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Abstract 
 

Grinding is an energy-intensive process and the first step in mineral processing. 

However, it is difficult to accurately describe the grinding phenomenon owing to the 

complexities caused by the heterogeneity of natural mineral ore. This thesis 

introduces numerical and experimental approaches to effectively model the grinding 

process. 

First, discrete element method (DEM) was used to demonstrate a ball mill 

grinding process and estimate the breakage characteristics of the sample by 

separating the machine- and material-dependent factors. Although the grinding 

kinetics model exhibited a high performance in terms of predicting the size 

distribution of the breakage products depending on breakage characteristics, there is 

a lack of understanding of the breakage phenomena occurring inside the mill. 

Therefore, by using DEM, all collisions occurring on each particle inside the mill 

can be effectively analyzed. However, when combined with the population balance 

equation for modeling the ball mill grinding process, the prediction accuracy of the 

particle size distribution of the breakage product becomes relatively low. In this 

thesis, the collision energy distribution for each particle was determined using DEM, 

and accurate energy data was obtained by realizing both ball media and rock particles 

in the ball mill simulation. In addition, a particle breakage probability model was 

introduced to independently apply the material dependent factors. Finally, the ability 

of the model to determine the breakage characteristics was improved by interpreting 

the simulation results of the grinding kinetics model. During the single-fraction 
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grinding test, the first-order kinetics was confirmed by changing the particle size 

distribution inside the mill over time. Additionally, the phenomenon wherein the 

particle breakage occurred more easily owing to repeated collisions was determined 

based on the energy distribution for each particle. Furthermore, the relationship 

between the breakage probability and breakage rate parameters was investigated to 

analyze the change in the breakage rate according to the scale-up of the mill and the 

change of the lifter. 

Second, a model that could predict the particle size and grade distribution of 

the breakage product based on the grinding kinetics was developed. Owing to the 

development of liberation measurement equipment, various information can be 

obtained easily. However, there is lack of research on how to effectively utilize the 

information for modeling. In this study, the particle size and grade distribution of the 

breakage product were obtained by performing a ball mill grinding test or conducting 

a mineral liberation analyzer (MLA) measurement for various grade distributions 

and particle sizes. Furthermore, the breakage and liberation characteristics were 

identified depending on the grade and the MLA data. In particular, the liberation size, 

which is one of the liberation parameters, was determined by effectively utilizing the 

grain size distribution obtained from the MLA measurement. By using this model, it 

was possible to determine the target particle size and the required grinding time 

based on the degree of liberation. 

This thesis presents a more practical method for modeling the ball mill 

grinding process based on numerical and experimental methods. In the case of 

numerical methods, it is expected that a deeper understanding of the breakage 
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characteristics of the particles could be achieved by analyzing the particle size 

distribution after breakage. 

 

Keywords: size-grade model, ball mill, grinding kinetics, specific rate of breakage, 

Discrete Element Method, scale-up  

Student Number: 2016-21302  
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Nomenclature 
 

Alphabetical Characters 

 
𝐴 Breakage rate of the reference size 

𝑎 Acceleration 

𝑎𝑖,𝑗 Matrix used for the analytic solution of population balance 

equation of grinding 

𝐵𝑖,𝑗 Cumulative breakage distribution: cumulative weight fraction 

of particles of size class 𝑖 generated from a breakage of 

particle of size class 𝑗 

𝐵𝐹  Breakage function 

𝑏𝑖,𝑗 Breakage distribution for particle size: weight fraction of 

particles of size class 𝑖 generated from a breakage of particle 

of size class 𝑗 

𝑏𝑖𝑗,𝑘𝑙  Breakage distribution for particle size and grade: weight 

fraction of particles of grade class 𝑖 and size class 𝑗 

generated from a breakage of particle of grade class 𝑘 and 

size class 𝑙 

𝑏′  Breakage probability parameter that characterizes the 

mechanical strength 

𝐶𝑛  Damping coefficient for the normal component 

𝐶𝑠  Damping coefficient for the tangential component 
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𝑐  Coefficient of scale-up empirical formula for the breakage rate 

according to formal powder filling 

𝐷  Mill diameter 

𝐷𝑛  Damage for the nth collision 

𝐷𝑙𝑖𝑏  Liberation size 

𝑑  Ball diameter 

𝑑𝑝  Progeny particle size 

𝑑𝑝
′   Parent particle size 

𝐸  Young’s modulus 

𝐸0  Threshold energy 

𝐸0,𝑛  Threshold energy for the 𝑛th collision 

𝐸50  Mass-specific median fracture energy 

𝐸𝑏  Energy representing particle strength that normalizes the 

applied energy 

𝐸𝑏,𝑛  Energy representing particle strength that normalizes the 

applied energy for the nth collision 

𝐸𝑏
′   Energy representing particle strength that normalizes the 

applied energy for the weakened particle 

𝐸𝑑   Dissipation energy 

𝐸𝑓,0  Initial particle fracture energy 

𝐸𝑓,𝑛  Mass-specific fracture energy after the 𝑛th collision 

𝐸𝑖   Weight fraction remaining in the top size class of the 𝑖th 

particle 

𝐸𝑘  Collision energy for the 𝑘th collision 
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𝐸𝑠  Expected remaining weight fraction in the top size class 

𝐸𝑇  Young’s modulus of the target 

𝐸𝑡𝑜𝑡𝑎𝑙  Sum of the effective energy 

𝐸𝑡𝑜𝑡𝑎𝑙
′   Recalculated sum of the effective energy 

𝐸∞  Fracture energy at coarse size 

(𝐸 − 𝐸0̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖  Average effective energy for the 𝑖th particle 

