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ABSTRACT 

 

 The agricultural sector is undergoing various challenges of farm 

management related to increasing agricultural production with limited 

resources. Driven by expectations for sustainable agricultural systems, 

autonomous agricultural machines equipped with path planning and tracking 

algorithms are a promising approach used to increase agricultural 

production and efficiency in a sustainable way. Successful adoption of an 

autonomous system in paddy fields depends on the abilities to generate a 

coverage path applicapable to various field shapes in the presence of an 

enclosing field boundary with a dedicated entrance and to control the 

motion of the tractor reflecting the dynamic navigational condition 

occurring because of the frequent headland turning on field with high soil 

moisture content or flooded water. This study reports on the development of 

a complete coverage-path planner (CPP) with an optimal sequence and an 

intelligent path tracking controller to cover a whole area with the high field 

efficiency for autonomous tillage and puddling∙leveling tractors operating in 
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the polygonal paddy field. A full CPP that provides automatic generation of 

both inner and outer-work paths, and boundary corner turning methods 

applicable to irregular paddy fields was developed based on the proposed 

path models of tillage and puddling∙leveling operations for an autonomous 

tractor. An optimation method for determining a sequence of inner tracks 

based on the genetic algorithm (GA) was implemented in the CPP to 

improve the path planning performance in terms of field efficiency by 

reducing the non-working distance. For a complete CPP that enables the 

tractor located at the entrance to automatically go to the start point of the 

full CPP and return to the entrance after completing agricultural tasks, a 

novel path planner for the entry and exit operations of an autonomous 

tractor was developed using the A* algorithm. To enhance the capability of 

the autonomous tractor based on a previously developed slip estimation-

based steering control to keep the implement on the reference path at 

various speed conditions, an intelligent tracking controller was designed and 

developed using reinforcement learning (RL) by considering navigational 

conditions represented by lateral deviations and heading errors in real-time. 

The feasibility of using the developed algorithms was investigated via 

computer simulations followed by field tests with a 63.4-kW autonomous 

tractor equipped with the developed CPP and tracking controller in 

polygonal paddy fields. In path planning simulation, the CPP with optimal 

sequence showed the effect of increasing the field efficiency by reducing the 
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non-working distancee in three polygonal fields, i.e., 28 %, 33.9 %, and 

45.0 %, as compared with those obtained with the previously developed 

CPP. From the validation, the full CPP demonstrated could guide the 

autonomous tractor with tracking accuracy that showed lateral and heading 

root-mean-squared errors (RMSEs) of < 10.1 cm and 2.2° and tillage 

performance with the skipped areas of < 1.7% of the total area in three 

different polygonal paddy fields: triangle, (3020.3 m2), quadrilateral (3451.3 

m2), and pentagon (4361.3 m2). In addition, when the autonomous 

puddling∙leveling tractor equipped with the developed CPP navigated the 

paddy field where the water was flooded, the results showed lateral 

deviations ranging from -11.3 cm to 13.7 cm and heading errors ranging 

from -2.7 deg to 1.8 deg, respectively, and the system showed superior 

tracking performance in terms of travel distance and fuel consumption by 

reducing from 3039.6 m to 1940.1 m and 17.1 L to 16.3 L as compared with 

those of the manual operation. However, it was confirmed that it took about 

20 minutes more time because it traveled at a slower average velocity (1.35 

km/h) than the manual-driven tractor (2.75 km/h). Nevertheless, similar 

leveling performance was obtained with the altitude ranging from 39.61 m 

to 39.85 m (autonomous) and from 39.62 m to 39.81 m (manual), 

respectively. The autonomous tractor equipped with the RL-based 

intelligent path tracking controller without any stops or divergence with 

improved path-tracking accuracy (lateral and heading RMSEs of 12.9 cm 
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and 3.8 deg) as compared with those (lateral and heading RMSEs of 30.1 

cm and 8.6 deg) obtained using the system with slip-estimation based 

tracking method at 4 km/h, thereby implying that the developed CPP and 

RL-based intelligent tracking controller would show the potential of the 

autonomous tillage and puddling∙leveling tractor in paddy field. 

 

Keywords: Autonomous tractor, paddy field, tillage, puddling and leveling, 

Coverage path planner, Optimal path planning, Path tracking, Reinforcement 

learning 
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CHAPTERS 
 

CHAPTER 1 

INTRODUCTION 

BACKGROUND 

The supply rate of large-horsepower medium to large agricultural machinery for 

efficient agricultural production, along with the demand for increased production 

due to the world population rise, has been continuously increasing as the decrease 

in and aging of the farm household population have become severe. Given those 

issues, automation technology that enables high productivity and convenient 

machine operation is being applied in various agricultural tasks, such as tillage, 

sowing, pest prevention, and harvesting. However, the agricultural production 

methods developed for the purpose of simply increasing the yield show limitations 

in terms of the sustainable development of agriculture because excessive amounts 

of fertilizers and pesticides are applied without considering the environment. To 

overcome these limitations, precision agricultural technology, which monitors the 

conditions of crops and soil in real time and accordingly inputs the proper amount 

of agricultural materials to the required place, is being introduced. Furthermore, 

based on the concept of precision agriculture, many studies are being conducted for 

the realization of intelligent agricultural machinery to which the Agriculture 4.0 

paradigm fused with Internet of things (IoT), big data, robotics, and artificial 

intelligence (AI) is applied (Schrijver et al., 2016). 

Automated driving technology is gaining significant attention as an automation 

and intelligence technology to improve efficiency across various industries 

(Thomasson et al., 2019). In particular, this technology has been actively explored 
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in the automobile field, leading to the development of many element technologies 

necessary for the automated driving of automobiles, such as navigation, route 

planning, and sensor fusion. Vehicles equipped with Level 2 ADAS (Advanced 

Driver Assistance Systems) are already on the market, and further development of 

Level 3 or higher autonomous vehicles and their element technologies is also 

actively underway. Because the development of these autonomous vehicles has 

resulted in the improved performance of related parts, such as sensors and boards, 

as well as the advancement of related technologies, it is highly encouraging in 

terms of improving the efficiency of development when these technologies are 

introduced into the autonomous agricultural machinery field. However, given the 

nature of automobiles, 1) the ground friction force or contact area of the road is 

mostly continuous without significant fluctuations because automobiles are driven 

on-road, and 2) automobiles must maintain a safe distance according to the driving 

velocity by themselves. In contrast, agricultural machines, such as tractors and 

combines, are ideal primary applications of automated driving technology because 

1) they are driven at low velocity off-road, 2) they are relatively free from 

obstacles given the surrounding environment (farmland), and 3) they repeat tasks 

along a straight or curved path. Thus, if the robustness of navigation technology is 

further secured in an agricultural work environment in addition to the automated 

driving technology, it will be advantageous for applying automated driving or 

automation technology to agricultural machinery. 

As civilian use of GPS technology was permitted in 1995, and the security code 

on selective availability that was available only to some authorized organizations 

was unlocked in 2000, the idea of precision agriculture emerged. The automated 
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driving technology for agricultural machinery since then has been developed for 

the purpose of effective resource management and production enhancement 

(Stafford, 2000). In the early stages, technological development started with a 

guide bar technology that guides the degree of deviation in real time in the form of 

driver assistance to improve the tracking performance, evolving to the development 

and distribution of automatic steering technology mounted on an electric motor or 

hydraulic valve interlocking actuator. Furthermore, autonomous tractors that 

automate most of the tasks required by existing workers, such as steering, velocity 

variation, and operation of machinery under limited farming conditions, have been 

developed and marketed since the 2010s. Related technologies have been recently 

developed in the direction of intelligent tractors, mainly led by large tractor 

manufacturers and national research institutes that provide data-driven integrated 

agricultural solutions covering all agricultural tasks, such as tillage, leveling, 

transplanting, sowing, weeding, harvesting, and post-harvest management. 

Furthermore, the problem of lack of economic feasibility for small- and medium-

sized farms due to high-priced sensors and base technology was previously pointed 

out as a limitation of precision agriculture. However, this issue has been overcome 

by the commercially expanded distribution of core technologies and the drop in the 

price of GNSS (Global Navigation Satellite System), a core sensor, with the 

development of automated vehicle technology, resulting in the spread of 

autonomous tractors and element technologies (Figure 1). 
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Figure 1. The market value for the GNSS receivers sold for agriculture purposes 

(Agricultural Robots and Drones 2016-2026: Technology, Markets, and Forecasts) 

Autonomous Techonology in Agricultural Mahcinery 

Unmanned mobile robot technology, along with AI and information and 

communications technology (ICT) technologies, is already being applied in the 

fields of manufacturing, logistics, medical care, rehabilitation, safety, and personal 

services, and its scope of application is further expanding in response to social 

demand for improved convenience. With the advancement of the technology itself, 

research and development (R&D) has been actively conducted at the level of 

autonomy that recognizes the situation by itself and finalizes optimal judgments 

through the convergence of cutting-edge IT technology and AI, departing from the 

conventional automation function that imitates humans. This robot technology has 

recently been introduced into the automation system of agricultural machinery, 

contributing to the enhanced operational efficiency and productivity. However, 

typical industrial robots operate to handle uniform and standardized tasks on a flat 

paved road, whereas agricultural robots mostly target non-uniform objects, such as 

soil and crops, and operate in difficult-to-control environments, such as irregular 
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road surfaces. In this respect, it is difficult to apply all the latest robot technologies 

to the agricultural field (R Shamshiri et al., 2018). 

Investment in agricultural robot technology reflecting these environmental 

characteristics in agriculture has increased steadily by 80% or more annually since 

2012, and the investment has been concentrated mostly on agricultural machinery 

automation technology (Oberti & Shapiro, 2016; Tillett, 2003). Over time, many 

agricultural tasks have been automated through large-horsepower autonomous 

tractors operating on limited cleared farmland. Furthermore, along with the 

technological developments, such as automatic steering and navigation control, 

automated machine control, automated headland turning, environment recognition, 

variable-rate application, mechanical operation optimization, swarm control, and 

IoT-based V2V (vehicle to vehicle) or V2X (vehicle to everything), Case IH 

presented the concept of an unmanned tractor, to which robot technology was 

applied, in 2016, thereby leading to the development of autonomous robot farming 

machinery exceeding the conventional automation functions (Oberti & Shapiro, 

2016; Tillett, 2003). 

Various autonomous operation tests must be performed in real environments to 

develop element technologies for autonomous tractors and further predict and 

analyze algorithm performance. However, there are many restrictions, including 

safety issues, difficulties in providing various artificial test environments. The need 

for a platform and an arable field to perform the tests. Nevertheless, the simulation 

technique among robot technologies can be utilized to efficiently verify the 

effectiveness of the path planner and tracker in a computer environment and 

optimize related parameters (Han, Kim, Jeon, & Kim, 2019). For example, the 
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actual farmland environment reflecting soil slip and slope can be configured in the 

simulator by adding the steering of the autonomous agricultural machinery and the 

responsiveness of the acceleration and deceleration device to easily predict the 

performance of the path planner and tracker. Thus, the related algorithms can be 

easily and quickly developed. 

Core techonolgies of autonomous system of agricultural mahcinery 

The core base technology for automated driving of agricultural machinery is 

divided into three categories: 1) an algorithm responsible for designing an 

operation strategy and calculating control commands and a higher-level controller 

technology corresponding to the “brain” with the developed algorithm installed, 2) 

automated driving platform technology for agricultural machinery that actually 

executes the commands, and 3) perception-based driving technology that senses the 

information from the surrounding environment. 

The autonomous driving and cultivating technology is becoming automated and 

intelligent by the convergence with robotic technology. Its basic configuration 

includes 1) a GNSS sensor and inertial measurement unit (IMU) sensor to acquire 

the information on absolute position and posture and sensor fusion technology to 

improve sensor stability, 2) path planning algorithm that designs a strategy for 

operating a tractor in farmland considering the target farming environment, 3) path 

tracking technology that autonomously controls steering and velocity by utilizing 

the difference between the current and target positions and directional angles of the 

agricultural machinery as well as the real-time status information of the agricultural 

machinery, and 4) automated machine control technology according to driving, 

work status, and attribute information for each position (Figure 2). 



 

 

7 

Path planning technology, which directly affects work efficiency and level before 

actual operation in the field, requires superintelligence that exceeds that of the 

worker in presenting the optimized path based on extensiveness that can respond to 

the size and shape of the field, the type of agricultural task, and the production of 

agricultural machinery in use as well as the application of robot technology. 

Moreover, the path tracking technology related to performance in actual operation 

requires flexibility that can respond to variables, such as various situations that 

occur when driving on straight or curved paths depending on the specifications, 

velocity, and steering characteristics of the agricultural machinery, or slips that 

occur due to a phenomenon in which the soil collapses due to a failure to bear the 

weight of the agricultural machinery. 

Stable sensor data collection technology and optimized hardware platform 

technology are essential to apply the developed path planning and tracking 

algorithm. Thus, to compensate for the instability of the absolute position detection 

of the GNSS sensor used as the basic sensor for automated driving of agricultural 

machinery, a technology for fusion with the relative position information collected 

from various sensors is being researched and developed. For example, the 

application of the Kalman filter through fusion with the IMU sensor is widely used 

in autonomous vehicles and mobile robots. However, it is difficult to introduce a 

technology for implementing autonomous agricultural machinery due to the 

absence of domestic base technologies for agricultural GNSS/INS Kalman filters 

considering the aspects of the agricultural work environment, such as irregular soil 

surfaces, and tractor operation characteristics. The recent spread of electronic 

tractors has enabled the application of CAN (Controller Area Network) 
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communication-based integrated controllers. However, the application of 

integrated controllers for automated driving additionally requires connection to a 

GNSS/INS sensor that recognizes a precise position as well as setting and 

monitoring electro-hydraulic steering and acceleration/deceleration devices for the 

automated tracking of environmental conditions for agricultural tasks. In particular, 

the image controller provides information on the work situation to the driver and 

further serves as an image input/output device that receives various work 

conditions and driving conditions for the automated control of agricultural 

machinery. It also acts as the brain that controls tractors and combines in 

performing autonomous driving according to the input information. 

 
Figure 2. Schematic diagram of the autonomous system of agricultural machinery. 

 

PROBLEM STATEMENT  

Different agricultural conditions from developed countries 

The global farmland area for cropping, including fields, paddies, and orchards, 

was approximately 1.6 billion ha in 2019 and the cultivated area in developed 

countries has decreased due to urbanization, whereas it has been steadily increasing 
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in developing countries (FAOSTAT, 2021). In particular, rice, which is the staple 

food for approximately 40% of the world's population, is an important food 

produced mainly in the East Asian region, whose annual product amounts to 

approximately 4.8 million tons from the area of 170 million hectare, corresponding 

to 11.2% of the global farmland (Watanabe, 2018). However, there is a need for an 

alternative solution to overcome the low production issue due to social problems, 

such as aging and labor shortage. Based on the FAO (The Food and Agriculture 

Organization) 2017 data, the leading East Asian countries in agriculture (Japan, 

China, South Korea, and India) account for 52.6% of the world's rice production, 

and they are striving to implement solutions by introducing automated driving 

technology. The paddy field, which plays an important role in global food 

production, is managed by intensive agriculture that utilizes the entire field within 

the farmland in a small-scale and compartmentalized manner due to the paddy 

levees that have been formed around the farmland through flooded water irrigation 

based on the advantages of nutrition supply to seedlings and weed management. 

Thus, it is necessary to develop a path planning technology that reflects turning 

within the farmland, boundary work on the paddy field according to the farmland 

shape, and the single entrance formed due to the topographical characteristics of 

paddy levees, as well as a control technology that sufficiently reflects the slip effect 

occurring because of the frequent turning and flooded environment. 

The autonomous agricultural machinery technology, which has been developed 

mainly in developed countries, such as the United States and Europe, is used for 

automated driving work along the reciprocating path within large-compartment 

farmland of 10 ha or more for crops such as corn and soybeans. Although the work 
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performance of this large-scale agricultural machinery is excellent, its automated 

driving control system that has been distributed in the foreign environment cannot 

be directly applied to the domestic agricultural environment. This is because this 

control system is vulnerable to multiple variables that occur due to structural 

differences across agricultural machinery systems with various sizes, differences in 

compartment sizes, and intensive farming conditions. Thus, it is necessary to 

develop technology to achieve a high level of automation while performing 

universal functions corresponding to the specifications of traditional agricultural 

machinery that has been utilized under farming conditions with multiple 

restrictions, such as paddy fields. 

R&D of technologies is underway in developed countries for expanding the 

application range of automated driving systems in farmland due to the demand for 

an environmentally friendly and sustainable agricultural production system with 

increased efficiency. As the world’s population will rise to 9 billion by 2050, crop 

production is required to increase by 50–70% compared to the current level 

(Alexandratos & Bruinsma, 2012). This social demand for technology has resulted 

in the development of efficient management technologies that utilize the entire 

field within the farmland, such as the performance of agricultural tasks using 

multiple agricultural machinery, the production of crops using the headland area, 

and path planning to minimize the effect of soil compaction (Thomasson et al., 

2019). These advanced path planning and control technologies, resulting from 

thissocial demand for technology, can share the development direction of the 

technology applicable to the paddy field, which has been developed in the form of 

intensive agriculture. These technologies have been developed and distributed 
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mainly by companies in developed countries in the case of automated headland 

turning, whereas it is necessary to investigate the tillage algorithm for agricultural 

tasks in the headland area that occurs due to turning within the field. 

Non-linear and coupled operation of autonomous agricultural vehicle 

controller 

The development of autonomous agricultural machinery is focused mainly on the 

automation function that replaces the driver's function, and the control values 

calculated according to rules set based on data collected from sensors, such as 

GNSS, camera, and radar, are transmitted to the actuator. In the case of the 

automobile industry where automated driving technology is mainly applied, 

automated driving technology is divided into Stages 0–5, depending on the level of 

automation technology: Stage 0 refers to the level at which the human driver has 

full control. The system has longitudinal and lateral control in operation at Stages 

1–2, and it further obtains the ability to recognize and respond to problem 

situations at Stages 3–5 (Shergold et al., 2016). Automated driving of agricultural 

machinery is actively evolving toward full autonomy. The R&D in American and 

European agricultural machinery companies is mainly focused on reciprocation and 

automated headland management technology, while Japanese agricultural 

machinery companies are developing an AB line or curve, which has adapted 

reciprocating work path automation and automated technology for agricultural 

work and headland turning.  

An autonomous system of agricultural machinery equipped with advanced 

automation technology is required under paddy farming conditions that utilize the 

entire farmland, and it must be accompanied by an appropriate automation strategy. 
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However, the expansion of agricultural conditions requires a complicated 

automation strategy. In particular, the automation technology that calculates the 

control values based on a predetermined strategy is insufficient for real-time 

situation changes occurring from the characteristics of agricultural machinery 

running off-road as well as the mechanical response of agricultural machinery 

systems at various horsepower ratings, which are used according to the applicable 

agricultural work and farmland conditions (Zhang et al., 2019). AI obtains a 

method to derive an optimized strategy by modifying rules based on data and 

answers rather than the traditional method of creating answers based on existing 

rules and data. Starting from the field of robotics requiring an unmanned 

autonomous decision-making system, AI is further gaining attention in the 

agriculture industry with the advent of Agriculture 4.0 (Saiz-Rubio & Rovira-Más, 

2020). Thus, AI can be a solution to the difficulties in creating strategies, which 

inevitably arise due to various considerations in implementing a highly intelligent 

automated driving system. However, in order for AI technology to be applied to 

autonomous agricultural machinery, a rational research method is required to 

understand the agricultural work environment and interpret and quantify the data 

collected during driving. 
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OBJECTIVES 

The objective of this research was to develop a complete coverage-path planner 

and intelligent path tracking controller for an autonomous tillage and 

puddling∙leveling tractor system operating in a pologonal paddy field based on 

position information measured from GNSS sensors. 

The specific objectives were as follows. 

1)  To develop a complete coverage path planner that provides automatic 

generation of optimal inner and outer-work paths, and boundary corner 

turning methods for an autonomous tillage and puddling∙leveling tractor 

applicable to various shapes of polygonal paddy fields. 

2)   To develop an entry-exit planner that enables the tractor located at the 

entrance to automatically go to the start point of an operational path, 

perform an agricultural task along the planned optimal path, and return to 

the entrance after completing the work. 

3)   To design an intelligent path tracking algorithm based on adaptively 

situational awareness and response, enabling autonomous operation with 

increased field efficiency by intelligently interpreting surrounding driving 

environment factors when working with a tractor using a reinforcement 

learning method. 

4)    To validate the complete coverage-path planner and intelligent path 

tracking controller in field tests using the full-scale autonomous tractor 

equipped with a GPS/INS system
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CHAPTER 2 

LITERATURE REVIEW 

OVERVIEW OF RESEARCH TREND 

Domestic research trend 

The overall domestic research on autonomous agricultural machinery has 

proceeded with continuous and active governmental support since the introduction 

of precision agriculture, which was initiated by the corporation in the 1990s. In the 

earlier days, the focus was on technology development, and algorithm research was 

actively conducted mainly by academics and national research institutes. As related 

technology advanced, the hardware element technologies, including tractors, rice 

transplanters, and combines required for the introduction of the autonomous 

system, power shift, continuously variable transmission (CVT), and electro-

hydraulic actuator, was developed, in collaboration with domestic agricultural 

machinery companies to create added value. As a result, a combine, tractor, and 

rice transplanter equipped with an autonomous system were manufactured in the 

early 2000s, and on-site evaluation was performed. However, this effort failed to 

develop into a practical model due to the characteristics of the automated driving 

system requiring various element technologies (Table 2). 
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Table 1. Domestic research trends for an autonomous agricultural machine. 

Year Organization Contents 

1997 Seoul National University (SNU) -  Developent of an autonomous speed sprayer system based on Fuzzy logic control using ultrasonic sensor and DPGS. 

2001 
Seoul National University (SNU) 

Sunkunguan University (SKKU) 

-  Development and validation of an autonomous combine harvester based on fuzzy logic controller using DGPS, gyro sensor, and 

ultrasonic sensor.  

-  Lateral deviation of < 30 cm in straight and < 50 cm in curved paths. 

2004 
Rural Development Administration (RDA) 

LS Cable & System Ltd. 

-  Development of a tractor that allows real-time rice field observation through the Internet. 

-   Lateral deviation of < 20 cm in straight path 

2004 TYM 
-  Development of high-function power shift tractors and unauthorized transmission for 100KW agricultural tractors since 2010. 

-   Power transmission device using electronic hydraulic pressure essential for autonomous driving of a tractor. 

2007 Rural Development Administration (RDA) -   Development of an autonomous rice transplanter equipped with a straight and turning control algorithm 

2008 
Chungnam National University (CNU) 

Kukje Machinery Co., Ltd 
-   Development and validation of an autonomous tillage tractor system with a route planning and tracking algorithms. 

2013 
Seoul National University (SNU) 

Unmanned Solution 

-   Development of an 63-kW autonomous tillage tractor equipped with full-coverage path planner and pure-pursuit based tracking 

controller. 

-   Electric power steering, throlle control, and implement up/down control using CAN communication modules were developed to 

enable for the tractor to navigate and cover an arable area. 

-  Lateral deviation and heading error of < 13 cm and 3.7 deg while performing tillage operation. 

2015 Chonnam National University (CNU) 
-   Development of an autonomous lawn mowing system that is equipped with GNSS and vision sensors in 25 kW tractors to determine 

growth information of grass. But, lack of evaluation tests in various environments 

2015 Seoul National University (SNU) 
-   Development of steering simulator to develop path planning algorithm. 

-   Development of a simulator that can check the driving state under actual soil conditions in conjunction with the simulator. 

2019 
Korea Institute of Machinery & Materials 

(KIMM) 

-   Development of core technologies, i.e., path planning and path-tracking algorithms for an autonomous tractor operated in the feiel 

-   The results of tracking performance showed that the autonomous tractor followed a straghit path with lateral deviation < 30 cm. 

2019 Seoul National University (SNU) 

-   Development of a complete CPP for an autonomous tillage tractor that provides automatic generation of both inner and outer-work 

paths, and boundary corner turning methods applicable to polygonal-shaped paddy fields with various corner angles. 

-   The autonomous tillage tractor successfully followed the whole paths with lateral and heading root-mean-squared errors ranging 

from 32 to 101 mm and 0.6° to 2.2°, respectively, and demonstrated superior tillage performance by reducing the skipped areas of 

1.7% (triangle), 0.9% (quadrilateral), and 1.0% (pentagon) of the total area 
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As the concept of a semi-driverless tractor emerged in the 2010s, which automated 

reciprocating linear work based on the high-precision positioning technology of John 

Deere in the United States and FENDT in Europe (GuideConnect, 2012; Saiz-Rubio 

& Rovira-Más, 2020), complementary research on autonomous tractors began under 

the lead of the government, based on the previously developed core element 

technology. Based on industry–university cooperation, technology development 

close to commercial application has been achieved by universities dedicated to 

developing a path planning and tracking algorithm suitable for domestic agricultural 

characteristics and agricultural machinery companies involved in the establishment 

of autonomous tractor platforms and field verification (Fig. 4). In addition, as stable 

correction signal reception, which is a key to high-precision positioning, has become 

available to domestic agricultural machinery companies through collaboration with 

large companies SKT, KT, LG Uplus, and MBC, these machinery companies are 

striving to develop related technology with the goal of commercializing some 

functions. Based on the core technology obtained through the development of 

autonomous tractors, autonomous rice transplanters are being marketed, and further 

development and commercialization of autonomous combine technology are 

forthcoming. 

 
Figure 3. View of autnomous tractor developed by TYM, unmanned solution, and 

SNU and field test. 
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Overseas research trend 

Overseas research on autonomous tractors has been performed with a focus on core 

technologies for system development, corresponding hardware platform 

establishment, and the acquisition of a sensor system for the stable operation of 

algorithms. Recent studies have extended to the application of telematics technology 

for big data construction and analysis by acquiring information on crop growth status 

and surroundings of vehicles through computer vision and utilizing the information 

obtained from IoT. Based on these study achievements, larger tractor manufacturers 

are providing farming solutions, ranging from data collection to data analysis, 

prescription, and management. Thus, starting with AutoTrac of John Deere in the 

United States in 2002, products equipped with some of these functions have been 

commercialized, and they are currently utilized by 60–70% of farms in North 

America, 30–50% of farms in Europe, and 90% of farms in Australia. 

Globally, investment in agriculture technology, which contains the largest 

proportion of automation and autonomous technology, has been led by large 

agricultural machinery manufacturers, increasing by 80% annually since 2012. Some 

of the automation technology has already been marketed, mainly regarding large-

scale tractors operating in the farmland environment with soil preparation completed, 

and the convergence with robot technology is accelerating the realization of an 

autonomous agricultural machinery technology (Decker Walker, 2016). The main 

technologies applicable here include (1) optimal operation strategy planning 

technology for agricultural tasks, (2) automated vehicle and steering control 

technology, (3) automated machinery control technology, (4) automated technology 

for headland ordering and turning management, (5) surrounding environment 
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recognition technology, (6) crop recognition technology for variable work machine 

control, (7) optimal control technology for mechanical vehicles, (8) strategy design 

and control technology for simultaneous operation of vehicles, (9) vehicle-to-vehicle 

communication technology, and (10) stable sensor information acquisition 

technology (Thomasson et al., 2019). According to the data (Table 3) on the main 

functions of autonomous tractors of leading agricultural machinery manufacturers 

worldwide surveyed by the Grains Research and Development Corporation (GRDC) 

in 2017, the main functions for the autonomous tractor system include a total of 11 

technologies after adding the communication technology with workers in the 

farmland to the 10 aforementioned technologies. 

 (Autonomous system) Vehicle & steering control 

 (Autonomous system) Path planner with optimal strategy for agricultural task and 

implement control  

 (Hardware platform) Advanced hardware control function of electronic tractor 

 (Hardware platform) Optimal control technology for vehicles 

 (Hardware platform) Variable control of agricultural implements and ISOBUS 

 (Sensor) Stable acquisition of sensor information  
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Table 2. Technology and product development for the six major tractor 

manufacturers relating to autonomy. 
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Comparison of domestic and overseas autonomous system 

John Deere, a leader in automated driving agricultural machinery, has utilized the 

satellite, wireless, and radio calibration signal network built by its subsidiary 

Navicom to establish and sell autonomous kits (AutoTrac) and installation-type 

autonomous tractors, based on an autonomous StarFire GNSS system possessing 

positioning precision with an error level of less than 10 cm without separate 

terrestrial reference stations. AutoTrac products provide driving functions for 

straight, curved, circular, and boundary tracks that follow the farmland boundary. It 

can autonomously set any appropriate path by changing the headland turning 

method, and the order of the reciprocating operation line sequence, depending on 

the boundary information input based on the worker`s experience, the work type, 

and the tractor`s horsepower. In addition, this product provides the user-input type 

skip pass and changes the pass functions in tracking the planned path to allow the 

worker to directly respond after recognizing situations, such as the emergence of 

obstacles, people, and animals. Furthermore, the premium product group provides 

an autonomous tractor system with a high level of automation (Fig. 5) by 

furnishing an automated turning function and a machinery-based driving control 

function (Table 4). However, to apply the autonomous work to the entire farmland 

area, the work should be separately performed for the headland area and the inner 

work area, and path planning is performed through predetermined logic based on 

the worker’s setting. Thus, for the advancement of the automated driving system, 

autonomous work technology that can apply to the entire area within orthogonal or 

irregularly shaped farmland is required. The implementation of this technology  
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requires the development of an intelligent autonomous system that 1) can 

autonomously observe the farmland environment, 2) is practical, and 3) includes 

judgment technology to improve agricultural work efficiency. 

 

Figure 4. John Deere Autotrac 

 

Japanese companies, such as Yanmar and Iseki, in addition to Kubota, the second 

largest tractor manufacturer worldwide, are exerting their efforts in R&D with the 

goal of developing automated driving systems for rice transplanters, tractors, and 

combines operated in paddy fields, which account for 50% or more of Japan's 

farming environment. Starting with Yanmar’s autonomous tractor in 2015, the 

most advanced automated driving systems as of 2020 are Yanmar’s Robot Tractor 

and Kubota’s Agrobot products, each of which supports a unique reciprocating 

work function, automated headland turning function, and automated work function 

for some of the headland area (Table 4). Kubota holds the technology to effectively 

respond to irregularly shaped field through diversified reciprocating routes, and 

automated headland turning technology in adjacent lines, and it provides a function 

to stop when an obstacle is found during autonomous operation by installing a 

safety device using vision. Yanmar`s products provide autonomous farming 

functions in irregularly shaped field and autonomous working functions in the 
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headland area except for the outermost areas through proper arrangement of 

straight reciprocating paths and headland turning in adjacent lines. However, it is 

necessary to improve the utility of the technology because it does not consider the 

fact that the autonomous work technology cannot be applied to the entire farmland 

due to the incomplete path path planner to cover the outer-work area and the 

environmental constraints caused by the fixed entrance that inevitably occur in a 

paddy field environment. 

