTR reactor (��� = �

from equation (49)).
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Under the condition that the ��� value is positive, MWD does not have a 

shoulder. When ���   is negative, the MWD has a shoulder. The faster the 

termination and the chain transfer to polymer and the slower the beta scission, 

the higher the probability that MWD will have a shoulder, which is consistent 

with a previous study. [12], [22], [32], [37] As discussed in the case study on 

temperature, it is confirmed that the shoulder can be generated by the 

termination and beta scission, despite the decrease in the the chain transfer to 

polymer reaction ratio.

��� = −0.585 ∗ �� − 0.223 ∗ ��� + 2.286 ∗ ����� + 0.6 ∗ 10�� (2-49)

�� = Rate ratio of termination to propagation,��/��

���

= Rate ratio of the chain transfer to polymer to propagation,���/��

����� = Rate ratio of beta scission to propagation,�����/��

if F�� > 0, nonshouldered MWD

else F�� < 0, shouldered MWD

(2-50)

2.4 Conclusions

In this study, we proposed an MWD prediction model that coupled 

deterministic and stochastic methods. We introduced a new concept of ‘Block,’

which is a group of repeating reaction series. It reveals that the model is 
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approximately 10 to 32 times faster than the model proposed by Neuhaus[30], 

with almost the same performance. There are two reasons for the model to 

reduce the computation time effectively. First, the number of blocks follows a 

binomial distribution, which makes it possible to determine each reaction 

quickly. Second, the propagation is much faster than other reactions. Because 

of this feature, the model can effectively reduce the calculation time for 

ordering the reactions. This reveals that the larger the average molecular weight 

of the polymer, the greater is the time reduction effect. Therefore, the model 

can be effectively applied to HDPE or higher-molecular-weight polymers.

We simulated the MWD and calculated the rate ratio of other reactions to 

the propagation according to the temperature and initiator concentration. The 

MWD was finally determined as the kinetic effects of each reaction that interact 

with each other. Some studies have dealt with the effects of operation 

conditions[12], [38], [39], but it is still challenging to analyze how the reactions 

comprehensively affect the MWD. In particular, the shouldering phenomenon 

remains a poorly understood topic, as it does not necessarily correlate with the 

average molecular weight. This makes it difficult to obtain the desired product, 

while making the operation of the reaction system difficult. Therefore, in this 

study, we provided a quantitative guideline for the appearance of the shoulder 

with 89% accuracy by simulating 180 cases for the operating conditions shown 

in Table 2.9.
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The model was developed using a CSTR reactor. For a practical reactor, the 

viscosity of the fluid in the reactor increases as the polymerization proceeds, 

hindering perfect mixing and heat transfer. Furthermore, the reaction system 

was controlled with several input flows by regulating the temperature or 

initiator concentration. Therefore, industrial polymer reactors exhibit 

inhomogeneous behavior. The conventional KMC technique takes too long to 

combine with the flow data; whereas, the proposed model is applicable because 

of its reduced computation time. Therefore, the proposed model can be applied 

to an industrial-scale reactor for real-time control and optimization.

2.5 Notations

�� concentration of molecule a,mol/L

�� dead polymer chain of length n

� effectiveness factor for initiator decomposition, dimensionless

��� shouldering measurement, dimensionless

� kinetic constant

�� kinetic constant of beta scission reaction, s��

��� kinetic constant of chain transfer to polymer reaction, L

· s)��

��� kinetic constant of chain transfer to monomer reaction,

· s)��

�� kinetic constant of initiator decomposition reaction, s��

�� kinetic constant of propagation reaction, L(mol · s)��
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�� kinetic constant of termination by combination reaction

· s)��

�� live polymer chain of length n

��,��� secondary radical polymer chain of length n

����� chain length sampled from the live polymer chain length

���� the matrix where chain length data is stored

� ethylene monomer

� number of simulated taget chain

�� number of molecules

���� Avogadro number

��� number of B1 blocks

��� number of B2 − 1 and B2 − 2 blocks

��� number of B3 − 1 and B3 − 2 blocks

��� number of B4 − 1 and B4 − 2 blocks

����� random number between 0–1

����� total number of taget chains to be simulated

���, ��� Probabilities of propagation reaction

�� Probabilities of termination by combination reaction

����, ���� Probabilities of chain transfer to polymer reaction

��� Probabilities of chain transfer to monomer reaction

���, ��� Probabilities of beta scission reaction

� stochastic reaction rate

�� initiator decomposition reaction

��� , ��� propagation reaction
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�� termination by combination reaction

���� , ���� chain transfer to polymer reaction

��� chain transfer to monomer reaction

������, ����� beta scission reaction

���, ��� stochastic rate of propagation reaction, (mol · s)��

�� stochastic rate of termination by combination reaction, (

· s)��

����, ���� stochastic rate of chain transfer to polymer reaction, (mol

· s)��

��� stochastic rate of chain transfer to monomer reaction, (

· s)��

���, ��� stochastic rate of beta scission reaction, (mol · s)��

� Average residence time in CSTR reactor, sec

� current simulation time, sec

����� residence time of target chain, sec

� total volume of reactor system, L

� volumetric flow rate of input flow, L/s

[�] concentration of dead polymer,mol/L

[��] concentration of the dead polymer of length n,mol/L

[�] concentration of initiator,mol/L

[�] concentration of live polymer,mol/L

[��] concentration of the live polymer of length n,mol/L

[����] concentration of secondary radical polymer,mol/L
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[����,�] concentration of the secondary radical polymer of length

/L

[�] concentration of monomer,mol/L

�� k�� moment of live polymer chain

����,� k�� moment of secondary radical polymer chain

�� k�� moment of dead polymer chain

2.6 Abbreviations

CSTR, continuous stirred-tank reactor; CTA, chain transfer agent; HDPE, 

high density polyethylene; KMC, Kinetic Monte Carlo; LDPE, low density 

polyethylene; MC, Monte Carlo; MI, melt index; MoM, method of moment; 

MWD, molecular weight distribution; PDI, polydispersity index; SMMA, 

single macromolecule approach; SVM, support vector machine
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Chapter 3

Physics-informed deep learning for 

data-driven solutions of computational 

fluid dynamics

3.1 Introduction

Computational fluid dynamics (CFD) is a powerful tool that uses numerical 

approaches to solve engineering problems involving fluid motion and heat 

transfer. CFD has been employed in a wide range of research fields, such as 

aerodynamics [40], weather dynamics [41], environmental engineering, and 

industrial system modeling [42]. However, a critical issue of CFD simulations 

is their long computational times. Owing to this disadvantage, the application 

of CFD in analyzing the real-time behavior of systems and predicting non-

simulated scenarios has been inherently limited.