𝐹𝑑  Damping force 

𝐹𝑐  Contact force 

𝐹𝑛
𝑐  Contact force for the normal component 

𝐹𝑠
𝑐  Contact force for the tangential component 

𝐹𝑛𝑐  Non-contact force 

𝑓  Collision frequency 

𝑓𝑀𝑎𝑡  Particle resistance to fracture 

𝑔′  Parent particle grade 

𝑔𝑎𝑐  Gravitational acceleration 

𝑔𝑙   Lower bound for Andrew-Mika diagram 

𝑔𝑢  Upper bound for Andrew-Mika diagram 

𝐼  Moment of inertia 

𝐽  Formal ball filling 

𝑙𝑖  Initial flaw length 

𝐾𝑙
∗  Lower grade boundaries for the parent particle in size class 𝑙 

𝐾𝑙
∗∗  Upper grade boundaries for the parent particle in size class 𝑙 

𝑘  Number of impacts 

𝑘𝑛  Spring coefficient for the normal component 
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𝑘𝑠  Spring coefficient for the tangential component 

𝑀  Maximum 𝑡10 when the material is broken 

𝑀𝑟  Torque of rolling friction 

𝑚  Mass 

𝑁𝑡  Number of effective collisions for time 𝑡 

𝑛  Number of size class 

𝑛̂  Unit vector for the normal component 

𝑃𝐵  Particle breakage probability 

𝑃𝑖  Cumulative weight fraction of the breakage products smaller 

than size class 𝑖 

𝑃𝑆  Particle survival probability 

𝑝  Parameter for beta distribution 

𝑝𝐸   Parameter for 𝐸𝑏 

𝑝𝑓  Parameter for 𝑓𝑀𝑎𝑡 

𝑞  Parameter for beta distribution 

𝑞𝐸   Parameter for 𝐸𝑏 related to the particle size 

𝑞𝑓  Parameter for 𝑓𝑀𝑎𝑡 related to the particle size 

𝑅  Particle radius 

𝑟  Parameter for beta distribution related to the parent particle 

grade and variance of progeny particles 

𝑆𝑖  Specific rate of breakage for size class 𝑖 

𝑆𝑖𝑗  Specific rate of breakage for grade class 𝑖 and size class 𝑗 

𝑆𝑉  Volume-specific surface area 

𝑠̂  Unit vector for the tangential component 
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𝑇  Contact duration 

𝑇𝑐   Contact time 

𝑡  Time 

𝑡𝑛  Weight fraction of particles whose size is less than 1/𝑛 

𝑈  Formal powder filling 

𝑣  Velocity 

𝑣𝑑  Velocity of the crack propagation 

𝑣𝑒𝑙   Velocity of the propagation of elastic waves 

𝑣𝑓𝑟𝑎𝑐𝑡  Velocity of the crack propagation 

𝑣𝑟𝑒𝑙,𝑛  Relative velocity for the normal component 

𝑣𝑟𝑒𝑙,𝑠  Relative velocity for the tangential component 

𝑣𝑠  Equivalent velocities to strength 

𝑊𝑚,𝑘𝑖𝑛  Mass-specific kinetic energy 

𝑊𝑚,𝑚𝑖𝑛  Mass-specific threshold energy for kinetic energy 

𝑊𝑣   Volume-specific elastic strain energy 

𝑊𝑣,𝑖  Kinetic energy which can be stored in the vicinity of a 

characteristic crack of length 𝑙𝑖 

𝑤𝑖  Weight fraction of particle size class 𝑖 

𝑤𝑖,𝑎𝑙𝑙  Weight fraction of grade class 𝑖 considering all size classes 

𝑤𝑖𝑗  Weight fraction of particle grade class 𝑖 and size class 𝑗 

𝑥  Particle size 

𝑥0  Reference size 

𝑥0,𝑓  Size where the fracture energy becomes twice the convergence 

value 
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𝑥𝑖  Particle size for size class 𝑖 

𝑧  Number of chain links 
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Greek Characters 

 
𝛼  Slope of the exponential function for the breakage rate 

𝛼𝑎𝑐  Angular acceleration 

𝛽  Cumulative breakage distribution parameter representing 

cleavage fracture property 

𝛽𝑚𝑎𝑥  Crack extension energy per unit of the created surface area 

𝛾  Cumulative breakage distribution parameter representing 

breakage characteristics by shatter 

𝛾𝐷  Damage coefficient 

𝛿  Parameter reflecting the geometrical property of ore texture 

𝛿0  Material parameter for 𝛿 

𝛿𝑛  Overlap displacement for the normal component 

𝛿𝑠  Overlap displacement for the tangential component 

𝜀  Coefficient of restitution 

𝜂  Parameter affecting the rate of liberation before and after the 

liberation size 

𝜆  Index indicating how rapidly the breakage rate decreases 

𝜇  Particle size at which reduction ratio of the breakage rate is 0.5. 

𝜇𝑓  Friction coefficient 

𝜇𝑟  Rolling friction coefficient 

𝜈  Poisson’s ratio 

𝜈𝑇  Poisson’s ratio of the target 
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𝜌  Density 

𝜎  Standard deviation 

𝜎𝑘  Applied stress 

𝜎𝑠  Strength of the link 

𝛴𝜏  Net torque 

𝛷  Cumulative breakage distribution parameter representing 

intercept with when the relative size is 1/√2 

𝜑𝑐   Critical mill rotational speed 

𝜑𝑟  Fraction of the rotational speed to the critical mill rotational 

speed 

𝜒  Slope of the size-fracture energy plot 

𝜒(𝑔)  Normalized grade for the upper and lower grade bounds 

𝜔  Angular velocity 

𝜔𝑟𝑒𝑙   Rolling friction coefficient 
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Chapter 1. Introduction 

 

1.1. Research Background 

 

An estimated 2% of the total energy in the world is used for mineral comminution 

(Napier-Mun, 2015). Grinding, the first stage in mineral processing, is a highly 

energy-intensive process. During grinding, about 10%–20% of the input energy is 

used for actual size reduction (Napier-Mun, 2015), whereas the remaining is 

dissipated and lost. One of the purposes of grinding is to liberate valuable minerals 

from gangue minerals. Generally, a higher degree of liberation can be achieved by 

decreasing the particle size. However, the energy required for grinding increases 

significantly as the particle size decreases. Furthermore, when the particles generated 

during the breakage process is added to the subsequent process, excessively small 

particles are not preferred owing to the characteristics of the subsequent process. 

