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Abstract

The analysis of the time-dependent neutron behavior is essential to
understanding the kinetic properties of reactor cores in various application fields
including reactor start-up analyses, reactivity measurements, accident analysis, and
experiments in research reactors. Since the reactor transient analysis requires a lot of
computational time compared to the steady-state analysis, it has mainly relied on
deterministic or quasi-static methods. However, these methods can lead to inaccurate
results due to inherent differential approximations to space, energy, or time domains.
Recently, thanks to the ever-advancing computing power and the development of
high-reliability methodologies, the time-dependent Monte Carlo (TDMC) neutron
transport method without any approximation is being actively studied and has
become an applicable alternative for reactor transient analysis in a practical time
range. The development of Monte Carlo transient analysis method is very important
because it can provide reference solutions for the transient analysis of various
reactors such as gen-IV reactors and research reactors as well as commercial reactors.
In domestic, McCARD, a Monte Carlo code developed by Seoul National University,
has equipped with the capability of the TDMC simulation and performed alpha
eigenvalue calculations and transient analysis. However, the existing code is limited
to two-dimensional analysis and lacks the capability for an accurate and reliable
reactor transient analysis such as an unbiased variance estimation. Therefore,
motivated by the necessity of developing such high-reliability transient analysis code,
this thesis aims to advance the TDMC algorithms for reactor transient analysis and
to extend the applicability of the TDMC simulation to practical problems.

The TDMC method enables sustainable neutron simulation by introducing time
intervals to the conventional Monte Carlo simulation, conducting time bin-by-bin
neutron simulation, and then controlling the neutron population at the end of each
time interval. In McCARD, the analog MC branching method that simulates the
branching of particles as it is, and the combing method, which samples the exact
number of neutrons without bias, are used as neutron population control methods.
The efficiency of the algorithm is improved by removing the scale factor previously

used for weight normalization and introducing a dynamic weight window. The



TDMC method which allows sustainable simulation of neutrons over time is applied
to the PNS experiments to estimate the prompt neutron decay constant alpha. In the
PNS experiment, it has been reported that the different alpha values are measured
depending on the detector position and detection time due to the initial source and
geometry effect. Utilizing the TDMC method which can accurately simulate the
space- and time-dependent behavior of neutrons, an optimum detector position
search algorithm is developed for the PNS alpha measurement. The developed
method is applied to the Pb-Bi-zoned experimental benchmark at KUCA and
numerical experiments at AGN-201K. In the KUCA experimental benchmark, the
spallation source effect is well reflected so the relative alpha convergence at different
detector positions is well predicted. As for the AGN-201K simulation, the sensitivity
of the optimum detector position to the initial source location is evaluated. By
comparing the detector signals at convergence times according to positions, the
optimum detector position is determined where the detector signal is highest. The
application results are expected to be a good reference for designing and performing
actual PNS alpha measurement experiments.

Along with the neutron population control method, the methodologically
important parts of the reactor transient simulation are the delayed neutron simulation
and the steady-state modeling. Since the prompt neutron and the delayed neutron
have a large difference in generation time, the conventional method of directly
sampling the delayed neutron from the fission event causes a large statistical error.
In addition, a method that can simulate the distribution of the prompt neutron and
delayed neutron sources in the initial steady-state is needed because most transient
analysis starts from the steady-state. Therefore, the forced decay algorithm through
precursor simulation is introduced for efficient delayed neutron simulation. As the
initial steady-state modeling method, the TDMC steady-state simulation method is
employed, which consistently uses the TDMC simulation method from the initial
state to the transient state without changing the calculation mode. In this process, the
algorithm for normalizing the initial number of precursors is improved, and a new
feature of moving geometry treatment to deal with more realistic three-dimensional
transient scenarios is developed. The developed McCARD transient analysis
capability is verified for the 2D and 3D problems of the C5G7-TD reactor transient
benchmark and compared with nTRACER. In the 3D problems, the axial insertion
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and withdrawal of the control rods are well simulated, and the trends of the core
dynamic reactivity and relative fission rate show good agreement with the results of
nTRACER within the stochastic errors.

The Monte Carlo calculation usually provides the accuracy and reliability of the
calculation result through the sample mean and the variance of the sample mean. In
the course of verifying the capability of McCARD transient analysis modules, it is
found that the sample variance of a TDMC tally mean obtained from the
conventional stochastic processing is highly biased. This is because correlation is
made between neutrons during the branching process or population control of the
TDMC calculation. The biased variance gives distorted information for judging the
accuracy and reliability of Monte Carlo calculation results. Moreover, there is a
problem of how to allocate and statistically process the contribution of the delayed
neutrons when estimating the variance of tally mean. To address these issues and to
estimate accurate variance, a history-based batch method for the TDMC simulation
is developed. In the history-based batch method, the neutrons and precursors are
grouped in several batches to simulate separately, and the results are statistically
processed batch-wisely to break the correlation between the estimates. At the same
time, the allocation problem of the delayed neutron contributions can be solved
naturally by assigning the contribution to the included batch tally. The developed
method is verified in infinite homogeneous two-group problems and C5G7-TD
benchmark problems. It gives unbiased variances for the tally means if the batch size
is sufficient. In addition, error propagation is observed in the TDMC simulation. It
is demonstrated that it stems from the weight normalization scheme in the population
control and propagates through the weight of survival neutrons. On the other hand,
in the system in which the delayed neutrons are more dominant than the survival
neutrons, the error does not propagate significantly because the neutrons are not
survived for a long time interval and the delayed neutrons contribution is relatively
large.

When establishing point kinetics model for reactor transient analysis or
performing a reactivity measurement experiment, it is necessary to calculate kinetics
parameters of the core. In general, since it is difficult to obtain an accurate neutron
flux distribution in a transient state, kinetics parameters are calculated by assuming
solutions of the steady-state transport equation and its adjoint equation as the shape
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function and weighting function. However, as it becomes possible to simulate the
accurate time-dependent neutron flux distribution through the TDMC method, a
time-dependent kinetics parameters estimation method is developed based on the
exact point kinetics equations utilizing TDMC simulation. In particular, Monte Carlo
algorithms that can efficiently calculate the adjoint response during TDMC forward
simulation are developed instead of the conventional Contributon method, which is
computationally quite burdensome. To verify the developed methods, the time-
dependent kinetics parameters are evaluated in infinite homogeneous two-group
problems, and the results show good agreement with the analytic solutions. In
addition, it shows more than 1,000 times the computational efficiency for problems
near the critical when comparing with the Contributon method. Then to check the
applicability of the estimated time-dependent kinetics parameters, the point kinetics
equation is established using them and the transient behavior of the system is
predicted. The point kinetics analyses are performed on the C5G7-TD problem in
which the initial state is critical and the beam trip simulation of the thorium-loaded
ADS system at KUCA in which the initial state is subcritical. The PKEs with
different kinetics parameters estimated from the k-eigenvalue calculation, fixed
source calculation, and TDMC calculation are compared to each other. It is noted
that the developed method can calculate the kinetics parameters reflecting the
accurate neutron flux distribution regardless of the system and it provides a
framework for the point kinetics analysis in the generalized time domain including
the conventional steady-state and arbitrary transient states.

Finally, McCARD/CUPID coupled transient analysis system is established
using TCP/IP socket communication to provide transient analysis capabilities for
more practical problems considering the thermal-hydraulic feedback. CUPID is a
three-dimensional sub-channel code developed by KEARI, and by coupling it with
McCARD, it is possible to conduct transient analysis considering the effect of
coolant mixing in the sub-channels. The coupled analysis system is verified in the
VERA #6 HFP assembly problem by comparing it with the existing
McCARD/MATRA coupled steady-state analysis system. The steady-state results
match well with the McCARD/MATRA system with a maximum difference of 0.17%
in power distribution, 0.06% in coolant exit temperature, and 1.55% in fuel
temperature. As for the coupled transient analysis, a simple rod ejection accident is
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analyzed in the modified VERA #6 problem under the HZP condition. From the
temperature and power trend, the Doppler effect of the fuel temperature feedback is

observed, and thus the integrity of the coupled transient analysis system is verified.
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Chapter 1. Introduction

1.1. Background

Monte Carlo (MC) method has been a reference solver for a long time in the
nuclear reactor physics field in that it has no approximation in dealing with complex
geometry and directly utilizing a continuous-energy nuclear cross section libraries.
In the 2010s, with the development of various methodologies such as Doppler
broadened cross section generation, pin-wise tally capability, depletion module,
efficient parallel computation and multi-physics coupled analysis system, the whole-
core steady-state neutron transport methods for a commercial reactor have almost
reached its final stage. In addition to this, as computation power continues to enhance,
MC transient neutron transport method for a high-fidelity reactor transient analysis
has emerged as a hot topic and researches are actively being conducted. Since MC
method can provide reference solutions for various transient analyses including
accident analysis of commercial reactor, gen-IV reactor and research reactor, reactor
startup analysis, and kinetics experiments analysis, it is imperative to develop MC
transient neutron transport methods.

There are two approaches in MC transient neutron transport methods, a quasi-
static method [1-3] and a time-dependent Monte Carlo (TDMC) method. The quasi-
static method solves the time-dependent neutron flux as the factorization of a shape
function and an amplitude function. The shape function is obtained by the MC
neutron transport simulation while the amplitude function is calculated by the point
kinetics equations (PKE). This method is efficient in that the temporal variation of
neutron population or amplitude is treated simply by solving the PKE, but it implies
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potential inaccuracies due to the discretization of the time domain. The TDMC
method directly tracks neutrons by time bin-by-bin simulation with population
control at the end of each time bin to sustain the number of neutrons. Though it
divides time into the bins for the population control, the particle simulation is
conducted in the continuous time domain without any approximation. However,
TDMC method requires high computational cost, and there have been several
methodological hurdles for its application, which are the population control, delayed
neutron treatment and steady-state initial condition modeling.

Recently, these issues are resolved with the development of noble methods and
it becomes viable to simulate neutrons within more practical time ranges. The
population control of the particles is essential for TDMC simulation because the
number of particles keeps changing to cause a memory shortage in supercritical cases
or termination due to the lack of particles in subcritical cases. Kaplan [4] first
proposed the TDMC simulation with population control at the time boundaries
adjusting weight window and collision biasing. Booth [5] developed the combing
algorithm to maintain neutron population by uniformly increasing or decreasing the
survival neutrons at the end of time interval. As for the delayed neutron treatment,
the issue was the high statistical uncertainty in the direct delayed neutron simulation
due to significantly different lifetime of the prompt neutrons and precursors. This
was resolved with the idea of Legrady [6] and Sjnitzer [7] to simulate the delayed
neutrons via the precursor simulation with the forced decay algorithm. The last is the
steady-state initial condition modeling which is represented by the modeling of the
neutron and precursor (or delayed neutron) source distribution prior to performing a
transient calculation. Sjnitzer [7] demonstrated the steady-state initial condition

modeling using conventional MC power iteration scheme in the k-eigenvalue
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calculation. Shaukat [8] proposed a TDMC steady-state simulation method for an
initial condition modeling by consistently using TDMC algorithms.

The TDMC methods have been utilized mainly in the field of experiments in
research reactors to estimate kinetics parameters such as the prompt neutron decay
constant by conducting numerical noise experiments or pulsed neutron source (PNS)
experiments [4, 9, 10]. Thanks to the development of methodologies mentioned
above and improved computer performances, many reactor physics groups are
focusing on the development of a TDMC code for the high-fidelity reactor transient
analysis. From the previous study of Shaukat [11], McCARD [12], a Monte Carlo
neutron-photon transport code developed in Seoul National University, has equipped
with the capability of the TDMC simulation. However, the existing code is limited
to the two-dimensional transient analysis which is represented by the change in cross
sections and lacks of the parallel computation algorithm. Shaukat also introduces a
scale factor as a weight normalization factor multiplied to tally values which may
complicate the error quantification. As for the variance estimation, the conventional
statistical process conducted for the tally values per neutron as in the fixed source
mode calculation may result in the biased variance due to the highly correlated
neutrons. Thus, it is highly required to develop advanced TDMC algorithms to

perform an accurate and reliable analysis for the realistic reactor transient problems.

1.2. Purpose and Scope

The purpose of this research is to develop advanced time-dependent Monte
Carlo algorithms for reactor transient analysis and to extend the applicability of the

time-dependent McCARD simulation to realistic problems. The developed advanced
§ ¥



TDMC algorithms include improved TDMC simulation scheme with variance
reduction and parallel computation, handling of three-dimensional geometry
changes, unbiased variance estimation, efficient adjoint weighted kinetics parameter
calculation and thermal-hydraulic coupled transient analysis system.

In chapter 2, the conventional TDMC algorithm using an analog MC branching
method with the combing method [5] for population control is described. The scale
factor is removed for the simplification and a dynamic weight window is introduced
to maintain the efficiency of the particle simulation at each time step. The TMDC
simulation using the population control is applied to estimate alpha from the PNS
experiment. To resolve the dependency issues regarding the detection position and
time of the PNS alpha measurement, an optimum detector position search algorithm
is developed based on the TDMC simulation, and applied to the Pb-Bi-zoned
experimental benchmark [13] at Kyoto University Critical Assembly (KUCA) and
numerical experiments at AGN-201K [14].

In chapter 3, the TDMC methods for the MC transient analysis are presented.
For the delayed neutron treatment, the forced decay algorithm with precursor
simulation is introduced and the TDMC steady-state simulation method is used for
the initial condition modeling. The new feature of moving geometry treatment based
on surface representation is implemented to treat realistic three-dimensional
transient scenarios. The capability of MC transient analysis is verified for the C5G7-
TD benchmark [15] 2-D and 3-D problems by comparing with the deterministic
transport code, nTRACER [16].

In chapter 4, the real variance estimation method for TDMC simulation based
on the history-based batch method [17] is developed. The source of variance bias in

TDMC simulation is explored and the effectiveness of the proposed method is
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verified in infinite homogeneous two-group problems and C5G7-TD benchmark
problems. In addition, the propagation of the errors in TDMC simulation through the
time bin-by-bin weight normalization scheme in the population control is observed
and examined in terms of the error propagation formula.

In chapter 5, the time-dependent kinetics parameters are estimated based on the
exact point kinetics equations. In the exact point kinetics equations, the kinetics
parameters are defined as the ratio between the integrals of the time-dependent shape
functions and operators weighted by the adjoint function. By introducing an arbitrary
detector response from the adjoint equation of the out-coming collision density
equation as a weight function, the time-dependent kinetics parameters can be
obtained through the TDMC simulation. The adjoint calculation in TDMC
simulation is equivalent with the Contributon method [18] which is quite
burdensome for the practical application, so a more efficient MC algorithm is
developed with an assumption to fix the time and get the average scheme within a
time step. The developed method is verified in infinite homogeneous two-group
problems, and applied to a C5G7-TD problem and numerical beam trip simulation
at KUCA with the point kinetics analysis using the estimated kinetics parameters.

