creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Designing FPGA-based modular
architectures for NLP models

Zpio] A2 RE-Z 919t FPGA 7[HE B2 of7[El 4]
el
BY

Hur Suyeon

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

M.S. THESIS

Designing FPGA-based modular
architectures for NLP models

Zpio] A2 RE-Z 919t FPGA 7[HE B2 of7[El 4]
el
BY

Hur Suyeon

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Designing FPGA-based modular

architectures for NLP models

FPGA 7|8t 252 o}7]El A

a7

i

Aol Hel mdg 9

20214 114

or
Ho
KA}
HE

T

a7l

B
<F
ey

ToH

20214 124

@)
<

Bo|of-
O[O

A

O

k=

Al
o

5 s)
%%

oF T+ oF

||||||

Abstract

Neural networks based natural language processing (NLP) models (e.g., LSTM,
BERT) are emerging as promising solutions for NLP tasks. When running NLP mod-
els, we should support fast inference in a single batch environment, as NLP tasks
require immediate responses. However, it is difficult to accelerate NLP models in a
single batch due to the three challenges that follow; (1) a wide range of dimensions
and irregular matrix operations, (2) non-negligible vector operations’ latency, and (3)
heterogeneity of vector operations.

In this paper, we propose FlexRun, an FPGA-based modular architecture approach
to solve three challenges. FlexRun reconfigures the architecture adaptively to the input
models. To this end, FlexRun consists of three parts. First, FlexRun:Architecture is a
base architecture template with reconfigurable parameters. Next, in FlexRun: Algorithm,
we define the design space and suggest algorithms to find the best design points in the
design space. Lastly, FlexRun: Automation automatically finds the best design and im-
plements the resulting architecture. For evaluation, we use Intel’s high-end FPGAs
and achieve 2.69x and 1.44x speedup compared to V100 and Brainwave-like FPGA

baseline, respectively.

keywords: Natural Language Processing (NLP), RNN, LSTM, Transformer, BERT,

Machine Learning, FPGA, Modular Architecture, Accelerator, Design space explo-

ration

student number: 2019-24165

Contents

Abstract

Contents

List of Tables

List of Figures

1 INTRODUCTION

2 Background
2.1 Neural Networks-based NLPmodels
2.1.1 RNN-based NLPModels
2.1.2 Attetion-based NLPModels

2.2 Fastinference support for NLPtasks

3 Motivation
3.1 Chracteristicsof NLPmodels
3.1.1 Diverse operational complexities
3.1.2 Varying range of dimensions
3.1.3 Various parameter configurations
3.1.4 Heterogeneous vector operations

3.2 Challengesof NLPmodels

ii

ii

vi

[N, T U U

O oo o0 R

3.2.1 Challenge 1: Wide range of dimensions and irregular matrix

Operations i e 12

3.2.2 Challenge 2: Non-negligible vector operations’ latency 12

3.2.3 Challenge 3: Heterogeneity of vector operations 13

3.3 Limitations of previous workso 13
3.3.1 GPU (general-purpose accelerator) 14

332 ASICs. . . .o 15

333 FPGA 16

34 Solutions 16
FlexRun 18
4.1 OVerview e e 18
4.2 FlexRun:Architecture 19
4.2.1 Structure of of FlexRun:Architecture 20
4.2.2 Working mechanism of FlexRun:Architecture 22

4.3 FlexRun:Algorithm - Design Space 23
4.3.1 Design space of Gemv-unit: (#TILE, #DPE, LANE size) . . . 24

4.3.2 Design space of Vec-unit: types, number, and order of basic

VECLOr OPETatOrS . . .« & v v v v v e e e e e e e e e e 25

4.4 FlexRun:Algorithm - Design space exploration 27
4.4.1 Gemv-unit Rearrangement 27
4.42 Vec-unit Reconstruction 28
4.5 FlexRun:Automation 30
4.5.1 FlexRun:Generators 30
Implementation 32
5.1 FlexRun 32
5.1 FlexRun. 32
512 Memory oot e e e e 33

| |

iii

5.2 Workloads and Experimental Setup
52.1 Workloads o

5.2.2 Experimental setup

6 Evaluation

6.1 Performance improvement of FlexRun compared to the Baseline . . .

6.2 Comparison of FlexRun and GPU

6.3 Scalabilityof FlexRun

6.4 Effectivenessof FlexRun

7 Realted Work

8 Conclusion

Abstract (In Korean)

v

36
36
38
39

41

43

49

3.1

32
33

4.1
4.2

5.1
52

List of Tables

Matrix and vector operation types in RNN (e.g., SRNN, LSTM, GRU)
and attention-based NLP models (e.g., Transformer, BERT, GPT2).
gemv and gemm are general matrix-vector, and matrix-matrix multipli-
cations, respectively. In case of the vector operations, all operations ex-
cept reduction are element-wise operations. fan and sig are tangent hy-
perbolic and sigmoid operations, respectively. exp, mul, and div stand
for exponential, multiplication, and division operations, respectively.

Various versions of BERT according to the parameter scales.

Previous works and their limitation in solving the challenges of NLP

Designspaceof FlexRun.

The results of design space exploration for GPT2-MEDIUM and BERT-

NLP models and their configurations included in the workloads.

Configurations of Baseline.

10
11

2.1

2.2

3.1

3.2

33

34

List of Figures

Architecture of RNN-based models (left) and detailed cell operations
of an LSTM (right). 5

Operations for aone layer of BERT. 5

The left figure is the number of opertaion types (y-axis) and ranges

of dimensions (x-axis) for 4 NLP models, GPT2-MEDIUM, BERT-
LARGE, LSTM-1024, and SRNN-1024. The word and number after

the hyphen are the parameter scales of the model. For example, LSTM-

1024 and SRNN-1024 indicate the LSTM and SRNN whose internal
dimension size is 1024, respectively. We get the parameter size for
BERT and GPT2 from the paper [9], [23]. The right figure shows

some gemm (general matrix multiplications) operations in BERT and

their dimensions. L. Lo 9
The lists of seqeuntial-vector-opearations in SRNN, LSTM, GRU, and
BERT. Seqeuntial-vector-opearations are marked with s# in the figure. 11
The latency breakdown of BERT-TINY/BASE/LARGE on Tesla V100.

We use XLLA [7], the compiler optimization provided by TensorFlow [4].
Refer to section 5.2.2 for a detailed experimental setup. 12
Tesla V100’s (Tensor Cores and CUDA Cores) utilization on different
versions of BERT (i.e., BERT-LARGE, BERT-BASE, BERT-MEDIUM,

and BERT-TINY). o o 14

vi

3.5

4.1
4.2

4.3

4.4

4.5

4.6
4.7

4.8
4.9

5.1

6.1
6.2
6.3

The utilization of V100 on BERT-LARGE over time. The gray boxes
are gemm operations using Tensor Cores and the shaded boxes are

vector operations using CUDA Cores.

End-to-end workflow of FlexRun.
FlexRun’s base architecture template and details of copmpute units
(Gemv-unitand Vec-unit).,
Simple workload and FlexRun’s executions of the workload. The left
figure is the timeline graph of the workload when it is repeated three
times with dependencies. oL
The effective HW utilization of Gemv-unit for various dimensions
of gemv operations. The legend is the reconfigurable parameters of
Gemv-unit: (#TILE, #DPE, LANE size). To be specific, (64x256) in
the x-axis indicates the gemv operation that the vector size is (1x64)
and the matrix size is (64x256).
Timeline and pipleine graphs of simple workload’s executions accord-
ing to Vec-unit’s Structures.o ..ol
Trade-off according to the number of vector operators.
The GPT2-MEDIUM’s relative performace improvement according to
various Vec-unit’s structures. The performance improvement is nor-
malized to the last feature: [red-red-add-mul-exp-gelu].
Visualization for each step of Vec-unit Reconstruction algorithm. . . .

The necessities of FlexRun:Generator.

Comparison of NLP models’ bandwidth requirement and off-chip mem-

ory bandwidth of STRATIX GX (DDR4) and MX (HBM).

Speedup of FlexRun for BERT normalized to the Baseline.
Speedup of FlexRun for GPT2 normalized to the Baseline.
Comparison of FlexRun and V100 for BERT and GPT2.

vii

22

37

6.4

6.5

Speedup of BERT on GX and FPGA with twice as many resources

as GX. & Speedup of GPT2 on MX and FPGA with twice as many

resources as MX.

Effectiveness of FlexRun

viii

Chapter 1

INTRODUCTION

With the emergence of Deep neural networks (DNNs), various DNN-based natural
language processing (NLP) models have been developed rapidly. There are two types
of DNN-based NLP models and both types show high accuracy in various NLP tasks.
Recurrent neural networks [26]-based models are good at speech recognition [14] and
translation [32]. Meanwhile, attention-based models are mainly used for question an-
swering tasks.

When running NLP models, fast inference support in a single batch environment
is essential, as most NLP tasks require real-time interactive services. For a quick re-
sponse, we should process input as soon as it enters, in a single batch [10]. However,
it is difficult to accelerate NLP models in a single batch due to the characteristics that
cause challenges. Such characteristics are as follows: (1) Diverse operational complex-
ities, (2) Varying ranges of dimensions, (3) Various parameter configurations, and (4)
Heterogeneous vector operations.

The characteristics of NLP models incur three challenges (i.e., a wide range of
dimensions and irregular matrix operations, non-negligible vector operations’ latency,
heterogeneity of vector operations). First, due to characteristics (2) and (3), we should
cover a very wide range of dimensions and deal with irregular matrix operations. Next,

we need to reduce the overhead of vector operations as well as matrix operations.

According to characteristic (1), attetion-based NLP models have complex vector op-
erations, unlike RNN-based models, resulting in non-negligible overhead. Lastly, we
should handle the heterogeneity of vector operations (4) as models consist of vector
operations of different types, orders, and lengths.

However, existing works [12], [11], [10], [22] that accelerate NLP models cannot
solve three challenges. For example, GPUs show low utilization when running NLP
models in a single batch or running small models because they are throughput-oriented.
Also, some works design ASICs for target models. But ASICs made for a particular
model and configuration [12] perform poorly on different models or the same models
with different configurations. Therefore, previous approaches degrade the performance
of some NLP models or fail to support some models.

In this paper, we propose FlexRun, an FPGA-based modular architecture approach
to solve three challenges of NLP models. FlexRun exploits the high reconfigurability
of FPGAs to dynamically adapt the architecture to the target model and its configura-
tion. FlexRun includes three main schemes, FlexRun: Architecture, FlexRun: Algorithm,
and FlexRun: Automation.