Therefore, it is necessary to develop a suitable model to predict the characteristics of 

the product after grinding to increase energy efficiency and produce a breakage 

product with an appropriate particle size. 

The process of grinding can be modeled mathematically using two 

approaches: grinding kinetics model and energy-based model. Grinding kinetics 

model is based on chemical reaction kinetics, wherein intermediates are produced 

from the reactants in a consecutive chemical reaction, and simultaneously disappear 

when converted into products. Similarly, in grinding, particles of a specific size are 

produced owing to the breakage of larger particles, and concurrently disappear due 

to breakage. Therefore, the rate equation based on the population balance can be 
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established for all particle sizes (Gardner and Austin, 1962), similar to the rate law 

for chemical reactions. 

The energy-based model uses an energy-size reduction relationship to 

characterize the grinding property. As the size decreases due to the applied energy, 

the energy-size reduction relationship is claimed to be more rational, and hence, can 

decouple the machine- and material-dependent effects. Considering this, the size-

energy relationship can be derived by conducting single-particle breakage tests using 

the twin pendulum or the drop weight (Narayanan and Whiten, 1983). In this test, 

particles are broken under the impact at various energy levels. Considering the size 

distributions of the breakage products based on the relative size remains similar in 

shape for a wide range of energy inputs, particle sizes, and ore types, it can be 

described by a single point on the distribution. 

The aim of both models is to predict the particle size distribution of the 

breakage products. Both models are extensively used in mineral processing and can 

effectively determine the breakage properties of a material. Considering the grinding 

kinetic model determines the parameters based on the breakage product, it can 

predict results more accurately using the equipment provided. However, because 

grinding is a complex mechanism, continuous research is being conducted to 

understand its principles. This study aims to improve the grinding model and ensure 

it is more practical and comprehensive. 
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1.2. Recent Studies 

 

1.2.1. Overview of the Size-Grade Grinding Kinetics Model 

The kinetics model of the grinding process was developed similar to the chemical 

reaction kinetics. In grinding mills, particles of a specific size are produced owing to 

the breakage of larger particles, and transformed into smaller particles during the 

breakage process. Therefore, the rate equations for particles of all sizes can be 

established, which comprises two breakage functions: the specific rate of breakage, 

which is the rate constant for the disappearance of particles due to breakage, and the 

primary breakage distribution, which is the weight distribution function of the 

fragments produced from breakage. Several studies have demonstrated that this 

model can accurately simulate the ball mill grinding process while treating various 

ores. Furthermore, researchers have studied a model that can predict size reduction 

and liberation simultaneously. 

The first attempt to model mineral liberation based on ore texture was made 

by Gaudin (1939). By using an ideal binary mineral system model comprising cubic 

grains of equal sizes. Using this cubic grain lattice, a cubic fracture lattice was 

applied to investigate the mineral liberation owing to breakage. According to 

Gaudin’s model, the degree of liberation is related to the ratio of the grain and 

particle sizes and the relative abundance of the two minerals. 

Although several mineral liberation models have been proposed after the 

Gaudin’s model, owing to the complexity of the subject, no standard model has been 

generally accepted. One method of modeling mineral liberation is by describing the 

texture of the ore and analyzing how liberation occurs when random breakage is 
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applied (Gaudin, 1939; Wiegel and Li, 1967; Ferrara et al., 1989; Evans et al., 2013). 

The Julius Kruttschnitt Gaudin Random Liberation Model (JK-GRLM), studied by 

Evans (2013), determines the size and grade of breakage products by random 

breakage for a given ore texture. First, the grain size distribution is measured using 

X-ray tomography, and is randomly arranged in a cubic virtual block. Then, random 

breakage in a cubic lattice is applied to generate breakage products, and the liberation 

characteristics are identified by recording the properties of each particle. Recently, 

Mariano (2016) conducted a study on cases where non-random breakage occurred. 

However, investigating real ore to describe its texture to an actual one is time 

consuming. Moreover, additional experiments should be performed to analyze non-

random breakage. 

Another way to quantitatively describe liberation is by calculating it using a 

mathematical model. Andrews and Mika (1976) used a heterogeneous material 

comprising two distinct mineral species. Peterson and Herbst (1985) classified 

particles into three categories according to their mineral composition; free particles 

of mineral A, free particles of mineral B, and mixed particles containing minerals A 

and B. A balance equation was established for the weight change rate by applying 

different breakage rate and breakage distribution functions for each group, based on 

the assumption that the fraction of particles of mixed material that breaks into smaller 

free particles is proportional to the fraction of free particles breaking into the same 

smaller-sized free particles. Furthermore, considering the breakage product of free 

particles is the same free particles, the three balance equation can be solved easily. 

Furthermore, King and Schneider (1998) proposed a general solution for 

batch grinding that considers all grade classes. Herein, the breakage rate and 
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breakage distribution varied depending on the particle size and grade. Schneider 

(1995) determined the quadrivariate breakage function using the Andrew-Mika 

diagram and beta distribution.  

 

1.2.2. Overview of the Energy-based Model 

The simplest approach for modeling grinding to predict the particle size of the 

breakage products is to relate the fineness of the breakage products to the specific 

energy of grinding. Classical approaches based on Rittinger’s, Kick’s, and Bond’s 

laws were in turn based on the empirical energy–size relationships. Although these 

models often explain the grinding results for various mill and particle sizes, their 

application is limited to the only estimating the effect of changing the feed or product 

on the specific energy during grinding. Moreover, this model does not provide 

information on the particle size distribution of the breakage products. 

In recent years, energy-size reduction relationships have gained wide 

attention. Studies have debated that the size-balance model is based on a black-box 

approach, which in turn is based on the outcome of milling, regardless of the milling 

geometry and operational conditions (Shi and Xie, 2015). Therefore, the energy-size 

reduction relationship is considered to be more rational than the size-balance 

approach and decoupling of the machine- and material-dependent effects. The energy 

used in the model is a specific energy applied to the particle per mass. Accordingly, 

the size-energy relationship can be derived by conducting a single-particle breakage 

test using either the twin pendulum or drop weight approaches (Narayanan and 

Whiten, 1983). 