In chapter 6, a neutronics and thermal-hydraulic coupled transient analysis
system, McCARD/CUPID, is established by combining McCARD with a 3D sub-
channel code CUPID [19]. McCARD/CUPID is coupled externally using TCP/IP
socket communication and a server program. The coupling scheme is verified in
comparison with McCARD/MATRA [20] coupled system for the steady-state VERA
benchmark [21] HFP assembly problem, and its capability for transient analysis is
preliminarily tested for the postulated transient scenario in the same VERA assembly

problem.



Chapter 2. Time-dependent Monte Carlo Neutron
Transport Method

2.1. TDMC Algorithm with Population Control

To sustain the number of neutrons tracked in an off-critical system, population
control is required during the simulation to prevent the everlasting increase or
decrease in the neutron population. TDMC neutron transport method employs the
time bin-by-bin simulation with the population control at the end of each time step.
Within a time step, the neutron time is updated with the sampled track length until it

crosses the upper time boundary as

o o |
L) ¢ k
t =t +

A ——, 2.1
J2E I'm,

i]

where i, j, and k are the time step, history, and track index. t.’, ||i('j , and Eli('j are

the time, sampled track length, and energy after the k-th flight of history j at time

step i. M, is the neutron mass. When the sampled neutron time exceeds the upper

time boundary, T,,,, the neutron is stopped and stored with its information at T, ,

as

b = (T — )26 T m, ' > T 22)

There are two approaches in dealing with the multiplicative reactions in TDMC
simulation. One is the analog method to let the multiplicative reactions make new
branches. The other is the branchless method [7] which adjusts the neutron weight
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instead of making new branches in accordance with the expected number of neutrons
at each collision and uses a dynamic weight window to keep the neutron weight
during the simulation. In both methods, population control is needed at the end of
each time step since the number of neutrons is not kept constant and their weights
differ from each other. After all neutrons in the i-th time step are simulated, the
survival neutrons are discarded or split to maintain the number of neutrons while

preserving the total weights.

Discard or split Discard or split
Analog branching method | survival neutrons Branchless method | survival neutrons
v
(n.n) -
(n,n) - (n,m) (n,2m)
P
i (n, fis) 4w Al
w S eh
) 4w ™2
w
(n, fis) w
(n,2n) )
T i-th time step T, T i-th time step T,

Figure 2.1 Schematics of the multiplicative reaction treatment in TDMC

The well-known population control algorithms are the Russian roulette/splitting
and combing method. The number of neutrons and their weights after population

control is set as below to preserve the total weights of neutrons.

_ PR
Wi =—n (23)

In the above equation, n ; and N indicate the number of survival neutron at the

end of i-th time step and the inputted number of neutrons to preserve. When a neutron



i+1

W..
weight is larger than the average weight, the neutron is split into {_—”J +1 neutrons

. e Wij Wij .. .- Wij
with the probability of —— —| —— |, else it is split into | —— | neutrons. When a

i+1 i+1 i+1

neutron weight is smaller than the average weight, the neutron is survived with the

W..
probability of —2- or it dies. The difference between the Russian roulette/splitting

i+1
and combing method is the usage of a random number. In Russian roulette/splitting
method, a random number is sampled for every particle and thus the number of
neutrons to be sampled is not always to be exactly N. On the other hand, only one
random number is sampled in the combing method and it always samples the exact
targeted number of N neutrons. The probability of how many neutrons to be sampled
at each neutron is same in both methods and both are known to be unbiased method.

The below figure shows the schematic of the combing method.

sam pled sampled sarqpled sa.mjgled sam gled

Wil | wh wi3 Wiq |

e

1 Wia Wi Wig Wi Wi Wig ‘

Figure 2.2 Schematic of the combing method

McCARD employs the analog MC branching scheme with the combing method
at the end of the time step for TDMC simulation. To ensure the efficient simulation
according to the changing average neutron weight after the population control,
McCARD adjusts the dynamic weight window used in the implicit capture before it

starts the next time step simulation as



Ws,i+1 = W, - (2‘4)
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In the above equations, W, and W _;, denote the survival weight and the lower

weight boundary of the implicit capture at (i+1)-th time step. W,, is the average

neutron weight at (i+1)-th time step after the population control.

2.2. Alpha Estimation Using TDMC Simulation

The prompt neutron decay constant, o, has played a key role in reactor kinetics
analyses in that it gives an intuitive understanding of asymptotic behaviors and it can
be directly measured from the experiments. One of the well-known alpha
measurement methods is the pulsed-neutron-source (PNS) method, which obtains
the alpha by the exponential regression of the time-dependent detector signals after
injecting a short burst of neutrons. After the higher mode terms decay out, one can
fit the time-dependent detector signals to a single exponential function and get the
fundamental mode alpha independent of the energy characteristic and positioning of
a detector. However, it has been reported [22, 23] that inconsistent alpha values are
measured from different detector positions, which is attributed to the remaining
space- and time-dependent higher mode effects. In the same context, how to
determine a good detector position and time for PNS alpha measurement is still an
issue.

There have been several approaches to reduce the higher mode terms from
detector signals by the post-processing methods. Taninaka [24] suggested the

masking technique to exclude the initial parts of detector signals which contain the



higher mode effects when conducting alpha fitting. In addition to the temporal
masking of signals from a detector, Katano [25] devised the estimation method to
reduce higher mode effects by the linear combination of signals from multiple
detectors. These methods give clever ideas to eliminate higher mode effects from
fitting data, but they cannot be used to predict and choose the optimum detector
position before the experiment.

Based on the time bin-by-bin simulation with the population control algorithm,
the TDMC method can track the temporal behavior of neutrons with sufficiently low
stochastic errors even if the system is far from the critical state. Therefore, by
utilizing TDMC simulation for the PNS alpha measurement, an optimum detector

position search algorithm is developed to resolve the dependency issues.

2.2.1. Alpha Estimation by Exponential Fitting

From the TDMC simulation of the PNS experiment, one can obtain the time-
dependent detector signals at the desired positions by tallying the responses from

prompt neutrons as

— t+AL/2 m
Ro(r,D)=>>" jv IE L” e ZT(CE)®(rE.Q tydrdEdQdt  (2.5)
where m and r present the isotope and the reaction type respectively. V, is the

volume of a detector and At is the time interval of the tally. Subscript p of the

angular flux denotes the prompt neutron. Then the time-dependent tally results can

be fitted to the exponential function as [26]
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R (r,t) =C, -exp[~a, (r |t,) - (t—t,)]+C, (2.6)

In the equation, C, and C, are fitting constants, and t, is the starting time of the
fitting. Since the remaining higher mode components decay out differently over time,
different alpha values are estimated according to the starting time of fitting.

a,(r|t,) indicates the alpha estimate of the detector located at ' using its detector

signals starting from t, and is expected to converge to the fundamental alpha as the
higher modes disappear.

The convergence of the alpha estimates can be diagnosed by simply comparing
the estimates to the reference alpha. The onset time of the convergence is determined
when the relative difference between the mean of alpha estimates and the reference
alpha becomes less than the prescribed convergence criterion , & , as

o, (r|t) — oy

t,(r)= min{ts;

<&+ 20-} . 2.7
ref
a,(r|t) and o are the mean of alpha estimates and the standard deviation of the
relative difference respectively which are introduced to consider the stochastic error
of the MC simulation for convergence diagnosis. The convergence time of the

detector located at I, t,(r), is then defined as the minimum starting time of the
fitting in which the mean of alpha estimates, a,(r|t), satisfy the convergence
criterion including stochastic errors.

The reference fundamental alpha, ¢, , is calculated using the MC a-iteration

ref »

method [27] implemented in McCARD. The MC a-iteration method is one of the o-
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static MC methods which solve the following a-mode eigenvalue equation with the
MC power method. In the integral form of the collision density equation, the a-mode

eigenvalue equation can be expressed as

S, =aRS,, (2.8)

1 o0
S=——S[drfdE,[de, K .(r,E,.Q —>r.E.Q
t v(E)Zt(I’,E);"- J oo 02 - K5 Erv ), (2.9)

_[dro T(Ey, Q451 = 1)S (1, By, 2,)

-_%
S, =U(E)CDp(r,E,Q), (2.10)

where S, is named as the time source. All other notations follow the convention
except that the delayed fission neutron is ignored in the transition kernel K, and
angular flux @ ;. In the same way that the fundamental mode £ is calculated with

the iterative fission source updates by the MC power method, the fundamental mode

o can be obtained with the iterative time source updates.

2.2.2. Determination of an Optimum Detector Position

In terms of experimental measurement, the optimum detector position in the
PNS experiment is where the estimated alpha value has high reliability. Since the
detector counting is a Poisson process, the detector count rate has stochastic
uncertainty inversely proportional to the average count rate. This means the higher

the signal of the detector, the more reliable the results are. Then one can determine

12 A2t



the optimum detector position as to where it shows the highest detector signal after
it converges to the fundamental mode alpha. The detector signals after it converges

can be calculated from TDMC simulation as

to (r)+AT

R =2[ [.[. [ Z'E),(rEQbdrdEdQdr,  (2.11)

where t;(r) is the onset time of the convergence at the detector located at r and

AT is the fitting time interval.

2.3. Application Results

2.3.1. KUCA Pb-Bi-Zoned Experimental Benchmark

The developed method is applied to the Pb-Bi-zoned experimental benchmark
at KUCA which is a multi-core type critical assembly in Kyoto University Research
Reactor Institute operated with zero power condition. The core consists of Pb-Bi
loaded 93% enriched uranium fuel and polyethylene moderator and reflector, each
of which has coupon-shaped plates stacked inside the aluminum sheath. Each plate
has a 5.08 x 5.08 cm dimension and the aluminum sheath has a 5.53 x 5.53 cm
dimension with 1 mm thickness. The overall height of the assembly is 152.40 cm
with the upper and lower polyethylene reflector layers of more than 50 cm long and
the fuel layers of approximately 40 cm long. There are 3 control rods and 3 safety
rods composed of B,Os along the side of the core region. The benchmark provides 6
types of subcritical core configurations with a different number of fuel assemblies.
The PNS experiments are conducted with the spallation neutron sources generated

by injecting 100 MeV protons to the Pb-Bi target at the center of the core. The alpha
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is measured with optical fiber detectors at three different detector positions. Among
the core configurations, case 6 is selected for the application which has the deepest
subcriticality. Figures below show two types of the fuel assemblies of the case 6 core
and its core configuration. The core consists of 20 enriched uranium fuel assemblies
and 8 Pb-Bi loaded fuel assemblies surrounding the Pb-Bi spallation source target.
The fuel region is surrounded by polyethylene moderator and all control rods and
safety rods are fully withdrawn. From the core configuration, one can expect the
spallation source will make different detector signals depending on the location and

time, which results in inconsistent alpha measurements.

/16 EUx2  Pb-Bi
(3.180mm)  (3.426mm)
|~

1/8"p = 73+10"p 1/8"p = 27+10"p = 2
(230.534+254.000mm) (85.266+508.000mm)
Al 1/16"EU =2 1/8"p Void
(20.000mm) (3.180mm) (3.158mm) (37.880mm)

Figure 2.3 Fall sideways view of Pb-Bi loaded fuel assembly

1/8"p = 71+10"p o 1/8"p x 24+10"p x 2
3 b
(224.218+254.000mm) * 36 unit cells (75.792+508.000mm)
Al 1/16'EU 1/8"p= 3 Void
(20.000mm) (1590mm)  (9.470mm) (43 .830mm)

Figure 2.4 Fall sideways view of enriched uranium fuel assembly
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Fuel (36 EU)

Optical fiber #2 Fuel (EU+Pb-Bi)
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Aluminum Sheath
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Control rod
Safety rod

Optical fiber

:(_'7

‘S‘
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Pb-Bi target

Figure 2.5 Core configuration of the Pb-Bi-zoned benchmark case 6

For the TDMC PNS simulation, the initial spallation neutron source is modeled using
MCNPX2.6.0 proton simulation. The spallation neutron spectra and angular
distribution are obtained by tallying the neutrons leaving the Pb-Bi target. The
neutron spectra at every 15 degrees with respect to the proton beam are normalized
respectively and inputted to McCARD TDMC simulation as initial source
information. The calculated spallation neutron angular distribution and energy

spectra are given in figure below. One can see the overall angular distribution is
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biased to the beam direction and the energy spectrum is more hardened as the

outgoing angle with respect to the beam direction is small.
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Figure 2.6 Angular distribution and energy spectra of the spallation neutron

McCARD TDMC simulation is done using 100 million histories and 0.1 ms

time interval up to 5.0 ms. To estimate stochastic errors, the history-based batch

method is used with 100 batches. The time-dependent detector signals for the

exponential alpha fitting are tallied as the sum of (n, @) and (n, p) reactions, which

are the charged particle emission reactions of the optical fiber detector used in the

experiment. All available locations between assemblies are selected as candidate

detector positions where the convergence of alpha and amplitude of detector signals

are evaluated. To avoid the distortion of the neutron tracking, the reaction rate is

tallied with the virtual detector material not influencing the real simulation. «,; is

calculated by the a-iteration method using 100,000 histories and 100 active cycles.

16



In both TDMC and e-iteration calculations, ENDF/B-VII.1 cross section library is
used.

To verify the effectiveness of the developed method, the trends of alpha at the
detector locations designated in figure 2.5 are compared with the experimental
results. Among the three detectors, detector #3 is excluded for the comparison
because the detector signals seem to be contaminated with gamma-ray induced by
high energy neutrons emitted from the target. Figure 2.7 shows the comparison
results of the alpha trend at the two detector positions. The solid lines and the dashed
lines are the alpha trends estimated with the TDMC simulation and the experiment.
The reference alpha is calculated as 1950.0 with its standard deviation of 2.0. All
results show the convergence to the reference alpha as the higher modes decay out,
but the convergence trend varies depending on the detector position. There is some
discrepancy between the TDMC and experimental results in the initial trend and its
convergence time, which is attributed to be due to the difference in the energy
sensitivity to the neutron yield of the detector. It is meaningful, however, in that both
results show the same difference of 0.4 ms in the convergence times between two
detectors. In the TDMC results, detectors #1 and #2 converge to the reference alpha
within stochastic error at 1.0 ms and 0.6 ms, while they converge at 1.7 ms and 1.3
ms in the experimental results. This demonstrates that the TDMC simulation can
predict the relative convergence time of alpha at different detector positions quite

accurately.
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Figure 2.7 Comparison results of the alpha trends

from TDMC and experimental data

The convergence time and the amplitude of the detector signal are compared to
determine the optimum detector position at candidate detector positions. The
convergence criterion ¢ 0f 0.02 is used for the convergence diagnosis. Figure 2.8 is
the map of the convergence time and the relative amplitude of detector signals. The
results show faster convergence time at the front regions surrounding the spallation
neutron source and the polyethylene moderator regions adjacent to fuel regions are

determined as the optimum detector positions showing the highest detector signals.

