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Abstract 

 
The analysis of the time-dependent neutron behavior is essential to 

understanding the kinetic properties of reactor cores in various application fields 

including reactor start-up analyses, reactivity measurements, accident analysis, and 

experiments in research reactors. Since the reactor transient analysis requires a lot of 

computational time compared to the steady-state analysis, it has mainly relied on 

deterministic or quasi-static methods. However, these methods can lead to inaccurate 

results due to inherent differential approximations to space, energy, or time domains. 

Recently, thanks to the ever-advancing computing power and the development of 

high-reliability methodologies, the time-dependent Monte Carlo (TDMC) neutron 

transport method without any approximation is being actively studied and has 

become an applicable alternative for reactor transient analysis in a practical time 

range. The development of Monte Carlo transient analysis method is very important 

because it can provide reference solutions for the transient analysis of various 

reactors such as gen-IV reactors and research reactors as well as commercial reactors. 

In domestic, McCARD, a Monte Carlo code developed by Seoul National University, 

has equipped with the capability of the TDMC simulation and performed alpha 

eigenvalue calculations and transient analysis. However, the existing code is limited 

to two-dimensional analysis and lacks the capability for an accurate and reliable 

reactor transient analysis such as an unbiased variance estimation. Therefore, 

motivated by the necessity of developing such high-reliability transient analysis code, 

this thesis aims to advance the TDMC algorithms for reactor transient analysis and 

to extend the applicability of the TDMC simulation to practical problems. 

The TDMC method enables sustainable neutron simulation by introducing time 

intervals to the conventional Monte Carlo simulation, conducting time bin-by-bin 

neutron simulation, and then controlling the neutron population at the end of each 

time interval. In McCARD, the analog MC branching method that simulates the 

branching of particles as it is, and the combing method, which samples the exact 

number of neutrons without bias, are used as neutron population control methods. 

The efficiency of the algorithm is improved by removing the scale factor previously 

used for weight normalization and introducing a dynamic weight window. The 
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TDMC method which allows sustainable simulation of neutrons over time is applied 

to the PNS experiments to estimate the prompt neutron decay constant alpha. In the 

PNS experiment, it has been reported that the different alpha values are measured 

depending on the detector position and detection time due to the initial source and 

geometry effect. Utilizing the TDMC method which can accurately simulate the 

space- and time-dependent behavior of neutrons, an optimum detector position 

search algorithm is developed for the PNS alpha measurement. The developed 

method is applied to the Pb-Bi-zoned experimental benchmark at KUCA and 

numerical experiments at AGN-201K. In the KUCA experimental benchmark, the 

spallation source effect is well reflected so the relative alpha convergence at different 

detector positions is well predicted. As for the AGN-201K simulation, the sensitivity 

of the optimum detector position to the initial source location is evaluated. By 

comparing the detector signals at convergence times according to positions, the 

optimum detector position is determined where the detector signal is highest. The 

application results are expected to be a good reference for designing and performing 

actual PNS alpha measurement experiments. 

Along with the neutron population control method, the methodologically 

important parts of the reactor transient simulation are the delayed neutron simulation 

and the steady-state modeling. Since the prompt neutron and the delayed neutron 

have a large difference in generation time, the conventional method of directly 

sampling the delayed neutron from the fission event causes a large statistical error. 

In addition, a method that can simulate the distribution of the prompt neutron and 

delayed neutron sources in the initial steady-state is needed because most transient 

analysis starts from the steady-state. Therefore, the forced decay algorithm through 

precursor simulation is introduced for efficient delayed neutron simulation. As the 

initial steady-state modeling method, the TDMC steady-state simulation method is 

employed, which consistently uses the TDMC simulation method from the initial 

state to the transient state without changing the calculation mode. In this process, the 

algorithm for normalizing the initial number of precursors is improved, and a new 

feature of moving geometry treatment to deal with more realistic three-dimensional 

transient scenarios is developed. The developed McCARD transient analysis 

capability is verified for the 2D and 3D problems of the C5G7-TD reactor transient 

benchmark and compared with nTRACER. In the 3D problems, the axial insertion 
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and withdrawal of the control rods are well simulated, and the trends of the core 

dynamic reactivity and relative fission rate show good agreement with the results of 

nTRACER within the stochastic errors. 

The Monte Carlo calculation usually provides the accuracy and reliability of the 

calculation result through the sample mean and the variance of the sample mean. In 

the course of verifying the capability of McCARD transient analysis modules, it is 

found that the sample variance of a TDMC tally mean obtained from the 

conventional stochastic processing is highly biased. This is because correlation is 

made between neutrons during the branching process or population control of the 

TDMC calculation. The biased variance gives distorted information for judging the 

accuracy and reliability of Monte Carlo calculation results. Moreover, there is a 

problem of how to allocate and statistically process the contribution of the delayed 

neutrons when estimating the variance of tally mean. To address these issues and to 

estimate accurate variance, a history-based batch method for the TDMC simulation 

is developed. In the history-based batch method, the neutrons and precursors are 

grouped in several batches to simulate separately, and the results are statistically 

processed batch-wisely to break the correlation between the estimates. At the same 

time, the allocation problem of the delayed neutron contributions can be solved 

naturally by assigning the contribution to the included batch tally. The developed 

method is verified in infinite homogeneous two-group problems and C5G7-TD 

benchmark problems. It gives unbiased variances for the tally means if the batch size 

is sufficient. In addition, error propagation is observed in the TDMC simulation. It 

is demonstrated that it stems from the weight normalization scheme in the population 

control and propagates through the weight of survival neutrons. On the other hand, 

in the system in which the delayed neutrons are more dominant than the survival 

neutrons, the error does not propagate significantly because the neutrons are not 

survived for a long time interval and the delayed neutrons contribution is relatively 

large. 

When establishing point kinetics model for reactor transient analysis or 

performing a reactivity measurement experiment, it is necessary to calculate kinetics 

parameters of the core. In general, since it is difficult to obtain an accurate neutron 

flux distribution in a transient state, kinetics parameters are calculated by assuming 

solutions of the steady-state transport equation and its adjoint equation as the shape 
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function and weighting function. However, as it becomes possible to simulate the 

accurate time-dependent neutron flux distribution through the TDMC method, a 

time-dependent kinetics parameters estimation method is developed based on the 

exact point kinetics equations utilizing TDMC simulation. In particular, Monte Carlo 

algorithms that can efficiently calculate the adjoint response during TDMC forward 

simulation are developed instead of the conventional Contributon method, which is 

computationally quite burdensome. To verify the developed methods, the time-

dependent kinetics parameters are evaluated in infinite homogeneous two-group 

problems, and the results show good agreement with the analytic solutions. In 

addition, it shows more than 1,000 times the computational efficiency for problems 

near the critical when comparing with the Contributon method. Then to check the 

applicability of the estimated time-dependent kinetics parameters, the point kinetics 

equation is established using them and the transient behavior of the system is 

predicted. The point kinetics analyses are performed on the C5G7-TD problem in 

which the initial state is critical and the beam trip simulation of the thorium-loaded 

ADS system at KUCA in which the initial state is subcritical. The PKEs with 

different kinetics parameters estimated from the k-eigenvalue calculation, fixed 

source calculation, and TDMC calculation are compared to each other. It is noted 

that the developed method can calculate the kinetics parameters reflecting the 

accurate neutron flux distribution regardless of the system and it provides a 

framework for the point kinetics analysis in the generalized time domain including 

the conventional steady-state and arbitrary transient states.  

Finally, McCARD/CUPID coupled transient analysis system is established 

using TCP/IP socket communication to provide transient analysis capabilities for 

more practical problems considering the thermal-hydraulic feedback. CUPID is a 

three-dimensional sub-channel code developed by KEARI, and by coupling it with 

McCARD, it is possible to conduct transient analysis considering the effect of 

coolant mixing in the sub-channels. The coupled analysis system is verified in the 

VERA #6 HFP assembly problem by comparing it with the existing 

McCARD/MATRA coupled steady-state analysis system. The steady-state results 

match well with the McCARD/MATRA system with a maximum difference of 0.17% 

in power distribution, 0.06% in coolant exit temperature, and 1.55% in fuel 

temperature. As for the coupled transient analysis, a simple rod ejection accident is 
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analyzed in the modified VERA #6 problem under the HZP condition. From the 

temperature and power trend, the Doppler effect of the fuel temperature feedback is 

observed, and thus the integrity of the coupled transient analysis system is verified. 
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Chapter 1. Introduction 
 

 

1.1. Background 
 

Monte Carlo (MC) method has been a reference solver for a long time in the 

nuclear reactor physics field in that it has no approximation in dealing with complex 

geometry and directly utilizing a continuous-energy nuclear cross section libraries. 

In the 2010s, with the development of various methodologies such as Doppler 

broadened cross section generation, pin-wise tally capability, depletion module, 

efficient parallel computation and multi-physics coupled analysis system, the whole-

core steady-state neutron transport methods for a commercial reactor have almost 

reached its final stage. In addition to this, as computation power continues to enhance, 

MC transient neutron transport method for a high-fidelity reactor transient analysis 

has emerged as a hot topic and researches are actively being conducted. Since MC 

method can provide reference solutions for various transient analyses including 

accident analysis of commercial reactor, gen-IV reactor and research reactor, reactor 

startup analysis, and kinetics experiments analysis, it is imperative to develop MC 

transient neutron transport methods. 

There are two approaches in MC transient neutron transport methods, a quasi-

static method [1-3] and a time-dependent Monte Carlo (TDMC) method. The quasi-

static method solves the time-dependent neutron flux as the factorization of a shape 

function and an amplitude function. The shape function is obtained by the MC 

neutron transport simulation while the amplitude function is calculated by the point 

kinetics equations (PKE). This method is efficient in that the temporal variation of 

neutron population or amplitude is treated simply by solving the PKE, but it implies 
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potential inaccuracies due to the discretization of the time domain. The TDMC 

method directly tracks neutrons by time bin-by-bin simulation with population 

control at the end of each time bin to sustain the number of neutrons. Though it 

divides time into the bins for the population control, the particle simulation is 

conducted in the continuous time domain without any approximation. However, 

TDMC method requires high computational cost, and there have been several 

methodological hurdles for its application, which are the population control, delayed 

neutron treatment and steady-state initial condition modeling. 

Recently, these issues are resolved with the development of noble methods and 

it becomes viable to simulate neutrons within more practical time ranges. The 

population control of the particles is essential for TDMC simulation because the 

number of particles keeps changing to cause a memory shortage in supercritical cases 

or termination due to the lack of particles in subcritical cases. Kaplan [4] first 

proposed the TDMC simulation with population control at the time boundaries 

adjusting weight window and collision biasing. Booth [5] developed the combing 

algorithm to maintain neutron population by uniformly increasing or decreasing the 

survival neutrons at the end of time interval. As for the delayed neutron treatment, 

the issue was the high statistical uncertainty in the direct delayed neutron simulation 

due to significantly different lifetime of the prompt neutrons and precursors. This 

was resolved with the idea of Legrady [6] and Sjnitzer [7] to simulate the delayed 

neutrons via the precursor simulation with the forced decay algorithm. The last is the 

steady-state initial condition modeling which is represented by the modeling of the 

neutron and precursor (or delayed neutron) source distribution prior to performing a 

transient calculation. Sjnitzer [7] demonstrated the steady-state initial condition 

modeling using conventional MC power iteration scheme in the k-eigenvalue 
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calculation. Shaukat [8] proposed a TDMC steady-state simulation method for an 

initial condition modeling by consistently using TDMC algorithms. 

The TDMC methods have been utilized mainly in the field of experiments in 

research reactors to estimate kinetics parameters such as the prompt neutron decay 

constant by conducting numerical noise experiments or pulsed neutron source (PNS) 

experiments [4, 9, 10]. Thanks to the development of methodologies mentioned 

above and improved computer performances, many reactor physics groups are 

focusing on the development of a TDMC code for the high-fidelity reactor transient 

analysis. From the previous study of Shaukat [11], McCARD [12], a Monte Carlo 

neutron-photon transport code developed in Seoul National University, has equipped 

with the capability of the TDMC simulation. However, the existing code is limited 

to the two-dimensional transient analysis which is represented by the change in cross 

sections and lacks of the parallel computation algorithm. Shaukat also introduces a 

scale factor as a weight normalization factor multiplied to tally values which may 

complicate the error quantification. As for the variance estimation, the conventional 

statistical process conducted for the tally values per neutron as in the fixed source 

mode calculation may result in the biased variance due to the highly correlated 

neutrons. Thus, it is highly required to develop advanced TDMC algorithms to 

perform an accurate and reliable analysis for the realistic reactor transient problems.  

 

 

1.2. Purpose and Scope 
 

The purpose of this research is to develop advanced time-dependent Monte 

Carlo algorithms for reactor transient analysis and to extend the applicability of the 

time-dependent McCARD simulation to realistic problems. The developed advanced 
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TDMC algorithms include improved TDMC simulation scheme with variance 

reduction and parallel computation, handling of three-dimensional geometry 

changes, unbiased variance estimation, efficient adjoint weighted kinetics parameter 

calculation and thermal-hydraulic coupled transient analysis system. 

In chapter 2, the conventional TDMC algorithm using an analog MC branching 

method with the combing method [5] for population control is described. The scale 

factor is removed for the simplification and a dynamic weight window is introduced 

to maintain the efficiency of the particle simulation at each time step. The TMDC 

simulation using the population control is applied to estimate alpha from the PNS 

experiment. To resolve the dependency issues regarding the detection position and 

time of the PNS alpha measurement, an optimum detector position search algorithm 

is developed based on the TDMC simulation, and applied to the Pb-Bi-zoned 

experimental benchmark [13] at Kyoto University Critical Assembly (KUCA) and 

numerical experiments at AGN-201K [14]. 

In chapter 3, the TDMC methods for the MC transient analysis are presented. 

For the delayed neutron treatment, the forced decay algorithm with precursor 

simulation is introduced and the TDMC steady-state simulation method is used for 

the initial condition modeling. The new feature of moving geometry treatment based 

on surface representation is implemented to treat realistic three-dimensional 

transient scenarios. The capability of MC transient analysis is verified for the C5G7-

TD benchmark [15] 2-D and 3-D problems by comparing with the deterministic 

transport code, nTRACER [16]. 

In chapter 4, the real variance estimation method for TDMC simulation based 

on the history-based batch method [17] is developed. The source of variance bias in 

TDMC simulation is explored and the effectiveness of the proposed method is 
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verified in infinite homogeneous two-group problems and C5G7-TD benchmark 

problems. In addition, the propagation of the errors in TDMC simulation through the 

time bin-by-bin weight normalization scheme in the population control is observed 

and examined in terms of the error propagation formula. 

In chapter 5, the time-dependent kinetics parameters are estimated based on the 

exact point kinetics equations. In the exact point kinetics equations, the kinetics 

parameters are defined as the ratio between the integrals of the time-dependent shape 

functions and operators weighted by the adjoint function. By introducing an arbitrary 

detector response from the adjoint equation of the out-coming collision density 

equation as a weight function, the time-dependent kinetics parameters can be 

obtained through the TDMC simulation. The adjoint calculation in TDMC 

simulation is equivalent with the Contributon method [18] which is quite 

burdensome for the practical application, so a more efficient MC algorithm is 

developed with an assumption to fix the time and get the average scheme within a 

time step. The developed method is verified in infinite homogeneous two-group 

problems, and applied to a C5G7-TD problem and numerical beam trip simulation 

at KUCA with the point kinetics analysis using the estimated kinetics parameters. 