6 

 

The tests were conducted by applying an adequate amount of energy to a 

relatively large particle to induce breakage on a single impact. Particles break under 

the impact at various energy levels. It has been observed that the size distribution of 

the breakage products based on a relative size is similar in shape for a wide range of 

energy inputs, particle sizes, and ore types, and hence, can be described by a single 

point on the distribution. 

However, on analyzing the energy-size reduction relationship for various 

particle sizes, it was found that the model was inadequate for describing the fracture 

phenomenon of relatively fine particles, wherein breakage mainly occurs due to 

repetitive impacts. Alternatively, a new tester was designed to experiment with 

smaller particles whereas particle-particle collisions were almost completely blocked 

(Schönert and Marktscheffel, 1986). Accordingly, a model with new added elements 

was proposed, such as breakage due to repeated damage, particle size effects, and 

the particle strength (Vogel and Peukert, 2003). 

The Vogel and Peukert model calculates the probability of a particle’s 

breakage depending on the applied energy. In this model, the breakage probability is 

a function of two parameters, the threshold energy required by the minimum energy 

to break a particle, and the standardization energy that causes different breakage 

probability by the particle strength even if the same energy is applied. Shi and 

Kojovic (2007) proposed the energy-size reduction relationship wherein the 

breakage probability model is modified and comprises the same two parameters. The 

relationship reflects the effect of particle size, and the overall product size 

distribution can be calculated from the single point in the size distribution. 
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Recently, Shi and Xie (2015) used the procedure to simulate the batch 

grinding process in a ball mill. The mean specific energy was calculated by 

multiplying the mill power draw and the grinding time. Although this machine-

dependent factor is distinct from the material-dependent factor obtained from 

particle breakage tests, it was assumed that the mean specific energy was not applied 

evenly to all particles in the ball mill, and was proportional to particles of different 

sizes at arbitrary ratios obtained by fitting the data to the model predictions. The 

breakage product size distribution was predicted by combining size-specific energy, 

breakage parameters, and feed size distribution, and was found to be in good 

agreement with the experimental results. As such, the energy-based model 

successfully predicted the particle size of the breakage product in several studies 

(Vogel and Peukert, 2005; Shi and Kojovid, 2007; Meier et al., 2009; Bonfils et al., 

2016; Shi, 2016); however, the machine-dependent factors were not to be 

independently identified. 

 

1.2.3. Overview of the DEM-PBE Combined Approach 

In the late 1980s, a combined model of energy and PBE was studied to replace the 

two breakage functions (breakage rate and primary breakage distribution) of the 

traditional population balance equation with a function of energy. The fragment 

distribution according to energy was determined from the breakage tests of the 

particle bed, whereas the weight average was set as the breakage distribution 

function based on the collision energy distribution applied to particles (Cho, 1987). 

However, the collision energy distribution in the experiment was determined using 

back-calculation to fit the experimental data. 
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DEM, developed by Cundall and Stack (1979), is a numerical method that 

tracks discrete particles interacting with each other. In conventional soft-contact 

DEM, particles overlap when they collide with each other, which exhibits both 

elastic and nonelastic properties. The force generated by the overlap can be 

decoupled into normal and tangential components depending on the contact model. 

After determining the forces acting on the particles, the displacements of the particles 

are calculated. Generally, the linear spring-dashpot model is used for the normal 

components, whereas a slider is added in the tangential components. 

Considering DEM can calculate the energy applied to all particles, it was 

used to predict the energy-particle breakage relationship by coupling with DEM in 

breakage modeling. However, a large number of DEM particles are required to 

simulate a ball mill grinding process, which is limited by the computation 

performance and computer memory (Cleary and Morrison, 2011). Although 

advances in computer technology have made it possible to process more particles, it 

is still impossible to simulate ball mills used on an industrial scale. The simplest way 

to solve this problem is to perform DEM simulation for ball mill modeling using 

only ball media and excluding rock particles (Powell et al., 2008), while assuming 

that rock particles always exist between balls when they collide. However, 

information on the number of squeezed rock particles and energy applied to each 

particle is required. 

Datta and Rajamani (2002) proposed a method of modeling batch grinding 

by combining population balance and DEM. Using this model, a population balance 

equation was established using the collision frequency according to various energy 

classes occurring in the ball mill. Furthermore, t calculates the rate of change of the 
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weight fraction with time by introducing the breakage rate and breakage distribution 

functions depending on the collision energy. Although the two breakage functions 

are determined by a drop weight test of 4-layers particle bed, the particle layer 

between the two colliding balls in the actual ball mill does not always comprise 4 

layers. Therefore, the estimated results of the model do not match with the 

experimental results. Therefore, a correction factor is used to match the experimental 

data. 

Recently, the Universidade Federal do Rio de Janeiro by Tavares (2017) 

proposed a new model that considers the particle weakening effect caused by 

repeated collisions and the surface breakage caused by tangential force. Furthermore, 

this model is based on DEM simulation involving only ball media, and geometrically 

determines the number of particles between two colliding balls when spherical 

particles are arranged according to dense hexagonal packing. It is assumed that the 

energy applied to each particle is evenly distributed. Although this model was 

developed in consideration of various factors from a microscale perspective, it did 

not completely agree with the experimental data owing to its complexity. 

 

1.3. Research Objectives and Scope 

 

As mentioned in Sections 1.1 and 1.2, this thesis analyzes the modeling of the ball 

mill grinding process through numerical and experimental methods. Numerical 

methods are used to analyze the mechanical phenomena that occurs inside the mill, 

an area lacking from the grinding kinetics model. Most ball mill grinding process 

modeling are performed based on the assumption that there are only balls, and no 
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rock particles. However, in this case, much more information is needed to determine 

the energy acting on the rock particles. Furthermore, it is difficult to simplify and 

determine the energy applied to the particles inside the mill owing to its complexity. 