J
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Figure 2.8 Convergence time and relative detector signal maps

of the case 6 core

2.3.2. AGN-201K Numerical PNS Experiments

The proposed method is examined in numerical PNS experiments at AGN-
201K, a research and educational reactor at Kyung Hee University. The reactor is
operated with 10 Watt power condition where the maximum neutron flux is about
4.5 x 10® #/cm?-sec. The core comprises a stack of 9 solid fuel disks surrounded by
a graphite reflector and lead shield in a water tank. The fuel disks are made of a
homogenous material of 19.5 w/o UO; and polyethylene moderator. As for safety
and control devices, there are two safety rods and one coarse and one fine control
rod, which are made of the same fuel material and inserted from the bottom of the

core. In addition, there are a glory hole and four access ports in which a source or
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detectors can be placed respectively. The core configuration of AGN-201K is shown

in Figure 2.9 and the core specifications are given in the table below.

H,0 Shield

R Access Port
Aluminum

Figure 2.9 Cross-sectional and vertical view of AGN-201K

Table 2.1 Core specifications of AGN-201K

Contents Value [cm] Contents Value [cm]
Fuel disk radius 12.800 Fine CR radius 1.000
Aluminum radius 16.100 Coarse CR and 2.250
SR radius

Graphite reflector 33.120 Glory hole radius 1.185
radius

Lead shield radius 44.926 Access port radius 5.000

Water reflector 98.000 Active core height 24.500
radius

The numerical PNS experiments are conducted with all control rods and safety
rods fully ejected from the core to postulate the deepest subcritical state. All rods are
ejected and located 7cm below the bottom disk, and the effective multiplication
factor of the core is 0.9790640.00009. Since the initial source position can be easily

adjusted along the glory hole, AGN-201K is suitable for examining the sensitivity of

I
T
-

20 R e 1A



the optimum detector position to the initial source position. The initial source is
assumed to be a Cf-252 source located at a prescribed position, Ocm, 30cm, and 60cm
away from the center of the core, and then jerked immediately to make a pulsed
neutron source. The initial control rod and safety rod positions and source locations

are depicted in Figure 2.10.

Figure 2.10 Initial rod positions (left) and initial source positions (right) of the

numerical PNS experiments at AGN-201K

McCARD TDMC calculation is done with 100 million histories and 100

history-based batches. The simulation time is set to 5.0 ms with a 0.1 ms time interval.

The time-dependent alpha is estimated with charged particle emission reaction tally

of the optical fiber detector in cylindrical meshes surrounding the active core region.
The reference alpha is estimate as -333+10 from the a-iteration method, and the

convergence criterion is set to 0.02.

Figure 2.11 to 2.13 are the map of the convergence time and relative detector
signals according to the initial source position. In the left figures, where the source
is located at the center of the core, the boundary region between the core and graphite

reflector shows the fastest convergence but the relative detector s1gna1 is larger inside
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the core, indicating the optimum detector position. When the source is located 30cm
away from the center, the far side of the core is determined to be the optimum
position among the fast convergence regions. On the other hand, when the source is
located at a 60cm position, the near side of the core is shown to be the optimum
position. In all results, the convergence trends at each region come from the
combination of the neutron sources propagated from the initial source location and
the fission sources propagated from the core region. Although this method does not
analyze higher modes in the combined equation term by term, it can simply but
effectively specify the positions where the higher mode effects disappear faster and
determine the optimum position where shows the highest detector signals using

TDMC simulation.

Figure 2.11 Convergence time and relative detector signal (source at the center)
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Figure 2.12 Convergence time and relative detector signal (source at 30cm)
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Figure 2.13 Convergence time and relative detector signal (source at 60cm)
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Chapter 3. Monte Carlo Transient Analysis

3.1. Delayed Neutron Treatment

In the conventional MC methods, the delayed neutrons are sampled directly
from the fission events. When a delayed neutron is sampled, a precursor family is
determined first and then time and energy are sampled according to its precursor
family. Since the lifetime of the prompt neutrons and precursors are significantly
different, the direct simulation of delayed neutrons causes a large statistical
fluctuation in the delayed neutron population. In general, the life time of the prompt
neutron is about 10 second order, while the life time of precursors ranges from 10-
"'to 100 second order.

The drawbacks of the direct delayed neutron simulation are originated from the
limited resources and one-time use of a delayed neutron. To overcome the large
fluctuation problem, a forced decay algorithm [6, 7] with precursor simulation is
proposed by Hoogenboom’s group. When a fission event occurs during the

simulation, precursors are sampled and stored as many as
V..
Mcukz\‘_d“k +C§Ja 3.1
, ko

where v, is the average number of delayed neutrons produced from a fission at
the k-th collision of the j-th neutron in the i-th time step. k, and ¢ are the £-
eigenvalue at the initial steady state and a random number. | x| indicates the largest

integer not exceeding x. The sampled precursors are treated as a combined precursor

which presents all the contributions from precursor families to reduce stochastic
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fluctuation due to different decay characteristics. Since the precursors are
accumulated during the simulation, the precursor population is controlled by the
combing method at the end of each time step to maintain the prescribed number of
precursors. All the stored precursors are forced to decay and generate delayed
neutron in the next time step conserving the expected weight of a delayed neutron.

The probability of a precursor created at t, decays at time ¢ is
R(t)= Z flﬂ’leﬁﬁ (i) ’ (3.2)
|

where f, and A, are the fraction and the decay constant of /-th precursor family.

time step conserving the expected weight of a delayed neutron. One can see that
instead of fixing a precursor family all contributions from each family are reflected
when the properties of a delayed neutron is sampled. Each precursor is forced to
decay within the next time step uniformly and the weight is determined by the

importance sampling technique to preserve the expected weight.

. 1 1
P (t)= =—, <t<T 3.3
d ( ) THl _Ti ATI (Tl |+1) ( )
Wy =W, Pd*(t) =W AT D f 4 jewj(tit&j) G-4)
’ Ry (1) T

In the above equations, AT, is the i-th time step interval and WS is the weight of

precursors in i-th time step after population control. After the time and weight of a
delayed neutron is sampled, the energy is sampled from the delayed chi-distribution

of a precursor family which is determined from the probability as

B
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R(t)= fiae ™ /Z A (3.5)
_

To examine the effectiveness of the forced decay algorithm compared to the
direct sampling method, the generation of the delayed neutron per precursor or
fission event within a time interval is compared. An initially steady-state condition
is assumed with the decay constants and delayed neutron fractions of the precursor
families given in the table below. The comparison is conducted by varying the total
number of precursors and the time interval. Figures 3.1 to 3.3 are the comparison
results using the fixed time interval of 0.1 ms. In both methods, the stochastic
uncertainty becomes smaller as the number of precursors increases but it shows
much lower relative standard deviation (RSD) in the forced decay cases. In the direct
sampling method, the RSDs slowly increase over time because the delayed neutrons
are rarely sampled in a distant time interval. On the other hand, the RSDs decrease
over time in the forced decay method because the deviation between neutron weights
becomes smaller while the number of neutrons to be sampled is kept constant. In
terms of the figure of merits (FOM), the forced decay algorithm shows much higher
FOM than the direct sampling method and both FOM results show the same trend
regardless of the number of precursors since the time is proportional and the variance
is inversely proportional to the number of precursors. Figures 3.4 to 3.6 are the
comparison results using 100 million fixed number of precursors. In the direct
sampling method, more delayed neutrons are sampled within the time interval as the
size of the time interval increases, resulting in a smaller RSD. On the other hand, the
deviation of the delayed neutron weight becomes larger as the size of the time
interval increases in the forced decay algorithm, resulting in a larger RSD. However,

it is shown that the FOM is much larger for all cases in the forced decay algorithm.
s
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Table 3.1 25U delayed neutron parameters [28]

Family Decay constant 4 [s'] Fraction f
1 0.0124 0.000215

2 0.0305 0.001424

3 0.1110 0.001274

4 0.3010 0.002568

5 1.1400 0.000748

6 3.0100 0.000273
Sum 0.006475
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Figure 3.1 Delayed neutron generation according to the sampling methods

using the fixed time interval
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The forced decay algorithm with the precursor combing is an unbiased method
and effectively simulates the relatively important precursors for the next time
interval. In combination with the dynamic weight window scheme in McCARD, the
effects of delayed neutrons are automatically reflected in the results since the
survival weight and lower weight boundary in equation (2.4) are determined by the
survival neutron weight at the end of each time step. If the delayed neutron weight
is far smaller than the dynamic weight window, most of the delayed neutrons are
filtered in the weight window and will not affect the results and vice versa. However,
there are some points that users may consider when using the TDMC simulation with
forced decay algorithm. They are the number of precursors to simulate and the time
interval. Since the relative weight of delayed neutrons to survival neutrons is not
known in transient scenarios, the number of precursors is recommended to be the

same with the number of neutrons to guarantee a similar level of stochastic error
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even in systems where delayed neutrons are highly dominant. As for the time interval,
it is recommended to be several times of the generation time. A short time interval
leads to inaccurate calculation results with large stochastic uncertainty and requires
a large computational burden, while a long time interval leads to the memory
shortage in supercritical cases and the lack of survival neutrons in subcritical cases.
In terms of the forced decay algorithm, a long time interval may cause relatively
large stochastic error from the delayed neutrons due to a large deviation of the
delayed neutron weights. Therefore, it is recommended to determine a time interval

of TDMC simulations as several times of the generation time.

3.2. Initial Steady State Modeling

In most reactor transient analyses, transient start from the steady-state initial
condition, which means the initial source distribution of the prompt neutrons and
delayed neutron precursors should be obtained. In McCARD, a new MC steady-state
simulation method [8] has been developed based on TDMC simulation. Compared
to the steady-state modeling method [7] using conventional MC power iteration
scheme, it can model the initial source distribution during the consistent TDMC
simulation without any calculation mode changes. In the well-known steady-state

analysis using k-eigenvalue calculation, the steady-state properties can be obtained
v
by altering v, with fictitious one, vy, defined by ?f . By making the best use of

this concept, one can get the steady-state source distribution via TDMC simulation

with a slight modification in the number of fission neutron sampled and & as

b i 211 |
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where the subscript m denotes the prompt neutron or delayed neutron (or precursor).

k; is the multiplication factor in i-th time step defined as the ratio of gain terms and

loss terms within the time step. After the fission source density are converged to the
steady-state distribution, the family distribution and the number density of the
sampled precursors should be determined. The precursor family distribution at the

steady-state can be easily calculated from the precursor balance equation as

D~ vz, -Ac () (3.8)
g gir)
i _Co_ A (3.9)

© 2

Then when a precursor generated at the steady-state simulation is forced to decay, its
precursor family can be sampled from the decay probability starting from the initial
steady-state fraction. The number density of precursor can be calculated by
balancing the amount of precursor generation and the expected precursor loss due to

forced decay in a time step.
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In the above equations, the subscript C indicates precursor and N is the number of

precursor generation steps. Wy and Wy are the average weight of precursors at

the steady-state and the average weight of precursors at the N-th time step. M_C is
the average amount of precursor generation and L; is the expected amount of

precursor loss in the i-th time step. Then the precursor weight at the steady-state can

be calculated by the equation (3.10).

3.3. Moving Geometry Treatment

To deal with the realistic transient scenarios such as control rod withdrawal or
insertion, the geometry in the TDMC simulation should be treated continuously in
time. The most of the MC codes deal with geometry as a boundary representation
(B-Rep) which a cell is expressed as the intersections of the surrounding surfaces,
and each surface is represented by coefficients according to a type of the surface.
Then moving geometry can be expressed with the time-dependent coefficients for

the surface equation.
f(x,y,2,t)=0 (3.13)

The geometry information is used in the flight kernel to calculate the distance to

surface and to find the next cell to be linked after the flight. Since the energy and

¥ 3
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direction of a neutron during k-th flight are not changed, the position of the neutron

is expressed as a function of time as
r)=r(t) ) +sQ=rt! ) +t-t  IV(EHQ (t>t)). (3.14)

Then x, y, and z in the surface equation (3.13) are parameterized in time and the time

a neutron crosses the surface can be calculated from the equation.

The figure below shows the flow chart of the McCARD transient analysis
module. The steady-state TDMC simulation is divided into the fission source
convergence step and the precursor generation step. After the fission source
distribution is converged in the former step, precursors are sampled and stored for
the initial steady-state modeling in the latter step. At the same time, the multiplication

factor at the steady-state, K, is calculated which is used as a normalization factor

of the fission neutron sampling (equation 3.6) in the transient simulation. At the end
of the steady-state simulation, a transient scenario is set according to the user input,
and the transient TDMC simulation is conducted with the continuously changing

system parameters such as cross section, geometry or density.
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Figure 3.7 Flow chart of the McCARD transient analysis module

3.4. Numerical Results

McCARD transient analysis module is applied to the well-known C5G7-TD
benchmark problems. The C5G7 core consists of 16 UO; and MOX fuel assemblies
each of which has 17x17 configuration. Each assembly has 264 fuel pins, 24 guide
tubes, and an instrumentation tube in the center. All pins are composed of two zones
of the mixture inside a pin and the moderator surrounding it. Figure 3.8 shows the 2-
D core configuration of the south-east quadrant. It can be seen the MOX assemblies
have three enrichments of 4.3%, 7.0%, and 8.7%, and the core region is surrounded

by water moderator.
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Figure 3.8 Radial core configuration of C5G7-TD benchmark

The axial core configuration is added with the 3-D extension. Additional water
reflectors are added in both upper and lower regions of the active core, and the guide
tubes and an instrumentation tube are explicitly modeled in the upper reflector region.
In the initial steady state condition, a control rod (CR) bank at each assembly is
positioned at the boundary between the active core and the upper reflector region.
The axial core configuration is depicted in Figure 3.9 and the dimensions of the core

are given in Table 3.2.
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Figure 3.9 Axial core configuration of C5G7-TD benchmark

Table 3.2 Dimensions of C5G7-TD benchmark

Contents Value [cm]
Pin radius 0.54
Pin pitch 1.26
Assembly pitch 21.42
Radial moderator width 21.42
Active core height 128.52
Axial reflector thickness 21.42

Among the problems, TDO and TD4 problems are selected for the verification of the
MCcCARD transient analysis module. TDO is a set of 2-D transient problems with the

postulated instantaneous CR insertion and withdrawal of designated CR banks. In 2-
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D problems, the insertion and withdrawal of CR banks are modeled by the mixing

of control rod and guide materials as

o t=0,t>2s

M) ={2¢T 4+ 0.2k —2°T), O0s<t<ls . (3.15)
rg rg rg g
o +0.05(Zf X5 ), 1s<t<2s
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Figure 3.10 Transient scenario of TDO problems

TDO problems consist of 5 subsets each of which has different locations where the
control rod movements occur.