First, FlexRun: Architecture is an FPGA-based flexible base architecture template.
Our base architecture template alleviates the overhead of vector operations by adopt-
ing deeply pipelined architecture. Most importantly, it consists of parameterized pre-
defined basic modules so that we can configure architecture to fit the input model and
configuration.

Next, we carefully define the design space of the base architecture template (i.e,
matrix unit: three dimensions, vector unit: vector operators’ types, order, and number)
considering the aforementioned three challenges. Then, we suggest FlexRun: Algorithm,
design space exploration algorithms to find the best modules and parameters set for the
input models.

Lastly, we propose an automatic tool, FlexRun: Automation which automates the

entire steps; finding the best architecture design and implementing the architecture.

FlexRun:Automation reconfigures compute units, memory units and interconnects ac-
cording to the results of FlexRun:Algorithm. Also, it generates a new decoder so that
instructions can be properly decoded to a modified architecture.

For evaluation, we choose STRATIX GX and STRATIX MX as HW platforms for
BERT and GPT?2, respectively. As the baseline, we use GPU and Intel’s Brainwave-
like architecture [22] on FPGA. For GPU, we use V100 with Tensorcore enabled.
Compared to the FPGA baseline, FlexRun achieves an average speedup of 1.59x on
the various configurations of BERT. For GPT2, FlexRun gets 1.31 x average speedup.
In the case of GPU baseline, FlexRun improves the performance by 2.79 x and 2.59 for
BERT and GPT2, respectively. Finally, we evaluate the scalability of FlexRun by dou-
bling the compute and memory resources of FPGAs. The results show that FlexRun is
able to get the scalable performance improvement, showing 1.57 x additional speedup

compared to MX and GX.

Chapter 2

Background

2.1 Neural Networks-based NLP models

There are two types of Neural Networks-based NLP models. The first is Recurrent
Neural Networks [26] (RNN)-based NLP models like SRNN, long short term mem-
ory (i.e., LSTM) [15], and gated recurrent neural networks (i.e., GRU) [26]. The
other is attention-based NLP models which include Transformer [29], BERT [9], and
GPT2 [23]. We use both types for various NLP tasks such as language modeling, ques-
tion answering, or translation. For example, RNN-based models are mainly for speech
recognition [14] and translation [32]. Meanwhile, attention-based models exhibit high

accuracy in question answering tasks like SQuAD [24].

2.1.1 RNN-based NLP Models

First, we introduce RNN-based NLP models (e.g., LSTM, GRU). In Fig. 2.1a, RNNs
are a structure in which cells of the same operations are repeated with incoming inputs
over time. The operations in the cell differ depending on the types of RNNs, but they
usually consist of matrix-vector operations and some vector operations. The cells are
stacked for higher accuracy, which is called a multi-layer model. As an example, we

describe the cell operations of LSTM [15]. An LSTM’s cell consists of four gates (i.e.,

Multi-layer RNN LSTM Cell

(a) The architecture of multi-layer RNNs. (b) Operations of LSTM’s cell.

Figure 2.1: Architecture of RNN-based models (left) and detailed cell operations of an
LSTM (right).

forget, input, cell, output) and each gate has two weight matrices and one bias vector
W, Us,bp,W;, Ui, bj,We,Ug,be, Wy, Uy, b,) of the same dimensions (W € Réidden dhidden
b € R *didden)), Fig. 2.1b illustrates each gate’s operations. In Fig. 2.1b, x;, h;, i;, f;, ¢t
and o, indiacte the input, state vector, input gate, forget gate, cell state, and output
gate of time 7, respectively. They are vectors of the same dimension, R!*@iden - Also,
7%, +,sigmoid ,tanh (hyperbolic tangent)” are elemente-wise vector operations while
”X” is a matrix-vector multlication. We highlight the vector operations with red boxes.

Note that we omit bias add operations in Fig. 2.1b for simplicity.

2.1.2 Attention-based NLP Models

| Weight: WQ/WK/W,Y (Query/Key/Value weight), Wat (Attention weight), Wf1/Wf (Feedforward weight) |
| Intermediate data: I (Input), Q/K/V; (Query/Key/Value), S; (Score), P, (Probability), A, A, O, O (Layer output) |

BERT
A < <
(o) / £ £
H @ g g
8 S S
Layer 2 5 z =
o 9] 9]
> =
Layer 1 5 5
"-‘ < > >t > e »>< >< > >
A Q/K/V-gen Score-cal Softmax Weighted Attention Residual- Layer Feedforward Layer
i -sum -FC add normalization networks add normalization

Residual-add &
Layer normalizatior

Residual-add &

Multi-head self-attention o o
Layer normalization

Feedforward networks

Figure 2.2: Operations for a one layer of BERT.

Next, attention-based NLP models like BERT [9] and GPT?2 [23] achieve notice-
ably high accuracy thanks to attention operations [5] that can catch the relationship
between the words. In addition to the attention operations, they include many other
complex operations for higher performance.

We describe BERT as a representative example of the attention-based NLP models.
As shown in Fig. 2.2, BERT consists of multiple layers and each layer has weights of
diverse dimensions (e.g., W2 /WX /WY & Réndaen*dicaa p@ /K /b ¢ R ¥dheat | Wyatten ¢
Relsidaen*diiaten WIf1 € Rebnidaenxdrs | pIf1 € RI¥dsr WiI2 g Résr>diiaten pIF2 | gqmma’2
/ beta'? € R1*dhidden where i = 1 ... #head). When BERT receives input / (I € RS*@hiaden),
the operations of Fig. 2.2 are repeated as many as the number of layers. We highlight
the vector operations (i.e., Softmax, +, Layer Normalization, gelu) with red boxes.
Vector operations like Layer Normalization are complex operations that include sev-
eral basic vector operations such as addition or multiplication. Note that we omit the
operations using a bias in Fig. 2.2 for simplicity, too.

Other NLP models are similar to BERT, but they have some differences. First,
GPT2 [23] does the same operations as BERT, but it has dependencies between incom-
ing input vectors. The next input vector can not start processing until the operations on
the previous input vector are complete. Such structures with dependencies between the
inputs are called decoders. On the other hand, BERT has no dependency between its
inputs. The structures like BERT are called encoders. In the case of a Transformer [29],
it includes both an encoder and a decoder, and ReLLU is used as an activation function

instead of gelu.

2.2 Fast inference support for NLP tasks

For NLP tasks, fast inference in a single batch environment is very important [10].
This is because NLP models are mainly for real-time interactive services like speech

recogntion [14], question answering [24] and translation [32]. Interactive services re-

quire immediate responses; otherwise, their QoS will be seriously compromised. For
immediate responses, we cannot deploy batch processing that collects multiple user
inputs and processes them at once. Therefore, the input should be processed fastly as
soon as it is entered. For example, MLPerf [25] designs four diffrerent realistic ML
inference scenarios. Among them, single-stream and server scenarios assume applica-
tions like online translation where responsiveness is critical. Both single-stream and

server scenarios set their batch size as 1 and use latency as the key evaluation metric.

Chapter 3

Motivation

3.1 Chracteristics of NLP models

In this section, we will describe the characteristics of NLP models: (1) Diverse oper-
ational complexities, (2) Varying range of dimensions, (3) Various parameter configu-

rations, and (4) Heterogeneous vector operations.

3.1.1 Diverse operational complexities

The operational complexities of NLP models are diverse. In Fig. 3.1a, the y-axis
indicates how many different types of operations each NLP model has (e.g., gemv,
gemm, transpose, exponent, sigmoid, tanh, ReLU, gelu, add/sub, multiplication, re-
duction, square, sqrt, reciprocal). In the figure, RNN-based NLP models include a
small number of different operations, but attention-based NLP models do not. For ex-
ample, BERT-LARGE has 10 different types of operations. However, LSTM-1024 or
SRNN-1024 has only 5, and 4 different operations types, respectively. For details, we
list the operations each NLP model contains in Table 3.1. As in Table 3.1, attention-
based NLP models (i.e., BERT, GPT2) have much more complex vector operations

such as exponent or reduction than RNN-based models.

[@GPT2-MEDIUM @BERT-LARGE ~ OLSTM-1024 (O SRNN-1024

._.
=

Ve
[X]

9]
S
s
810 °
i 9
S 8
5 7 x64
g 6
';:: 4 O 256 64 1024 1024, 1024 036
- EF LY | | | | | | | | x4
21 SN 26 27 28 29 210 211 212 213

Dimension Range
(a) The number of opertaion types and range of di- (b) Some of gemm operations in BERT-LARGE

mensions for NLP models and operations’ dimensions.

Figure 3.1: The left figure is the number of opertaion types (y-axis) and ranges of di-
mensions (x-axis) for 4 NLP models, GPT2-MEDIUM, BERT-LARGE, LSTM-1024,
and SRNN-1024. The word and number after the hyphen are the parameter scales of
the model. For example, LSTM-1024 and SRNN-1024 indicate the LSTM and SRNN
whose internal dimension size is 1024, respectively. We get the parameter size for
BERT and GPT?2 from the paper [9], [23]. The right figure shows some gemm (gen-

eral matrix multiplications) operations in BERT and their dimensions.

3.1.2 Varying range of dimensions

NLP models have operations of varying dimensions. First, some models have to
deal with a wide range of dimensions while others do not. In Fig. 3.1a, the x-axis
is the dimension range of different NLP models. Dimension range is the minimum
and maximum values of the operations’ dimensions in the models. The figure shows
that attention-based NLP models like BERT or GPT?2 consist of operations of varying
dimensions. For example, BERT-LARGE has dimension sizes from 64 to 4096 (x64)
while SRNN-1024 has only one size, 1024.

Also, gemm operations in attention-based NLP models have very irregular dimen-
sions rather than a square. For example, Fig. 3.1b show some gemm operations in
BERT-LARGE. We can observe that the first gemm operation in the figure has two

dimensions, 64 and 256, that differ by four times.

Table 3.1: Matrix and vector operation types in RNN (e.g., SRNN, LSTM, GRU) and
attention-based NLP models (e.g., Transformer, BERT, GPT2). gemv and gemm are
general matrix-vector, and matrix-matrix multiplications, respectively. In case of the
vector operations, all operations except reduction are element-wise operations. tan and
sig are tangent hyperbolic and sigmoid operations, respectively. exp, mul, and div stand

for exponential, multiplication, and division operations, respectively.