Recent developments in machine learning have fundamentally transformed 

many classical engineering approaches and provided suitable alternative 

methods to solve complex tasks, including the simulation of complex fluid 

motion and heat transfer. Motivated by the potential of machine learning for 

speeding up numerical simulations without compromising the accuracy, a 

number of studies have focused on developing a surrogate model that aims to 

replace or accelerate CFD simulations. The most widely-used surrogate models 

in the field of chemical process engineering include the polynomial

approximations [43], Gaussian process (GP) [44], and deep learning models 

[45]. The polynomial approximation is the most commonly used model; 
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however, it is simple and its applications are limited to less complex under-

lying models and local regions. GP is a nonparametric Bayesian approach that 

works well on small datasets and can provide a measure of uncertainty for 

predictions. GP is suitable for modeling small datasets where some prior 

knowledge of the generative process exists. Deep learning techniques have 

been widely used to develop surrogate models for flu-id-flow systems owing to 

their scalability with a large amount of data and hierarchical feature learning, 

which are suitable for large-scale and highly nonlinear systems, respectively. 

Ling et al. (2016) [46] used a deep neural network (NN) with embedded 

invariance for Reynolds-averaged turbulence modeling. Na et al. (2018) [47]

proposed a non-linear surrogate model for toxic gas release scenarios using a 

variational autoencoder with deep convolutional layers and a deep NN. To 

obtain a reliable model, these deep learning approaches require a large amount 

of data to avoid the problem of overfitting and undue extrapolation. Although 

the feature extraction characteristic of deep learning is known to be 

advantageous, these extracted features are often inconsistent with physical 

implications. Hence, these purely data-based surrogate models cannot be 

reliably used for inference in untrained spaces [48].

To overcome these limitations, several approaches to combine scientific 

knowledge and deep learning models have been developed. Karpatne et al. 

(2017) [48] proposed a physics-guided NN that uses scientific knowledge as 

physics-based loss functions in the learning objective of NNs in order to obtain 

a physically consistent model. Raissi et al. [49] proposed a more advanced 

model called the PINN, in which the constraint term of the physical law 

described by general non-linear partial differential equations is incorporated 
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into NN training. PINN is suitable for systems where the first principles are 

given in the form of partial differential equations, such as fluid flow systems 

governed by mass and momentum conservation laws. PINN has numerous 

advantages over purely data-driven models: it can be effectively trained with 

small datasets; it shows high performance in regions without observable data 

because it can be trained in any region to satisfy the governing equation without 

actual data. It can also solve the inverse problem of finding unknown 

parameters that converge toward their true values during training. Owing to 

these advantages, the PINN approach has been applied to several physical 

systems such as high-speed aerodynamic flows described by the Euler equation 

[50], wall modeling in large-eddy simulations [51], and the incompressible 

Navier-Stokes equation [52]. Previous studies have mainly dealt with fluid flow 

systems only, and none of them have solved reaction kinetics and heat transfer 

together, which is essential in the model development of chemical engineering 

systems.

In this study, we investigate the feasibility of applying PINN to a chemical 

reactor system, which is a continuous stirred tank reactor (CSTR) with a Van 

de Vusse reaction. A method for a training system, including mass conservation 

equations, momentum conservation equations, heat conservation equations, 

and species transport equations, is suggested. In particular, because the system 

requires multi-reference frames owing to the mixing domain, we present how 

the model framework is conceived for implementation. Further, as the system 

operates by several different types of physical equations and the number of 

system variables increases, reliable performance cannot be obtained with 

existing PINN methodology. Therefore, we suggest three strategies to improve 
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model performance. First, a large number of training data points are needed to 

train the system; thus, mini-batch training is introduced to prevent memory 

errors and increase model accuracy. Second, because empirical and physics 

errors for each governing equation are of different scales and hinder proper 

learning, we adopt the concept of the weighted loss function. Third, a similarity-

based sampling strategy is introduced, which can improve the performance of 

the model when a sudden change in the system state occurs.

3.2 PINN

PINN, first proposed by Raissi et al. [49], is effective in finding a robust 

solution from data derived from a system whose governing equations are in the 

form of partial differential equations. PINN embraces a partial differential form 

of physical law in machine learning, making it possible to learn not only the 

patterns of the data but also their underlying physical laws. PINN is based on 

the same algorithm as that of the feedforward NN, except for the loss function. 

While the gradients of the output value errors are backpropagated to update the 

weights and bias in the feedforward NN, additional loss terms regarding the 

physical law determined using automatic differentiation are included in PINN.

Therefore, the loss function consists of an empirical error term (����) and a 

physics error term (����), as presented in Eq. (3-1).

As presented in Eq. (3-2), the empirical error term is defined as the mean 

squared error of the output variables, where ���
� , ��� (� = 1,… , ��) denotes 

the training data on �(�) , ��  is the number of training data points, ��
�   is 

��� = ���� +����
(3-1)
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mostly defined as a set of independent space and time variables, and �� are the 

system state variables such as velocity components and pressure. The physics 

error term in Eq. (3-3) is the mean squared error of the governing equations, 

which can be calculated from NNs through automatic differentiation, where 

���
� �  specifies the collocation points for �(�) , ��  is the number of 

collocation points, and � is a set of physical equations.

As shown in Figure 3.1, the model outputs from the NNs are fed into the 

first-principles model, and the error in the output variables and the error in the 

physical equation are summed and backpropagated to update the 

hyperparameters of the NNs.