In chapter 6, a neutronics and thermal-hydraulic coupled transient analysis 

system, McCARD/CUPID, is established by combining McCARD with a 3D sub-

channel code CUPID [19]. McCARD/CUPID is coupled externally using TCP/IP 

socket communication and a server program. The coupling scheme is verified in 

comparison with McCARD/MATRA [20] coupled system for the steady-state VERA 

benchmark [21] HFP assembly problem, and its capability for transient analysis is 

preliminarily tested for the postulated transient scenario in the same VERA assembly 

problem. 
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Chapter 2. Time-dependent Monte Carlo Neutron 

Transport Method 
 

 

2.1. TDMC Algorithm with Population Control 
 

To sustain the number of neutrons tracked in an off-critical system, population 

control is required during the simulation to prevent the everlasting increase or 

decrease in the neutron population. TDMC neutron transport method employs the 

time bin-by-bin simulation with the population control at the end of each time step. 

Within a time step, the neutron time is updated with the sampled track length until it 

crosses the upper time boundary as 
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where i, j, and k are the time step, history, and track index. ,i j

kt , 
,i j

kl , and 
,i j

kE  are 

the time, sampled track length, and energy after the k-th flight of history j at time 

step i. nm  is the neutron mass. When the sampled neutron time exceeds the upper 

time boundary, 1iT  , the neutron is stopped and stored with its information at 1iT   

as 
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There are two approaches in dealing with the multiplicative reactions in TDMC 

simulation. One is the analog method to let the multiplicative reactions make new 

branches. The other is the branchless method [7] which adjusts the neutron weight 
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instead of making new branches in accordance with the expected number of neutrons 

at each collision and uses a dynamic weight window to keep the neutron weight 

during the simulation. In both methods, population control is needed at the end of 

each time step since the number of neutrons is not kept constant and their weights 

differ from each other. After all neutrons in the i-th time step are simulated, the 

survival neutrons are discarded or split to maintain the number of neutrons while 

preserving the total weights. 

 

Figure 2.1 Schematics of the multiplicative reaction treatment in TDMC 

The well-known population control algorithms are the Russian roulette/splitting 

and combing method. The number of neutrons and their weights after population 

control is set as below to preserve the total weights of neutrons. 
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In the above equation, 
,s in  and N  indicate the number of survival neutron at the 

end of i-th time step and the inputted number of neutrons to preserve. When a neutron 
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weight is larger than the average weight, the neutron is split into 
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probability of 
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 or it dies. The difference between the Russian roulette/splitting 

and combing method is the usage of a random number. In Russian roulette/splitting 

method, a random number is sampled for every particle and thus the number of 

neutrons to be sampled is not always to be exactly N. On the other hand, only one 

random number is sampled in the combing method and it always samples the exact 

targeted number of N neutrons. The probability of how many neutrons to be sampled 

at each neutron is same in both methods and both are known to be unbiased method. 

The below figure shows the schematic of the combing method. 

 

Figure 2.2 Schematic of the combing method 

McCARD employs the analog MC branching scheme with the combing method 

at the end of the time step for TDMC simulation. To ensure the efficient simulation 

according to the changing average neutron weight after the population control, 

McCARD adjusts the dynamic weight window used in the implicit capture before it 

starts the next time step simulation as 
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In the above equations, , 1S iW   and , 1L iW   denote the survival weight and the lower 

weight boundary of the implicit capture at (i+1)-th time step. 1iw   is the average 

neutron weight at (i+1)-th time step after the population control. 

 

2.2. Alpha Estimation Using TDMC Simulation 
 

The prompt neutron decay constant, , has played a key role in reactor kinetics 

analyses in that it gives an intuitive understanding of asymptotic behaviors and it can 

be directly measured from the experiments. One of the well-known alpha 

measurement methods is the pulsed-neutron-source (PNS) method, which obtains 

the alpha by the exponential regression of the time-dependent detector signals after 

injecting a short burst of neutrons. After the higher mode terms decay out, one can 

fit the time-dependent detector signals to a single exponential function and get the 

fundamental mode alpha independent of the energy characteristic and positioning of 

a detector. However, it has been reported [22, 23] that inconsistent alpha values are 

measured from different detector positions, which is attributed to the remaining 

space- and time-dependent higher mode effects. In the same context, how to 

determine a good detector position and time for PNS alpha measurement is still an 

issue. 

There have been several approaches to reduce the higher mode terms from 

detector signals by the post-processing methods. Taninaka [24] suggested the 

masking technique to exclude the initial parts of detector signals which contain the 
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higher mode effects when conducting alpha fitting. In addition to the temporal 

masking of signals from a detector, Katano [25] devised the estimation method to 

reduce higher mode effects by the linear combination of signals from multiple 

detectors. These methods give clever ideas to eliminate higher mode effects from 

fitting data, but they cannot be used to predict and choose the optimum detector 

position before the experiment. 

Based on the time bin-by-bin simulation with the population control algorithm, 

the TDMC method can track the temporal behavior of neutrons with sufficiently low 

stochastic errors even if the system is far from the critical state. Therefore, by 

utilizing TDMC simulation for the PNS alpha measurement, an optimum detector 

position search algorithm is developed to resolve the dependency issues. 

 

2.2.1. Alpha Estimation by Exponential Fitting 
 

From the TDMC simulation of the PNS experiment, one can obtain the time-

dependent detector signals at the desired positions by tallying the responses from 

prompt neutrons as 
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where m and r present the isotope and the reaction type respectively. DV   is the 

volume of a detector and t   is the time interval of the tally. Subscript p of the 

angular flux denotes the prompt neutron. Then the time-dependent tally results can 

be fitted to the exponential function as [26] 
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In the equation, 
1C  and 

2C  are fitting constants, and st  is the starting time of the 

fitting. Since the remaining higher mode components decay out differently over time, 

different alpha values are estimated according to the starting time of fitting. 

0( | )st r  indicates the alpha estimate of the detector located at r  using its detector 

signals starting from 
st  and is expected to converge to the fundamental alpha as the 

higher modes disappear. 

The convergence of the alpha estimates can be diagnosed by simply comparing 

the estimates to the reference alpha. The onset time of the convergence is determined 

when the relative difference between the mean of alpha estimates and the reference 

alpha becomes less than the prescribed convergence criterion , , as 
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0 ( | )t r  and   are the mean of alpha estimates and the standard deviation of the 

relative difference respectively which are introduced to consider the stochastic error 

of the MC simulation for convergence diagnosis. The convergence time of the 

detector located at r , 0 ( )t r , is then defined as the minimum starting time of the 

fitting in which the mean of alpha estimates, 0 ( | )t r  , satisfy the convergence 

criterion including stochastic errors. 

The reference fundamental alpha, ref , is calculated using the MC -iteration 

method [27] implemented in McCARD. The MC -iteration method is one of the -
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static MC methods which solve the following -mode eigenvalue equation with the 

MC power method. In the integral form of the collision density equation, the -mode 

eigenvalue equation can be expressed as 

 t tS S R , (2.8) 
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where tS  is named as the time source. All other notations follow the convention 

except that the delayed fission neutron is ignored in the transition kernel pK  and 

angular flux p . In the same way that the fundamental mode k is calculated with 

the iterative fission source updates by the MC power method, the fundamental mode 

 can be obtained with the iterative time source updates. 

 

2.2.2. Determination of an Optimum Detector Position 
 

In terms of experimental measurement, the optimum detector position in the 

PNS experiment is where the estimated alpha value has high reliability. Since the 

detector counting is a Poisson process, the detector count rate has stochastic 

uncertainty inversely proportional to the average count rate. This means the higher 

the signal of the detector, the more reliable the results are. Then one can determine 
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the optimum detector position as to where it shows the highest detector signal after 

it converges to the fundamental mode alpha. The detector signals after it converges 

can be calculated from TDMC simulation as 
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where 
0 ( )t r  is the onset time of the convergence at the detector located at r and 

T is the fitting time interval. 

 

2.3. Application Results 
 

2.3.1. KUCA Pb-Bi-Zoned Experimental Benchmark 
 

The developed method is applied to the Pb-Bi-zoned experimental benchmark 

at KUCA which is a multi-core type critical assembly in Kyoto University Research 

Reactor Institute operated with zero power condition. The core consists of Pb-Bi 

loaded 93% enriched uranium fuel and polyethylene moderator and reflector, each 

of which has coupon-shaped plates stacked inside the aluminum sheath. Each plate 

has a 5.08 × 5.08 cm dimension and the aluminum sheath has a 5.53 × 5.53 cm 

dimension with 1 mm thickness. The overall height of the assembly is 152.40 cm 

with the upper and lower polyethylene reflector layers of more than 50 cm long and 

the fuel layers of approximately 40 cm long. There are 3 control rods and 3 safety 

rods composed of B2O3 along the side of the core region. The benchmark provides 6 

types of subcritical core configurations with a different number of fuel assemblies. 

The PNS experiments are conducted with the spallation neutron sources generated 

by injecting 100 MeV protons to the Pb-Bi target at the center of the core. The alpha 
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is measured with optical fiber detectors at three different detector positions. Among 

the core configurations, case 6 is selected for the application which has the deepest 

subcriticality. Figures below show two types of the fuel assemblies of the case 6 core 

and its core configuration. The core consists of 20 enriched uranium fuel assemblies 

and 8 Pb-Bi loaded fuel assemblies surrounding the Pb-Bi spallation source target. 

The fuel region is surrounded by polyethylene moderator and all control rods and 

safety rods are fully withdrawn. From the core configuration, one can expect the 

spallation source will make different detector signals depending on the location and 

time, which results in inconsistent alpha measurements. 

 

Figure 2.3 Fall sideways view of Pb-Bi loaded fuel assembly 

 

 

Figure 2.4 Fall sideways view of enriched uranium fuel assembly 
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Figure 2.5 Core configuration of the Pb-Bi-zoned benchmark case 6 

 

For the TDMC PNS simulation, the initial spallation neutron source is modeled using 

MCNPX2.6.0 proton simulation. The spallation neutron spectra and angular 

distribution are obtained by tallying the neutrons leaving the Pb-Bi target. The 

neutron spectra at every 15 degrees with respect to the proton beam are normalized 

respectively and inputted to McCARD TDMC simulation as initial source 

information. The calculated spallation neutron angular distribution and energy 

spectra are given in figure below. One can see the overall angular distribution is 
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biased to the beam direction and the energy spectrum is more hardened as the 

outgoing angle with respect to the beam direction is small. 

 

 

Figure 2.6 Angular distribution and energy spectra of the spallation neutron 

 

McCARD TDMC simulation is done using 100 million histories and 0.1 ms 

time interval up to 5.0 ms. To estimate stochastic errors, the history-based batch 

method is used with 100 batches. The time-dependent detector signals for the 

exponential alpha fitting are tallied as the sum of (n, ) and (n, p) reactions, which 

are the charged particle emission reactions of the optical fiber detector used in the 

experiment. All available locations between assemblies are selected as candidate 

detector positions where the convergence of alpha and amplitude of detector signals 

are evaluated. To avoid the distortion of the neutron tracking, the reaction rate is 

tallied with the virtual detector material not influencing the real simulation. ref  is 

calculated by the -iteration method using 100,000 histories and 100 active cycles. 
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In both TDMC and -iteration calculations, ENDF/B-VII.1 cross section library is 

used. 

To verify the effectiveness of the developed method, the trends of alpha at the 

detector locations designated in figure 2.5 are compared with the experimental 

results. Among the three detectors, detector #3 is excluded for the comparison 

because the detector signals seem to be contaminated with gamma-ray induced by 

high energy neutrons emitted from the target. Figure 2.7 shows the comparison 

results of the alpha trend at the two detector positions. The solid lines and the dashed 

lines are the alpha trends estimated with the TDMC simulation and the experiment. 

The reference alpha is calculated as 1950.0 with its standard deviation of 2.0. All 

results show the convergence to the reference alpha as the higher modes decay out, 

but the convergence trend varies depending on the detector position. There is some 

discrepancy between the TDMC and experimental results in the initial trend and its 

convergence time, which is attributed to be due to the difference in the energy 

sensitivity to the neutron yield of the detector. It is meaningful, however, in that both 

results show the same difference of 0.4 ms in the convergence times between two 

detectors. In the TDMC results, detectors #1 and #2 converge to the reference alpha 

within stochastic error at 1.0 ms and 0.6 ms, while they converge at 1.7 ms and 1.3 

ms in the experimental results. This demonstrates that the TDMC simulation can 

predict the relative convergence time of alpha at different detector positions quite 

accurately. 
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Figure 2.7 Comparison results of the alpha trends 

from TDMC and experimental data 

 

The convergence time and the amplitude of the detector signal are compared to 

determine the optimum detector position at candidate detector positions. The 

convergence criterion  of 0.02 is used for the convergence diagnosis. Figure 2.8 is 

the map of the convergence time and the relative amplitude of detector signals. The 

results show faster convergence time at the front regions surrounding the spallation 

neutron source and the polyethylene moderator regions adjacent to fuel regions are 

determined as the optimum detector positions showing the highest detector signals. 
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Figure 2.8 Convergence time and relative detector signal maps 

of the case 6 core 

 

2.3.2. AGN-201K Numerical PNS Experiments 
 

The proposed method is examined in numerical PNS experiments at AGN-

201K, a research and educational reactor at Kyung Hee University. The reactor is 

operated with 10 Watt power condition where the maximum neutron flux is about 

4.5 × 108 #/cm2∙sec. The core comprises a stack of 9 solid fuel disks surrounded by 

a graphite reflector and lead shield in a water tank. The fuel disks are made of a 

homogenous material of 19.5 w/o UO2 and polyethylene moderator. As for safety 

and control devices, there are two safety rods and one coarse and one fine control 

rod, which are made of the same fuel material and inserted from the bottom of the 

core. In addition, there are a glory hole and four access ports in which a source or 



 

 ２０ 

detectors can be placed respectively. The core configuration of AGN-201K is shown 

in Figure 2.9 and the core specifications are given in the table below. 

 

Figure 2.9 Cross-sectional and vertical view of AGN-201K 

 

Table 2.1 Core specifications of AGN-201K 

Contents Value [cm] Contents Value [cm] 

Fuel disk radius 12.800 Fine CR radius 1.000 

Aluminum radius 16.100 
Coarse CR and 

SR radius 
2.250 

Graphite reflector 

radius 
33.120 Glory hole radius 1.185 

Lead shield radius 44.926 Access port radius 5.000 

Water reflector 

radius 
98.000 Active core height 24.500 

 

The numerical PNS experiments are conducted with all control rods and safety 

rods fully ejected from the core to postulate the deepest subcritical state. All rods are 

ejected and located 7cm below the bottom disk, and the effective multiplication 

factor of the core is 0.97906±0.00009. Since the initial source position can be easily 

adjusted along the glory hole, AGN-201K is suitable for examining the sensitivity of 
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the optimum detector position to the initial source position. The initial source is 

assumed to be a Cf-252 source located at a prescribed position, 0cm, 30cm, and 60cm 

away from the center of the core, and then jerked immediately to make a pulsed 

neutron source. The initial control rod and safety rod positions and source locations 

are depicted in Figure 2.10. 

 

 

Figure 2.10 Initial rod positions (left) and initial source positions (right) of the 

numerical PNS experiments at AGN-201K 

 

McCARD TDMC calculation is done with 100 million histories and 100 

history-based batches. The simulation time is set to 5.0 ms with a 0.1 ms time interval. 

The time-dependent alpha is estimated with charged particle emission reaction tally 

of the optical fiber detector in cylindrical meshes surrounding the active core region. 

