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Abstract

Differentially private multi-class classification
using kernel supports and equilibrium points

Jinseong Park

Department of Industrial Engineering

The Graduate School

Seoul National University

In this paper, we propose a multi-class classification method using kernel supports

and a dynamic system under differential privacy. We find support vector machine

(SVM) algorithms have a fundamental weaknesses of implementing differential pri-

vacy because the decision function depends on some subset of the training data

called the support vectors. Therefore, we develop a method using interior points

called equilibrium points (EPs) without relying on the decision boundary. To con-

struct EPs, we utilize a dynamic system with a new differentially private support

vector data description (SVDD) by perturbing the sphere center in the kernel space.

Empirical results show that the proposed method achieves better performance even

on small-sized datasets where differential privacy performs poorly.

Keywords: Differential privacy, Machine learning, Support vector data descrip-

tion, Support vector machine, Dynamic System, Industrial engineering
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Chapter 1

Introduction

1.1 Problem Description: Data Privacy

Data privacy is an important issue for protecting data owner’s sensitive information

when collecting, storing, and sharing the data. As machine algorithms usually learn

patterns from training data, the algorithms possess the risk of information leakages

from the data and the training process. In other words, an attacker may learn the

private data from models.

The EU implemented the General Data Protection Regulation (GDPR) in May

2018, proposing privacy standards such as the right to be informed, the right to

be forgotten, and automated decision-making. Data management and control are

increasingly being strengthened, including the enforcement of the California Con-

sumer Privacy Act (CCPA) in the USA and the ’Three laws of data’ in Korea.

Furthermore, the vulnerability of anonymization, the most basic method for data

protection, has emerged. In the Netflix Prize competition, the training data was

anonymized and disclosed for the training of the recommendation algorithm, which

was then attacked by linking with other rating data to personalize users [30].

To deal with the concerns, differential privacy (DP) [9] has become a formal

mathematical framework for guaranteeing the privacy of data. Differential privacy
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gives strong privacy for an individual’s input to arbitrary functions while allowing

useful computations on the private data. Therefore, guaranteeing differential privacy

is essential to provide data analytic services. For instance, private medical data

such as biomedical data and diseases cannot be revealed to the public. To achieve

privacy protection, Laplace or Gaussian noise should be added to input, output, or

parameters in the model according to their sensitivity.
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(a) SVM of the whole dataset
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(b) SVM after deleting one support vector

Figure 1.1: Illustration of the vulnerability of SVM under differential privacy.

1.2 The Privacy of Support Vector Methods

Support vector based methods [3, 40, 42], one of the popular machine learning algo-

rithms, have been successfully solved diverse pattern recognition problems. Support

vector machine (SVM) by Vapnik [42] is the most popular method based on struc-

tured risk minimization and kernel functions. SVM primarily maximizes the margin

of decision boundary between two-class and thus many studies have decomposed a

multi-class problem into several two-class problems such as one-against-all or one-

against-one strategies. In contrast to deep learning algorithms, which need massive

data to train and thus relatively free from modification to one sample [1, 12], ma-
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chine learning algorithms are usually trained with relatively small data since they

perform well on generalization tasks through margin maximization and non-linear

kernels. But at the same time, a small size of dataset is critical in terms of differential

privacy since the sensitivity is usually inversely proportional to the number of data

samples in ERM [6]. In summary, due to the high sensitivity on a small dataset,

we should consider support vector methods that maintain comparable performance

with a large dataset.

Several works have focused on privacy-preserving SVM [6, 17, 36]. However, we

found that SVM framework may not be suitable for differential privacy with two

drawbacks. First, the decision boundary of SVM depends on some subset of the

training data called the support vectors. Therefore, publishing support vectors pos-

sesses high risk as the important information of the training set is concentrated on

few points. Second, as shown in Figure 1.1, SVM is highly sensitive to a modifica-

tion of a support vector considering that differential privacy focuses on the worst

case of changing one point. In Figure 1.1, the predictions of a model could be radi-

cally changed when one support vector is modified, where differential privacy should

guarantee the worst case. The test data (red triangle) was predicted as +1 class

(O) in (a), but the decision boundary changed rapidly after deleting one support

vector (purple x) and thus test data is classified to -1 class (X) in (b). The solid line

represents the decision boundary and the points on dotted line with green circles

are support vectors.
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1.3 Research Motivation and Contribution

To deal with above issues, we propose a new multi-class classification method focus-

ing on interior points called equilibrium points (EPs) which are local optimum of

support level function. We choose support vector data description (SVDD) [40] as

the support function, which finds a hyper-sphere with the minimum radius around

data in the kernel space. This clustering-based approach solves the two problems of

SVM mentioned above because the equilibrium points are not one of the train data

and the new algorithm focuses not on the decision boundaries but on the interior

points. Our research motivations and main contributions of the thesis are as follow:

• We prove differential privacy guarantees for support vector data description

(SVDD) by perturbing the sphere center in the kernel space. To the best of

our knowledge, this is the first approach for guaranteeing differential privacy

of support vector data description.

• We propose a new multi-class classification with kernel supports focusing on

interior points called equilibrium points (EPs).

• We achieve higher performance under differential privacy than previous differ-

entially private SVM models on various datasets.