PINNs are suitable for simulating a chemical reactor system, which is 

represented by a set of partial differential equations, such as mass and 

momentum balances, heat conservation equations, and species transport 

equations. However, because of the properties of the reactor system, where 

multiple reference frames exist and are governed by various types of physical 

equations, PINN structures need to be modified, and several strategies are 

needed to improve model performance. In the subsequent section, we suggest a 

loss function and model structure relevant to the target system.

���� =
1

��
������

� � − ���
�

��

���

(3-2)

���� =
1

��
������

� ��
�

��

���

(3-3)
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Figure 3.1 Schematic of PINN.
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3.3 Model description

In this section, we introduce the modeling method of a CSTR with a Van de 

Vusse reaction using a model framework based on CFD and PINNs. The CSTR 

with the Van de Vusse reaction has been widely used as a benchmark problem 

owing to its nonlinearity [53]. There are two types of reactions commonly found 

in the literature: isothermal [54], [55] and non-isothermal [56], [57]. A non-

isothermal reactor is used in this study to consider fluid flow, heat transfer, and 

reaction kinetics together.

3.3.1 CFD modeling

Figure 3.2 depicts the reactor geometry, which is a flat-bottomed, fully 

baffled tank, with a diameter of 0.288 m and a height of 0.288 m. It has one 

inlet, one outlet, and centrally located pitched-blade impellers that rotate at a 

speed of 10 rpm.

Van de Vusse reactions are referred to by Ridlehoover et al. [58], and the 

kinetic parameters that we used for the target system are presented in Table 3.1. 

The model component properties and the initial and boundary conditions are 

also listed in Table 3.1.
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Figure 3.2 Reactor system geometry and tank specifications.
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Table 3.1 Reaction kinetics, component properties, and initial and 

boundary conditions.

Reactions
Kinetic parameters

� (1/�) �� (�/���)

A
��
→ B 3.575 ∗ 10� 8.109 ∗ 10�

B
��
→C 3.575 ∗ 10� 8.109 ∗ 10�

2A
��
→D 2.512 ∗ 10� 7.113 ∗ 10�

Component properties

� 934.6 kg/m�

� 1.0 ∗ 10�� kg/m ∙ s

�� 3,010 J/K ∙ kg

� 0.6 W/m ∙ K

��� 155.3 kg/mol

� 2.88 ∗ 10�� ��/�

Initial conditions

��� 2.23 ∗ 10�� mol/L

��� 1.04 ∗ 10�� mol/L

��� 0.91 ∗ 10�� mol/L

��� 0.92 ∗ 10�� mol/L

�� 79.591 ℃

�� 104.9 ℃

��,� 5.1 ∗ 10�� mol/L

�� 77.5 ℃

�� 3.89 ∗ 10�� L/sec
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The reactor is divided into two domains: the inner and outer domains. The 

inner domain is assigned around the impeller, and the outer domain is the rest 

of the domain. The inner domain refers to the moving reference frame, which 

rotates in the opposite direction of the impeller, and the outer domain refers to 

the stationary frame. Therefore, the governing equation for each domain varies 

according to the reference frame. A set of governing equations that satisfy each 

domain are explained in the section on the governing equation, and the PINN 

model architecture that integrates two different domains into one model is 

introduced in the section on the PINN architecture.

   The mesh structure is composed of 0.3M cells. We have performed a 

mesh convergence test on 8 different meshes. The graph on the left in the Fig. 

3.3 shows the average velocity value at the outlet according to the number of 

meshes and the graph on the right shows the average mole fraction of d at the 

outlet according to the number of meshes. When the number of meshes is more 

than 0.2M, it can be seen that the simulation results converge. We used ANSYS-

Fluent v19.2 to generate the model training data calculated through CFD. After 

the simulations were completed, the values of the state variables (velocity 

components, pressure, and temperature) and the mole fraction of each 

component according to time and position were exported.

3.3.2 Governing equations

The target system is governed by the mass, momentum, and energy 

conservation laws and the species transport equations. We used a laminar model 
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Figure 3.3 Mesh convergence test results.
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for the viscous model and assumed a compressible flow. Specifically, for 

our system, we consider two domains with different reference frames, and thus 

each domain follows a different form of physics law. The velocity vector is 

converted from a moving reference frame to an absolute frame using

The term �⃗  is the absolute velocity vector, �����⃗   is the relative velocity 

vector, ���⃗ is the rotating angular velocity, and �⃗ is the position vector from 

the origin of the moving system. The governing equations for fluid flow in an 

absolute frame can be written as follows:

The equation for the conservation of mass is

where � is the density.

The equation for the conservation of momentum is

where � i̿s the stress tensor.

The equation for the conservation of energy is

where � is the internal energy.

The equation for species transport is

�⃗ = �����⃗ + (���⃗ × �⃗). (3-4)

��

��
+ � ∙ (��⃗) = 0, (3-5)

�

��
(��⃗) + � ∙ (��⃗�⃗) = −�� + � ∙ (�)̿, (3-6)

�

��
(��) + � ∙ ��⃗(�� + �)� = � ∙ (�∇� + � ∙̿ �⃗), (3-7)
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where �� is the local mass fraction of the ��� species, and �� is the net 

rate of the production of species � by a chemical reaction.

For the relative velocity formulation, the governing equations of the fluid 

flow in a moving reference frame can be written as follows:

The equation for the conservation of mass is

The equation for the conservation of momentum is

The momentum equation contains two additional acceleration terms. The 

(2���⃗ × �����⃗ ) term is the Coriolis acceleration, and the (���⃗ × ���⃗ × �⃗) term is the 

centripetal acceleration.

The equation for the conservation of energy is

where ��  is the relative internal energy and ��   is the relative total 

enthalpy.

The equation for species transport is

�

��
(���) + � ∙ (��⃗��) = −�(�����) + �� ,

(3-8)

��

��
+ � ∙ (������⃗ ) = 0. (3-9)

�

��
(������⃗ ) + � ∙ (������⃗ �����⃗ ) + �(2���⃗ × �����⃗ + ���⃗ × ���⃗ × �⃗)

= −�� + � ∙ (��� ).