The reference alpha is estimate as -333±10 from the -iteration method, and the 

convergence criterion is set to 0.02. 

Figure 2.11 to 2.13 are the map of the convergence time and relative detector 

signals according to the initial source position. In the left figures, where the source 

is located at the center of the core, the boundary region between the core and graphite 

reflector shows the fastest convergence but the relative detector signal is larger inside 
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the core, indicating the optimum detector position. When the source is located 30cm 

away from the center, the far side of the core is determined to be the optimum 

position among the fast convergence regions. On the other hand, when the source is 

located at a 60cm position, the near side of the core is shown to be the optimum 

position. In all results, the convergence trends at each region come from the 

combination of the neutron sources propagated from the initial source location and 

the fission sources propagated from the core region. Although this method does not 

analyze higher modes in the combined equation term by term, it can simply but 

effectively specify the positions where the higher mode effects disappear faster and 

determine the optimum position where shows the highest detector signals using 

TDMC simulation. 

 

 

Figure 2.11 Convergence time and relative detector signal (source at the center) 
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Figure 2.12 Convergence time and relative detector signal (source at 30cm) 

 

 

Figure 2.13 Convergence time and relative detector signal (source at 60cm) 
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Chapter 3. Monte Carlo Transient Analysis 
 

 

3.1. Delayed Neutron Treatment 
 

In the conventional MC methods, the delayed neutrons are sampled directly 

from the fission events. When a delayed neutron is sampled, a precursor family is 

determined first and then time and energy are sampled according to its precursor 

family. Since the lifetime of the prompt neutrons and precursors are significantly 

different, the direct simulation of delayed neutrons causes a large statistical 

fluctuation in the delayed neutron population. In general, the life time of the prompt 

neutron is about 10-4 second order, while the life time of precursors ranges from 10-

1 to 100 second order. 

The drawbacks of the direct delayed neutron simulation are originated from the 

limited resources and one-time use of a delayed neutron. To overcome the large 

fluctuation problem, a forced decay algorithm [6, 7] with precursor simulation is 

proposed by Hoogenboom’s group. When a fission event occurs during the 

simulation, precursors are sampled and stored as many as 
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where 
,d ijk  is the average number of delayed neutrons produced from a fission at 

the k-th collision of the j-th neutron in the i-th time step. 0k   and    are the k-

eigenvalue at the initial steady state and a random number.  x  indicates the largest 

integer not exceeding x. The sampled precursors are treated as a combined precursor 

which presents all the contributions from precursor families to reduce stochastic 
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fluctuation due to different decay characteristics. Since the precursors are 

accumulated during the simulation, the precursor population is controlled by the 

combing method at the end of each time step to maintain the prescribed number of 

precursors. All the stored precursors are forced to decay and generate delayed 

neutron in the next time step conserving the expected weight of a delayed neutron. 

The probability of a precursor created at 
0t  decays at time t is 

 0( )
( ) l t t

d l l

l

P t f e
  

 , (3.2) 

where lf  and l  are the fraction and the decay constant of l-th precursor family.   

time step conserving the expected weight of a delayed neutron. One can see that 

instead of fixing a precursor family all contributions from each family are reflected 

when the properties of a delayed neutron is sampled. Each precursor is forced to 

decay within the next time step uniformly and the weight is determined by the 

importance sampling technique to preserve the expected weight. 
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1 1
( ) ,      ( )d i i

i i i

P t T t T
T T T





   
 

 (3.3) 

 , 0,( )

, , ,*

( )

( )

l j jt tC Cd
d ij i i i l j l j

ld

P t
w w w T f e

P t




 
     (3.4) 

In the above equations, iT  is the i-th time step interval and C

iw  is the weight of 

precursors in i-th time step after population control. After the time and weight of a 

delayed neutron is sampled, the energy is sampled from the delayed chi-distribution 

of a precursor family which is determined from the probability as 
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To examine the effectiveness of the forced decay algorithm compared to the 

direct sampling method, the generation of the delayed neutron per precursor or 

fission event within a time interval is compared. An initially steady-state condition 

is assumed with the decay constants and delayed neutron fractions of the precursor 

families given in the table below. The comparison is conducted by varying the total 

number of precursors and the time interval. Figures 3.1 to 3.3 are the comparison 

results using the fixed time interval of 0.1 ms. In both methods, the stochastic 

uncertainty becomes smaller as the number of precursors increases but it shows 

much lower relative standard deviation (RSD) in the forced decay cases. In the direct 

sampling method, the RSDs slowly increase over time because the delayed neutrons 

are rarely sampled in a distant time interval. On the other hand, the RSDs decrease 

over time in the forced decay method because the deviation between neutron weights 

becomes smaller while the number of neutrons to be sampled is kept constant. In 

terms of the figure of merits (FOM), the forced decay algorithm shows much higher 

FOM than the direct sampling method and both FOM results show the same trend 

regardless of the number of precursors since the time is proportional and the variance 

is inversely proportional to the number of precursors. Figures 3.4 to 3.6 are the 

comparison results using 100 million fixed number of precursors. In the direct 

sampling method, more delayed neutrons are sampled within the time interval as the 

size of the time interval increases, resulting in a smaller RSD. On the other hand, the 

deviation of the delayed neutron weight becomes larger as the size of the time 

interval increases in the forced decay algorithm, resulting in a larger RSD. However, 

it is shown that the FOM is much larger for all cases in the forced decay algorithm. 
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Table 3.1 235U delayed neutron parameters [28] 

Family Decay constant l [s-1] Fraction l 

1 0.0124 0.000215 

2 0.0305 0.001424 

3 0.1110 0.001274 

4 0.3010 0.002568 

5 1.1400 0.000748 

6 3.0100 0.000273 

Sum  0.006475 

 

 

Figure 3.1 Delayed neutron generation according to the sampling methods  

using the fixed time interval 
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Figure 3.2 RSD of the delayed neutron generation according to the sampling 

methods using the fixed time interval 

 

 

Figure 3.3 FOM of the delayed neutron generation according to the sampling 

methods using the fixed time interval 
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Figure 3.4 Delayed neutron generation according to the sampling methods  

using the fixed number of precursors 

 

 

Figure 3.5 RSD of the delayed neutron generation according to the sampling 

methods using the fixed number of precursors 
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Figure 3.6 FOM of the delayed neutron generation according to the sampling 

methods using the fixed number of precursors 

 

The forced decay algorithm with the precursor combing is an unbiased method 

and effectively simulates the relatively important precursors for the next time 

interval. In combination with the dynamic weight window scheme in McCARD, the 

effects of delayed neutrons are automatically reflected in the results since the 

survival weight and lower weight boundary in equation (2.4) are determined by the 

survival neutron weight at the end of each time step. If the delayed neutron weight 

is far smaller than the dynamic weight window, most of the delayed neutrons are 

filtered in the weight window and will not affect the results and vice versa. However, 

there are some points that users may consider when using the TDMC simulation with 

forced decay algorithm. They are the number of precursors to simulate and the time 

interval. Since the relative weight of delayed neutrons to survival neutrons is not 

known in transient scenarios, the number of precursors is recommended to be the 

same with the number of neutrons to guarantee a similar level of stochastic error 
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even in systems where delayed neutrons are highly dominant. As for the time interval, 

it is recommended to be several times of the generation time. A short time interval 

leads to inaccurate calculation results with large stochastic uncertainty and requires 

a large computational burden, while a long time interval leads to the memory 

shortage in supercritical cases and the lack of survival neutrons in subcritical cases. 

In terms of the forced decay algorithm, a long time interval may cause relatively 

large stochastic error from the delayed neutrons due to a large deviation of the 

delayed neutron weights. Therefore, it is recommended to determine a time interval 

of TDMC simulations as several times of the generation time. 

 
 

3.2. Initial Steady State Modeling 
 

In most reactor transient analyses, transient start from the steady-state initial 

condition, which means the initial source distribution of the prompt neutrons and 

delayed neutron precursors should be obtained. In McCARD, a new MC steady-state 

simulation method [8] has been developed based on TDMC simulation. Compared 

to the steady-state modeling method [7] using conventional MC power iteration 

scheme, it can model the initial source distribution during the consistent TDMC 

simulation without any calculation mode changes. In the well-known steady-state 

analysis using k-eigenvalue calculation, the steady-state properties can be obtained 

by altering f  with fictitious one, .fic , defined by 
f

k


. By making the best use of 

this concept, one can get the steady-state source distribution via TDMC simulation 

with a slight modification in the number of fission neutron sampled and k as 
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where the subscript m denotes the prompt neutron or delayed neutron (or precursor). 

ik  is the multiplication factor in i-th time step defined as the ratio of gain terms and 

loss terms within the time step. After the fission source density are converged to the 

steady-state distribution, the family distribution and the number density of the 

sampled precursors should be determined. The precursor family distribution at the 

steady-state can be easily calculated from the precursor balance equation as 
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Then when a precursor generated at the steady-state simulation is forced to decay, its 

precursor family can be sampled from the decay probability starting from the initial 

steady-state fraction. The number density of precursor can be calculated by 

balancing the amount of precursor generation and the expected precursor loss due to 

forced decay in a time step. 
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In the above equations, the subscript C indicates precursor and N is the number of 

precursor generation steps. 
0

Cw  and C

Nw  are the average weight of precursors at 

the steady-state and the average weight of precursors at the N-th time step. CM  is 

the average amount of precursor generation and 
,C iL   is the expected amount of 

precursor loss in the i-th time step. Then the precursor weight at the steady-state can 

be calculated by the equation (3.10). 

 

3.3. Moving Geometry Treatment 
 

To deal with the realistic transient scenarios such as control rod withdrawal or 

insertion, the geometry in the TDMC simulation should be treated continuously in 

time. The most of the MC codes deal with geometry as a boundary representation 

(B-Rep) which a cell is expressed as the intersections of the surrounding surfaces, 

and each surface is represented by coefficients according to a type of the surface. 

Then moving geometry can be expressed with the time-dependent coefficients for 

the surface equation. 

 ( , , , ) 0f x y z t   (3.13) 

The geometry information is used in the flight kernel to calculate the distance to 

surface and to find the next cell to be linked after the flight. Since the energy and 
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direction of a neutron during k-th flight are not changed, the position of the neutron 

is expressed as a function of time as 

 
1 1 1 1( ) ( ) ( ) ( ) ( ) ( )ij ij ij ij ij

k k k k kt t s t t t v E t t       r r r   . (3.14) 

Then x, y, and z in the surface equation (3.13) are parameterized in time and the time 

a neutron crosses the surface can be calculated from the equation. 

The figure below shows the flow chart of the McCARD transient analysis 

module. The steady-state TDMC simulation is divided into the fission source 

convergence step and the precursor generation step. After the fission source 

distribution is converged in the former step, precursors are sampled and stored for 

the initial steady-state modeling in the latter step. At the same time, the multiplication 

factor at the steady-state, 0k , is calculated which is used as a normalization factor 

of the fission neutron sampling (equation 3.6) in the transient simulation. At the end 

of the steady-state simulation, a transient scenario is set according to the user input, 

and the transient TDMC simulation is conducted with the continuously changing 

system parameters such as cross section, geometry or density.  
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Figure 3.7 Flow chart of the McCARD transient analysis module 

 

3.4. Numerical Results 
 

McCARD transient analysis module is applied to the well-known C5G7-TD 

benchmark problems. The C5G7 core consists of 16 UO2 and MOX fuel assemblies 

each of which has 17x17 configuration. Each assembly has 264 fuel pins, 24 guide 

tubes, and an instrumentation tube in the center. All pins are composed of two zones 

of the mixture inside a pin and the moderator surrounding it. Figure 3.8 shows the 2-

D core configuration of the south-east quadrant. It can be seen the MOX assemblies 

have three enrichments of 4.3%, 7.0%, and 8.7%, and the core region is surrounded 

by water moderator. 
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Figure 3.8 Radial core configuration of C5G7-TD benchmark 

 

The axial core configuration is added with the 3-D extension. Additional water 

reflectors are added in both upper and lower regions of the active core, and the guide 

tubes and an instrumentation tube are explicitly modeled in the upper reflector region. 

In the initial steady state condition, a control rod (CR) bank at each assembly is 

positioned at the boundary between the active core and the upper reflector region. 

The axial core configuration is depicted in Figure 3.9 and the dimensions of the core 

are given in Table 3.2. 
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Figure 3.9 Axial core configuration of C5G7-TD benchmark 

 

Table 3.2 Dimensions of C5G7-TD benchmark 

Contents Value [cm] 

Pin radius 0.54 

Pin pitch 1.26 

Assembly pitch 21.42 

Radial moderator width 21.42 

Active core height 128.52 

Axial reflector thickness 21.42 

 

Among the problems, TD0 and TD4 problems are selected for the verification of the 

McCARD transient analysis module. TD0 is a set of 2-D transient problems with the 

postulated instantaneous CR insertion and withdrawal of designated CR banks. In 2-
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D problems, the insertion and withdrawal of CR banks are modeled by the mixing 

of control rod and guide materials as 

  

 
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. (3.15) 

 

Figure 3.10 Transient scenario of TD0 problems 

TD0 problems consist of 5 subsets each of which has different locations where the 

control rod movements occur. 

 TD0-1: insertion/withdrawal of bank 1 

 TD0-2: insertion/withdrawal of bank 3 

 TD0-3: insertion/withdrawal of bank 4 

 TD0-4: insertion/withdrawal of bank 1, 3, and 4 simultaneously 

 TD0-5: insertion/withdrawal of bank 1-4 simultaneously 

McCARD calculation is done with 50,000 neutrons and 50,000 precursors per 

time step. 100 fission source convergence steps and 500 precursor generation steps 

are used with 0.5 ms time interval. The core dynamic reactivity and fractional core 
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fission rate are calculated and compared with nTRACER results. Figure 3.11 and 

3.12 show the comparison results of core dynamic reactivity and fractional core 

fission rate from 0 to 3 seconds. It should be noted that the uncertainties of the tally 

values are calculated from the history-based batch method which will be covered in 

the next chapter. The error bars in the figures indicate 2 values calculated with 50 

number of batches. All results show good agreement with nTRACER results 

presenting the corresponding drops and recoveries according to the extent of 

reactivity insertion. Figure 3.13 and 3.14 are the assembly-wise fractional fission 

rates of TD0-3 and TD0-5 problem for 10 seconds. McCARD results also match well 

with nTRACER’s within stochastic errors showing the trends of relative fission rates 

among the assemblies. 