 

Figure 5. Kubota Agrobot (left) and Yanmar Robot tractor (right) 

 

The domestic automated driving system succeeded in product development by 

securing core technology from the development of the autonomous straight rice 

transplanter by Daedong Industrial Co., Ltd. and the autonomous straight tractor by 

LS Mtron in 2019. However, there are difficulties in promoting their distribution 

because the technology is still in its infancy. Compared with overseas cases, although 

the domestic research has achieved technological advancement through various 

attempts, these technological achievements have not further developed into practical 

models because of deficiencies in the hardware platform technology, sensor 

stabilization technology, and automated driving system. 

The major technologies of the automated driving systems described in previous 

studies, and held by tractor manufacturers, are contributing to the improvement of 
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the level of automation through the development of reciprocating work in irregularly 

shaped farmland, automated headland turning, and machinery control (Table 4). 

However, because the existing autonomous work technology for the headland area 

(back tillage technology) is incomplete, it may not be applicable to the entire 

farmland. Moreover, conventional automation technology may contribute to the 

precise control of overlapping and facilitate the monitoring of machinery and vehicle 

status, which is insufficient in achieving enhanced efficiency through optimization 

of agricultural tasks due to a lack of intelligence technology. In addition, although 

the fixed entrance, which is an inevitable characteristic in a paddy field environment, 

is an important factor in work efficiency, relatively few related studies on automated 

driving systems have considered this factor. 

Table 3. Comparison of autonomy functions of autonomous tractor produced by 

oversea (JohnDeere, Kubota, Yanmar) and domestic tractor manufacturers. 

Supported functions 

Oversea tractor manufacturer Domestic 

John Deere 

(USA) 

Kubota 

(Japan) 

Yanmar 

(Japan) 
Manufacturer Research 

Main target field 
Upland 

field 
Paddy field Paddy field Uncertainty Paddy field 

Boundary information Manual Manual Manual Manual Manual 

Field type 
Rectangle 

& Irregular  

Rectangle 

& Irregular  

Rectangle 

& Irregular  
- 

Rectangle 

& Irregular  

Consideration of Infield 

obstacle 
O X X X X 

Straight track O O O O O 
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Curved track O O X X X 

Additional track  

(Ex. circle, adaptive) 
O X X X X 

Automatic headland 

turning 
O O O X 

△ 

(partially) 

Implement control O O O O O 

Automatic headland 

cultivation 

△ 

(partially) 
X 

△ 

(partially) 
X 

△ 

(partially) 

Autonomous decision 

making 
X X X X X 

Autonomous Full-

coverage 
X X X X X  

Safety system 

(Obstacle detection) 

△ 

(Operator 

perception 

and 

response ) 

O X X X 

 

PATH PLANNING 

Chung et al. (1999) proposed two different path tracking algorithms that apply a 

minimum spanning tree by planning an optimal working path on a rectangular paddy 

field. Utilizing the selection method for the minimum time headland turning, and the 

calculation method for sequencing operation lines applying the brute-force method, 

they shortened the estimated mileage by approximately 78 m in comparison with the 

conventional planning method under the condition of 40 m × 100 m farmland. 
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Bochtis et al. (2009) developed a coverage path planner for self-driving lawnmower 

tractors using the tree hierarchy technique. They reported that it is possible to plan 

the automated headland turning path and reciprocating driving route for determining 

the minimum mileage by receiving user input of information on the farmland and 

vehicle. According to the result of an on-site evaluation using autonomous tractors, 

the non-working distance could be reduced by up to 50% compared to the 

conventional method. 

D. Bochtis and C. G. Sørensen (2009) replaced the existing geometrical model 

formula-based path planning algorithm problem for agricultural tasks with the long-

explored vehicle routing problem (VRP) to apply the metaheuristic methods 

(including the genetic algorithm and ant colony algorithm) that have been developed 

to solve the VRP. To reflect the agricultural work factors in the VRP, the types of 

agricultural performance factors were divided depending on the input/output of 

agricultural materials based on the agricultural machinery in planning the path, and 

based on this classification, a method for generating a reciprocating work path inside 

the irregularly shaped farmland was developed. 

Jin and Tang (2010) compartmentalized the farmland to create alternating paths in 

the left and right directions in irregularly shaped farmland containing obstacles and 

investigated the determination of driving directions in each compartment to 

minimize the driving distance depending on four types of headland turning methods 

(Flat, U, Bulb, and Hook), which were mathematically defined. The headland turning 

model formula was geometrically defined by using the minimum turning radius of 

the tractor, the working width, and the headland turning width. When comparing the 

planned paths proposed for the three types of farmland shapes, and the driving 
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trajectory of skilled workers acquired during harvesting, a 0–9% reduction in turning 

distance was observed. 

Seo et al. (2010) proposed a reciprocating work path generator for tillage work and 

divided the target areas into an inner reciprocating work area and a reciprocating 

work area, depending on the work width and the number of back tillage paths input 

by the user. The inner reciprocating work area was developed under the four 

categories of C-type, C-compartment-type, X-type, and R-type works. The input 

tractor and field variables were utilized to output the tillage path for each work type 

onto the screen and file, and the output data included the information that can be 

used in controlling the tractor’s forward- and backward-moving and engine speed, 

the machinery’s ascending/descending, and PTO ON/OFF, thereby enabling the 

report of the generation results in the virtual simulation. However, the developed 

algorithm failed to report the results generated from the field experiment on path 

tracking, and the limitations of the study lie in conducting path generation research 

on orthogonal farmland alone and missing a generation algorithm for the back tillage 

path.  

Hameed et al. (2011) investigated the optimal reiprocating path generation 

algorithm in irregularly shaped farmland. The path optimization consisted of three 

steps. In the first step, the driving direction that minimizes the double work area that 

occurs after headland turning was determined based on the results from repeated 

input. In the second step, the operation line sequence that minimizes the non-working 

distance that occurs during headland turning was determined by a genetic algorithm. 

In the last step, an optimized path planning method was proposed by 

compartmentalizing the irregularly shaped farmland for efficient work and 
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minimizing the distance generated from movement between compartmentalized 

areas through a genetic algorithm. However, the effectiveness was not verified 

through field tests. 

Matsuo et al. (2012) proposed a path planner for tillage work on orthogonal 

farmland and presented an algorithm for generating an autonomous working path for 

the entire area, including a straight reciprocating path area in the 45-degree diagonal 

and lengthwise directions, and a back tillage path area. An automated driving system 

was developed with the planner proposed by remodeling the forward- and backward-

moving, working, and steering parts of a small-horsepower (24.3-Kw) tractor 

equipped with XNAV, an auto-tracking type surveying device. The path generation 

algorithm proposed in this study is a method of creating a diagonal reciprocating 

work path in the inner work area of the farmland and then generating an outer-work 

path in the outer work area of the field, depending on the directions of the four sides 

of the field. The results of an experiment conducted on orthogonal farmland of 18.5 

x 50 m showed that the driving distance of the diagonal work path was 20% longer, 

whereas the driving efficiency was higher than that of the conventional work path 

when a 45-degree driving path angle was set. 

Han et al. (2013) analyzed and modeled the domestic tillage work sequence and 

path types in an orthogonal paddy field environment and presented a path planning 

algorithm in response to various types of headland turning (C type, X type, and R 

type). Furthermore, they presented the Route Date Definition File (RDDF), 

including path point and tractor control information for applying the waypoint 

navigation algorithm, and performed the field verification, thereby indicating that 
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the average and maximum errors were found to be within 11cm and 21.4, 

respectively, on a straight path. 

Ibrahim A Hameed et al. (2013) compartmentalized the field to deal with fixed 

obstacles in irregularly shaped farmland in planning the path and presented a 

reciprocating work path for each area as well as an optimal sequence planning 

algorithm using a genetic algorithm. According to the result of applying the proposed 

algorithm to the field with round-shaped obstacles within a 5.54-ha area for work 

scenario evaluation, it took 0.18 sec to create a path. The same study decided that it 

is a path planning method with high work efficiency in terms of work time and cost. 

However, there is no headland turning path, and the results were not verified through 

field tests. 

Zhou et al. (2014) presented a back tillage path planning algorithm for an inner 

reciprocating work area in a multiple fixed obstacle environment in irregularly 

shaped farmland through compartmentalization. Path planning consisted of three 

steps. In the first step, the inner and back tillage areas were divided based on the 

agricultural work width, the number of back tillage paths input by the user, and the 

number of user input rounds, and an operation line was created in each area. In the 

second step, the area was divided based on farmland and obstacle boundaries. In the 

final step, the connection sequence of each compartment was optimized by using the 

ant colony algorithm. When comparing the workers` trajectories acquired during the 

formation of a potato ridge, and plowing work, and the path created using the 

algorithm on two irregularly shaped farmlands for scenario evaluation, the developed 

path planning algorithm was determined to be a highly efficient path planning 

method in terms of working distance. However, this algorithm’s application to 
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autonomous tractors is limited because there is no headland turning path, and the 

results were not verified through field tests. 

Backman et al. (2015) examined the automated generation method for a turning 

path by applying the maximum steering speed term to the Dubins curve model. In 

the conventional Dubins curve model, which does not reflect the steering angular 

velocity of the tractor, the tracking velocity is continuous, while the tracking 

precision decreases due to the control commands generated discretely, which has 

been improved by utilizing a numerical optimization method. The same study further 

reported the possibility of creating a path that can increase time efficiency for the C-

type, X-type, and Fishtail-type headland turning methods in a simulation 

environment. 

Hameed et al. (2016) investigated a three-dimensional (3D) path planning method 

using digital elevation model (DEM) information of the target farmland to minimize 

the unworked area that occurs due to the change in the tractor postures during driving 

in an irregular agricultural work environment. The path generated using the 

conventional two-dimensional (2D) planner was updated through projection 

according to the height information of the DEM, and the interpolation method was 

utilized to compensate for the increased distance between the path points by 

increasing the dimension. According to the study, an unworked or overlapping area 

occurred because the distance between adjacent paths increased or decreased 

depending on the sloped ground. The application of a suitable driving direction could 

enhance the field efficiency by 2–14%. 

 Edwards et al. (2017) presented the modularization results of an optimal path 

planning algorithm for lawnmower tractors that was previously in the research 
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stage. The path planning module proposed in the study can create a lengthwise 

reciprocating work path in the inner work area of farmland and present a C-type 

Omega-based headland turning pattern. The study aimed to present a path by 

minimizing the unworked distance that occurs during headland turning. As a result 

of comparing the trajectories of skilled workers acquired from 12 fields of various 

shapes and sizes and the presented paths, the distance was reduced by 0.2–18.3%. 

When the field was compartmentalized into 5x5 𝑚2, the average number of passes 

per area was reported to decrease. However, its results were not verified due to the 

absence of field test results using autonomous tractors. 

Rodias et al. (2017) analyzed the optimized performance of a path planning 

algorithm in irregularly shaped farmland, including inner reciprocating work path, 

headland turning, and back tillage path, in terms of energy saving. They selected the 

optimal operation line that minimizes the unworked distance through iterative 

calculations using the mathematical model of headland turning. The fuel efficiency 

of five farmlands was further investigated by utilizing the calculation formula for 

standard fuel consumption per agricultural work, presented by the American Society 

of Agricultural and Biological Engineers (ASABE). Compared to the conventional 

planning method of working around the entire farmland in a clockwise or 

counterclockwise direction, there was an improvement by 9.19% in fuel efficiency 

during the tillage. 

Rahman et al. (2019) presented an automated farmland boundary information 

acquisition method for path planning in irregularly shaped farmland. The study 

primarily indicated that most of the path planning algorithms operate by receiving 

information on the vertices of the field corners as farmland boundary information, 
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whereas there is a limit to defining the environment boundary of real-world farmland 

with a straight line connecting the corner points. The same study automatically 

acquired farmland information by using the driving trajectories obtained along the 

boundary and the convex hull method. This approach was reported to increase the 

time efficiency in applying the automated driving system and reduce the unworked 

area through on-site evaluation in convex- and concave-shaped paddy fields. 

As summarized in Table 5, regarding the literature on path creation, previous 

studies have investigated path planning algorithms to optimize the driving direction 

and operation line to improve driving efficiency and reduce fuel consumption in 2D 

or 3D environments. However, most of the studies reported the results by comparing 

and verifying the worker trajectory and the ideal path through a virtual scenario, 

while the effectiveness was not verified under the conditions of actual agricultural 

machines, such as a tractor. In addition, unworked land would occur because the 

back tillage turning method around the corner was not presented in irregularly 

shaped farmland, and the results of autonomous work in the entire farmland were 

also limited to the orthogonal type. In terms of intelligent algorithms, research on 

path planning algorithms was relatively insufficient, which reflected the single 

entrance occurring due to the topographical characteristics of ridges in a paddy field 

environment. Thus, the following are necessary in a paddy field environment: 1) the 

development of a path planning technology for the entire area in irregularly shaped 

farmland, including a complete back tillage path through high-level automation to 

improve work efficiency, and 2) the application of intelligent optimization 

technology reflecting the environmental specificity of paddy fields to increase time 

and distance efficiency and reduce fuel consumption. 
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Table 4. Summary of literature review on path planning researches. 

 Previous Needs 

Field shape Polygonal field shape Polygonal field shape 

Full-coverage 

path planning 

-  Full-coverage path planning 

technology in pologonal field 

shape 

-  Limitaion of covering 

performance in corner area of the 

field 

-  Insufficient coverage path 

planning technology 

-  Full-coverage path planning 

technology in pologonal field 

shape 

-  Precise covering strategy 

algorithm especially in the corner 

area of the field 

Advanced 

automation 

technology 

 
-  Entry & exit path  

-  Complete coverage path 

Inteligence & 

Optimization 

-  Optimal path generation 

-   Increase of field efficiency 

(travel distance or time 

consumed) by applying the 

intelligence technique such as the 

genetic algorithm and the ant 

colony algorithm 

- Intelligent path planning that 

reflects the condition of a paddy 

field (field boundary, single 

entrance, etc.). 

Test methods 
-  Virtual simulation 

-  Field test 

-  Virtual simulation 

-  Field test 

-  Comparision of the tracking and 

covering performances with the 

skilled worker 

 

PATH TRACKING 

Lee (1998) explored path tracking and control algorithms using DGPS, an 

unmanned driving system configuration of an ultrasonic sensor-based speed sprayer, 

and a fuzzy controller in an orchard environment. They calculated the steering angle 

by comparing the direction information received from the DGPS and the reference 
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path direction. They also developed an obstacle response algorithm during driving 

by utilizing the judgment principle of the tracking fuzzy controller by receiving 

distance values from four ultrasonic sensors. They conducted a field experiment to 

compare the performance of a controller using DGPS alone and a tracking controller 

combining DGPS and the ultrasonic sensor, each of which was compared to the 

reference path to present the straight path tracking performance within 48 cm and 39 

cm of the maximum square root error, respectively. 

Noguchi et al. (1998) developed an automated driving system combining the 

steering angle generation software, which calculates the steering angle by the 

difference from the reference path based on GNSS antenna position change 

compensation according to the roll, pitch, and heading of vehicles and the precise 

location information acquired with RTK-GPS as well as an agricultural robot 

hardware platform equipped with a sensor module based on RTK-GPS, fiber optic 

gyroscope (FOG), and IMU. Tillage work was performed in a straight section of 140 

m, presenting the performance with a maximum error of 7 cm and a square root error 

of 2.9 cm. 

 Cho (2000) developed a fuzzy control technology utilizing a geomagnetic sensor 

and machine vision for an autonomous tillage tractor system. They applied the 

Hough transform to the image obtained from the color CCD (charge-coupled device) 

camera to calculate the steering angle consisting of left, right, and neutral stages 

using the direction angle, the direction angle obtained from the geomagnetic sensor, 

and the distance difference from the reference path in the image as input to the fuzzy 

controller. Steering was performed using a cylinder. The maximum RMS position 
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error was reported to be 23.2 cm according to the lateral displacement measured 

along straight navigation using the DGPS receiver in an actual field environment. 

Kise et al. (2001) investigated an autonomous tractor using RTK-GPS, FOG, and 

IMU sensors. To obtain stable direction angle information, the FOG time drift 

compensation method was applied by utilizing the extended Kalman filter method. 

To generate the steering angle, the distance and direction angle error with respect to 

the reference path were calculated and used in the proportional control-based non-

model controller. For a driving experiment, a straight path was set as the reference 

path in the field, and a rotary operation was performed at low and high speeds of 0.2 

km/h and 1.6 km/h, respectively, to obtain the maximum square root distance error 

of 8 cm and the maximum square root direction angle error of 1.9 degrees. 

 Zhang and Qiu (2004) proposed a dynamic look-ahead distance tracking controller 

to improve the reference path tracking performance of an autonomous tractor. The 

developed tracking controller automatically adjusted the look-ahead distance in 

response to the speed, error with the reference path, and curvature of the adjacent 

reference path. When autonomous driving was performed after the turning of an 

autonomous tractor equipped with RTK-GPS and FOG sensors on asphalt and actual 

field at a tracking speed of 1.0 m/s and 1.8 m/s along the straight path, respectively, 

tracking precision of 80 cm or less in the entrance section after turning and a square 

root distance error of 10 cm or less was obtained in the straight section. 

Lenain et al. (2005) proposed a real-time slip predictor and a method of calculating 

the predicted slip-reflected steering angle to improve the performance of automated 

vehicles applied to agricultural environments. The slip was observed in real time by 

applying the existing observer algorithm to the extended kinematic model, including 
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the slip angle. When the tracking experiment was conducted with an autonomous 

tractor equipped with RTK-GPS and IMU along a W-shaped reference path at 8 km/h 

in a grass environment, the error of approximately ±60 cm before the application of 

the observer was reduced to ±15 cm or less. 

Huang et al. (2009) explored the improved pure pursuit method by presenting a 

method of determining the dynamic look-ahead distance based on neural network 

theory to improve the path tracking performance in a straight path as well as headland 

turning with different driving environment characteristics. They set the lateral 

distance and velocity between the vehicle and the reference path as input variables 

to create a look-ahead distance determination strategy, assigning the look-ahead 

distance as the output variable. The training was performed through 148 samples 

designated by humans, and in this case, the range of lateral displacement and velocity 

were set to ±1 and 0.3–0.4 m/s, respectively, and the look-ahead distance was 

accordingly discretized as 0.01, 0.5, and 1 m. The simulation study showed that as 

the fixed look-ahead distance dynamically was varied, driving time and space 

decreased, and driving efficiency increased in the headland turning area in addition 

to driving.  

Fang et al. (2011) attempted to develop a robustness control algorithm to predict 

the cornering stiffness between the tire and the road surface of a driving platform. 

The tire stiffness was predicted based on the robustness of Luenberger observers by 

measuring the lateral acceleration and rotational change rate, and the predicted slip 

angle was reflected in the steering logic developed based on the continuous system 

to conduct the experiment. The convergence of the algorithm was confirmed through 
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simulation, and the lateral error was ±20 cm and the direction error was ±5 deg in 

actual driving. 

Kraus et al. (2013) conducted a study on the development of an MHE-NMPC frame 

for autonomous tractor tracking based on longitudinal and lateral slip factors and an 

adaptive mode. Development MHE is a method that can estimate model parameters 

in real time for unknown soil condition changes. NMPC showed control output close 

to optimal based on the estimation results provided by MHE. It was reported that the 

MHE performance provided an accurate estimation of the parameters, enabling the 

path tracking performance of the NMPC controller. 

Han et al. (2013) proposed a mathematical model of a tillage work path based on 

C-, X-, and R-type headland turning and proposed an RDDF including path points 

and control commands calculated through the model, thereby providing a reference 

path. Moreover, a program equipped with a look-ahead distance method-based path 

tracking algorithm was reported through a simulation environment and on-site 

evaluation. However, there was no verification of the tillage work performance, 

effect of slip by degree, or tracking precision of path points upon entry into the 

operation road after turning driving.  

Han et al. (2015) created a reference path using the field information acquired from 

the paddy field conditions through the C-type headland turning-based path 

generation algorithm and conducted a tracking verification experiment with a 60-

kw-class autonomous tractor platform equipped with RTK-GPS, IMU, and a path 

tracking algorithm based on the look-ahead distance method. Prior to on-site 

evaluation, the look-ahead distance, velocity, and turning path point interval required 

for automated driving were optimized based on the tracking performance through a 
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simulator capable of implementing the slip phenomenon. When driving along ten 

70-m operation lines in dry and wet paddy field environments at 2 km/h, a square 

root error of 12.8 cm or less was obtained in the straight section. 

Zhang et al. (2019) utilized the double-DQN method, one of the types of 

reinforcement learning, to propose an intelligent path tracking algorithm that can 

respond to both straight and turning sections by self-learning an optimal control 

strategy based on on-site data. For controller learning, lateral displacement relative 

to the reference path, direction angle error, and velocity were input as explanatory 

factors of the surrounding environment, and the steering angle was generated as the 

output. For performance evaluation, Huskey's robot platform was used to compare 

the figure-eight-shaped reference path tracking performance in a grass environment 

with the pure pursuit control technique based on look-ahead distance. According to 

the result of the experiment, the entry error decreased after turning, and the 

maximum error decreased by approximately 40% due to the shortened stabilization 

time after entry, whereas the reference path entry time increased due to the 

continuous path tracking characteristics. 

Han, Kim, Jeon, Moon, et al. (2019) proposed a path follower based on a kinematic 

model formula that predicts slip depending on the real-time state of the tractor and 

reflects it in the steering angle calculation by utilizing the state-observer technique. 

The observer-based tracking controller was verified of the effectiveness in the 

simulation capable of slip implementation and actual tillage verification through a 

virtual simulator in a paddy field environment. In addition, after attaching a 

dynamometer to a three-point hitch, an unworked area was analyzed by creating a 

precision tillage map. When performing autonomous tillage by driving at 3 km/h in 
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an 80 x 30 m rectangle, tracking performance with a square root error within 23 cm 

and work performance of 91.5% were reported in the straight work section. 

Chen and Chan (2020) proposed a path tracker that converges the proximal policy 

optimization (PPO) method applied with the actor & critic method among deep 

reinforcement learning using deep neural network techniques and the conventional 

pure pursuit method based on look-ahead distance. The study aimed to compensate 

for the disadvantages of reinforcement learning, which cannot converge in some 

cases, and the disadvantages of pure pursuit, which is vulnerable in responding to 

real-time changes in the surrounding environment. The basic formula for calculating 

steering angle and velocity followed the existing pure pursuit, while environment-

defined input variables defined with lateral displacement and direction angle with 

respect to the reference path and velocity were utilized to create and add 

compensation variables. When path tracking simulation was performed based on the 

irregular S-shaped reference, the tracking performance of the proposed tracking 

controller was determined to be better than the pure pursuit method and model 

predictive control (MPC) method under various conditions of velocity and reference 

path shapes due to the learning effect. 

Wang et al. (2019) proposed a velocity and steering calculation method that 

converges the Q-table among reinforcement learning methods and the PID 

(Proportional-Integral-Differential) technique most commonly used for controlling 

a two-wheeled mobile robot. To overcome the shortcomings of PID, which can be 

applied to simple situations but struggles to analyze complicated situations, by 

utilizing reinforcement learning, whose strength lies in the real-time analysis of 

complicated situations, the control values calculated by each method were used as 
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command values. The Q-table technique was trained for the situation where 

precision tracking was impossible through PID control by receiving environment-

defining input variables defined with lateral displacement with respect to the 

reference path, directional angle error, and velocity. According to the result of 

experiments in a simulation environment, the proposed algorithm indicated better 

performance in velocity and accuracy of convergence to the reference path than that 

in the existing PID. 

Table 6 analyzes and summarizes the literature on path tracking. The previous 

studies in the field of agricultural machinery have been focused mainly upon non-

modeling-type tracking algorithms, such as pure pursuit and the Stanley method, as 

well as nonlinear driving model-based path tracking algorithms, such as the bicycle 

model and the Ackerman model. Furthermore, the control algorithm for overcoming 

the slip phenomenon, which has been extensively studied in the field of robotics, has 

been reported to effectively respond to soil environmental factors that inevitably 

occur frequently in off-road environments, including paddy fields. Recent studies 

have been conducted by employing reinforcement learning among deep learning 

methods for precision tracking that requires various environmental interpretations.   

However, most of the studies have not verified the effectiveness through onsite tests, 

and some cases of on-site evaluations even reported unsatisfactory results. In 

particular, because various environmental changes occur in paddy fields that require 

frequent turning due to compartmentalization under conditions of relatively high soil 

moisture content, further research on path trackers capable of complicated 

environmental analysis is required for precision tracking. In addition, because most 

of the studies have focused on driving rather than work, steering and speed control 
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were calculated based on the center of gravity of the tractor rather than the machinery 

related to actual work. Therefore, further studies focused on machinery are needed 

to significantly improve the efficiency of agricultural tasks. 

 

Table 5. Summary of literature review on path tracking researches. 

 Previous study Needs 

Steering 

control 

-  Kinematic, geometric, and 

model based tracking controller 

- Slip-estimation based controller 

- Validation test in the paddy field 

-  Intelligent tracking controller equipped 

with the steering logic based on the 

implement 

-  Adaptive Path following controller that 

can respond to mechanical responses of a 

tractor according to real-time situation 

changes, applied agricultural work, and 

farmland conditions (steering, speed) 

-  Improving stability and environmental 

responsiveness through convergence 

with existing mechanical model-based 

controllers. 

Velocity 

contorl 
-  Pre-defined velocity map - Adaptive velocity controller 

Navigational 

environment 
(Target 

control point) 

-  Interpretation of driving status 

using a single target point 

-  Lateral deviation and heading 

error at a target point 

-  Interpretation of driving status using 

various information 

- Array of lateral deviation and heading 

error 

-  Change of control point to an 

implement position where an agricultural 

task is performed actually 
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CHAPTER 3 

PADDY FIELD FULL-COVERAGE PATH PLANNER FOR 

AN AUTONOMOUS TILLAGE TRACTOR 

 

ABSTRACT 

Successful use of an autonomous agricultural machine in paddy fields depends on 

the ability to generate a full-coverage path consisting of inner and outer-work paths 

adapted to various field shapes in the presence of an enclosing field boundary. To 

enhance the performance of a coverage path planner (CPP) developed in our 

previous study, this article describes the development of a complete CPP for an 

autonomous tillage tractor that provides automatic generation of both inner and 

outer-work paths, and boundary corner turning methods applicable to polygonal-

shaped paddy fields with various corner angles. Computer simulation of the 

developed turning manoeuvres was conducted using a 3D tractor-driving simulator 

by analysing the trajectories of a virtual tractor on ground under varying corner 

angle conditions. A field evaluation was performed with a 60-kW autonomous 

tillage tractor equipped with the developed CPP algorithm in three different shapes 

of paddy fields. The results of the computer simulation confirmed that the designed 

boundary corner turning methods could provide an acceptable level of tracking 

performance with lateral deviations < 70 mm when following boundary corner 

turning paths. In the field tests, the autonomous tillage tractor successfully 

followed the whole paths with lateral and heading root-mean-squared errors 

ranging from 32 to 101 mm and 0.6° to 2.2°, respectively, and demonstrated 
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superior tillage performance by reducing the skipped areas of 1.7% (triangle), 0.9% 

(quadrilateral), and 1.0% (pentagon) of the total area as compared with that of 

8.5% obtained with the previously developed system. 

 

Keywords: Coverage path planning (CPP); Autonomous tillage tractor; Paddy 

field; Boundary corner turning; Skipped area 

 

INTRODUCTION 

The increasing demand for farming products and environmental considerations 

has led to the agricultural industry seeking cost efficiency measures from diverse 

solutions involving various academic fields, e.g. agronomy, geology, genetics, and 

engineering (Tilman et al., 2002). To achieve higher productivity even with lower 

energy consumption and less terrestrial field degradation, engineering has been 

focused on the development of advanced technologies in terms of auto-guidance 

systems and optimal fieldwork management (Gebbers & Adamchuk, 2010). 

Recently, many automated agricultural applications, such as auto-steering (e.g. 

Agco AutoGuide, Agrocom E-drive, Ag Leader SteerCommand, Case IH 

AccuGuide, John Deere AutoTrac, Trimble Autopilot, etc.) and automatic 

implement guidance (e.g. John Deere iGuide, New Holland TrueGuide), have been 

commercialised (Han, Kim, Jeon, Moon, et al., 2019; Scarlett, 2001; Thomasson et 

al., 2019). Auto-guidance systems for agricultural machinery, in particular, have 

been comprehensively developed to aid or support the operator to allow more 

accurate control of the vehicle whilst operating the various implements (Groover & 

Grisso, 2009; Han et al., 2015). For example, when using an auto-steering system 
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with an autonomous variable rate boom sprayer, a 16% potential reduction in travel 

distance and associated fuel use was estimated compared with a conventional 

broadcast treatment (Hoy et al., 2014). Furthermore, automation can improve the 

farmer’s comfort and relieve fatigue (Lenain et al., 2006). 

Currently, most commercially available steering guidance systems for agricultural 

tasks are, in theory, capable of achieving high performance in terms of fuel, time 

efficiency, and operational quality (D. D. Bochtis & C. G. Sørensen, 2009). A 

measure of field operation performance is field efficiency (𝐸𝑓), defined as the ratio 

of the productivity of the machine under field conditions to the theoretical 

maximum produced at its full rate (Bochtis & Vougioukas, 2008). Field efficiency 

is affected by various factors such as the size and shape of the field, the dimensions 

of the machine and implement, the strategies of field operation (path planning), the 

soil condition, and the crop yield. Among these, the strategies of agricultural 

routing problem (ARP) adaptively applied to various field shapes considering the 

mechanical characteristics of an autonomous tractor system directly affects the 

quality of the agricultural operation (Bochtis & Sørensen, 2010). Bergerman et al. 

(2013) stated that the design of an operational path is one of the critical tasks in 

farm management to improve field efficiency. Zandonadi (2012) suggested that the 

proper planning of field operations reduces agricultural operational costs with the 

use of high-end technology. 

Several researchers have developed models to describe ARP by substituting it for 

a form of the coverage path planning (CPP) problem that generates a route that 

passes over all waypoints of a region. Researchers in this domain have focused on 

issues such as generating sub-fields due to physical obstacles or complex field 
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shapes (I. A. Hameed et al., 2013; I. A. Hameed et al., 2010; Oksanen & Visala, 

2009), determining the orientation of the tracks and headland-turning patterns or 

track sequences (Bochtis et al., 2009; Bochtis & Vougioukas, 2008; Hameed et al., 

2011; Jin & Tang, 2010), minimising the turning cost (Backman et al., 2015; 

Sabelhaus et al., 2013; Yu et al., 2015), representing 3D coverage paths based on 

pre-acquired digital elevation maps (Hameed, 2013; Hameed et al., 2016; Jin & 

Tang, 2011), and operating strategies for multiple machines (Bochtis & Sørensen, 

2010; Conesa-Muñoz et al., 2016; Jensen et al., 2012; Johnson et al., 2009; 

Seyyedhasani & Dvorak, 2017). 