(3-10)

�

��
(���) + � ∙ (��⃗���) = � ∙ (�∇� + ��� ∙ �����⃗ ),

(3-11)

�

��
(���) + � ∙ (��⃗���) = −�(�����) + �� .

(3-12)
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These equations will contribute to PINN training.

3.3.3 PINN architecture

We design the PINN to infer all the states of interest, i.e., velocity 

components (�, �, �), temperature (�), and mole fractions of a, b, c, and d 

(�� , �� , �� , ��). � ∶= (�, �, �, �) is introduced as a set of independent space and 

time variables and � ∶= (�, �, �, �, �� , �� , �� , �)  represents the set of state 

variables. Based on the PINN framework [49], the output variable �  is 

approximated using a feed-forward multi-layer NN:

where � is an ℒ-layer NN with a set of input variables � and a network 

parameter �. This network represents a compositional function, which is

where the symbol ∘ is the composition operation, � is the layer number, 

�� ∶= � is the input to the network, �ℒ ∶= � is the output of the network, ��

and �� are the network parameters of layer λ known as weight and bias, and 

�� is the activation function.

The architecture of a PINN consists of 11 layers, including 100 neurons for 

each layer, whose numbers are determined empirically by simulating several 

cases. Too many layers prevent a model from being generalized, and a small 

number of layers are not sufficient to represent the system. Fig. 3.4 shows 

training and test loss according to the learning Epoch for various number of 

�(�) ≈ �(�;�), (3-13)

�(�;�) = Σℒ ∘ Σℒ�� ∘ ⋯ ∘ Σ�(�) (3-14)

Σ������� ∶= �� = ����� ∙ ���� + ��� where � = 1,… , ℒ (3-15)
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layer. The number of epochs means how many times the entire dataset is passed 

forward and backward through the neural network. As shown in Figure 3.4, 

when the number of layer exceeds 11, model accuracy does not improve 

anymore. Training and test data loss oscillate more when the number of layer 

is 13, reducing model stability. Each node is fully connected to the nodes of the 

previous layer and contributes to the next layer’s nodes with the tangent 

hyperbolic activation function.
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Figure 3.4 Loss graph for various number of layer: a) training data loss, b) test data loss.
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As mentioned in the previous section, the loss function consists of an 

empirical loss term, which is the mean squared error between the real and 

predicted values of the output variables, and a physics loss term, which is the 

model error of the governing equations consisting of derivative terms calculated 

through automatic differentiation from the networks. A weighted loss function 

is used here. In particular, for our system, the total loss of the network, MSE, 

includes a loss term for the output variables (����,���� and ����) and 

the physics equations (�������� , ����� ,����� and ��������).

where the empirical loss term is evaluated at training points 

���
� , ��

� , ��
� , ��

� , �� , �� , �� , �� , ��
� , ��

� , ��
�� � = 1,… ,��, and the physics loss term 

is evaluated at a collocation point ���
� , ��

� , ��
� , ��

� � � = 1,… ,��. The empirical 

loss terms are expressed as

���

= ����(���� +���� +����) + �������������

+���������� + ���������� +������������� ,

(3-16)

���� =
1

��
�(��(�)� − ���

�
+ ��(�)� − �� �

�
+ ��(�)� −�� �

�
)

��

���

(3-17)

���� =
1

��
�(��(�)� − �� �

�
)

��

���

(3-18)

���� =
1

��
�(���(�)

� − ��
� �
�
+ ���(�)

� − ��
� �
�
+ ���(�)

� − ��
��
�
)

��

���

(3-19)
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The physics loss terms differ depending on whether the collocation point 

belongs to the inner or outer domains. The loss term for the mass conservation 

equation is

The loss term for the momentum conservation equation is

where ��� denotes the inner domain and ���� denotes the outer domain.

The loss term for the energy conservation equation is

The loss term for the species transport equation is

�������� =
1

��
�(������

� �
�
)

��

���

.
(3-20)

�����

=

⎩
⎪
⎨

⎪
⎧ 1

���
�������

� �
�
+ �����

� �
�
+ ���

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ���

���

���

1

����
� �������

� �
�
+ ������

� �
�
+ ���

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ����

����

���

,

(3-21)

����� =

⎩
⎪
⎨

⎪
⎧ 1

���
�������

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ���

���

���

1

����
� �������

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ����

����

���

.

(3-22)
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The detailed forms of all governing equations are listed in the 

Appendix. The network is trained by minimizing the total loss using the 

backpropagation algorithm, where every weight is updated by 

calculating the gradient in each weight with respect to a loss function 

with Eq. (24). It is repeated until the total loss is smaller than the 

stopping criteria. The model was trained by the optimization package, 

AdamOptimizer in TensorFlow.

where the ��� is the weight for neuron j in layer i in the current 

training iteration, ���
∗ is the updated weight for neuron j in layer i, and 

� is the learning rate.

As shown in Fig. 3.5, the entire training data set is composed of D��� and 

D���. D��� is the training data set used to calculate the empirical error which 

is the set of the input and output variables of the network. D���  is the 

collocation data set used to calculate the physics error which is the set of the 

��������

=

⎩
⎪
⎨

⎪
⎧ 1

���
�����������

� �
�
+ ���������

� �
�
+ ���������

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ���

���

���

1

����
� �����������

� �
�
+ ����������

� �
�
+ ����������

� �
�
� ���

� , ��
� , ��

� , ��
� � ∈ ����

����

���

(3-23)

���
∗ = ��� + � ∗

����

����

(3-24)
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only input variables of the network. Collocation data are divided into two 

domains, and the physics losses are calculated separately using Eqs. (20)–(23). 

These physics losses are summed and combined with the empirical loss 

calculated by Eqs. (17)–(19) to determine the total loss, and the network is 

trained by minimizing the total loss using the backpropagation algorithm. A 

total of 2 ∗ 10�  data points were used for training data and 2 ∗ 10�  data 

points were used for collocation points. The PINNs were trained using 

Tensorflow v1.10.0 with a NVIDIA GTX Titan GPU.