 

Figure 3.11 Core dynamic reactivity of TD0 problems 
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Figure 3.12 Fractional core fission rate of TD0 problems 

 

 

Figure 3.13 Assembly-wise fractional fission rate of TD0-3 
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Figure 3.14 Assembly-wise fractional fission rate of TD0-5 

TD4 problems postulate 3-D movements of the explicitly modeled control rods 

from the upper region. Four individual CR banks are inserted and withdrawn 

according to their transient scenarios. Among the problems, TD4-1, TD4-3, and 

TD4-4 are selected for the verification, and their transient scenarios are given below.  
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Figure 3.15 Transient scenario of TD4-1 

 

 

Figure 3.16 Transient scenario of TD4-3 
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Figure 3.17 Transient scenario of TD4-4 

 

McCARD transient calculation is conducted with 50,000 number of neutrons 

and precursors. The number of convergence step and precursor generation step are 

set to 100 and 500 respectively with its time interval of 0.5 ms. In the same manner, 

the core dynamic reactivity and fractional core fission rate are compared with 

nTRACER results and given in the figures below. For TD4-1 and TD4-3, the 

dynamic reactivity is decreased and increased according to the insertion and 

withdrawal of the CR bank 1 and 3 showing the lowest values at 2.0 and 4.0 seconds 

respectively. The corresponding fission rate also shows the lowest values at 2 and 4 

seconds but slower restoration than the drop rate. As for TD4-4, more complicate 

reactivity and fission rate changes appear including the offsetting between the CR 

bank 3 and 4 from 4.0 to 6.0 seconds. In all cases, McCARD results match well with 

nTRACER results within stochastic errors. The axial distribution and trend of fission 

rate at the top of each fuel assembly are also given in Figure 3.20 to 3.25, and they 

also give consistent results.  
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Figure 3.18 Core dynamic reactivity of TD4 problems 

 

 

Figure 3.19 Fractional core fission rate of TD4 problems 
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Figure 3.20 Trend of assembly-wise fractional fission rate at the top layer (TD4-1) 

 

Figure 3.21 Distribution of assembly-wise fractional fission rate 

at 1.5 seconds (TD4-1) 
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Figure 3.22 Trend of assembly-wise fractional fission rate at the top layer (TD4-3) 

 

 

Figure 3.23 Distribution of assembly-wise fractional fission rate 

at 6.5 seconds (TD4-3) 
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Figure 3.24 Trend of assembly-wise fractional fission rate at the top layer (TD4-4) 

 

 

Figure 3.25 Distribution of assembly-wise fractional fission rate 

at 5.0 seconds (TD4-4) 
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Chapter 4. Real Variance Estimation in TDMC 

Simulation 
 

 

4.1. Bias of the Sample Variance in TDMC Simulation 
 

 

The bias of the sample variance originates from the covariance terms between 

tally estimates and it can be derived in the same way as in the conventional MC k-

eigenvalue calculation. Let m

ijQ  be the MC estimate of a tally Q from the j-th history 

in the i-th time step which is included in the m-th tally bin. The tally bin index m is 

introduced because a tally bin can contain multiple time steps depending on the 

user’s needs. Then the tally mean of the m-th tally bin and its sample variance can 

be written as 

 
1m m

ij

i j

Q Q
NM

  , (4.1) 
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where the M and N are the number of time steps included in the m-th time step and 

the number of histories in each time step. The variance bias is defined as the 

difference between the real variance and the apparent variance which is the expected 

value of the sample variance. From the definition, the real variance and the apparent 

variance of a tally mean in TDMC simulation are given by 



 

 ４９ 

 
 

22

22 2

2

2 2
, , ,

2

2 2
, , ,

2

11
( )

1

( ) ( )

1

( ) ( )

1

mm m m m
R ijij

i ji j

m m m

ij ij i j

i j i j i j

m m m

ij ij i j

i j i j i j

i

E E E E QQ Q Q Q
NMNM

NM
E Q E Q Q

NM NM

NM
E Q E Q E Q

NM NM

Q
NM





 

 

 

 

    
                  

     

        

           





 

 

2
, , ,

1
cov

( )

m m m

j ij i j

i j i j i j

Q Q
NM

 

 

       

, (4.3) 

 

 

 

    
    

  

2 2

2

2

2 2

2 22 2

22
2

1

( 1)

1

( 1)

1

1

1

1

1

1

m m
A S

m m

ij

i j

m m

ij

i j

m m

ij

m m m m

ij ij ij

m m m

ij ij

EQ Q

E Q Q
NM NM

E Q Q
NM NM

E Q E Q
NM

E Q E Q E Q E Q
NM

Q E Q E Q
NM

 



        

 
   

 
    

    
       

                   

             




, (4.4) 

where  E    is the expected value of an arbitrary variable in the bracket and 

cov m m

ij i jQ Q  
    is the covariance between tally estimates m

ijQ  and m

i jQ   . In equation 

(4.4), the last term can be rearranged as 

 

 

 

 

 

2

2

2

2 2
, , ,

2 2

2
, , ,

2

1

1
,

( ) ( )

1 1

1
,

( )

1

m m

ij

i j

m m m

ij ij i j

i j i j i j

m m

ij ij

m m m m

ij i j ij i j

i j i j i j

m

ij

E Q E Q
NM

NM
E Q E Q Q

NM NM

NM
E Q E Q

NM NM

E Q Q E Q E Q
NM

Q
NM



 

 

   

 

             

        

        

           

   



 

 

2

2
, , ,

1
cov ,

( )

m m m

ij ij i j

i j i j i j

E Q Q Q
NM

 

 

        

, (4.5) 



 

 ５０ 

By substituting equation (4.5) into equation (4.4) and subtracting it from equation 

(4.3), the variance bias can be expressed in covariance terms between neutrons 

within the tally bin. 
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The sample variance of a tally mean is usually estimated by statistically 

processing the contributions per neutron. In the fixed source mode simulation, all the 

initial neutron sources are guaranteed to be independent of each other and thus the 

derived tallies are uncorrelated. In the TDMC simulation, however, the neutrons 

become highly correlated to each other as the simulation proceeds. This correlation 

stems from the branching process and the population control scheme. The neutrons 

originated from the branching process such as (n, fis), (n, 2n), and (n, 3n) reactions 

share the same ancestors, and thereby their progenies are correlated to each other. 

Such genealogical correlation naturally occurs in all MC simulations and it becomes 

problematic when neutrons are treated as independent ones after a normalization 

scheme such as cycle-by-cycle FSD updates in the k-eigenvalue calculation. In 

TDMC simulation, the population control algorithm exactly corresponds to this. At 

the end of each time step, the survival neutrons which may have common ancestors 

are discarded or split into identical neutrons to maintain the effective number of 

neutrons. Besides, the weight of neutrons after the population control is normalized 

to have the same weight, which also makes a correlation between neutrons, as 
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where ,s in  indicates the number of survival neutrons at the end of the i-th time step. 

Therefore, the tallies from these correlated or identical neutrons are not independent 

and their statistical process causes a variance bias. In addition to the occurrence of 

the correlation between neutrons, there is another problem in allocating tally 

contributions from delayed neutrons. In TDMC simulation, the delayed neutrons are 

treated by the forced decay algorithm, which samples a precursor instead of a 

delayed neutron at the fission events and forces it to decay and make a contribution 

at each time interval. Even if the neutrons and precursors are numbered from the 

beginning of the simulation, it is difficult to properly allocate these contributions 

because there may be no survival neutrons sharing common ancestors, or the number 

of delayed neutrons and survival neutrons may not match. 

 

4.2. History-based Batch Method in TDMC Simulation 
 

There have been several approaches to estimate real variance in the 

conventional k-eigenvalue calculation, such as Gelbard’s batch method [29], Ueki’s 

inter-cycle covariance estimation method [30], fission source distribution inter-cycle 

correlation method [31] and history-based batch method [17]. Among the methods, 

the history-based batch method simply but effectively gets rid of the correlation 

between tally estimates by grouping histories in a genealogical way without directly 

calculating covariance terms. 

To estimate an unbiased variance of a tally mean, a history-based batch method 
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is developed for TDMC simulation. The basic concept of the method is to group 

neutrons and precursors into different batches which do not interfere with each other 

throughout the simulation to eliminate the correlation between tallies. Figure 4.1 

shows the schematic diagram of the history-based batch method in TDMC 

simulation. ,i jn , ,i jd  and ,i jC  indicate the j-th survival neutron, delayed neutron 

and precursor in the i-th time step. N and NC are the total number of neutrons and 

precursors. NB is the number of batches. At the beginning of the simulation, the 

neutrons are divided into equal numbers and grouped into batches as indicated by 

boxes in the figure. The neutrons and precursors are simulated within each batch 

throughout the simulation. The solid lines present the tracks of each particle while 

the dot lines present the generation of precursors and delayed neutrons from the 

forced decay algorithm. At the end of each time step, the number of neutrons and 

precursors are controlled to maintain the population. One can see that all the 

simulation schemes including the delayed neutron treatment and population control 

are applied batch-wisely. 
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Figure 4.1 Schematic diagram of the history-based batch method in TDMC 

Then the mean of a tally and its variance can be estimated from the batch-average 

tally results as 
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where i, j, and  are the time step, history, and batch index. Qm is the batch-average 

tally of the  -th batch for the m-th tally bin. Since there is no correlation between 

the batch-average tallies, it is straightforward that the mean among the batches and 

its variance are unbiased estimates. In addition, the inconsistent allocation problem 



 

 ５４ 

of the delayed neutron contributions is naturally resolved by assigning contributions 

to the batch to which each delayed neutron belongs. The history-based batch method 

is exactly the same as the replica calculation, but it has an advantage in that the 

results can be estimated with a single calculation. 

 

4.3. Numerical Results 
 

4.3.1. Infinite Homogeneous Two-group Problems 
 

The developed history-based batch method is verified to infinite homogeneous 

two-group problems. A subcritical problem and a supercritical problem with 
infk  

values of 0.99900 and 1.00200, respectively, are chosen for the verification. The two-

group cross section data are presented in Table 4.1. McCARD TDMC calculation is 

conducted with 1,000,000 neutron histories for 100.0 ms with 0.1 ms time interval 

varying the size of batches. Only prompt neutrons are simulated and the initial 

sources are set to be 1 group. For the reference calculation, 100 replica calculations 

are done with 10,000 neutron histories and the same time conditions. 

 

Table 4.1 Two-group cross section data 

Cross section First group (g=1) Second group (g=2) 

tg  0.50000 1.30000 

fg  0.00100 0.09000 

g  2.40000 2.40000 

sgg  0.48000 1.09000 

'sg g  2 21.69430 10 /1.70000 10    0.00190 

g  1.00000 0.00000 

1 / gv  102.28626 10  
61.29329 10  
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Figure 4.2 shows the comparison results of the fission rate tally with different 

batch sizes in the subcritical case. The batch size is the number of neutrons allocated 

to each batch, so the batch size of 100 means the calculation of 10,000 batches with 

100 neutrons in this case. From the figure, one can see that it fails to estimate the 

reference mean mQ  when the batch size is lower than 250 because the number of 

samples is too small that the batch estimates mQ    do not follow the normal 

distribution. On the other hand, when the batch is larger than 2,500, the mean of 

batch estimates predicts the reference mean well within the stochastic error. Figure 

4.3 presents the comparison results at 50 ms. In both figures, the 1 errors are 

indicated by the grey band for the reference calculation and error bars for other 

calculations. 

 

 

Figure 4.2 Comparison of 
HBQ  trends according to the batch size (subcritical) 
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Figure 4.3 Comparison of 
HBQ  at 50 ms according to the batch size (subcritical) 

 

Figure 4.4 is the comparison results of the RSD of a tally mean with different 

batch sizes. The 90% confidence interval of the RSD is depicted as the grey band for 

the reference calculation and marked as error bars for other calculations with the 

history-based batch method. The results with a batch size larger than 2,500 match 

well with the reference within the stochastic error, which is the consistent results 

with the previous estimation of the mean value. Figure 4.5 and 4.6 show the 

comparison of SDs according to the variance estimation method. The black line 

presents the reference result with 1 SDs depicted by the grey band while the red 

line and blue line show the results from the conventional method and the history-

based batch method using the batch size of 10,000, respectively. In the conventional 

method, the SDs are estimated to be much smaller than the reference, so the results 

appear to not match within the stochastic error. However, the history-based batch 

method estimates the SDs in good agreement with the reference, showing a real to 

apparent SD ratio of nearly 1. 
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Figure 4.4 Comparison of RSD trends according to the batch size (subcritical) 

 

Figure 4.5 Comparison of the SDs according to the history-based batch method 

(subcritical) 

 



 

 ５８ 

 

Figure 4.6 Comparison of the real to apparent SD ratio according to the history-

based batch method (subcritical) 

 

The verification of the history-based batch method for the supercritical problem is 

also conducted in the same way. Figure 4.7 to 4.11 are the corresponding results of 

the supercritical problem. When the size of batch is larger than 2,500, the tally mean 

and its RSD of the history-based batch method show good agreements with the 

reference results. The effectiveness of the proposed method is shown in comparison 

with the conventional method which far underestimates the SDs. 
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Figure 4.7 Comparison of 
HBQ  trends according to the batch size (supercritical) 

 

 

Figure 4.8 Comparison of 
HBQ  at 9 ms according to the batch size (supercritical) 
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Figure 4.9 Comparison of RSD trends according to the batch size (supercritical) 

 

 

Figure 4.10 Comparison of the SDs according to the history-based batch method 

(supercritical) 
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Figure 4.11 Comparison of the real to apparent SD ratio according to the history-

based batch method (supercritical) 

 

4.3.2. C5G7-TD Benchmark Problems 
 

To consider the effect of the delayed neutrons, C5G7-TD benchmark problems 

are chosen for the verification and application of the developed method. For the 

verification, the TD0-5 problem is solved and the real variance of the fission rate is 

estimated. McCARD calculation is done with 500,000 neutrons and precursors with 

the time interval of 0.1 ms. The delayed neutrons are simulated using the forced 

decay algorithm and the simulation starts from the initial steady-state source 

distribution. For the reference calculation, 100 replica calculations with different 

random number sequence are conducted using 5,000 neutrons and precursors. The 

comparison results of the fission rate trend according to the batch size are given in 

Figure 4.12 and 4.13. Compared to the previous infinite homogeneous two-group 

problems, the tally mean matches well with the reference even in the case of the 
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relatively small batch size of 500. This can be inferred from that the previous 

problems are more extreme cases and the delayed neutrons alleviate the fluctuations 

among the batch results. Similar results are also found in the comparison of the RSDs 

in Figure 4.14 that all cases show good agreement with the reference RSD.  

 

Figure 4.12 Comparison of 
HBQ  trends according  

to the batch size with delayed neutrons (TD0-5) 

 

 

Figure 4.13 Comparison of 
HBQ  at 3 ms according 

to the batch size with delayed neutrons (TD0-5) 
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Figure 4.14 Comparison of RSD trends according 

to the batch size with delayed neutron (TD0-5) 

 

The estimated tally mean and SD from the conventional method are presented 

in Figure 4.15 with the history-based batch method of 10,000 batch size. It should 

be noted that the contribution of a delayed neutron is randomly assigned to a neutron 

in the conventional method. The mean and SDs of the conventional method are quite 

well matched with the reference which means the correlation between tally estimates 

is relatively small if the delayed neutrons are simulated. This can be deduced by 

checking the number of independent branches from the start of the simulation. Figure 

4.16 is the plot of the number of independent branches in the conventional method 

and history-based batch method according to the delayed neutron simulation. 

Without the delayed neutron, the independent branches keep decreasing from the 

source convergence step to the transient step. On the other hand, if the delayed 

neutrons are generated from the stored precursors in each time step, it has much more 

independent neutrons which reduces the correlation in the tally estimates. It can be 

also seen that the history-based batch method ensures the minimum number of 
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independent neutrons so that there will be less correlation. Figure 4.17 is the 

comparison of the real to apparent SD ratio. The dashed lines are the estimated 

variance with the 10 times longer tally bin which contains the tally estimates of 10 

time steps. The history-based batch method estimates variance well in both cases 

while the conventional method shows underestimations of variance. When the 

variance is estimated with tally estimates over several time steps, the variance 

becomes more biased because the correlation is stronger. 

 

 

Figure 4.15 Comparison of the SDs according to the history-based batch method 

with delayed neutron (TD0-5) 
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Figure 4.16 Trend of the number of independent branches (TD0-5) 

 

 

Figure 4.17 Comparison of the real to apparent SD ratio according to the history-

based batch method with delayed neutron (TD0-5) 

 

All results of the TDMC simulation in the previous chapters are calculated using the 

history-based batch method. One may obtain the biased results without using it. The 

fractional core fission rate of some C5G7-TD benchmark problems are presented in 
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comparison with the biased results from the conventional method. 