• The proposed method could publish its hyperparameter in two ways depending

on the degree of protection: (1) publishing all private support functions and

(2) publishing private equilibrium points and let a user classify the test data

with k-nearest-neighbors (kNN).
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1.4 Organization of the Thesis

The thesis is composed of 8 chapters. In Chapter 2, we review literatures related to

the problem. In Chapter 3, we mention preliminaries of the proposed method in terms

of privacy. In Chapter 4, we propose our clustering algorithm under guaranteeing

privacy. In Chapter 5, we develop a private classification idea with the clustering

method. Then, we present some inference scenarios of the proposed method. The

experiments and results are in Chapter 7. Finally, in Chapter 8, we give concluding

remarks and possible future research directions of this thesis.
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Chapter 2

Literature Review

We summarize some works on guaranteeing differential privacy in support vector

classifiers. As both SVM and SVDD can be solved by both primal and dual problems,

we state two major approaches which are maximizing margin in the primal problem

and utilizing dual variables and kernels in the dual problem.

2.1 Differentially private Empirical risk minimization

A support vector classifier like SVM can be formalized as a convex quadratic pro-

gramming. Because the solution of SVM converges to a global optimum, earlier

works primarily solved SVM from the point of view of empirical risk minimization

(ERM). For ERM, after Dwork [7] proposed the perturbation techniques, Chaud-

huri et al. [6] developed the basic algorithms of adding noise to the outputs or to

the objective function. [19] proposed an improved version of differentially private

convex ERM algorithm, especially for high-dimensional learning. These studies have

focused on approximating the primal objective using the Huber loss [6] while solving

SVM. Algorithms for other optimization problems also have been published such as

the functional mechanism [46] which perturbed the coefficients of linear regression

and logistic regression.
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Another approach to achieve differential privacy in ERM is perturbing the gra-

dient. Bassily et al. [2] investigated the stochastic gradient descent (SGD) method

to solve the convex optimization, and achieved a tighter bound of convex ERM.

Various works such as developing smooth objectives [47], reducing complexity, and

tightening bound of the loss function [44] are under studied. Iyengar et al. [16] im-

proved Huber SVM through gradient based differential private convex optimization

algorithms. Note that the gradient approach is similar to deep learning [1] [2].

2.2 Differentially private Support vector machine

Support vector machine have only been studied under differential privacy among

support vector classifiers. To be specific, Rubinstein et al. [36] proposed a privacy

framework for SVM with kernel functions and corresponding reproducing kernel

Hilbert spaces (RKHS). The algorithm obtains optimal dual variables by solving the

dual problem and adds noise to the primal weight vector. Note that a dual variable

matches to a training data, all dual variables could be affected by modifying just

one input, which makes hard to obtain sensitivity in the dual formula. Jain and

Thakurta [17] proposed three different ways to add noise to their corresponding

three different situations on user’s query: providing only prediction, publishing the

differentially private weight vector fitted to the user’s dataset, and publishing the

weight vector privately learned with sampling training data. We will further discuss

about [17, 36] in Section 6.3. Zhang et al. [49] suggested dual variable perturbation,

but it may not fit the definition of differential privacy since they publish support

vectors without any perturbations. Hall et al. [13] proposed the idea of adding an

appropriate Gaussian process to the function, especially in the RKHS. Currently,

7



various application of [36] such as [29], [39], [26] and adding noise to kernel output

[45] have been also published.

8



Chapter 3

Preliminaries

3.1 Differential privacy

Differential privacy [9], [10] provides a formal approach to privacy of individuals

in datasets. It guarantees that the output of a mechanism is robust to any change

(deletion, modification) of one sample, thus protecting the individual privacy from an

adversary. Under differential privacy, each individual’s data (record) is guaranteed

to be private and cannot be revealed.

Definition 3.1. (Differential privacy) A randomized mechanism M is (ϵ, δ) -

differentially private if, for two neighboring datasets D and D′ in D (i.e., differ

by one data sample) and for all S ⊆ Range(M), it holds that

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ (3.1)

where ϵ, δ ≥ 0 are parameters to control the amount of the difference between D and

D′.

We call ϵ the privacy budget, where smaller ϵ could guarantee better privacy of

mechanism M. The other parameter δ, introduced in [8], means that mechanism

M can be broken with probability δ. Especially, ϵ-differential privacy represents

9



(ϵ, δ)-differential privacy with δ = 0.

Definition 3.2. (Sensitivity) For a query g : D → Rk, and neighboring datasets D

and D′ the ℓ1-sensitivity of g is defined as

∆g = maxD∼D′ ||g(D)− g(D′)||1. (3.2)

where ||g(D)− g(D′)||1 represent the 1-norm distance between g(D) and g(D′).

The ℓ1 sensitivity also called Sensitivity. The sensitivity of g measures how

much the output of g could be changed by modifying one data in D. The sensitivity

gives an upper bound on how much we should perturb its output to satisfy differential

privacy.

Properties 1. For any function g : D → Rk with sensitivity ∆g, randomized mech-

anismM,

M(D) = g(D) + µ (3.3)

provides ϵ-differential privacy where each µi is i.i.d. random variable drawn from

Lap(∆f
ϵ ). Note that Lap(λ) ∼ 1

2λexp(−
|x|
λ ) where λ denotes the scale of noise.