Matrix Operations Vector Operations
gemv | gemm | transpose |activation |exp |add/sub|mul |reduction | square/sqrt/div

SRNN v - - tan - v v - -

LSTM v - - sig/tan v v

GRU v - - sig/tan | - v v - -
Transformer| v v RelLU | v v v v v

BERT - v v gelu v v v v v

GPT2 v v v gelu v v v v v

3.1.3 Various parameter configurations

For each NLP model, there are diversities in parameter configurations. Table 3.2
shows some parameter configurations for BERT. In the table, there are many versions
of BERT according to parameter scales, from TINY to MG3 (Megatron3 [28]). These
different versions do the same operations but with totally different parameter scales.
For example, BERT-MG3 uses 24 x larger dimensions than BERT-TINY. Other NLP

models also have various parameter configurations.

3.1.4 Heterogeneous vector operations

Each NLP model has heterogeneous vector operations. Fig. 3.2 visualizes the lists
of vector operations that are executed sequentially (i.e., sequential-vector-operation,
it is marked as s in the figure) in SRNN, LSTM, GRU, and BERT. From the figure,

we can observe that most NLP models have quite heterogeneous sequential-vector-

10

Table 3.2: Various versions of BERT according to the parameter scales.

Configuration | dpijgen | dheaa | #head | dyy

TINY [27] 128 | 64 2 512
MEDIUM [27] | 512 | 64 8 12048
BASE [9] 768 | 64 123072
LARGE [9] | 1024 | 64 16 |4096
MG1 [28] 1280 | 80 16 |5120
MG3 [28] 3072 | 128 | 24 3072

BERT

operations. For example, s2 and s4 of BERT greatly differ in both lengths and types of

vector operations.

s2: -0 S2:EEE-R-®

/ N
{sli@® 3
E i 52:(#-@® i
sl: -0 ! sL:B-P--® | 53:% |
1] i

1

’_______________\

N e
P e

Ve ~
D T

. .
1E® HEGORDOR | IDC-O® | 4P D eRTVHRD |

1 1 1
SRNN LSTM GRU \ BERT ¥

Figure 3.2: The lists of seqeuntial-vector-opearations in SRNN, LSTM, GRU, and

BERT. Seqeuntial-vector-opearations are marked with s# in the figure.

We summarize the characteristics of NLP models as follows.

* Each NLP model has different computational complexities. Specifically, attention-
based NLP models have much more complex and diverse operations than RNN-

based NLP models.

 Attention-based NLP models have wide range of dimensions as well as highly

irregular gemm operations.
* NLP models have a large diversity in terms of parameter configurations.

* The sequential-vector-operations of each NLP model are heterogeneous.

11

3.2 Challenges of NLP models

From the characteristics of NLP models, we derive challenges that make fast inference

support difficult for diverse NLP models in a single batch environment.

3.2.1 Challenge 1: Wide range of dimensions and irregular matrix oper-

ations

First of all, some NLP models (e.g., BERT, GPT2) cover a very wide range of dimen-
sions as shown in Fig. 3.1a. Also, in attention-based NLP models, most gemv/gemm
operations are irregular (Fig. 3.1b). In addition, there are diverse parameter configu-
rations within the same model (Table 3.2). Therefore, the NLP accelerator should run
both small and big models fastly while dealing with various dimensions of irregular
matrix operations. However, the conventional accelerators (e.g., big square systolic
array) exhibit slow inference due to the low utilization of matrix operations as they

cannot deal with diversity and irregularity of dimensions.

3.2.2 Challenge 2: Non-negligible vector operations’ latency

I OMatrix ops @Vector ops{

Percentage of Latency (%)
(o))
o

BERT-TINY BERT-BASE BERT-LARGE

Figure 3.3: The latency breakdown of BERT-TINY/BASE/LARGE on Tesla V100. We
use XLA [7], the compiler optimization provided by TensorFlow [4]. Refer to section

5.2.2 for a detailed experimental setup.

Next, complex vector operations of NLP models have non-negligible overhead.

They take a dominant portion of total latency in a single batch environment. Fig 3.3

12

is a latency breakdown of BERT-TINY, BERT-BASE, and BERT-LARGE on GPU
Tesla V100 [1]. For BERT-LARGE, vector operations (e.g., exp, gelu) take 66.7% of
total latency, which is comparable to twice the gemm operations. Also, as the size
of the model shrinks, the portion taken by vector operations grows. In BERT-BASE
and BERT-TINY, vector operations take 72.9% and 88.5% of total latency, respec-
tively. Note that we apply XLA [7], the compiler optimization of TensorFlow [4] that
minimizes the vector operations’ latency by layer fusion. Therefore, to achieve high
performance for NLP models, we should further reduce the overhead of vector opera-

tions.

3.2.3 Challenge 3: Heterogeneity of vector operations

As shown in the Fig. 3.2, the NLP models consist of vector operations of differ-
ent types, orders, and lengths. For example, there is no overlap between BERT’s
sequential-vector-operations (i.e., s/ ~ s4) and GRU’s sequential-vector-operations
(i.e., sI ~ s3). Also, sequential-vector-operations vary within the same model too. In
Fig. 3.2, BERT’s s3 and s4 are different in types, orders, and lengths of the vector
operations. So, to accelerate the NLP models, it is essential to efficiently support all

models’ vector operations.

3.3 Limitations of previous works

There have been many works to accelerate the NLP models. They generally take two
approaches, exploiting general-purpose accelerator (i.e., GPU) or designing the spe-
cialized architecture for the specific models (i.e., ASICs). However, those approaches
cannot properly deal with the three challenges that originate from the models’ charac-
teristics. Therefore, these approaches degrade the performance of some NLP models

or fail to support some models.

13

HW Utilization (%)
O NWARAULIO

|

Tensor Cores | CUDA Cores
BASE

Tensor Cores | CUDA Cores
LARGE

Tensor Cores | CUDA Cores | Tensor Cores | CUDA Cores
MEDIUM TINY

BERT

Figure 3.4: Tesla V100’s (Tensor Cores and CUDA Cores) utilization on different
versions of BERT (i.e., BERT-LARGE, BERT-BASE, BERT-MEDIUM, and BERT-
TINY).

6 1 Tensor
4 4 Cores
2
0

CUDA

HW Utilization (%)

v

7ime (us)

Figure 3.5: The utilization of V100 on BERT-LARGE over time. The gray boxes are
gemm operations using Tensor Cores and the shaded boxes are vector operations using

CUDA Cores.

3.3.1 GPU (general-purpose accelerator)

GPUs are the most commonly used accelerator for various Deep Neural Network
(DNN) models. Thanks to a convenient framework and highly parallel architecture,
GPUs can support various models and achieve high performance for big models or
models with large batch size [20]. However, GPUs cannot well handle the NLP mod-
els in the single batch environment. Fig. 3.4 shows the average utilization of Tensor
Cores (gemv/gemm compute units) and CUDA Cores (vector compute units) in V100
for different versions of BERT, assuming a single batch environment. We observe that
GPUs are severely underutilized in a single batch environment even for a large model
(Tensor Cores: 5.55%, CUDA Cores: 0.21% for BERT-LARGE). Also, utilization dra-

matically decreases as the model’s size diminishes. For example, BERT-BASE has

14

4.23% and 0.22% effective utilization for Tensor Cores and CUDA Cores, respectively
while BERT-TINY has only 0.15% and 0.05%.

In addition, GPUs cannot deal with vector operations efficiently as they mainly
focus on gemm operations. Fig. 3.5 is the change in utilizations over time when run-
ning single batch BERT-LARGE on V100. In Fig. 3.5, the latency of vector operations
(CUDA Cores) is exposed and takes a comparable portion to twice the gemm op-
erations (Tensor Cores). Also, utilization of vector operations is very low (0.78% at
maximum). This severe underutilization is due to the working mechanism of GPU,
where data go down into memory between every gemm and vector operation, result-
ing in frequent memory access. In conclusion, GPUs are not adequate for running NLP

models in a single batch environment.

3.3.2 ASICs

Previous works [12], [11] make ASICs for specific models. ASICs usually show a
great performance for a target model and configuration. They are exploiting specific
characteristics of the target model and have the best setting for the target configura-
tions. However, ASICs fail to resolve challenge 1 (Diversity and irregularity of dimen-
sions) and challenge 3 (Heterogeneous vector operations) of NLP models as they are
fixed architectures.

First, ASICs optimized for a specific model and configuration may not show good
performance for the same models with different parameter configurations. However,
there are diverse parameter configurations for the same NLP models. Also, we can
arbitrarily change parameters as in previous studies [28], [27]. For example, A3 [12]
focuses on the attention operations of NLP models, making attention-specialized units.
A3 sets one of its specialized units’ size as the same as djeqq Size (64) of BERT-
LARGE/BASE, which are its target models. However, if we change dj..q size to
32 [28], utilization will cut in half.

Also, some ASICs may fail to run NLP models that they do not cover. For example,

15

ASICs optimized for LSTM cannot run the attetion-based NLP models like BERT due
to the absence of required units (e.g., transpose, reduction, sqrt). They can run the
models by adding a few units, but it will be inefficient without solutions to deal with
the heterogeneity. Also, it is impossible to add new units for every upcoming model,

as new models are being released at a rapid pace.

3.3.3 FPGA

There have been some previous works that exploit FPGAs for accelerating NLP work-
loads [10], [22]. As advantages in running DNN workloads, FPGAs have high recon-
figurability. Also, FPGAs support various data precision (e.g., FP32, INTS8) and some
products have HBM on chip [6]. New FPGA products with many operators and large
on-chip memory for DNN workloads are actively entering the market recently [6].
However, the previous works using FPGA have also focused on accelerating specific

NLP models (e.g., LSTM) and fail to solve challenges of NLP models.

3.4 Solutions

We summarize the previous works and their weaknesses in Table 3.3. As we have al-
ready mentioned, some previous works [12] cannot efficiently handle the diversity
in dimensions (challenge 1) neither do they deal with overhead and heterogeneity
of vector operations (challenge 2, challenge 3) in NLP models. Meanwhile, other
works [10], [22], [11] relieve the overhead of vector operations by pipelining, solv-

ing challenge 2. However, they cannot still cope with challenge 1 and challenge 3.