 

Figure 4.18 Comparison of the estimated variance in TD0-4 problem 

 

 

Figure 4.19 Comparison of the estimated variance in TD4-4 problem 

 

From the comparison results, it is demonstrated that the history-based batch 
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method can effectively eliminate the correlation between neutrons and estimate the 

real variance. However, as shown in Figures 4.2, 4.7, and 4.12, a sufficient batch size 

is required to assure unbiased tally results from the history-based batch method. This 

is because the history-based batch method is based on the assumption that the mean 

of batch estimates follows the true mean value. So, if the batch size is not sufficient, 

the batch estimates do not follow the normal distribution and the assumption 

becomes invalid. The sufficient batch size is highly problem dependent and hard to 

know before the calculation. In addition, providing the tally mean and variance for 

various batch sizes is computationally expensive. Therefore, diagnostic methods are 

suggested to determine the suitability of a prescribed batch size using a posterior 

normality test. 

Among the various normality tests, the Jarque-Bera test [32] and Lilliefors test 

[33] are selected for the evaluation. The Jarque-Bera test utilizes the skewness and 

the kurtosis of the n samples with the test statistic as 
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In the above equations, JB, S, and K denotes the test statistic, skewness, and kurtosis 
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respectively. The null hypothesis is that the random variable x follows a normal 

distribution, and under this condition, the test statistic JB follows a chi-square 

distribution with 2 degrees of freedom. If the p-value of the test statistic is smaller 

than the set level of significance, the null hypothesis is rejected and the samples are 

regarded not to follow a normal distribution. On contrary, if the p-value is larger, the 

samples are regarded to follow a normal distribution because there is no evidence to 

reject the null hypothesis. The Lilliefors test is a normality test based on the 

Kolmogorov-Smirnov (K-S) test when the population mean and variance are 

unknown. It utilizes the maximum difference between the empirical distribution 

function and the cumulative distribution function which is a normal distribution 

having the same mean and variance in the normality test as 

  sup ( ) ( )n nD F x F x  . (4.14) 

In the equation, ( )nF x   and ( )F x   are the empirical distribution function with n 

samples and the corresponding normal distribution. From the Lilliefors test table, the 

critical value Dn, with the set level of significance can be obtained and compared to 

the Dn. If the Dn is smaller than the critical value, the samples are regarded to follow 

a normal distribution since it cannot reject the null hypothesis. In McCARD, both 

methods are implemented to give diagnosis results of the time-dependent tally. The 

significance level is set to 0.05 and its corresponding formulation for the critical 

value in Lilliefors test with the sample size larger than 50 is given as 

 ,0.05

0.83
0.895 / ( 0.01)n

n
D

n


  . (4.15) 
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The table below shows the diagnostic results regarding batch sizes in C5G7-

TD0-5 problem. The total number of neutrons are fixed to 1,000,000 in all cases. 

From both results, the batch estimates are diagnosed to follow a normal distribution 

in cases when the batch size is larger than 500. Though the proposed methods can 

provide a suitability for the batch size in the history-based batch method, it is still 

problem dependent and requires repeated trial and error to get sufficient size of 

batches. In case of the k-eigenvalue calculations, it is recommended to be more than 

10,000 or even 100,000 number of neutrons to guarantee a normal distribution. In 

addition, it should be noted that a sufficient number of samples is required to get a 

reliable probability density of p-value in the normality test, which is known to be 

greater than 100. In the history-based batch method, the batch size and the number 

of batches are interrelated because the number of batches is determined by dividing 

the total number of neutrons by the batch size. Therefore, when determining the 

batch size, both batch size and number of batches should be considered in terms of 

the guarantee of a normal distribution and the applicability of a normality test. 

 

Table 4.2 Results of the normality test in C5G7-TD0-5 problem 

Batch 

size 

Number of 

batches 

Jarque-Bera 

p-value 
Lilliefors Dn 

Lilliefors critical 

value Dn, 

100 10000 < 0.00001 0.05956 0.01266 

250 4000 < 0.00001 0.04326 0.02001 

500 2000 0.00672 0.03682 0.02829 

1000 1000 0.10574 0.03607 0.03998 

2500 400 0.43334 0.04367 0.06307 

5000 200 0.52427 0.05873 0.08885 

10000 100 0.56349 0.07878 0.12468 
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4.4. Error Propagation in TDMC Method 
 

From the results of the infinite homogeneous two-group problems in the 

previous section, it is observed that the RSD of a tally mean continues to increase 

with the time step. To investigate the aspect of the error propagation in the TDMC 

simulation, the error at each time step is quantified based on the uncertainty 

propagation model and compared with the calculation results. 

In TDMC simulation, the population control is forced to continue the simulation 

especially, when the system is far from the critical state. For an efficiency of the 

simulation, the number of neutrons to be simulated is maintained constant by 

adjusting the weight of neutrons while conserving the total weight. The weight of 

neutrons after the population control is determined by the number of survival 

neutrons or the weight sum of survival neutrons. The ratio of the neutron weights at 

the end of a time step is accumulated step by step, and this accumulated neutron 

weight acts as a multiplier for the tally estimates. Then by separating the multiplier, 

the mean of tally estimates in the i-th time step can be written as [34] 
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where i and j are the time step and history index. ijq  is a tally estimate from the j-

th neutron with a weight 1.0 in the i-th time step. 
iF  is the multiplier of the i-th time 

step which is expressed as the product of the neutron weight ratio, 
if  , of the 
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preceding time steps. 
if  is defined as the ratio of the sum of neutrons weights at 

the beginning of i-th time step and the sum of weights of survival neutrons at the end 

of the i-th time step. Then the uncertainties of the neutron weight ratios at each time 

step are propagated through the multiplier and affect the uncertainty of a tally. Since 

the multiplier does not affect the simulation, the relative error of a tally mean can be 

expressed as 
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The second term in the right-hand side of the equation (4.18) is a stochastic 

uncertainty of the simulation, so it can be expected that the first term will dominate 

the uncertainty of the tally as time step proceeds. Using the first-order Taylor series 

expansion, the variance of the multiplier can be written as 
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This error propagation formula does not exactly represent the error behavior of a 

tally mean in the history-based batch method or the replica calculations because the 
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formula represents the variance of the products of the means while the error observed 

in the simulation is the variance of the mean of the products. However, the 

comparison of both results can help estimate the cause of the error propagation. 

Figure 4.20 is the trend of RSDs along the time step in the previous supercritical 

case of infinite homogeneous two-group problems. The reference RSDs are 

estimated from the tally results of the replica calculations and the RSDs of error 

propagation is calculated with the weight ratios of the replica calculations using 

formula (4.17). It shows a similar level of uncertainties in the weight ratios over the 

time steps and its propagation presents similar error trend with the reference. The 

RSDs are expected to increase continuously as the uncertainties accumulate over the 

time steps. 

 

 

Figure 4.20 Trend of RSDs in 0D 2G supercritical system without delayed neutrons 

 

In case of the C5G7-TD problem where the delayed neutrons are simulated, 

somewhat different trend of errors is observed. Figure 4.21 is the trend of RSDs in 

TD0-5 problem. Almost constant RSDs and the slightly increasing RSDs are 
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appeared in the reference and the error propagation cases respectively. This seems to 

be attributed to the dominant delayed neutrons in the subcritical system because the 

multiplier is applied to the survival neutrons only while the delayed neutron is newly 

added in each time step with its own weight calculated from the decay probability. 

In other words, the large contributions from the delayed neutrons prevent large 

fluctuations of the tally estimates and in turn, it keeps errors from propagating largely. 

On the other hand, in a supercritical system where the delayed neutrons are not 

dominant, the error is expected to be propagated along the time step as in the previous 

cases where delayed neutrons are not simulated. This can be found in Figure 4.22 

which is the case of a supercritical system with delayed neutrons made by modifying 

the TD0-4 problem. To demonstrate the effect of the delayed neutrons in TDMC 

error propagation, the contributions from the survival neutrons and delayed neutrons 

are quantified respectively. Figures 4.23 and 4.24 are the comparison results of the 

reaction rate contributions from the survival neutrons and delayed neutrons in the 

TD0-5 subcritical problem and modified TD0-4 supercritical problem. In both 

figures, the solid lines and dashed lines indicate the reaction rate contributions and 

the ratio of the contributions respectively. In the subcritical case where the delayed 

neutron contribution is relatively high at about 20% of the total reaction rate, the 

error does not propagate far because the contribution of the survival neutrons in the 

time step disappeared quickly and the error behavior is dominated by the delayed 

neutrons. On the other hand, in the supercritical case where the delayed neutron 

contribution is very low less than 0.1%, the error is propagated through the long lived 

survival neutrons over large number of time steps as expected in the error 

propagation model. It is emphasized here that the main factor determining the 

tendency of error propagation is not the criticality of a system, but the proportion of 
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survival neutrons propagating the error over time steps. Therefore, even if a transient 

occurs in a system with the same criticality, it can be expected that the propagation 

of the error is relatively slow when the delayed neutron fraction is high. 

 

 

Figure 4.21 Trend of RSDs in TD0-5 subcritical problem 

 

 

Figure 4.22 Trend of RSDs in modified TD0-4 supercritical problem 
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Figure 4.23 Reaction rate contributions in TD0-5 subcritical problem 

 

 

 

Figure 4.24 Reaction rate contributions in modified TD0-4 supercritical problem 
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Chapter 5. Time-dependent Kinetics Parameter 

Estimation in TDMC Simulation 

 

 

5.1. Kinetics Parameter Estimation 
 

5.1.1. Exact Point Kinetics Equations 
 

The estimation of kinetics parameters is essential for establishing the point 

kinetics model in reactor transient analysis. In the exact form of the point kinetics 

equation (PKE) [35], the kinetics parameters which are defined as a ratio of integrals 

of the time-dependent Boltzmann transport equation and precursor density equations 

over space, energy, and angle are time-dependent.  
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In the above equations, notations follow the conventions. By introducing the fission 

production operator 
p di

i

 
    

 
F F F  , multiplying an arbitrary weight 

function w, and integrating it over ( , , )Er Ω , the equation (5.1) becomes 
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With the separation of the angular flux into an amplitude function P and a shape 

function  and the normalization condition of 

 ( , , , ) ( ) ( , ,E t P t E t    r Ω r Ω , (5.8) 
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the exact PKE can be derived as 
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In the above equations, the kinetics parameters are defined as 
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The kinetics parameters in the exact PKE contain the time-dependent operators and 

shape function. In practice, however, due to the difficulties of getting the exact shape 

function, equations are approximated by the fundamental mode solution of the 

steady-state transport equation for the shape function, and its corresponding adjoint 

function for the weight function. Generally, the k-eigenvalue equation is used for the 

initially critical state and k-eigenvalue equation, -eigenvalue equation or 

inhomogeneous equation with external source is used for the initially subcritical state. 

With the development of advanced methods for the TDMC simulation, the exact 

shape function or the time-dependent behavior of neutrons can be obtained. In 

addition, efficient MC algorithms [36] for estimating the adjoint response of an 

arbitrary detector cross section during the MC fixed source calculation are developed, 

which are applicable to the TDMC simulation as well. Thus, based on these, the time-

dependent kinetics parameters estimation method reflecting the exact time-

dependent shape function and the adjoint response is developed and presented in this 

chapter. 

 

5.1.2. Physical Meaning of Adjoint Response 
 

The physical meaning the adjoint response and its MC algorithm can be derived 

starting from the adjoint equation of the outcoming collision density equation written 

as  

 
† † †

det det det
ˆ    K , (5.14) 
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where the †
K  and det  are the adjoint transport kernel and the detector response 

with an arbitrary detector cross section 
det  defined with the kernels below. 
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In the above equations, T and C represent the free flight kernel and the collision 

kernel. In the conventional kernels, the time variable is omitted because the change 

of the location r implies the change in time. In here, the time variable is added to 

express the change of cross sections in TDMC simulation. The kernel T   is 

redefined and used in the adjoint transport kernel instead of T since the expected 

importance or the adjoint response of a neutron is defined in the fixed phase space 

( , , )E tr Ω  when the neutron is introduced. So one can find that the time is fixed in 
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the flight kernel . The time variables in macroscopic cross sections are included 

in the number density terms expressed as  

 ( , , ) ( , ) ( , )l l

r r

l

E t N t E r r r , (5.20) 
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where subscript r and l denote the reaction type and the isotope index. From equation 

(5.14), the adjoint response can be expressed as below with the Taylor’s series 

expansion. 
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†

det, j  is the adjoint response from the j-th collision. From the equations (5.24) and 

T
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(5.25), the adjoint response, †

det ( , ,E t  r Ω  , can be interpreted as the sum of 

expected detector signals induced by a neutron at phase space . 

 

5.1.3. MC Algorithm for Kinetics Parameter Estimation 
 

From the exact forms of PKE, the adjoint weighted kinetics parameters, ( )t  

and ( )t , are expressed as 
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where    is the time-dependent shape function and the bracket   means the 

inner product of the components over ( , , )Er Ω . The Neumann series solution of the 

collision density equation gives the fission operator term in the bracket as 
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, (5.28) 

where ts  denotes the time source density in the TDMC simulation which consists 

of the survival neutron source from the previous time step and the delayed neutron 

source. Equation (5.28) means all fission neutrons generated during the flight and 

( , , )E tr Ω
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collision of a neutron starting from the time source. By combining the Neumann 

series solutions of the collision density equation with that of the adjoint response, 

equation (5.24), the time-dependent kinetics parameters can be calculated. Then the 

denominator of the kinetics parameters indicates the sum of all expected detector 

responses induced by the generated fission neutrons starting from the time source. 

Without any approximations, this can be exactly done by producing artificial 

branches at each fission event and simulating them to obtain the adjoint response 

tally. However, this so-called Contributon method [18] is quite burdensome which 

may take hundreds of times depending on the system, especially if applied to a near 

critical or a supercritical problem. So more efficient MC algorithms are developed 

utilizing Shim’s MC algorithm [36] with some assumptions to apply it for the TDMC 

simulation. 

The idea of the efficient MC algorithm is to utilize the subsequent branches of 

the neutron instead of making artificial branches for the adjoint calculation. Figure 

5.1 shows the schematic of the algorithm for calculating the fission operator term 

†

det ,  F . The figure is a branch process of a neutron where the yellow circles 

denote fission reactions and the thick lines after the fissions indicates the generation 

of a delayed neutron. In the Contributon method, artificial branches are generated 

when a fission occurs and their contributions are calculated along the individual 

tracks. However, the same contributions can be obtained by following the original 

track as if it is an artificial branch. The number in each collision point is the number 

of overlapping contributions when each fission neutron makes contributions along 

the original tracks. This number is equal to the number of fissions a neutron 

experienced before the collision point. Therefore, one can estimate all of the 
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contributions in a forward calculation by counting the fission events and tallying the 

detector responses multiplied by this number. Other two terms of †

det , di F  and 

†

det ,
v


  in kinetics parameters can be calculated in the same way. †

det , di F  

means the integration of detector responses after a delayed fission occurs, so it can 

be calculated by counting the delayed fission events instead of the fission events. 

†

det ,
v


  means the integration of detector responses after each collision weighted 

by the flight time. This is because / v  term indicates the track length divided by 

the velocity between each collision, so one can estimate the integral term by 

accumulating the flight time instead of the fission events. 