For example, (Jin & Tang, 2010) presented a method for the geometrical 

presentation of a field combined with a path‐planning algorithm for optimal field 

decomposition into sub‐regions and determination of the driving direction in each 

sub‐region. (Hameed et al., 2011) developed an effective coverage planner to 

derive the driving angle for minimising the overlapped area in a headland field and 

to arrange the track and block sequence using a genetic algorithm to minimise the 

non-working distance. (Jensen et al., 2012) proposed a path planning method for a 

transport unit in cooperation with a primary unit (e.g. a harvester) in agricultural 

operations involving inner-field paths by implementing Dijkstra’s algorithm to 

solve the single-source shortest path problem on a metric map. 

When evaluating the performance of a path planner for an autonomous tractor 

applied in a paddy field, the infield-coverage path, including inner- and outer-work 

paths for agricultural tasks and headland turning, is the main factor that directly 

affects the quality of the agricultural operation. In general, a paddy field is 

commonly segmented by embankments around 300 mm to hold flood water for 
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growing rice. Therefore, the planner should propose an operational path with 

strategies to avoid collisions with field borders while cultivating the whole area 

even in a polygonal paddy field. To do that, the outer-work paths generated in the 

headland areas adjacent to the embankments should be precisely designed based on 

each corner shape and the manoeuvring characteristics of the tractor. 

Several researchers have presented methods to deal with infield path planning 

(Edwards et al., 2017; Hameed, Bochtis, & Sørensen, 2013; Han et al., 2013; 

Spekken & de Bruin, 2012; Zhou, Leck Jensen, Sørensen, Busato, & Bochtis, 

2014). For example, Spekken and de Bruin (2012) presented a path planning 

method to design a geometrical route for inner-field and headland turning within 

the field boundary to minimise the time spent on machine servicing (loading or 

offloading agricultural input and output). Han et al. (2013) developed a coverage 

path planner for an autonomous tillage tractor to enable the vehicle to till in 

sequential tracks and carry out headland turning with fixed spacing within the 

rectangular paddy field. Edwards et al. (2017) proposed and evaluated an infield 

coverage planner prototype designed for mowing operations; it demonstrated good 

performance in terms of reducing the predicted travel distance by up to 50% in 

comparison with that obtained when a professional operator drove the tractor in the 

same fields. Although infield coverage paths have been proposed by many 

researchers, the performance of the agricultural operation has not yet been 

demonstrated or guaranteed when an autonomous tractor travelled the whole path 

in the field test. Han et al. (2019b) performed an autonomous tillage operation by 

navigating a 60-kW autonomous tractor equipped with a slip-estimation-based 

path-tracking controller on a map generated using a previously developed path 
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planning algorithm (Han et al., 2013). However, the algorithm could only generate 

a path in a rectangular paddy field. In addition, a large amount of skipped area 

occurred near the corners of the field due to incomplete strategies when generating 

the outer-work paths, especially in the boundary corner area, revealing the need for 

a more precise and improved path generation method covering the whole area of 

the paddy field. 

Thus, to improve the performance of the previously developed system (Han et al., 

2019), the ultimate goal of this study was to develop a complete field-coverage 

path planner for an autonomous tillage tractor applicable to various shapes of 

polygonal paddy fields. 

 

The specific objectives for this chapter are to 

1) Develop a complete paddy field-CPP that generates both inner- and outer- 

work tracks for a GNSS-based autonomous tractor to fully perform the 

tillage operations of polygonal paddy field. 

2) Implement boundary corner turning methods for enhancing covering 

performance on the corner areas compared to the previous study, regardless 

of the various shapes of polygonal corners. 

3) Validate the feasibility of the developed path planner by analysing the 

trajectories and field coverage efficiencies in simulation and the field tests. 



 

 

47 

MATERIALS AND METHODS 

Design of the complete paddy field-coverage path planner 

Tillage path model 

 The paddy-coverage path consists of inner-tracks with headland turning and outer-

work paths with boundary corner, and the sequence varies depending on the type of 

agricultural task. The tillage and puddling∙leveling paths were modeled using the 

information obtained from International Rice Research Institude (IRRI) and the 

results of previous studies (Bochtis et al., 2015; Han, Kim, Jeon, Moon, et al., 2019; 

Seo et al., 2010). 

 Figure 6 shows a conceptual diagram representing a tillage path model. The tractor 

started tillage operation at one corner of the inner area (Stage 1), entered the next 

inner-work track via a headland turning path (C, X, R, Ω types) determined by the 

width of the implement and the minimum turning radius of the tractor (Stage 2) (Jin 

& Tang, 2010). In addition, depending on the type of rotary cultivator or plow, the 

sequence of inner-work track was determined according to the aim of the plowing 

operation to collect or push the soil, and the pattern of headland turning was also 

identified. After finishing the agricultural task in an arable area of the inner-work 

area, the tractor exit to the outer-work area via the connection path, performs a tillage 

operation by traversing headland passes connected with a boundary corner turning 

path (Stage 3) and covers the cultivation work in all areas of farmland (Stage 4). 
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Figure 6. Process of the tillage operation for the autonomous tractor equipped with 

the ratary cultivator. 

Architecture of the path planner 

Guiding an autonomous tractor in a paddy field in the study was based on the 

generation of a combination of waypoint data and operational commands for the 

tractor with an implement when information about the field boundary and tractor 

dimensions is provided. Figure 7 shows the sequence of two different separate 

operations in series, i.e., the generation of inner- and outer-work paths, and the 

creation of the waypoint data and implement commands in RDDF (route data 

definition file) format (Table 6). An example of RDDF generated as the reference 

information for path tracking and agricultural task. The input data includes a set of 

coordinates of the points on the field boundary, the width of the implement, the 

number of headland passes, the overlap length, the headland turning pattern, and 

the driving direction defined as the angle between the driving direction and the 

horizontal axis of the transverse Mercator coordinate system. 
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 In the 1st stage, the path was decomposed into two sub-regions, i.e., inner- and 

outer- work areas. The inner-work path includes straight tracks and headland turns, 

whilst the outer-work path included headland passes, boundary corner turning 

paths, and connection paths. On the inner-work path, the straight tracks were filled 

with the minimum boundary box (MBB) in the direction of the driving angle, 

which is the same as the long side of the field boundary, with parallel swaths, and 

the headland turns sequentially connects the straight paths at their ends. On the 

outer-work path, the headland passes were generated sequentially from outside to 

inside by inwardly moving the field boundary, and the boundary corner turning 

paths were generated by incorporating reversing to connect the headland passes. 

The connection path is used to connect the inner-work and outer-work paths. Two 

diagnostic algorithms were designed to investigate whether the waypoints 

generated on the outer-work path are located within the field boundary and whether 

they can cause an impossibly sharp turning manoeuvre for the autonomous tractor 

to follow due to the narrow outer-work area. The first diagnostic algorithm was 

implemented by inwardly moving the field boundary by half of the implement 

width to limit the area where the waypoints can be generated to allow the 

autonomous tractor to perform agricultural tasks without colliding with the field 

boundary. The second algorithm calculated the direction change of sequential three 

vectors consisting of consecutive four waypoints. When errors were detected, the 

number of headland passes was increased to obtain a wider headland area. 

In the 2nd stage, the path generated during the first stage included waypoint data in 

RDDF format on their latitude and longitude coordinates, LBOs (limits of the 

boundary offset), traveling velocities (working and turning velocities), and 
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implement on/off operations. This file contains the input reference path and control 

strategies for the tracking method developed in our previous study (Han et al., 

2019b). In principle, the tractor searched for the next waypoint when it reaches a 

waypoint within the offset distance, which was predefined in terms of LBO (Han et 

al., 2013). In addition, the predicted time and travel distance on the path when the 

tractor ideally navigated the proposed path was also provided as useful 

information. 

Table 6. An example of RDDF generated as the reference information for path 

tracking and agricultural task. 

Index Northing 

(m) 

Easting 

(m) 

LBO 

(m) 

Velocity 

(km/h) 

Rotary cultivator 

up/down 

Wing harrows 

folding/unfolding 

1 410296.5 212973.3 0.1 4 1 0 

2 410206.1 212965.2 0.1 2 1 0 

…       

n-1 410290.5 212985.7 0.1 2 1 1 

n 410289.5 212984.9 0.1 4 1 1 

 

Figure 7. Flowchart of the complete paddy field-coverage path generation 

algorithm developed in the study. 
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Geometrical representation of the infield full-coverage path 

Inner-work path with optimal overlap length 

Inner-work tracks with adaptive overlap length 

As shown in Figure 8, the border of the inner-work area was set by inwardly 

moving the field boundary by length (𝑑𝐻𝐿), which was defined based on the 

number of headland passes (𝑛ℎ), the implement width (𝑤), and the initial overlap 

length (𝑤𝑜−𝑖𝑛𝑖𝑡) (eq. 3.1), and the headland area between the field boundary and 

the inner-field border was then created at the same time. The approach for the 

generation of the inner-work tracks was based on the MBB method (I. A. Hameed 

et al., 2010; O'Rourke, 1985), which is the minimum-area rectangle enclosing the 

vertices of the field to concisely express a complex field shape. The bounding 

rectangle was oriented in the same direction as the driving angle. Straight segments 

were aligned in the driving direction fill the MBB with parallel swaths calculated 

using the implement width and overlap length. The method determined intersection 

points on the inner-field border to identify the inner-work tracks depending on 

whether they were inside or outside the inside working area. If they are outside the 

area, they were discarded. Otherwise, the line segment was indexed (𝑖) as the inner-

work track and the number of the inner-work tracks (𝑛𝑖) was calculated. 
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Figure 8. Geometrical representation of the inner-work tracks based on the 

minimum boundary box (MBB) method for the full coverage of the inner-work 

area. 

𝑑𝐻𝐿 =  𝑛ℎ(𝑤 − 𝑤𝑜−𝑖𝑛𝑖𝑡) + 𝑤𝑜−𝑖𝑛𝑖𝑡     (3.1) 

In this study, to prevent skipped or over-tilled areas, an overlap length, generally 

defined as zero (Hameed et al., 2016; Jensen et al., 2015; Oksanen & Visala, 2009; 

Spekken & de Bruin, 2012) or constant (Han et al., 2013; Han, Kim, Jeon, & Kim, 

2019; Han et al., 2015), was calculated adaptively for the field and implement 

widths. Figure 9 (a) shows a flowchart for calculating the adaptive overlap length 

(𝑤𝑜) using the number of the inner-work tracks (𝑛𝑖), the implement width (𝑤), the 

initial overlap length (𝑤𝑜−𝑖𝑛𝑖𝑡), the lower limit of overlap length (𝑤𝑙𝑖𝑚𝑖𝑡), and the 

width of a MBB’s edge placed in the perpendicular direction of the driving angle 

(𝑤𝑚). In this method, the remaining width was calculated to determine whether it 

could be evenly distributed to another overlap length (Figure 9 (b)). If it is possible, 

the overlap length is recalculated adaptively, and the number of inner-work tracks 

was reduced to increase the work efficiency (Figure 9 (c)). For practical operations, 
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the lower limit of the overlap length was set to prevent the skipped area (which can 

be caused by slippage on soil), a delay in the actuator, or a GPS error. In the 

opposite case, the number of inner -work tracks was maintained and the remaining 

width was evenly distributed over all of the overlap lengths. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Notation for calculating the adaptive overlap length. (a) A flowchart of 

the calculation and schematics of (b) when the remaining width (𝒘𝒓) is distributed 

to the inner-work tracks and (c) when the number of inner-work tracks is then 

decreased.   

Infield headland turning 

According to headland patterns used in a agricultural operation for paddy fields 

proposed by the International Rice Research Institute (IRRI) (Figure 10), two 

different headland patterns, i.e., one-way and gathering (CASTRO, 1970) are 

commonly used to minimise the number of turns and maximise the length of the 

agricultural task runs. When the one-way pattern is used, the tractor follows a 
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series of parallel tracks sequentially from one boundary of the inner-field border 

and traverses all parallel tracks using R-type, X-type, or Ω-type headland turning 

according to the kinematic restrictions of the machine (Hunt, 2008; Witney, 1988) 

(Figure 10 (a)). The selection of the turning method is based on the skill of the 

driver and the available space in the headland area (Bochtis & Vougioukas, 2008). 

As shown in Figure 10 (b), the gathering pattern with C-type headland turning 

requires the tractor to recursively till tracks located parallel to each other at around 

half the width of the field. In this study, X-type and C-type, which demand a 

smaller space for completing the turning manoeuvre than R-type and Ω-type 

(Spekken et al., 2015), were adopted to generate the infield headland-turning paths 

because the headland area where the headland turning is executed can be relatively 

limited in the boundary of the paddy field.  

 

(a)                           (b) 

Figure 10. The classic headland patterns: (a) one-way (R, X, and Ω types) and (b) 

gathering (C-type). 

 

To achieve the generic solution for the CPP in the paddy field, irregularities of 

field boundaries were considered by generating the waypoints located on the line 

stretching the inner-work tracks for guiding the autonomous tractor to keep moving 
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straight ahead until the point is reached while performing the agricultural operation 

(Figure 11). As described in eq. 3.2, two different over-covered lengths for the 

tractor to till additionally when exiting (ℎ𝑒𝑥𝑖𝑡) and re-entering (ℎ𝑟𝑒−𝑒𝑛𝑡𝑒𝑟) the 

inner-work area, respectively, are defined using two angles of the intersection of an 

inner-work track and the field boundary, i.e., 𝜃𝑒𝑥𝑖𝑡 and 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟. Mathematical 

models for the over-covered lengths representing three different angle cases are 

derived as a function of the implement width (𝑤), the adaptive overlap length (𝑤𝑜), 

the intersection angles (𝜃𝑒𝑥𝑖𝑡 and 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟), the distance between the track and 

the vertex of the inner-field border near it (𝑤′), and the intersection angle between 

the track and the other segment of the boundary (𝜃𝑒𝑥𝑖𝑡
′  𝑎𝑛𝑑 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟

′ ). 

 

 

(a) 𝜃𝑖
′ = 0𝑜                 (B) 𝜃𝑖

′ ≥ 90𝑜                  (C) 𝜃𝑖
′ < 90𝑜 

Figure 11. Modelling of an over-covered length (ℎ𝑒𝑥𝑖𝑡 and ℎ𝑟𝑒−𝑒𝑛𝑡𝑒𝑟) according 

to the shape of the field boundary 
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ℎ𝑖 = {

0.5𝑤 𝑎𝑟𝑐𝑡𝑎𝑛(−|𝜃𝑖 − 0.5𝜋| + 0.5𝜋)                                     (𝜃𝑖
′ = 0𝑜)

𝑤′ 𝑎𝑟𝑐𝑡𝑎𝑛(−|𝜃𝑖 − 0.5𝜋| + 0.5𝜋) + (0.5𝑤 − 𝑤′) 𝑎𝑟𝑐𝑡𝑎𝑛(−|𝜃𝑖
′ − 0.5𝜋| + 0.5𝜋) (𝜃𝑖

′ ≥ 90𝑜)

𝑤′ 𝑎𝑟𝑐𝑡𝑎𝑛(−|𝜃𝑖 − 0.5𝜋| + 0.5𝜋)                                      (𝜃𝑖
′ < 90𝑜)

  

,𝑖 ∈ [𝑒𝑥𝑖𝑡, 𝑟𝑒 − 𝑒𝑛𝑡𝑒𝑟] (3.2) 

Figure 12 shows the implementation of X and C-shaped infield headland turning 

manoeuvres by accounting for exiting and re-entering the fieldwork area using the 

inner-work tracks. In both turning methods, the tractor followed the track and kept 

moving straight ahead while performing agricultural tasks until the centre of the 

implement reaches point 1 to avoid generating skipping areas using the over-

covered length (ℎ𝑒𝑥𝑖𝑡 and ℎ𝑟𝑒−𝑒𝑛𝑡𝑒𝑟). After driving along the headland turning 

path, the tractor started to re-enter the inner-work area from point 4 with the 

implement running. The vehicle then followed the X-shaped turning path 

incorporating the two arcs (1-2 and 3-4) created using the minimum turning radius 

of the tractor (𝑅) and reversing from point 2 to point 3. In the C-shaped turn, for 

the tractor to enter the next the inner-work track of an irregular polygonal paddy 

field, some straight lines and arcs with a radius of 𝑅 as many as segment of the 

field boundary and corners were generated along the operating limit boundary 

(𝑑𝑂𝐿) created from the offset of the half of implement width defined using eq. 3.3 

and the vehicle continues following it, as shown in Figure 12 (b). In addition, using 

the calculated lengths of ℎ𝑒𝑥𝑖𝑡 and ℎ𝑟𝑒−𝑒𝑛𝑡𝑒𝑟, which affect the width of the outer-

work area, the diagnostic algorithm developed in the study determines whether the 

waypoints of the infield headland turn were located outside of the operating limit 

boundary created from the offset of the half of implement width, thereby increasing 

the number of headland passes (𝑛ℎ) until all waypoints were within the boundary 

that prevents the tractor colliding with the field border. 
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(a) X-type                        (b) C-type 

Figure 12. (a) X and (b) C-shaped infield headland-turning manoeuvre. 

𝑑𝑂𝐿 =  0.5(𝑤 − 𝑤𝑜−𝑖𝑛𝑖𝑡) + 𝑤𝑜−𝑖𝑛𝑖𝑡                 (3.3) 

Outer-work path with boundary corner turning 

Headland passes and boundary corner turning 

The outer-work area between the field boundary and the inner-work area was 

filled with headland passes parallel to each boundary segment at an interval of 

constant swathing (𝐿𝑐) based on the implement width (𝑤), the initial overlap length 

(𝑤𝑜−𝑖𝑛𝑖𝑡), and the number of the headland passes (nh) using Eq. 4. To cover this 

area, the tractor navigated around the entire field by repeating the headland passes 

operation parallel to each boundary segment and boundary corner turning operation 

to connect each pass in the sequence, whereby the tractor started to perform the 

agricultural from the outermost headland pass and gradually entered the inner 

headland pass. In this paper, headland and boundary corner turning methods are 

proposed for effectively covering the headland and corner areas regardless of the 

various shapes of polygonal corners. 
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Figure 13 shows a manoeuvre incorporating the reversing for covering the outer-

work area developed in this study. When the tractor finished the agricultural 

operation on the headland pass from point 1 until the look-ahead point reached 

point 2; the navigational parameter of the tracking algorithm developed in our 

previous study (Han, Kim, Jeon, Moon, et al., 2019) such as the lateral deviation 

and heading error for calculating the steering angle. The tractor then deactivated 

the implement and navigates the boundary corner turning path generated with 

radius 𝑅𝑟𝑒𝑞𝑐,𝑘
 from points 2 to 3, which was calculated differently depending on 

the indexes of the boundary corners (𝑘) and the headland passes (𝑐) (eq. 3.5). 

Before reversing to cover the boundary corner area, the tractor continued along an 

additional straight path (3-4; the red line in Figure), referred to as the alignment 

path of length 𝑙𝑐,𝑘, to give the autonomous tractor sufficient length to align its 

attitude with the next target line. Length 𝑙𝑐,𝑘 is defined in two cases based on the 

difference in length between two radii, 𝑅𝑟𝑒𝑞𝑐,𝑘
 and 𝑅 (Eq. 7):  𝑅𝑟𝑒𝑞𝑐,𝑘

 > 𝑅 

results in the generation of the boundary corner path the tractor can follow whereas 

𝑅𝑟𝑒𝑞𝑐,𝑘
 < 𝑅 needs an additional straight path of length 𝑙𝑐,𝑘. In the first case, 𝑙𝑐,𝑘 

was set to the look-ahead distance (𝑙𝑙𝑜𝑜𝑘−𝑎ℎ𝑒𝑎𝑑) to perform reversing immediately 

after the centre of the tractor reaches point 3. When 𝑅𝑟𝑒𝑞𝑐,𝑘
 < 𝑅 due to the 

headland pass being located inwardly, the generic solution for calculating the 

length of the alignment path even in the irregular field shape and various tractor 

type was designed using the difference in chord length (𝐻𝑐,𝑘) between two arcs 

drawn with radii of 𝑅𝑟𝑒𝑞𝑐,𝑘
 and 𝑅 defined using eq. 3.6, the corner angle 

between adjacent boundary segments (𝜃𝑘), the radius of the boundary corner 
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turning path (𝑅𝑟𝑒𝑞𝑐,𝑘
), and the minimum turning radius of the tractor (𝑅) using eq. 

3.7. After the tractor drove along the alignment path, it started to perform reversing 

from point 4 until the centre of the implement reaches point 5. To prevent a 

collision between the rear of the agricultural implement and the field boundary 

whilst reversing in the polygonal field, a reversing gap (𝑝𝑘) was generated at each 

boundary corner using eq. 3.8. The vehicle then started to follow the next headland 

pass while activating the implement (5-6). 

 

 

Figure 13. Manoeuvring in the headland passes and boundary corner turning. 

 

𝐿𝑐 = {(𝑛ℎ − 𝑐)(𝑤 − 𝑤0−𝑖𝑛𝑖𝑡) + 0.5𝑤}; c = {1,2, … , nh}     (3.4) 

  (3.5) 

𝐻𝑐,𝑘 = 𝑅 𝑡𝑎𝑛(0.5𝜃𝑘) − 𝐿𝑐csc (𝜃𝑘)√2 − 2𝑐𝑜𝑠(𝜃𝑘)         (3.6) 

𝑙𝑐,𝑘 = {
𝑙𝑙𝑜𝑜𝑘−𝑎ℎ𝑒𝑎𝑑   ( 𝑅 − 𝑅𝑟𝑒𝑞𝑐,𝑘

≤ 0 )

𝐻𝑐,𝑘𝑠𝑖𝑛(0.5𝜃𝑘) + √4𝑅𝑐𝑜𝑠(0.5𝜃𝑘) − 𝐻𝑐,𝑘𝑐𝑜𝑠2(0.5𝜃𝑘) ( 𝑅 − 𝑅𝑟𝑒𝑞 𝑐,𝑘
> 0 )

 (3.7) 

               (3.8) 

𝑅𝑟𝑒𝑞𝑐,𝑘
= tan (0.5𝜃𝑘)𝐿𝑐csc (𝜃𝑘)√2 − 2 𝑐𝑜𝑠(𝜃𝑘) ;  𝑘 = {1,2, … , 𝑛𝑠}            

𝑝𝑘 = 0.5(𝑤 − 𝑤𝑜−𝑖𝑛𝑖𝑡)|𝑐𝑜𝑡(𝜃𝑘)| 
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Connection path between the inner-work and outer-work areas 

A connection path that transits from the inner-work to the outer-work area was 

generated in a similar way to the algorithm that created the infield C-shaped 

turning method, as shown in Figure 14. When the tractor left the last track, it 

continued to carry out agricultural task until the centre of the implement reached 

point 2, thus giving full coverage of the inner-work area. The tractor then raised the 

implement and navigated a straight path. The proposed method determined the 

rounding direction for covering the outer-work area, i.e., clockwise or counter 

clockwise, which affects the turning direction of the tractor at point 3, based on the 

location of the last track. To obtain the space where the path for entering the first 

headland pass from points 3 to 5, the direction was selected and the arc was based 

on the minimum turning radius of the tractor (𝑅) and the straight path are generated 

using an operating limit boundary (𝑑𝑂𝐿) created from an offset, which is 

determined to be the half of the implement width apart from the field boundary 

(Eq. (7)). After boundary corner turning without reversing from points 5 to 6, the 

tractor started to till at the first headland pass. 
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Figure 14. Manoeuvring on the connection path. 

 

3D tractor driving simulator 

As shown in Figure 15(a), the simulator architecture consists of a server 

developed with the RoboticsLab 2009 (ver. 1.10, Simlab Co., Seoul, Korea) 

based on an extended kinematic model and a path planning and tracking 

client implemented with Labview 2015. In the server environment, the 

motion of a 3D tractor simulator was determined using a dynamic vehicle 

model that considers the varing side force acting on front and rear wheel 

affected by the corresponding cornering stiffness coefficients of front (Cf) 

and rear tires (Cf) whensteering angles, velocities, and implement up/down 

commands were obtained from the client. As shown in Figure 15(b), the 

simulator could display the path imported from the RDDF (red line), 

allowing the user to observe a navigational trajectory of the virtual tractor in 

real-time. In addition, a graphic function was used to display the swath of 

the implement attached to the virtual tractor such that the working and non-
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working area of the implement could be visually identified during the 

navigation (yellow grids). In the client environment, the path generated by 

the complete paddy field-CPP developed in LabVIEW (ver. 15, National 

Instruments, TX, USA), consisting of waypoints previously created in 

RDDF format, was imposed on the simulator using TCP/IP protocol as a 

desired position and direction for the tractor. The steering angles required 

for the tractor to follow the path were generated using a slide-estimation 

based path-tracking algorithm (Han, Kim, Jeon, Moon, et al., 2019). 

 

(a) 

 

(b) 
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Figure 15. Architecture of the simulator, consisting of a path planning and tracking 

client and a vehicle motion server (a) and view of the 3D virtual tractor following 

the desired path (red line) displaying the swath of the implement (yellow grids) (b) 

 

Autonomous tractor system 

Test platform, TX853 

The platform for the field tests was built using a 63.4-kW tractor (TX853, TYM., 

Seoul, Republic of Korea; Figure 16 (a)). The TX853 tractor, which is weighing 

3421 kg, is a four-wheel with front-wheel steering, 24-level forward and reverse 

speeds. The wheelbase, the length between front and rear axles, and the height of 

the tractor are 2.2 m, 2.24 m, and 2.71 m, respectively. Specific information of the 

tractor was described in Table 7. An integrated navigation controller for high- and 

low-level controller (MXE-5501, ADLINK, Taiwan) for path-tracking algorithm 

was used to control the autonomous tractor of steering angle, travelling velocity, 

and implement up/down status (Table 8). The steering angle for path-tracking was 

calculated based on the slip-estimation method programmed in Labview 2018 on 

the navigation controller mounted on the cabin of the tractor. 
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(a)                               (b) 

Figure 16 View of 63-kW autonomous tractor (TX853, TYM) (a) outside and (b) 

inside 

Table 7. Specifications of the TX853 tractor used in this study 

Items Specifications 
 

Engine 

Type Cummins 3.3L 4-cyl diesel 
 

Cylinders 4 
 

Displacement cubic 402.5 ci 
 

Fuel Tank Capacity 110.1 L 
 

Electrical 

Battery Capacity 12V 65AH 
 

Alternator 12V 65A 
 

Transmission 

Type 24-speed 
 

Numberf of Gears/Speeds 24 forward and reverse 
 

Steering Type Hydrostatic Power 
 

Brake type Type Wet disc 
 

 

Table 8. Specifications of the navigational controller 
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Items Specifications 

Processor Intel® Core™ i7-6820EQ 

Memory DDR4 2133 8GB 

I/O Ethernet 4x Intel GbE ports 

Serial Ports 6x COM (2x RS-232 + 4x RS-

232/422/485)  

USB 4x USB 2.0 + 4x USB 3.0  

DIO Isolated 8 DI + 8 DO Audio Mic-in 

Weight 4 Kg 

Operating Temperature -20°C to 60°C 

Humidity Approx. 95% @40°C 

Input voltage 9-32 Vdc 

 

GNSS/INS system 

A global navigation satellite system/inertial navigation system (GNSS/INS) 

(Ellipse-D, SBG SYSTEMS., France, Table 9) was mounted on a roof canopy of 

the tractor. Table 9 shows the speficifation of the GNSS/INS system. Differential 

correction data provided by a network-RTK device (MRD-1000T, SYNEREX., 

Republic of Korea) based on the long-term evolution (LTE) wireless network, were 

then transmitted to the rover via networked transport of Radio Technical 

Commission for Maritime Services (RTCM) using Internet protocol (NTRIP) to 

achieve 2 cm positioning and to observe the heading angle within ±0.1o accuracy 

during 60 s outage at a sampling frequency of 20 Hz. Before autonomous 

agricultural operations, an initialization process of the RTK-GNSS/INS sensor was 

performed by guiding the vehicle to navigate farm roads with a change in 

acceleration of 2m/s2 to measure and predict the tractor position, velocity, and 

heading. 
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(a)                     (b)            (c) 

 

Figure 17. (a) GNSS system used in this study, (b) triple frequency antenna, and (c) 

network-RTK device for collecting a differential correction data. 

 

Table 9. Specifications of the GNSS system 

Items Specifications 

42G1215A-XT-1-2-CERT 

Antenna 

Frequency: L1, L2 

Performance: LNA Gain (dB)  

Tracking: L-Band, SBAS, QZSS  

Max. number of frequency: Dual  

Input voltage: 2.5 to 24 VDC  

Consumption: 35 mA 

VSWR:<2.0:1  

Ellipse-D 

-Position & Heading accuracy 

RTK: 1 cm+1 ppm 

Heading accuracy < 1.3 deg 

-Data rate 

Measurements: 20Hz 

Position: 20Hz 

MRD-1000T 

- Format : RTCM 3.x (RTK) 

- Power : DC 5V/1A 

- Weight : 50 g 

- Operating temperature : -25 ~ 85oC 

- Communication : LTE 
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Steering control module 

An electrical power steering (EPS) system (Unmanned Solution Co., Seoul, 

Republic of Korea, Figure 18 (a)) consisting of motor and control units (Figure 18 

(b)) was installed on the tractor to change the orientation of the tractor during the 

autonomous navigation. An angle sensor (Steer sensor, ComeSys, Republic of 

Korea) was installed on the centre of the front kingpin. Input voltage of the motor 

is 12 V and a drive torque of EPS is 2.5 Nm (Table 10). 

 
(a)                               (b) 

Figure 18 (a) EPS module and (b) control board 

 

Table 10. Specifications of the EPS module 

Items Specifications 

Power 12V / 7A 

Drive Torque 2.5 Nm  

Reduction Ratio 1:15 

Rotational Speed (No load) 150 RPM 

Weight 3.05Kg 

Operating Temperature 20ºC~80 ºC 

 

 

Control Board 

Baud rate : 500kbps 

Analog Input 2 channel 

0Vdc, 5Vdc Output DIO 2 channel 

RS232 1 channel 

CAN 1 channel 

Input of Steering Angle Sensor Analog 0V: 100º / 2.5V : 0º  
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Throttle control actuator 

As shown in Figure 19, an electic motor mounted in the bonnet (MX-106R, 

Dynamixel,. Korea) was used to control a velocity of the tractor by pulling the 

tractor hand throttle using the steel cable as shown in Figure 19 (b). The motor 

consists of a reducer, controller, driver, and network functions integrally and 

communicated through RS485 (Table 11). 