The randomized mechanism M called Laplace Mechanism. Similar to Laplace

mechanism, Gaussian mechanism implies that adding Gaussian noise, M(D) =

g(D) +N (0, 2ln(1.25/δ)·(∆f)2

ϵ2
) for (ϵ, δ)-differential privacy [10].

Properties 2. (Post-processing [10]) Let a mechanismM : D → R is ϵ-differential

private and let h : R → R′ be a arbitrary randomized mapping. Then h◦M : D → R′

is ϵ-differential private.

10



Properties 3. (Parallel composition [28]) For disjoint dataset chunks D1 ∪ D2 ∪

... ∪Dn = D, suppose the combination of random algorithms M1,M2, ...,Mn and

the corresponding privacy budget ϵ1, ϵ2, ..., ϵn. The combination mechanism

M(M1(D1),M2(D2), ...,Mn(Dn) provides max(ϵi)-differential privacy where i =

1, ..., n.

11



Chapter 4

Differential private support vector data
description

For a robust privacy-friendly multi-class classification, we first propose a new method

of injecting noise to guarantee differential privacy of SVDD.

4.1 Support vector data description

SVDD is a clustering and outlier detection method using kernel supports where Tax

and Duin [40] proves that SVDD is identical to one class SVM [27] under RBF

kernel. The basic idea of SVDD under a kernel function is to map the input data

into a high dimensional feature space and to find the smallest enclosing sphere of

radius R that contains most of the mapped data points in the feature space. Using

the kernel function, the sphere can obtain non-linear boundary when mapped back

to the data space. More specifically, let set of data {xi, yi}ni=1 ⊂ X × Y be a given

data set of xi ∈ Rd and its label yi. With a nonlinear feature mapping ϕ from Rd

to F -dimensional feature space RF , SVDD finds the smallest enclosing sphere of R

with a sphere center a in RKHS described by the following model:

min
R,a,ξ

R2 +
C

n

∑
i

ξi s.t. ∥ϕ (xi)− a∥2F ≤ R2 + ξi, ξi ≥ 0,∀i. (4.1)

12



Again, slack variables ξi ≥ 0 allow a soft boundary and can be denoted as a loss

function ℓ(a,x) := [∥ϕ(x) − a∥2 − R2]+. Hyperparameter C controls the trade-off

between penalties ξi. Points which fall outside the sphere, i.e., ∥ϕ(xi)− c∥2 > R2,

are deemed anomalous. Using the dual variables βj , the solution of primal problem

(4.1) can be obtained by solving the following Wolfe dual problem:

max W =
∑
j

βjK(xj ,xj)−
∑
i,j

βiβjK(xi,xj)

s.t. 0 ≤ βj ≤
C

n
,
∑
j

βj = 1, j = 1, ..., n.

(4.2)

By solving a convex optimization problem, the trained kernel support function,

which measure the distance from the sphere center, is then given by

f(x) = ||ϕ(x)− a||2 (in primal), (4.3)

= K(x,x)− 2
∑
j

βjK(xj ,x) +
∑
i,j

βiβjK(xi,xj) (in dual). (4.4)

where K(xi,xj) replaces the inner product of ϕ(xi) · ϕ(xj) and xj with 0 < βj <

C/n are called support vectors and lie on the boundary of the sphere. Here, since

the primal solution is equal to the dual solution, the center of the sphere a =∑n
i=1 βiϕ (xi).

4.2 Differentially private support vector data description

Now, we propose an algorithm for guaranteeing differential privacy in support vector

data description and prove the algorithm. To prove differential privacy, we borrow

proof techniques from differentially private SVM algorithms (Lemma 9 of [36] and

13



Appendix section A of [17]). From now on, we only consider Radial basis function

(RBF) K(x1,x2) = exp(−γ||x1 − x2||2) as kernel, because RBF kernel is bounded

by K(x,x) ≤ κ2 = 1, which helps reduce the sensitivity. Since the dual formula

has a limitation that the kernel trick needs to utilize training data as mentioned

above, we emphasize the reason of utilizing a primal formula again. To dealing with

reproducing kernel Hilbert space induced by RBF kernel, we define F -dimensional

feature mapping ϕ as

ϕ(·) =
√

2

F

[
cos (⟨ρ1, ·⟩) , sin (⟨ρ1, ·⟩) , . . . , cos

(〈
ρF

2
, ·
〉)

, sin
(〈

ρF
2
, ·
〉)]T

(4.5)

where F should be an even number. Algorithm 1 describes our Private SVDD, which

perturbs the center of the sphere a. First, we need to draw ρ to find feature mapping

ϕ. Then, solve problem (4.2) and obtain optimal dual variables β∗. With equation

(4.5) for ϕ, we can form the according primal solution. At the end, we can obtain

differentially private center â of the sphere in RKHS by adding i.i.d. samples from

Laplace noise µ with corresponding λ which depends on L1-sensitivity. In summary,

we perturb the center of the sphere a∗ compared to SVM that injects noise to w∗

[36]. Then, with Laplace noise µ with sensitivity λ, differentially private support

function is defined as

f̂(x) = ||ϕ(x)− â||2 where â = a+ µ. (4.6)

From now on, to make the notation more convenient, we will denote a optimal

solution with star(*) and corresponding differentially private notation with hat(ˆ).