78

Figure 3.5 PINN model structure for CSTR with Van de Vusse reaction.
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3.4 Result and Discussion

3.4.1 Model verification

Figure 3.6 and Figure 3.7 show contour plots of the velocity magnitude and 

mole fraction of component A for the CFD model and the PINN model in a 

vertically sliced cross section of the reactor. The PINN model shows good 

agreement with the CFD model for all state variables, extracting the proper flow 

pattern. The L� relative error as presented in Eq. (3-25) of the PINN model is 

1.98 ∗ 10��  for the velocity magnitude and 3.661 ∗ 10��  for the mole 

fraction of component A (Table 3.2). The first reason for this large L� relative 

error is that the CFD simulation does not provide an exact solution with a 

numerical error, which leads to errors in the PINN model. The second reason is 

that the system has many state variables to be learned and governed by highly 

nonlinear physical equations, which makes it difficult for the surrogate model 

to find the global optimum.

L� relative error = �
∑ ������,� − �����,��

��
���

∑ �����,�
��

���

(3-25)
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Figure 3.6 Comparison of PINN model and CFD for velocity magnitude: PINN model solutions of the velocity 

magnitude at 0.0005 s and 0.005 s (a, b), CFD solutions of the velocity magnitude at 0.0005 s and 0.005 s (c, d).
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Figure 3.7 Comparison of PINN model and CFD for mole fraction of A: PINN model solutions of the mole 

fraction of component A at 0.035 s and 0.05 s (a, b), CFD solutions of the mole fraction of component A at 0.035 s 

and 0.05 s (c, d).
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Table 3.2 L2 relative error of PINN model for states variables.

State variable L� Relative error

Velocity magnitude 1.98 ∗ 10��

Mole fraction of A 3.66 ∗ 10��

Mole fraction of B 2.21 ∗ 10��

Mole fraction of C 1.25 ∗ 10��

Temperature 1.22 ∗ 10��



83

Figure 3.8 shows a comparison between the performance of PINN and NN 

in developing the surrogate model. We use the same network structure for the 

NN as the PINN, and this network is trained with the loss function as follows:

where the weight was assigned the same value as in the PINN model.

NN shows a higher accuracy in predicting output values, with an empirical 

loss lower than that of the PINN. However, the physics loss of the NN is much 

larger than that of the PINN because the NN does not learn physical laws. In 

Fig. 3.9, the images of h) and i) represent the z-component of the learned 

velocity vector of the PINN and NN’s, respectively for the cross section in xz 

plane. While the PINN can extract the representative characteristic of the flow, 

NN shows noise that does not have any physical meaning because of overfitting. 

For a simple system, the empirical error of the NN is sometimes larger than that 

of the PINN; however, for the CSTR with an impeller, which has a complex 

geometry, PINN mostly has a larger empirical error than the NN. This is

because the boundary condition, such as the non-slip condition on the surface 

of the impeller, that imposes non-linearity on the system makes it difficult for 

the PINN to obtain the optimum solution. Furthermore, the error of the 

governing equation, for example, the continuity equation, increases in regions 

where the velocity varies significantly, such as the boundary. Therefore, the loss 

term for the continuity equation implies that the model does not change 

significantly at the boundary condition, which yields a large empirical error. 

For this reason, the empirical error of PINN is larger than that of the NN, even 

though its physics error is much smaller than that of the NN.

��� = ����(���� +���� +����), (3-26)
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Figure 3.8 Loss graph of PINN and NN: a) empirical loss of PINN and NN against number of epochs and b) 

physics loss of PINN and NN against number of epochs.
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Figure 3.9 Comparison of PINN model, NN model, and CFD for velocity 

components: x-direction of velocity solutions obtained using CFD, PINN 

model, and NN model (a, b, c), y-direction of velocity solutions obtained 

using CFD, PINN model, and NN model (d, e, f), z-direction of ve-locity 

solutions obtained using CFD, PINN model, and NN model (g, h, i).
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3.4.2 Improvement of model performance

3.4.2.1 Mini-batch training

We encountered a memory allocation error when more than approximately 

5000 data were trained at once using a 16G GPU. This is because TensorFlow 

pre-allocates the entire memory of the GPU [59]. Mini-batch training can 

resolve the memory error issue by dividing the entire dataset into several 

batches, making it possible to require memory only for the batch size, and not 

the total data size. The parameter is updated for every mini-batch of n training 

data points. When the batch size is 1, the so-called stochastic gradient descent, 

the model encounters the issue of high fluctuation of parameters during training 

[60]. A proper batch size should be specified to avoid model performance 

degradation and reduce the variance of the updated parameters for more stable 

convergence. Batch training not only resolves the memory allocation error but 

also improves the learning speed of the model. As shown in Figure 3.10, using 

smaller batch sizes can lead to faster convergence. While a large batch size is 

known to lead to poor generalization [60], the trained model with smaller 

batches showed a smaller error.
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Figure 3.10 Total loss of PINN model for different batch sizes against 

Training time (sec).
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3.4.2.2 Weighted loss function

The loss function consists of two parts: empirical and physics terms. The 

value of each term should be maintained at a similar level for proper learning. 

To maintain the size of each term, we introduce a weight for every loss term. 

The weight of each physics loss term is presented in Table 3.3. Because the loss 

values of the momentum and energy conservation equations are very high, the 

weight of each term was set to a low value. The terms constituting the energy 

conservation equation are, for example, �∇�, inherently larger than the terms 

of the momentum conservation equation because the scale of the temperature 

variable is much larger than that of the velocity variables. After setting the 

initial weights, we adjusted the weights further. We found that each weight 

affects the performance of the model. As shown in Figure 3.11, when the weight 

of the empirical term is set to a high value, the contour plots show more obvious 

and detailed patterns. This is because the model behaves similarly to a NN as 

the weight of the empirical error increases. Accordingly, the empirical loss 

decreases and the physics loss increases as the weight of the empirical error is 

set to a high value, as shown in Figure 3.12.
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Table 3.3 Weight of each loss term.