 
(a)                         (b) 

Figure 19 (a) Dynamixel motor for throttle control and (b) design of the actuator 

 

Table 11. Specifications of the dynamixel motor 

Items Specifications 

Model Name MX-106R 

Size 40.2mm × 65.1mm × 46mm 

Gear Ratio 225:1 

Operation Voltage 12 V 

Stall Torque 8.4 Nm 

Stall Current 5.2 A 

No Load Speed 345 RPM 

Range of Motion 360 Degree 

Operating Temperature -5°C ~ +80°C 

Communication Protocol RS485 Asynchronous Serial 

Position Sensor Contactless absolute encoder 
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Evaluation of tracking and covering performance of the tillage 

coverage-path planner 

Feaibility and validation test of the autonomous tillage path planner 

Simulation study of the tracking and covering performance 

As one scenario for studying the developed the outer-work path algorithm 

under various corner conditions, the virtual tractor navigated the paths generated 

with varying corner angles ranging from 30° to 150° at 10° intervals and with three 

headland passes, which formed two 20 m rows before and after the boundary 

corner turning path at a certain angle (Figure 20). The values for path generation 

parameters used in this study were 0.1 m, 0.07 m, 4 m, and 3 for the initial overlap 

length (𝑤𝑜−𝑖𝑛𝑖𝑡), lower limit of overlap length (𝑤𝑚), the minimum turning radius 

of the tractor (𝑅), and the number of headland passes (𝑛ℎ), respectively. 

Navigational parameters such as the working and turning speed, look-ahead 

distance, implement width, and look-ahead distance, LBO, and the proportional-

derivative (PD) control gains for the slide-estimation based path-tracking algorithm 

were the same as in our previous studies (Han, Kim, Jeon, Moon, et al., 2019). 
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Figure 20 Setup for the simulation test for studying the developed outer-work path 

algorithm 

 

 

Field testing on autonomous tillage in paddy fields 

Two field tests were conducted with the autonomous tillage tractor. The first test 

was for validating the results obtained from the first simulation study, which was 

performed to investigate the performance of using the proposed method to generate 

an outer-work path, in a trapezoid field (586.7 m2,+36o17’30.75’’ E, 

+127o8’22.07’’ N) with two acute (61.6° (corner 1) and 76.8° (corner 3)) and two 

obtuse (102.3° (corner 2) and 119.3° (corner 4)) corner angles, as shown in Figure 

21 (a). Assuming that the autonomous tractor followed the path consisting of three 

outer work lanes with boundary corner turnings at each of the corners, the 

performance was evaluated by measuring the lateral deviations when the tractor 

navigate the generated paths while performing tillage operations. The second test 

was a full-scale tillage experiment for navigating a complete paddy field-CPP 

generated in three different polygonal paddy fields located at Chungnam, South 
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Korea: triangular (3020.3 m2, +36o18’00.18’’ E, +127o09’31.84’’ N), 

quadrilateral (3451.3 m2, +36o17’58.36’’ E, +127o09’34.74’’ N), and pentagonal 

(4361.3 m2, +36o18’01.73’’ E, +127o09’34.85’’ N), as shown in Figure 21 (b). 

The corners of the field boundary were measured with the RTK-GPS mounted on 

the tractor and translated inwardly by half of the implement width. To generate the 

paths, the algorithm programmed in Labview 2015 was run on an i7-5500U CPU at 

2.4‐GHz Intel Centrino Mobile Workstation with 8 GB RAM. A navigation 

controller developed by Han et al. (2019b) was used to calculate the steering angle. 

The tillage implement control algorithm (Han, Kim, Jeon, & Kim, 2019), which 

reduced the not-tilled or overtilled areas by enabling a three-point hitch to be raised 

or lowered with appropriate delay times, was implemented in the tracking 

algorithm. The parameters for the path generation and path tracking used here were 

the same as in the simulation study. 

 

(a) 
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(b) 

Figure 21. View of (a) the fundamental field test for validating the developed 

outer-work path and (b) Google map image showing the three target fields located 

in Chungnam, South Korea: triangular (red), pentagonal (green), quadrilateral 

fields (orange), respectively. 

Parameters of tracking performance  

The driving RMSE of the autonomous tractor was evaluated by Equation (3.9) amd 

(3.10) using lateral distances measured from the tractor’s position coordinates 

perpendicular to the pre-defined paths and heading errors. The lateral and heading 

errors were defined as the positive error on the right side and the negative error on 

the left side along the driving direction. 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛−1
                         (3.9) 

where 𝑦𝑖 and �̂�𝑖 are the measured and the desired positions, respectively, and 𝑛 

is the total number of samples. 

𝐻𝑒𝑎𝑑𝑖𝑛𝑔 𝑅𝑀𝑆𝐸 = √
∑ (𝜃𝑖−�̂�𝑖)2𝑚

𝑖=1

𝑚−1
                         (3.10) 
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where 𝜃𝑖 and 𝜃𝑖 are the measured and the desired headings, respectively, and m 

is the total number of samples. 

The field efficiency of the time and distance in Equation (3.11) and (3.12) was 

calculated using the effective and total working times and distances, defined as the 

times that the tractor spends in the area of in-field working and the total field, 

respectively. 

휀𝑡 =
𝑇𝑤

𝑇𝑡
× 100%                         (3.11) 

Where 휀𝑡 is the field efficiency of the time, 𝑇𝑤 is the effective field time (s), and 

𝑇𝑡 is the total field time (s). 

휀𝑑 =
𝐷𝑤

𝐷𝑡
× 100%                         (3.12) 

Where 휀𝑑 is the field efficiency of the distance, 𝐷𝑤 is the effective field distance 

(m), and 𝐷𝑡 is the total field distance (m). 

RESUTLS AND DISCUSSION 

Feasibility testing of the boundary corner turning methods 

Feasibility testing of the boundary corner turning methods 

Figure 22 (a) shows the trajectories for the virtual tractor obtained when following 

the outer-work paths consisting of headland passes and boundary corner turnings at 

corner angles of 30° and 150°. Overall, it was possible for the autonomous tractor 

to follow the generated paths without any stops or crossing of the boundary at steep 

or smooth corners. However, as the 3 m-look-ahead point reached and updated the 

waypoint before the tractor position, an error occurred during the turning 

performed in advance just before entering the boundary corner, which increased 

when following the corner path at 30° rather than the one at 150° and navigating 
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the inside pass (Figure 22 (b)). This error proportionally caused a non-tilled zone 

labelled A and an over-tilled zone labelled C, as shown in Figure 22 (c). In 

addition, non-tilled zones (labelled B), which could have occurred even if a farmer 

had been driving the tractor, were inevitably found because it was impossible to 

drive back to the end of the field boundary to prevent the implement from 

destroying the embankment via a collision. Nevertheless, when the tractor 

navigated any boundary corner paths formed with alignment distances of 10.3, 

10.9, and 11.5 m at the 30° boundary corner path and 3, 3, and 3 m at the 150° 

boundary corner path for each pass, the location significantly deviated and the 

heading of the tractor caused by steep boundary corner turning was adjusted 

accurately for the path during reversing within + 50 mm. 

 

(a) 

 

(b) 
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(c) 

Figure 22. Simulation results of (a) the tracking trajectories, (b) lateral deviations, 

and (c) the tilled swath for the outer-work path at boundary corners of 30° and 150°. 

 

Figure 23 a comparison of the effect of the corner angle and pass number on the 

tracking performance obtained when following the developed path. According to 

the aforementioned studies implemented for 30° and 150° corners, it was apparent 

that the root-mean-squared error (RMSE) in the lateral deviation was increased 

from 26 to 69 mm due to the characteristics of the look-ahead tracking method 

when the virtual tractor navigated around the boundary corner path at a smaller 

angle. However, even when following the path at the steepest corner with the most 

significant error, the tillage operation was conducted with an acceptable coverage 

efficiency because the alignment distance was adaptively calculated for the corner 

angle and the location of the headland pass, implying that the operation could be 

completed without additional non-tilled areas within the polygonal field boundary. 
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  (a) 

 
(b) 

Figure 23. (a) Root-mean-squared error (RMSE) of lateral deviation of virtual tractor 

following the outer-work path (i.e., two 20-m rows after the boundary corner turning 

path) and (b) the alignment distance for various boundary corner angles. 

Validation testing of outer path with boundary corner turning 

Figure 27 shows the results for the trajectories of the autonomous tractor 

following the work path obtained from the developed path generation algorithm in 

a trapezoidal field when applied to four field corners with four different turning 

angles of 61.6°, 102.3°, 76.8°, and 119.3°. Similar to the results of the simulation 

study, the proposed path enabled the autonomous tractor to show acceptable 

tracking performance when following the straight working passes (Figure 27(a)). 

For example, as shown in Figure 27(b), when the system navigated the 
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autonomous tractor around corner 3, which is the steepest corner, the autonomous 

tractor successfully reached the end of the reversing path with an acceptable 

tracking level ranging from -30 to 70 mm even though the lateral deviations 

ranging from -1026 to 35 mm, -1767 to 212 mm, and -3479 to 507 mm were 

obtained along the turning paths on passes 1, 2, and 3, respectively. The RMSEs of 

each straight working pass were within 100 mm, implying that using the developed 

path effectively covered the outer-work area even in the polygonal field. 

 
(a) 

 

(b) 
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Figure 24. Results of (a) the tracking trajectory and (b) the lateral deviation of the 

tractor following the outer-work path in the field 

 

Three case studies of full tillage paths 

Generation of full tillage paths for the three different paddy field shapes 

Figure 25 shows predefined maps of reference paths obtained with X- and C-type 

headland-turning patterns in three different fields. The inner-work tracks generated 

in the same direction as the longest segment of the field boundary completely filled 

the fieldwork area at regular swaths using an adaptive overlap length ranging from 

73 to 178 mm in three types of field (Table 12). It is noticeable that the overlap 

length in the quadrilateral field was adjusted to be smaller than the initial overlap 

length (100 mm) in two turning patterns such that the number of inner-work tracks 

also decreased from 20 to 19, thereby resulting in decreases in the predicted time 

and travel distance compared to those obtained when the path was generated with 

an overlap length of 100 mm. 

In addition, because the developed planner could automatically adjust the number 

of headland passes (𝑛ℎ) depending on whether the headland-turning path was 

outside of the inner-work area, the whole paths were successfully generated within 

the field boundaries when not only the C-type but also the X-type pattern was used 

as the turning method. Even though it was difficult to determine an exact 

relationship between 𝑛ℎ and the headland-turning pattern, it was apparent that a 

bigger 𝑛ℎ would be needed when using the X-type turning method, as shown in 

the outer-work path of the pentagonal field in Figure 25. This was because the arc 

angle is adaptively calculated during C-type turning rather than constantly using 
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90° during X-type turning. In addition, when comparing operational paths of the 

triangular and quadrilateral field, 𝑛ℎ was strongly affected by the intersection 

angles between exiting or re-entering the inner-work track and the boundary, thus 

the closer the angle to the vertical, the smaller the required 𝑛ℎ (Figure 25 (b)). 

The predicted travel distance and time based on separate calculations of the times 

required to travel the distances of the straight and curved paths and assuming that 

the tractor operates at 4 and 2 km h-1, respectively, are highly related to 𝑛ℎ, 𝑛𝑖, 

and the headland-turning pattern, as reported in Table 12. For example, when the 

complete coverage tillage path was generated in the triangular and quadrilateral 

field where 𝑛ℎ and 𝑛𝑖 were the same regardless of the turning pattern, the 

estimated total travel distances and times for the tillage operation for the 

operational path based on the C-type headland pattern (2229.2 m and 3086.3 s, and 

2828.3 m and 3398.8 s, respectively) and X-type turning (2035.2 m and 3050.9 s, 

and 2567.2 m and 3373.9 s, respectively) were similar. The reason for the slight 

difference between the paths based on C- and X-type turning patterns is that the 

tractor should always travel approximately half of the field width to enter another 

track with C-type based headland turning whereas the X-type turning method 

requires the tractor to reverse for a relatively small distance. However, in the 

pentagonal field, bigger 𝑛ℎ caused by the X-type turning pattern requiring a wider 

area significantly increased the predicted travel distance and time for the tillage 

operation from 2392.8 to 2439.4 m and 2904.8 to 3714.2 s, respectively, indicating 

that the minimization of 𝑛ℎ, which is roughly inversely proportional to 𝑛𝑖, should 

be guaranteed to improve the performance of the proposed path planner. 
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(a) X-type 

 

(b) C-type 

Figure 25. Views of the operational paths in the three field shapes based on the (a) 

X-type and (b) C-type headland-turning patterns.
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Table 12. Comparison of the operational parameters for the complete coverage paths for the three field shapes with X and C-type headland-

turning patterns. 

Field Shape 

Headland 

Turn 

Predicted Time (s)  Predicted Travel Distance (m) 

𝑤𝑜  

(mm) 

𝑛ℎ  𝑛𝑖  Inner-

work 

Headland 

turning 

Outer-

work 

Total 

 

Inner-work 

Headland 

turning 

Outer-work Total 

Triangle 

X 443.7 597.3 2009.8 3050.9  493.0 241.0 1301.2 2035.2 143 4 14 

C 443.7 663.0 1979.7 3086.3  493.0 435.3 1300.9 2229.2 143 4 14 

Quadrilateral 

X 1011.0 829.6 1450.9 3291.5  1126.4 346.7 1042.8 2515.9 73 3 19 

C 1011.0 964.6 1469.8 3445.4  1126.4 621.3 1083.7 2831.4 73 3 19 

Quadrilateral 

(100 mm 

overlap) 

X 1098.2 844.4 1488.3 3430.9  1216.3 353.0 1055.3 2624.6 100 3 20 

C 1098.2 1041.8 1477.5 3617.5 

 

1216.3 648.4 1076.2 2940.9 100 3 20 

Pentagon 

X 647.5 735.1 2331.6 3714.2  715.9 294.8 1428.7 2439.4 178 4 17 

C 780.8 802.9 1321.1 2904.8  867.5 504.1 1021.2 2392.8 158 3 19 

 𝑛ℎ, number of headland passes; 𝑛𝑖, number of fieldwork tracks; wo, adaptive overlap length 
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Simulation of the automatic full tillage operation 

Figure 26(a) shows a comparison of the reference paths of the autonomous tillage 

operation in three shape fields based on C-type turning patterns, with trajectories of 

a 3D virtual tractor operated in those paths. In all types of field, the virtual tractor 

performed complete tillage operation without any stops or collisions with the field 

boundary during the simulation, thus showing an acceptable performance with 

lateral RMSE ranging from 40 to 46 mm and heading RMSE ranging from 0.8° to 

1.3°. 

Figure 26(b) shows the coverage maps obtained using a display swath function to 

show the tilled area (yellow grid) in the simulator. The inner-work areas were 

almost completely covered in all field types because the waypoints (the crosses in 

Figure 26(a)) for the tractor additionally perform tillage operation until the tractor 

exited the inner-work area were elaborately designed with consideration for the 

irregularity of the field boundary. The skipped zones with areas of 46.2, 21.5, and 

31.1 m2, accounting for 1.53%, 0.62%, and 0.71% in triangular, quadrilateral, and 

pentagonal fields, respectively, were found at each boundary corner (Figure 26(b)) 

and inevitably occurred due to the outer-work path with a reversing gap to prevent 

collisions between the implement and the field boundary. In addition, the skipped 

zones labelled A (Figure 26(b)) were discovered for the same reason during 

boundary corner turning where the maximum and minimum errors were measured, 

implying that the algorithm for the determination of the look-ahead distance needs 

to be improved to effectively cover the polygonal field. 
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   (a)                              (b) 

Figure 26. Comparison of reference paths with trajectories of the autonomous tractor 

performing complete coverage tillage operations in three different polygonal fields 

based on C-type turning pattern and (b) views of the coverage maps obtained using 

the display swath function of the simulator. 
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Validation testing of outer path with boundary corner turning 

Figure 27 shows the results for the trajectories of the autonomous tractor 

following the work path obtained from the developed path generation algorithm in 

a trapezoidal field when applied to four field corners with four different turning 

angles of 61.6°, 102.3°, 76.8°, and 119.3°. Similar to the results of the simulation 

study, the proposed path enabled the autonomous tractor to show acceptable 

tracking performance when following the straight working passes (Figure 27(a)). 

For example, as shown in Figure 27(b), when the system navigated the 

autonomous tractor around corner 3, which is the steepest corner, the autonomous 

tractor successfully reached the end of the reversing path with an acceptable 

tracking level ranging from -30 to 70 mm even though the lateral deviations 

ranging from -1026 to 35 mm, -1767 to 212 mm, and -3479 to 507 mm were 

obtained along the turning paths on passes 1, 2, and 3, respectively. The RMSEs of 

each straight working pass were within 100 mm, implying that using the developed 

path effectively covered the outer-work area even in the polygonal field. 

 

(a) 
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(b) 

Figure 27. Results of (a) the tracking trajectory and (b) the lateral deviation of the 

tractor following the outer-work path in the field 

 

Field tests of autonomous tillage operation in three different paddy fields 

Figure 28 shows the trajectories of the autonomous tractor following 

operational paths with C-type headland turning for three different field 

shapes (triangle, quadrilateral , and pentagon) and the associated coverage 

maps drawn by the ArcGIS program (version 10.1, ESRI, Redlands, USA). 

Even though the field shapes were varied, which affects the strategies of the 

path generation algorithm and results in dynamic navigation behaviour of 

the tractor, autonomous tilling was successfully completed with an 

acceptable level of lateral deviation and heading error RMSEs measured for 

each working pass, ranging from 32 to 101 mm and 0.6 to 2.2 °, 

respectively, as shown in Figure 29. The autonomous tractor successfully 

navigated the full paths without colliding with the field boundary in 73.6, 

96.2, and 75.0 min for the triangular, quadrilateral, and pentagonal fields, 
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respectively. The untilled areas of the full-scale tillage operation (labelled 

A, B, and C) were calculated to be 51.6 (triangle), 38.1 (quadrilateral), and 

33.7 (pentagon) m2, thereby accounting for 1.7%, 0.9%, and 1.0% of the 

total area. The results indicate that there was a significant decrease in 

skipped area compared with our previous study (Han, Kim, Jeon, Moon, et 

al., 2019) with a skipped area of 204.3 m2, which corresponded to 8.5% of 

the total field area obtained in the field test using the same autonomous 

tractor in this study. Nevertheless, as obtained in the simulation study, the 

symmetrical skipped areas labelled A (9.2, 12.7, and 9.7 m2) occurred at 

each boundary corner, implying that the time response of the steering 

system should be improved. At the end of the reversing path in the outer-

work path, an untilled area labelled B (20.4, 21.9, and 9.5 m2) also 

occurred because the autonomous tractor inevitably stopped before the edge 

of the implement reached the field boundary for the same reason as the 

simulation result. The possible causes for the skipped areas labelled C (4.1, 

17.9, and 18.9 m2) could be due to occasionally increased draft force on the 

rotary cultivator making the autonomous tractor oscillate and inaccurate 

GPS information, which was confirmed by the fact that the skipped areas 

were found in the area where the implement moved down and the trajectory 

section was non-continuous. Nevertheless, the fact that the autonomous 

tractor fully navigated the coverage path automatically and tilled more than 

98.3% of the whole area in the polygonal paddy field without colliding with 
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the boundary indicates a significant enhancement in the guidance tractor 

system. 

 

(a)                             (b) 

 

(c) 
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Figure 28. Trajectories and coverage maps of the autonomous tractor performing 

the tillage operation in the (a) triangular, (b) quadrilateral, and (c) pentagonal 

paddy fields. 

 

                 (a)                           (b) 

Figure 29. RMSEs of (a) lateral deviations and (b) heading errors obtained when 

the autonomous tractor navigated the fieldwork and outer-work areas in three 

different polygonal paddy fields. 

 

CONCLUSIONS 

In this study, a complete paddy field-coverage path planner for an autonomous 

tillage tractor was designed and its performance was validated via both simulation 

and field testing. The main contribution of this study was to illustrate how inner 

and outer paths in various shapes of polygonal fields are automatically generated to 

enhance the coverage performance of an autonomous tractor when compared to our 

previously developed system. We proposed methods for generating the inner-path 

with an adaptive overlap length combined with C- and X-type headland-turning 

patterns and the outer-work path with a boundary corner path. The feasibility of 

using the path generation algorithms for autonomous tilling was investigated via a 
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3D graphic computer simulator. Field tests were conducted to validate the 

enhancement and potential of the fully automated tilling performance using a 63.4-

kW autonomous tractor equipped with an INS system. The following conclusions 

can be drawn from the tests. 

  An outer-work path generation method was designed to enable an 

autonomous tractor to automatically navigate the boundary corners 

connected with headland passes in the presence of an enclosing field 

boundary and to till the headland area. In this method, a geometrical 

model applicable to polygonal paddy fields was derived using the 

tractor’s characteristics and field shape conditions. The results of the 

validation test showed that the proposed method could provide an 

acceptable level of coverage performance in terms of lateral deviations 

ranging from -30 to 70 mm at various corner angles (61.6°, 102.3°, 

76.8°, and 119.3°). 

  The proposed planner for an autonomous tillage tractor could provide 

an increase in coverage efficiency because the outer-work path 

including the alignment distance and a reversing gap was elaborately 

designed. In the field test, the autonomous tractor successfully followed 

(lateral and heading RMSEs < 10.1 m and 2.2°) and tilled the whole 

path with more than a 98.3% coverage efficiency in three different-

shaped paddy fields. In future studies, we will develop an entry-exit 

path planner by considering the start and end points corresponding to a 

single entrance of the paddy field, in order to enable the autonomous 

tractor located at the entrance to automatically go to the starting location 
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of the operational path, perform the agricultural task within the field 

boundary, and return to the entrance. 
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CHAPTER 4 

FULL-COVERAGE PATH PLANNER FOR AN 

AUTONOMOUS PUDDLING AND LEVELING TRACTOR IN 

PADDY FIELDS 

ABSTRACT 

Land puddling and leveling operations are required on every cropping season and 

are one of the most important strategies for paddy field management as they improve 

weed control and water efficiency which help produce high-quality yield. 

Application of autonomous tractor technology equipped with an effective coverage 

path planner (CPP) is necessary to perform puddling and leveling with an improved 

field efficiency in paddy fields where it is difficult to secure the driver's sight because 

of flooded waters. Therefore, this study describes the development of a complete 

CPP for an autonomous puddling and leveling tractor that automatically generates 

the inner- and outer- work path applicable to irregular fields. In addition, this study 

performed a field evaluation of using autonomous puddling and leveling CPP by 

comparing the tracking and leveling performance of an autonomous tractor with that 

of a skilled worker in the same conditions (e.g., test field and platform). An 

operational path-mapping model composed of a four-stage configuration was 

designed for an autonomous tractor equipped with a rotary cultivator and a wing 

harrow, which provides important benefits to the optimal track sequence derived by 

a genetic algorithm. The feasibility of using the developed algorithm was 

investigated via simulation studies in three fields followed by a field test with a 63-

kW autonomous tractor. To evaluate the leveling performances, the height maps 
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generated using megapixel images were acquired from an unmanned aerial vehicle. 

The results of a computer simulation confirmed that the designed puddling and 

leveling CPP confirmed a planning performance by reducing the headland turning 

distance in three fields by 28 %, 33.9 %, and 45.0 %, as compared with that obtained 

with CPP from the previously developed track sequence. In the field test, the 

autonomous tractor successfully navigated the whole path with a lateral deviation 

ranging from -11.3 cm to 13.7 cm and a heading error ranging from -2.7 deg to 1.8 

deg, respectively, and demonstrated superior tracking performance in terms of travel 

distance and fuel consumption by reducing from 3039.6 m to 1940.1 m and from 

17.1 L to 16.3 L as compared with those of the manual operation because of refined 

traversal sequence using precise position information. However, it was confirmed 

that it took approximately 20 minutes more because it traveled at a slower average 

velocity (1.35 km/h) than the manual-driven tractor (2.75 km/h). Especially, the 

results of the leveling performance via height map showed the capacity of the 

autonomous tractor with a similar variability ranging from 39.61 m to 39.85 m 

(autonomous) and from 39.62 m to 39.81 m (manual). 

 

Keywords: Path planning; Puddling and Leveling; Paddy field; Autonomous 

tractor 

 

INTRODUCTION 

The agricultural sectors, including the industrial and academic fields, are 

undergoing various challenges of farm management related because of the increase 

in agricultural production with limited resources (Tilman, Cassman, Matson, 



 

 

93 

Naylor, & Polasky, 2002). Driven by expectations for sustainable operation of food 

and agricultural system, Agriculture 4.0 brought a new concept of agriculture based 

on the introduction of automation, artificial intelligence, and robotics into the 

agricultural processes to overcome the problems that agriculture is facing. In this 

regard, self-driving agricultural machines play a relevant role to increase both 

production and efficiency in a sustainable way (Mazzia, Salvetti, Aghi, & 

Chiaberge, 2021). With the rapid adoption of automatic guidance systems in 

agriculture, agricultural routing planning (ARP) (Utamima, Reiners, & Ansaripoor, 

2019), which is employed to optimize the logistics of the agricultural machines 

concerning their movements in the field and farm facilities, is a core task for 

efficient management to optimize resource utilization (i.e., electricity, fertilizer, 

fuel, human resource, and water) and the schedule needed to manage field 

operations with reduced environmental impacts (D. D. Bochtis, Sørensen, & 

Busato, 2014). 

Researchers in ARP have worked on issues such as minimizing the input resource 

(e.g., time consumed, travel distance, fuel consumption, and traffic intensity) 

required for the machine to navigate all the requisite routes by optimizing track 

sequences (D. Bochtis, Vougioukas, & Griepentrog, 2009; Spekken & de Bruin, 

2013; Utamima et al., 2019), headland turning patterns (D. Bochtis & Vougioukas, 

2008; X. Han, Kim, Jeon, & Kim, 2019), and the orientation of the tracks (Edwards 

et al., 2017; I. Hameed, Bochtis, Sørensen, Jensen, & Larsen, 2013), representing 

3D coverage path map (I. A. Hameed, la Cour-Harbo, & Osen, 2016; Jin & Tang, 

2011; Vahdanjoo, Zhou, & Sørensen, 2020), and dealing with constraints (e.g., 

sub-fields, limited machine capacity, infield obstacles, and soil compaction risk) 
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(Augustin, Kuhwald, Brunotte, & Duttmann, 2020; D. D. Bochtis, Sørensen, & 

Green, 2012; Conesa-Muñoz, Pajares, & Ribeiro, 2016; Jensen, Bochtis, & 

Sørensen, 2015; Seyyedhasani & Dvorak, 2017). For instance, D. Bochtis et al. 

(2009) developed the B-pattern method which algorithmically determined 

sequences of field-work tracks for completely covered areas with a minimum total 

or non-working distance and was tested on an autonomous agricultural vehicle. 

(Spekken & de Bruin, 2013) proposed an optimal coverage path planner with an 

infield headland turning maneuver designed for an agricultural machine by 

minimizing the time needed for turning between tracks while accounting for time 

loss because of machine services. 

 Currently, several researchers have developed the planner to solve ARP problems 

in a paddy field by replacing it with coverage path planning (CPP) that generate 

routes that lead the machine to traverse all waypoints while performing agricultural 

tasks such as tillage (X. Han, Kim, Jeon, Moon, et al., 2019; C.-W. Jeon, Kim, 

Yun, Han, & Kim, 2021), puddling and leveling, planting (Nagasaka et al., 2009; 

Yin, Du, Noguchi, Yang, & Jin, 2018), weeding (Adhikari, Kim, & Kim, 2020; 

Choi et al., 2015), and harvesting (C. W. Jeon, Kim, Han, & Kim, 2017; Kurita, 

Iida, Cho, & Suguri, 2017). Among those agricultural tasks performed in paddy 

fields, puddling and leveling (i.e., wetland preparation), are required on nearly 

every cropping season, and they help improve weed control and facilitate the 

incorporation of nutrients in the soil to obtain high yields and is the general way of 

preparing lowland fields (Chauhan, 2013). When planning strategies to perform 

wetland preparation, there are two land leveling philosophies: (1) to provide a 

slope that fits a water supply; and (2) to level the field to its best condition with 
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minimal earth movement and then vary the water supply for the field condition 

(Walker, 1989). However, because of the operational environment where a field is 

flooded with water when performing the puddling and leveling operation, it is 

difficult for workers to distinguish between worked and non-worked zones 

visually. As a result, there is a high possibility that there will be multiple non-

worked areas, which could cause large or no earth movements. An autonomous 

agricultural machine equipped with an effective CPP that navigates along with a 

pre-defined map while performing agricultural work based on position data 

measured from a global navigation satellite system (GNSS) sensor can be a good 

solution to this problem. In a previous study (C.-W. Jeon et al., 2021), we 

developed the complete paddy field CPP and validated its algorithm by a field test 

in three irregular-shaped fields using a 63-kW autonomous tractor. However, there 

was a limitation that the design of the path planner was based on the path model of 

the tillage operation. 

Thus, to enhance the performance of the full CPP for the autonomous tractor 

system developed in our previous study (C.-W. Jeon et al., 2021), the ultimate goal 

of this study is to develop a complete field-CPP for an autonomous puddling and 

leveling tractor. In addition, to increase the field efficiency (e.g., travel distance 

and time consumed) of the pre-defined map, a determination of the optimal track 

sequence for puddling and leveling operation was proposed using a genetic 

algorithm (GA). 

The specific objectives were to  

 1) Design the model of an autonomous puddling and leveling operation 
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 2) Implement the path planner with the determination method of optimal 

sequence based on the proposed model 

 3) Investigate the feasibility of the developed path planner by analyzing 

its tracking and covering its performance via simulation studies 

 4) Validate the puddling and leveling path planner by comparing the 

tracking and puddling & leveling performance of the autonomous tractor 

with a skilled worker during the field test. 

 

MATERIALS AND METHODS 

Generation of puddling and leveling path 

Modelling of puddling and leveling path 

To guide the autonomous tractor in a paddy field to perform the puddling and 

leveling operations systemically, a CPP was designed to generate waypoint data 

and operational commands for the autonomous tractor. In this study, an agricultural 

model was proposed for the autonomous tractor equipped with a rotary cultivator 

and a paddy drive harrow with foldable wings. The swath of the harrow could be 

extended by unfolding the wing harrows to cover a wider area in a single drive to 

ensure a well-leveled field. According to the process of the puddling and leveling 

(wetland preparation) for paddy fields proposed by the International Rice Research 

Institute, the puddling, works the soil clods and incorporates weeds, straw, and 

stubble into the mud for the field to be flattened evenly, by preceded the leveling. 

Such that when performing the puddling and leveling operation with the implement 
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used in this study, there is a condition to be observed: the area covered by the 

unfolded wings should be chunked in advance. 

To describe an agricultural routing problem by substituting it for a form of the 

CPP problem, a model for the puddling and leveling was designed. Assuming that 

the direction of the inner-work tracks, an inner-work area was already determined 

along the longest side of the field, the proposed model is composed of a four-stage 

configuration as illustrated in Figure 30. In the first stage, the autonomous tractor 

placed in a corner of the paddy field starts driving along the outmost headland 

passes located in the outer-work area, while operating a rotary cultivator and the 

paddy drive harrow with the folded wings to collect soil from the edge of the field 

inward. In the second stage, the tractor entering the inner-work area via the first 

track performs puddling and leveling operation by traversing tracks indexed by an 

odd number (e.g. 1, 3, 5,…) with the purpose of churning and pre-leveling these 

areas. In the third stage, the wing harrows are unfolded and the remaining inner 

tracks indexed by an even number (e.g. 2, 4, 6,…) were puddled and leveled by the 

tractor while leveling the softened area in the second stage once more. Given a 

such traversal strategy, a C-type headland turning pattern was used because the 

consecutive tracks to be covered by the tractor are non-adjacent. After covering the 

inner work area, the tractor returned to the outer-work area to finish the land 

preparation task following subsequent headland passes with the boundary corner 

turning. In this stage, the remaining areas including the headland area damaged by 

the machine when performing headland turning while the implement was raised, 

were re-leveled by using the wing harrows. Therefore, the proposed model allows 
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the autonomous tractor to perform one puddling and two leveling operations for the 

entire paddy field. 