Now, we calculate the sensitivity of a and privacy guarantee when a training

14



Algorithm 1 Private SVDD

Require: Training data D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R; Translation-
invariant kernel K(x,y) = G(x − y) with Fourier transform p(ω) =
2−1

∫
e−j⟨ω,x⟩g(x)dx; Convex loss function ℓ; Parameters λ,C > 0 and the de-

sired dimension number of feature mapping F .
1: ρ1, . . . ,ρF

2
← Draw i.i.d. sample of F

2 vectors in Rd from p;

2: β∗ ← Solve Equation (4.2) on D with parameter C, kernel K induced by map
(4.5), and loss ℓ;

3: a∗ ←
∑n

i=1 βiϕ (xi) where ϕ is defined in Equation (4.5);
4: µ← Draw i.i.d. sample of F scalars from Lap(λ); and
5: Return â = a∗ + µ and ρ1, . . . ,ρF

2
.

example is changed. Before that, we can say a optimal solution of (4.2) be a solution

of

max
β

∑
i

T (βi)−
1

2

∑
i,j

βiβjK(xi,xj)

 (4.7)

as determined at [11] where T is concave function.

Lemma 4.1. (Zhang [48]) Let aD be the solution of (4.7) under dataset D and aDi

be a solution of the same problem where ith point is removed. Then,

∥aD − aDi∥F ≤ |βi|
√
K (xi, xi).

Corollary 4.2. (Sensitivity) For every pair of neighboring datasets D, D′ of n en-

tries, let aD and aD′ are the optimal solutions to (4.1) when the underlying datasets

are D and D′. Then, we have ∥aD − aD′∥1 ≤ 2Cκ
√
F

n .
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Proof W.l.o.g. we can assume that the datasets D and D′ differ in the nth data

point, i.e. xn ∈ D and x′
n ∈ D′. Then, by Lemma 4.1:

∥aD − aDn∥F ≤ |βn|
√

K(xn,xn) ≤
C

n
κ

∥aD′ − aD′n∥F ≤ |βn|
√

K(xn,xn) ≤
C

n
κ.

Note that Dn = D′n. Then, by triangle inequality, we have

∥aD − aD′∥F ≤ ∥aD − aDn∥F + ∥aD′ − aDn∥F ≤ 2Cκ

n

and ∥aD − aD′∥1 ≤
√
F∥aD − aD′∥2 ≤

√
F∥aD − aD′∥F ≤ 2Cκ

√
F

n .

Theorem 4.3. (Privacy Guarantee) Algorithm 1 is ϵ-differentially private.

Proof Let D, D′ be a pair of neighboring datasets with n entries, and aD, aD′

be the optimal solutions to (4.1) when the underlying datasets are D and D′. Let

â ∈ RF be the response of Algorithm 1 and let µD, µD′ denote i.i.d Lap(0, λ). Then

the ratio of probabilities Pr (M (D) = â) and Pr (M (D′) = â) can be bounded by

Pr (µD = â− aD)

Pr (µD′ = â− aD′)
=

exp (−∥â− aD∥1 /λ)
exp (−∥â− aD′∥1 /λ)

≤ exp

(
∥aD − aD′∥1

λ

)

The equality holds by rule of product and law of exponent. The inequality follows

by triangle inequality. By Lemma 4.1, for λ ≥ 2Cκ
√
F/(ϵn), the algorithm guaran-

tees ϵ-differential privacy. Note that for RBF kernel, we have κ = 1. The optimal

solution of SVM is bounded by κ since aD =
∑n

i=1 βiϕ (xi) ≤
∑n

i=1 βiκ = κ. So, we
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clip the output of Algorithm 1 by κ and because clipping is post-processing, we can

get â ← clip(â) without without loss of privacy. Next, we show the utility of our

method.

Theorem 4.4. (Error bound) For any ν > 0 and τ ∈ (0, 1), Algorithm 1 run on

D with loss ℓ, kernel K, noise parameter 0 < λ ≤ ν
8κ(F+ln 1

τ )
, and regularization

parameter C, is (ν, τ)-useful with respect to the SVM under the ∥ · ∥∞;X -norm. In

other words, run with arbitrary noise parameter λ > 0, Algorithm 1 is (ν, τ)-useful

for ν = Ω
(
λκ

(
F + ln 1

τ

))
.

Proof Consider the SVDD and Algorithm 1 on any arbitrary point x ∈ X and

i.i.d Lap(0, λ) noise µ,

|fâ(x)− faD(x)| = |∥ϕ(x)− aD∥2 − ∥ϕ(x)− â∥2|

= |ϕ(x)T (â− aD) + (â− aD)
Tϕ(x) + aT

DaD − âT â|

= |ϕ(x)Tµ+ µTϕ(x) +
1

2
{(aD + â)Tµ+ µT (aD + â)}|

≤ 2∥µ∥1∥ϕ(x)∥∞ + ∥µ∥1∥aD + â∥∞

≤ 2κ∥µ∥1 + 2κ∥µ∥1 = 4κ∥µ∥1.

The last inequality follows from aD =
∑n

i=1 βiϕ (xi) ≤
∑n

i=1 βiκ = κ, and without

loss of privacy, we can assume â ≤ κ.