 

Figure 5.1 Tally algorithm for the estimation of kinetics parameters 

in fixed source mode calculation 

 

However, this algorithm cannot be applied to the TDMC simulation as it is for 

several reasons. First, the shape function within a time step is represented by the 

simulation of neutrons starting from the time source until the upper time boundary. 
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Thus, the adjoint responses should be weighted to the collisions within a time step. 

Second, the calculation of the adjoint responses may not be finished in the case when 

the system is near critical or supercritical. To prevent such an endless simulation, the 

adjoint convergence interval (L) is introduced and the adjoint response is calculated 

within the L considering the starting time of adjoint calculation. Finally, since the 

system within a time step keeps changing, for the exact calculation, it is necessary 

to estimate the adjoint responses by fixing the system time at each starting time of 

the adjoint calculation. But there is no way to do this without making artificial 

branches. Therefore, it is assumed that the system change and its effect on the adjoint 

response are small enough within a time step that the kinetics parameters calculation 

can be conducted at the fixed beginning of a time step. This assumption is thought 

to be valid because the time interval of the TDMC simulation is very small with an 

order of the neutron generation time. Considering the characteristics of the TDMC 

simulation listed above, the MC algorithm for the kinetics parameter estimation is 

modified. 

Figure 5.2 is the schematic of the modified algorithm to fit it in the TDMC 

simulation. The time interval of the TDMC simulation, t, and the adjoint 

convergence interval, L, are introduced, and the number of repeated contributions in 

the collision points are changed accordingly. Then one can estimate the integral term 

with fission operator by counting the number of fission events occurred within L 

before the collision and within t. 
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Figure 5.2 Modified tally algorithm for the estimation of kinetics parameters 

in TDMC simulation 

 

The MC algorithms for the estimation of the terms in the equations (5.26) and (5.27) 

can be expressed as 
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In the equations, n and n   are a neutron source and its branch index of 

multiplicative reactions such as (n,fis), (n,2n), and (n,3n) within a time step. So, 

( , )n n  means the n-th branch of the n-th neutron source, and N is the total number 

of neutron sources. ( , )n n

fD


 , ( , )n n

fdD


 , and ( , )n n

cD
   are the collection of fission, 

delayed fission, and collision indices respectively. ( , )J n n   indicates the last 

collision index within a time step. The adjoint convergence interval, L, is introduced 

to set a limit on the adjoint tracking. ( , )LJ n n j  indicates the last collision index 

within the forward interval L from the j-th collision. It should be noted that the 

neutron weight after the j-th collision in the first equality is offset with the neutron 

weight in the parentheses because the adjoint response is the sum of detector 

responses induced by a neutron. In addition, the collision index inside the 

parentheses of the first equality starts with j+1 in the equations (5.29) and (5.30), 

while it starts with j in the equation (5.31) since the flight time outside the 

parentheses is the time between the (j-1)-th and the j-th collision. 

The convergence of the adjoint response needs to be demonstrated to assure the 

use of the adjoint convergence interval L. From the physical meaning of the adjoint 

response, the adjoint response can be defined as the sum of fission neutrons 

generated by a neutron introduced at phase space ( , ,E t r Ω   using f   as an 

arbitrary detector cross section. Then the adjoint response can be presented with the 
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k-eigenvalues at each time step defined as equation (3.7). 
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If T and n are the time and time step index taken to reach the asymptotic flux shape 

from the introduction of a neutron, the k-eigenvalue after time T can be approximated 

to kasy and the adjoint response can be written as 
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 1 2n nN k k k , (5.34) 

where l is the neutron life time and Nn is the expected number of fission neutrons 

generated until the n-th time step by a neutron introduced at phase space ( , ,E t r Ω . 

When the system is subcritical where kasy is less than 1.0, it can be easily seen that 

the adjoint response converges to 
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In cases when the system is critical or supercritical where kasy is greater than or equal 

to 1.0, the adjoint response asymptotically diverges with the rate of kasy. Since the 

significance of the adjoint weighing is to reflect the relative importance of a neutron 

and the kinetics parameters are defined as the ratio of the adjoint weighted operator 

terms, the validity of introducing L can be justified by the convergence of the relative 

adjoint distribution. Using the equation (5.33), the ratio between adjoint responses 

at different phase space 1 and 2 is written as 
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From the equation, one can see that the ratio of the adjoint responses converges even 

in the critical or supercritical cases. These approaches to prove the convergence of 

the adjoint are proposed by Feghhi [37] in the conventional k-eigenvalue calculation 

and the analogy of the method is applied to the adjoint response in TDMC simulation 

here. From the demonstrations above, it can be considered that the introduction of 

the adjoint convergence interval for the adjoint calculation during TDMC simulation 

is sufficiently reasonable. 

 

5.2. Numerical Results 
 

5.2.1. Infinite Homogeneous Two-group Steady-state 

Problems 
 

For the verification, kinetics parameters are estimated in infinite homogeneous 

two-group problems. The two-group cross sections are given in Table 5.1 varying 

the differential scattering cross section. 21s  are set to make the infinite 

multiplication factor from 0.6 to 1.002 and fg   is used as the detector cross 

sections. McCARD calculation is done with the different number of histories and 

time considering its infinite multiplication factor. The simulations are conducted 

using 100,000,000 histories for 1 second in the cases where the infk  is 0.8 or less,  

10,000,000 histories for 1 second in the cases where the   is 1.0 or less, and 

50,000 histories for 0.01 second in the supercritical case. The initial neutron source 

is set to the fast energy group for all problems. To investigate the convergence of 

infk
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kinetics parameters according to the adjoint convergence interval, simulations are 

conducted varying the value L. The estimated kinetics parameters are compared with 

the analytic solutions. In addition, to compare the efficiency of the developed method, 

the FOM is compared with the Contributon method. 

 

Table 5.1 Two-group cross section data with delayed neutron 

Cross section First group (g=1) Second group (g=2) 

tg  0.50000 1.30000 

fg  0.00100 0.09000 

g  2.40000 2.40000 

sgg  0.48000 1.09000 

'sg g  Varaible 0.00190 

g  1.00000 0.00000 

1 / gv  102.28626 10  
61.29329 10  

ig  
i=1 0.00300 0.00300 

i=2 0.00300 0.00300 

i  
i=1 0.16504 

i=2 1.44726 

 

Figure 5.3 to 5.5 are the comparison results of the estimated  and eff  with its 

reference value in  of 0.6, 1.0, and 1.002 cases. The x-axis presents the relative 

adjoint convergence interval with respect to its generation time and error bars show 

2 values. The estimates converge to the reference value as L increases, and it 

requires a larger L to get converged value in 1.0 and 1.002 cases where the neutron 

chain is relatively longer. In the subcritical case, it converges to the reference when 

L is longer than 10 times of the generation time, whereas it converges when L is 

longer than 90 times in the critical or supercritical case. Table 5.2 is the comparison 
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results of kinetics parameters in various cases, and it shows a good agreement within 

95% confidence intervals. Table 5.3 shows the FOM of the Contributon method and 

the developed method according to . FOM is calculated as . In deep 

subcritical systems with 
infk   of 0.8 or less, the developed method is 2-10 times 

efficient than the Contributon method, however, as the system approaches the critical 

state, it shows more than 1,000 times better efficiency. 

 

 

Figure 5.3 Comparison results of the estimated kinetics parameters 

in steady-state ( = 0.6) 

 

 

Figure 5.4 Comparison results of the estimated kinetics parameters 

in steady-state ( = 1.0) 
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Figure 5.5 Comparison results of the estimated kinetics parameters 

in steady-state ( = 1.002) 

 

Table 5.2 Comparison results of the estimated kinetics parameters in steady-state 

 
Kinetics 

parameter 

Analytic 

solution 

McCARD 

(RSD[%]) 

Relaitve 

error[%] 

0.6 
 8.26688×10-6 8.26695×10-6 (0.02) <0.01 

eff  8.16340×10-3 8.17590×10-3 (0.13) 0.15 

0.7 
 7.34565×10-6 7.34675×10-6 (0.01) 0.01 

eff  7.43094×10-3 7.43753×10-3 (0.12) 0.09 

0.8 
 6.59940×10-6 6.59891×10-6 (0.01) 0.01 

eff  6.88160×10-3 6.87660×10-3 (0.11) 0.07 

0.9 
 5.98623×10-6 5.98322×10-6 (0.03) 0.05 

eff  6.45432×10-3 6.45157×10-3 (0.32) 0.04 

0.98 
 5.57037×10-6 5.56979×10-6 (0.03) 0.01 

eff  6.17530×10-3 6.16959×10-3 (0.28) 0.09 

1.0 
 5.47921×10-6 5.48067×10-6 (0.01) 0.03 

eff  6.11520×10-3 6.11939×10-3 (0.10) 0.07 

1.002 
 5.46378×10-6 5.46402×10-6 (0.02) <0.01 

eff  6.10607×10-3 6.11369×10-3 (0.26) 0.12 
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Table 5.3 Comparison of FOM in kinetics parameter estimation in steady-state 

 
FOM1 

Contributon method 

FOM2 

Developed method 

Efficiency 

(FOM2/FOM1) 

 
eff   eff   eff   

0.6 1.14×102 1.47×104 2.99×102 2.47×104 3 2 

0.7 7.43×101 8.21×103 4.31×102 4.02×104 6 5 

0.8 3.75×101 7.51×103 3.64×102 3.98×104 10 5 

0.9 1.11×101 1.15×103 6.34×102 5.74×104 57 50 

0.98 6.43×10-1 6.59×101 7.22×102 7.34×104 1124 1114 

0.99 1.24×10-1 5.14×100 2.58×102 3.06×104 2080 5956 

 

5.2.2. Infinite Homogeneous Two-group Transient Problems 
 

For the transient problem, a simple transient scenario is postulated by mixing 

the two material used in the steady-state problems. The two materials with 
infk  of 

1.0 (A) and 0.6 (B) are selected and mixed linearly from pure A material to pure B 

material until 5 ms. For the next 5 ms, the mixture is changed vice versa. Figure 5.6 

shows the transient scenario of material mixing. McCARD TDMC calculation is 

done with 1,000,000 histories and the initial neutron source is set to fast energy group 

given at t=0. The kinetics parameters are estimated at each time step varying the time 

interval, t, and L and compared with the reference solution. The reference solution 

is calculated by the MATLAB/Simulink simulation. 

 

infk
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Figure 5.6 Transient scenario of material mixing in 0D 2G problem 

 

Figures 5.7 to 5.10 are comparison results of the estimated kinetics parameters 

along the transient scenario. In Figures 5.7 and 5.8, t is fixed to 0.1ms, and in 

Figures 5.9 and 5.10, L is fixed to 1 ms. The results show a significant difference 

when it does not reflect sufficiently large L, which is more than 20 times of , on the 

adjoint calculation. But, as for the time interval, it shows good agreement with the 

reference regardless of the size of t. The FOM is also evaluated to compare the 

efficiency of the kinetics parameters estimation methods. Comparing the RSDs at 

each time step, the developed method is 800 times and 1,120 times more efficient 

than the Contributon method in calculating 
eff   and  respectively. From the 

results above, the developed MC algorithm is verified to give a true solution 

regardless of the criticality of a system, if the adjoint convergence interval is 

sufficient. In addition, it works well in both steady-state problems and transient 

problems and shows much better computational efficiency than the Contributon 

method. 
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Figure 5.7 Comparison results of  regarding L (t=1×10-4 sec) 

 

 

Figure 5.8 Comparison results of 
eff  regarding L (t=1×10-4 sec) 
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Figure 5.9 Comparison results of  regarding t (L =1×10-3 sec) 

 

 

Figure 5.10 Comparison results of 
eff  regarding t (L =1×10-3 sec) 
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5.3. Point Kinetics Analysis 
 

5.3.1. C5G7-TD Benchmark Problem 
 

As for the application of the estimated time-dependent kinetics parameters, the 

point kinetics analysis is conducted to predict the behavior of the system in a 

transient state. The C5G7-TD benchmark is selected as an application problem in 

which the transient starts from the initially critical state. Among the problems, the 

TD2-1 2D problem which postulates the insertion and withdrawal of control rod 

bank 1 is chosen and the kinetics parameters are estimated along the time. 

 

 

Figure 5.11 Transient scenario of TD2 problems 

 

McCARD TDMC simulation is conducted using 100,000 neutron histories and 

10,000 precursors with 0.2 ms time interval. The kinetics parameters  and 
eff  are 

calculated at each time step with the adjoint convergence interval of 1 ms and the 

estimated values are averaged every 5 ms interval. Figure 5.12 and 5.13 shows the 

time-dependent  and 
eff  estimates. The black lines are the kinetics parameters 

estimated from the TDMC simulation and the red lines are the kinetics parameters 
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calculated from the conventional k-eigenvalue calculation weighted by the k-adjoint. 

k-adjoint weighted kinetics parameters are calculated by McCARD k-eigenvalue 

calculation using 400,000 neutron histories for 200 active cycles after 100 inactive 

cycles. One can see that the kinetics parameters decrease from the critical state value 

as the control rods are inserted and get back to the critical state value as the control 

rods are withdrawn. At the critical state, the estimated kinetics parameters are 

matched with the k-adjoint weighted kinetics parameters within stochastic errors.  

 

 

Figure 5.12 Estimated from the TDMC simulation for TD2-1 

 

 

Figure 5.13 Estimated 
eff  from the TDMC simulation for TD2-1 
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Using the estimated kinetics parameters, the point kinetics analysis is conducted and 

compared with the reference TDMC simulation result of the fractional core fission 

rate. Figure 5.14 shows the trend of relative amplitudes calculated by PKE with 

different kinetics parameters and their errors. The reactivity is calculated from the 

TDMC simulation as a core dynamic reactivity and is used for all point kinetics 

analyses. The PKE analyses are conducted with the kinetics parameters which are 

estimated from the k-eigenvalue calculation weighted by the k-adjoint, the TDMC 

calculation weighted by the detector response at 0.5 seconds and 1.0 seconds. It 

shows similar differences near the initial critical state, however, as the system 

becomes subcritical with the insertion of CRs, the PKEs from the TDMC simulation 

match with the reference better than that from the k-eigenvalue calculation. The PKE 

from the k-eigenvalue calculation shows about 6% differences in the subcritical state, 

whereas the PKEs from the TDMC simulation at 0.5 and 1.0 seconds give 4% and 

3% differences respectively. This is because the shape function and adjoint function 

at the selected states during the CR insertion reflect the behavior of neutrons in the 

transient system better than that of the critical state. Figure 5.15 is the enlarged 

picture between 0 and 1 second in Figure 5.14, and the difference between the results 

can be seen more clearly. 
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Figure 5.14 Comparison of PKEs with different kinetics parameters for TD2-1 

 

 

Figure 5.15 Comparison of PKEs with different kinetics parameters 

for TD2-1 (enlarged) 
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5.3.2. Numerical Beam Trip Experiment in KUCA 
 

For the application of point kinetics analysis in an initially subcritical case, the 

thorium-loaded ADS benchmark [38] at KUCA is selected as the target problem. The 

benchmark is composed of various subcritical core configurations with different 

thorium-loaded fuel assemblies. Each assembly consists of 5.08 × 5.08 cm coupon-

shaped plates stacked inside the 5.53 × 5.53 cm aluminum sheath of 1mm thickness.  