TDO-1: insertion/withdrawal of bank 1
TDO0-2: insertion/withdrawal of bank 3
TDO-3: insertion/withdrawal of bank 4
TDO0-4: insertion/withdrawal of bank 1, 3, and 4 simultaneously

TDO-5: insertion/withdrawal of bank 1-4 simultaneously

McCARD calculation is done with 50,000 neutrons and 50,000 precursors per
time step. 100 fission source convergence steps and 500 precursor generation steps

are used with 0.5 ms time interval. The core dynamic reactivity and fractional core
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fission rate are calculated and compared with nTRACER results. Figure 3.11 and
3.12 show the comparison results of core dynamic reactivity and fractional core
fission rate from O to 3 seconds. It should be noted that the uncertainties of the tally
values are calculated from the history-based batch method which will be covered in
the next chapter. The error bars in the figures indicate 2 o values calculated with 50
number of batches. All results show good agreement with nTRACER results
presenting the corresponding drops and recoveries according to the extent of
reactivity insertion. Figure 3.13 and 3.14 are the assembly-wise fractional fission
rates of TD0-3 and TDO-5 problem for 10 seconds. McCARD results also match well
with nTRACER’s within stochastic errors showing the trends of relative fission rates

among the assemblies.
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Figure 3.11 Core dynamic reactivity of TDO problems
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Figure 3.12 Fractional core fission rate of TDO problems
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Figure 3.13 Assembly-wise fractional fission rate of TD0-3
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Figure 3.14 Assembly-wise fractional fission rate of TD0-5

TD4 problems postulate 3-D movements of the explicitly modeled control rods
from the upper region. Four individual CR banks are inserted and withdrawn
according to their transient scenarios. Among the problems, TD4-1, TD4-3, and

TD4-4 are selected for the verification, and their transient scenarios are given below.
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Figure 3.16 Transient scenario of TD4-3
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Figure 3.17 Transient scenario of TD4-4

McCARD transient calculation is conducted with 50,000 number of neutrons
and precursors. The number of convergence step and precursor generation step are
set to 100 and 500 respectively with its time interval of 0.5 ms. In the same manner,
the core dynamic reactivity and fractional core fission rate are compared with
nTRACER results and given in the figures below. For TD4-1 and TD4-3, the
dynamic reactivity is decreased and increased according to the insertion and
withdrawal of the CR bank 1 and 3 showing the lowest values at 2.0 and 4.0 seconds
respectively. The corresponding fission rate also shows the lowest values at 2 and 4
seconds but slower restoration than the drop rate. As for TD4-4, more complicate
reactivity and fission rate changes appear including the offsetting between the CR
bank 3 and 4 from 4.0 to 6.0 seconds. In all cases, McCARD results match well with
nTRACER results within stochastic errors. The axial distribution and trend of fission
rate at the top of each fuel assembly are also given in Figure 3.20 to 3.25, and they

also give consistent results.
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Figure 3.18 Core dynamic reactivity of TD4 problems
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Fractional FA fission rate

Figure 3.20 Trend of assembly-wise fractional fission rate at the top layer (TD4-1)
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Figure 3.21 Distribution of assembly-wise fractional fission rate

at 1.5 seconds (TD4-1)
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Figure 3.22 Trend of assembly-wise fractional fission rate at the top layer (TD4-3)
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Figure 3.23 Distribution of assembly-wise fractional fission rate

at 6.5 seconds (TD4-3)
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Figure 3.24 Trend of assembly-wise fractional fission rate at the top layer (TD4-4)
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Chapter 4. Real Variance Estimation in TDMC
Simulation

4.1. Bias of the Sample Variance in TDMC Simulation

The bias of the sample variance originates from the covariance terms between

tally estimates and it can be derived in the same way as in the conventional MC k-

eigenvalue calculation. Let Q' be the MC estimate of a tally O from the j-th history

in the i-th time step which is included in the m-th tally bin. The tally bin index m is
introduced because a tally bin can contain multiple time steps depending on the
user’s needs. Then the tally mean of the m-th tally bin and its sample variance can

be written as

AM _ 1 m
Q" =xr 229 - (4.1)

2[Am 1 n ~m\2
Us[Q ]ZWZ;(Q” - ) ) (4.2)

where the M and N are the number of time steps included in the m-th time step and
the number of histories in each time step. The variance bias is defined as the
difference between the real variance and the apparent variance which is the expected
value of the sample variance. From the definition, the real variance and the apparent

variance of a tally mean in TDMC simulation are given by
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where E[] is the expected value of an arbitrary variable in the bracket and
T . In equation

cov[Qi;“Q{;l] is the covariance between tally estimates Qf and Qy .

(4.4), the last term can be rearranged as

E[(Qm)z}thﬁZZQS‘T]
('\T'\T) =| (e’ (NM)zz 2. ELof.of]

:NM E[(Q )2} NM 1E[Qu] s
oy 2, &, (ELor 0 -e[or]E[er )

1 2 m m m m
NV Q] }*E[Qu} (NM)z > > cov[QQi ]

I]IJ?#I]

3 T )
4 9 | Bl - __;' L! L
| : I} ]



By substituting equation (4.5) into equation (4.4) and subtracting it from equation
(4.3), the variance bias can be expressed in covariance terms between neutrons

within the tally bin.

7i[Q")-oila"]
(NM o'ler]+ (NM)ZZ 2 COV[Q“'Q”JJ

Ijlj#lj

( M |:QIJ ]_ N|\/| _1 (Nl\/l)2 Z Z COV[QU ’QIJ:|
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ijiLj#ij

) (4.6)

The sample variance of a tally mean is usually estimated by statistically
processing the contributions per neutron. In the fixed source mode simulation, all the
initial neutron sources are guaranteed to be independent of each other and thus the
derived tallies are uncorrelated. In the TDMC simulation, however, the neutrons
become highly correlated to each other as the simulation proceeds. This correlation
stems from the branching process and the population control scheme. The neutrons
originated from the branching process such as (n, fis), (n, 2n), and (n, 3n) reactions
share the same ancestors, and thereby their progenies are correlated to each other.
Such genealogical correlation naturally occurs in all MC simulations and it becomes
problematic when neutrons are treated as independent ones after a normalization
scheme such as cycle-by-cycle FSD updates in the k-eigenvalue calculation. In
TDMC simulation, the population control algorithm exactly corresponds to this. At
the end of each time step, the survival neutrons which may have common ancestors
are discarded or split into identical neutrons to maintain the effective number of
neutrons. Besides, the weight of neutrons after the population control is normalized

to have the same weight, which also makes a correlation between neutrons, as

:l'l ) I:
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Wi =—1 > 4.7

where n; indicates the number of survival neutrons at the end of the i-th time step.

Therefore, the tallies from these correlated or identical neutrons are not independent
and their statistical process causes a variance bias. In addition to the occurrence of
the correlation between neutrons, there is another problem in allocating tally
contributions from delayed neutrons. In TDMC simulation, the delayed neutrons are
treated by the forced decay algorithm, which samples a precursor instead of a
delayed neutron at the fission events and forces it to decay and make a contribution
at each time interval. Even if the neutrons and precursors are numbered from the
beginning of the simulation, it is difficult to properly allocate these contributions
because there may be no survival neutrons sharing common ancestors, or the number

of delayed neutrons and survival neutrons may not match.

4.2. History-based Batch Method in TDMC Simulation

There have been several approaches to estimate real variance in the
conventional k-eigenvalue calculation, such as Gelbard’s batch method [29], Ueki’s
inter-cycle covariance estimation method [30], fission source distribution inter-cycle
correlation method [31] and history-based batch method [17]. Among the methods,
the history-based batch method simply but effectively gets rid of the correlation
between tally estimates by grouping histories in a genealogical way without directly
calculating covariance terms.

To estimate an unbiased variance of a tally mean, a history-based batch method
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is developed for TDMC simulation. The basic concept of the method is to group
neutrons and precursors into different batches which do not interfere with each other
throughout the simulation to eliminate the correlation between tallies. Figure 4.1
shows the schematic diagram of the history-based batch method in TDMC

simulation. n;;, d;; and C;; indicate the j-th survival neutron, delayed neutron

and precursor in the i-th time step. N and N¢ are the total number of neutrons and
precursors. Np is the number of batches. At the beginning of the simulation, the
neutrons are divided into equal numbers and grouped into batches as indicated by
boxes in the figure. The neutrons and precursors are simulated within each batch
throughout the simulation. The solid lines present the tracks of each particle while
the dot lines present the generation of precursors and delayed neutrons from the
forced decay algorithm. At the end of each time step, the number of neutrons and
precursors are controlled to maintain the population. One can see that all the
simulation schemes including the delayed neutron treatment and population control

are applied batch-wisely.
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Figure 4.1 Schematic diagram of the history-based batch method in TDMC

Then the mean of a tally and its variance can be estimated from the batch-average

tally results as

o} [Qi,HB:I_mZ(Q Q. He) s 4.9)

— 1 & 1
Qe = N_Z —WZ;Z i > (4.10)

€K

where i, j, and xare the time step, history, and batch index. Q"' is the batch-average
tally of the x -th batch for the m-th tally bin. Since there is no correlation between
the batch-average tallies, it is straightforward that the mean among the batches and

its variance are unbiased estimates. In addition, the inconsistent allocation problem
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of the delayed neutron contributions is naturally resolved by assigning contributions
to the batch to which each delayed neutron belongs. The history-based batch method
is exactly the same as the replica calculation, but it has an advantage in that the

results can be estimated with a single calculation.

4.3. Numerical Results

4.3.1. Infinite Homogeneous Two-group Problems

The developed history-based batch method is verified to infinite homogeneous

two-group problems. A subcritical problem and a supercritical problem with k,

values 0f 0.99900 and 1.00200, respectively, are chosen for the verification. The two-
group cross section data are presented in Table 4.1. McCARD TDMC calculation is
conducted with 1,000,000 neutron histories for 100.0 ms with 0.1 ms time interval
varying the size of batches. Only prompt neutrons are simulated and the initial
sources are set to be 1 group. For the reference calculation, 100 replica calculations

are done with 10,000 neutron histories and the same time conditions.

Table 4.1 Two-group cross section data

Cross section First group (g=1) Second group (g=2)

2y 0.50000 1.30000
X, 0.00100 0.09000
Yy 2.40000 2.40000

Ly 0.48000 1.09000

g 1.69430x107%/1.70000x102 0.00190
Xy 1.00000 0.00000

1/v, 2.28626x107%° 1.29329x10°

1]
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Figure 4.2 shows the comparison results of the fission rate tally with different
batch sizes in the subcritical case. The batch size is the number of neutrons allocated
to each batch, so the batch size of 100 means the calculation of 10,000 batches with
100 neutrons in this case. From the figure, one can see that it fails to estimate the

reference mean Q™ when the batch size is lower than 250 because the number of
samples is too small that the batch estimates Q™ do not follow the normal

distribution. On the other hand, when the batch is larger than 2,500, the mean of
batch estimates predicts the reference mean well within the stochastic error. Figure
4.3 presents the comparison results at 50 ms. In both figures, the 1o errors are
indicated by the grey band for the reference calculation and error bars for other

calculations.

Reference
——HB 100
——HB 250
10% 4 ——HB_500

: ——HB 1000
10! 4 el HB_2500
P ——HB 5000
100 4 b ——HB 10000

Fission Rate [#/cm’/sec per source neutron|

0 10 30 40 50 60 70

Time [ms]

Figure 4.2 Comparison of Q,, trends according to the batch size (subcritical)
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Figure 4.3 Comparison of Q,,, at50 ms according to the batch size (subcritical)

Figure 4.4 is the comparison results of the RSD of a tally mean with different
batch sizes. The 90% confidence interval of the RSD is depicted as the grey band for
the reference calculation and marked as error bars for other calculations with the
history-based batch method. The results with a batch size larger than 2,500 match
well with the reference within the stochastic error, which is the consistent results
with the previous estimation of the mean value. Figure 4.5 and 4.6 show the
comparison of SDs according to the variance estimation method. The black line
presents the reference result with 1o SDs depicted by the grey band while the red
line and blue line show the results from the conventional method and the history-
based batch method using the batch size of 10,000, respectively. In the conventional
method, the SDs are estimated to be much smaller than the reference, so the results
appear to not match within the stochastic error. However, the history-based batch
method estimates the SDs in good agreement with the reference, showing a real to

apparent SD ratio of nearly 1.
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Figure 4.4 Comparison of RSD trends according to the batch size (subcritical)
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Figure 4.5 Comparison of the SDs according to the history-based batch method
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Figure 4.6 Comparison of the real to apparent SD ratio according to the history-

based batch method (subcritical)

The verification of the history-based batch method for the supercritical problem is
also conducted in the same way. Figure 4.7 to 4.11 are the corresponding results of
the supercritical problem. When the size of batch is larger than 2,500, the tally mean
and its RSD of the history-based batch method show good agreements with the
reference results. The effectiveness of the proposed method is shown in comparison

with the conventional method which far underestimates the SDs.
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Figure 4.7 Comparison of Q,,, trends according to the batch size (supercritical)
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Figure 4.8 Comparison of Q,, at9 ms according to the batch size (supercritical)
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Figure 4.9 Comparison of RSD trends according to the batch size (supercritical)
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Figure 4.11 Comparison of the real to apparent SD ratio according to the history-

based batch method (supercritical)