To solve the challenges, we propose a modular architecture approach. In the mod-
ular architecture approach, the architecture composes of pre-defined basic modules so
that we can flexibly reconfigure the architecture adaptively to the target model. To this

end, we make FlexRun, the end-to-end solution that implements efficient modular ar-

16

Table 3.3: Previous works and their limitation in solving the challenges of NLP models.

Previous Works Challenge 1|Challenge 2 | Challenge 3
Brainwave [10] / NPU [22] X (0] X
Acclerator for NLP A3 [12] X A X
ATT [11] AN o X

chitecture, solving the three challenges. Also, we choose FPGAs as our HW platform
due to their high reconfigurability. FlexRun includes three main features. First feature
is flexible base architecture template that consists of pre-defined parameterized mod-
ules (i.e., FlexRun:Architecture). The next feature is a carefully defined design space
and design space exploration algorithm to find the best modules and parameter set for
the target models (i.e., FlexRun:Algorithm). Finally, the last feature is an automatic
tool that automates the two steps, finding the best architecture according to the in-
puts and implementing architecture (i.e., FlexRun:Automation). We will explain our
FlexRun in detail in the Section 4. For FlexRun to achieve high performance for NLP

models, we set the design goals as follows.

Design Goals
* Devise flexible architecture template that can solve three challenges (FlexRun: Architecture).

* Define design space for handling challenges 1, 3 and make algorithm to effi-

ciently search the design space for the given inputs (FlexRun:Algorithm).

* Automate the whole steps, from searching design space to implementing archi-

tecture, for ease of use (FlexRun:Automation).

17

Chapter 4

FlexRun

4.1 Overview

Input

v v
FlexRun:Algorithm FlexRun:Architecture FlexRun:Automation Output

Design Space Base Architecture
Exploration Template
| " i
[OX 7 :)

Modules and
Parameters

\ J FlexRun

® Reconfigured
Architecture

FlexRun:Generator

Decoder

Figure 4.1: End-to-end workflow of FlexRun.

In this subsection, we will briefly explain how FlexRun works. FlexRun is an
end-to-end solution that implements efficient modular architecture for NLP models.
Fig. 4.1 shows the end-to-end workflow of FlexRun. FlexRun has three main schemes,
FlexRun:Architecture, FlexRun: Algorithm, and FlexRun: Automation. First, FlexRun: Architecture
is a base architecture template consists of pre-defined parameterized basic modules
(FlexRun:Library). Next, FlexRun:Algorithm finds the best set of modules and their
parameters for the given NLP model and FPGA spec ((D) in Fig. 4.1). Finally, a FlexRun: Automation
reconfigures and implements the architecture template given by FlexRun:Architecture

|

18

according to the FlexRun: Algorithm’s results (@) & Q) in Fig. 4.1). Also, the FlexRun: Automation
generates the new decoder codes so that the model’s code is decoded for the reconfig-

ured architecture.

4.2 FlexRun:Architecture

Model's ISA Code [_<-*> Reconfigurable Parameters | [) Reconfigurable Units |
Gemv-unit vec-unit | 7 vector)
= = Operators
Decoder TILE #DPE ... > ™ P
[MRF | (MR .. [MRF] g
uOPs =
S—— A [mcc [acc] - [ace] o 2
y
ARE [+ 0+ L+* Bl |G
)
| i s = o
- g § Dot Product Engine - g
. & T 3 P LANE o > 1
Vec-unit @ = 3 P é T
4 [. > i
i e &
Base Architecture Template 2 (P g)

(a) FlexRun’s base architecture template. (b) Compute units of FlexRun’s base architecture tem-

plate.

Figure 4.2: FlexRun’s base architecture template and details of copmpute units (Gemv-

unit and Vec-unit).

FlexRun:Architecture is our base architecture template made of pre-define param-
eterized basic modules (FlexRun:Library). We devise a FlexRun: Architecture, consid-
ering the three challenges of NLP models.

In making our base architecture template, we refer to NPU [22]. Fig. 4.2a illus-
trates FlexRun’s base architecture template. The base architecture template consists of
three parts. First, there are two compute units: Gemv-unit and Vec-unit. Gemv-unit is a
highly parallel compute unit for gemv operations. Vec-unit is a compute unit for vector
operations, which can be made of any combination of basic vector operators (e.g., mul,
add, exp), realizing flexibility. Note that Gemv-unit and Vec-unit have their own reg-
isters to store the weights and intermediate data. Second, there is a memory controller

that prefetches required weights from off-chip memory to registers according to de-

19

coded uOps. Lastly, there is a decoder that decodes the model’s ISA code to uOps for
the memory controller and compute units. The detailed structure and working mecha-

nism of the base architecture template are explained in the following subsections.

4.2.1 Structure of of FlexRun:Architecture

Fig. 4.2b is a detailed figure for the compute units of FlexRun’s base architecture
template.

Gemv-unit: Gemv-unit composes of multiple SIMD arithmetic units for vector-
matrix multiplications as in Fig. 4.2b. Gemv-unit is a highly parallel architecture so
that it fits for NLP workloads with many matrix operations. Also, Gemv-unit computes
in vector-matrix granularity, which is good for NLP workloads that have dependencies
between the inputs (decoder structures like LSTM and GPT?2) in a single batch envi-
ronment.

In Fig. 4.2b, Gemv-unit has multiple TILEs that split a matrix into sub-column
blocks, and each TILE has several DPEs (Dot Product Engines) and ACCs (Accu-
mulators). Each DPE executes the same number of element-wise multiplications as
the size of LANESs. In our architecture template, the number of TILE, DPE, and size
of LANE is reconfigurable. Therefore, through design space exploration, we can re-
configure these parameters adaptively for the target model’s operations sizes, solving
challenge 1 (i.e., wide ranges of dimensions and irregular matrix operations).

Also, Gemv-unit and Vec-unit are deeply pipelined, relieving the overheads of vec-
tor operations. In addition, all vector operators in Vec-unit are pipelined so that there is
no unnecessary memory access between vector operations (Fig. 4.3b). Therefore, most
vector operations’ latency is hidden by gemv operations’ or other vector operations’
latency, mitigating challenge 2 (i.e., vector operations’ overhead).

Vec-unit: Vec-unit executes vector operations of size VEC_LANE at once. In our
template, we set the size of VEC_LANE equal to the Gemv-unit’s LANE size. Also,

there are some additional operators (i.e., reduction, exp, gelu) compared to [22] to

20

support attention-based NLP models. Gemv-unit and Vec-unit have direct datapaths
for vector pipelining. As a result, the Vec-unit can start independent instruction upon
receiving the first sub-block results from the Gemv-unit.

Previous works [22] have fixed types, numbers, and order of vector operators in
its vector compute units. However, as shown in Fig. 4.2b, we remain Vec-unit as
an empty box which can be made of any combinations of basic vector operators in
FlexRun:Library. In this way, we can efficiently deal with challenge 3 (i.e., hetero-
geneity of vector operations). Some may think that the flexible vector compute units
are unnecessary as pipelining alleviates the overhead of vector operations. However, if
the vector compute units are not properly configured, the overhead of vector operations
is exposed even with the pipelining. Details are provided in the section 4.3 and 4.4.

Memory and Datapath: Gemv-unit and Vec-unit have separate register files (MRF
and VREF, respectively) for decoupled execution. Previous works [10], [22] which uti-
lize the persistent-Al keep all weights in on-chip memory (MRFs). However, some
NLP models (e.g., BERT-LARGE) cannot hold their whole weights in on-chip memory
due to their excessive size. Therefore, we add new datapaths which connect memory
controller and MRFs to fetch weights from off-chip memory to MRFs. These datapaths
are also used when we use the results of Gemv-unit or Vec-unit as the vector input of
Gemv-unit. Also, we place a matrix transpose unit in the MRF/VRF write-back path.

ISA and Decoder: FlexRun’s ISA extends the NPU’s ISA [22] to support new op-
erations of attention-based NLP models (i.e. reduction, exp, gelu, transpose). FlexRun’s
ISA is architecture-independent for programmability. Instead, the decoder decodes the
ISA into multiple uOps adaptively to the reconfigured architecture. When we reconfig-
ure the architecture, we remake the decoder to fit the new architecture. We will provide
ISA and decoder examples in section 4.5.

FlexRun:Library In FlexRun:Library, there are basic modules of our template;
TILE of Gemv-unit and vector operators for Vec-unit. These basic modules are pa-

rameterized and modular so that we can configure and merge them adaptively to the

21

target model.

4.2.2 Working mechanism of FlexRun:Architecture

Gimple w°rkload\ FlexRun Architecture
Gemv-unit Vec-unit
5 - 40 40
som) L@ 14
@ 120 , , Timeline of simple workload
9o - | = a =~
| o= @Hl |2 [gemv0] P I
mul) ~ E E c’é g mu() [] [0] [
! B2 S Te0 [LT T T 1
2dct) @ 10 Vector Operators N [|eXPF) | }’r' |‘ lY: [| [|
b dd | (tanh sért write()
exp() eI (ada) f f ST
F o~ mul exp i i é Time
/ Padding mtl?l() sub ressub res | ---% dependency

(a) Simple workload and execution of workload in (b) Timeline of simple workload’s execution.

FlexRun.

Figure 4.3: Simple workload and FlexRun’s executions of the workload. The left figure

is the timeline graph of the workload when it is repeated three times with dependencies.

For smooth understanding, we assume a simple workload as Fig. 4.3a. The work-
load consists of one gemv operation and following vector opeartions; gemv()-mul()-
add()-exp(). The size of gemv operation is (1 x 128)x (128 x64). For the example work-
load, we configure the FlexRun’s architecture as follow: In the case of Gemv-unit, we
assume (#TILE, #DPE, LANE size) as (4, 120, 40). Also, we set the Vec-unit’s struc-
ture as [mul-add-exp], which is the best design for the example.

Now we explain how our architecture handles the example workload. First, in
Fig. 4.3a, we add some paddings to the input vector ((I)) so that it would be the mul-
tiple of LANE size (128—160). Then, the input vector is distributed to each TILE
(MD—@’). All TILEs have the same size of vectors, 40. But, 32 elements of TILE4’s
input vector are zero due to padding. Also, we add paddings to the row of weight
matrix’s to be the multiple of #DPE (64—120). Next, the DPEs and ACCs perform
vector-matrix multiplications of LANE size at once. Since the size of Gemv-unit’s

ouput vector (@) is 120, Gemv-unit produces three (120/40) sub-vectors of LANE

3 hy |
-. 1

22

size (@—@)’). These sub-vectors ((2’) are fed into the Vec-unit as soon as they come
out from Gemv-unit. Finally, the result vector (3), @’) comes out from the Vec-unit.
As shown in the figure, a lot of fragmentation occurs as the size of matrix and vector
does not match the (#TILE, #DPE, LANE size).