 

Figure 30. Process of puddling and leveling operation for the autonomous tractor 

equipped with the rotary cultivator and the paddy drive harrow with foldable 

wings.Figure 31 illustrates the process of generating the puddling and leveling 

path. In the path planner, the desired path described by a set of waypoints was 

generated based on the puddling strategy proposed in this study, using information 

about the coordinates of the boundary corners, the width of the implement, the 

overlap length, the minimum turning radius of the tractor, and navigational 

parameters such as working and turning velocity. The vertices of the boundary 

corners are given in the form of a text file as a closed polygon in a transverse 

Mercator (TM) coordinate system. In the proposed autonomous puddling and 

leveling model, the path is decomposed into two sub-regions, i.e., inner- and outer-

work areas. The inner-work path includes odd & even tracks and C-type headland 

turns, while the outer-work paths consist of outmost- and subsequent-headland 
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passes with the boundary corner turning paths to connect them, and two connection 

paths to guide the tractor from the outmost outer-path to odd-indexed inner-tracks 

and from even-indexed tracks to the subsequent outer-path. In this study, the path 

planner provided an optimal track sequence of the inner tracks using a GA. 

 

 

Figure 31. The architecture of the geometrical representation of the wet lend 

preparation path 

 

Geometrical representation of inner and outer-work paths 

The autonomous puddling and leveling path was geometrically represented by 

modifying the path planning approach proposed in our previous study (C.-W. Jeon 

et al., 2021). To secure a space where the tractor could execute the infield-headland 

turning maneuver, a boundary of an inner-work area, i.e. inner-field boundary, was 

generated based on the number of headland passes. The approach for the 

generation of the inner-work tracks is based on the MBB (Minimum bounding box) 

method (I. Hameed, Bochtis, Sørensen, & Nøremark, 2010; O'Rourke, 1985), 

which is a rectangle with a minimum-area enclosing the vertices of the field to 
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concisely express a complex field shape. The straight segment aligned in the 

direction of the longest side of the field filled the MBB with parallel swaths 

calculated using the implement width and overlap length to identify the inner work 

tracks as presented in Figure 32. Let H = {1, 2, 3, 4, …} be the arbitrarily ordered 

set of the inner-work track indices. A C-type headland pattern was used to connect 

each inner track at their ends because the tracks on the model of the puddling and 

leveling path were listed non-adjacently (odd and even tracks). The travel distance 

during the headland turning maneuver from the ith track to jth track (𝑑𝑡𝑢𝑟𝑛𝑖𝑛𝑔(𝑖, 𝑗)), 

was computed based on the minimum turning radius of the tractor (𝑅), exit and two 

angles of the intersection of an inner-work track and the field boundary, i.e., 𝜃𝑒𝑥𝑖𝑡 

and 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟, and the swath (𝑤) using Eq. 4.1. 

 

Figure 32. Geometrical representation of inner-work tracks and C-shaped infield 

headland turning maneuver. 

𝑑𝑡𝑢𝑟𝑛𝑖𝑛𝑔(𝑖, 𝑗) = 0.5𝑤[tan(−|𝜃𝑒𝑥𝑖𝑡 − 0.5𝜋| + 0.5𝜋) + tan(−|𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟 − 0.5𝜋| +

0.5𝜋)] + 𝑑𝑡𝑢𝑟𝑛   𝑖, 𝑗 ∈  {1, 2, , … , ‖𝐻‖}   (4.1) 

On the outer-work paths, the headland passes including the outmost and 

subsequent passes and the boundary corner turning paths which incorporate 
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reversing to connect those passes at field boundary corners were generated as 

presented in Figure 33. In this process, to align its attitude with the next target line 

before reversing to cover the boundary corner area, the path planner provides the 

autonomous tractor an alignment path based on the index of the headland passes, 

the boundary corner angle, and the minimum turning radius of the tractor. In 

addition, two connection paths that transit between the inner-work and outer-work 

paths by connecting the outmost and subsequent headland were passed to the odd-

indexed and even-indexed tracks, respectively, and were generated to navigate the 

tractor full-coverage puddling and leveling path. Detailed equations and derivation 

processes of the inner and outer paths can be found in our previous studies (C.-W. 

Jeon et al., 2021). 

 

Figure 33. Geometrical representation of outer-work paths with two connection 

paths. 

 

Optimal Path Planning algorithm using Genetic Algorithm 

Travelling salesman problem and Genetic algorithm 

The GA published by Goldberg and Holland (1988) have been widely used in 

solving the optimization problem of the path planning algorithm for various 
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contexts such as a mobile robot, an unmanned aerial vehicle (UAV), and an 

unmanned surface vehicle (Kim et al., 2017; Noguchi & Terao, 1997; Roberge et 

al., 2012), was implemented to find the optimal sequence(𝜎 ∗). Based on the 

genetic theory of Darwin evolution, the GA simulates the evolution of a population 

of solutions to optimize a problem: evaluation, selection, crossover, mutation, and 

replacement. Similar to living organisms that adapt to their environment by 

providing their strong genes to have a greater opportunity to pass their genes to 

future generations via reproduction, the solutions in the GA adapt to a fitness 

function over an iterative process using biology-like operators such as the 

crossovers of chromosomes, the mutations of genes, and the inversions of genes. 

The travelling salesman problem (TSP) is a representative application of the GA 

and Chatterjee et al. (1996) proposed a method to solve the TSP using GA. Given a 

set of cities and distances between every pair of cities, the problem is to find the 

shortest possible route that visits every city exactly once and returns to the starting 

point. Since the condition that one track must be passed only once is the same as 

the condition for determining the order of cities in TSP, the problem of selecting 

the track sequence was substituted was the TSP. 

 

Determination of track sequence with minimum non-working distance 

In this study, the method of determining the optimal track sequence was devised 

to satisfy the condition that odd and even-indexed tracks were navigated 

sequentially. To solve this problem where the tractor visits each track exactly once 

with a special condition, i.e., divided odd and even tracks, TSP, which is the 

challenge of finding the most efficient route for a salesperson to visit every city 
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exactly once, was modified. To determinate possible track sequences separated by 

odd and even-indexes, a bijective function was defined: s(∙): H → H, such that for 

every field track, i ∈ H, the function value s(i) returns the order in which the 

tractor covers the ith inner-work track (Bochtis & Vougioukas, 2008). The inverse 

function: s−1(j): H → H provides the specific sequence number of the tracks 

covered by the tractor entering the inner-work area’s jth selection. 

The selection of a certain sequence of the tracks proposed in modeling of the 

puddling and leveling path, was performed separately for odd and even sets of 

tracks based on the headland turning distances. The definitions of the travel 

distance and the function s−1(∙) were computed based on the minimum turning 

radius of the tractor (𝑅), exit and two angles of the intersection of an inner-work 

track and the field boundary, i.e., 𝜃𝑒𝑥𝑖𝑡 and 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟, and the swath (𝑤) using Eq. 

3.9. In addition, the travel distances of turning in odd and even sets respectively 

were defined using Eqs. 4.2–4.4 Given the optimal sequence of the odd-indexed 

tracks, the turning distance between the last track of an odd track set and the first 

track of an even set were defined and used in the calculation of the even track cost 

(Jeven). To consider the non-holonomic characteristic of the tractor in the 

equations, the cost functions include the 𝑝(𝑖) term given by Eq. 4.5, which 

represents a penalty for a problem solver to find an impossible sequence covered 

consecutively by the tractor at steps from 𝑖 to 𝑖 + 1.  

Jodd = ∑ 𝑝(𝑖) × 𝑑𝑡𝑢𝑟𝑛𝑖𝑛𝑔((𝑠−1(𝑖 + 1), (𝑠−1(𝑖))

⌈0.5‖𝐻‖⌉

𝑖=1

     

𝑠−1(𝑖)  ∈  {1, 3, … , 2⌈0.5‖𝐻‖⌉ − 1}                (4.2) 
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Jeven = 𝑑𝑜𝑑𝑑 𝑡𝑜 𝑒𝑣𝑒𝑛 + ∑ 𝑝(𝑗) × 𝑑𝑡𝑢𝑟𝑛𝑖𝑛𝑔((𝑠−1(𝑗 +
⌊0.5‖𝐻‖⌋
𝑗=1

1), (𝑠−1(𝑗))    𝑠−1(𝑗)  ∈  {2, 4, … , 2⌊0.5‖𝐻‖⌋}                        

(4.3) 

𝑑𝑜𝑑𝑑 𝑡𝑜 𝑒𝑣𝑒𝑛 = 𝑝(⌈0.5(‖𝐻‖ − 1)⌉) ×

𝑑𝑡𝑢𝑟𝑛𝑖𝑛𝑔 (𝑠−1 (
⌈0.5(‖𝐻‖ − 1)⌉ +

1
) , 𝑠−1(⌈0.5(‖𝐻‖ − 1)⌉))            (4.4) 

𝑝(i) = {
𝑀    (𝑤 × |𝑠−1(𝑖 + 1) − (𝑠−1(𝑖))| ≤ 2𝑅)

1     (𝑤 × |𝑠−1(𝑖 + 1) − (𝑠−1(𝑖))| > 2𝑅)
      𝑠−1(𝑖)  ∈

 {1, 2, , … , ‖𝐻‖}  (4.5) 

To solve the problem, the GA was applied to determine a sequence to minimize 

the sum of the travel distances of turning, while considering the non-holonomic 

characteristic of the tractor (Figure 34). Although the GA, which is a random 

heuristics method, could not guarantee the best solution in all conditions by getting 

stuck with a local maximum, it can find a good-enough solution without a global 

analysis description of the problem (I. Hameed et al., 2010). In this study, the 

location of the entrance of the paddy field was also considered by adding the two 

Euclidean distances (dstart, dend) calculated from the entrance to the start of the 

operational path and from the end of the operational path to the entrance. To 

generate the agricultural path suitable to the paddy field, weight values (w1, 𝑤2) 

were assigned to dstart and dend to create various situations, so that the optimal 

work sequence could be generated in consideration of the importance of 

operational start and end. Given the traversal sequence σ =

[𝑠−1(1), 𝑠−1(2), … , 𝑠−1(‖𝐻‖)], the total cost was written as Eq. 4.6, and the 

optimal sequence (𝜎 ∗) given by Eq. 4.7, would be found by reclusively performing 

the evolutionary search process consisting of four different genetic operators: 
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evaluation, the elitist preserving selection (De Jong, 1975), the order crossover 

(Davis, 1985), the random uniform mutation (Goldberg & Holland, 1988), and 

replacement. 

𝐽(𝜎) = Jodd + Jeven+w1dstart+w2dend             (4.6) 

𝜎 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜎  𝐽(𝜎)                    (4.7) 

 

Figure 34. Framework of optimal path planning algorithm 

 

Path planner program 

Figure 35 illustrates the graphical user interface of the developed path planner, 

which was programmed using the LabVIEW software (ver. 15.0, National 

Instruments Co., USA) for operation and observation of results. The input data 

include a set of coordinates of the points on the field boundary, the width of the 

implement, the number of headland passes, the overlap length, the headland turning 

pattern (C-, X-, Ω-, R-types) (Han et al., 2013), the driving direction defined as the 

angle between the driving direction, limits of the boundary offset (LBO), agricultural 

tasks (tillage and puddlin∙ leveling) and the horizontal axis of the TM coordinate 

system. The field coordinates formatted at TM coordinates were imported into the 
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path planning program with the sequentially clockwise or counterclockwise 

direction in a text field. The import of parameters related to the optimal path planning, 

including weight values (w1, 𝑤2) and position of entrance, enabled the obtainment 

of an optimal track sequence using GA. Given the field and tractor information, the 

developed planner generated the path and allowed the user to observe the 

geometrical representation of the reference path via a display. In addition, the 

predicted time, travel distance, and field efficiency on the path when the tractor 

ideally navigated the proposed path was also provided as useful information. 

Two diagnostic algorithms were designed to investigate whether the waypoints 

generated on the outer-work path are located within the field boundary and whether 

they can cause an impossibly sharp turning maneuver for the autonomous tractor to 

follow because of the narrow outer-work area. The first diagnostic algorithm was 

implemented by inwardly moving the field boundary by half of the implement width 

to limit the area where the waypoints can be generated to allow the autonomous 

tractor to perform agricultural tasks without colliding with the field boundary. The 

second algorithm calculated the direction change of sequential three vectors 

consisting of consecutive four waypoints. When errors were detected, the number of 

headland passes was increased to obtain a wider headland area. 
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Figure 35. User interface of the full-coverage path planner 

The path was then imposed to waypoint data in a Route Data Definition File 

(RDDF) form that includes the latitude and longitude coordinates of a target 

waypoint, the LBO, traveling velocities, and implement control values including 

rotary cultivator up (0)/down (1) and wing harrows folding (0)/unfolding (1) 

commands (Figure 35). This RDDF file is the input reference path and control 

strategies for a tracking method: the tractor searches for the next waypoint when it 

reaches a waypoint within the offset distance, which is predefined in terms of LBO 

(X. Z. Han et al., 2015). A navigation controller running a slip estimation-based 

path-tracking algorithm proposed in our previous study (X. Han, Kim, Jeon, Moon, 

et al., 2019) was used to recursively calculate the steering angle, tractor velocity, 

implement up/down, and wing harrows folding/unfolding commands by comparing 

the position and heading angle obtained from GNSS aided Inertial Navigation 

System (INS) sensor was mounted on the autonomous tractor system and the 

reference, and then transferred those control values to the test platform to follow 

the path until it reaches the final waypoint. 
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Table 13. An example of RDDF generated as the reference information for path 

tracking and agricultural task. 

Index Northing 

(m) 

Easting 

(m) 

LBO 

(m) 

Velocity 

(km/h) 

Rotary 

cultivator 

up/down 

Wing harrows 

folding/unfolding 

1 410296.5 212973.3 0.1 4 1 0 

2 410206.1 212965.2 0.1 2 1 0 

…       

n-1 410290.5 212985.7 0.1 2 1 1 

n 410289.5 212984.9 0.1 4 1 1 

 

Performance testing of autonomous puddling and leveling path planner 

Simulation study of the tracking and covering performance 

Prior to the path-tracking simulation, to investigate the feasibility of using the 

puddling and leveling path planner with an optimal sequence to effectively cover 

the whole area, three simulation tests were performed in the three different 

polygonal paddy fields located at Chungnam, South Korea: pentagonal (Field 1, 

4361.3 𝑚2, +36o18’01.73’’ E, +127o09’34.85’’ N), trapezoidal (Field 2, 3451.3 

𝑚2, +36o17’58.36’’ E, +127o09’34.78’’ N), and rectangular (Field 3, 3167.3 𝑚2, 

+36o16’50.90’’ E, +127o08’35.37’’ N) fields (Figure 36). In the first test, the 

feasibility of using the puddling and leveling model to perform wetland preparation 

task in the paddy fields were investigated. To do this, the path was generated using 

the planner that was developed based on the proposed model in the trapezoidal 

field (field 1 in Figure 36) and separately observed according to the wing harrows 

control commands required for the autonomous tractor: folding and unfolding. In 

the second test, to study the effectiveness of the method for determining the 

optimal sequence using GA, two different track sequences, i.e., the optimal 
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sequence derived by the GA and the gathering sequence pattern (Jeon et al., 2021), 

which lead the tractor to recursively navigate tracks that were located parallel to 

each other at around half the width of the field, and were applied on the path 

planner to compare operational parameters such as distance (εd) and time (εt) 

efficiencies in three different polygonal paddy fields (field 1, 2, and 3 in Figure 

36). The values for path generation parameters used in this study were 0.1 m, 4 m, 

2.2 m, 100, 0.5, 0.2, 100 for the minimum turning radius of the tractor, the overlap 

length, the working swath, population size, mutation rate, crossover probability, 

and total number of generations, respectively. To generate the paths, the algorithm 

programmed in LabVIEW, 2015 was simulated on an i7-5500U CPU in a 2.4-GHz 

Intel Centrino Mobile Workstation with an 8 GB RAM. 

 

Figure 36. View of Google map image showing the three different paddy fields 

used for simulation test: trapezoidal (green), pentagonal (blue), and rectangular 

(white) fields, respectively.

As one scenario for evaluating the tracking and covering performance, we 

assumed that the tractor-driving simulator developed in previous studies (Han, 

Kim, Jeon, Moon, et al., 2019; Han et al., 2015) followed those paths while 

operating puddling and leveling implements (Figure 37 (a)), such that the two 

traffic intensity maps of puddling and leveling operations performed by the 

autonomous tractor simulator were generated. The traffic intensity was measured 
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as the number of passes by the puddling and leveling implements over a field area 

where gridding was performed with the grids of size 5 x 5 𝑐𝑚2 using Bresenham's 

line algorithm (Bresenham, 1965) that determines the points of a raster that should 

be selected to form a close approximation to a straight line between both endpoints 

of the implements as presented in Figure 37 (b). A navigation controller developed 

by (Han, Kim, Jeon, Moon, et al., 2019) was used to calculate the steering angle. 

Consistent with the velocity control method used in a previous study (Jeon et al., 

2021), the working and turning velocities to follow the waypoints were set to 4 

km/h and 1 km/h, respectively. Navigational parameters such as the look-ahead 

distance, LBO, and the PD control gains for the path-tracking algorithm were the 

same as those used in our previous studies (Han, Kim, Jeon, Moon, et al., 2019). 

 

(a)   
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(b) 

Figure 37. (a) Simulator (b) Generation of traffic map of the implement using 

Bresenham’s line algorithm 

Field testing on autonomous puddling and leveling operation in paddy field 

Consistent with Chapter 3, the platform for the field tests built using a 63.4-kW 

tractor (TX853, TYM., Seoul, Republic of Korea; Figure 38 (a)) was used. The 

TX853 tractor, which weighs 3421 kg, is a four-wheeled tractor with front-wheel 

steering, 24-level forward and reverse speeds. The wheelbase, the length between 

the front and rear axles, and the height of the tractor are 2.2 m, 2.24 m, and 2.71 m, 

respectively. A GNSS/INS (Ellipse-D, SBG SYSTEMS., France) was mounted on 

the roof canopy of the tractor. Differential correction data provided by a network-

RTK device (MRD-1000T, SYNEREX., Republic of Korea) based on the long-

term evolution LTE wireless network, were then transmitted to the rover via 

networked transport of Radio Technical Commission for Maritime Services using 



 

 

112 

Internet protocol (NTRIP) to achieve 2 cm positioning and to observe the heading 

angle within ±0.1o accuracy during 60 s outage at a sampling frequency of 20 Hz. 

An integrated navigation controller for high- and low-level controller (MXE-5500, 

ADLINK, Taiwan) for the path-tracking algorithm was used to control the 

autonomous tractor of the steering angle, traveling velocity, and implement 

up/down status. Consistent with the simulation, the steering angle for path-tracking 

was calculated based on the slip-estimation method (Han et al., 2019), programmed 

in LabVIEW 2018 on the navigation controller. An electrical power steering 

system (Unmanned Solution Co., Seoul, Republic of Korea) consisting of motor 

and control units was installed on the tractor to change the orientation of the tractor 

during the autonomous navigation. An angle sensor (Steer sensor, ComeSys, 

Republic of Korea) was installed at the center of the front kingpin. The tractor tilt 

compensation method for correcting GNSS (Global Navigation Satellite System) 

positioning errors caused by the difference in height between the vehicle tires and 

the transceivers was applied using the roll-pitch-yaw obtained from the IMU 

(Inertial Measurement Unit) mounted on the tractor. As presented in Figure 38 (b), 

a rotary-type cultivator with a width of 2.2 m (SW220BPX, Sungwoo Industrial 

Co. Ltd., Republic of Korea) and a paddy drive harrow with a width of 2.4 m and 

5.64 m when folding and unfolding wings, respectively (BHB240, Buhueng 

Agricultural Machinery., Republic of Korea) were attached to the three-point hitch 

of the tractor. The implement control algorithm (X. Han, Kim, Jeon, & Kim, 2019), 

which reduced the not-covered or over-covered areas by enabling a three-point 

hitch to be raised or lowered with appropriate delay times, was implemented in the 

tracking algorithm. 
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(a)                              (b) 

Figure 38. The puddling and leveling tractor equipped with (a) autonomous 

navigation components and (b) implements: a rotary cultivator and an attached 

paddy drive harrow with foldable wings. 

A full-scale puddling and leveling experiment for covering the paddy field was 

conducted by comparing the tracking and leveling performance obtained with two 

different navigational strategies: autonomous and manual navigation using the 

same 63.4 kW test planform described in Chapter 3 and the target field with a size 

of 57.3 m x 55.3 m (Figure 39 (a)), where the entrance for the tractor to enter and 

exit the field was located at one of the corners of the field boundary. Before the 

autonomous system and the skilled farmers performed the puddling and leveling 

operations, the pre-land leveling work for spreading the soil evenly in the high 

places to adjust the height of the rice paddies evenly was conducted by the same 

skilled workers to create a similar paddy environment. The autonomous puddling 

and leveling operations were performed using an RTK-GNSS/INS in an open sky 

condition after initializing the positioning module to determine and predict its 

velocity, heading, and position accurately. 

To investigate the tracking performance following the path generated by the 

proposed path planner in this study, the performance was evaluated by comparing 
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the trajectory, time consumed, traveled distance, fuel consumption of the tractor, 

and puddling & leveling traffic maps obtained using the autonomous system and 

the manual operation. In addition, for evaluating the leveling performance of the 

proposed path planner, the elevation maps generated by Pix4Dmapper Pro software 

package (Pix4D SA, Lausanne, Switzerland) using megapixel images were 

acquired using UAV (Mavic 3, DJI., China) after autonomous and manual 

operations were performed and, were compared. As presented in Figure 39 (b), to 

effectively increase the absolute accuracy of the map, 9 ground control points 

(GCP) represented by white circles in Figure 39 (a), were evenly installed and the 

3D position data of those were measured using the RTK-GNSS device (TDR-3000, 

Synerex, Republic of Korea) after all the water was drained from the ground. 

  

(a)                             (b) 

Figure 39 View of (a) the test field and the sub-location of installing the GCPs, and 

(b) measuring the 3D position data of the GCPs after all the water was drained from 

the target field. 
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RESULTS AND DISCUSSION 

Simulation studies of puddling and leveling path planner 

Figure 40 presents the inner-work path consisting of odd and even-indexed inner-

work tracks with two different sequences, i.e., the optimal sequence derived by the 

GA and the gathering sequence patterns in the full area of the two test fields 

(rectangular and pentagonal paddy fields in Figure 36 (a) and Figure 36 (b), 

respectively). The inner-work tracks which were generated in the same direction as 

the longest segment of the field boundary filled the inner-work area at regular 

intervals with a difference of the track index ranging from 5 to 11. Even though the 

processing times for generating the path (T) were increased from 0.01 sec to 

approximately 30 sec, it is noticeable that the average intervals of the index 

between consecutive track sequences (navg) were decreased from 10.5 to 5.4, 5.6, 

and 5.7 in the pentagonal, trapezoidal, and rectangular fields when using the 

optimal sequence derived by GA, thereby resulting in decreases in the predicted 

travel distance and time consumed to perform headland turning maneuver, 

compared to those obtained with gathering patterns (Table 14). The efficiency of 

the predicted travel distance (휀𝑑) and time (휀𝑡) was increased when using the 

proposed method to determine the track sequence.  

For example, as presented in Figure 36 (a), the reference path generated with 

optimal and gathering pattern lead the tractor to navigate the 19th indexed track 

to the 15th and the 9th track respect, which resulted in a 55% increase of the 

turning distance from 17.6 m to 32.0 m. In addition, as presented in Figure 36 (b), 

it is apparent that the optimization method could be more effective to increase 휀𝑑 

and 휀𝑡 when applied to the polygonal paddy field, which could cause the turning 
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maneuver performed at the different segments of the field boundary and increase 

the travel distance and time because of an arc path at the corner for the tractor to 

follow the next track. 

 

 
(a) 
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(b) 

Figure 40. Comparison of the reference path generated using two different track 

sequences, i.e., the optimal sequence derived by the GA and the gathering sequence 

pattern in (a) rectangular and (b) pentagonal paddy fields.
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Table 14. Comparison of the operational parameters for the three puddling and leveling paths with optimal and gathering sequence. 

Field Shape 

Track 

sequence 

pattern 

Predicted Travel Distance (m)  Predicted Time (s) 

navg 
휀𝑑  

(%) 

휀𝑡  

(%) 
T (s) Inner-

work 

Headland 

turning 

Outer-work 

(connection 

paths) 

Total 

 
Inner-

work 

Headland 

turning 

Outer-work 

(connection 

paths) 

Total 

Pentagon 

Optimal 1199.9 522.0 
942.6 

(53.2) 
2664.5 

 
628.5 833.8 

1752.5 

(95.8) 
3214.9 5.4 70.6 52.7 30.2 

Gathering 1199.9 729.9 
928.7 

(63.2) 
2858.5 

 
628.5 1032.4 

1727.5 

(113.8) 
3388.5 10.5 65.8 50.0 0.01 

Trapezoid 

Optimal 923.3 402.7 
903.8 

(36.2) 
2229.7 

 
822.2 674.3 

1399.2 

(65.2) 
2895.7 5.6 66.9 46.4 2895.7 

Gathering 923.3 600.2 
890.2 

(22.6) 
2413.7 

 
822.2 887.8 

1374.6 

(40.7) 
3084.6 10.5 61.8 43.5 3084.6 

Rectangle 

Optimal 661.1 379.7 
779.5 

(75.1) 
1820.3 

 
595.0 586.7 

1173.8 

(135.18) 
2355.5 5.7 64.3 44.7 2355.5 

Gathering 661.1 689.9 
779.5 

(75.1) 
1935.0 

 
595.0 788.1 

1173.8 

(135.18) 
2689.3 10.5 61.8 45.5 2689.3 
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Puddling and leveling path generation and tracking simulation 

studies 

Figure 41 illustrates the predefined maps of reference paths based on the proposed 

model so that autonomous puddling and leveling tasks could be performed in the 

full area of the trapezoidal paddy field with a size of 3451.3 𝑚2: 19 inner tracks 

and 3 headland passes on the inside and outside working areas, respectively. The 

maps were automatically generated using the proposed path planner based on 

information about the coordinates of the corners of the test field, the swath of the 

implement, and the minimum turning radius of the tractor. As presented in Figure. 

10 (a), the path could lead the autonomous tractor located in a corner of the paddy 

field to start agricultural tasks along the outmost headland passes (brown circle) 

and enter the 1st inner-work track (green x mark) via the connection path (blue 

circle) adaptive to the field shape. After traversing the odd-indexed tracks (e.g. 1, 

3, …, 19) with the C-type headland turning pattern to perform churning and pre-

leveling on the field, the wing harrows were unfolded and the remaining area was 

covered by the even-indexed inner-tracks (e.g. 2, 4, …, 18) and two subsequent 

headland passes. 
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(a) 

 
      (b) 

Figure 41. Views of the operational path in the trapezoidal field shape for 

autonomous puddling and leveling tractor equipped with a rotary cultivator and an 

attached paddy drive harrow with (a) folding and (b) unfolding wings. 

 

Figure 42 presents the grid maps of the puddling and leveling traffic intensities 

measured by counting the number of passes of the implements over a field area 

during the autonomous pudding and leveling tractor in the simulation test. As 
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designed by the model, given that the RMESs of lateral deviation and heading error 

obtained along the working path were 4.3 cm and 1.7 deg, 98.7 % of the arable area 

was covered with the traffic intensity 1 during the puddling operation (Figure 42 

(a)) except boundary corner zones labeled A and overlapping zones of the inner 

tracks labeled B, indicating that the developed path planner would be effective in 

covering the whole area with minimum traffic. 

Figure 42 (b), Figure 42 (c), and Figure 42 (d) present the traffic maps of leveling 

processes obtained when the virtual tractor equipped with the paddy drive harrow 

with foldable wings, navigates the even-indexed inner track (stage 3 in the 

proposed model), the subsequent headland passes (stage 4), and the final waypoint, 

respectively. As presented in Figure 42 (b), even though the tractor across most of 

the arable area is with traffic 1, it was noticeable that the areas chunked in advance 

were re-leveled by the tractor following the odd-indexed tracks and the traffic 

intensity, ranging from 1 to 4, and were measured (Figure 42 (d)) due to usage of 

the unfolded wings. In addition, when the tractor returns to the outer-work area to 

finish the agricultural task following subsequent headland passes (Figure 42 (c)), 

the outer-work areas including the headland area damaged by the machine when 

performing the headland turning maneuver while the implement was raised, were 

leveled or re-levelled by the paddy drive harrow with foldable wings. 
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(a)                                (b) 

 

(c)                                (d) 

Figure 42. Results of traffic map obtained with the virtual simulation tractor 

equipped with the puddling and leveling implements after (a) puddling operation 

and in the three process of leveling operation, navigating (b) the even-indexed 

inner work tracks, (c) the subsequent headland passes, and (c) the final waypoint. 

Field tests of autonomous puddling and leveling operation 

Tracking performance of the autonomous puddling and leveling tractor 

Figure 43 shows the trajectories of the full-scale tractor performing the puddling 

and leveling operation in the field test, obtained from the two different tracking 

methods, i.e., autonomous and manual operations when more than 99.1 % of 



 

 

123 

position and heading data were obtained in RTK status by using an average of 8.17 

satellite signals status (Figure 44). When the autonomous puddling and leveling 

task was performed in the field test, the complete coverage operation was 

successfully achieved without any stops or collisions with the field boundary 

(Figure 43 (a)). Even though the tractor equipped with the paddy drive harrow with 

unfolded wings covered the wider area, which could cause the larger traction force 

to the tractor navigating in the wet paddy field, as compared when the wings were 

folded into 17 (9 odd- and 8 even-indexed tracks) and 12 (4 outmost and 8 

subsequent headland passes) straight working paths on the inner- and outer- work 

area, respectively, and were followed with acceptable path-tracking performance 

( < overlap length, 15.2 cm): lateral deviation ranging from -11.3 cm to 13.7 cm 

and a heading error ranging from -2.7 deg to 1.8 deg (Figure 45). 