The absolute value of a zero-mean Laplace random variable with scale λ is expo-

nentially distributed with scale λ−1. Moreover the sum of q i.i.d. exponential random

variables has Erlang q-distribution with the same scale parameter. Thus we have,
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for Erlang F -distributed random variable X and any t > 0

∀x ∈ X , |fâ(x)− faD(x)| ≤ 4κX

⇒ ∀ν > 0,Pr
(
∥fâ − faD∥∞;X > ν

)
≤ Pr(X > ν/4κ) ≤

E
[
etX

]
eνt/4κ

. (4.8)

Here we have employed the Chernoff tail bound technique using Markov’s in-

equality. The numerator of equation (4.8), the moment generating function of the

Erlang F -distribution with parameter λ, is (1− λt)−F for t < λ−1. With the choice

of t = (2λ)−1, this gives

Pr
(
∥fâ − faD∥∞;X > ν

)
≤ (1− λt)−F e−νt/4κ

= 2F e−ν/(8λκ)

= exp
(
F ln 2− ν

8λκ

)
< exp

(
F − ν

8λκ

)
and provided that ν ≥

(
8λκ

(
F + ln 1

τ

))
this probability is bounded by τ .
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Chapter 5

Differentially private multi-class classification
utilizing SVDD

We now present a new DP-friendly multi-class classification method utilizing differ-

entially private SVDD. The basic idea of our approach is to classify data using inte-

rior points of the data space instead of the decision boundary of SVM. The proposed

method consists of three phases: (I) constructing differentially private support level

functions via SVDD, (II) classifying the data space privately via a dynamic system,

and (III) two inference methods using equilibrium points. We illustrate the proposed

method in Figure 5.1. Under differing colors based on samples’ classes, train points

are marked with circles. Equilibrium points (EPs), marked with stars, lie in the local

minima of train data where the red lines indicate the contour of the support level

function. The colored region means the class of each point in the grid of data space.

Models with noise, even the EPs and decision boundaries become distorted, show

similar decision regions to non-private models. To avoid confusion, we describe the

details of the proposed method and check whether differential privacy is satisfied in

the following subsections.
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(b) with noise on five gaussians

(c) w/o noise on three moons (d) with noise on three moons

Figure 5.1: Illustration of classification regions of non-private models (left) and mod-
els with perturbation (right) of the proposed method on five gaussians (top) and
three moons (bottom).

5.1 Phase I. Constructing a private support level function

A support level function [29] is defined as positive scalar function f : Xd → X+

where its level set is given by Lf (r) = {x ∈ Rd : f(x) ≤ r} for some r > 0.

As SVDD is designed to find a domain enclosing most of data points called as a

support domain, Lf (r) can estimates a kernel density function. Therefore, in this

paper, we construct the level function with SVDD where its support level function f

is defined by a square distance from the sphere center in RKHS. We note that other

kernel density functions are also possible for the level function [18, 20, 22]. As we

calculate a differentially private sphere center â and corresponding support function
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f̂ in equation 4.6, we now build a differnetially private support level function L̂f .

Using the level function, we can decompose the level function into several separate

connected components Ci, where i = 1, ..,m, i.e.,

L̂f (r) = {x ∈ Rd : f̂(x ≤ r)} = C1 ∪ · · · ∪ Cm. (5.1)

Here, constructing a support level function with a differentially private support

function f̂ satisfies post-processing property of Properties 2 in terms of differential

privacy.

5.2 Phase II: Differentially private clustering on the data

space via a dynamical system

The objective of phase II is to classify the data space via a dynamic system and find

interior points called equilibrium points (EPs). To decompose a whole data space

into separated cluster regions, we utilize the topological and dynamical properties of

the dynamic system. The dynamic system helps us find the private interior points of

the differentially private support level function f̂ by solving the following dynamic

system with f̂ , i.e.,

dx

dt
= −∇f̂(x). (5.2)

Consequently, we can find a private state vector ŝ, the local minimum point of the

private support function f̂ , is called (asymptotically) equilibrium points (EPs). For

an equilibrium point, we define its basin cell A(ŝ) by as the closure of the set of all
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the points converging to ŝ following the dynamic system (5.2), i.e.,

A(ŝ) := cl{x(0) ∈ Rd : lim
t→∞

x(t) = ŝ} (5.3)

from the initial point x(0) to x(t) in time t. Here, we apply gradient-descent methods

to solve the system (5.2) [23]. Under the mild condition, it is well known that the

whole data space can be partitioned into separate basin cells [24], [25] as

Rd =
M⋃
i=1

A(ŝi) (5.4)

where the set of EPs is {ŝi : i = 1, ...,M}. We could guarantee ϵ-differential

privacy of Phase II with the parallel composition of Properties 3 because every data

point converges to an EP and it cannot be assigned to multiple EPs.

5.3 Phase III: Classifying the decomposed regions under

differential privacy

So far, we have not used any information of labels y while focusing on the clustering

method into separate basin cells A(ŝ). In Phase III, we classify each decomposed

region under differential privacy. Since all data points converge to their respective

equilibrium points {ŝi}Mi=1 along the dynamics in equation 5.2, we can label each

basin cell A(ŝi) (hence, equilibrium point ŝi). Specifically, as each basin cell A(ŝi)

contains at least one labeled data point, we can make a majority vote on the labeled

data points and assign a class label to the most frequent class to the basin. The

simple idea is to partition data and to aggregate similar to the majority voting on

k-nearest neighbor (kNN) [35, 50] and the teacher ensemble in knowledge transfer
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[14, 32]. We consider the label of each data point as a prediction and aggregate all

predictions by choosing the label with the largest count in the basin cell. For each

class k = {1, ..., c} and the number of each class {n1, ..., nc}, we add random noise

to the vote counts nk of the basin cell to introduce ambiguity:

ŷs = argmax
k=1,...,c

{nk + Lap(
1

ϵ
)} (5.5)

where we add Lap(1ϵ ) to each count as the sensitivity of the count is always 1 [9].