Fig. 4.3b shows the timeline and pipeline graph of the simple workload when it is
repeated three times with dependencies. Gemv-unit and Vec-unit are pipelined so that
the output sub-vectors of Gemv-unit directly go to the Vec-unit even though Gemv-unit
does not complete its executions. These pipelined execution helps hide the latency of
vector operations with gemv operations. Each vector operator is also deeply pipelined,
hiding each other’s latency. However, due to the dependencies, the next input’s execu-
tion cannot start until the previous one is finished. If there is no dependency, the next

input can start processing as soon as the compute unit becomes free.

4.3 FlexRun:Algorithm - Design Space

Table 4.1: Design space of FlexRun.

Units |Design Space Explanation
#TILE The number of TILE
Gemv-unit #DPE The number of DPE
LANE size The size of LANE
Type Vector operators to choose
Vec-unit Order Vector operators placement order
Number |The number of same vector operators to select

Table 4.1 shows FlexRun’s design space. FlexRun aims to find the best combina-
tion in the design space for the given model and FPGA spec. In case of the Gemv-unit,
three parameters (#TILE, #DPE, LANE size) are in our design space. These parameters

cover all the gemv dimensions, (1 xN)x(NxK). For the Vec-unit, the types, number,

23

and order of the basic vector operators are in design space. In the following contents,

we will show how our design space choice affects the performance of the NLP models

and solves the three challenges.

S

= 100 0(4,120,30) 00(4,64,64) 5(16,32,32) 5(4,128,32) u(1,256,64) |
B 80

5 60

2 40

2 20

g o 1

& 64X256 256X80 1024%64 128x128 1920xso

Dimension of Gemv Operation

Figure 4.4: The effective HW utilization of Gemv-unit for various dimensions of gemv
operations. The legend is the reconfigurable parameters of Gemv-unit: (#TILE, #DPE,
LANE size). To be specific, (64x256) in the x-axis indicates the gemv operation that

the vector size is (1x64) and the matrix size is (64 x256).

4.3.1 Design space of Gemv-unit: (#TILE, #DPE, LANE size)

Fig. 4.4 shows the HW utilization for gemv operations with various dimensions, chang-
ing the three Gemv-unit’s parameters. The x-axis is the dimension of gemv operation
and the y-axis is the effective utilization of Gemv-unit. Note that these gemv opera-
tions are from the real NLP workloads. Also, the legend is the combination of (#TILE,
#DPE, LANE size). All combinations satisfy the same maximum resource limitation.
In the figure, each gemv operation has different utilization according to the combina-
tions of (#TILE, #DPE, LANE size). For example, in the case of (64 x256), it achieves
100% effective utilization when the (#TILE, #DPE, LANE size) is (1, 256, 64), while
(16, 32, 32) reduces the utilization by 87.5%. Also, there is no combination of (#TILE,
#DPE, LANE size) which works best for all gemv operations. For example, (1, 256,
64) works best for (64x256), but has the worst utilization for (1024 x64). From the
experiments, we conclude that fixed-size matrix compute units cannot handle a wide

range of dimensions as well as irregular matrix operations. Therefore, by configuring

24

(#TILE, #DPE, LANE size) adaptively to the model, we can get the highest possible

utilization, resolving challenge 1.

4.3.2 Design space of Vec-unit: types, number, and order of basic vector

operators
Vec-unit Vec-unit Vec-unit
structure structure gemv() gemv() structure
gemv() | |gemv() [mulQ T] mul()] gemv() gemv()
([] mul) [[mul) | 2| [add) [[addQ | [T mul) TNOP T | mul()
(add) I3[T add() [[add) [- 3|[_[NoP [[NOP [- §|[_TNoP [exp() [[NOP
exp) |[S][L exeQ [T expQ | <[exo0 [[exp() | (add) |||[_L[2ddQ [NOP | [addQ
write() write()] write() \ \ write() | [write() [write() [[writ:
—_— —_—
Time Time Time
(a) Right types & order. (b) Wrong types but right order. (c) Right types but wrong order.

Figure 4.5: Timeline and pipleine graphs of simple workload’s executions according

to Vec-unit’s structures.

When we design vector compute units, we need to consider the types, order, and the
number of vector operators. We will explain how Vec-unit’s design affects the perfor-
mance of NLP models by revisiting the simple workload, gemv()-mul()-add()-exp() in
section 4.2.2. The simple workload needs three types of operators: mul, add, and exp.
Fig. 4.5 shows the timeline and pipeline graphs of simple workload executions for the
three cases; right types & order (Fig. 4.5a), wrong types but right order (Fig. 4.5b), and
right types but wrong order (Fig. 4.5c). First, Fig. 4.5a is when the types and order are
both perfectly matched to the given model. However, if there are any unnecessary op-
erators (wrong types), it occurs underutilization like Fig. 4.5b. Also, in the case when
the order is not optimal, the data may go through the pipeline again to complete the
operations, as in Fig. 4.5c.

Depending on the number of vector operators which determines the pipeline’s
depth, a trade-off occurs like Fig. 4.6. In the case where Vec-unit has many vector oper-
ators, the input data can be processed in one execution, as shown in Fig. 4.6a. However,

in Fig. 4.6a, the pipeline gets deeper and the overhead of the exposed pipeline’s depth

25

[T [T [T
[] [T [T]
3| [T [T — :
g [T T 1 I — | — T [:
g [T L — SICL_ T T T T T T T T
i . N [T T+ T T 1 [T T°¢
T 1 T S ; :
1 1 [1 4H—H—Ly—“y—L|—Ly—L|—L|—L|:
Time Time
(a) Many operators (pipeline’s depth 7). (b) Fewer operators (pipeline’s depth).

Figure 4.6: Trade-off according to the number of vector operators.

grows. Otherwise, if Vec-unit has fewer vector operators like Fig. 4.6b, the data has
to go through the pipeline again to finish execution. But pipeline gets shorter and the

overhead of the exposed pipeline’s depth is reduced.

2.0 4
a 1.5 1
=]
3 1.0
jal
905
0.0 T T T T
exp-add-add-gelu- exp-add-gelu-red-mul- exp-add-add-gelu- exp-add-gelu-red- red-red-add-mul-
red-red-mul-add add red-mul-add red-mul-add exp-gelu

Vec-unit Structure

Figure 4.7: The GPT2-MEDIUM’s relative performace improvement according to var-
ious Vec-unit’s structures. The performance improvement is normalized to the last fea-

ture: [red-red-add-mul-exp-gelu].

We check the trends mentioned above by running GPT2. Fig. 4.7 shows the per-
formance of GPT2-MEDIUM on various Vec-unit’s structures. The x-axis is the Vec-
unit’s structure and the y-axis is speedup normalized to the last structure. The last
structure in Fig. 4.7, the one with the random ordering has the worst performance.
The first and third structures have proper ordering, but they show lower performance
than the second one as they have too many operators, exposing more pipeline depth.
The second structure which has optimal order and number of operators has the best

performance. From the result, we conclude that by reconfiguring the Vec-unit adap-
7] a'.*._1-!.

26

tively to the given model, we can deal with challenge 3 (i.e., heterogeneity of vector
operations).

Some may wonder it is more convenient to put the all required vector operators for
the NLP models into Vec-unit and make all-to-all connections. However, in that case,
there are two main problems. First, interconnect overheads will be too expensive be-
cause complex models like BERT needs 8 different operators. Additionally, future NLP
models may require new types of operators, which further increases the interconnec-
tion overhead. Second, simple models like SRNNs are suffered from underutilization

because they do not use most vector operators.

4.4 FlexRun:Algorithm - Design space exploration

To find the best design for the model, we explore all possible design points. To this
end, we introduce two algorithms for efficient design space exploration: Gemv-unit
Rearrangement for Gemv-unit and Vec-unit Reconstruction for Vec-unit. For design
space exploration, we use an analytical model, a time-accurate simulator that gets the

template’s parameters and model’s code as inputs and measures the execution latency.

4.4.1 Gemv-unit Rearrangement

Gemv-unit Rearrangement gets the model’s ISA code and FPGA spec (i.e., BRAM,
DSP, LUT, Memory BW) as inputs. Then, it searches all possible combinations of
(#TILE, #DPE, LANE size) which satisfy the resource limitation. Among the found
combinations, the algorithm selects the top-k sets which have the smallest total gemv/gemm
latency of the model using the analytical models. In experiments, results of Gemv-unit

Rearrangement for FPGAs on the current market are available in seconds.

27

Algorithm 1: Vec-unit Reconstruction Algorithm.

input :model.,q., (#TILE #DPE,LANE size).
/* Get vector-opearation-sequences in the model. */
1 {vec_seqy,...,vec_seqy } = get _vector_op_sequences(model,,q,)
/+* Find Shortest Common Sequence (SCS) for given vector sequnces,
{vec_seqo,vec_seqy,...,vec_seqy } . */
2 {8CSy,...,SCS;,} = Find_SCS(vec_seqq,vec_seqy, ..., vec_seqy)
3 min_lat =total_lat(SCSy, model.pq.,(#TILE #DPE,LANE size))
4 optimal _structure = SCSy
s for SCS in {SCS},...,SCSy } do
/* Get all possible subsequnces of SCS by removing duplicate
operators. x/
6 {SCS_subseqy, ...,SCS_subseq, } = Find_SCS_subsequences(SCS)
/% Find SCS_subsequence that gives the minimum total latency for
the inputs. */

7 for arch in {SCS_subseqy, ...,SCS_subseqy, } do

8 temp = total _lat(arch,model ,q,, #TILE ,#DPE,LANE size))
9 if temp < min_lat then

10 min_lat = temp

1 optimal _structure = arch

12 end

13 end

14 return optimal _structure

4.4.2 Vec-unit Reconstruction

Vec-unit Reconstruction gets two inputs, the model’s ISA code and results of Gemv-
unit Rearrangement. For target model and configurations, Vec-unit Reconstruction
finds a set of (#TILE, #DPE, LANE size) and Vec-unit’s structure with minimum total
latency. Vec-unit Reconstruction uses the Shortest Common Sequence (SCS) algo-
rithm. SCS is the shortest sequence which includes all the vector-operation-sequences
in the model while keeping the original order of each sequence.