����� 1

����� 1 ∗ 10��

����� 1 ∗ 10���

����� 1
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Figure 3.11 Comparison of PINN models for several empirical term 

weights: x-direction of veloc-ity solutions obtained using CFD and PINN 

model for empirical term weights of 100, 10, and 1 (a, b, c, d), y-direction 

of velocity solutions obtained using CFD and PINN model for empirical 

term weights of 100, 10, and 1 (e, f, g, h), z-direction of velocity solutions 

obtained using CFD and PINN model for empirical term weights of 100, 

10, and 1 (i, j, k, l).
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Figure 3.12 Loss graph for various empirical term weights: a) empirical loss of PINN model for several empirical 

term weights against number of epochs, b) physics loss of PINN model for several empirical term weights against 

number of epochs.
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3.4.2.3 Similarity-based sampling strategy

When the data are selected randomly based on time and position, we face 

the problem of poor model accuracy when the state changes rapidly. Because 

our system starts from a stationary state, it changes rapidly at the beginning 

until it reaches a stationary state. This leads to degradation in the model 

performance, as shown in Figure 3.13. To address this issue, we introduce a 

similarity-based sampling strategy. This sampling strategy is based on weighted 

sampling proposed by Kalal et al. [61], where the data are sampled based on 

given weights. In this study, we defined such weights with data similarities.
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Figure 3.13 Velocity magnitude with time.
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In a similarity-based sampling strategy, the number of sampled data in a 

certain domain is determined based on their similarity. We sample more 

significantly changing data, and we reduce the number of samples where the 

data points at different time points show a similar pattern. The similarities 

between the states are measured by the mean absolute error between adjacent 

times t� and t��� for every state variable that is located at the same position 

as shown in Eq. (3-26) n is the number of data points for which similarity is 

calculated. The number of sampling data N�  for time index i  is calculated 

using Eq. (3-27) and the distribution of the number of sampling data over time 

for the system is presented in Figure 3.14. As expected, most of the sampling 

data were populated during the early stage in time, and the number of samples 

decreased as the system reached a steady state.

As shown in Figure 3.15, the model with random sampling showed poor 

performance between 0 and 0.02 s. This is because the number of sampled data 

points was insufficient compared to the high variety in the data pattern. 

Therefore, the model with the weighted sampling showed a considerably higher 

accuracy during the time interval of 0–0.02 s compared with the random 

sampling model. Numerically, as shown in Figure 3.16, the model with 

similarity-based sampling achieved an L�  relative error of up to five times 

lower than that of the random sampling model at 5 ∗ 10�� s.

��,� =
1

1
�
∑�����

�
− ��

��

� = �, �, �, �� , �� , �� , �, � = ���� �����

(3-27)

�� = � ∗
1

∑ ��,�
����
���

(3-28)
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Figure 3.14 Number of sampling data over time (����� ������ �� ���� ���� = � ∗ ���).
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Figure 3.15 Comparison of random sampling and weighted sampling.
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Figure 3.16 L2 relative error of random sampling and weighted sampling over time for velocity magnitude.
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3.4.3 Comparison of PINN model with 1-D ODE model

In the previous section, we investigated the performance of PINN, which 

finds a solution comparable to CFD with training data and governing equations. 

In particular, in the reactor model, the inhomogeneous state due to the internal 

flow plays an important role in determining product quality. The CFD model 

can simulate the fluid flow, but it has a limitation in industrial applications 

because of its long calculation time. Although a simple one-dimensional (1-D) 

ODE model can be simulated in real time, it cannot consider the fluid flow 

inside the reactor. PINN resolves both the problems of the CFD and the ODE 

model.

   In this section, we investigate the difference in the results of the 1-D 

ODE, CFD, and PINN models, and how each model has different 

implementation times. As shown in Figure 3.17, the molar concentration of 

component A calculated by the 1-D ODE model is smaller than that determined 

by the CFD and PINN models. This is because the components B, C, and D 

produced from component A are accumulated in the upper part of the reactor 

that cannot be stirred, hindering the reaction of component A. In the 1-D ODE 

model, states that are different from the actual phenomena are predicted 

because of the assumption of the homogenous phase. From the results in Figure

3.16, it is obvious that the fluid flow should not be ignored because it has a 

large effect on the reactor system state, such as temperature and product 

specification. However, as presented in Table 3.4, the CFD model takes 3.72 ∗

10� s using 16 CPU cores of Intel® Xeon® CPU E5-2697 v2 @2.70GHz to 

implement the model that prevents its use in real-time applications. Even 



99

though it takes about 4 ∗ 10� s to train 2 ∗ 10� data sets, it takes very short 

time to implement the model after training. Therefore, the PINN model can be 

used for real-time optimization or control of a system that includes fluid flow. 

The PINN is 1300 times faster to implement than CFD, making it suitable for 

use in real-time problems; the accuracy of the PINN is also similar to that of 

CFD, as shown in Figure 3.17.
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Figure 3.17 Comparison of ODE, CFD, and PINN model: a) average mole concentration of component A and b) 

average mole concentration of component B.
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Table 3.4 Calculation times of ODE, PINN, and CFD. (Calculation time: 

total elapsed time during simulation).

Model ODE PINN CFD

Calculation time (s) 7.21 ∗ 10�� 2.86 ∗ 10� 3.72 ∗ 10�
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3.5 Conclusion

In this study, we investigated the possibility of using PINN to develop a 

surrogate model of CSTRs with the Van de Vusse reactions. We could find a 

solution that satisfies all the governing equations of mass, momentum, energy 

conservation, and species transport.