In addition, to assume that there is always a particle between the two balls, the ball 

loading amount is forced to be 1 or more. Therefore, this study was carried out by 

implementing both ball media and rock particles to simulate a laboratory-scale ball 

mill and realistically determine the energy distribution received by individual 

particles. Furthermore, the prediction performance of the DEM coupling model was 

improved by introducing a crushing kinetics model to interpret the results. To this 

end, it was verified whether the primary grinding kinetics was established according 

to the various particle size distributions in the mill, and whether it was possible to 

reasonably calculate the grinding rate when the equipment elements and material 

elements were individually given. Additionally, the operating conditions of the ball 

mill are diversified including the size of the lifter. 

In the experimental method, a grinding kinetics model with high predictive 

performance was proposed, and it is related to the particle size reduction as well as 

liberation. However, there is no representative model among the particle size-

liberation coupled models. Additionally, owing to the development of equipment for 

measuring the degree of liberation, the grade distribution can be measured easily; 

however, not many studies have used it effectively to predict the particle size and 

grade distribution of the breakage products. Therefore, in this study, ball mill 

grinding tests were performed on various grades of samples to understand the 

breakage characteristics. Furthermore, the liberation characteristics were determined 

by measuring and analyzing the grade distribution of the samples with various 
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particle sizes and grades using MLA. Herein, the liberation parameters were 

effectively selected by using the measured grain size distribution to determine the 

target particle size using the model. 
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Chapter 2. Background Theory 

 

2.1. Grinding Models 

 

2.1.1. Grinding Kinetics Model 

The grinding kinetic model was developed using a population balance approach that 

was analogous to the chemical reactor design for first-order reactions. This approach 

is based on the results of the experimental batch grinding. The model comprises two 

breakage function: specific rate of breakage and primary breakage distribution. 

 

2.1.1.1. Specific rate of breakage 

Consider a simple batch grinding test wherein the size interval is a geometric 

sequence (√2 ) and the starting feed is within the top size interval. If the rate of 

disappearance of the top size is proportional to the weight fraction of the top size, 

the rate of change of weight fraction can be expressed as: 

 

 
𝑑𝑤1(𝑡)

𝑑𝑡
= −𝑆1𝑤1(𝑡), (2.1) 

 

where 𝑤1(𝑡)  is the weight fraction of size class 1 at time 𝑡  and 𝑆1  is a 

proportionality constant, called the specific rate of breakage. If the specific rate of 

breakage is independent of time, Eq. (2.1) can be modified as: 

 

 log[𝑤1(𝑡)] = log[𝑤1(0)] −
𝑆1𝑡

2.3
, (2.2) 
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Therefore, the specific rate of breakage can be determined by plotting the fraction of 

unbroken material against the corresponding grinding time. Then, the slope of the 

log-linear plot of 
𝑤1(𝑡)

𝑤1(0)
  and time becomes the breakage rate. Figure 2.1 shows a 

typical experimental result of the batch grinding test. 

The specific rate of breakage is a function of the particle size. By conducting 

the procedure repeatedly with different starting feed sizes, a set of the breakage rate 

values can be obtained (Figure 2.2). It was observed that smaller particles were 

more resistant to breakage, and hence, the breakage rate generally decreases with 

decreasing size. However, the breakage rate decreases for larger particle sizes when 

the particle is too big to be nipped properly or too strong to be fractured for the 

given ball size. Mathematically, a typical relationship between the size and specific 

rate of breakage is given as:  

 

 𝑆𝑖 = 𝐴 (
𝑥𝑖

𝑥0
)
𝛼
[

1

1+(
𝑥𝑖
𝜇
)
𝜆], (2.3) 

 

where 𝑥0  is a reference size, typically set to 1 mm, 𝐴  is the specific rate of 

breakage of the reference size, and 𝛼 is the slope of the exponential function. 𝜇 is 

a particle size at which the reduction rate is 0.5 and 𝜆 is an index indicating how 

rapidly the specific rate of breakage decreases as the particle size increases. 
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Figure 2.1. Example of the first-order plot. 

 

 

Figure 2.2. Example of the relationship between the particle size and specific rate 

of breakage. 
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2.1.1.2. Primary breakage distribution 

Grinding samples in a single size fraction generates products for a whole size fraction, 

which is smaller than the feed size. To describe the grinding process, it is important 

to determine the primary breakage distribution, which is the size distribution of 

fragments measured before the fragments are reselected for further breakage. 

Primary breakage distribution is denoted as 𝑏𝑖,𝑗, indicating the weight fraction of 

fragments in size class 𝑖 generated by the breakage of particle in size class 𝑗. If 𝑛 

is the number of the size classes, 𝑖 ranges from 𝑗 + 1 to 𝑛. In addition, 𝐵𝑖,𝑗 is a 

cumulative form of 𝑏𝑖,𝑗, which indicates the weight fraction of fragments smaller 

than size class 𝑖  generated by the breakage of particle in size class 𝑗 . It was 

observed that 𝐵𝑖,𝑗  is independent of the milling condition and is dimensionally 

normalizable. 

𝐵𝑖,𝑗  can be determined by conducting the single-size-fraction test with a 

short grinding time, where 20–30% of the feed is out of the top size fraction. 

However, considering it is difficult to guarantee that only primary breakage occurs 

during that grinding time, approximate corrections should be made (Kelly and 

Spottiswood, 1990). Generally, the BII method proposed by Austin and Luckie 

(1972), based on the compensational condition where the product of 𝑆𝑗 and 𝐵𝑖,𝑗 

is only a function of size class 𝑖,  is used to correct secondary breakage and 

calculate the 𝐵𝑖,𝑗  values. Physically, this means that the weight fraction of the 

products smaller than size class 𝑖 generated from the breakage of particles in size 

class 𝑗 only depends on the size class 𝑖. Under this condition, the weight fraction 

of the breakage products smaller than size class 𝑖  at time 𝑡 , 𝑃𝑖(t)  can be 

calculated as:  
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 1 − 𝑃𝑖(𝑡) = [1 − 𝑃𝑖(0)] exp(−𝑆𝑗𝐵𝑖,𝑗𝑡), (2.4) 

 

For the top size, Eq. (2.4) can be rewritten as: 

 

 1 − 𝑃𝑖(𝑡) = [1 − 𝑃𝑖(0)] exp(−𝑆1𝐵𝑖,1𝑡), (2.5) 

 

When the size class 𝑖 is 2, Eq. (2.5) can be modified as:  

 

 1 − 𝑃2(𝑡) = [1 − 𝑃2(0)] exp(−𝑆1𝑡), (2.6) 

 

Substituting Eq. (2.6) in Eq. (2.5) provides: 

 

 𝐵𝑖,1 =
log[(1−𝑃𝑖(0)) (1−𝑃𝑖(𝑡))⁄ ]

log[(1−𝑃2(0)) (1−𝑃2(𝑡))⁄ ]
, (2.7) 

 

Therefore, 𝐵𝑖,1 can be determined by weighing the products of single-size fraction 

test. 