4.3.2. C5G7-TD Benchmark Problems

To consider the effect of the delayed neutrons, C5G7-TD benchmark problems
are chosen for the verification and application of the developed method. For the
verification, the TDO-5 problem is solved and the real variance of the fission rate is
estimated. McCARD calculation is done with 500,000 neutrons and precursors with
the time interval of 0.1 ms. The delayed neutrons are simulated using the forced
decay algorithm and the simulation starts from the initial steady-state source
distribution. For the reference calculation, 100 replica calculations with different
random number sequence are conducted using 5,000 neutrons and precursors. The
comparison results of the fission rate trend according to the batch size are given in
Figure 4.12 and 4.13. Compared to the previous infinite homogeneous two-group

problems, the tally mean matches well with the reference even in the case of the

3 'S i
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relatively small batch size of 500. This can be inferred from that the previous

problems are more extreme cases and the delayed neutrons alleviate the fluctuations

among the batch results. Similar results are also found in the comparison of the RSDs

in Figure 4.14 that all cases show good agreement with the reference RSD.
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Figure 4.12 Comparison of Q,,, trends according

to the batch size with delayed neutrons (TDO0-5)
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Figure 4.13 Comparison of Q,,, at3 ms according

to the batch size with delayed neutrons (TDO0-5)
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Figure 4.14 Comparison of RSD trends according

to the batch size with delayed neutron (TDO-5)

The estimated tally mean and SD from the conventional method are presented
in Figure 4.15 with the history-based batch method of 10,000 batch size. It should
be noted that the contribution of a delayed neutron is randomly assigned to a neutron
in the conventional method. The mean and SDs of the conventional method are quite
well matched with the reference which means the correlation between tally estimates
is relatively small if the delayed neutrons are simulated. This can be deduced by
checking the number of independent branches from the start of the simulation. Figure
4.16 is the plot of the number of independent branches in the conventional method
and history-based batch method according to the delayed neutron simulation.
Without the delayed neutron, the independent branches keep decreasing from the
source convergence step to the transient step. On the other hand, if the delayed
neutrons are generated from the stored precursors in each time step, it has much more
independent neutrons which reduces the correlation in the tally estimates. It can be

also seen that the history-based batch method ensures the minimum number of
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independent neutrons so that there will be less correlation. Figure 4.17 is the
comparison of the real to apparent SD ratio. The dashed lines are the estimated
variance with the 10 times longer tally bin which contains the tally estimates of 10
time steps. The history-based batch method estimates variance well in both cases
while the conventional method shows underestimations of variance. When the
variance is estimated with tally estimates over several time steps, the variance

becomes more biased because the correlation is stronger.
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Figure 4.15 Comparison of the SDs according to the history-based batch method

with delayed neutron (TDO0-5)
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Figure 4.17 Comparison of the real to apparent SD ratio according to the history-

based batch method with delayed neutron (TDO-5)

All results of the TDMC simulation in the previous chapters are calculated using the

history-based batch method. One may obtain the biased results without using it. The

fractional core fission rate of some C5G7-TD benchmark problems are presented in
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comparison with the biased results from the conventional method.
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Figure 4.18 Comparison of the estimated variance in TD0-4 problem
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Figure 4.19 Comparison of the estimated variance in TD4-4 problem

From the comparison results, it is demonstrated that the history-based batch
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method can effectively eliminate the correlation between neutrons and estimate the
real variance. However, as shown in Figures 4.2, 4.7, and 4.12, a sufficient batch size
is required to assure unbiased tally results from the history-based batch method. This
is because the history-based batch method is based on the assumption that the mean
of batch estimates follows the true mean value. So, if the batch size is not sufficient,
the batch estimates do not follow the normal distribution and the assumption
becomes invalid. The sufficient batch size is highly problem dependent and hard to
know before the calculation. In addition, providing the tally mean and variance for
various batch sizes is computationally expensive. Therefore, diagnostic methods are
suggested to determine the suitability of a prescribed batch size using a posterior
normality test.

Among the various normality tests, the Jarque-Bera test [32] and Lilliefors test
[33] are selected for the evaluation. The Jarque-Bera test utilizes the skewness and

the kurtosis of the n samples with the test statistic as

ngg(sz+%(|(_3)2j~zz(2): under H, (4.11)

1n
. 2 -_1(Xi _7)3
g=fa__n—" (4.12)

o 1 . 32 °
(nZi—l(Xi —X) ]
1o
. -_1(Xi _i)4
O

1 )Y
(nZil(Xi -X) j

In the above equations, JB, S, and K denotes the test statistic, skewness, and kurtosis
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respectively. The null hypothesis is that the random variable x follows a normal
distribution, and under this condition, the test statistic JB follows a chi-square
distribution with 2 degrees of freedom. If the p-value of the test statistic is smaller
than the set level of significance, the null hypothesis is rejected and the samples are
regarded not to follow a normal distribution. On contrary, if the p-value is larger, the
samples are regarded to follow a normal distribution because there is no evidence to
reject the null hypothesis. The Lilliefors test is a normality test based on the
Kolmogorov-Smirnov (K-S) test when the population mean and variance are
unknown. It utilizes the maximum difference between the empirical distribution
function and the cumulative distribution function which is a normal distribution

having the same mean and variance in the normality test as

D, =sup|F,(x) - F(x)|. (4.14)

In the equation, F, (x) and F(x) are the empirical distribution function with n
samples and the corresponding normal distribution. From the Lilliefors test table, the
critical value D, , With the set level of significance can be obtained and compared to
the D,. If the D, is smaller than the critical value, the samples are regarded to follow
a normal distribution since it cannot reject the null hypothesis. In McCARD, both
methods are implemented to give diagnosis results of the time-dependent tally. The
significance level is set to 0.05 and its corresponding formulation for the critical

value in Lilliefors test with the sample size larger than 50 is given as

0.83+n

N

D, g05 = 0.895/ (

-0.01). (4.15)
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The table below shows the diagnostic results regarding batch sizes in C5G7-
TDO-5 problem. The total number of neutrons are fixed to 1,000,000 in all cases.
From both results, the batch estimates are diagnosed to follow a normal distribution
in cases when the batch size is larger than 500. Though the proposed methods can
provide a suitability for the batch size in the history-based batch method, it is still
problem dependent and requires repeated trial and error to get sufficient size of
batches. In case of the k-eigenvalue calculations, it is recommended to be more than
10,000 or even 100,000 number of neutrons to guarantee a normal distribution. In
addition, it should be noted that a sufficient number of samples is required to get a
reliable probability density of p-value in the normality test, which is known to be
greater than 100. In the history-based batch method, the batch size and the number
of batches are interrelated because the number of batches is determined by dividing
the total number of neutrons by the batch size. Therefore, when determining the
batch size, both batch size and number of batches should be considered in terms of

the guarantee of a normal distribution and the applicability of a normality test.

Table 4.2 Results of the normality test in C5G7-TDO0-5 problem

Batch ~ Number of Jarque-Bera . Lilliefors critical
size batches p-value Lilliefors D, value D,
100 10000 <0.00001 0.05956 0.01266
250 4000 <0.00001 0.04326 0.02001
500 2000 0.00672 0.03682 0.02829
1000 1000 0.10574 0.03607 0.03998

2500 400 0.43334 0.04367 0.06307
5000 200 0.52427 0.05873 0.08885

10000 100 0.56349 0.07878 0.12468

2
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4.4. Error Propagation in TDMC Method

From the results of the infinite homogeneous two-group problems in the
previous section, it is observed that the RSD of a tally mean continues to increase
with the time step. To investigate the aspect of the error propagation in the TDMC
simulation, the error at each time step is quantified based on the uncertainty
propagation model and compared with the calculation results.

In TDMC simulation, the population control is forced to continue the simulation
especially, when the system is far from the critical state. For an efficiency of the
simulation, the number of neutrons to be simulated is maintained constant by
adjusting the weight of neutrons while conserving the total weight. The weight of
neutrons after the population control is determined by the number of survival
neutrons or the weight sum of survival neutrons. The ratio of the neutron weights at
the end of a time step is accumulated step by step, and this accumulated neutron
weight acts as a multiplier for the tally estimates. Then by separating the multiplier,

the mean of tally estimates in the i-th time step can be written as [34]

= 1
Q ZF_ZqU‘ ’ (4.16)

F=T1f =T &2 . (4.17)

where i and j are the time step and history index. ¢ is a tally estimate from the j-

th neutron with a weight 1.0 in the i-th time step. F, is the multiplier of the i-th time

step which is expressed as the product of the neutron weight ratio, f,, of the
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preceding time steps. f, is defined as the ratio of the sum of neutrons weights at

the beginning of i-th time step and the sum of weights of survival neutrons at the end
of the i-th time step. Then the uncertainties of the neutron weight ratios at each time
step are propagated through the multiplier and affect the uncertainty of a tally. Since
the multiplier does not affect the simulation, the relative error of a tally mean can be

expressed as

G?LQ]E&[ELJZ[@] (4.18)
QTR g
qzﬁzq”. (4.19)

The second term in the right-hand side of the equation (4.18) is a stochastic
uncertainty of the simulation, so it can be expected that the first term will dominate
the uncertainty of the tally as time step proceeds. Using the first-order Taylor series

expansion, the variance of the multiplier can be written as

dF, = i(%}dfi , (4.16)

o'[F] _E[@RY]

i . (4.17)

S e -3

i m'=1 m=1m'=1l m

This error propagation formula does not exactly represent the error behavior of a

tally mean in the history-based batch method or the replica calculations because the
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formula represents the variance of the products of the means while the error observed

in the simulation is the variance of the mean of the products. However, the

comparison of both results can help estimate the cause of the error propagation.

Figure 4.20 is the trend of RSDs along the time step in the previous supercritical
case of infinite homogeneous two-group problems. The reference RSDs are
estimated from the tally results of the replica calculations and the RSDs of error
propagation is calculated with the weight ratios of the replica calculations using
formula (4.17). It shows a similar level of uncertainties in the weight ratios over the
time steps and its propagation presents similar error trend with the reference. The

RSDs are expected to increase continuously as the uncertainties accumulate over the

time steps.

RSD [%]

Figure 4.20 Trend of RSDs in 0D 2G supercritical system without delayed neutrons

In case of the C5G7-TD problem where the delayed neutrons are simulated,
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somewhat different trend of errors is observed. Figure 4.21 is the trend of RSDs in

TDO0-5 problem. Almost constant RSDs and the slightly increasing RSDs are
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appeared in the reference and the error propagation cases respectively. This seems to
be attributed to the dominant delayed neutrons in the subcritical system because the
multiplier is applied to the survival neutrons only while the delayed neutron is newly
added in each time step with its own weight calculated from the decay probability.
In other words, the large contributions from the delayed neutrons prevent large
fluctuations of the tally estimates and in turn, it keeps errors from propagating largely.
On the other hand, in a supercritical system where the delayed neutrons are not
dominant, the error is expected to be propagated along the time step as in the previous
cases where delayed neutrons are not simulated. This can be found in Figure 4.22
which is the case of a supercritical system with delayed neutrons made by modifying
the TDO-4 problem. To demonstrate the effect of the delayed neutrons in TDMC
error propagation, the contributions from the survival neutrons and delayed neutrons
are quantified respectively. Figures 4.23 and 4.24 are the comparison results of the
reaction rate contributions from the survival neutrons and delayed neutrons in the
TDO0-5 subcritical problem and modified TDO0-4 supercritical problem. In both
figures, the solid lines and dashed lines indicate the reaction rate contributions and
the ratio of the contributions respectively. In the subcritical case where the delayed
neutron contribution is relatively high at about 20% of the total reaction rate, the
error does not propagate far because the contribution of the survival neutrons in the
time step disappeared quickly and the error behavior is dominated by the delayed
neutrons. On the other hand, in the supercritical case where the delayed neutron
contribution is very low less than 0.1%, the error is propagated through the long lived
survival neutrons over large number of time steps as expected in the error
propagation model. It is emphasized here that the main factor determining the

tendency of error propagation is not the criticality of a system, but the proportion of
¥ b i i
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survival neutrons propagating the error over time steps. Therefore, even if a transient
occurs in a system with the same criticality, it can be expected that the propagation

of the error is relatively slow when the delayed neutron fraction is high.
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Figure 4.21 Trend of RSDs in TDO-5 subcritical problem
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Figure 4.22 Trend of RSDs in modified TD0-4 supercritical problem
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Figure 4.23 Reaction rate contributions in TDO-5 subcritical problem

Reaction rate [ Arbitrary Unit]

Total
Delayed

— Survival
----- Delayed ratio

------ Survival ratio

Tally ratio

0.0

Time [ms]

0 20 40 60 80 100 120

T
140

180 200

Figure 4.24 Reaction rate contributions in modified TD0-4 supercritical problem
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Chapter 5. Time-dependent Kinetics Parameter

Estimation in TDMC Simulation

5.1. Kinetics Parameter Estimation

5.1.1. Exact Point Kinetics Equations

The estimation of kinetics parameters is essential for establishing the point

kinetics model in reactor transient analysis. In the exact form of the point kinetics

equation (PKE) [35], the kinetics parameters which are defined as a ratio of integrals

of the time-dependent Boltzmann transport equation and precursor density equations

over space, energy, and angle are time-dependent.

160
S =-MO+F,d+ > AC +5
v ot P&

ext »

M® =[Q-V+Z,(r,E,1)|®(r,E, Q1)
~[dE'[dOz, (E',Q - E.Qr.)d(r,E\ Q1)

r,Et
F oo XeWED

; i [dE[d@v, (r,E" 1)z, (r,E" )d(r, B, 1),
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T
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In the above equations, notations follow the conventions. By introducing the fission

production operator FO E(Fp +ZFdi](D , multiplying an arbitrary weight

function w, and integrating it over (r,E,Q), the equation (5.1) becomes

<Wl%> =—(W,M®)+(w,Fd)— <W,ZFdi®> + <W,Zﬂb,ci > +(W,5,,).(5.7)

\ i

With the separation of the angular flux into an amplitude function P and a shape

function  and the normalization condition of

®(r,E,Q,t) = P(t)-w(r,E,Q,t), (5.8)
2
—(W,
ot

Z> =0, (5.9)
\'

the exact PKE can be derived as

dP(t) _ p(®) - A1)
dt  AQ) P(t)+zilﬂf-ci(t)+5m(t), (5.10)
4C) AWM L.
gt a@ DGO (5.11)

In the above equations, the kinetics parameters are defined as

’Fdi
ﬂ(t)zzﬂi(t){%, (5.12)
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(5.13)

The kinetics parameters in the exact PKE contain the time-dependent operators and
shape function. In practice, however, due to the difficulties of getting the exact shape
function, equations are approximated by the fundamental mode solution of the
steady-state transport equation for the shape function, and its corresponding adjoint
function for the weight function. Generally, the k-eigenvalue equation is used for the
initially critical state and k-eigenvalue equation, a-eigenvalue equation or
inhomogeneous equation with external source is used for the initially subcritical state.

With the development of advanced methods for the TDMC simulation, the exact
shape function or the time-dependent behavior of neutrons can be obtained. In
addition, efficient MC algorithms [36] for estimating the adjoint response of an
arbitrary detector cross section during the MC fixed source calculation are developed,
which are applicable to the TDMC simulation as well. Thus, based on these, the time-
dependent kinetics parameters estimation method reflecting the exact time-
dependent shape function and the adjoint response is developed and presented in this

chapter.