Algorithm 1 shows each step of Vec-unit Reconstruction. In Algorithm 1, first we

28

extract the list of vector-operation-sequences (vec_seq;) from the model’s code: linel.
Then, we find all SCSs for given vector-operation-sequences: line2. Next, for every
SCS in the list, we repeat lines 6-12. In line 6, we derive all possible sub-sequences of
the SCS (SCS_subseq;), which contain all the required operators for the model. Lastly,
we find the sub-sequence which gives the minimum total execution latency for the
model (optimal _structure), using an analytical model, rotal_lat(): line 7-11. For easy

understanding, we visualize each step of the algorithm in Fig. 4.8.

Loop

{SCSy, ..., SCS,}

{ Vector-operation- }
i sequences i

SCS,_subseq

structure

3 3

@ i S |§

fLo0owe She :

3| (DB~ | 3| (D-E-E-RAD-69--D ‘
g ‘ 3| -O-RV-@-e®

i
8
s
s
L
]
S

{R-9-63-%)

i optimal_structure = arch
i min_lat = temp

<Line 6> Y <Line 7-11>.
Log

optimal

<Line 1> <Line 2>

Figure 4.8: Visualization for each step of Vec-unit Reconstruction algorithm.

Results of design space exploration

Table 4.2 shows the results of design space exploration for BERT-LARGE and GPT2-
MEDIUM. In Table 4.2, two models have different set of optimal (#TILE, #DPE,
LANE size) and Vec-unit’s structure. Also, we can observe the trends mentioned in
Section 4.3.2. Because GPT?2 has dependencies between the inputs while BERT does
not, the optimal Vec-unit’s structure for GPT2 is shorter than that for BERT-LARGE.

Table 4.2: The results of design space exploration for GPT2-MEDIUM and BERT-

LARGE.
(#TILE, #DPE, LANE size) Vec-unit’s structure
BERT-LARGE (4, 64, 64) add-act-add-red-red-mul-add
GPT2-MEDIUM (3, 64, 64) add-act-add-red-mul

29

4.5 FlexRun:Automation

FlexRun:Automation is an automatic tool of FlexRun to make the complex reconfigu-
ration process automatic. FlexRun:Automation consists of two main features, com-
pute units generators and decoder generators (FlexRun:Generator). As in Fig. 4.1,
FlexRun:Automation receives FlexRun: Algorithm’s results (i.e., (#TILE, #DPE, LANE
size) and Vec-unit’s structure) as inputs and produces the reconfigured architecture and

decoder accordingly.

Ve

add()—ada()—mul()
v

Decoder

Compute units _ et NOP —add()—mill)
R (2dd)—add)-mul)] s —=pop— wop
Gemv-unit o M3
3 5 Vec-unit Vec-unit
T = ||z (add) (add)
Vec-unit E A& (2dd |
a mul
(. —

(a) Components to be reconfigured (marked) in the (b) Example for how decoder decodes the ISA ac-

base architecture template. cording to the architectures.

Figure 4.9: The necessities of FlexRun:Generator.

4.5.1 FlexRun:Generators

When we reconfigure our base architecture template for the new target model, two
components marked in Fig. 4.9a should be modified. One is the whole compute proces-
sor, including compute units (Gemv-unit and Vec-unit) as well as registers and inter-
connects (e.g., MRFs, VRFs, interconnects between VRFs and Vec-unit). The other is
the decoder which decodes ISA into multiple uOPs for the new architecture. Fig. 4.9b
shows how the decoder decodes the same ISA (i.e., ISA: add()-add()-mul()) when the
Vec-unit changes. In the original structure, the order and types of vector operators fit

the example ISA so that decoder simply decodes ISA into three uOPS: add()-add()-

30

mul(). However, when the structure changes to [add-exp-mul], decoder should decode

the example into six uOPs: NOP-add()-mul() and add()-NOP-NOP.

31

Chapter 5

Implementation

5.1 FlexRun

5.1.1 FlexRun

To implement basic modules in FlexRun:Library (TILE of Gemv-unit and vector op-
erators in Vec-unit), decoder, and memory units, we use C-based Vivado High-Level
Synthesis (HLS). First, TILE includes DPEs, accumulators, and registers (MRFs). We
make the number of DPEs and accumulators as reconfigurable as well as LANE size.
Also, we could set the registers’ size adaptively to the input model and configurations.
Next, we code each vector operator separately so that we can make any combinations
of operators. The vector operator has a parameter named VEC_LANE (basic unit of
processing), which has the same size as the Gemv-unit’s LANE size.

We use python to implement two algorithms in FlexRun:Algorithm. First, Gemv-
unit Rearrangement gets the model’s ISA code, model descriptions (e.g., parameters,
vector operations), and FPGA spec as inputs. Then it lists out all combinations of
(#TILE, #DPE, LANE’s size) satisfying the resource limitation. These lists go as in-
puts to the analytical model, and the analytical model finds the top-k combinations
which have the smallest gemv operation’s latency for the target model. In the evalu-

ation, we use 3 as the value of k. Second, Vec-unit Reconstruction function receives

32

outputs of Gemv-unit Rearrangement as well as model’s ISA code and model descrip-
tions. Following Algorithm 1, the function finds the best set of Vec-unit’s structure and
(#TILE, #DPE, LANE size).

Put all together, the top generator function gets the model’s ISA code and FPGA
spec. Then, it gets the optimal configurations for the given model using the two func-
tions in FlexRun: Algorithm as mentioned in the previous paragraph. Finally, two gen-

erator fucntions make the compute processor and decoder according to the given con-

figuration.
50
. [OSeq=128 _mSeq=256 | 800 1 GBeam=1 @Beam=5 WBeam=10 |
B b ————. o 700 _
2 DDR4 bandwidth & 600
2 3 £ 500 {HEM bandwidth
=
§ 20 ﬁ 400
= S 300
2 40 2 200
© ©
; il i
ol . ' ‘ . ’ - - P | .
BASE LARGE MG1 MG3 SMALL MEDIUM LARGE
BERT GPT2

(a) Comparison between bandwidth requirement of (b) Compariosn between bandwidth requirement of

BERT and DDR4’s bandwidth. GPT2 and HBM’s bandwidth.

Figure 5.1: Comparison of NLP models’ bandwidth requirement and off-chip memory

bandwidth of STRATIX GX (DDR4) and MX (HBM).

5.1.2 Memory

Since data reuse is limited in a single batch environment, high memory bandwidth is
required to avoid the memory bottleneck. When the model’s size is small enough to
be stored in on-chip memory, the persistent Al approach used by previous works [10],
[22] can address the memory bottleneck issues. However, this approach cannot be
applied to some NLP models with large parameters (e.g., BERT-LARGE). In this work,
we implemented layer-wise double buffering in on-board DDR4 and HBM to hide the
memory overhead. With this technique, the memory controller prefetches the weight
matrices of the next layer while the current layer is computed. Also, we set the size of

registers large enough to hold these prefetched weight matrices and intermediate data.

33

Fig. 5.1 shows the maximum memory bandwidth requirement of our target NLP
models when adopting the layer-wise double-buffering scheme. In the figure, we com-
pare the bandwidth requirement of the models with the off-chip memory’s bandwidth
of two FPGAs. We use two FPGAs, Intel’s STRATIX GX with DDR4 and STRATIX
MX with HBM. In Fig. 5.1a, BERT with large parameters (BASE, LARGE, MG1, and
MG3) can be executed on both GX and MX. However, GPT2 should be executed on
an MX with HBM to avoid memory bottleneck, like Fig. 5.1b. Therefore, we use GX
for BERT and MX for GPT2 in evaluation.

5.2 Workloads and Experimental Setup

Table 5.1: NLP models and their configurations included in the workloads.

Configuration | djiqien | dheaa | #head | dyy | beamwidth
LSTM - 1024 - - - -
TINY 128 64 2 512 -
MEDIUM 512 64 8 2048 -
BASE 768 64 12 3072 -
BERT
LARGE 1024 64 16 4096 -
MG1 1280 64 16 5120 -
MG3 3072 64 24 3072 -
TINY 768 64 12 3072 | 5,10,40
GPT2 MEDIUM 1024 64 16 4096 | 5,10,40
LARGE 1280 80 16 5120 | 5,10,40

5.2.1 Workloads

Our target workloads and their configurations are in Table 5.1. We choose the work-
loads by the following criteria. First, we evaluate the attention-based NLP models
7]

—
|

34

which have complex vector operations so that we can show how FlexRun reduces
the overhead of vector operations (challenge 2). Next, we show how FlexRun deals
with the heterogeneity of vector operations by comparing the performance trends of
the three models (challenge 3). Lastly, by covering models with a wide variety of pa-
rameter scales, we show that FlexRun can cope with a wide range of dimensions and

irregular matrix operations (challenge 1).

5.2.2 [Experimental setup

Table 5.2: Configurations of Baseline.

FPGA (#TILE, #DPE, LANE size) | Vec-unit’s structure | Frequency
STRATIX GX (4, 120, 40) red-add-act-mul 275MHz
STRATIX MX (4, 80, 40) red-add-act-mul 290MHz

As the baseline, we use GPU and our base architecture template. For GPU, we
use a Tesla V100 with Tensor Core enabled [1]. We use official open-source Ten-
sorFlow implementation of NLP models from NVIDIA and OpenAl [2]. We set the
frequency of V100 as 1350MHz. When we analyze the results of GPU, we exploit the
NVIDIA Nsight Systems [3] which is a performance analysis tool officially provided
by NVIDIA. In the case of the second baseline, we do not apply three schemes of
FlexRun. Also, we refer to NPU [22] for setting the configurations ((#TILE, #DPE,
LANE size) and Vec-unit’s structure). The detailed configurations are specified in Ta-
ble 5.2. For the rest of the paper, we will simply call the second baseline the Baseline.
For FlexRun’s evaluation, we use two FPGAs, Intel’s STRATIX GX and MX [8]. Also,

FlexRun supports an 8-bit integer data type as NPU.

35

Chapter 6

Evaluation

We evaluate our schemes using a cycle-accurate simulator to measure the scalability of
FlexRun, considering the trends of FPGAs with increasing resources. We carefully val-
idate our simulator as follows. First, we implement SW-based NPU-like architecture
and compares its RNN/LSTM performance against Intel’s pre-validated STRATIX 10
GX and MX FPGA implementation [22]. The errors between our simulator and FPGA
implementation are under 0.1% for various parameter settings. Then we add FlexRun’s
specific features (e.g., transpose unit) on top of SW architeture to make our FlexRun

base architecture template.