Among the various core configurations, Th-HEU-Gr-PE core with the deepest 

subcriticality with effk   of 0.35473 is chosen. The fuel assembly and the core 

configuration is given in Figure 5.16 and 5.17. The fuel assembly consists of thorium 

and 93% highly enriched uranium fuel, graphite and polyethylene moderator and 

reflector. The overall height of the fuel assembly is 152.4 cm with 60 cm long layers 

of the upper and lower polyethylene reflector and the fuel layers of approximately 

25 cm long. The core consists of 25 fuel assemblies surrounded by polyethylene 

reflectors. The 14 MeV neutron source is generated near the one side of the fuel 

regions in an isotropic direction from the D-T reaction by injecting a deuterium beam 

into the tritium target. The numerical experiment of a beam trip is conducted with 

the TDMC simulation and the time-dependent kinetics parameters are estimated after 

the beam trip.  
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Figure 5.16 Fall sideways view of Th-HEU-Gr-PE fuel assembly  

 

 

Figure 5.17 Configuration of the Th-HEU-Gr-PE core 

 

McCARD TDMC calculation is conducted using 1,000,000 neutron histories 

and 1,000,000 precursors with 0.1 ms time interval. To simulate the beam trip 

experiment from the steady-state, the external source is uniformly simulated within 

each time step thorough the steady-state simulation. The number of fission source 

convergence steps and precursor generation steps are set to be 100 and 500 steps 

respectively. The transient simulation after the beam trip is conducted for 0.01 

second and the adjoint convergence interval is set to 1.0 second. For the comparison, 

the k-adjoint weighted kinetics parameters are estimated from the k-eigenvalue 

calculation. In addition, the kinetics parameters weighted by the solution of the 
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inhomogeneous adjoint equation for the reference subcritical state with external 

sources are estimated from the fixed source calculation. k-eigenvalue calculation is 

done using 400,000 neutron histories for 200 active cycles after 100 inactive cycles. 

The fixed source calculation is done using 80,000,000 neutron histories for 50 replica 

calculations. In all calculations, JENDL-4.0 cross section library is used. 

Figure 5.18 and 5.19 are the comparison results of the estimated kinetics 

parameters from each calculation. In Figure 5.18,  estimates increase rapidly after 

the beam trip at 0.01 second and converge to a lower value than the values at the 

steady-state as the delayed neutrons become dominant. The  estimate of the fixed 

source calculation matches well with the estimates of the TDMC simulation at the 

steady-state, but the  estimate of the k-eigenvalue calculation shows some 

difference. As for the 
eff , there is no significant difference before and after the 

beam trip in the TDMC estimates and similar values are calculated in other two 

estimates.  

 

Figure 5.18 Estimated for the beam trip experiment in Th-HEU-Gr-PE core 
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Figure 5.19 Estimated 
eff for the beam trip experiment in Th-HEU-Gr-PE core 

 

The point kinetics analyses are performed using the estimated kinetics 

parameters after the beam trip. The time-dependent core fission rate from the TDMC 

simulation is used as the reference and all results are normalized as a relative value 

with respect to the initial steady-state. The reactivity is calculated as the conventions 

in the PKE with the k-eigenvalue calculation, while it is set to 0 in the PKE with the 

fixed source calculation and the TDMC calculation since the system is not change 

over time in the ADS PKE [36]. The red line and blue line are PKE results using the 

kinetics parameters estimated from k-eigenvalue calculation and fixed source 

calculation. The squared boxes present the difference with the reference. The fixed 

source case predicts the system behavior the best at the very beginning of the beam 

trip since it reflects the effect of the initial source distribution. However, as the source 

distribution is moved to the fundamental mode solution without an external source, 

the k-eigenvalue case fits the reference trend better than the fixed source case 

between 10.5 ms and 11.5 ms where the estimated  of k-eigenvalue fits to the 

TDMC results better than the fixed source case. At the end where the delayed 
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neutrons are dominant, both results show a similar trend. The green line is the PKE 

result obtained by adjusting the exact kinetics parameters at each time step. Overall, 

it best matches the reference among the results by reflecting the adequate neutron 

distribution and importance over time. 

 

 

Figure 5.20 Comparison of PKEs with different kinetics parameters for the beam 

trip experiment in Th-HEU-Gr-PE core 

 

The significance of the developed method is that it can provide the method to 

calculate kinetics parameters applying the exact shape function and adjoint response 

of that time independent of the system. In the conventional approaches of the PKE, 

it deals with the problem of accurately predicting the system behavior in transient 

based on the steady-state flux and its adjoint function. However, in the developed 

method, the PKE model is established based on any transient state by estimating 



 

 １０５ 

kinetics parameters using the time-dependent shape function and its time-dependent 

adjoint response. It can be said that the PKE domain is generalized from the steady-

state to arbitrary states including transient states and the framework for the point 

kinetics analysis in the generalized time domain is suggested. The developed method 

is expected to be used in the quasi-static MC method to estimate kinetics parameters 

at each time step by weighting the time-dependent adjoint response and the accuracy 

is expected to be significantly improved compared to the conventional steady-state 

adjoint weighting case. 
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Chapter 6. Neutronics and Thermal-hydraulic 

Coupled Transient Analysis System 
 

 

6.1. McCARD/CUPID Coupled Analysis System 
 

The reactor transient analysis requires the capability for considering thermal 

hydraulic feedback effects caused by the power deviation in transient scenarios. 

McCARD equips with a simple one-dimensional T/H feedback module [12] but it 

cannot take into account the coolant mixing effects in sub-channels, which can lead 

to major errors in the accuracy of the results. Therefore, McCARD is coupled with 

the 3D sub-channel code CUPID, which is developed in KAERI, to establish multi-

physics module for the transient analysis. The coupling is performed using the 

TCP/IP socket communication. The TCP/IP socket communication enables the real 

time bi-directional communication between the server and the client through the 

designated port. It has also the advantage of high scalability since it can easily 

implement the data transmission and reception modules once establish the interface. 

To minimize the modification of the codes, McCARD and CUPID is coupled 

externally through the server module but internally exchange data through memory 

using server module. 

Figure 6.1 is a flow chart of the McCARD/CUPID module. McCARD and 

CUPID are connected to the server module using a designated address and a port 

number. After checking the connection and the dimension of coupling variables, it 

starts the simulation. When the simulation starts, McCARD calculates the relative 

3D pin power distribution with the given temperature and density. CUPID calculates 

the temperature and density of the coolant and the temperature of the fuel and 



 

 １０７ 

cladding based on the pin power distribution. The calculated coupling data are 

exchanged through the server module. Table 6.1 is the list of the coupling variables. 

The coupling calculation is performed iteratively until it satisfies the temperature 

convergence criteria or the maximum number of iterations in the steady-state 

simulation or until the specified time boundary in the transient simulation. 

 

Figure 6.1 McCARD/CUPID coupled analysis system 
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Table 6.1 Coupling variables of McCARD/CUPID coupled analysis system 

Transmit Receive 
Coupling variable 

[Unit] 

McCARD CUPID 3D relative pin power distribution 

CUPID McCARD 

Coolant average temperature [K] 

Coolant density [g/cc] 

 

Fuel centerline temperature [K] 

Fuel surface temperature [K] 

Cladding average temperature [K] 

 

Guide tube average temperature [K] 

Guide tube coolant density [g/cc] 

Guide tube cladding average temperature [K] 

 

Since the structure of the radial and axial nodes are different according to the code 

and problem, the data should be adjusted for the control volume before it is 

transferred to one another. In general, since neutron transport codes deal with unit 

cells of a control rod and sub-channel codes deal with unit cells of a channel, the 

coolant data need to be adjusted in the radial direction. The radial adjustment is 

conducted using the area ratio of the lattice geometry as 

 1
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where i and j are the radial lattice index of CUPID and McCARD and subscript C 

and M indicate CUPID and McCARD respectively. ijA  is the area of the i-th CUPID 

lattice superimposed on the j-th McCARD lattice. With the radial mapping data 
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depicted in Figure 6.2, McCARD unit cell data is calculated by weighting 0.25 to 

the surrounding four sub-channel data. 

 

 

Figure 6.2 Radial lattice and data mapping 

 

As for the axial direction, data adjustment is conducted using the ratio of the axial 

lattice length as 
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where jiL  is the length of j-th McCARD lattice superimposed on the i-th CUPID 

lattice. Figure 6.3 shows the example of the axial lattice and data mapping. 
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Figure 6.3 Axial lattice and data mapping 

 

It is noted that the McCARD/CUPID coupling is parallelized to exchange data 

and calculate the coupling variables in both codes simultaneously for the efficiency 

in the steady-state calculation. On the other hand, when the transient analysis starts, 

the coupling is serialized to exchange data and calculate the variables in order. In 

addition, due to the difference in data time, that is the power distribution calculated 

from McCARD is the average value of the time step, while CUPID requires the data 

at the time boundary, so the power density is linearly extrapolated before being 

transmitted to CUPID. 

 

6.2. Numerical Results 
 

6.2.1. VERA Benchmark Steady-state Problem 
 

To verify the developed McCARD/CUPID coupled analysis system, the VERA 

#6 hot full power problem is analyzed among the VERA 3D assembly problems. 
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VERA assembly is a 17 by 17 Westinghouse type PWR assembly which consists of 

264 3.1% enriched uranium fuel rods, 24 guide tubes, and an instrumentation tube. 

The fuel rod is axially divided into 23 layers with 6 internal spacer grids and 2 spacer 

grids at both ends. The total height of the fuel rod is 418.937 cm with the active core 

of 365.760 cm. Figures 6.4 and 6.5 are radial and axial cross-sectional view of the 

assembly respectively.  

 

Figure 6.4 Radial cross-sectional view of the VERA #6 assembly 

 

 

Figure 6.5 Axial cross-sectional view of the VERA #6 assembly 
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Total 23 cells in the axial direction including the active core and the adjacent 

cells are coupled for the McCARD/CUPID coupled calculation. In the McCARD 

model, the upper and lower cells which are not coupled use the temperature and 

density data from the adjacent cells. The dimension of the assembly and material 

composition follow the benchmark. The operation condition at HFP are given in 

Table 6.2. 

 

Table 6.2 Operation condition of VERA #6 HFP assembly problem 

Contents [Unit] Value 

Average power [MW] 17.670 

Exit pressure [MPa] 15.513 

Inlet temperature [K] 565.000 

Average mass flux [kg/sec-m2] 3457.620 

Boron concentration [ppm] 1300.000 

 

The developed McCARD/CUPID coupled analysis system is verified by 

comparing with the previous analysis results of the McCARD/MATRA coupled 

analysis system. McCARD calculation is done with 500,000 neutron histories for 

200 active cycles after 100 inactive cycles. The number of coupled iteration is set to 

13. Among the iterations, 3 iterations are conducted with the gradually increasing 

scheme as 66, 132, and 200 cycles to get the roughly converged temperature 

distribution. The remaining 10 iterations are conducted with the maximum cycle 

number of 200 for the accurate temperature convergence. The ENDF/B-VII.0 is used 

for the cross section library. The cross section libraries are processed by the Gauss-

Hermite quadrature on the fly Doppler broadening module based on the libraries 
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produced at 300K intervals and the stochastic mixing method is used for the thermal 

scattering libraries. 

Both McCARD/CUPID and McCARD/MATRA calculation are conducted for 

13 iterations. After the calculation, the effective multiplication factor is calculated as 

1.16717±0.00006 and 1.16708±0.00007 for McCARD/CUPID and 

McCARD/MATRA respectively, which match well within the stochastic errors. 

Figures 6.6 and 6.7 are the maximum fuel and coolant temperature deviation along 

the iteration. The fuel temperatures are converged within 10 K after the 5-th and 6-

th iterations in the McCARD/CUPID and McCARD/MATRA calculation, while the 

coolant temperatures are converged within 0.1 K after the 7th iteration in both cases. 

The initial deviation is large in McCARD/CUPID calculation because CUPID uses 

zero power initial distribution for the first calculation whereas cosine shape power 

distribution is assumed in MATRA. The convergence criterion for the coupled 

calculation is set to maximum 10 K and it shows sufficient convergence through the 

13 iterations. 

 

Figure 6.6 Trend of the fuel temperature convergence in VERA #6 problem 
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Figure 6.7 Trend of the coolant temperature convergence in VERA #6 problem 

 

Figure 6.8 is the comparison result of the axial power distribution. Overall power 

distribution match within 3% and 1% from the 5-th layer. The dents of the power 

distribution is the location where the spacer grids exist. One can see the lower power 

distribution as the flow rate decreses and the pressure drops at these locations. In 

Figure 6.9, the radial power distribution is compared. It shows a good agreement 

within the stochastic errors and the maximum difference is 0.17%. The fuel and 

coolant temperatures are also compared between two coupled system. Figures 6.10 

and 6.11 are the comparison results of the coolant exit temperature and fuel 

temperature. The coolant exit temperature math well showing the maximum 

difference of 0.21 K or 0.06% as the relative difference and the fuel temperature 

shows maximum 12.12 K or 1.55% difference. 
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Figure 6.8 Comparison of the axial power distribution in VERA #6 problem 

 

 

Figure 6.9 Comparison of radial power distribution in VERA #6 problem 
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Figure 6.10 Comparison of the coolant exit temperature in VERA #6 problem 

 

 

Figure 6.11 Comparison of the fuel temperature in VERA #6 problem 
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6.2.2. VERA Benchmark Transient Problem 
 

In this section, the capability of the McCARD/CUPID coupled transient 

analysis system is not thoroughly verified. Instead, the integrity of the coupled 

system is checked by analyzing the postulated transient scenario for the VERA #6 

problem and observing the Doppler effect. To simulate rod ejections of the fuel 

assembly, the guide tubes in the VERA #6 problem is changed to control rods with 

AIC absorber in them. The initial condition is assumed to be the hot zero power with 

10-4 % of the nominal power. All control rods are positioned at the 16.22 % height 

of the active core in the initial state and it is assumed to be at critical state. The 

quarter part of the control is ejected immediately at 0.01 second so that the 

1.12$ reactivity will be inserted by fully ejecting the control rods. The control rods 

that are ejected as the transient scenarios are depicted in the figure below with red 

color. 

 

Figure 6.12 Location of the postulated control rods ejection (red colored) 
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McCARD/CUPID calculation is conducted using 100,000 neutron histories and 

precursors with 100 and 200 time steps for fission source convergence and precursor 

generation. The time interval is set to be 0.1 ms and the coupling frequency for the 

temperature update is set to be 2 ms, which exchanges data for every 20 time step 

calculations. Figure 6.13 is the McCARD/CUPID coupled calculation result of the 

core power after the control rod ejection. It can be seen that the Doppler effect gives 

the negative feedback to the power increase as the fuel temperature is increased, and 

it converges to the new equilibrium state. Figure 6.14 is the trends of the average 

fuel temperature and the coolant exit temperature. One can see that the fuel 

temperature increases rapidly with the initial power increase but it decelerates due 

to the Doppler effect and increases constantly as the power converges. The fuel 

temperature is expected to converge to a value corresponding to the converged power 

level. The coolant temperature also changes with the power increase but shows a 

relatively slow increase due to the large heat capacity. Figures 6.15 and 6.16 are the 

power distribution and fuel temperature profile at 0.23 second. Both results show the 

corresponding power and temperature increase in the quarter parts of the core where 

the control rods are ejected. 
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Figure 6.13 Trend of the power after the rod ejection 

 

 

Figure 6.14 Trends of the fuel and coolant temperature after the rod ejection 
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Figure 6.15 Power distribution at 0.23 second 

 

 

Figure 6.16 Fuel temperature profile at 0.23 second 

 

From the power and temperature trends, one can see that the temperatures are 

changing smoothly while the power is fluctuating. This is due to the heat capacity of 

a material acting as thermal inertia to prevent rapid changes in temperature. In reality, 

such fluctuation in power may not be observed because there are much more 

neutrons than the simulation and the thermal feedback occurs continuously. 