Almost real-world problems usually have high dimensional data, it’s hard to

gather a sufficient number of train samples to make a majority voting in a basin cell.

To resolve this issue and increase the number of votes, we cluster the decomposed

regions (i.e., basin cells) into hypercubes according to the coordinates of equilibrium

points s in the high dimensional data space.

Sl := {sj : ||s0 − sj ||∞ ≤ rmax} (5.6)

where s0 is the centroid of a hypercube Sl and rmax is the maximal threshold of

distance between two points. To label Sl, we follow equation (5.5) where nj measures

the number of points converging to the equilibrium points in the hypercube for each

possible label.
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Figure 5.2: 2-dimensional classification using equilibrium points (left) and multi-
dimensional classification using hypercubes (right) of the proposed method.
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Chapter 6

Inference scenarios and releasing the differentially
private model

For inference scenarios, we define three participants in the model: a data owner,

a data publisher, and a data user. A data owner provides data for a training set

and a data publisher builds differentially private (trusted) models using the training

set. A user wants to make a prediction of his or her own test data using the model

parameters of publishers. For example, consider a scenario as follows.

Scenario: A medical technology company has built a model to classify a person’s

disease according to a health medical state of data publishers. As the algorithm highly

depends on each train data, it possesses a high risk to publish all the parameters for

the algorithms. So, the company, which is the publisher of this situation, should keep

the model parameters in a differentially private way.

Then, we present two ways for releasing the differentially private model: (1) a

data publisher allows a data user to make use of the private support function and to

classify new inputs with dynamic system and (2) a data publisher releases private

EPs and their labels in the data space, which let a user classify new inputs by

k-nearest neighbor (kNN).
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6.1 Publishing support function

To enable a user to make his or her own predictions using the proposed method,

a publisher needs to provide the private center of sphere â, feature mapping ϕ(·),

trained EPs (or hypercubes) and corresponding labels. Using the private center â and

feature mapping ϕ(·), the user can calculate a support level function f̂(x) in equation

(4.6). Then, the user estimates the equilibrium points of test data by equation (5.2)

and classifies according to the label of the converged equilibrium point. If none of

the EPs in training set exactly matches to the converged EP of test data, then the

user may choose the nearest training equilibrium point and use its label.

6.2 Releasing equilibrium points

Even though we guarantee differential privacy of the published model, allowing an

attacker to access the support function is still risky in terms of security and privacy.

In other words, as the algorithm highly depends on each train data, publishing all

the parameters for the algorithms may lead to a high risk of privacy leakage. Our

solution is only publishing private EPs while preserving support functions. Because

EPs exist in the input data space, classifying the test data by k-nearest neighbor

ensures moderate accuracy for new data points. Note that EPs are not exactly

matched with test data and keep the privacy of training set since EPs stand for

private local minimum points of a private support level function.
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6.3 Comparison to previous methods

We state details of previous differentially private SVM methods [17, 36] where µ

stands for Laplace noise of the corresponding sensitivity on each method. Rubin-

stein et al. [36] proposed the algorithm obtains optimal dual variables β∗ by solv-

ing the dual problem and adds noise to the primal weight vector ŵ = w∗ + µ =∑n
i=1 yiβ

∗
i ϕ(xi) + µ with feature map ϕ. Here, we denote the method perturbing

primal weight vector with approximating RBF kernel as SVM WEIGHT.

Jain and Thakurta [17] proposed a method with adding noise on output of

support function ⟨w∗, ϕ(z)⟩ + µ =
∑n

i=1 β
∗
i K(z,xi) + µ where each xi is in the

training set. Here, the algorithm should use train data for inference, thus cannot

publish parameters alone. We denote the method of perturbing output as SVM

OUTPUT. In semi-interaction scenario when a user agrees to provide parts of

his or her test set Z to a data publisher, the data publisher can publish a primal

weight vector ŵ is w which minimizes the difference in perturbed outputs of test

set 1
ntest

∑ntest
i=1 (⟨w − w∗, ϕ(zi)⟩ − µ)2. We denote the semi-supervised method [17]

as SVM SEMI.
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Chapter 7

Experiments

7.1 Models and Scenario setting

To evaluate the accuracy of models under differential privacy, it’s important to set

the scenario the same. For the experiments, we constraint the scenario to above

mentioned one in Section 6, in which a publisher should release the parameters

of a model and users can utilize them. SVM WEIGHT fits well to the scenario

by publishing differentially private ŵ and SVM SEMI, which receives test sets

from users, could provide appropriate differentially private ŵ. To compare proposed

method with the best accuracy of SVM SEMI, we gave the whole test data set

and select δ as large as possible under differential privacy, which is 1
n .