The 𝐵𝑖,1 values according to the relative particle size can be defined as the 

sum of the two power function like Eq. (2.8). Figure 2.3 shows an example of the 

primary breakage distribution on the log-log scale graph.  

 

 𝐵𝑖,1 = 𝛷 (
𝑥𝑖−1

𝑥1
)
𝛾
+ (1 − 𝛷) (

𝑥𝑖−1

𝑥1
)
𝛽

, (2.8) 
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where 𝛷 is the intercept shown in Figure 2.3, 𝛾 is the breakage characteristics by 

shatter, which occurs with high energy intensities, and 𝛽 is the cleavage fracture 

property, which occurs with low energy intensities. 

 

 

 

 

 

 

Figure 2.3. Example of the cumulative breakage distribution plot. 

 

 

 

 

 

 



18 

 

2.1.1.3. Population balance equation 

The equation for population balance can be established based on breakage functions 

𝑆  and 𝑏 , as shown in Eq. (2.9). The concept applied to the population balance 

equation is a rate-mass balance equation on each size interval.  

 

 
𝑑𝑤𝑖(𝑡)

𝑑𝑡
= −𝑆𝑖𝑤𝑖(𝑡) + ∑ 𝑏𝑖,𝑗𝑆𝑗𝑤𝑗(𝑡)

𝑖−1
𝑗=1,𝑖>1 , (2.9) 

 

The total rate of mass change in size class 𝑖 is the sum of the disappearance rate of 

size 𝑖  material caused by breakage and the appearance rate of size 𝑖  material 

caused by breakage of larger size class 𝑗 . If the specific rate of breakage is 

independent of the grinding time, several analytical solutions can be obtained to 

calculate the weight fraction of breakage products at a given grinding time. One form 

of the solution, called Reid solution, is given as: 

 

 𝑤𝑖(𝑡) = ∑ 𝑎𝑖𝑗 exp(−𝑆𝑗𝑡)
𝑖
𝑗=1 , (2.10) 

 

where the values of 𝑎𝑖𝑗 are as defined, 

 

 

𝑎𝑖𝑖 = 𝑤𝑖(0) − ∑ 𝑎𝑖𝑘
𝑖−1
𝑘=1,𝑖>1 , 𝑖 = 𝑗 , 

 

𝑎𝑖𝑗 =
1

𝑆𝑖−𝑆𝑗
∑ 𝑆𝑘𝑏𝑖𝑘𝑎𝑘𝑗, 𝑖 > 𝑗𝑖−1
𝑘=𝑗  , 

(2.11) 

 

Herein, a sequential calculation from the top size to the next size is required. 
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2.1.1.4. Coupled grinding and liberation model 

Andrews and Mika (1975) modified the population balance equation to binary ores, 

expressed as:  

 

 
𝑑𝑤𝑖𝑗(𝑡)

𝑑𝑡
= −𝑆𝑖𝑗𝑤𝑖𝑗(𝑡) + ∑ ∑ 𝑆𝑘𝑙𝑏𝑖𝑗,𝑘𝑙𝑤𝑘𝑙(𝑡)

𝐾𝑙
∗∗

𝑘=𝐾𝑙
∗

𝑗−1
𝑙=1 , (2.12) 

 

where 𝑤𝑖𝑗(𝑡) is the weight fraction of the particles with grade class 𝑖 and size class 

𝑗, 𝑆𝑖𝑗 is the specific breakage rate of the particles with grade class 𝑖 and size class 

𝑗, and 𝑏𝑖𝑗,𝑘𝑙 is the weight fraction of the progeny particles in grade class 𝑖 and size 

class 𝑗 resulting from the breakage of parent particles in grade class 𝑘 and size class 

𝑙. 𝐾𝑙
∗ and 𝐾𝑙

∗∗ are the lower and upper grade boundaries for parent particles in size 

class 𝑙, respectively, to generate the progeny particles in grade class 𝑖 and size class 

𝑗. The grade boundaries can be determined using the Andrews-Mika diagram, which 

explains the two regions: feeder region and attainable region, as shown in Figure 2.4. 

The feeder region contains all particles that can generate the parent particle whereas 

the attainable region represents the grade boundaries of the progeny particle for each 

particle size. 
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Figure 2.4. Example of the Andrews-Mika diagram. 
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The dashed and solid lines in Figure 2.4 denote the allowable grade range when the 

total amount of minerals must be conserved and the confined grade range depending 

on the ore texture or the mineral grain size, respectively. King (2001) proposed the 

empirical model for grade boundaries: 

 

 𝑔𝑢 = 𝑚𝑎𝑥 [𝑔
′ (
𝑑𝑝′

𝑑𝑝
)
0.2

, 𝑔′ (
𝐷𝑙𝑖𝑏

𝑑𝑝
)
𝛿

], (2.13) 

 

 1 − 𝑔𝑙 = 𝑚𝑎𝑥 [(1 − 𝑔
′) (

𝑑𝑝′

𝑑𝑝
)
0.2

, (1 − 𝑔′) (
𝐷𝑙𝑖𝑏

𝑑𝑝
)
𝛿

], (2.14) 

 

 δ = 𝑚𝑖𝑛 [𝛿0 (
𝐷𝑙𝑖𝑏

𝑑𝑝′
)
0.5

, 3], (2.15) 

 

where 𝑔𝑢  and 𝑔𝑙  are the upper and lower bounds of the progeny particle grade, 

respectively. 𝑔′ ,  𝑑𝑝′ , and 𝑑𝑝  are the parent particle grade, size, and progeny 

particle size, respectively. The liberation size, 𝐷𝑙𝑖𝑏, is the particle size at which the 

mineral starts to liberate so it is closely related to mineral grain size. 𝛿 reflects the 

geometrical property of the ore texture that affects how quickly the grade range 

expands, and 𝛿0 is a material parameter. As seen in Eq. (2.15), the value 3 was a 

result of the constraint that the total amount of minerals should be conserved. 