Because the system was governed by various types of physical equations 

and contained a multi-reference frame, we could not find a proper solution with 

the default setting of the PINN, which has been presented by Raissi [49]. Thus, 

a modified model framework that can implement a multi-reference frame 

system was introduced. In addition, we suggested three ways to enhance the 

performance of the PINN. First, we introduced mini-batch training. A full batch 

can only be used when the number of data is small be-cause it requires a large 

amount of memory. In addition, it is known that a large batch size leads to poor 

generalization. A small batch can provide a model with a stochastic effect that 

allows the model to explore a wider range. For our system, we confirmed that 

PINN also has the advantages of a mini-batch that contributes to faster 

convergence and better generalization. Second, we used a weighted loss 

function. This was necessary because the scale of the physics loss was 

considerably larger than the empirical loss term, which led to poor learning 

performance. After we set each term to a similar size, a more detailed 

adjustment of the weight was performed. We tested the effects of weights on 

the training results. The model showed a more detailed pattern when the weight 

of the empirical term was larger, while the model likely learnt a representative 

pattern when the weight of the empirical term was smaller. This could be 

adjusted according to the purpose of the model. However, it has a problem in 
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that priori knowledge is required for determining the value of the weight 

because the scale of the physics loss terms is not known before the simulation. 

In future work, we will develop an adaptive learning method, which can 

adaptively determine the weight of each term during training. Third, we 

introduced a similarity-based sampling strategy. The concept of “similarity” 

was proposed and the number of sampling data was allocated in inverse 

proportion to the similarity. By using similarity-based sampling, the model 

accuracy was considerably improved in cases when a sudden change in the 

system state occurred.

   The solution from PINN has the same fidelity as that of CFD with 

similar accuracy. CFD is the only way to simulate a system that involves fluid 

flow. However, CFD has a critical problem of a high computational cost, which 

makes it difficult to apply to various problems such as system design and 

optimization. We confirmed that the PINN can dramatically reduce the 

calculation time while maintaining the fidelity of the CFD. However, it is 

difficult to obtain as high accuracy as CFD with PINN, especially for the more 

complex the system. Therefore, the application of PINN is inevitably limited in 

application that requires as much accuracy as CFD.

In this work, we trained and developed the surrogate model for a single CFD 

case. We expect the model can be extended to a general surrogate model that 

can simulate various operating conditions with training on various cases. Like 

any other machine learning technique, PINN is hard to predict the completely 

outside of training domain. However, because the PINN learns physics 

equations, it will have a higher accuracy and would be more reliable in 
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untrained regions than a black box model. This work shows that a system with 

complex flows can be simulated in real time and suggests the possibility that 

such a model can be used for system optimization and control.
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3.6 Appendix

����� = �� + �� + �� (3-A1)

���� = ���� + ���+ ��� + ���−�(��� − ��� − �)� + �� − �(��� + ��� + ���) (3-A2)

����� = ���� + ��� + ��� + ����+ �� − �(��� + ��� + ���) (3-A3)

���� = ���� + ���+ ��� + ���− �(��� − ��� + �)� + �� − �(��� + ��� + ���) (3-A4)

����� = ���� + ��� + ��� + ����+ �� − �(��� + ��� + ���) (3-A5)

�� = ���� +��� +��� +����+ �� − �(��� +��� + ���) (3-A6)
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���������
= ���� + ���� + ���� +�����− � ����� + ���� + �����+ ����

+
���
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��������� = ���� + ���� + ���� + ����� − � ����� + ���� + �����− ���� + ����
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�� = ����
� (3-A19)

3.7 Notations

� Pre-exponential factor

�� Bias parameter at layer �

�� Specific heat

��� Initial concentration of component A

��� Initial concentration of component B

��� Initial concentration of component C

��� Initial concentration of component D

��� Concentration of A at input flow

� Diffusivity

� Internal energy
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�� Relative internal energy

�� Activation energy

�� Mole fraction of component A

�� Mole fraction of component B

�� Mole fraction of component C

�� Mole fraction of component D

�� Governing equations

{f�: ����� , ��: ���� , ��: ����� , ��: ���� , ��: ����� , ��: �� , ��: ���� , ��: ����� , �

���: ��������
, ���: ��������

, ���: ��������� , ���: ��������� , ���: ���������
}

����� Continuity equation

���� Momentum equation for x-direction for inner domain

����� Momentum equation for x-direction for outer domain

���� Momentum equation for y-direction for inner domain

����� Momentum equation for y-direction for outer domain

�� Momentum equation for z-direction

���� Energy conservation equation for inner domain

����� Energy conservation equation for outer domain

�������� Species tranport equation for component A for inner domain

�������� Species tranport equation for component B for inner domain

�������� Species tranport equation for component C for inner domain

��������� Species tranport equation for component A for outer domain

��������� Species tranport equation for component B for outer domain
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���������
Species tranport equation for component C for outer domain

�� Relative total enthalpy

� Thermal conductivity

��� Total loss

���� Total Physics loss

�������� Continuity equation error

����� Momentum conservation equation error

����� Energy conservation equation error

�������� Species transport equation error

���� Output variable of temperature error

���� Output variable of velocity error

���� Output variable of components mole fraction error

���� Total empirical error

��� Molecular weight

�� Number of data point

�� Number of colllocation point for f

���� Number of output variables

� Number of total training data

� Pressure

�� Input mass flowrate

�� Net rate of the production of species i

�⃗ Position vector from the origin of the moving system

��,� Similarity index at time � and component �
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� Temperature

�� Initial temperature of reactor

�� Input flow temperature

�� Wall temperature

� x-direction velocity component

�� Ouput variables {��: �, ��: �, ��: �, ��: �, ��: �� , ��: �� , ��: ��}

� y-direction velocity component

�⃗ Absolute velocity vector

�����⃗ Relative velocity vector

� z-direction velocity component

���⃗ Rotating angular velocity

�� Weight parameter at layer �

���� Weight for empirical loss term

���� Weight for physics loss term

��� Inner domain

���� Outer domain

� x-direction location

�� Mass fraction of ��� species

� y-direction location

�(��) Predicted output from the input ��

�� Exact solution of output variables at ��

� z-direction location

� Density

� Viscosity
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�̿ Stress tensor

��� Relative stress tensor

� Feed forward multi-layer NN

� Network parameter

�� Activation function at layer �
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Chapter 4

Concluding Remarks

4.1 Summary of contributions

In this thesis, computationally efficient strategies about two systems are 

introduced which can maintain model fidelity but effectively reduce the 

calculation time. The major contribution of each Chapter is listed below.

w Chapter 2 suggests new algorithm called Block KMC which is ~10 

ti 32 times faster than traditional KMC. This algorithm is not 

limited to LDPE, and can be applied to any system that satisfies the 

following conditions. 1) Steady state system, 2) One reaction is 

much faster than the other reactions (e.g. propagation reaction). 