5.1.2. Physical Meaning of Adjoint Response
The physical meaning the adjoint response and its MC algorithm can be derived
starting from the adjoint equation of the outcoming collision density equation written

as

P, =, + KDY, (5.14)

-
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S (F,E 1)

Sea = [drT(r >r|E Q1) STED
[ 1 )

(5.15)

K'®}, = [dr'[dE'[dT(r —>r'|E,QC(E,Q— E,Q|r DOl (I E Q1)  (5.16)

where the K" and S are the adjoint transport kernel and the detector response

with an arbitrary detector cross section X, defined with the kernels below.

det

2 (E,Q - E,Q|r't)

C(E,.Q—>E Q|rt)=

2t (r’1 E,t') (5 17)
v(r EN)Z, (MEY) 4(r.ELY) '
Zt (r’1 E,t’) 47[
T(r—>r'|E,Q,t')=%
r—r (5.18)
Ir'=rl r-r S r'—r
[Tz r-s— BN =2 |ds 5| @ -1
T e eb{o
f(r—>r’|E,Q,t)E%
r—r (5.19)

Ir'—rl r'-r r-r
exp|—-| ZX,|r-s——,Et|ds|o] Q- ——-1
ARG L G

In the above equations, 7 and C represent the free flight kernel and the collision
kernel. In the conventional kernels, the time variable is omitted because the change
of the location r implies the change in time. In here, the time variable is added to
express the change of cross sections in TDMC simulation. The kernel T is
redefined and used in the adjoint transport kernel instead of 7 since the expected
importance or the adjoint response of a neutron is defined in the fixed phase space

(r,E,Q,t) when the neutron is introduced. So one can find that the time is fixed in
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the flight kernel T . The time variables in macroscopic cross sections are included

in the number density terms expressed as

z.(rE,t)=Y> N'(r,t)o,(r,E), (5.20)
2 (E,Q —E,Q|rt)=> N'(r,t)o{(E,Q — E,Qr), (5.21)

Zlv' (r,E)N'(r,t)o} (r,E)
> N'(rtoi(r,E) ’

v(r,E,t) = (5.22)

x(r Et)
> A B[ dE[dav! (r, EIN'(r,t)0) (r, E)O(r,E\ Q1) (5.23)
Y JdE[d@ v (r BN (r ) (r B (r, B 1)

where subscript 7 and / denote the reaction type and the isotope index. From equation
(5.14), the adjoint response can be expressed as below with the Taylor’s series

expansion.
Dy = (1 KT) Z:det = [1+ KT+ (K ) ’ :| det — Zq)detj (5.24)

(K )szet

det j

—jdrjdr jdE jdszj z“e‘((r ’E J’tt))f(r - T'|E;, Q1)

[dr;, [dE, [dQ, C(E ., @, > E, @ [r )T (r, > 1 |E L2, (5.25)
[ dr, [ dE, [dR,C(E,, @, > E,,Q,|r, 0T (1, > 1, |E,, Q1)
C(E,Q—>E,Q|r,t)T(r >r|E Q1)

(DT

gerj 1S the adjoint response from the j-th collision. From the equations (5.24) and
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(5.25), the adjoint response, @} (r,E,,t), can be interpreted as the sum of

expected detector signals induced by a neutron at phase space (r,E,Q.,t).

5.1.3. MC Algorithm for Kinetics Parameter Estimation

From the exact forms of PKE, the adjoint weighted kinetics parameters, /(t)

and A(t), are expressed as

<q):;et ! FdiW>

ﬂ(t)EZﬂ. (t)ZZW, (5.26)
(@)
Alt)= @T!Fvw’ (5.27)

where y is the time-dependent shape function and the bracket < > means the

inner product of the components over (r, E,€).The Neumann series solution of the

collision density equation gives the fission operator term in the bracket as

i (r,E,t)2, (r,E,t)
(Fy)= ;IdrIdEdeIdrj ! S ED T(r, = r|E,Q,t)

..[drl.fljidEjflj.deflC(Ejfl,QH—)Ej,Qj|I’j,tj)T(rj71—>rj|EH,QJ71,IJ.)’ (5.28)

[ dr,[dE, [dQ.C(E, @, > E,,Q, |1, ,t,)T(r, > 1,|E,, @, t,)
C(E' Q' - E,Q|r,t)T(r > r|E,Qt)s (' E Q)

where s, denotes the time source density in the TDMC simulation which consists

of the survival neutron source from the previous time step and the delayed neutron

source. Equation (5.28) means all fission neutrons generated during the flight and

s R
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collision of a neutron starting from the time source. By combining the Neumann
series solutions of the collision density equation with that of the adjoint response,
equation (5.24), the time-dependent kinetics parameters can be calculated. Then the
denominator of the kinetics parameters indicates the sum of all expected detector
responses induced by the generated fission neutrons starting from the time source.

Without any approximations, this can be exactly done by producing artificial
branches at each fission event and simulating them to obtain the adjoint response
tally. However, this so-called Contributon method [18] is quite burdensome which
may take hundreds of times depending on the system, especially if applied to a near
critical or a supercritical problem. So more efficient MC algorithms are developed
utilizing Shim’s MC algorithm [36] with some assumptions to apply it for the TDMC
simulation.

The idea of the efficient MC algorithm is to utilize the subsequent branches of
the neutron instead of making artificial branches for the adjoint calculation. Figure

5.1 shows the schematic of the algorithm for calculating the fission operator term

<CDZet,Fl//> . The figure is a branch process of a neutron where the yellow circles

denote fission reactions and the thick lines after the fissions indicates the generation
of a delayed neutron. In the Contributon method, artificial branches are generated
when a fission occurs and their contributions are calculated along the individual
tracks. However, the same contributions can be obtained by following the original
track as if it is an artificial branch. The number in each collision point is the number
of overlapping contributions when each fission neutron makes contributions along
the original tracks. This number is equal to the number of fissions a neutron

experienced before the collision point. Therefore, one can estimate all of the

b i 211 |
8 2 M =T} @



contributions in a forward calculation by counting the fission events and tallying the

detector responses multiplied by this number. Other two terms of <<I)Zet , Fdi'//> and

<d)zet ,Z> in kinetics parameters can be calculated in the same way. <<1>get : Fdil//>
v

means the integration of detector responses after a delayed fission occurs, so it can

be calculated by counting the delayed fission events instead of the fission events.

<CI)Zet ,Z> means the integration of detector responses after each collision weighted
v

by the flight time. This is because /v term indicates the track length divided by

the velocity between each collision, so one can estimate the integral term by

accumulating the flight time instead of the fission events.

PO ) S

— Y —0 N)
o i - @
o——a —
Py . B m_./
e Gr—
e (2 A —
o Y 2 T T
O—@ oS & O—=O
\\' / — &) "'\G'}\________
@
\\\C;/(’\L — f\4: /’(:é-\"____—— 6)
: ®< "“@)—@i
\r 3 _—
O— ™~ %) )
) G ® O ——6)
-

(0 Fission reaction

= Delayed neutron generation

Figure 5.1 Tally algorithm for the estimation of kinetics parameters

in fixed source mode calculation

However, this algorithm cannot be applied to the TDMC simulation as it is for
several reasons. First, the shape function within a time step is represented by the

simulation of neutrons starting from the time source until the upper time boundary.
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Thus, the adjoint responses should be weighted to the collisions within a time step.
Second, the calculation of the adjoint responses may not be finished in the case when
the system is near critical or supercritical. To prevent such an endless simulation, the
adjoint convergence interval (L) is introduced and the adjoint response is calculated
within the L considering the starting time of adjoint calculation. Finally, since the
system within a time step keeps changing, for the exact calculation, it is necessary
to estimate the adjoint responses by fixing the system time at each starting time of
the adjoint calculation. But there is no way to do this without making artificial
branches. Therefore, it is assumed that the system change and its effect on the adjoint
response are small enough within a time step that the kinetics parameters calculation
can be conducted at the fixed beginning of a time step. This assumption is thought
to be valid because the time interval of the TDMC simulation is very small with an
order of the neutron generation time. Considering the characteristics of the TDMC
simulation listed above, the MC algorithm for the kinetics parameter estimation is
modified.

Figure 5.2 is the schematic of the modified algorithm to fit it in the TDMC
simulation. The time interval of the TDMC simulation, At, and the adjoint
convergence interval, L, are introduced, and the number of repeated contributions in
the collision points are changed accordingly. Then one can estimate the integral term
with fission operator by counting the number of fission events occurred within L

before the collision and within At.

i
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Time mnterval (At)

«—————————————Adjomt convergence interval (L)

e e

() Fission reaction

— Delayed neutron generation

Figure 5.2 Modified tally algorithm for the estimation of kinetics parameters

in TDMC simulation

The MC algorithms for the estimation of the terms in the equations (5.26) and (5.27)

can be expressed as

, Je(nn)j Z(WV)J"
1 I(n.n) o) 1 z W) Zdet
@T F ~ — w: (n,n’) i (nn)j’
< det V/> N ;; Z(m Wi P'=j+ 2
= jeD} j’e{Dc(“*“”)‘n”m'}
) ) ,(5.29)
1 () J () et
= — m: JW ' Lr
(Do <n'y
, Ju(nn)j (n.n)j’
N J(n.m) 1 - () et
t -1 o) | ——~ wit
CI JLNAEES 3 39 L kv B ) ( o
n=l n’' jeD(,"'”’) j’e{D‘";‘” n"<n'}
; = , (5.30)

(nn) j
n=l n j=1 z:t
je{D{m™ | <n’y

1 R (oY
:WZZ z (m((jern)Jwgn,n) det ]
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, I (nn)j (n.n)j’
1 N J(n,n") A|(n ) 1 L W(n'n’) zdet
== E E E witm L i 7
det’ N - J+1 (n n’) Wj+1 =i Zt
n=l n j=1 j ]’g{D(”v"")‘n <n’}

Z||—\

>

N z(n nj
XY % | e
=1 n' j=1 Z
je{D{™"|n"<n}

In the equations, » and n’ are a neutron source and its branch index of
multiplicative reactions such as (n,fis), (n,2n), and (n,3n) within a time step. So,

(n,n") meansthe n'-thbranch of the n-th neutron source, and A is the total number
of neutron sources. D™, D@, and D™ are the collection of fission,

delayed fission, and collision indices respectively. J(n,n’) indicates the last

collision index within a time step. The adjoint convergence interval, L, is introduced

to set a limit on the adjoint tracking. J, (n,n’)j indicates the last collision index

within the forward interval L from the j-th collision. It should be noted that the
neutron weight after the j-th collision in the first equality is offset with the neutron
weight in the parentheses because the adjoint response is the sum of detector
responses induced by a neutron. In addition, the collision index inside the
parentheses of the first equality starts with j+1 in the equations (5.29) and (5.30),
while it starts with j in the equation (5.31) since the flight time outside the
parentheses is the time between the (j-1)-th and the j-th collision.

The convergence of the adjoint response needs to be demonstrated to assure the
use of the adjoint convergence interval L. From the physical meaning of the adjoint
response, the adjoint response can be defined as the sum of fission neutrons

generated by a neutron introduced at phase space (r,E,Q,t) using vZ, as an

arbitrary detector cross section. Then the adjoint response can be presented with the
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k-eigenvalues at each time step defined as equation (3.7).
O =3 Tk ) =tk +oeet e ok (5.32)

If T'and » are the time and time step index taken to reach the asymptotic flux shape
from the introduction of a neutron, the k-eigenvalue after time 7 can be approximated

to kasy and the adjoint response can be written as
@! —IimN(t)—Iim[(k iy 4k ok )+ NS (¢ )i} (5.33)
det — oo - 00 1 172 172 n n i=1 asy s .

(5.34)

where [ is the neutron life time and N, is the expected number of fission neutrons

generated until the n#-th time step by a neutron introduced at phase space (r,E,Q,t).

When the system is subcritical where k. is less than 1.0, it can be easily seen that

the adjoint response converges to

n k
(Dget :t“_[QN(t):Zi:lNi +N, 1_aliy . (5.35)

asy

In cases when the system is critical or supercritical where kasy is greater than or equal
to 1.0, the adjoint response asymptotically diverges with the rate of kasy. Since the
significance of the adjoint weighing is to reflect the relative importance of a neutron
and the kinetics parameters are defined as the ratio of the adjoint weighted operator
terms, the validity of introducing L can be justified by the convergence of the relative
adjoint distribution. Using the equation (5.33), the ratio between adjoint responses

at different phase space 1 and 2 is written as
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q)-criet,l _ cD:;et (rllEl'Ql’tl) _ !Lrg Nl(t) — N”vl

(Dget,z B CDZet () B, Q,.4) B !L“;] N, () Ny,

(5.36)

From the equation, one can see that the ratio of the adjoint responses converges even
in the critical or supercritical cases. These approaches to prove the convergence of
the adjoint are proposed by Feghhi [37] in the conventional k-eigenvalue calculation
and the analogy of the method is applied to the adjoint response in TDMC simulation
here. From the demonstrations above, it can be considered that the introduction of
the adjoint convergence interval for the adjoint calculation during TDMC simulation

is sufficiently reasonable.

5.2. Numerical Results

5.2.1. Infinite Homogeneous Two-group Steady-state
Problems

For the verification, kinetics parameters are estimated in infinite homogeneous

two-group problems. The two-group cross sections are given in Table 5.1 varying
the differential scattering cross section. X, are set to make the infinite
multiplication factor from 0.6 to 1.002 and VvE,, is used as the detector cross
sections. McCARD calculation is done with the different number of histories and
time considering its infinite multiplication factor. The simulations are conducted
using 100,000,000 histories for 1 second in the cases where the K, is 0.8 or less,
10,000,000 histories for 1 second in the cases where the k; is 1.0 or less, and

50,000 histories for 0.01 second in the supercritical case. The initial neutron source
is set to the fast energy group for all problems. To investigate the convergence of
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kinetics parameters according to the adjoint convergence interval, simulations are
conducted varying the value L. The estimated kinetics parameters are compared with
the analytic solutions. In addition, to compare the efficiency of the developed method,

the FOM is compared with the Contributon method.