After determining the grade bounds of the progeny particle using the 

Andrews-Mika diagram, the grade distribution within the upper and lower bounds 

was described by the beta distribution, a continuous probability distribution defined 

on the interval [0, 1] and calculated by two positive shape parameters 𝑝 and 𝑞, 

given as: 
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 𝑓(𝑔; 𝑝, 𝑞) =
𝑔𝑝−1(1−𝑔)𝑞−1

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
1

0

, (2.16) 

 

where 𝑝 and 𝑞 are calculated by using the parent particle grade and variance of the 

grade distribution of the progeny particles, respectively. According to the grade and 

variance, various types of grade distribution can be described, as shown in Figure 

2.5. 

 

 

 

 

 

Figure 2.5. Various shapes of beta distribution according to the variance 
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There are two cases of grade boundary conditions that can be determined 

from the Andrew-Mika diagram; however, the method of calculating 𝑝 and 𝑞 in Eq. 

(2.16) are different for each case. First, the grade boundary is in [0, 1], and second, 

one or both of the upper and lower boundaries are out of the range [0, 1]. As 

mentioned above, beta distribution is defined on interval [0, 1], and hence, the upper 

and lower grade bounds should be 1 and 0, respectively, in order to use beta 

distribution. In the first case, the transformed grade is used to normalize the grade 

between 0 and 1, given as: 

 

 𝜒(𝑔) =
𝑔−𝑔𝑙

𝑔𝑢−𝑔𝑙
, (2.17) 

 

Subsequently, 𝑝  and 𝑞  are calculated using Eqs. (2.18) to (2.22). 𝑟  is 

related to the grade of the parent particle and the variance of the progeny particles, 

as shown in Eq. (2.20). The variance is calculated using Eq. (2.21), the products of 

the maximum value of the variance and the effect of the progeny particle size 

represented by 𝑓(𝑑𝑝) . 𝜂  indicates how quickly liberation occurs as the particle 

size decreases. As 𝜂  increases, the liberation hardly occurs when the progeny 

particle is much larger than liberation size. However, if the size of the progeny 

particle decreases and becomes smaller than the liberation size, liberation occurs 

rapidly. 

 

 𝑝 = 𝜒(𝑔′)𝑟, (2.18) 

 

 𝑞 = {1 − 𝜒(𝑔′)}𝑟, (2.19) 
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 𝑟 =
𝑔′−(𝑔′)

2
−𝜎2

𝜎2
=

1−𝑓(𝑑𝑝)

𝑓(𝑑𝑝)
, (2.20) 

 

 𝜎2 = 𝑔′(1 − 𝑔′)𝑓(𝑑𝑝), (2.21) 

 

 
𝑓(𝑑𝑝) =

1

1+(
𝑑𝑝

𝐷𝑙𝑖𝑏
)
𝜂, 

(2.22) 

 

Using the calculated values of 𝑝 and 𝑞, the grade distribution in the given grade 

boundaries can be determined as: 

 

 𝑃(𝑔) =

{
 

 
0                         𝑔 < 𝑔𝑙

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
𝑔

0

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
1

0

             𝑔𝑙 < 𝑔 < 𝑔𝑢

1                         𝑔 < 𝑔𝑢

, (2.23) 

 

where 𝑃(𝑔) is a weight fraction of the particles whose grade is smaller than 𝑔. 

In the other case, because beta distribution is defined on the interval [0, 1], it 

cannot reflect the completely liberated particles. Therefore, after plotting the beta 

distribution using the transformed grade in Eq. (2.14), the completely liberated 

particles was calculated as: 

 

 𝐿0 =
∫ 𝑥𝑝−1(1−𝑥)𝑞−1
𝜒(0)

0
𝑑𝑥

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
1

0

, (2.24) 

 

 𝐿1 = 1 −
∫ 𝑥𝑝−1(1−𝑥)𝑞−1
𝜒(1)

0
𝑑𝑥

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
1

0

, (2.25) 
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where 𝐿0  and 𝐿1  are the completely liberated gangue and valuable mineral, 

respectively. However, because the grades lower than 0 and upper than 1 are treated 

as 0 or 1 in Eqs. (2.24) and (2.25), the mean grade can be changed. In this study, was 

assumed that the average grade of each progeny particle size class was the same as 

grade of the parent particle based on random breakage. Therefore, the bisection 

method was used to determine the proper grade to keep the mean grade constant. The 

value existed between the parent particle grade 𝑔′ and 𝜒(𝑔′). After calculating the 

values for 𝑝 , 𝑞 , 𝐿0 , and 𝐿1  using the grade values, the grade distribution in the 

given grade boundaries was determined as: 

 

 𝑃(𝑔) = 𝐿0 + (1 − 𝐿0 − 𝐿1) 
∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
𝑔

0

∫ 𝑥𝑝−1(1−𝑥)𝑞−1𝑑𝑥
1

0

, (2.26) 

 

2.1.2. Energy–Breakage Probability Model 

Vogel and Peukert (2002; 2003; 2004) conducted studies on particle breakage 

probability models and published several papers. The model considered two different 

procedures, a generalized dimensional analysis approach (Rumpf, 1973) and a 

detailed fracture mechanical model (Weichert, 1992). 

 

2.1.2.1. Dimensional analysis 

Through dimensional analysis, Rumpf (1973) derived Eq. (2.27) to characterize the 

breakage similarity for similar particles of different materials.  