To set up a desired level of accuracy under differential privacy, we select SVM

OUTPUT. Because of utilizing test data {x1, ...,xn} in
∑n

i=1 βi
∗K(x,xi), SVM

Table 7.1: Benchmark data description and experimental settings

Data
sets

data set description SVM WEIGHT SVM SEMI Proposed SVM OUTPUT

dims classes train test (Cn / γ) (Cn / γ) (Cn / γ / lr / iters / rmax) (Cn / γ)

three moons 2 3 320 80 0.05 / 5 0.05 / 5 0.05 / 5 / 0.001 / 20 / - 0.05 / 5
five gaussians 2 5 800 200 0.1 / 1 0.1 / 1 0.1 / 5 / 0.001 / 20 / - 0.1 / 1

iris 3 4 80 20 0.05 / 1 0.05 / 1 0.05 / 1 / 0.001 / 10 / 0.5 0.05 / 1
wine 3 13 142 36 0.05 / 0.1 0.05 / 0.1 0.05 / 0.1 / 0.1 / 100 / 1 0.05 / 0.1

vowel 10 11 422 106 1 / 1 0.05 / 1 0.05 / 1 / 0.1 / 30 / 0.5 0.05 / 1
satimage 36 6 3548 887 0.05 / 0.1 0.05 / 1 0.05 / 0.1 / 0.001 / 20 / 1 0.05 / 1
segment 19 7 1232 308 0.5 / 1 0.5 / 1 0.5 / 1 / 0.001 / 20 / 0.5 0.5 / 1
shuttle 9 3 24360 6090 0.01 / 0.1 0.01 / 0.1 0.01 / 1 / 0.001 / 20 / 0.5 0.01 / 0.1
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OUTPUT cannot publish the hyperparameters of the model, which needs a strong

assumption that data users also trust the data publisher and all data should be cal-

culated by the publisher. Under strong assumption, SVM OUTPUT shows higher

accuracy than SVM WEIGHT and SVM SEMI. We exclude other models as fol-

lows: approximating primal solution with Huber loss in [6] showed lower performance

than SVM SEMI mentioned in [17], [49] possesses the privacy issue of publishing

support vectors without adding noise and [29], [39], [26] showed similar results with

SVM WEIGHT.

7.2 Datasets

In order to evaluate the accuracy under differential privacy, we conducted experi-

ments on 8 data sets and compared the performance on various privacy budgets ϵ. In

this paper, we focused on small datasets where differential privacy performs poorly.

Description of data set is given in Table 7.1. ”three moons” and ”five gaussians” are

artificially generated two dimensional datasets for visualization as shown in Figure

5.1. ”iris”, ”wine”, ”satimage”, ”segment” and ”shuttle” are widely used multi-class

classification data sets form University of California at Irvine (UCI) repository [4].

We divided ”shuttle” data into three classes to alleviate the class data imbalance.

7.3 Experimental settings

In experiments, for the Fourier transformation in the proposed method and SVM

WEIGHT, we use 400 dimensional feature map according to equation (4.5). De-

tailed hyperparameters such as C and γ are in Table 7.1. We try to match C, which

affects the sensitivity, between methods. Additionally, for the proposed method, we
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Table 7.2: Training and inference time (sec) for each dataset

Model — Dataset
three
moons

five
gaussians

iris wine vowel satimage segment shuttle (3)

SVM WEIGHT 4.72 100.65 0.60 4.66 71.17 1376.24 298.70 49943.29
SVM SEMI 5.01 64.35 0.51 1.63 31.39 1158.10 140.61 52519.56
Proposed 0.90 2.41 0.18 1.32 1.96 31.03 4.54 1334.80

also make note of initial learning rates (lr), the number of iterations (iters) of a dy-

namic system and rmax of a hypercube in Table (4.5). We decayed the learning rate

by a factor of 1/5 after 80% of iterations. We implement a random 80/20 train/test

split and performance is evaluated over 5 runs. We use one-against-all approaches

for the multi-class classification problem of SVM. All the experiments are run on an

Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz Processor using Python 3.7.4 along

with Sklearn [33], Scipy [43], and Cvxopt [41] packages.

7.4 Empirical results on various datasets under publish-

ing support function

Figure 7.1 summarizes the evaluation results under different ϵ for each dataset. Each

non-private model in the graph measures the baseline accuracy without adding noise.

We compared the proposed method with publishing support function under privacy

budgets ϵ = {0.01, 0.1, 1, 5, 10, 100} and Non-private model with SVM WEIGHT,

SVM SEMI (and SVM OUTPUT as a desired level of accuracy). In general, the

proposed method shows higher accuracy than SVM WEIGHT and SVM SEMI

in all datasets and shows almost close performance to SVM OUTPUT. In Vowel

(Figure 7.1e) and Segment (Figure 7.1g) datasets, the proposed method shows even

better performance.
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Figure 7.1: Test accuracy of SVM WEIGHT, SVM SEMI and the proposed
method (publishing support function) on various datasets.
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Furthermore, the results show that preserving privacy becomes harder under

the same privacy budget ϵ as the number of data decreases. For example, since

shuttle dataset contains 24360 training samples, SVM WEIGHT and SVM SEMI

also show similar accuracy until ϵ = 1 with non-private models. However, we can

see an apparent accuracy drop in the small datasets. It represents the hardness of

protecting the privacy of one individual data. The proposed method shows consistent

performance in a wide range of privacy budgets ϵ since the decisions with interior

points enhance the robustness against noise and modifications than the decision

boundary of SVM.