In contrast, a total number of 38 and 16 passes on the inner- and outer- work area, 

respectively were traversed by the manually driven tractor, thus showing an 

increased travel distance of 3039.6 m compared to that of 1940.1 m obtained using 

the autonomous system to cover the whole area (Table 15). As presented in Figure 

43 (b), it was notable that the increased travel distance caused an additional 

trajectory in which multiple puddling and leveling operations could be performed 

on the same area labeled A. In addition, there was also a section that was expected 

to occur in the non-work areas labeled B in Figure 43 (b). A cause for the 

overlapped and skipped zone can be inferred that it is difficult for the driver to 

identify those areas only using visual information because of the water filled in the 

paddy field. The autonomous tractor exhibited the performance of covering fields 

of the same size at a shorter distance, but it was confirmed that it took 
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approximately 20 more time because it traveled at a slower average velocity (1.35 

km/h) than the manual-driven tractor (2.75 km/h) to ensure the stability of the 

system. However, the fuel consumption, which is closely related to the travel 

distance and driving velocity, was reduced by 5% when using an autonomous 

driving system. The results indicated that the speed control algorithm should be 

improved to increase the time and distance efficiencies of the autonomous puddling 

and leveling system. 



 

 

125 

 
      (b) 

Figure 43. Trajectories of the full-scale (a) autonomous and (b) manual-driven 

tractor performing puddling and leveling operation in an arable area of 57.3 m x 

55.3 m.

 

Figure 44. Results of GNSS status obtained when performing the autonomous 

puddling and leveling operation. 

(a)                                 (b) 
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(a)                                 (b) 

Figure 45. Results of (a) lateral deviations and (b) heading errors of the autonomous 

tractor conducting puddling and leveling operation at outmost & subsequent 

headland passes and odd and even-indexed inner work tracks. 

Table 15. 

 

Comparison of covering and leveling performance between autonomous 

and manual-driven tractor 

Figure 46 presents the puddling and leveling traffic maps of autonomous and 

manual operations measured by applying Bresenham’s line algorithm based on the 

trajectories of the rotary cultivator (puddling) and the leveler (leveling) obtained 

when each implement performed the agricultural task. Using the traffic intensity 

map, a coverage rate was measured as the number of grids with more than 1 traffic 

intensity in total grids inside the field boundary. Overall, complete coverage 

performance was successfully achieved in both the autonomous and manual 



 

 

127 

operation with a coverage rate of 97.8 % and 98.0 % in puddling and 99.8 % and 

99.9 % in leveling, respectively. 

When the manual operation was used to puddle the field (Figure 46 (a)), the 

uncovered areas (labeled A in Figure 46 (a)) were found in the inner-work area, 

accounting for 2.0 % of the total area of 3167.3 𝑚2. As presented in Figure 46 (b), 

the uncovered area of full-scale autonomous puddling operation (labeled A in 

Figure 46 (b)), was calculated to be 66.5 m2, thereby accounting for 2.1% of the 

total area. A possible cause for the skipped area could be because of a difference in 

the rounding direction required for the tractor during navigating outer-work path 

along the outmost and subsequent headland passes, which leads the autonomous 

tractor to cover the same zone labeled B in Figure 46 (b) and un-puddled zones 

occurred at the boundary corner area. The uncovered zone of the leveling operation 

was reduced to 19.3 m2, compared to that of the puddling operation because those 

un-puddled zones were leveled by the unfolded wings when the autonomous tractor 

navigating the subsequent headland passes. 

Compared with the traffic map of autonomous operation (Figure 46 (b)), it was 

apparent that an increase in the total number of 38 and 16 traversal passes 

performed by a manual-driven tractor on inner- and outer-work area caused an 

increase in the traffic intensity of puddling and leveling operation in the range from 

0-3 to 0-6 and from 0-3 to 0-9, respectively. Especially in the headland turning 

area, multiple-covered zone with more than 4 traffic intensities, which were bigger 

than the maximum traffic of autonomous operation, occurred because an 

implement control strategy that always descends during the navigation was 

different from autonomous tractor system. In addition, when the human-driven 
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tractor traversed across the inner-work area, reversing (labeled B in Figure 46 (a)) 

was conducted to improve the leveling performance and a traffic intensity was 

increased. 

(a) Puddling and leveling traffic map of manual-driven tractor 

(b) Puddling and leveling traffic map of autonomous tractor 
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Figure 46. Traffic maps of puddling and leveling operations obtained using the 

trajectory of the implements attached to (a) the manual-driven and (b) the 

autonomous tractor. 

Figure 47 presents the results for the height maps of the manual-drive and the 

autonomous tractor using the digital elevation model function in Pix4D on the 

rectangular paddy field. The relatively high and low altitude value was measured in 

several places and displayed in blue and red, respectively. Even though it was 

difficult to determine an exact relationship between the topographic characteristics 

of the heightmap and the trajectory of the tractor, it was apparent that the trajectory 

affected the distribution of soil. For example, as presented in Figure 47 (a), when 

the field was flattened by the autonomous tractor with less than 4 traffic intensities, 

the height map in the form of a bowl with high corners was generated. In contrast, 

when the field was covered by the manual-driven tractor with the traffic ranging 

from 0 to 9, which navigated the full-coverage path including the headland turning 

while always descending the implements, the height map in the form of an inverted 

bowl with low corners was generated. The distribution of altitude values exhibited 

a similar variability ranging from 39.61 m to 39.85 m (autonomous) and from 

39.62 m to 39.81 m (manual) with a mean and standard deviation of 39.73 m and 

1.89 cm (autonomous) and 39.71 m and 1.81 cm (manual), respectively. Overall, 

the comparison results of autonomous and manual leveling performance via the 

height maps indicated the capability of the autonomous tractor equipped with the 

developed path planner to perform fully automated puddling and leveling 

operations in an arable field. 
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Figure 47. Height maps of the autonomous (a) and manual-driven (b) puddling and 

leveling operation based on altitude values measured by applying digital elevation 

model function in Pix4D in the rectangular paddy field of 57.3 m x 55.3 m. 

 

CONCLUSIONS 

In this study, a complete paddy field-CPP with an optimal sequence for an 

autonomous puddling and leveling tractor were developed by modifying our 

previously developed path planner (C.-W. Jeon et al., 2021) and its performance 

was investigated via simulation and field tests. The main contribution of this study 

was designing the full-CPP based on the proposed model for the autonomous 

puddling and leveling tractor and validating it by comparing the covering and 

leveling performance of the autonomous tractor with a skilled worker using the 

same tractor in the same paddy field where the pre-land leveling work for 

spreading the soil evenly in the high places, was conducted by the same worker. Its 

practicality was investigated using a 3D driving tractor simulator developed in our 

previous studies (X. Han, Kim, Jeon, Moon, et al., 2019; X. Z. Han et al., 2015). 
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The test platform for the field test was built using a 63-kW tractor equipped with 

an autonomous system based on a GNSS/INS sensor and a paddy drive harrow 

with foldable wings attached to a rotary cultivator to puddle and level the field. The 

following conclusions can be drawn from the tests. Future studies include a 

validation test in the various paddy fields to investigate the leveling performance of 

autonomous tractor system. We will also develop an improved path-tracking 

method by taking into account various velocity conditions to enhance the tracking 

performance by increasing the time efficiency. 

  A puddling and leveling path model consist of four stages, 1) collecting 

soil from the edge of the field inwardly, 2) chunking and pre-leveling in 

an inner-work area covered by odd-indexed tracks, 3) puddling and 

leveling the remaining inner-tracks, while leveling the softened area in the 

second stage once more, and 4) covering the remaining areas including 

the headland area damaged by the machine when performing headland 

turning, were proposed. A geometrical representation applicable to 

irregular paddy fields was derived based on the proposed model. In 

addition, to increase the field efficiency, a method that algorithmically 

determined sequences of field-work tracks to completely cover an arable 

field with a decreased distance of a headland turning, compared to that 

obtained when applying the gathering pattern used in our previous study 

(C.-W. Jeon et al., 2021). 

  The results of a simulation study indicated that the designed puddling 

and leveling path planner could derive a feasible path with an optimal 

sequence to reduce the predicted travel distance obtained along headland 
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turning maneuver of 28.5% (pentagon, 4361.3 𝑚2), 33.9% (trapezoid, 

3451.3 𝑚2), and 45.0% (rectangle, 3167.3 𝑚2). In tracking and covering 

performance in one of irregular field (trapezoid), given that the RMESs of 

lateral deviation and heading error obtained along the working path were 

4.3 cm and 1.7 deg, 98.7 % of the arable area was covered with the traffic 

intensity 1 during the puddling operation. However, because of the use of 

foldable wing leveler, 99.2 % of the whole field was covered with 

intensity 2 and 3 when performing the leveling operation. 

  In a field test conducted in a rectangular paddy field, the autonomous 

tractor successfully followed without any stops or collisions with the field 

boundary (lateral deviation ranging from -11.3 cm to 13.7 cm and heading 

error ranging from -2.7 deg to 1.8 deg) and performed puddling and 

leveling operation with an efficiency of 97.8 % and 99.8 %, respectively. 

Compared to manual operation that navigate the whole area with 38 and 

16 passes on the inner- and outer- work areas, The autonomous tractor 

showed the performance of covering fields of the same size at a shorter 

distance from 3096.6 to 1940.1 m because of a refined track sequence 

with 17 and 12 passed on those areas. However, it was confirmed that it 

took approximately 20 minutes more time because it traveled at a slower 

average velocity (1.35 km/h) than the manual-driven tractor (2.75 km/h) 

to ensure stability of the system, but the fuel consumption, which is 

closely related to travel distance and driving velocity, was reduced by 5% 

when using an autonomous driving system. 

  The results of the height maps of manual-driven and autonomous tractor 
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measured using digital elevation model function in Pix4D confirmed that 

the distribution of altitude values showed a similar variability ranging 

from 39.61 m to 39.85 m (autonomous) and from 39.62 m to 39.81 m 

(manual) with the mean and standard deviation of 39.73 m & 1.89 cm 

(autonomous) and 39.71 m and 1.81 cm (manual), respectively. Therefore, 

the comparison results of autonomous and manual leveling performance 

via the height maps exhibited the potential of the autonomous tractor for 

fully automated puddling and leveling operation in an arable field.
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CHAPTER 5 

ENTRY-EXIT PATH PLANNER FOR AN AUTONOMOUS 

TRACTOR 

ABSTRACT 

A field boundary with a single entrance as well as the entry and exit paths of the 

tractor based on the entrance location are key design requirements that must be 

considered when planning an effective path for an autonomous tractor operating in 

a paddy field to avoid collisions with the embankments that hold floodwater. In 

creating a complete in-field coverage path, an entry-exit path planner that generates 

paths to/from the start/end points of the auto-traveled path is needed to achieve 

effective field operations for an autonomous tractor. In this study, a novel path 

planner for the entry and exit operations of an autonomous tractor was developed 

using the A* algorithm to enable the tractor located at the entrance to automatically 

go to the start point of an agricultural task and return to the entrance after 

completing the agricultural task. An occupancy grid map with virtual obstacles was 

designed and the A* algorithm was applied to it to create a path for the tractor to 

reach its destination via the entry-exit path accurately in terms of positioning and 

heading. Two path-smoothing processes, a line-of-sight path smoother (LOPS) and 

a collinear-node path smoother (CNS), were performed to reduce redundant turning 

and control waypoints derived by the A* algorithm. The feasibility of using the 

developed algorithms was investigated via computer simulations followed by field 

tests with a 60-kW autonomous tractor. The simulation results confirm that the 

entry and exit paths generated by the proposed planner effectively guided the 
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tractor to reach the given target points in terms of location and direction under the 

various entry, start, and end conditions by reducing the lateral and heading errors 

compared with those obtained without using the proposed search space and 

smoothers. For validation testing in two real paddy fields, the entry-exit paths were 

successfully generated in response to different entrance locations and the tractor 

followed the entry path and started the operation at the start point of the work path 

with a lateral deviation of < 8.5 cm. In addition, the tractor navigated the exit path 

automatically and reached the destination with a lateral deviation of < 12 cm and a 

heading error of < 22° to the entrance and the operator was then able to drive the 

tractor to exit the field easily without backward navigation. 

 

Keywords: Path planning; A* algorithm; Entry-exit path; Paddy field; 

Autonomous tractor 

INTRODUCTION 

The agricultural sector, including the industrial and academic fields (e.g., 

agronomy, geology, genetics, and engineering), is increasingly facing challenges in 

terms of farm management related to increasing agricultural production with fewer 

resources (Tilman et al., 2002). Agricultural routing planning (ARP) is one of the 

integral tasks of farm management to optimize resource utilization (i.e., water, fuel, 

and fertilizer) and the time needed to manage farm logistics with less land 

degradation (Utamima et al., 2019). 

Advanced technologies for solving ARP problems by substituting ARP with 

coverage path planning (CPP) (Galceran & Carreras, 2013) to generate routes that 
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traverse all waypoints in a region have been widely studied. The CPP approach 

involves increasing the field efficiency (𝐸𝑓), which is defined as the ratio of 

productivity of a machine under field conditions to its theoretical maximum at the 

full rate (ASAE, 2005). In many cases, solving ARP problems involves minimizing 

the distances traveled by machines to cover all of the requisite tracks (Bochtis et 

al., 2009; Bochtis & Vougioukas, 2008; Utamima et al., 2018). This fundamental 

approach has been modified and extended to fulfill the objectives (e.g., 

optimization of time, multiple machines, minimization of input costs, among 

others) (Conesa-Muñoz et al., 2016; Seyyedhasani & Dvorak, 2017; Spekken & de 

Bruin, 2012), dealing with constraints (e.g., limited machine capacity and multiple 

fields or obstacles) (Ibrahim A Hameed et al., 2013; Jensen et al., 2015), and 

saving energy (e.g., reducing fuel consumption) (Hameed, 2013; Rodias et al., 

2017). 

In general, since a paddy field is commonly segmented by embankments of 

around 30 cm to hold flood water for supplying nutrients evenly to the rice and a 

dedicated entrance is built near a farming road so that the agricultural machines 

does not destroy the field boundary when entering and exiting it, two major 

conditions, a field boundary and a single entrance, should be considered when 

attempting ARP for an autonomous tractor system in a paddy field. Therefore, 

when planning the coverage path for autonomous machines in the paddy field, the 

planner should propose the operational and entry-exit paths with strategies to avoid 

collisions with the field borders, even in irregular-shaped fields. Given the above 

challenges and with the aim of providing in-field path planning methods, many 

researchers have proposed the coverage path planners for various applications 



 

 

137 

(Edwards et al., 2017; I. A. Hameed et al., 2013; I. A. Hameed et al., 2010; Han et 

al., 2013; Jeon et al., 2021; Matsuo et al., 2012; Zhou et al., 2014). In a previous 

study (Jeon et al., 2021), we developed the complete paddy field coverage path 

planner and validated the algorithm via field tests in three irregular-shaped fields 

using an autonomous tillage tractor. However, constructing an in-field coverage 

path for autonomous agricultural operations is limited because the driver must 

navigate to the start point of agricultural tasks in the field with a single entrance 

and return to the entrance manually before and after performing autonomous 

operations, respectively. Moreover, such a manual traveling between the entrance 

and the start point can cause fatigue to the driver because it might be difficult to 

position the tractor accurately at the start point. 

The commonly known method to generate the curved path between two arbitrary 

points was to use the Dubins curve method (Dubins, 1957) that concatenates line 

segments with circular arcs of minimal turning radius using prescribed initial and 

terminal tangents to the path and a constraint on the curvature has been. Several 

researchers have worked to automatically generate the path using the Dubins curve 

method for ARP applications (Backman et al., 2015; Bochtis et al., 2015; Hameed, 

2017; Liu et al., 2018; Sabelhaus et al., 2013; Yu, 2015; Zhang et al., 2020). For 

example, Backman et al. (2015) proposed a Dubins curve-based approach to 

provide an automatic headland turning path with a limited steering rate and 

acceleration profile for non-holonomic agricultural vehicles. Hameed (2017) 

designed an optimal path planning planner using the Dubins curve method to 

connect field tracks over the headland area in an optimal sequence for an 

autonomous robotic lawnmower. Although this method is a useful strategy for 
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finding the curved path by considering the initial and final states (position, 

heading) of the vehicle, there is a limitation when generating the path in the paddy 

field because the field boundary condition was not taken into the algorithm. 

As a heuristic search method, the A* algorithm (Hart et al., 1968) has been widely 

used in pathfinding in various applications, such as mobile robots, unmanned aerial 

vehicles (UAVs), and unmanned surface vehicles (USVs), because it can be 

efficiently utilized for finding the optimal path with minimal cost when the search 

space is fully known without the need for complex equations to account for 

conditions such as an irregular field shape, randomly determined start and end 

points for the operational path, and tractor dimensions (Fernandes et al., 2015; 

Song et al., 2019). However, when employing the A* algorithm only, it may be 

difficult to ensure that the tractor can reach the target points (i.e., the start and end 

points) in the entry-exit path. Although the A* algorithm guarantees the shortest 

path, its ability to generate piecewise-linear paths without considering the direction 

of the vehicle in each cell (i.e., a non-holonomic constraint) is limited. In previous 

studies, researchers have modified the A* algorithm to address the heading 

problem (Dolgov et al., 2010; Li et al., 2014; Sedighi et al., 2019. For example, 

{Dolgov, 2010 #220). For example, Dolgov et al. (2010) developed a hybrid-state 

A* search algorithm that uses the state of the vehicle, including its heading 

information, and has a modified heuristic function for each node to overcome the 

non-holonomic constraint. 

In this study, to enhance the performance of fully automated navigation of the 

autonomous tractor system developed in previous study (Jeon et al., 2021), an 

entry-exit planner for an autonomous tractor operating in a paddy field was 
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developed using the A* algorithm to design a reasonable solution capable of 

decision-making based on the kinematic characteristics of the tractor and field 

conditions, considering the location of the entrance, an irregular field shape, and a 

dynamically determined operational path. For handling the non-holonomic 

constraints on the tractor, a method for generating a search space with virtual 

obstacles to induce the A* algorithm to determine a curved path was proposed to 

enable the autonomous tractor to reach the destination accurately in terms of both 

position and heading.  

The specific objectives of this work were  

  1) to develop an entry-exit path planning algorithm that enables the 

tractor located at the entrance to automatically go to the start point of an 

operational path and return to the entrance after completing agricultural 

tasks 

  2) to investigate the feasibility of the developed path planner by 

analyzing its tracking performance via simulations 

  3) to validate the entry-exit path planner in two real paddy fields. 

 

MATERIALS AND METHODS 

Design of entry and exit path 

For guiding the autonomous tractor in a paddy field to cover the entire area 

systematically, a complete navigation pattern is generated within the field border to 

enable the tractor to go to the start point of the operational path, perform the 

agricultural task, and return to the entrance. The pattern for the entry-exit path 
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planning can be described using a set of waypoints representing the path from the 

entrance to the start point and the exit route from the end point to the entrance, as 

shown in Figure 48. The approach provides entry and exit paths using the field 

boundary, the entrance position, the locations of the start and end points of the in-

field coverage path, and the mechanical characteristics of the tractor (such as the 

minimum turning radius, implement width, and look-ahead distance for path-

tracking). In this study, the basic idea for generating the entry-exit path was to 

reach the destination of the autonomous tractor accurately in terms of both the 

position and heading by taking into account the limitations due to the non-

holonomic constraint of the tractor. 

 

Figure 48. Examples of entry and exit paths generated for an in-field coverage path 

in a paddy field. 

The developed approach includes three stages (Figure 49). In the first stage, the 

search space is defined as a collection of nodes that can be used to find the shortest 

path from the start node to the goal node using the A* algorithm. These were 

obtained by moving inward with the field boundary coordinates imported from a 
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text file. Points specified as Transverse Mercator (TM) coordinates, which are 

widely used in national and international mapping systems around the world, were 

then translated into grid coordinates to build a 2D grid map of the search space. In 

the second stage, the entrance, start point, and end point were used as the start and 

goal nodes in each space to create the entry and exit search spaces. To control the 

position and heading of the autonomous tractor, U-shaped virtual obstacles were 

geometrically designed based on information about the turning radius of the tractor 

and look-ahead distance and were then located at the start and end nodes generated 

using the information for the start and end points of the in-field coverage path. In 

the third stage, the A* algorithm was applied to the entry and exit search spaces to 

generate the entry-exit path. After creating the paths for a sequence of line 

segments connected by nodes with sharp turns, two path smoothers, namely the 

line-of-sight path smoother (LOPS) and the collinear-node smoother (CNS), were 

applied to improve the continuity and efficiency of the path. By changing the 

coordinate system from a grid to TM, the smoothed path was imposed on the 

waypoint data in Route Data Definition File (RDDF) form that included the 

latitude and longitude coordinates, the limit of the boundary offset (LBO), target 

travel velocities, and implement up/down commands. This file contains the input 

reference path and control strategies for the tracking method. In principle, the 

tractor searches for the next waypoint when it reaches the current waypoint within 
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the offset distance, which is predefined in terms of the LBO (Han et al., 2015).

 

Figure 49. A flowchart of the entry-exit path planning approach. 

 

Representation of the search space with U-shaped virtual obstacles 

Coordinate transformation of the search space 

As shown in Figure 50, to avoid generating a path where the autonomous tractor 

route and field border are likely to collide, the search space was set by moving the 

field boundary inward by half of the implement width except for one side of the 

field boundary where the entry point was located to generate the collision 

boundary. The vertices of the collision boundary (determined from GPS data) were 

converted from Earth coordinates (latitude and longitude) to grid coordinates to 

generate a search space. The approach for coordinate transformation is based on 
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the minimum bounding box (MBB) method (I. A. Hameed et al., 2010; O'Rourke, 

1985), which refers to the rectangle of the minimum area enclosing the vertices of 

the field boundary to concisely express a complex shape. Gridding was then 

performed on the bounding rectangle oriented in the same direction as the eastward 

axis of the TM coordinate system represented with a north-eastern vertex. By 

defining the width (𝑤) and height (ℎ) of the MBB, as well as the square-grid size 

(𝑟), the vertices of the search space boundary and entrance, start, and end points 

were projected onto the nearest grid using eq. 4.1: 

  

Figure 50. Search space generation 

[
𝑥𝑔𝑟𝑖𝑑

𝑦𝑔𝑟𝑖𝑑
] = [

⌈𝑤(𝑥 − 𝑥𝑚𝑖𝑛)/𝑟(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)⌉

⌈ℎ(𝑦 − 𝑦𝑚𝑖𝑛)/𝑟(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)⌉
],  (4.1) 

where 𝑥𝑔𝑟𝑖𝑑 and 𝑦𝑔𝑟𝑖𝑑  are the spatial indexes of the latitude and longitude values 

in the grid map, respectively; 𝑥 and y are the latitude and longitude in the TM 

coordinate system, respectively; 𝑥𝑚𝑖𝑛 and 𝑦𝑚𝑖𝑛 are the minimum values of the 

latitude and longitude in the Earth coordinate system, respectively; and 𝑥𝑚𝑎𝑥 and 

𝑦𝑚𝑎𝑥 are the maximum latitude and longitude in the Earth coordinate system, 

respectively. 
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The nodes in the MBB are recursively examined to identify those that can be used 

to generate the entry-exit path depending on whether they are inside or outside the 

search space. Nodes outside the space incur the highest cost, while the others are 

indexed as the grid map of the search space. 

 

Generation of U-shaped virtual obstacles 

To provide a curved path from the start point with an initial state (position, 

heading) to the goal point with a final state using prescribed initial and terminal 

tangents to the path and considering the kinematic limitation of the tractor, virtual 

obstacles (dark gray grids) were designed based on the minimum turning radius of 

the tractor (𝑅), the look-ahead distance (𝑙𝑙𝑜𝑜𝑘−𝑎ℎ𝑒𝑎𝑑), and the grid size (𝑟), as 

shown in Figure 51 (a). To derive the A* algorithm for generating the entry-exit 

path for the autonomous tractor to arrive at the goal node or start from the node 

without sharp turns, the arc points were arranged in a U-shape in which the points 

were arranged at 45° intervals with minimum turning radii. By adding straight lines 

of the look-ahead length between the arc and goal node, the U-shaped obstacle 

provided the space for generating the buffer track so that the tractor could align its 

direction and position for the next pass. The parts of the nodes contained within the 

obstacle boundary were transformed at the nearest nodes using the aforementioned 

method to find the search space. In addition, the turning zone nodes (light gray 

grids in Figure 51 (a)) were created as grids adjacent to the boundary of the 

obstacle to guide the autonomous tractor at its turning speed. 

The U-shaped virtual obstacles were located at the start and goal nodes of the 

entry and exit search spaces (Figure 51 (b) and Figure 51 (c)), while the direction 
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was determined based on whether the departure and arrival angles were at the start 

or goal, respectively. When an obstacle is placed on the goal node, the direction of 

the entrance along the buffer track is consistent with the direction that the tractor 

will traverse, while the opposite is true for an obstacle placed at the start node. For 

example, when generating the path from the entrance (start) to the goal node in the 

entry search space, the direction from the entry node is opposite to the heading of 

the tractor leaving the field, which is perpendicular to the segment of the field 

boundary where the entrance is located. 

  

(a) 

 

     (b)     (c) 
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Figure 51. An example of a U-shaped virtual obstacle placed on (a) the grid map, 

(b) the entry search space, and (c) the exit search space. 

The A* algorithm with a path smoother 

Implementation of the A* algorithm for the search space 

The A* algorithm (Chabini & Lan, 2002) was implemented for the search space to 

find the shortest path. In principle, the algorithm examines the costs of the 

neighboring nodes around the node 𝑛 as follows (eq. 4.2): 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) + 𝑜(𝑛),    (4.2) 

where, 𝑓(𝑛) is the total cost of the path, 𝑔(𝑛) is the cost of the path from the start 

node to the node n, ℎ(𝑛) is the heuristic cost to move from that given node n to the 

goal node, and 𝑜(𝑛) is the obstacle cost imposed on each node by the virtual U-

shaped obstacle when generating the search space. 

The obstacle cost for node 𝑛 (i.e., 𝑜(𝑛)) was simply added to the conventional 

terms consisting of the exact distance cost calculated from the start node to node n 

(𝑔(𝑛)) and the heuristic distance cost estimated from the goal node to node n 

(ℎ(𝑛)), as shown in Figure 52. Hence, when the cost of an adjacent node (including 

the node of a virtual U-shaped obstacle) was relatively high, it was excluded from 

being used to update the next node (Figure 52 (b)). After selecting new current 

node n that has the lowest 𝑓(𝑛), both the exact and heuristic distance costs were 

computed based on the diagonal distance for allowable horizontal, vertical, and 

diagonal movements until the goal of identifying the next candidate nodes was 

achieved (Figure 52 (c)). The costs of the neighboring nodes were assigned 

according to the direction: horizontal and vertical nodes with a cost of 10 and 

diagonal nodes with a cost of 14, which are roughly proportional to the exact 
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distance (Figure 52 (a)). The optimal path consisting of a sequence of path-nodes (a 

sequence at the center of the nodes) was determined as the lowest-cost path by 

comparing the sum of costs including the obstacle cost among the multiple 

candidate nodes with the same cost (the squares in Figure 52 (c)). Subsequently, 

the curved path along the virtual obstacle was derived automatically, as shown in 

Figure 52 (d). 

   

(a)       (b) 

                

(c)       (d) 
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 Figure 52. An example of the implementation of the A* algorithm (a) to represent 

how to calculate the cost, (b) to update the node n, (c) to calculate the cost of each 

grid, and (d) to determine the optimal path. 

The path-smoothing approach 

In principle, the entry-exit path provided by the A* algorithm consists of several 

short line segments that connect a series of adjacent nodes (Figure 52 (d)) that the 

autonomous tractor can follow. Even though the theoretical distance of the path can 

be minimized based on the connections between the closest possible grids, this can 

cause 1) frequent turning and 2) redundant nodes along the same straight segment, 

thereby degrading the path-tracking performance with redundant control points 

(Song et al., 2019). To compensate for the limitations of the A* algorithm, two 

path-smoothing approaches, LOPS and CNS (Koyuncu & Inalhan, 2008), were 

designed and implemented on the entry-exit path because of their ability to refine 

the turning and collinear waypoints, respectively. 

Figure 53 shows the procedure of applying the two path smoothers on the 

trajectory provided by the A* algorithm. The nodes obtained with the A* algorithm 

in the search space were divided into two groups depending on whether the nodes 

were within the turning zone or not. The LOPS was then applied to reduce the 

number of turning maneuvers on the path by comparing two distances: from point 

A to point C (𝑑(𝐴, 𝐶)) and from point A to point B to point C (𝑑(𝐴, 𝐵, 𝐶)) 

calculated using three consecutive path-node groups and eliminating node B when 

𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵, 𝐶) until node C is the final path-node (Figure 54 (a) and Figure 

54 (b)). In addition, CNS was additionally applied to a combined node-set 

consisting of smoothed nodes generated using LOPS and nodes located inside the 
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turning zone (Figure 53) by checking if the consecutive three nodes were collinear 

by the calculating slopes (Figure 54 (b) and Figure 54 (c)). 

 

Figure 53. A flowchart of the path-smoothing approach with the two path 

smoothers, LOPS and CNS. 

 

(a)                      (b)                   (c) 
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Figure 54. An example of the path-smoothing process: (a) the original path and the 

paths (b) after applying LOPS and (c) LOPS with CNS. 

Simulation studies of the effects of U-shaped virtual obstacles and 

path-smoothing 

Prior to field testing, two simulation studies were conducted to investigate the 

effects of using the search space with the U-shaped virtual obstacles and the 

smoothing methods to generate an entry-exit path in an irregular paddy field. For 

the entry and exit search spaces as a case study, the start point was located 15 m 

horizontally and 10 m vertically, and the end was placed 20 m horizontally and 15 

m vertically from the entry point placed in one of the segments of the pentagonal 

field boundary (Figure 55 (a)) to generate the entry and exit paths, respectively. In 

the first test, the feasibility of using the search space with the U-shaped virtual 

obstacles to derive the entry-exit paths within the field boundary and control the 

position and direction of the autonomous tractor at start and goal points was 

investigated. To do this, the exit paths were generated from the end to the entrance 

under various conditions of the start-goal directional difference angles (SGDDAs) 

defined as the included angle measured counter-clockwise from the departure 

vector at the start point to the arrival vector at the goal node (Figure 55 (b)). In 

addition, for evaluating the tracking performance, we assumed that the virtual 

tractor developed in previous studies (Han et al., 2015; Han, Kim, Jeon, & Kim, 

2019a) (Figure 56) followed those paths (from the entrance to the start point) 

generated with and without U-shaped obstacles at 8 different SGDDA levels from 

0° to 315° at 45° intervals. 
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(a)                                  (b) 

Figure 55. Setup for the simulation test: (a) the search space environment and (b) 

the arrival/departure vectors and the SGGDA. 

In the second test, to sequentially verify the effectiveness of using the path-

smoothing approaches (LOPS and CNS), three entry paths (original, LOPS-

smoothed and LOPS with CNS-smoothed paths) combined with the 10 m straight 

path at the last waypoint of the path (Figure 56 (a)), which represents the first 

working track, were generated at an SGDDA of 90°, and to compare the 

trajectories, the virtual tractor followed these paths. 