Table 5.1 Two-group cross section data with delayed neutron

Cross section First group (g=1) Second group (g=2)
2y 0.50000 1.30000
g 0.00100 0.09000
Vg 2.40000 2.40000
2 0.48000 1.09000
X Varaible 0.00190
Zs 1.00000 0.00000
1/v, 2.28626x107%° 1.29329x10°
5 i=1 0.00300 0.00300
K i=2 0.00300 0.00300
. i=1 0.16504
‘ i=2 1.44726

Figure 5.3 to 5.5 are the comparison results of the estimated A and S, with its

reference value in kK, of 0.6, 1.0, and 1.002 cases. The x-axis presents the relative
adjoint convergence interval with respect to its generation time and error bars show
20 values. The estimates converge to the reference value as L increases, and it
requires a larger L to get converged value in 1.0 and 1.002 cases where the neutron
chain is relatively longer. In the subcritical case, it converges to the reference when
L is longer than 10 times of the generation time, whereas it converges when L is

longer than 90 times in the critical or supercritical case. Table 5.2 is the comparison
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results of kinetics parameters in various cases, and it shows a good agreement within

95% confidence intervals. Table 5.3 shows the FOM of the Contributon method and

the developed method accordingto Kk, . FOM is calculated as In deep

1
(RSD)? xT
subcritical systems with k. of 0.8 or less, the developed method is 2-10 times

efficient than the Contributon method, however, as the system approaches the critical

state, it shows more than 1,000 times better efficiency.
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Figure 5.3 Comparison results of the estimated kinetics parameters
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Figure 5.4 Comparison results of the estimated kinetics parameters

in steady-state (k= 1.0)
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Figure 5.5 Comparison results of the estimated kinetics parameters

in steady-state (k.. = 1.002)

inf

Table 5.2 Comparison results of the estimated kinetics parameters in steady-state

Relative error [%]

K Kinetics Analytic McCARD Relaitve
inf parameter solution (RSD[%]) error[%]
A 8.26688x10° 8.26695x10 (0.02) <0.01
0.6 Bt 8.16340x10°3 8.17590x10%2 (0.13) 0.15
A 7.34565x10°  7.34675x107% (0.01) 0.01
0.7 Bt 7.43094x10°  7.43753x1072(0.12) 0.09
A 6.59940x10°  6.59891x10° (0.01) 0.01
0.8 B 6.88160x10°  6.87660x10° (0.11) 0.07
A 5.98623x10°  5.98322x10° (0.03) 0.05
0.9 B 6.45432x10°  6.45157x102(0.32) 0.04
A 5.57037x10°  5.56979x10° (0.03) 0.01
0.98 Bt 6.17530x10°  6.16959%x1072 (0.28) 0.09
L0 A 5.47921x10°  5.48067x107° (0.01) 0.03
' Bt 6.11520x10°  6.11939x1073(0.10) 0.07
A 5.46378x10°  5.46402x10° (0.02) <0.01
1.002 B 6.10607x10°  6.11369x102 (0.26) 0.12
1] O
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Table 5.3 Comparison of FOM in kinetics parameter estimation in steady-state

FOM, FOM, Efficiency

Contributon method Developed method (FOM»/FOM))
Kint Pess A Pesi A Best A
0.6 1.14x10* 1.47x10* 2.99x10*> 2.47x10* 3 2
0.7 7.43x10' 8.21x10°  4.31x10*> 4.02x10* 6 5
0.8 3.75x10* 7.51x10°  3.64x10> 3.98x10* 10 5
0.9 1.11x10'  1.15x10°  6.34x10*> 5.74x10* 57 50
0.98 6.43x101  6.59x10'  7.22x10%2  7.34x10* 1124 1114
0.99 1.24x10% 5.14x10° 2.58x10%2  3.06x10* 2080 5956

5.2.2. Infinite Homogeneous Two-group Transient Problems

For the transient problem, a simple transient scenario is postulated by mixing

the two material used in the steady-state problems. The two materials with k;, of

1.0 (A) and 0.6 (B) are selected and mixed linearly from pure A material to pure B
material until 5 ms. For the next 5 ms, the mixture is changed vice versa. Figure 5.6
shows the transient scenario of material mixing. McCARD TDMC calculation is
done with 1,000,000 histories and the initial neutron source is set to fast energy group
given at t=0. The kinetics parameters are estimated at each time step varying the time

interval, At, and L and compared with the reference solution. The reference solution

is calculated by the MATLAB/Simulink simulation.

9 2



Material A
Material B

1.0 4

0.8

0.6 /

04

Fraction of the material

0.0 : . . . : , . T .
0.000 0.002 0.004 0.006 0.008 0.010

Time [sec]

Figure 5.6 Transient scenario of material mixing in 0D 2G problem

Figures 5.7 to 5.10 are comparison results of the estimated kinetics parameters
along the transient scenario. In Figures 5.7 and 5.8, At is fixed to 0.1ms, and in
Figures 5.9 and 5.10, L is fixed to 1 ms. The results show a significant difference
when it does not reflect sufficiently large L, which is more than 20 times of A, on the
adjoint calculation. But, as for the time interval, it shows good agreement with the
reference regardless of the size of At. The FOM is also evaluated to compare the
efficiency of the kinetics parameters estimation methods. Comparing the RSDs at
each time step, the developed method is 800 times and 1,120 times more efficient

than the Contributon method in calculating f, and A, respectively. From the

results above, the developed MC algorithm is verified to give a true solution
regardless of the criticality of a system, if the adjoint convergence interval is
sufficient. In addition, it works well in both steady-state problems and transient
problems and shows much better computational efficiency than the Contributon

method.
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Figure 5.7 Comparison results of A regarding L (At=1x10*sec)
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5.3. Point Kinetics Analysis

5.3.1. C5G7-TD Benchmark Problem

As for the application of the estimated time-dependent kinetics parameters, the
point kinetics analysis is conducted to predict the behavior of the system in a
transient state. The C5G7-TD benchmark is selected as an application problem in
which the transient starts from the initially critical state. Among the problems, the
TD2-1 2D problem which postulates the insertion and withdrawal of control rod

bank 1 is chosen and the kinetics parameters are estimated along the time.
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T T T T —a—TD2
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0.04 B
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Tractional control rod insertion
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Figure 5.11 Transient scenario of TD2 problems

McCARD TDMC simulation is conducted using 100,000 neutron histories and

10,000 precursors with 0.2 ms time interval. The kinetics parameters A and f,, are

calculated at each time step with the adjoint convergence interval of 1 ms and the
estimated values are averaged every 5 ms interval. Figure 5.12 and 5.13 shows the

time-dependent A and S, estimates. The black lines are the kinetics parameters

estimated from the TDMC simulation and the red lines are the kinetics parameters
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calculated from the conventional k-eigenvalue calculation weighted by the k-adjoint.

k-adjoint weighted kinetics parameters are calculated by McCARD k-eigenvalue

calculation using 400,000 neutron histories for 200 active cycles after 100 inactive

cycles. One can see that the kinetics parameters decrease from the critical state value

as the control rods are inserted and get back to the critical state value as the control

rods are withdrawn. At the critical state, the estimated kinetics parameters are

matched with the k-adjoint weighted kinetics parameters within stochastic errors.
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Using the estimated kinetics parameters, the point kinetics analysis is conducted and
compared with the reference TDMC simulation result of the fractional core fission
rate. Figure 5.14 shows the trend of relative amplitudes calculated by PKE with
different kinetics parameters and their errors. The reactivity is calculated from the
TDMC simulation as a core dynamic reactivity and is used for all point kinetics
analyses. The PKE analyses are conducted with the kinetics parameters which are
estimated from the k-eigenvalue calculation weighted by the k-adjoint, the TDMC
calculation weighted by the detector response at 0.5 seconds and 1.0 seconds. It
shows similar differences near the initial critical state, however, as the system
becomes subcritical with the insertion of CRs, the PKEs from the TDMC simulation
match with the reference better than that from the k-eigenvalue calculation. The PKE
from the k-eigenvalue calculation shows about 6% differences in the subcritical state,
whereas the PKEs from the TDMC simulation at 0.5 and 1.0 seconds give 4% and
3% differences respectively. This is because the shape function and adjoint function
at the selected states during the CR insertion reflect the behavior of neutrons in the
transient system better than that of the critical state. Figure 5.15 is the enlarged
picture between 0 and 1 second in Figure 5.14, and the difference between the results

can be seen more clearly.
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Figure 5.14 Comparison of PKEs with different kinetics parameters for TD2-1
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5.3.2. Numerical Beam Trip Experiment in KUCA

For the application of point kinetics analysis in an initially subcritical case, the
thorium-loaded ADS benchmark [38] at KUCA is selected as the target problem. The
benchmark is composed of various subcritical core configurations with different
thorium-loaded fuel assemblies. Each assembly consists of 5.08 % 5.08 cm coupon-
shaped plates stacked inside the 5.53 x 5.53 cm aluminum sheath of 1mm thickness.
Among the various core configurations, Th-HEU-Gr-PE core with the deepest

subcriticality with K, of 0.35473 is chosen. The fuel assembly and the core

configuration is given in Figure 5.16 and 5.17. The fuel assembly consists of thorium
and 93% highly enriched uranium fuel, graphite and polyethylene moderator and
reflector. The overall height of the fuel assembly is 152.4 cm with 60 cm long layers
of the upper and lower polyethylene reflector and the fuel layers of approximately
25 cm long. The core consists of 25 fuel assemblies surrounded by polyethylene
reflectors. The 14 MeV neutron source is generated near the one side of the fuel
regions in an isotropic direction from the D-T reaction by injecting a deuterium beam
into the tritium target. The numerical experiment of a beam trip is conducted with
the TDMC simulation and the time-dependent kinetics parameters are estimated after

the beam trip.

:l'l i 211
100 -"-\."i —— T_H



19"PE+1/2"PE x 8+1/4"PE,
(482.60+101.60+6.35mm) |

Al 1/8"Th 1/16"EU  1/2"Gr
(20.00mm)

(3.18mm)  (1.59mm)(12.70mm) (3.18mm)

19"PE+1/2"PE x 11
(482.60+139.70mm)

Figure 5.16 Fall sideways view of Th-HEU-Gr-PE fuel assembly
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Figure 5.17 Configuration of the Th-HEU-Gr-PE core

McCARD TDMC calculation is conducted using 1,000,000 neutron histories

and 1,000,000 precursors with 0.1 ms time interval. To simulate the beam trip

experiment from the steady-state, the external source is uniformly simulated within

each time step thorough the steady-state simulation. The number of fission source

convergence steps and precursor generation steps are set to be 100 and 500 steps

respectively. The transient simulation after the beam trip is conducted for 0.01

second and the adjoint convergence interval is set to 1.0 second. For the comparison,

the k-adjoint weighted kinetics parameters are estimated from the k-eigenvalue

calculation. In addition, the kinetics parameters weighted by the solution of the
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inhomogeneous adjoint equation for the reference subcritical state with external
sources are estimated from the fixed source calculation. k-eigenvalue calculation is
done using 400,000 neutron histories for 200 active cycles after 100 inactive cycles.
The fixed source calculation is done using 80,000,000 neutron histories for 50 replica
calculations. In all calculations, JENDL-4.0 cross section library is used.

Figure 5.18 and 5.19 are the comparison results of the estimated kinetics
parameters from each calculation. In Figure 5.18, A estimates increase rapidly after
the beam trip at 0.01 second and converge to a lower value than the values at the
steady-state as the delayed neutrons become dominant. The A estimate of the fixed
source calculation matches well with the estimates of the TDMC simulation at the
steady-state, but the A estimate of the k-eigenvalue calculation shows some
difference. As for the g, , there is no significant difference before and after the
beam trip in the TDMC estimates and similar values are calculated in other two

estimates.
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Figure 5.18 Estimated A for the beam trip experiment in Th-HEU-Gr-PE core
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Figure 5.19 Estimated f,, for the beam trip experiment in Th-HEU-Gr-PE core

The point kinetics analyses are performed using the estimated kinetics
parameters after the beam trip. The time-dependent core fission rate from the TDMC
simulation is used as the reference and all results are normalized as a relative value
with respect to the initial steady-state. The reactivity is calculated as the conventions
in the PKE with the k-eigenvalue calculation, while it is set to 0 in the PKE with the
fixed source calculation and the TDMC calculation since the system is not change
over time in the ADS PKE [36]. The red line and blue line are PKE results using the
kinetics parameters estimated from k-eigenvalue calculation and fixed source
calculation. The squared boxes present the difference with the reference. The fixed
source case predicts the system behavior the best at the very beginning of the beam
trip since it reflects the effect of the initial source distribution. However, as the source
distribution is moved to the fundamental mode solution without an external source,
the k-eigenvalue case fits the reference trend better than the fixed source case
between 10.5 ms and 11.5 ms where the estimated A of k-eigenvalue fits to the

TDMC results better than the fixed source case. At the end where the delayed
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neutrons are dominant, both results show a similar trend. The green line is the PKE
result obtained by adjusting the exact kinetics parameters at each time step. Overall,
it best matches the reference among the results by reflecting the adequate neutron

distribution and importance over time.
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Figure 5.20 Comparison of PKEs with different kinetics parameters for the beam

trip experiment in Th-HEU-Gr-PE core

The significance of the developed method is that it can provide the method to
calculate kinetics parameters applying the exact shape function and adjoint response
of that time independent of the system. In the conventional approaches of the PKE,
it deals with the problem of accurately predicting the system behavior in transient
based on the steady-state flux and its adjoint function. However, in the developed

method, the PKE model is established based on any transient state by estimating
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kinetics parameters using the time-dependent shape function and its time-dependent
adjoint response. It can be said that the PKE domain is generalized from the steady-
state to arbitrary states including transient states and the framework for the point
kinetics analysis in the generalized time domain is suggested. The developed method
is expected to be used in the quasi-static MC method to estimate kinetics parameters
at each time step by weighting the time-dependent adjoint response and the accuracy
is expected to be significantly improved compared to the conventional steady-state

adjoint weighting case.
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Chapter 6. Neutronics and Thermal-hydraulic
Coupled Transient Analysis System

6.1. McCARD/CUPID Coupled Analysis System

The reactor transient analysis requires the capability for considering thermal
hydraulic feedback effects caused by the power deviation in transient scenarios.
McCARD equips with a simple one-dimensional T/H feedback module [12] but it
cannot take into account the coolant mixing effects in sub-channels, which can lead
to major errors in the accuracy of the results. Therefore, McCARD is coupled with
the 3D sub-channel code CUPID, which is developed in KAERI, to establish multi-
physics module for the transient analysis. The coupling is performed using the
TCP/IP socket communication. The TCP/IP socket communication enables the real
time bi-directional communication between the server and the client through the
designated port. It has also the advantage of high scalability since it can easily
implement the data transmission and reception modules once establish the interface.
To minimize the modification of the codes, McCCARD and CUPID is coupled
externally through the server module but internally exchange data through memory
using server module.