In terms of time complexity, the proposed method shows faster computation time

than other methods. Both SVM and SVDD methods have a QP procedure and QP

solvers take O(n3) [34]. One-against-all SVM algorithm should calculate all samples

in each class, so the complexity is O(c · n3). However, the proposed algorithm only

takes O(n3) for solving QP. For the dynamic system, it only takes at O(n2 · iters)

for gradient descent. Table 7.2 shows it takes lower time for classification.
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Figure 7.2: Test accuracy of the proposed method with releasing equilibrium points
varying the number of neighbors in kNN.

32



Table 7.3: Test accuracy of each model on shuttle by sub-sampling 10% (left) and
30% (right) of whole dataset.

sampling ratio = 0.1 sampling ratio = 0.3

ϵ 0.01 0.1 1 5 Non-private 0.01 0.1 1 5 Non-private

SVM WEIGHT 0.366 0.310 0.892 0.917 0.912 0.135 0.456 0.957 0.955 0.948
SVM SEMI 0.332 0.484 0.899 0.932 0.930 0.330 0.514 0.935 0.950 0.947
Proposed 0.456 0.644 0.908 0.983 0.987 0.635 0.786 0.958 0.981 0.986

SVM OUTPUT 0.493 0.919 0.926 0.926 0.926 0.559 0.943 0.943 0.946 0.946

7.5 Evaluating robustness under diverse data size

In this subsection, we evaluate the empirical robustness between data set size by sub-

sampling shuttle dataset. We sampled 10% and 30% of the dataset and implemented

a random 80/20 train/test split on the subsets and settings are the same as Table

7.1. As shown in Table 7.3, even if the non-private accuracy of each model is similar,

the proposed method shows high accuracy under a small privacy budget ϵ.

7.6 Inference through equilibrium points

Here, we compare releasing equilibrium points with publishing support vectors with

three moons and vowel datasets. All the hyperparameters and experimental settings

are the same as Table 7.1. We compared the performance on varying the number of

neighbors in kNN, as shown in Figure 7.2. For vowel, an easy dataset, 1-NN and 3-

NN show compatible results with the publishing support function. It shows similar

results to the method of publishing support function for three moons and vowel

dataset. The results show that publishing private EPs might be a good choice for

some differentially private situations when we want to secure our support function.
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Chapter 8

Conclusion

8.1 Conclusion

In this paper, we have investigated a multi-class classification method under differ-

ential privacy. By perturbing the sphere center in the kernel space, we can guarantee

the differential privacy of SVDD. Accordingly, we propose a new three-phase clas-

sification method based on equilibrium points. Empirical results demonstrate the

proposed method is more robust, fast, and useful compared to other existing differ-

entially private SVM methods.

8.2 Future Work

The privacy issue becomes more important in real-world problems. In this paper,

we run the experiments on the UCI dataset only, but the method can be applied

in many datasets. Through unifying various differential privacy methodologies, the

ultimate goal is to create a unified protocol and framework that can be applied to

the data-driven machine learning industry. We hope this research could help improve

practical solutions to real-world problems under guaranteeing the privacy of training

data.
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국문초록

본 논문에서는 커널 서포트와 평형점을 활용한 차분 프라이버시 다중 클래스 분류 기

법을 제시한다. 서포트 벡터 분류 기법은 데이터 분석과 머신 러닝에 활용성이 높아

사용자의 데이터를 보호하며 학습하는 것이 필수적이다. 그 중 가장 대중적인 서포트

벡터 머신(SVM)은 서포트 벡터라고 불리는 일부 데이터에만 분류에 의존하기 때문에

프라이버시 차분 기법을 활용하기 어렵다. 데이터 하나가 변경되었을 때 결과의 변화

가 적어야 하는 차분 프라이버시 상황에서 서포트 벡터 하나가 없어진다면 분류기의

결정 경계는 그 변화에 매우 취약하다는 문제가 있다. 이 문제를 해결하기 위해 본 연

구에서는 평형점이라고 불리는 군집 내부에 존재하는 점을 활용하는 차분 프라이버시

다중 클래스 분류 기법을 제시한다. 이를 위해, 먼저 커널 공간에서 구의 중심에 섭동을

더해 차분 프라이버시를 만족하는 서포트 벡터 데이터 디스크립션(SVDD)을 구하고

이를 레벨집합으로 활용해 동역학계로 극소점들을 구한다. 평형점을 활용하거나 고차

원 데이터의 경우 초입방체를 만들어, 학습한 모델을 추론에 활용할 수 있는 (1) 서포트

함수를공개하는방법과 (2)평형점을공개하는방법을제시한다. 8개의다양한데이터

집합의 실험적인 결과는 제시한 방법론이 노이즈에 강건한 내부의 점을 활용해 기존의

차분 프라이버시 서포트 벡터 머신보다 성능을 높이고, 차분 프라이버시가 적용되기

어려운 작은 데이터셋에도 활용될 수 있다는 기술임을 보여준다.

주요어: 차분 프라이버시, 머신 러닝, 서포트 벡터 분류, 산업공학

학번: 2020-26472
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