6.1 Performance improvement of FlexRun compared to the

Baseline

We first measure the speedup of FlexRun for BERT and GPT2, compared to the Base-
line. Fig. 6.1 and Fig. 6.2 show the comparison results for BERT and GPT2, respec-
tively. The x-axis is the parameter scale and the y-axis is the speedup. By applying the
three optimization schemes of FlexRun one by one, we show how much gain each op-
timization brings. The legend of the figure is the optimization schemes we apply. The

first legend is the Baseline. The second legend (Gemv-unit Rearrange) indicates the

36

Speedup

Speedup

1.5 4

- L8 (L 1 AN 0 00 (T

[O Baseline O Gemv-unit Rearrange @ Gemv-unit Rearrange + SCS M FlexRun

TINY |MEDIUM| BASE | LARGE MG1 MG3 TINY [MEDIUM| BASE | LARGE MG1 MG3

Seq=128 Seq=256
BERT

Figure 6.1: Speedup of FlexRun for BERT normalized to the Baseline.

[OBaseline O Gemv-unit Rearrange @ Gemv-unit Rearrange + SCS m FlexRun

SMALL MEDIUM LARGE SMALL MEDIUM LARGE SMALL MEDIUM LARGE

Beamwidth=5 Beamwidth=10 Beamwidth=40
GPT2

Figure 6.2: Speedup of FlexRun for GPT2 normalized to the Baseline.

case that we only apply Gemv-unit Rearrangement to the Baseline. The third legend

(Gemv-unit Rearrange + SCS) is the result of changing the Vec-unit’s structure to SCS

in addition to the second legend. The last legend (FlexRun) is the case we apply both

Gemv-unit Rearrangement and Vec-unit Reconstruction.

Fig. 6.1 is the results for BERT with two input sequence sizes: 128, and 256. First,

Gemv-unit Rearrangement (second legend) achieves 1.36x speedup on average. The

scheme gives more benefit to the small models like BERT-TINY (2.05 x speedup) as

they have a higher chance of underutilization. Also, it gets higher speedup, 1.46x

for BERT-MG3 which has the largest irregularity in matrix operations. Next, Vec-unit

Reconstruction (last legend) brings 1.17 x additional speedup on average. Note that for

BERT, whether Vec-unit has an SCS structure (third legend) or an optimal structure

(last legend) does not make a difference in performance. The overall average speedup

is 1.59 x, with a minimum of 1.22x and a maximum of 2.73 x.

37

Fig. 6.2 shows the FlexRun’s performance improvement for GPT2 with three beamwidths,
5, 10, and 40. In the case of GPT2, Gemv-unit Rearrangement brings 1.19x speedup
on average. Also, Vec-unit Reconstruction gets 1.1x additional speedup so that the
overall average speedup is 1.31x. Unlike BERT, SCS structure degrades the perfor-
mance in GPT2. These differences arise from the presence of dependencies between
the inputs. If there are dependencies between the inputs, the pipeline’s depth affects
the performance. Therefore, the SCS structure harms the performance of GPT2. Also,
when we increase the beamwidth of GPT2, the performance degradation of SCS de-

creases as the inputs without dependencies increase.

1 [©vioo mFiexRun on 6X] [[OV100 EFlexRun on MX]|
18 A
17

m 1ol ol o

LARGE | BASE | MEDIUM TINY LARGE | MEDIUM | SMALL
BERT (Seq=128) GPT2 (Beamwidth=10)

(a) Speedup of FlexRun on GX compared to V100 (b) Speedup of FlexRun on MX compared to V100
for BERT. for GPT2.

Figure 6.3: Comparison of FlexRun and V100 for BERT and GPT2.

6.2 Comparison of FlexRun and GPU

In Fig. 6.3, we compare the results of FlexRun with V100 for BERT and GPT2. The
x-axis is a scale of the NLP models and the y-axis is the speedup normalized to the
latency of V100. FlexRun achieves 2.79x and 2.59x average performance improve-
ments over V100 for BERT and GPT2, respectively. Especially, FlexRun shows higher
performance for the small models as small models suffer severe underutilization in
GPU. Also, FlexRun usually gets higher speedup for BERT because pipelining and
Vec-unit Reconstruction give more benefits to the encoder structure. As the encoder

structure does not have dependencies between the inputs, the pipeline depths are al-

38

most hidden.

6.3 Scalability of FlexRun

OGX / MX @2x FPGA

H 3 WRs HD e ol ol o

TINY MEDIUM | BASE LARGE MG1 MG3 SMALL MEDIUM LARGE
BERT (Seq=128) GPT2 (Beamwidth=10)

Speedup
O NWHMUTO

Figure 6.4: Speedup of BERT on GX and FPGA with twice as many resources as GX.
& Speedup of GPT2 on MX and FPGA with twice as many resources as MX.

We check the scalability of FlexRun by doubling the compute and memory re-
sources of FPGAs. We assume that the future generation of FPGAs has twice more
compute and bandwidth resources than current FPGAs, GX, and MX. Fig. 6.4 is the
speedup of FlexRun on the future generation of FPGAs and current FPGAs (GX and
MX). The first legend (GX/MX) is the results of GX and MX and the second legend
(2x FPGA) is the results of future FPGAs. The speedup of FlexRun on GX and MX
(for GPT2) is normalized to the same baseline of Fig. 6.1. For FlexRun on 2 x FPGA,
we assume a new baseline with twice the #TILE and twice faster memory than the
baseline of Fig. 6.1.

The results show that FlexRun achieves scalable performance improvements as
FPGA resources increase. In the case of BERT-LARGE, FlexRun attains 1.85x speedup
on 2x FPGA while achieving 1.32x speedup on GX. On average, with twice the re-
sources, FlexRun gets 2.2x and 1.99x speedup for BERT and GPT2, respectively.
This is 1.46x and 1.69x additional speedup for FlexRun on GX and MX, respec-
tively. The FlexRun secures scalability thanks to Gemv-unit Rearrangement. When
the resources increase, the chances of underutilization in gemv compute unit grows

due to fragmentation. So for the future FPGA:s, it is important to find the proper di-

39

mension of the gemv compute units, which is done by Gemv-unit Rearrangement in

FlexRun.

6.4 Effectiveness of FlexRun

OLSTM-1024 ®BERT-LARGE

LSTM-1024 Opt Arch. BERT-LARGE Opt Arch.

N

Speedup
o = !
oun = U NN W

Figure 6.5: Effectiveness of FlexRun.

Lastly, we show the effectiveness of FlexRun in Fig. 6.5. We run BERT-LARGE
and LSTM-1024 on architectures optimized for each model using FlexRun. In the x-
axis, LSTM-1024 Opt Arch is the architecture optimized for LSTM-1024 and BERT-
LARGE Opt Arch is the architecture for BERT-LARGE. The performance of the mod-
els is normalized to the slower one. In Fig. 6.5, the performance is severely compro-
mised when the model is executed on the atchitecture optimized for other model. In
the BERT-LARGE case, the performance improves 2.83x when running on BERT-
LARGE Opt Arch than on LSTM-1024 Opt Arch. For LSTM-1024, the performace

improves by 1.63x on its optimized architecture.

40

Chapter 7

Realted Work

There are works that aim to accelerate NLP models. Each study exploits different
methods to achieve their purposes.

First, there are studies using the quantization method to accelerate NLP models
and reduce models’ sizes [33], [34], [35]. [33] and [35] suggest new quantization
methods, expressing parameters of BERT with 3 bits. Also, [34] presents BERT’s
parameters with eight bits, targeting INTS.

Similar to quantization, many studies attempt to apply pruning to NLP models.
[13] uses the weight pruning to reduce the size of LSTM and designs architecture for
sparse LSTM. Also, [31] proposes block-circulant matrices for weight matrices to
resolve irregularities in the neural network in addition to pruning. For attention-based
NLP models like BERT, [21] proposes a structured pruning while [21] uses structured
dropout.

[16], [18], [19], and [17] utilize model partitioning for accerlation. [17] defines
parallelizable dimensions in DNNs and finds the best parallelization strategies for the
target model. [18] applies holistic model partitioning to all operations across attention-
based NLP models. [16] exploits model partitioning to accelerate large RNN models
by enabling multi-FPGA executions.

Also, some works design accelerators for the NLP models. [12] targets attention

41

operations in NLP models and makes attention-specialized units. [11] exploits PIM
technologies to minimize the memory overhead of the NLP models. Meanwhile, [10]
and [22] exploit FPGAs as their HW platforms to accelerate NLP models. However,
none of those works can address all three challenges that NLP models possess.
Lastly, [30], [36], and [37] take modular approach for accelerating DNNs. How-
ever, these works focus on Convolutional Neural Networks, rather than NLP models.
[30] suggests a modular accelerator generator for CNNs. [36] and [37] use FPGAs to
build accelerators through their design space exploration tool in the cloud and edge-

computing environments.

42

Chapter 8

Conclusion

In this paper, we propose FlexRun, an FPGA-based modular architecture approach to
accelerate NLP models. When receiving input models, FlexRun reconfigures the archi-
tecture adaptively to the models. In evaluation, we get 2.69x and 1.44x performance

improvement compared to V100 and Brainwave-like FPGA baseline, respectively.

43

[1]

(2]

(3]

[4]

[5]

[6]

Bibliography

“Nvidia Tesla V100 GPU Architecture, The World’s Most Advanced Data Center
GPU.” 2017. [Online]. Available: https://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf

“Deeplearningexamples,” https://github.com/NVIDIA/DeepLearningExamples/

tree/master/TensorFlow, 2021.

“Nsight systems release notes,” https://docs.nvidia.com/nsight-systems/

ReleaseNotes/index.html, 2021.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), 2016, pp. 265-283.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

A. Boutros, E. Nurvitadhi, R. Ma, S. Gribok, Z. Zhao, J. C. Hoe, V. Betz, and
M. Langhammer, “Beyond peak performance: Comparing the real performance
of ai-optimized fpgas and gpus,” in 2020 International Conference on Field-

Programmable Technology (ICFPT). 1EEE, 2020, pp. 10-19.

44

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Chris Leary and Todd Wang, “XLA: TensorFlow, compiled.” 2017. [Online].
Available: https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.

html

L. B. M. Deo and J. Schulz, “Intel® stratix® 10 mx devices with samsung* hbm?2

solve the memory bandwidth challenge,” 2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” arXiv:1810.04805,
2018.