This work provides general strategy that can effectively simulate 

polymer kinetics and it makes it possible to perform the real time 

analysis of polymer reactor system which was very difficult before.

w Chapter 3 shows surrogate model development strategy of CFD-

based reactor model using PINN. This is more robust and reliable 

model because physical laws are trained together with the data. 

This work provides guideline on how to develop a surrogate model 

for a reactor system through PINN. For example, how the model 

framework is designed for multi-reference frame system, how the 

network structure is define, how to define the loss function and 
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training methodology for successful learning. With those contents 

it will be easier for other researchers to develop the reactor 

surrogate model using PINN.

4.2 Future work

As the process advances, the demand for high fidelity models to improve 

process efficiency is increasing. However, since the model accuracy and 

calculation time are always traded off, the more accurate models are made, the 

longer the calculation time takes. In this thesis, computationally efficient 

strategies about two reactor system is introduced which can maintain the 

fidelity but effectively reduce simulation time. From the first part of this work, 

a new methodology that can effectively simulate polymer kinetics was 

proposed. This solves the problem that it is almost impossible to consider the 

flow and kinetics together because of the high computational load due to the 

complex polymer reaction. Therefore, based on the research, it became easier 

to simulate a polymer reactor in which both flow and kinetic were considered, 

and the effect of flow on the polymer properties can be analyzed for the future 

work. From the second part of this work, more robust and reliable reactor 

surrogate model is developed through PINN. This model can be implemented 

in real time, so it is suitable for performing process optimization. However, for 

this work, surrogate model is developed for a single CFD case. The PINN 

model which was trained on a single CFD case cannot be implement properly 

for different operating conditions without any training for those conditions. It 

is expected the model can be extended to a general surrogate model that can 

simulate various operating conditions with training on various cases. It is also 

expected that the PINN can predict other conditions effectively for the 



113

conditions close to the learned operating conditions with higher accuracy than 

black-box model. The Ultimate goal is to develop a model that can simulate the 

industrial scale process in real time with high fidelity and to perform process 

optimization, control and finding optimal design using this model.
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Abstract in Korean (국문초록)

화학 공학 분야의 많은 연구자들은 분석 및 계산 모델을

이용하여 시스템의 거동을 해석하고 최적화, 설계 및 제어를

수행하고 있다. 하지만 모델의 정확도와 계산시간은 거래되는

관계에 있어 계산시간이 오래걸리는 문제 때문에 모델의 정확도를

타협할 수 밖에 없는 실상이다. 이 학위논문에서는 두 시스템에

대해 모델의 충실도를 유지하면서도 계산시간을 효과적으로 줄일

수 있는 계산 효율적인 전략을 소개한다.

첫 번째 시스템은 고분자 반응기로 고분자의 반응에 중점을 두고

있다. 연속 교반 탱크 반응기에 대한 저밀도 폴리에틸렌의 분자량

분포를 예측하기 위해 모멘트 방법과 몬테 카를로 시뮬레이션

기법을 결합한 하이브리드 접근 방식이 제안되었다. 계산 효율적인

시뮬레이션을 위해 반복되는 반응들을 집합인 ‘블락’이라는 개념이

새로이 도입되었다. ‘블락 키네틱 몬테 카를로’라고 불리는 이

모델은 Neuhaus 가 제안한 모델보다 약 10~32 배 빠르다. 이

모델은 모든 정상 상태시스템에 적용할 수 있으며, 특정 반응이

다른 반응들보다 훨씬 빠른 경우에 계산 시간 감소효과를 누릴 수

있다. 또한 시스템의 운전 온도 및 개시제의 농도가 분자량 분포에

미치는 영향에 대해 사례 연구를 수행하였다. 180 개의 사례 연구

시뮬레이션을 바탕으로 분자량 분포가 숄더를 보이는 조건에 대한

정량적 지침을 제안하였다.
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두번째 시스템은 전산유체역학 기반의 반응기 시스템이다.

전산유체역학은 유체의 흐름을 해석함에 있어 필수적인 기법이다.

특히 화학공학반응기에서 유체의 흐름은 내부의 온도나 농도에 큰

영향을 미친다.  그러나 전산유체역학은 계산시간이 오래걸린다는

단점으로 인해 실시간 최적화 및 공정 제어와 같은 응용에 사용이

제한된다. 이 학위논문에서는 시스템의 지배 방정식을 훈련할 수

있는 물리정보신경망(PINN)을 사용하여 Van de Vusse 반응이

포함된 연속 교반 탱크 반응기의 대리 모델을 개발한다. 화학

반응기 시스템이 따르는 모든 종류의 지배 방정식을 훈련할 수

있으며 다중 참조 프레임 시스템을 훈련 할 수 있는

물리정보신경망 모델 구조를 제안한다. 물리정보신경망(PINN)은

기존에 신경망 모델이 가지는 과적합 문제나 데이터가 많이

필요하다는 점 그리고 물리적 의미를 반영할 수 없다는 문제들을

해결할 수 있다. 또한 메모리 오류 및 모델의 발산 문제를 해결하기

위하여 Raissi 가 제안한 기존의 물리정보신경망(PINN)을 두 가지

방법으로 수정하였다. 1) 미니 배치 훈련; 2) 가중 손실 함수.

그리고 학습 데이터를 추출함에 있어 무작위 추출에 비해 정확도를

최대 5 배까지 향상시킬 수 있는 유사성 기반 추출 전략을 제안한다.

이 연구가 화학 공정의 고성능 대리 모델 개발을 위한 지침이

되기를 희망한다.
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주요어: 높은 충실도 모델, 멀티 스케일 모델링, 분자량 분포,

저밀도 폴리에틸렌, 복합 모델, 모멘트 법, 키네틱 몬테 카를로

물리정보신경망, 대리 모델, 전산유체역학, 화학 반응기
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