Figure 6.1 is a flow chart of the McCARD/CUPID module. McCARD and
CUPID are connected to the server module using a designated address and a port
number. After checking the connection and the dimension of coupling variables, it
starts the simulation. When the simulation starts, McCARD calculates the relative
3D pin power distribution with the given temperature and density. CUPID calculates

the temperature and density of the coolant and the temperature of the fuel and
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cladding based on the pin power distribution. The calculated coupling data are
exchanged through the server module. Table 6.1 is the list of the coupling variables.
The coupling calculation is performed iteratively until it satisfies the temperature
convergence criteria or the maximum number of iterations in the steady-state

simulation or until the specified time boundary in the transient simulation.

CUPID SERVER McCARD
Initialize
, Y
Connect to server > Accept < Connect to server
Recerve simulation Receive laty
flag Send simulation flag » flag
> McCARD calculation [«—
Receive PP < Send PP
‘ v
—» Receive PP < Send PP
CUPID calculation
Send Tw. po. Tar » Receive Tiy. pu. Tn
Calculate Ty
+ y
Send Tin. P, Ty, Tt Recerve Ty, P, Ty, Tt
3 v
Send convergence flag 3 Check convergence |« Send convergence flag
Receive simulation < S|l s y Receive simulation
flag flag
Continue
Yes Yes Yes
No No No

Figure 6.1 McCARD/CUPID coupled analysis system
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Table 6.1 Coupling variables of McCARD/CUPID coupled analysis system

Coupling variable

Transmit Receive [Unit]
McCARD CUPID 3D relative pin power distribution
Coolant average temperature [K]
Coolant density [g/cc]
Fuel centerline temperature [K]
Fuel surface temperature [K]
CUPID McCARD

Cladding average temperature [K]

Guide tube average temperature [K]
Guide tube coolant density [g/cc]
Guide tube cladding average temperature [K]

Since the structure of the radial and axial nodes are different according to the code
and problem, the data should be adjusted for the control volume before it is
transferred to one another. In general, since neutron transport codes deal with unit
cells of a control rod and sub-channel codes deal with unit cells of a channel, the
coolant data need to be adjusted in the radial direction. The radial adjustment is

conducted using the area ratio of the lattice geometry as

N .
) ZTCI x Aj N )
Tg=2——=>T!xR,, (6.1)
i=1

2A

i=1

where i and j are the radial lattice index of CUPID and McCARD and subscript C

and M indicate CUPID and McCARD respectively. A; is the area of the i-th CUPID
lattice superimposed on the j-th McCARD lattice. With the radial mapping data
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depicted in Figure 6.2, McCARD unit cell data is calculated by weighting 0.25 to

the surrounding four sub-channel data.

Figure 6.2 Radial lattice and data mapping

As for the axial direction, data adjustment is conducted using the ratio of the axial

lattice length as

N

i=1

where L is the length of j-th McCARD lattice superimposed on the i-th CUPID

lattice. Figure 6.3 shows the example of the axial lattice and data mapping.
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Figure 6.3 Axial lattice and data mapping

It is noted that the McCARD/CUPID coupling is parallelized to exchange data
and calculate the coupling variables in both codes simultaneously for the efficiency
in the steady-state calculation. On the other hand, when the transient analysis starts,
the coupling is serialized to exchange data and calculate the variables in order. In
addition, due to the difference in data time, that is the power distribution calculated
from McCARD is the average value of the time step, while CUPID requires the data
at the time boundary, so the power density is linearly extrapolated before being

transmitted to CUPID.

6.2. Numerical Results

6.2.1. VERA Benchmark Steady-state Problem

To verify the developed McCARD/CUPID coupled analysis system, the VERA
#6 hot full power problem is analyzed among the VERA 3D assembly problems.
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VERA assembly is a 17 by 17 Westinghouse type PWR assembly which consists of
264 3.1% enriched uranium fuel rods, 24 guide tubes, and an instrumentation tube.
The fuel rod is axially divided into 23 layers with 6 internal spacer grids and 2 spacer
grids at both ends. The total height of the fuel rod is 418.937 cm with the active core
of 365.760 cm. Figures 6.4 and 6.5 are radial and axial cross-sectional view of the

assembly respectively.
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Figure 6.4 Radial cross-sectional view of the VERA #6 assembly
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Total 23 cells in the axial direction including the active core and the adjacent
cells are coupled for the McCARD/CUPID coupled calculation. In the McCARD
model, the upper and lower cells which are not coupled use the temperature and
density data from the adjacent cells. The dimension of the assembly and material
composition follow the benchmark. The operation condition at HFP are given in

Table 6.2.

Table 6.2 Operation condition of VERA #6 HFP assembly problem

Contents [Unit] Value
Average power [MW] 17.670
Exit pressure [MPa] 15.513
Inlet temperature [K] 565.000
Average mass flux [kg/sec-m2] 3457.620
Boron concentration [ppm] 1300.000

The developed McCARD/CUPID coupled analysis system is verified by
comparing with the previous analysis results of the McCARD/MATRA coupled
analysis system. McCARD calculation is done with 500,000 neutron histories for
200 active cycles after 100 inactive cycles. The number of coupled iteration is set to
13. Among the iterations, 3 iterations are conducted with the gradually increasing
scheme as 66, 132, and 200 cycles to get the roughly converged temperature
distribution. The remaining 10 iterations are conducted with the maximum cycle
number of 200 for the accurate temperature convergence. The ENDF/B-VIL.0 is used
for the cross section library. The cross section libraries are processed by the Gauss-

Hermite quadrature on the fly Doppler broadening module based on the libraries
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produced at 300K intervals and the stochastic mixing method is used for the thermal
scattering libraries.

Both McCARD/CUPID and McCARD/MATRA calculation are conducted for
13 iterations. After the calculation, the effective multiplication factor is calculated as
1.16717+0.00006  and  1.16708+0.00007 for  McCARD/CUPID  and
McCARD/MATRA respectively, which match well within the stochastic errors.
Figures 6.6 and 6.7 are the maximum fuel and coolant temperature deviation along
the iteration. The fuel temperatures are converged within 10 K after the 5-th and 6-
th iterations in the McCARD/CUPID and McCARD/MATRA calculation, while the
coolant temperatures are converged within 0.1 K after the 7th iteration in both cases.
The initial deviation is large in McCARD/CUPID calculation because CUPID uses
zero power initial distribution for the first calculation whereas cosine shape power
distribution is assumed in MATRA. The convergence criterion for the coupled
calculation is set to maximum 10 K and it shows sufficient convergence through the

13 iterations.
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Figure 6.6 Trend of the fuel temperature convergence in VERA #6 problem
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Figure 6.7 Trend of the coolant temperature convergence in VERA #6 problem

Figure 6.8 is the comparison result of the axial power distribution. Overall power
distribution match within 3% and 1% from the 5-th layer. The dents of the power
distribution is the location where the spacer grids exist. One can see the lower power
distribution as the flow rate decreses and the pressure drops at these locations. In
Figure 6.9, the radial power distribution is compared. It shows a good agreement
within the stochastic errors and the maximum difference is 0.17%. The fuel and
coolant temperatures are also compared between two coupled system. Figures 6.10
and 6.11 are the comparison results of the coolant exit temperature and fuel
temperature. The coolant exit temperature math well showing the maximum
difference of 0.21 K or 0.06% as the relative difference and the fuel temperature

shows maximum 12.12 K or 1.55% difference.
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Figure 6.8 Comparison of the axial power distribution in VERA #6 problem
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6.2.2. VERA Benchmark Transient Problem

In this section, the capability of the McCARD/CUPID coupled transient
analysis system is not thoroughly verified. Instead, the integrity of the coupled
system is checked by analyzing the postulated transient scenario for the VERA #6
problem and observing the Doppler effect. To simulate rod ejections of the fuel
assembly, the guide tubes in the VERA #6 problem is changed to control rods with
AIC absorber in them. The initial condition is assumed to be the hot zero power with
10** % of the nominal power. All control rods are positioned at the 16.22 % height
of the active core in the initial state and it is assumed to be at critical state. The
quarter part of the control is ejected immediately at 0.01 second so that the
1.128 reactivity will be inserted by fully ejecting the control rods. The control rods
that are ejected as the transient scenarios are depicted in the figure below with red

color.

Figure 6.12 Location of the postulated control rods ejection (red colored)
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McCARD/CUPID calculation is conducted using 100,000 neutron histories and
precursors with 100 and 200 time steps for fission source convergence and precursor
generation. The time interval is set to be 0.1 ms and the coupling frequency for the
temperature update is set to be 2 ms, which exchanges data for every 20 time step
calculations. Figure 6.13 is the McCARD/CUPID coupled calculation result of the
core power after the control rod ejection. It can be seen that the Doppler effect gives
the negative feedback to the power increase as the fuel temperature is increased, and
it converges to the new equilibrium state. Figure 6.14 is the trends of the average
fuel temperature and the coolant exit temperature. One can see that the fuel
temperature increases rapidly with the initial power increase but it decelerates due
to the Doppler effect and increases constantly as the power converges. The fuel
temperature is expected to converge to a value corresponding to the converged power
level. The coolant temperature also changes with the power increase but shows a
relatively slow increase due to the large heat capacity. Figures 6.15 and 6.16 are the
power distribution and fuel temperature profile at 0.23 second. Both results show the
corresponding power and temperature increase in the quarter parts of the core where

the control rods are ejected.

¥ s 211
118 A —=—TH



600 T T T T T T
] | —— McCARD/CUPID
550
500
450
400
— 3504
é _
— 300~
Z 250
Z 250
200
150
100
50 i
] il i
0 T T T T T 1
0.0 0.6 0.8 1.0
Time [sec]
Figure 6.13 Trend of the power after the rod ejection
. —_— : 568.0
600 - Fuel average temperature
Coolant exit temperature
595 -567.5
07 567.0
g J - 0 /. M
- 585 =
: g
8. 530 - 566.5 E
b | =
z 5
= 71 L 566.0 3
= 4 =]
< Q
570
. - 565.5
565
560 +————T——1—— —T , 565.0
00 01 02 03 04 05 06 07 08 09 10

Time [sec]

Figure 6.14 Trends of the fuel and coolant temperature after the rod ejection
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Figure 6.16 Fuel temperature profile at 0.23 second

From the power and temperature trends, one can see that the temperatures are
changing smoothly while the power is fluctuating. This is due to the heat capacity of
a material acting as thermal inertia to prevent rapid changes in temperature. In reality,
such fluctuation in power may not be observed because there are much more
neutrons than the simulation and the thermal feedback occurs continuously.
Considering the stochastic errors shown in the figure, smooth power shape could be
obtained if a much larger number of neutrons were simulated. From the same point
of view, such fluctuation can exist in a transient state of a very low power although

the change will be very small and difficult to measure.

120 W A—I e 1_'.” aﬂ 7.



Chapter 7. Conclusion

In this thesis, advanced time-dependent Monte Carlo methods are developed to
perform a more accurate and reliable analysis for the realistic reactor transient
problems. The capability of the TDMC simulation in McCARD has enhanced and
the applicability of the developed TDMC methods has extended.

The conventional TDMC algorithm using the analog MC branching method
with the combing method for population control is implemented with some
improvements by eliminating the scale factor and introducing the dynamic weight
window for an efficient neutron simulation. The TDMC simulation with the
population control is applied to the PNS alpha measurement. With the time-
dependent tally of neutrons from the TDMC simulation, an optimum detector
position search algorithm is developed to resolve the dependency issue of the PNS
alpha measurement. The developed method is applied to the Pb-Bi-zoned
experimental benchmark at KUCA and numerical experiments at AGN-201K. It is
shown that the developed method predicts the relative alpha convergence at different
detector positions well. An optimum detector position is searched at both cores by
comparing the amplitude of signals from detectors after the convergence. The
sensitivity of an optimum detector position to initial source positions is also
examined.

For the transient analysis starting from the initial steady-state, the delayed
neutron treatment with the forced decay algorithm and the TDMC steady-state
simulation method with the precursor density normalization scheme are
implemented. In addition, new features of moving geometry treatment is developed

to extend its capability to the three-dimensional transient analysis. The developed
§ ¥
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method is verified to the C5G7-TD 2D and 3D problems and it shows good
agreements with the results of n"TRACER within the stochastic errors.

The history-based batch method in the TDMC simulation is developed for the
unbiased variance estimation. The conventional variance estimation method which
stochastically processes the tally estimates per neutron gives highly biased results
due to the correlations among the neutrons. The history-based batch method
disconnects this correlation by simulating neutrons and processing the tally estimates
batch-wisely. The developed method is verified in infinite homogeneous two-group
problems and C5G7-TD benchmark problems and it gives unbiased variance for the
tally means. From the variance estimation of the time-dependent tally, it is found that
the error is propagated in the TDMC simulation through the weight normalization
scheme in the population control. However, when the delayed neutrons are dominant
than the survival neutrons, it keeps errors from propagating largely.

As an application of the TDMC simulation, a time-dependent kinetics
parameter estimation method is developed reflecting the exact flux shape and adjoint
response. Based on the physical meaning of the adjoint response, the MC algorithm
called Contributon method can be used to estimate the kinetics parameters by making
additional particles for the adjoint calculation. But, it has serious limitations in
calculation speed and application ranges for practical use. Therefore, with some
reasonable assumptions, efficient MC algorithms are proposed for the kinetics
parameter estimation. The algorithms are verified in infinite homogeneous two-
group problems and show good agreement with the reference solutions. It also shows
more than 1,000 times the efficiency than the conventional method near the critical
cases. The developed methods are applied to the C5G7-TD problem and numerical

beam trip experiment at KUCA for the estimation of the kinetics parameters. The
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estimated kinetics parameters are used for the point kinetics analysis of the system
and compared with the one using the conventional kinetics parameters. It is expected
to be utilized for exploring the best estimates of the kinetics parameters that can
predict the transient situation better.

Finally, in order to consider the thermal-hydraulic feedback in the realistic
reactor transient analysis, McCARD is coupled with the 3D sub-channel code
CUPID using the TCP/IP socket communication. The McCARD/CUPID coupled
system is verified in the steady-state problem of VERA #6 HFP assembly compared
to the previously built McCCARD/MATRA system. The results match well with the
McCARD/MATRA system showing the maximum difference of 0.17% in power
distribution, 0.06% in coolant exit temperature, and 1.55% in fuel temperature. To
conduct a coupled transient analysis, the VERA #6 problem is modified to a simple
rod ejection problem and it is analyzed using the coupled system. The integrity of
the coupled system is checked by observing the Doppler effect from the temperature
feedback of the fuel, but more verification is needed for the problems with

comparison results.
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