J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Al-
kalay, M. Haselman, L. Adams, M. Ghandi et al., “A Configurable Cloud-Scale
DNN Processor for Real-Time Al,” in ISCA, 2018.

H. Guo, L. Peng, J. Zhang, Q. Chen, and T. D. LeCompte, “Att: A fault-tolerant
reram accelerator for attention-based neural networks,” in 2020 IEEE 38th Inter-

national Conference on Computer Design (ICCD). 1EEE, 2020, pp. 213-221.

T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park, S. Lee,
K. Park, J. W. Lee et al., “A” 3: Accelerating attention mechanisms in neural
networks with approximation,” in 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA). 1EEE, 2020, pp. 328-341.

S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang
et al., “Ese: Efficient speech recognition engine with sparse Istm on fpga,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2017, pp. 75-84.

Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Ry-
bach, A. Kannan, Y. Wu, R. Pang et al., “Streaming end-to-end speech recogni-

tion for mobile devices,” in ICASSP 2019-2019 IEEE International Conference

45

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

on Acoustics, Speech and Signal Processing (ICASSP). 1EEE, 2019, pp. 6381-
6385.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735-1780, 1997.

H. Jang, J. Kim, J.-E. Jo, J. Lee, and J. Kim, “Mnnfast: A fast and scalable system
architecture for memory-augmented neural networks,” in Proceedings of the 46th

International Symposium on Computer Architecture, 2019, pp. 250-263.

Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for deep
neural networks,” arXiv preprint arXiv:1807.05358, 2018.

J. Kim, S. Hur, E. Lee, S. Lee, and J. Kim, “Nlp-fast: A fast, scalable, and flex-
ible system to accelerate large-scale heterogeneous nlp models,” in 2021 30th

International Conference on Parallel Architectures and Compilation Techniques

(PACT). IEEE, 2021, pp. 75-89.

D. Kwon, S. Hur, H. Jang, E. Nurvitadhi, and J. Kim, “Scalable multi-fpga ac-
celeration for large rnns with full parallelism levels,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). 1EEE, 2020, pp. 1-6.

S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, “Nvidia tensor
core programmability, performance & precision,” in 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 1EEE,
2018, pp. 522-531.

J. McCarley, R. Chakravarti, and A. Sil, “Structured pruning of a bert-based ques-
tion answering model,” arXiv preprint arXiv:1910.06360, 2019.

E. Nurvitadhi, D. Kwon, A. Jafari, A. Boutros, J. Sim, P. Tomson, H. Sumbul,
G. Chen, P. Knag, R. Kumar et al., “Why Compete When You Can Work To-
gether: FPGA-ASIC Integration for Persistent RNNs,” in FCCM, 2019.

46

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language

models are unsupervised multitask learners,” 2019.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for

machine comprehension of text,” arXiv preprint arXiv:1606.05250, 2016.

V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. An-
derson, M. Breughe, M. Charlebois, W. Chou et al., “Mlperf inference bench-
mark,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 446-459.

D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by
Error Propagation, 1987, pp. 318-362.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108,
2019.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using model

parallelism,” arXiv preprint arXiv:1909.08053, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” in NIPS, 2017.

R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina er al., “Magnet: A modular accelerator
generator for neural networks,” in 2019 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). 1EEE, 2019, pp. 1-8.

S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang, “C-

Istm: Enabling efficient Istm using structured compression techniques on fp-

47

[32]

[33]

[34]

[35]

[36]

[37]

gas,” in Proceedings of the 2018 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2018, pp. 11-20.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation,” arXiv preprint

arXiv:1609.08144, 2016.

A. H. Zadeh, 1. Edo, O. M. Awad, and A. Moshovos, “Gobo: Quantizing
attention-based nlp models for low latency and energy efficient inference,” in
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 811-824.

O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized 8bit
bert,” arXiv preprint arXiv:1910.06188, 2019.

W. Zhang, L. Hou, Y. Yin, L. Shang, X. Chen, X. Jiang, and Q. Liu, “Ternarybert:
Distillation-aware ultra-low bit bert,” arXiv preprint arXiv:2009.12812, 2020.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: an automated tool for building high-performance dnn hardware ac-
celerators for fpgas,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1EEE, 2018, pp. 1-8.

X. Zhang, H. Ye, J. Wang, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen, “Dnnex-
plorer: a framework for modeling and exploring a novel paradigm of fpga-
based dnn accelerator,” in Proceedings of the 39th International Conference on

Computer-Aided Design, 2020, pp. 1-9.

48

el ok

mr oM i mz

2

l>£

=

N

\1

22 gepd 7lute] Aelo] A2 o] 24914 Weln 2 Aol A3
Aol 422 0 2 B4 T Ik Alo] Aa] FAL 22 Z2H 1S a7
171wzl & w2 @0l A Ao A R wE F25 Adshe Aol
T2 ot} SRR 2helof A 2] o] 7l EA4E= Qs T wiA] oA Ao
1212 7Hsoke 2 e Q5T s SASS theah 2ok () §e W91l da i
TR EZ L AL (2) HE Adte] e HSE, T12)al (3) HE dte] o
SH9l=Rol 4 FlexRung Agtatol A 712 EASS sfdsta ©ol v o
oA At o] A2 FE-& 71453ttt FlexRune FPGA 9] =2 reconfigurability
gHgo}o] 013 E171 Relof g7 ob|e A T A<1ghek. FlexRunol A] 7}
710] 9tk A WA= FPGAS 7|Hto 2 5t A 1A 7Hs3t Q458 o] %
20 Wjo] 2 o784 FELolc). = A uvw ~ujo) 22 FolakT tzfel
Ho] 204l e7] malo] ket 29]2he] HAIES S el Zolek. mhA
Fo Rt A4 A B AARE ol 84S FRsks Julo] S-S
s2lotE Eolth & =70l A= FlexRung 2-8-5ko] GPU H|o] A2}l FPGA
%] Brainwave-like #|o] 2}<17} o] o] 0])¢ 435648 Kol e,

F@ol: gelid, 24edo] A2, FPGA, RE] ol7|dlH, 7h47] AA/EI), g
of ol7| eI, Tl ApQl 25 o] 2 gAY
SHH: 2019-24165

49

	1. INTRODUCTION
	2. Background
	2.1 Neural Networks-based NLP models
	2.1.1 RNN-based NLP Models
	2.1.2 Attention-based NLP Models
	2.2 Fast inference support for NLP tasks
	3. Motivation
	3.1 Chracteristics of NLP models
	3.1.1 Diverse operational complexities
	3.1.2 Varying range of dimensions
	3.1.3 Various parameter configurations
	3.1.4 Heterogeneous vector operations
	3.2 Challenges of NLP models
	3.2.1 Challenge 1: Wide range of dimensions and irregular matrix operations
	3.2.2 Challenge 2: Non-negligible vector operations’ latency
	3.2.3 Challenge 3: Heterogeneity of vector operations
	3.3 Limitations of previous works
	3.3.1 GPU (general-purpose accelerator)
	3.3.2 ASICs
	3.3.3 FPGA
	3.4 Solutions
	4. FlexRun
	4.1 Overview
	4.2 FlexRun:Architecture
	4.2.1 Structure of of FlexRun:Architecture
	4.2.2 Working mechanism of FlexRun:Architecture
	4.3 FlexRun:Algorithm - Design Space
	4.3.1 Design space of Gemv-unit: (#TILE, #DPE, LANE size)
	4.3.2 Design space of Vec-unit: types, number, and order of basic vector operators
	4.4 FlexRun:Algorithm - Design space exploration
	4.4.1 Gemv-unit Rearrangement
	4.4.2 Vec-unit Reconstruction
	4.5 FlexRun:Automation
	4.5.1 FlexRun:Generators
	5. Implementation
	5.1 FlexRun
	5.1.1 FlexRun
	5.1.2 Memory
	5.2 Workloads and Experimental Setup
	5.2.1 Workloads
	5.2.2 Experimental setup
	6. Evaluation
	6.1 Performance improvement of FlexRun compared to the Baseline
	6.2 Comparison of FlexRun and GPU
	6.3 Scalability of FlexRun
	6.4 Effectiveness of FlexRun
	7. RelatedWork
	8. Conclusion
	Abstract (In Korean)

<startpage>13
1. INTRODUCTION 1
2. Background 4
2.1 Neural Networks-based NLP models 4
2.1.1 RNN-based NLP Models 4
2.1.2 Attention-based NLP Models 5
2.2 Fast inference support for NLP tasks 6
3. Motivation 8
3.1 Chracteristics of NLP models 8
3.1.1 Diverse operational complexities 8
3.1.2 Varying range of dimensions 9
3.1.3 Various parameter configurations 10
3.1.4 Heterogeneous vector operations 10
3.2 Challenges of NLP models 12
3.2.1 Challenge 1: Wide range of dimensions and irregular matrix operations 12
3.2.2 Challenge 2: Non-negligible vector operations’ latency 12
3.2.3 Challenge 3: Heterogeneity of vector operations 13
3.3 Limitations of previous works 13
3.3.1 GPU (general-purpose accelerator) 14
3.3.2 ASICs 15
3.3.3 FPGA 16
3.4 Solutions 16
4. FlexRun 18
4.1 Overview 18
4.2 FlexRun:Architecture 19
4.2.1 Structure of of FlexRun:Architecture 20
4.2.2 Working mechanism of FlexRun:Architecture 22
4.3 FlexRun:Algorithm - Design Space 23
4.3.1 Design space of Gemv-unit: (#TILE, #DPE, LANE size) 24
4.3.2 Design space of Vec-unit: types, number, and order of basic vector operators 25
4.4 FlexRun:Algorithm - Design space exploration 27
4.4.1 Gemv-unit Rearrangement 27
4.4.2 Vec-unit Reconstruction 28
4.5 FlexRun:Automation 30
4.5.1 FlexRun:Generators 30
5. Implementation 32
5.1 FlexRun 32
5.1.1 FlexRun 32
5.1.2 Memory 33
5.2 Workloads and Experimental Setup 34
5.2.1 Workloads 34
5.2.2 Experimental setup 35
6. Evaluation 36
6.1 Performance improvement of FlexRun compared to the Baseline 36
6.2 Comparison of FlexRun and GPU 38
6.3 Scalability of FlexRun 39
6.4 Effectiveness of FlexRun 40
7. RelatedWork 41
8. Conclusion 43
Abstract (In Korean) 49
</body>