To investigate the tracking performance following the exit paths generated by the 

proposed algorithm in this study, the performance was evaluated by measuring the 

maximum and root-mean-squared error (RMSE) values for the lateral deviation 

when the tractor followed the straight path of 10 m after arriving at the start point 

in the entry path (Figure 56 (a)) and calculating the distance (𝑙𝑒𝑥𝑖𝑡) from an end 

point where the tractor finished the operation to the entrance. In addition, the 

difference (𝜃𝑒𝑥𝑖𝑡) between the heading angle of the tractor at the end point and the 

direction required for the tractor to exit the field was measured to determine 

whether the tractor could easily exit the field via a single steering operation in the 

exit path (Figure 56 (b)). Consistent with the velocity strategy shown in a previous 
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study for navigating straight working lines and headland turns (Han, Kim, Jeon, 

Moon, et al., 2019), the travel velocities to follow the waypoints inside and outside 

the turning zone were set to 1 and 4 km/h, respectively. To generate the paths, the 

algorithm programmed in Labview 2015 was run on an i7-5500U CPU in a 2.4-

GHz Intel Centrino Mobile Workstation with 8 GB RAM. 

  

(a)                               (b) 

Figure 56. A schematic of the 3D virtual tractor following (a) the entry path and (b) 

the exit path generated by using the entry-exit path planner and the evaluation 

criteria for each path. 

Field testing of entry-exit path planner 

Consistent with the Chapter 3, The platform for the field tests was built using a 

63-kW tractor (TX853, Tongyang Moolsan Co., Seoul, Korea) equipped with a 

global positioning system/ inertial navigation system (GPS/INS) as the rover. 

Differential correction data provided by a network-RTK device (MRD-1000T, 

SYNEREX., Republic of Korea) based on the long-term evolution (LTE) wireless 

network, were then transmitted to the rover via networked transport of Radio 

Technical Commission for Maritime Services (RTCM) using Internet protocol 

(NTRIP) to achieve 2 cm positioning and to observe the heading angle within 

±0.1o accuracy during 60 s outage at a sampling frequency of 20 Hz. 
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To validate whether the autonomous tractor would follow the entry-exit path at an 

acceptable level with the maximum lateral deviation < overlap length (defined as 

10 cm in this study), a field test was conducted by applying the algorithm to two 

rectangular-shaped paddy fields with different entrance locations: the center and 

corner of the short segment of the field boundary, as shown in Figure 57. The 

operational path except for the entry-exit path for providing the start and end points 

was generated using a program developed in a previous study (Han, Kim, Jeon, 

Moon, et al., 2019)  based on the coordinates of the corners of the target field, the 

width of the implement, and the minimum turning radius of the tractor. The entry 

point was defined as the first acquired point after the tractor had entered the field 

boundary. The first tracks connected to the start point and the last headland pass 

connected to the end point were also provided in both fields to give the entry-exit 

path planner the arrival and departure headings when generating the entry and exit 

paths, respectively. The travel velocities to follow the waypoints inside and outside 

the turning zone were set to 1 and 4 km/h, respectively. Consistent with the method 

for evaluating the performance in the simulation test, the lateral deviation obtained 

by the tractor navigating while operating the implement along the first track after 

following the entry path, and the values of 𝑙𝑒𝑥𝑖𝑡 and 𝜃𝑒𝑥𝑖𝑡 were measured. In 

addition, to validate the feasibility of the exit path, the trajectories of the tractor 

were also obtained when leaving the field by manual operation through the 

entrance. 
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Figure 57. Google map and the field test images showing the two target fields and 

entrance locations in Chungnam, South Korea. 

RESULTS AND DISCUSSION 

The entry-exit path generation and tracking simulation with and 

without the U-shaped obstacles 

Figure 58 and Figure 59 show the results of the entry and exit paths generated 

using the A* algorithm in the search spaces with and without the U-shaped 

obstacles. Because of the MBB and the representation of the search space, an entire 

rectangular grid map enclosing the field boundary was built and divided into three 

areas: outside the field boundary space (dark gray), the search space (white), and 

the collision space (gray) between the field and the collision boundaries. A high 

cost was imposed on the grids outside the field boundary to prevent the A* 

algorithm from generating paths that invade or cross over it. In addition, it was 

apparent that the method of allocating a high cost to the grid outside of the field 
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boundary and the collision area allowed the A* algorithm to generate the path 

within the search space in an irregular paddy field. 

When generating the paths in the search space without U-shape obstacle, even 

though the entry and exit paths (black) were successfully generated in the search 

space from the entrance to the start point in Figure 58 (a) and the end point to the 

entrance in Figure 59 (a), the algorithm calculated the shortest path consisting of 

straight segments only to connect the points without considering the arrival and 

departure heading angles of the tractor. For example, as shown in Figure 59 (a), the 

exit path required the tractor located at the end point to rotate in place to be able to 

follow the reference and return to the entrance because there was a difference in the 

initial angle between the ideal attitude of the tractor and the reference. In addition, 

even after the tractor had accurately navigated the exit path and reached the 

entrance, there was a difference between the direction to exit the field and the 

direction to follow the path that caused the tractor to rotate in place or move 

backward to realign its direction. 

Figure 58 (b) and Figure 59 (b) show the entry and exit search spaces with the U-

shaped obstacles automatically placed at SGDDAs of 90° and 135°, respectively, 

and the paths generated under each condition. Compared to the results obtained in 

the spaces without the virtual obstacle shown in Figure 58 (a) and Figure 59 (a), the 

paths were generated with controlled arrival and departure heading angles due to 

following the curvature of the U-shaped obstacles. A buffer track, which was the 

straight lines of the look-ahead length between the arc created by the U-shaped 

obstacle and the start, end, and entrance points was provided when leaving and 
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approaching the points to enable the tractor to align its direction and position to 

follow the path more precisely.  

 

(a)                               (b) 

Figure 58. Entry path and search space generation (a) without and (b) with U-

shaped obstacles for an SGDDA of 90°. 

  

(a)                               (b) 

Figure 59. Exit path and search space generation (a) without and (b) with U-shaped 

obstacles for an SGDDA of 135°. 

Figure 60 shows the simulated trajectories of the tractor following the exit paths 

generated in the previous path generation test (Figure 59) to investigate the effect 

of the U-shaped obstacles on tracking performance. Overall, given that the 

trajectory points were acquired within the collision boundary, all waypoints on the 
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path were navigated by the tractor without any collisions with the field boundary. 

However, when the exit path generated in the search space without the U-shaped 

obstacles was used, overshooting on the trajectory was noted after starting at the 

end point while performing a turning maneuver deviated from the generated path in 

the opposite direction, which caused a significant error due to oscillations. In 

contrast, when using the proposed search space with U-shaped obstacles, the 

performance of the exit path following was improved while the oscillations were 

almost diminished, thereby reaching the entrance location with an acceptable level 

of heading angle. As a result, when using the U-shaped obstacles in the generation 

of the exit path, the tractor showed superior tracking performance with 𝑙𝑒𝑥𝑖𝑡 and 

𝜃𝑒𝑥𝑖𝑡 of 6.2 cm and 0.6° as compared with those obtained without the U-shaped 

obstacles 63.2 cm and 40.1°, respectively. This indicates that the exit path induced 

by the search space with the U-shape obstacles would be effective in improving the 

path-tracking performance of the tractor to reach the entrance, such that the 

operator would more easily drive the tractor to exit the field. 
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.

 

Figure 60. Trajectories of the tractor simulator following exit paths generated with 

and without U-shaped obstacles for an SGDDA of 135°. 

Figure 61 shows a comparison of 𝑙𝑒𝑥𝑖𝑡 and 𝜃𝑒𝑥𝑖𝑡 measured when the tractor 

reached the entrance with and without U-shaped obstacles under varying SGDDA 

conditions. It is apparent that the curved path induced by the U-shaped obstacle 

affected the tracking performance of the tractor in the simulation study. In addition, 

as shown in Figure 61 (a), when the SGDDAs were 135°, 180°, and 225°, which 

required the tractor to rotate in place at a larger angle, the values of 𝑙𝑒𝑥𝑖𝑡 obtained 

within the search spaces with U-shape obstacles were considerably reduced as 

compared with those obtained without the obstacles (Figure 60) because an 

SGDDAs >135° might cause an overshoot on its trajectory. Moreover, as shown in 

Figure 61 (b), using the U-shaped obstacle was effective in improving the values of 

𝜃𝑒𝑥𝑖𝑡, which is an indicator of describing how well the direction of the tractor is 

aligned by reducing almost 40° to 2°. This implies that using the U-shaped 

obstacles when building the search space to generate the entry-exit path guides the 
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tractor accurately in terms of both the position and heading with the consideration 

of the tractor’s steering limitation (i.e., a non-holonomic constraint). 

  

(a)                               (b) 

Figure 61. Tracking performance parameters (a) l_exit and (b) θ_exit measured 

when the tractor reached the final waypoint on the exit path (entrance) for various 

SGDDAs. 

Feasibility testing of the path-smoothing methods 

Figure 62 shows the results for tracking accuracy for the original entry path 

compared to the LOPS- and LOPS with CNS-applied paths generated using the 

same entrance and start point as those used in the previous simulation study (Figure 

56). Figure 62 (a) and Figure 62 (b) show the effect of the LOPS smoother on the 

lateral deviation obtained when following the straight path after navigating the 

entry path. When using the LOPS smoothing method, the maximum lateral 

deviation obtained when following the 10 m straight path was decreased from 26.2 

cm to 14.6 cm (Table 16) because the redundant turn induced by the waypoints 

generated using the A* algorithm, which locally calculated the cost of the route 

based on the adjacent grid, was eliminated and replaced with a straight segment. 

However, even when following the curved path to enter the 10-m straight line, the 
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trajectory of the tractor deviated from the straight path beyond the acceptable level 

of < 10 cm (the blue zone in Figure 62). A possible cause for this increase in lateral 

deviation could be because the waypoint update process synchronization with the 

GPS sampling rate of 20 Hz, which is the same as the global navigation satellite 

system (GNSS) module specification used in an autonomous tractor platform, was 

delayed due to the waypoints being closely placed within a grid size of 10 or 14 

cm. For example, as shown in Figure 62 (b), there was a difference between when 

the tractor entered the straight path and when the waypoint was updated and the 

straight path was recognized in the algorithm (the black circle in Figure 62 (b)). 

Hence, the steering and velocity commands to follow the straight path were 

executed when the tractor passed the waypoint. 

On the other hand, when the CNS filter was applied on the entry path (Figure 62 

(c)) to reduce the redundant points by eliminating the collinear nodes, the waypoint 

was updated exactly on time after entering the straight path (the black circle in 

Figure 62 (c)) and achieved an acceptable tracking trajectory with a maximum 

lateral deviation of 4.5 cm (Table 16). Consistent with the effect of the LOPS filter 

refining the turning maneuver, the number of the waypoints was reduced from 179 

to 34 by eliminating the redundant control points (especially on the curved path) 

using the CNS filters. In addition, the travel distance and time consumption were 

also decreased from 30.3 m and 23.7 sec to 29.9 m and 22.9 sec obtained when the 

simulator following the paths. This indicates that the CNS filter improved the 

tracking performance in terms of reducing latency to recognize the present state of 

the autonomous tractor system and increasing the time tracking efficiency. As 

shown in Table 16, the computation time to generate the original path was 
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measured at 7.8 s, and the calculation time for the smoothing processes using 

LOPS and CNS was 0.1 s. 

  

(a)                               (b) 

 

(c) 

Figure 62. Tracking trajectories of the tractor following the (a) original, (b) LOPS-

smoothed, and (c) LOPS with CNS-smoothed entry paths generated in the search 

space with U-shaped obstacles. 
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Table 16. Simulation results for the original, LOPS-smoothed, and LOPS with 

CNS-smoothed entry paths. 

Path type 

Num 

of 

WPs 

Travel 

distance 

(m) 

Time 

consumed 

(sec) 

Maximum 

deviation 

(cm) 

Computation 

time (sec) 

Original 214 30.8 25.1 26.2 7.81 

LOPS-

smoothed 

179 30.3 23.7 14.6 7.92 

LOPS & CNS-

smoothed 

34 29.9 22.9 4.5 7.96 

 

Field tests in real paddy fields 

Figure 63 shows the trajectories of the autonomous tractor that followed the paths 

generated using the developed entry-exit path planner operating in two arable fields 

with different entry positions (the middle and corner of the short segment of the 

field boundary). In both fields, given that the first track and the last headland pass 

provided the arrival heading for the entry path and departure heading for the exit 

path, respectively, the proposed path planner successfully generated the entry (gray 

circle) and exit paths (white circle) for the tractor to reach the destination of the 

autonomous tractor accurately in terms of both the position and heading from the 

entrance to the start and from the end point to the entrance. In addition, all 

waypoints were located within the field boundary. Therefore, as can be seen in the 

trajectory obtained following the entry path (the green points in Figure 63), the 

autonomous tractor could follow the entry path, reach the start point, and navigate 

the first straight track corresponding to the working line while performing tillage 
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operation with an acceptable error level (< 10 cm, which is the same as the overlap 

length) of the maximum lateral deviation of 8.4 cm (field 1) and 7.9 cm (field 2) in 

both target fields without any collisions with the field border. This indicates that 

using the entry path generated by the proposed planner could effectively provide 

the in-field path and guide the autonomous tractor from the entrance location to the 

start point and cover the work area without leaving any of it untilled. 

For the trajectories obtained along the exit paths (including the last lines of the 

operational maps in both fields), the tractor successfully reached and finished the 

automated navigation paths with the distance (𝑙𝑒𝑥𝑖𝑡) from the entrance and the point 

at which the tractor completed the task of 11.6 and 9.7 cm in fields 1 and 2, 

respectively. In addition, the angles (𝜃𝑒𝑥𝑖𝑡) between the heading angle at the end 

point when the tractor completed the agricultural task and the direction required for 

the tractor to exit the field were measured as 15° and 12° in fields 1 and 2, 

respectively. Given that the maximum steering angle of the tractor used in this 

study is ±35°, these results imply that the operator can drive the tractor to exit the 

field without backward navigation, as indicated by the trajectories for the manual 
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exit (the red scattered points) in Fig. 16.

 

 (a) 

 

(b) 

Figure 63. Trajectories of the autonomous tractor following the entry and exit paths 

in two paddy fields with different entrance positions: (a) field 1 and (b) field 2. 

 

CONCLUSIONS 

In this study, an entry-exit path planner was developed to generate a path for a 

tractor in a paddy field by applying the A* algorithm. A path is created in a search 

space with U-shaped obstacles designed in this study to guide the autonomous 
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tractor to automatically maneuver from the start point of the path and return to the 

entrance after completing the agricultural task. The key contribution of this study is 

enhancing the path generation algorithm for a completely automated tractor 

operation in an arable field by providing a feasible method to generate the entry-

exit path. Its practicality was investigated using a 3D virtual simulator developed in 

our previous studies (Han, Kim, Jeon, & Kim, 2019; Han et al., 2015). Consistent 

with our previous study for generating operational maps (Han et al., 2013), the 

platform for the field tests was built using a 60 kW tractor equipped with a 

GPS/INS system. Field tests were conducted to validate the potential for the 

proposed path planner with acceptable tracking performance in two paddy fields 

with different entrance locations. The following conclusions can be drawn from the 

results of our experiments. Future studies include a validation test in the various 

paddy fields to investigate the effect of the field shape and the location of the 

entrance when generating and following the entry and exit paths. We will also 

develop a complete path planner which could provide the autonomous tractor the 

whole tillage path by automatically combining the field-coverage path with entry-

exit path to enhance the performance of the autonomous tractor system. 

  An entry-exit path planner consisting of three processes, search space 

construction, path generation using the A* algorithm, while path-

smoothing was conducted to generate feasible routes with turning 

maneuvers to enable an autonomous tractor to arrive at the start point by 

controlling its position and direction. To induce the A* algorithm to find 

the turning path with the consideration of the non-holonomic constraint of 

the tractor, U-shaped virtual obstacles were designed based on the 
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minimum turning radius and look-ahead distance of the tractor and 

located in the search spaces at the start, end, and entry points. A path-

smoothing process comprising CNS with LOPS was applied to reduce 

redundant turning and control waypoints to improve the tracking 

performance. 

  The results of a simulation study show that the designed entry-exit path 

planner could derive a feasible path for the autonomous tractor to reach its 

destination accurately in terms of position and heading by taking the 

steering characteristics of the vehicle, such as the minimum turning radius 

and look-ahead distance, into account when designing the search space 

with the U-shaped obstacles. In the tracking performance, the lateral 

deviation and heading angle error of 6.2 cm and 0.6°, respectively, 

decreased compared to those obtained with the search space generated 

without the U-shaped obstacles (63.2 cm and 40.1°, respectively) owing to 

the curved path derived by avoiding them to induce the tractor to follow a 

path causing fewer oscillations and lower error. In addition, as compared 

to when creating a path using the A* algorithm only, two path-smoothing 

processes (LOPS and CNS) reduced the maximum lateral deviation from 

26.2 to 4.5 cm due to their capability of removing redundant waypoints 

that caused steep turning and control latency. 

  In a real environment test conducted in two rectangular paddy fields with 

different entrance positions, the autonomous tractor could reach and follow 

the first inner track, corresponding to the first working line, with a 

maximum lateral deviation of < 8.5 cm (entry path) in both target fields. In 
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addition, the tractor successfully reached the entrance along the exit path 

and finished the automated navigation with 𝑙𝑒𝑥𝑖𝑡 < 12 cm and 𝜃𝑒𝑥𝑖𝑡 < 15 ° 

such that the operator could drive the tractor to exit the field without 

backward navigation. 
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CHAPTER 6 

INTELLIEGENT PATH-TRACKING CONTROLLER BASED 

ON REINFORCEMENT LEARNING 

ABSTRACT 

 A robust path-tracking algorithm is integral for an autonomous agricultural 

vehicle to accurately follow a guidance line, including straight and curved paths 

with headland turning in an arable field. To enhance the performance of a path 

tracking method developed based on pre-determined look ahead distance variables, 

this article proposes a reinforcement learning (RL) based intelligent tracking 

controller for an autonomous tractor to keep the implement on the reference line at 

higher speeds. An architecture of an RL-network was designed using deep Q-

network (DQN) model to adaptively provide look-ahead distances based on the 

navigational conditions represented by lateral deviations and heading errors. In this 

study, a path-tracking algorithm was self-developed with DQN trained by the 

computer simulator developed in our previous study while following the C-shaped 

headland turn with varing entry and exit angles. A field evaluation was conducted 

by comparing the performance of lateral deviation obtained with a 63-kW 

autonomous tractor equipped with the developed path tracking algorithm. The 

results of the computer simulation confirmed that the RL-based intelligent tracking 

controller guided the tractor to follow the path with smaller oscillations, as 

compared those obtained with the previously developed tracking controller. In the 

field test performened in an arable field, the autonomous tractor equipped with the 

RL-based intelligent path tracking controller provided improved path-tracking 



 

 

169 

accuracy (lateral and heading RMSEs of 12.9 cm and 3.8 deg), as compared with 

those (lateral and heading RMSEs of 30.1 cm and 8.6 deg) obtained using the 

system develeopd in previous study at 4 km/h. 

 

Keywords: Path tracking; Reinforcement learning; Deep Q-Network; 

Autonomous tractor 

 

INTRODUCTION 

 The increasing demand for farming products and environ- mental considerations 

has led to the agricultural industry seeking cost efficiency measures from diverse 

solutions involving various academic fields, e.g. agronomy, geology, genetics, and 

engineering (Tilman et al., 2002). To achieve higher productivity even with lower 

energy consumption and less terrestrial field degradation, engineering has been 

focused on the development of advanced technologies in terms of autonomous 

tractor systems and optimal fieldwork management (Gebbers & Adamchuk, 2010). 

A robust path-tracking algorithm is integral for an autonomous agricultural 

vehicle to accurately follow a full-path, including straight and curved paths with 

headland turning in the off-load environment. Currently, Advanced technology for 

implanting path-tracking algorithms have been widely studied for different vehicle 

models using different principles such as model free controller (e.g., Fuzzy logic 

model, Proportional-Integral-Derivative (PID) control), Model based controller 

(e.g., Linear-Quadratic Regulator (LQR), Model Predictive Control (MPC), 

Nonlinear Model Predictive Control (NMPC)), and geometric controller (e.g., 

Stanley and Pure-Pursuit Control). 
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PID control is a widely used to develop auto-guidance controller due to its 

simplicity and robustness (Normey-Rico et al., 2001). (Dong et al., 2011) proposed 

a path-tracking controller based on a two-layer PID control structure to guide 

autonomous harvester on a desired path. Their path tracking results showed lateral 

deviations of less than 3 cm when tracking straight path at travelling speed of up to 

0.8 m/s. Nevertheless, the method requires the parameter tunning process 

according to each condition, and is so sensitiveto direct feedback error that it is 

difficult to guarantee system. Fuzzy logic can be modelled to approximate non-

linear motions by a set of If-Then rules without fully characterizing the non-linear 

systems (Precup & Hellendoorn, 2011). For example, (Cho & Lee, 2000) designed 

a fuzzy controller trained by genetic algorithm (GA) for autonomous speed sprayer 

system in an orchard using a differential global positioning system (DGPS). The 

results showed that the speedsprayercould be autonomously operated within 50 cm 

deviation. (Zhang & Qiu, 2004) designed an autonomous system with a pure-

pursuit-based tracking controller for a robotic tractor to navigate a desired path 

including inner-work track with headland turning at the ends of a field, using geo- 

referenced information obtained with an RTK-GPS system, and the lateral 

deviations of less than 0.1 m at a travelling speed of up to 3.5 m/s. In previous 

study decribed in Chapter 4, the autonomous puddling and leveling tractor system 

equipped with a slip-estimation based tracking controller was developed and 

validated by comparing the tracking and covering results with the skilled operator 

in the same field and platform condition. Even though the autonomous system 

reduced 36 % of the travel distance and 5 % of the fuel consumption, it took about 
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20 minutes more time because it traveled at a slower average velocity (1.35 km/h) 

than the manual-driven tractor (2.75 km/h). 

Recently, methods based on optimization theory and dynamic models, such as 

LQR (Vougioukas, 2012), MPC (Lenain et al., 2006; Wu & Hung, 2017), and 

NMPC (Kayacan et al., 2014; Vougioukas, 2012), have been widely stidued for the 

path-tracking control algorithm of autonomous agricultural vehicle. However, these 

methods require the repeated solution of an optimization problem at each control 

step, which may increase the computational burden and challenge their real-time 

application (Zhang et al., 2019). 

During agricultural task, the autonomous vehicle navigated the desired path with 

nonlinear behavior due to the complex interrelationship between the off-road 

environment and the mechanical and hydraulic operations inside the tractor. 

Therefore, in order to calculate appropriate steering and speed commands based on 

the difference in tractor position and posture compared to the reference route for 

the driving environment, real-time environment response path tracking technology 

is required. Many existing researches have proposed a path follower using and 

applying a vehicle-centered method (Fang et al., 2011; Han et al., 2015; Lenain et 

al., 2005). Compared to automobiles, a tractor requires a high following accuracy 

(within 10 cm) and an agricultural task which was aimed for implemtent where 

agricultural task was really performed. 

Recently, many automated agricultural applications, such as passive & active 

implement control (e.g. John Deere AutoTrac, Trimble Agriculture TrueGuide, 

Agleader SmartSTEER, ProTrakker Implement guidance) and tractor implement 

management (TIM) with the concept where the implement can control certain 
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tractor functions based on the ISOBUS protocol. In addition, advanced 

techonology for solving a motion control problem (MCP) of the agricultural 

vehicle operated in an off-load environment by substuting MCP with data-driven 

modelling problem using an artificial intelligent have been widely studied to 

handle constraints, process nonlinearity, uncertainty, complexity or time-delay 

(Ding et al., 2018; Luckow et al., 2016; Wasala et al., 2020). 

Among various artificial intelligent technologies (e.g., supervised learning 

(Convolutional Neural Network (CNN), Recurrent Neural Network (RNN)), 

Reinforcement Learning (RL), and Generative adversarial network (GAN)), RL 

that can self-recognize the current driving situation and modify behavioral 

strategies based on the reference path planned by the path generation algorithm and 

the location and heading angle information acquired from the GNSS sensor, has 

been gaining significant traction in autonomous driving for a range of scenarios.  

Because, unlike automobiles operated on roads that can be recognized as reference 

routes (Forbes, 2002; Kendall et al., 2019; Li et al., 2019; Riedmiller et al., 2007; 

Veres et al., 2011), agricultural vehicle does not have reference paths that humans 

can recognize. Such that it is difficult to use supervised learning or GAN that must 

be preceded by data acquisition and human classification for developing path-

tracking controller in an agricultural sector. For example, Zhang et al. (2019) 

designed a modified structure that developed an unmanned ground vehicle (UGV) 

tracking controller for an agricultural observer system using the Double DQN 

structure and how agricultural autonomous driving can be posed as a Markov 

Decision Process (MDP) and present RL-based approaches for waypoint following. 

The results showed that the Double DQN-based control dramatically reduced 
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thesettling time and the overshoot at the corner at higher forward speeds at a minor 

expense of slightly increased rise time and steady state error compared to pure-

pursuit based controller. 

 In this study, to enhance the tracking performance of a fully automated 

navigational controller of the autonomous tractor system developed in previous 

study (Han, Kim, Jeon, Moon, et al., 2019; Jeon et al., 2021) in terms of improving 

the field effciency with a less oscillation by increasing the travel velocity, RL-

based intelligent tracking controller with an adaptive look-ahead calculator, which 

provides control point by determining how far along the path the robot should look 

from the current location to compute the steering commands based on the 

navigational environment in real-time, was developed. For handling the non-linear 

constraint of the kinmatic chatacteristic of the tractor and implement-centered 

navigation, an architecture of the DQN network structure including 2 inputs based 

on the position and posture of the tractor and 1 output of the look-ahead distance 

was designed to induce the proposed RL based controller to determine the driving 

environment and calculate steering angle in real-time. 

The specific objectives of this study were 

 1) to design the network architecture for training and controlling the path 

tracking controller. 

 2) to train the model of the adaptive look-ahead calculator and 

investigate the feasilbility of the developed controller by analyzing its 

tracking performance by a comparison to the previously developed 

controller (Han, Kim, Jeon, Moon, et al., 2019) via simulation tests. 

 3) to validate the RL based tracking controller in field test. 
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MATERIALS AND METHODS 

Path-tracking controller 

Navigational controller 

To provide an autonomous tractor a steering control robust to slippage, while 

performing puddling operation in paddy fields, slip-estimation based navigational 

controller developed in our previous study (Han, Kim, Jeon, Moon, et al., 2019) 

was used. As shown in Figure 64, the navigational controller used in this study was 

based on the extended kinematic bicycle model (EKBM) combined with the pure 

pursuit method, which considers sliding effects to the original kinematic bicycle 

model with an assumption that the sliding phenomenon is entirely described by the 

introduction of the front (𝛽𝑓) and rear (𝛽𝑟) sliding parameters. In addition, by 

assuming the tractor was virtually located on the look-ahead point to calculate the 

path tracking variables, i.e., lateral deviation (𝑦) and heading error (�̃�), in advance, 

a dynamic motion such as delay cause by overshoots and rise time induced by the 

steering actuator, could be accounted and compensated. In this study, 

reinforcement learning-based look-ahead generator was designed and used to 

provide an appropriate control point to calculate navigational variable, i.e., lateral 

deviation and heading error for steering command. Given those navigational 

variables, derivatives of the kinematic state variables (𝑦 and �̃�) with respect to the 

reference trajectory can be written as eq. 5.1 (Lenain et al., 2007). The curvature of 

the path is regarded as zero because the path-tracking task is performed based on 

waypoints which build segmented lines. The EKBM was transformed into a 

chained form with one input, i.e., steering angle (𝛿), to allow the design of 

nonlinear control system a controllability, such that two state variable (𝑦 and �̃�) 
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was ensured to converge from any initial value to any final value. Therefore, eq. 

5.2 yields the calculation of the steering angle to be sent to the actuator. 

 

Figure 64. Notation of extended kinematic bicycle model combined with pure-

pursuit method and path tracking parameters. 

 

𝑓(𝑦, �̃�, 𝛿, 𝛽𝑓 , 𝛽𝑟) = {
�̇� = 𝑣 sin(�̃� + 𝛽𝑟)       

�̇̃� = 𝑣𝑐𝑜𝑠𝛽𝑟
tan(𝛿+𝛽𝑓)−𝑡𝑎𝑛𝛽𝑟

𝐿

              (5.1) 

𝛿(𝑦, �̃�, 𝛽𝑓 , 𝛽𝑟) = tan−1 {𝐿
(−𝐾𝑃𝑦−𝐾𝐷 tan(�̃�+𝛽𝑟))cos3(�̃�+𝛽𝑟)

cos 𝛽𝑟
+ tan 𝛽𝑟} − 𝛽𝑓   (5.2) 

where 𝑦 is the lateral deviation of the tractor with respect to the reference 

path (m), �̃� is the heading error of the tractor with respect to reference path 

(rad), 𝑣 is the forward velocity of the tractor (m s−1), 𝛿 is the steering 

angle of the front wheel (rad), 𝐿 is the wheelbase of the tractor (m), 𝐾𝑃 is 

the proportional gain and 𝐾𝐷 is the derivative gain, and 𝛽𝑓 and 𝛽𝑟 are the 

sideslip angles of the front and rear wheels (rad), respectively. 

 

Observer-based estimation of sideslip angles 
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Figure 65 shows the architecture of calculating the steering angle of the tractor 

(𝛿). Given a navigational variable calculated based on the look-ahead distance (𝐷) 

derived by the RL-based look-ahead generator, 𝑋 = (𝑦, �̃�), obtained from the 

tracking algorithm based on the position and heading data measured from 

GNSS/INS system, the estimated state variable, �̂� = (�̂�, �̃̂�), converges to it for 

observer controller to change the variables of the sideslip angles (𝛽𝑓 , 𝛽𝑟), which are 

then fed into the steering model formula (eq. 5.2) to calculate a steering angle. The 

steering angle of the tractor can be calculated when the sideslip angles of the front 

and rear wheels are known, such that it was estimated on-line using the observer 

theory proposed by (Lenain et al., 2007). To apply the observer to the EKBM 

system, the formula was linearize with respect to the sliding parameters, 𝑢 = 

(𝛽𝑓 , 𝛽𝑟), around zero with assumption that slip angles are generated within a few 

degrees (eq. 5.3). As described in eq. 5.4, 𝐵 (�̂�, �̃̂�, 𝛿) denotes the derivative of 

𝑓 (�̂�, �̃̂�, 𝛿, 0,0) with respect to control 𝑢. Introducing the equation of error 

dynamics defined using 𝐻 Hurwitz matrix, the observer model was derived to 

ensure that the estimated output converges to the corresponding measured values 

by the variables of the sideslip angles (𝛽𝑓 , 𝛽𝑟) changed by an observer controller. 

As a result, the sideslip angles of the front and rear wheels can be determined as eq. 

5.5 based on theoretical vehicle motion model, i.e., EKBM, using consecutively 

measured lateral deviation and heading error and steering angle sent to the 

autonomous tractor system. 
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Figure 65. Architecture of path-tracking algorithm with slip estimation observer. 