Considering the stochastic errors shown in the figure, smooth power shape could be 

obtained if a much larger number of neutrons were simulated. From the same point 

of view, such fluctuation can exist in a transient state of a very low power although 

the change will be very small and difficult to measure. 
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Chapter 7. Conclusion 
 

 

In this thesis, advanced time-dependent Monte Carlo methods are developed to 

perform a more accurate and reliable analysis for the realistic reactor transient 

problems. The capability of the TDMC simulation in McCARD has enhanced and 

the applicability of the developed TDMC methods has extended. 

The conventional TDMC algorithm using the analog MC branching method 

with the combing method for population control is implemented with some 

improvements by eliminating the scale factor and introducing the dynamic weight 

window for an efficient neutron simulation. The TDMC simulation with the 

population control is applied to the PNS alpha measurement. With the time-

dependent tally of neutrons from the TDMC simulation, an optimum detector 

position search algorithm is developed to resolve the dependency issue of the PNS 

alpha measurement. The developed method is applied to the Pb-Bi-zoned 

experimental benchmark at KUCA and numerical experiments at AGN-201K. It is 

shown that the developed method predicts the relative alpha convergence at different 

detector positions well. An optimum detector position is searched at both cores by 

comparing the amplitude of signals from detectors after the convergence. The 

sensitivity of an optimum detector position to initial source positions is also 

examined. 

For the transient analysis starting from the initial steady-state, the delayed 

neutron treatment with the forced decay algorithm and the TDMC steady-state 

simulation method with the precursor density normalization scheme are 

implemented. In addition, new features of moving geometry treatment is developed 

to extend its capability to the three-dimensional transient analysis. The developed 
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method is verified to the C5G7-TD 2D and 3D problems and it shows good 

agreements with the results of nTRACER within the stochastic errors. 

The history-based batch method in the TDMC simulation is developed for the 

unbiased variance estimation. The conventional variance estimation method which 

stochastically processes the tally estimates per neutron gives highly biased results 

due to the correlations among the neutrons. The history-based batch method 

disconnects this correlation by simulating neutrons and processing the tally estimates 

batch-wisely. The developed method is verified in infinite homogeneous two-group 

problems and C5G7-TD benchmark problems and it gives unbiased variance for the 

tally means. From the variance estimation of the time-dependent tally, it is found that 

the error is propagated in the TDMC simulation through the weight normalization 

scheme in the population control. However, when the delayed neutrons are dominant 

than the survival neutrons, it keeps errors from propagating largely. 

As an application of the TDMC simulation, a time-dependent kinetics 

parameter estimation method is developed reflecting the exact flux shape and adjoint 

response. Based on the physical meaning of the adjoint response, the MC algorithm 

called Contributon method can be used to estimate the kinetics parameters by making 

additional particles for the adjoint calculation. But, it has serious limitations in 

calculation speed and application ranges for practical use. Therefore, with some 

reasonable assumptions, efficient MC algorithms are proposed for the kinetics 

parameter estimation. The algorithms are verified in infinite homogeneous two-

group problems and show good agreement with the reference solutions. It also shows 

more than 1,000 times the efficiency than the conventional method near the critical 

cases. The developed methods are applied to the C5G7-TD problem and numerical 

beam trip experiment at KUCA for the estimation of the kinetics parameters. The 
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estimated kinetics parameters are used for the point kinetics analysis of the system 

and compared with the one using the conventional kinetics parameters. It is expected 

to be utilized for exploring the best estimates of the kinetics parameters that can 

predict the transient situation better. 

Finally, in order to consider the thermal-hydraulic feedback in the realistic 

reactor transient analysis, McCARD is coupled with the 3D sub-channel code 

CUPID using the TCP/IP socket communication. The McCARD/CUPID coupled 

system is verified in the steady-state problem of VERA #6 HFP assembly compared 

to the previously built McCARD/MATRA system. The results match well with the 

McCARD/MATRA system showing the maximum difference of 0.17% in power 

distribution, 0.06% in coolant exit temperature, and 1.55% in fuel temperature. To 

conduct a coupled transient analysis, the VERA #6 problem is modified to a simple 

rod ejection problem and it is analyzed using the coupled system. The integrity of 

the coupled system is checked by observing the Doppler effect from the temperature 

feedback of the fuel, but more verification is needed for the problems with 

comparison results. 
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초 록 
  

 

시간에 따른 중성자의 거동을 해석하는 것은 노심 기동 해석, 임계도 측정, 

사고 해석, 연구용 원자로 실험 등 다양한 적용분야에서 노심의 동역학적 특성

을 이해하는데 필수적이다. 원자로 과도해석은 정상상태 해석에 비해 많은 전산 

시간이 필요하기 때문에 주로 결정론적 방법론이나 준정상상태 방법론에 의존

해 왔으나 이 방법론들은 공간과 에너지 또는 시간에 대한 차분화 근사를 포함

하기 때문에 부정확한 결과를 초래할 수 있다. 최근 지속적인 전산 성능의 향상

과 고신뢰도 방법론들의 개발에 힘입어 근사가 없는 시간종속 몬테칼로(TDMC) 

중성자 수송해석방법론에 대한 연구가 활발히 이루어지고 있으며 실제 시간 범

위의 원자로 과도해석에 적용 가능한 대안이 되었다. 몬테칼로 방법론은 상용 

원자로뿐만 아니라 차세대 원자로나 연구로 등 다양한 노심의 과도해석에 기준

해를 제공할 수 있기 때문에 몬테칼로 과도해석 방법론의 개발은 매우 중요하

다. 국내에서는 서울대학교에서 개발한 몬테칼로 코드인 McCARD가 TDMC 모

의 기능을 갖추어 알파 고유치 계산과 과도해석을 수행한 적이 있으나 2차원 

해석에 제한되고 편향된 분산을 예측하는 등 정밀하고 신뢰할만한 원자로 과도

해석능을 갖추지 못하였다. 본 논문은 고신뢰도 과도해석 코드 개발의 필요성을 

바탕으로 원자로 과도해석을 위한 TDMC 알고리즘을 고도화 개발하고 TDMC 

모의의 적용성을 실질적인 문제에 확장하는 것을 목표로 한다. 

TDMC 방법론은 기존의 몬테칼로 모의계산에 시간 구간을 도입하고 시간 구

간별로 중성자 수송을 모의한 다음 각 시간 구간의 끝에서 중성자수를 제어함

으로써 중성자의 지속적인 모의를 가능하게 한다. McCARD에서는 입자의 분기

를 그대로 모의하는 아날로그 몬테칼로 분기법과 편향 없이 정확한 수의 중성

자를 추출하는 빗질 방법을 중성자수 제어 방법으로 사용하였으며, 기존에 가중

치 정규화 용도로 사용하던 축적 인자를 제거하고 동적 가중치창을 도입하여 

알고리즘의 효율성을 개선하였다. 시간에 따른 중성자의 지속적인 모의가 가능

한 TDMC 방법은 즉발중성자붕괴상수 알파를 계측하는 펄스중성자선원(PNS) 

실험에 적용하였다. PNS 실험은 초기 선원과 노심의 기하학적 영향으로 검출기

의 위치와 시간에 따라 서로 다른 결과가 측정되는 문제가 보고되어 왔는데 위

치와 시간에 따른 중성자의 거동을 정확히 모의할 수 있는 TDMC 방법을 활용

하여 PNS 알파 측정을 위한 최적의 검출기 위치를 찾는 탐색 알고리즘을 개발
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하였다. 개발된 방법은 교토대 임계집합체(KUCA)의 납-비스무스 장전 실험 검

증 문제와 AGN-201K의 모의 실험에 적용하였다. KUCA 실험 검증문제에서는 

파쇄 중성자 선원의 영향이 잘 반영되어 서로 다른 검출기 위치에서의 알파 수

렴성을 잘 예측하였으며 AGN-201K 모의 실험에서는 초기 선원 위치에 따른 계

측의 민감도 평가가 수행되었다. 위치에 따른 수렴 시간에서 검출기 신호를 비

교하여 신호가 가장 높은 곳을 최적의 검출기 위치로 선정하였고 이러한 적용 

해석 결과는 실제 PNS 알파 계측 실험을 설계하고 수행하는데 있어 좋은 참고

가 될 것으로 기대된다. 

중성자수 제어 방법과 더불어 원자로 과도상태 모의에 있어 방법론적으로 중

요한 부분이 지발중성자 모의법과 정상상태 모델링 방법이다. 즉발중성자와 지

발중성자는 세대 시간에 큰 차이가 있기 때문에 핵분열로부터 지발중성자를 직

접 추출하는 통상적인 방법은 큰 통계 오차를 일으킨다. 또한 대부분의 과도해

석은 정상상태로부터 시작하기 때문에 초기 정상상태의 즉발중성자와 지발중성

자 선원 분포를 모의할 수 있는 방법이 필요하다. 따라서 효율적인 지발중성자 

모의를 위해 지발중성자 선행핵 모의를 통한 강제 붕괴 알고리즘을 도입하였고, 

초기상태 모델링 방법으로는 계산 모드의 전환 없이 초기부터 과도상태까지 

TDMC 모의법을 통해 일관적으로 초기 정상상태를 모델링할 수 있는 몬테칼로 

정상상태 모의법을 사용하였다. 이 과정에서 초기 지발중성자 선행핵수를 정규

화하는 알고리즘을 개선하였고 보다 실질적인 3차원 과도상태 시나리오를 모의

할 수 있는 동적 구조물 처리 기능을 개발하였다. 개발된 McCARD 과도해석능

은 원자로 과도상태 검증 계산 문제집인 C5G7-TD의 2차원 문제와 3차원 문제

에 대해 nTRACER와 비교 검증하였다. 3차원 문제에서 제어봉의 축방향 삽입과 

인출이 잘 모의되었으며 시간에 따른 노심 동적반응도 및 상대 핵분열 반응률

은 통계 오차 이내에서 잘 일치하였다. 

몬테칼로 계산은 일반적으로 표본 평균과 표본 평균의 분산을 통해 계산 결

과의 정확도와 신뢰도를 제공하는데 McCARD 과도해석 모듈의 해석능을 검증

하는 과정에서 일반적인 통계처리를 통해 얻은 TDMC 집계 평균의 표본 분산

이 크게 편향되어 있는 것을 발견하였다. 이는 TDMC 계산의 분기 과정 및 중

성자수 제어에서 중성자간에 상관관계가 생기기 때문인데 이러한 편향된 분산

은 몬테칼로 계산 결과의 정확도 및 신뢰도를 판단하는데 왜곡된 정보를 주게 

된다. 또한 집계 평균의 분산을 추정할 때 지발중성자의 기여도를 어떻게 할당

하여 통계 처리해야 하는지에 대한 문제도 존재한다. 본 논문에서는 이러한 문
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제를 해결하고 정확한 분산을 계산하기 위해 TDMC 모의에서의 히스토리 기반 

배치법을 개발하였다. 히스토리 기반 배치법은 중성자와 선행핵을 묶어 배치별

로 따로 모의하고 결과를 배치별로 통계처리하여 추정치 간 상관관계를 끊는 

방법으로 동시에 지발중성자의 기여도 할당 문제도 기여도를 포함된 배치의 집

계에 할당함으로써 자연스럽게 해결할 수 있다. 개발된 방법은 2군 무한균질문

제와 C5G7-TD 검증 계산문제를 통해 검증하였고 배치의 크기가 충분할 경우 

집계 평균에 대해 편향되지 않은 정확한 분산을 계산하였다. 또한, 검증과정에

서 TDMC 모의 도중 오차가 전파되는 현상을 확인하였고 이것이 중성자수 제

어의 가중치 정규화로부터 파생되어 살아남은 중성자들을 통해 전파된다는 것

을 입증하였다. 한편 살아남은 중성자보다 지발중성자의 영향이 지배적인 시스

템에서는 중성자가 오래 살아남지 못하고 지발중성자의 기여가 크기 때문에 오

차가 크게 전파되지 않았다. 

원자로 과도 해석을 위해 일점운동방정식 모델을 수립하거나 반응도 계측 실

험을 수행할 때는 해당 노심의 동특성 인자 계산이 필요하다. 일반적으로는 과

도상태에서 정확한 중성자속 분포를 얻기 어렵기 때문에 정상상태 수송방정식

과 수반방정식의 해를 형상 함수와 가중 함수로 가정하고 동특성 인자를 계산

한다. 그러나 TDMC 방법을 통해 시간에 따른 정확한 중성자속 분포를 모의할 

수 있게 되면서 TDMC 모의를 이용하여 정확한 일점운동방정식에 기반한 시간

종속 동특성 인자 계산법을 개발하였다. 특히 수반 응답 계산에 대해서는 계산 

부담이 큰 기존의 기여자 모의법(Contributon method)을 대신하여 TDMC 순방향 

모의 중에 이를 효율적으로 계산할 수 있는 몬테칼로 알고리즘을 개발하였다. 

개발된 방법은 검증을 위해 2군 무한균질 문제에서 시간에 따른 동특성 인자를 

평가하였으며 결과는 해석해와 잘 일치하였다. 또한 기존의 기여자 모의법과 성

능을 비교했을 때 임계에 가까운 문제에서는 1,000배가 넘는 계산 효율을 보였

다. 다음으로 계산된 시간종속 동특성 인자의 적용성을 확인하기 위해 이를 이

용하여 일점운동방정식을 세우고 시스템의 과도상태 거동을 예측하였다. 일점운

동해석은 초기 상태가 임계인 C5G7-TD 문제와 초기 상태가 미임계인 KUCA의 

토륨장전 가속기 구동 시스템의 빔 트립 모의 실험에 대해 수행되었으며 k 고

유치 계산과 고정 선원 계산, TDMC 계산으로 추정된 동특성 인자를 이용하여 

서로 다른 일점운동방정식을 비교하였다. 개발된 방법은 시스템에 상관없이 정

확한 중성자속 분포를 반영하여 동특성 인자를 계산할 수 있으며 기존의 정상

상태를 기준으로 수행되던 일점운동해석을 일반화하여 임의의 상태를 기준으로 



 

 １３０ 

일점운동해석을 수행할 수 있는 해석 체계를 제공한다는 점에서 큰 의의가 있

다. 

마지막으로 열수력 궤환 효과를 고려한 보다 실제적인 문제에 대한 과도해석

능을 갖추기 위해 TCP/IP 소켓 통신을 이용하여 McCARD/CUPID 연계 과도해석 

체계를 구축하였다. CUPID는 한국원자력연구원에서 개발한 3차원 부수로 코드

로 이를 연계함으로써 부수로에서의 냉각재 섞임 효과를 고려한 과도상태 해석

을 수행할 수 있다. 연계해석체계는 VERA 6번 고온전출력 집합체 문제에 대해 

기존에 정상상태 해석을 위해 구축하였던 McCARD/MATRA 연계해석체계와 비

교 검증하였으며, 정상상태에서 출력 분포는 0.17%, 냉각재 출구 온도는 0.06%, 

핵연료 온도는 1.55%의 차이 이내에서 서로 잘 일치하였다. 과도 상태에서의 연

계해석으로는 VERA 6번 문제를 수정하여 고온영출력 조건에서 간단한 제어봉 

이탈사고를 가정하여 이를 해석하였다. 핵연료 온도와 출력변화로부터 핵연료 

온도 궤환에 의한 도플러 효과를 확인하였고 이를 통해 연계해석체계의 건전성

을 확인하였다. 

 

주요어: 

시간종속 몬테칼로 중성자 수송해석법 

펄스중성자선원 알파 계측 

원자로 과도해석 

진분산 추정 

시간종속 동특성 인자 추정 

열수력 연계 과도해석 체계 
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