�̇̂� = 𝑓(�̂�, 𝛿, 0,0) + 𝐵(�̂�, 𝛿)𝑢                    (5.3) 

𝐵 (�̂�, �̃̂�, 𝛿) =
𝜕𝑓(�̂�,�̂̃�,𝛿,0,0)

𝜕𝑢
= [

0 𝑣𝑐𝑜𝑠�̃̂�
𝑣

𝐿
(1 + 𝑡𝑎𝑛2𝛿) −

𝑣

𝐿

]           (5.4) 

𝑢 = (
𝛽𝑓

𝛽𝑟
) = 𝐵 (�̂�, �̃̂�, 𝛿)

−1
(𝐻 (�̇̂� − �̇�) + �̇� − 𝑓 (�̂�, �̃̂�, 𝛿, 0,0))       (5.5) 

where 𝐻 is the Hurwitz matrix, �̂� is the estimated state variable, 𝑋 is the measured 

state variable, 𝐵 is the derivative of vehicle motion model with respect to sideslip 

values, �̂� is the estimated lateral deviation of the tractor with respect to reference 

path (m), �̃̂� is the estimated heading error of the tractor with respect to reference 

path (rad). 

 

Framework of RL based intelligent tracking controller 

Environment of the RL framework 

Figure 66 shows a learning framework of RL based intelligent tracking controller. 

In the environment part of the architecture, the autonomous tractor system 

eqqiuped with the path-tracking controller that produced steering angles, velocity 

values, and implement control commands and transmit those to the autonomous 

tractor system based on the position and heading data obtained from the RTK-

GNSS/INS system. In addition, to improve an ability to interpret a driving 

condition in detail compared to the method used in the previous study (Han, Kim, 
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Jeon, Moon, et al., 2019), which calculated the steering angles using the leteral 

deivation and heading error measured at the look-ahead point, a driving-status 

predictor was designed as shown in Figure 67. The predictor sequentially 

calculated the lateral deviations and heading errors at 5 cm intervals from the 

position of the implement to the point 7.5 m ahead, generate the two driving-status 

arrays including 151 data, resepectively, and transmit those driving-status arrays to 

the agent of the RL based intelligent tracking controller using TCP/IP protocol. 

 

Figure 66. Learning framework of the RL based intelligent tracking controller 

 

 
Figure 67. Maneuvering of Driving-status predictor 

Agent for adaptive look-ahead generator 
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In an agent environment, the look-ahead distance, which is intrgral parameter to 

calculate the tracking errors was calculated using an adaptive look-ahead generator 

using DQN network. We used an architecture in which there is a separate output 

unit for each action, i.e., the look-ahead distance, and the state representation is the 

input to the neural network. The main advantage of this type of architecture is the 

ability to compute Q-values for all actions in a given state S with only a single 

forward pass through the network (Mnih et al., 2015). As shown in Figure 68, the 

network architecture for training and controlling had 7 layers, an input layer, 5 

fully-connected hidden layers, and an output layer. The activation function between 

hidden layers was relu function. Each hidden fully connected layer had 128 

neurons. TensorFlow library was used in python 3.7.0 version to build and train the 

agent. 

 

Figure 68. Schematic illustration of the DQN network of the RL based intelligent 

Input and output of the network 

The input layer received the driving status arrays of lateral deviation and heading 

error and the output layer had 11 neurons corresponding to 11 pre-defined look-

ahead distance from 0.5 to 3.0 at 0.25 intervals. For tracking control and training 
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network, elements of the status arraies were normalized before intput to the 

network using eq. 5.6 and 5.7 to avoid gradient vanishing and accerlerate training 

time by giving similar weights to the two status arrayies. The normalization ranges 

(𝑑𝑛𝑜𝑟𝑚 and 𝜃𝑛𝑜𝑟𝑚) were set 3 m and 90 deg in this study. 

𝑆𝑑 =
1

𝑑𝑛𝑜𝑟𝑚
{𝑒𝑑,1, 𝑒𝑑,2, 𝑒𝑑,3 … 𝑒𝑑,151}                (5.6) 

𝑆𝜃 =
1

𝜃𝑛𝑜𝑟𝑚
{eθ,1, eθ,2, eθ,3 … eθ,151}                (5.7) 

where 𝑆𝑑 and 𝑆𝜃 are the input state variables to the network, 𝑑𝑛𝑜𝑟𝑚 and 𝜃𝑛𝑜𝑟𝑚, 

are the normalization range for 𝑒𝑑,𝑖 and 𝑒𝜃,𝑖 ,respectively, 𝑖 is the index of the 

status array ranging from 1 to 151. 

  

Design of the reward of RL network 

 In this study, to induce the tracking cotroller to generate the steering angle for 

the purpose of allowing the position of the implement to be located on the desired 

path, not the center of the vehicle, a reward function (𝑟(𝑑𝑖𝑚, 𝜃𝑖𝑚)) that encourage 

the agent to maintain the given trajectory of the implement by adaptively 

modifying look-ahead distance, was proposed using eq. 5.8. Lateral deviation 

(𝑑𝑖𝑚) and heading error (𝜃𝑖𝑚) at the center of the implement were normalized 

and linearly combined with the reward gain of K, which was defiend as -5000 in 

this study. 

𝑟(𝑑𝑖𝑚, 𝜃𝑖𝑚) = 𝐾(𝑑𝑖𝑚/𝑑𝑛𝑜𝑟𝑚 + 𝜃𝑖𝑚/𝜃𝑛𝑜𝑟𝑚)            (5.8) 

Training of the RL model via stimulation 

 Reinforcement learning, an unsupervised learning, has the advantage of being 

able to encode complex behavior of the environment, so it can be used in areas that 
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are difficult or impossible to solve with existing algorithms, but numerous training 

courses are required to actually reach qualified performance. In order to learn, 

multiple driving tests must be performed in the real environment, but there are 

limitations such as safety and time consuming problems. Therefore, by utilizing the 

characteristic that the autonomous agricultural work driving environment is similar 

to the simulation environment, the training process for the intelligent path tracking 

algorithm was performed via the simulation. 

Prior to the evaluation of the tracking performance, to learn RL model for 

calculating the look-ahead distance adaptive to the driving environment definced 

by the two driving-status arrays, the virtual tractor navigate the inner-work paths 

based on the C-type headland turning generated with varing exit (𝜃𝑒𝑥𝑖𝑡) and re-

enter (𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟) angles, which formed two parallel inner-tracks with the length of 

30 m before and after the heading turning path at a certain angle (Figure 69 (a)). 

The interval between the tracks was set as the minimum multiple of swaths capable 

of generating C-type headland turning (wminimum) calculated by the optical path 

planning method based on the minimum turning radius of the tractor and the 

implement width, which was 4 in this study. 

 Figure 69 (b) shows the reference map consisting of 15 straight lines and 14 

curved paths generated with varing exit (𝜃𝑒𝑥𝑖𝑡) and re-enter (𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟) angles 

ranging from from 30° to 150° at 10° intervals. To enable the controller to 

experience various turning conditions, the modelling path guided the virtual tractor 

to follow the curved path with the symmetric 𝜃𝑒𝑥𝑖𝑡 and 𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟 as shown in 

Figure 69. In addition, to learn the left and right turning situations, we assumed that 
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the vehicle traveled on a path that reversed the starting and ending points of the 

modeling path. 

 

(a) 

 

(b) 

Figure 69. Illustration of mapping the reference path with exit (𝜃𝑒𝑥𝑖𝑡) and re-enter 

(𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟) angles (a) and the training path generated with varing 𝜃𝑒𝑥𝑖𝑡 and 

𝜃𝑟𝑒−𝑒𝑛𝑡𝑒𝑟 ranging from from 30° to 150° at 10° intervals (b) 
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The values of the navigational parameters used in this study were 0.1m, 4km/h, 

2km/h, 3m, 1m, (0.8, 0.3), [
−1 0
0 −1

], and (6800, 7500 N/rad) for LBO, straight 

velocity, turning velocity, look-ahead distance, look-behind distance, The 

proportional-derivative control gains for calculating steering angle, Hurwitz matrix, 

and front and rear coefficients of cornering stiffness on tractor motion, 

respectively. The training velocities of straight and turning path were same as 4.5 

km/h, which was faster than our previous parameter (1.3 km/h). The behavior 

policy during training was ε-greedy with ε annealed linearly from 0.99 to 0.01 and 

finally fixed at 0.01 to train the model with a sufficient exploration for obtaining 

various driving experiences. The Xavier initialization is to initialize the weights w 

of the network from a Gaussian distribution (Glorot & Bengio, 2010). A laptop 

with an Intel i7-10700F, 16GB RAM, and GeForce RTX 2060 SUPER with 2176 

cores was used to train the model. 

 

Evaluation of RL-based intelligent tracking controller via simulation 

and field testing 

Three different simulation tests were conducted with the driving simulator 

described in Chapter 3. As one scenario for studying the feasibility of using two 

driving-status arrays of a lateral deviation and a heading error to learn the various 

situational environment such as travelling velocity and turning pattern and 

calculate a reasonable look-ahead distance based on the position of the implement, 

a simulation test was performed to guide the tractor located with a lateral 

displacement of 2 m and a heading error of 45o compared to the 25 m straight 

reference path as show n in Figure 70 (a). Three models trained with 10, 30, 50 
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episodes were used to show the effect of the RL-based intelligent tracking 

controller to improve the tracking performance that converges to the target path 

quickly and stably. In addition, for evaluating the tracking performance to steers 

the tractor to keep the implement on the guidance line, the second test was 

performed by comparing the trajectories of the tractor and implement obtained 

along C-shaped headland turning with 25 m two straight lines (Figure 70 (b)) at 4.5 

km/h.  

In the third test, to investigate the effect of using the proposed path-tracking 

algorithm to improve path-tracking performance on high speed condition, we 

assumed that a virtual tractor followed a C-shaped headland turning pattern as 

shown in Figure 70 (b) at 2 km/h and 4.5 km/h, which was middle and the highest 

speed of the tillage and tge puddling∙leveling operation proposed by the 

International Rice Research Institute (IRRI). Two different path-tracking 

algorithms, i.e., slip estimation-based navigation controller with the constant look-

ahead distance tunned by trial and error method (1.3 m) and the intelligenet 

tracking controller, were applied to evaluate the effectiveness of the the proposed 

tracking controller. 
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(a)                               (b) 

Figure 70. Setup for the simulation tests: (a) the straight path for investigating the 

feasibility of using two driving-status arrays to learn the various situational 

environment and calculate the look-ahead distance and (b) the C-shaped path for 

studying the effect of using the proposed path-tracking algorithm to improve path-

tracking performance on high speed condition. 

 

The field test conducted with the autonomous tractor equipped with the RTK-

GNSS/INS sensor described in Chapter 3 for navigating a reference path generated 

based on information about the coordinates of the corners of the experimental 

station of Seoul National Universirty (Figure 71), C-type headland turning method, 

implement width (2.4 m), and minimum turning radius of the tractor (4 m). To 

investigate the tracking proformance following the reference path Trajectories of 

the tractor obtained with two different path tracking controllers, i.e., the slip-

estimation based steering control and RL-based intelligent tracking controller were 

compared with traveling speed of 4 km/h, which was the maximum speed that the 

autonomous tractor could achieve when driving on a second-stage forward gear of 

the transmission. The performance was evaluated by measuring the maximum and 

root-mean-squared error (RMSE) values for the lateral deviation of the implement 

position when the autonomous tractor navigated the inner straight tracks. 
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Figure 71. View of the field test for validating the proposed path tracking controller 

 

RESULTS AND DISCUSSION 

Feasiblity test of RL-based tracking controller 

The tracking simulation using the models trained at various episodes 

Figure 72 shows the simulated trajectories for the implement attached to the 

tractor equipped with an RL-based intelligent tracking controller trained at three 

levels (10, 30, 50 episodes) obtained when following the 25 m straight lines with 

the lateral displacement and heading error of 2 m and 45o. The colorbar shows the 

look-ahead distance calculated by the developed adaptive look-ahead generator 

based on the driving-status information, i.e., lateral deviation and heading error 

arrays. Overall, it was possible for the autonomous tractor to follow the guidance 

line without a divergence using the look-ahead distance provided by the proposed 

method. It was apparant that the tractor followed the path with a smaller oscillation 

and the position where the trajectory converges to the steady-state on the reference 

path was earlier when the model that was trained with a high number of episodes 

was used. For example, when the model trained at 10 episode was used, the less 
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change of the look-ahead distance occurred during the first entry into the straight 

line compared to that obtained using the model trained at 30 episode, showing a 

relatively small oscillation and following the guidance line, but it took a long time 

to converge. However, when the vehicle equipped with the model trained at 50 

episode could follow the reference path with less oscillation and earlier point, 

compared to those using the less trained models. Even though it was difficult to 

determine an exact quatitative repationship between the two driving status arrays 

measured during the navigation and the look-ahead distance, possible cause for that 

improvement include the use of the adaptive look-ahead distance generator with 

highly trained model, which take a dynamic driving environment into account. 

 

Figure 72. Trajectories of the implement attatched to the virtual tractor equipped 

with the RL-based tracking controller with the models trained at three levels (10 

(a), 30 (b), 50 (c) episodes) followng 25 m straight reference line and the look-

ahead distance values calculated by the controller . 

Figure 73 compares the simulated trajectories of the tractor following a path of C-

shaped headland curves and straight lines obtained from two different measurement 
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point, i.e., the center of the tractor and the implement, when the RL-based tracking 

controller trained at 50 episode was used. Given the reward designed to induce the 

tracking cotroller to calculate the steering angle for the purpose of keeping the 

position of the implement on the desired path, the trajectory of the implement 

showed better path-tracking performance on the straight path where the agricultural 

operations was performed with a maximum lateral deivation of 2.6 cm (root mean 

square error (RMSE) = 1.2 cm), compared to the maximum lateral deviation of 11 

cm (root mean square error (RMSE) = 5.1 cm) obtained using the trajectory of the 

tractor. Because the autonomous tractor equipped with the developed tracking 

controller performed the turning maneuver in advance just before entering the 

headland turning path (labelled A) while the implement position was kept on the 

straight path. In addition, similar to the results of the simulation to follow the 20 m 

line, the tracking controller allowed the tracjectory of the tractor to rapidly 

converge to the reference path before the implement escaped the turning zone when 

the tractor entered the next straight path (labelled B), such that the implement could 

be located on the guidance line along the straight path. This indicated that the 

developed path tracking controller would be effective in improving the tracking 

performance of autonomous tractor by increasing accuracy at the implement. 
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Figure 73. Comparison of trajectories obtained at the tractor and implement 

positions when the vehicle followed the C-shaped path. 

 

Feasibility testing of the RL-based tracking controller at high-speed 

condition 

 Figure 74 shows the results for tracking accuracy of the implement attached to the 

autonomous tractor obtained using two different path tracking control methods, i.e., 

the slip-estimation based steering control and RL-based intelligent tracking 

controller, while following the C-shaped paths with different traveling speeds of 2 

km/h and 4 km/h, which were middle and high velocity of tillage and 

puddling∙leveling operations proposed by IRRI. As shown in Figure 74 (a), when 
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applying tracking controllers to guide the tractor to follow the C-shaped path at 

middle velocity, i.e., 2 km/h, there was little difference in the trajectory obtained 

with two different tracking algorithm on both straight and curved paths. This 

indicated that there would be no significant difference in tracking performance 

between two controllers at low or middle speed. In constrast, when the traveling 

velocity was increased to 4.5 km/h, the RL-based intelligent path tracking 

controller showed superior performance on curved path (Figure 74 (b)), with a 

maximum lateral deviation and heading error of 2.6 cm and 1.7 deg (root mean 

square error (RMSE) = 1.2 cm and 1.1 deg), compared to those of 13.5 cm and 8.2 

deg (root mean square error (RMSE) = 7.6 cm and 2.4 deg) measured at the zone A 

in Figure 74 (b). Because when the tractor entered the second straight line along 

the headland turning path, the controller decreased the look-ahead distance from 

1.8-2.2 to 0.5-0.8 to move quickly towards the path and increased it again after 

determining that the tractor has settled in the guidance line. This indicated that the 

adaptive look-ahead generator implemented in the path tracking controller would 

be effective in improving the path tracking performance of the autonomous tractor 

under high-speed conditions. 
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(a) 

 
(b) 

Figure 74. Trajectories of the implement attached to the tractor obtained with two 

different path tracking controllers, the slip-estimation based steering control and 

RL-based intelligent tracking controllerm following C-shaped paths with different 

traveling speeds: (a) 2 km/h and (b) 4.5 km/h. 

 

Fied test using the autonomous tractor 

Figure 75 shows the trajectories of the autonomous tractor operated using the slip-

estimation based control logic and RL-based intelligent path tracking controller in 

arable field: 10 straight reference path with C-shaped headland turning pattern to 

connect those tracks. Similar to the results of the simulation study for C-shaped 

path tracking, both tracking controllers showed the fully automated navigation with 

any stops or divergence at 4km/h. However, larger lateral deviations and heading 



 

 

192 

errors, rainging from -0.91 m to 2.31 m and from -49.7 o to 26.7 o (lateral and 

heading RMSEs of 30.1 cm and 8.6 deg) were obtained along straight lines when 

relying on the slip-estimation based method, compared with those rainging from -

0.32 m to 0.55 m and from -13 o to 17.7 o (lateral and heading RMSEs of 12.9 cm 

and 3.8 deg) obtained using the RL-based intelligent tracking controller as shown 

in Figure 76. The superior performance of the RL-based control method might be 

explained by the fact that the dynamic changes of the look-ahead distances 

calculated by the developed algorithm along the curved path were obvious to keep 

the implement on the guidance line, ranging from 0.5 m to 2.8 m. In addition, even 

when the tractor navigated the straight path, it was apparent that the propose 

tracking controller effectively guide the vehicle to quickly and stablely converge to 

the reference at a velocity of 4km/h, compared to the trajectories obtained at zone 

A in Figure 75 (a). This indicated that the developed RL-based intelligent path 

tracking controller was a better candidate for use in an autonomous tractor to 

increase the field efficiency by accerlating the traveling velocity. 

 
(a) 
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(b) 

Figure 75. Results of the tracking trajectories of the implement attached to the full-

scale autonomous tractor following the 8 straight guidance lines with C-shapes 

headladn turning using (a) the slip-estimation based and (b) RL-based intelligent 

tracking controllers. 

 

(a)                                (b) 

Figure 76. Results of (a) lateral deviation and (b) heading error of the implement 

attached to the autonomous tractor obtained using two different tracking controller: 

the slip-estimation based tracking logic and RL-based intelligent tracking method. 
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CONCLUSIONS 

In this study, an RL-based intelligent tracking controller was designed and its 

performance was investigated via both simulation and field testings. The main 

contribution of this research was to enhance the performance of the tracking 

controller for an autonomous tractor by taking into account the navigational 

condition represented by lateral deviations and heading errors to keep the 

implement on the reference line even at high speed. A Framework of an RL-based 

intelligent tracking controller was designed to provide a look-ahead distance, 

which is integral parameter to calculate the steering angle, adaptive to various 

driving conditions in real-time. To improve an ability of interpreting the driving 

condition compared to the method used in the previous study (Han, Kim, Jeon, 

Moon, et al., 2019), which calculated the steering angles using the leteral deivation 

and heading error measured at the look-ahead point, a driving-status predictor that 

could recognize the curved shape of the guidance line the was proposed. The 

feasibility of using the proposed path tracking controller for the autonomous tractor 

was investigated via a 3D graphic computer simulator. Field test was conducted to 

validate the potential of the proposed tracking method to increace the field 

efficiency with acceptable tracking performance in a paddy field. The following 

conclusions can be drawn form the results of the test 

  The computer simulation study showed that the RL-based intelligent 

tracking controller guided the tractor to follow the path with a smaller 

oscillation and the position where the trajectory converges to the steady-

state on the reference path was earlier, compared to the previously 

developed tracking controller (Han, Kim, Jeon, Moon, et al., 2019) due 
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to the use of the adaptive look-ahead distance generator. When applying 

the proposed tracking controllers to guide the tractor to follow the C-

shaped path at two-level of the travelling velocity, i.e., 2 and 4.5 km/h, 

even though there was little difference in the trajectory obtained with 

two different tracking algorithm on both straight and curved paths, the 

RL-based intelligent path tracking controller showed superior 

performance on curved path with a maximum lateral deviation and 

heading error of 2.6 cm and 1.7 deg (root mean square error (RMSE) = 

1.2 cm and 1.1 deg), compared to those of 13.5 cm and 3.19 deg (root 

mean square error (RMSE) = 7.6 cm and 2.4 deg). 

  In the paddy field test, the autonomous tractor equipped with the RL-

based intelligent path tracking controller navigated the reference without 

any stops or divergence with increased path-tracking accuracy compared 

with previous study (Han, Kim, Jeon, Moon, et al., 2019) even under 

high speed condition (4km/h). This indicated that the developed RL-

based intelligent path tracking controller was a better candidate for use in 

an autonomous tractor to increase the field efficiency by accerlating the 

traveling velocity. 
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CHAPTER 7 

CONCLUSIONS 

CONCLUSIONS OF THE STUDY 

In this study, a full coverage-path planner (CPP) with an optimal sequence and an 

intelligent path tracking controller were developed. to cover a whole area with the 

high field efficiency for autonomous tillage and puddling∙leveling tractor operating 

in a polygonal paddy field.  Conclusions drawn up based on the results are: 

  A full-CPP for an autonomous tillage and puddling∙leveling tractor that 

provides automatic generation of both inner and outer-work paths, and 

boundary corner turning methods applicable to polygonal-shaped paddy 

fields with various corner angles was developed and demonstrated that it 

could guide the autonomous tractor with tracking accuracy with lateral 

and heading root-mean-squared errors (RMSEs) of < 10.1 cm and 2.2° 

and tillage performance with the skipped areas of < 1.7% of the total 

area in three different polygonal paddy fields: triangle, (3020.3 m2), 

quadrilateral (3451.3 𝑚2), and pentagon (4361.3 𝑚2). In addition, when 

the autonomous puddling∙leveling tractor equipped with the developed 

CPP, navigated the paddy field where the water was flooded, the results 

showed lateral deviation ranging from -11.3 cm to 13.7 cm and heading 

error ranging from -2.7 deg to 1.8 deg, respectively, and the system 

showed superior tracking performance in terms of travel distance and 

fuel consumption by reducing from 3039.6 m to 1940.1 m and 17.1 L to 

16.3 L as compared with those of the manual operation. However, it was 
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confirmed that it took about 20 minutes more time because it traveled at 

a slower average velocity (1.35 km/h) than the manual-driven tractor 

(2.75 km/h). 

  A novel path planner for the entry and exit operations of an autonomous 

tractor was developed using the A* algorithm to enable the tractor 

located at the entrance to automatically go to the start point of an 

operational path and return to the entrance after completing the 

agricultural task. For validation testing in two paddy fields, the entry-exit 

paths were successfully generated in response to different entrance 

locations and the tractor followed the entry path and started the operation 

at the start point of the work path with a lateral deviation of < 8.5 cm. In 

addition, the tractor navigated the exit path automatically and reached 

the destination with a lateral deviation of < 12 cm and a heading error of 

< 22° to the entrance and the operator was then able to drive the tractor 

to exit the field easily without backward navigation. 

  An intelligent path tracking controller designed using reinforcement 

lerarning (RL) to adaptively provide a tracking parameter (look-ahead 

distance) based on a navigational condition represented by lateral 

deviations and heading errors in real-time to keep the implement on the 

reference line at various speed conditions, was developed and validated. 

the autonomous tractor equipped with the RL-based intelligent path 

tracking controller without any stops or divergence with increased path-

tracking accuracy (lateral and heading RMSEs of 12.9 cm and 3.8 deg) 

compared with those (lateral and heading RMSEs of 30.1 cm and 8.6 
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deg) obtained using the system with slip-estimation based tracking 

method developed in previous study (Han, Kim, Jeon, Moon, et al., 

2019) at 4 km/h. 

SUGGESTIONS FO FUTURE STUDY 

Based on the results obtained from this study, future studies area recommended as 

follows: 

  The shape of the fields is varied according to the local environment 

including infield obstacles (i.e., electrical utility pole, rock, tree, etc), 

natural contours, irrigation facility, and a road. In addition, since the 

developed CPP is insufficient to provide the path where the field is non-

convex or contains obstacles, further studies on path planning strategies 

applicable to various conditions of the paddy fields are needed.  

  The implementation of an optimization method of the CPP used in this 

study was limited to the determination of an optimal sequence of the inner 

tracks to minimize a non-working distance that mainly occurs during a 

headland turning maneuver. Therefore, further investigations about 

optimal field work pattern for autonomous tractor in terms of field 

efficiency are required by considering the geometric characteristics of the 

paddy field such as a field boundary and a single entrance.  

  In this study, only look-ahead distance was considered as an action of the 

framework of reinforcement leraning (RL) implemented in an intelligent 

path tracking controller. Further studies on the tracking controller based 

on the RL are needed to achive improved tracking accuracy by 

considering additional tracking parameters. A possible approach might be 
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to modify the framework of RL to provide the tracking parameters such as 

proportional-integral-derivative parameters (Kp, Ki, Kd) of the control 

logic, traveling velocity, and steering angle. 
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농작업을 위한 전역 경로 생성 및 탐색 

제어 기술 개발 

 

전 찬 우 

 

ABSTRACT IN KOREA 

 
농업분야는 세계 인구 증가에 따른 생산량 증대 요구와 함께 농가 

인구 감소 및 고령화로 지속 가능한 방법으로 농산물 생산을 위한 

농가경영의 과제를 겪고 있으며, 이러한 효율적인 농업생산시스템에 

대한 요구로 자율농기계가 농업 문제 해결방안 중 하나로 주목받고 

있다. 소규모, 구획화 그리고 집약 농업 형태인 수도작 환경에서 

자율주행 농기계 시스템의 적용은 농지 내 선회, 농지 형태에 따른 논둑 

경계 작업, 논둑 지형적 특성으로 발생된 단일 출입구 등이 반영된 경로 

계획 기술과 잦은 선회와 담수 환경에 의해 발생되는 동적환경변화 

반영한 정밀제어 기술이 필요하다. 

본 연구에서는 다변형 무논에서 경운 및 균평∙정지 작업을 대상으로 

자율주행 트랙터가 전역을 최적화 된 운행계획으로 효율적인 농작업을 

수행할 수 있는 경로 생성기와 동적 환경변화를 감지해 주행전략의 

실시간 변화가 가능한 지능형 경로 탐색기가 탑제 된 완전 자율작업 

트랙터 시스템을 개발하고자 한다. 이를 위해 자율작업 트랙터 대상 

경운 및 균평∙정지 작업 경로 모델 제시 및 비정형 무논형태에 

적용가능한 내외부 작업 경로 및 회경 방식을 개발하였으며, 경로 계획 
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성능향상을 위해 유전 알고리즘을 활용하여 비작업 거리의 최소화가 

가능한 최적 왕복작업열 순서 결정 방법이 탑재되었다. 경로 계획 

시뮬레이션 결과, 개발 된 경로생성기를 통해 최적 농작업 경로는 

이전에 개발된 경로생성기와 비교하여 세 가지 다각형 포장 (삼각형, 

사다리꼴, 오각형) 28%, 33.9% 및 45.0%의 비작업 거리를 줄임으로써 

작업 효율성을 높이는 효과를 보여주었다. 더 나아가 농지 입구에 

위치한 트랙터가 자동으로 농작업의 시작 지점으로 이동하고 농업 작업 

완료 후 입구로 돌아갈 수 있도록 A* 알고리즘을 이용한 진출입 경로 

생성기를 제안하여 농지 내 완전 자율작업이 가능하도록 하였다. 또한 

다양한 속도 조건에서 트랙터의 주행 성능 (정확성, 안정성)을 

향상시키기 위해 강화학습을 활용한 실시간 동적환경변화 대응 지능형 

경로 탐색기를 설계 및 개발하였다. 가상현실에서 무인 농작업이 가능한 

시뮬레이터를 이용하여 개발한 알고리즘을 평가하였으며 최종적으로는 

개발 기술을 실제 농용트랙터에 탑재하여 실제포장에서 무인 경운 및 

균평∙정지작업 수행 및 주행∙작업 성능을 검증하였다. 

검증 결과, 자율작업 시스템 트랙터은 로터리 경운 작업 시 위치 

오차 10.1cm 그리고 방향 오차 2.2° 미만인 RMSE 정확도로 세 가지 

다각형 무논 (삼각형, (3020.3 m2), 사다리꼴 (3451.3 m2), and 오각형 

(4361.3 m2))에서 전체 면적의 1.7% 미만의 미경지로 자율 작업이 

가능함을 보였다. 또한 자율 균평∙정지 작업 시 횡방향 및 방향각 오차가 

각각 -11.3cm ~ 13.7cm, -2.7 o ~ 1.8o 로 자율 작업기 가능함을 

확인하였으며, 숙련 작업자에 비해 비해 주행 거리와 총 연료 소모량을 

3039.6m 에서 1940.1m 그리고 17.1L 에서 16.3L 로 감소시킴으로써 

주행거리 및 연료소모 효율을 개선 됨이 확인 되었다. 하지만 숙련 

작업자(2.75km/h)보다 자율작업 트랙터(1.35km/h)는 느린 평균속도로 

주행하여 20 분 정도 시간이 더 소요되었다. 그럼에도 불구하고, 비슷한 

평준화 성능이 각각 39.61m 에서 39.85m(자율), 39.62m 에서 

39.81m(수동)의 고도에서 측정되어 작업의 효용성이 확인되었다. 
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마지막으로, 강화학습 기반 지능형 경로 추적 제어기가 장착된 자율 

트랙터 시스템의 RMS 주행 및 방향각 오차는 4km/h 주행 시 12.9 

cm 와 3.8 o 이내로 기존 슬립 추정 기반 탐색방법 (30.1 cm 와 8.6 o)과 

비교하여 우수한 추종경로 정확도 성능을 보였다. 이러한 결과들을 통해 

개발 경운 및 균평∙정지 경로 생성 및 지능형 탐색 제어 기술이 

기존보다 효율적인 트랙터 운용으로 수도작 농업환경에서 무인 자율작업 

트랙터의 잠재력을 보여주었다. 향후 보완 연구로서 곡선, 오목 포장형태 

등 확대 된 다중 제약 영농조건을 고려한 경로생성 기술 보완이 

필요하며, 자율작업 트랙터를 이용하여 농작업 시 토양조건으로 인하여 

발생되는 부하 및 슬립 발생 시 탐색 매개변수를 가변적용하는 등의 

무논에서 활용해 온 구형 농기계의 제원에 대응되는 보편적인 기능을 

수행하면서도 높은 자동화 수준을 달성하기 위한 강인제어기술이 필요할 

것으로 판단된다. 

 

주요어: 자율주행 트랙터, 수도작 논, 경운, 균평 ∙ 정지, 커버리지 경로 

생성, 최적 경로 생성, 지능형 경로 탐색, 강화학습 
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