 

 𝑆𝑉𝑥 = 𝑓 (
𝑊𝑉

𝐸
,
𝑊𝑉𝑥

𝛽𝑚𝑎𝑥
,
𝑣𝑓𝑟𝑎𝑐𝑡

𝑣𝑒𝑙
,
𝑣𝑑

𝑣𝑒𝑙
,
𝑙𝑖

𝑥
, 𝜈), (2.27) 
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 𝑣𝑒𝑙 = √
𝐸

𝜌
, (2.28) 

 

where 𝑆𝑉 , 𝑊𝑉 , 𝛽𝑚𝑎𝑥 , 𝑙𝑖 , and 𝜈  are the volume-specific surface area, volume-

specific elastic strain energy, crack extension energy per unit of created surface area, 

initial flow size, and Poisson’s ratio, respectively. 𝑣𝑓𝑟𝑎𝑐𝑡 , 𝑣𝑒𝑙 , and 𝑣𝑑  are the 

velocities of the crack propagation, propagation of elastic waves, and the 

deformation, respectively. Vogel and Peukert (2003) argued that 
𝑣𝑓𝑟𝑎𝑐𝑡

𝑣𝑒𝑙
 and 

𝑣𝑑

𝑣𝑒𝑙
 can 

be considered as quasistatic problems, and hence, can be neglected based on the 

experimental data from Williams (1984).  

In addition, Vogel and Peukert (2003) introduced two functions to describe 

the breakage behavior of particles: breakage probability 𝑃𝐵 , which is the 

proportion of particles broken in the experiment, and breakage function BF, which 

is the size distribution of the fragments of the broken particles except for the 

unbroken particles. Substituting the two functions in Eq. (2.29) provides get:  

 

 𝑃𝐵, 𝐵𝐹 = 𝑓 (
𝑊𝑉

𝐸
,
𝑊𝑉𝑥

𝛽𝑚𝑎𝑥
,
𝑙𝑖

𝑥
, 𝜈), (2.29) 

 

The difference in the breakage behavior of the particle is determined by the Young’s 

modulus and Poisson’s ratio of the particle, and the toughness of materials 𝛽𝑚𝑎𝑥 

and 𝑙𝑖. 
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2.1.2.2. Fracture mechanical model 

Weichert (1992) described the probability of particle breakage based on Weibull 

statistics (Weibull, 1951) to develop the fracture mechanical model. This model is 

based on the weakest link theory, which states that the survival probability of a chain 

is a product of the survival probabilities of links within the chain (Eq. (2.30)).  

 

 𝑃𝐵 = 1 − exp {−𝑧 (
𝜎𝑘

𝜎𝑠
)
𝑚
}, (2.30) 

 

where 𝑧, 𝜎𝑘, 𝜎𝑠, and 𝑚 are the number of links, applied stress or load, strength of 

links, and Weibull parameter, respectively. Vogel and Peukert (2003) assumed that 

the propagation of the crack and particle breakage begin at the circumference of the 

contact circle considering the highest tensile stress occurs there. Furthermore, 

considering the statistical distribution of flaws and micro-cracks, the diameter of the 

contact circle was assumed to be equal to the number of chain links in the Weibull 

statistics. By substituting the pressure distribution in the collision and the diameter 

of the contact circle calculated using Hertzian theory (Hertz, 1882), the authors 

derived the following equation that describes the probability of breakage owing to 

the impact load.  

 

 𝑃𝐵 = 1 − exp {−𝑐𝑜𝑛𝑠𝑡. 𝑥 [1 +
𝐸

𝐸𝑇

1−𝜈𝑇
2

1−𝜈2
]

1

5
[
1−𝜈2

𝐸
𝜌𝑣2]

1

5
[
𝑣2

𝑣𝑠
2]

𝑚

5
}, (2.31) 

 

where 𝑣 and 𝑣𝑠 are the equivalent velocities to the stress and strength in Eq. (2.30), 

respectively. 
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2.1.2.3. Breakage probability equation 

As seen in Eq. (2.29), because the initial flaw size is much smaller than the particle 

size, 
𝑙𝑖

𝑥
  can be neglected. Additionally, Vogel and Peukert (2003) introduced two 

new parameters, 𝑓𝑀𝑎𝑡 and 𝑊𝑉,𝑖, which are related to 𝛽𝑚𝑎𝑥, 𝐸 and 𝜈 considering 

they are difficult to apply practically owing to the diversity of particles. 𝑓𝑀𝑎𝑡 

denotes the particle resistance to fracture in collision, and 𝑊𝑉,𝑖 is a volume-specific 

threshold energy for activating a crack. Setting the Weibull parameter to 4 based on 

the experiment and inserting these two parameters into in Eq. (2.31) provides: 

 

 𝑃𝐵 = 1 − exp{−𝑓𝑀𝑎𝑡𝑥(𝑊𝑚,𝑘𝑖𝑛 −𝑊𝑚,𝑚𝑖𝑛)}, (2.32) 

 

where 𝑊𝑚,𝑘𝑖𝑛 and 𝑊𝑚,𝑚𝑖𝑛 are the mass-specific kinetic impact energy and mass-

specific threshold energy for particle breakage, respectively. The product 𝑥𝑊𝑚,𝑚𝑖𝑛 

must be constant considering both 𝑊𝑉,𝑖  and 𝑙𝑖  are size independent. When 𝑘 

successive collisions are applied with an identical energy of 𝑊𝑚,𝑘𝑖𝑛 , using 

Weibull’s weakest chain link theory. Eq. (2.32) can be re-written as:  

 

 𝑃𝐵 = 1 − exp{−𝑓𝑀𝑎𝑡𝑥𝑘(𝑊𝑚,𝑘𝑖𝑛 −𝑊𝑚,𝑚𝑖𝑛)}, (2.33) 

 

2.1.2.4. Modification of the Vogel and Peukert model 

The Vogel and Peukert model is useful for determining the breakage of a particle. 

However, the equation can only be applied in limited situations with identical 

amounts of energy. Furthermore, no information is available on the progeny particle 

size distribution, which is important for analyzing the grinding phenomenon to 
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predict the breakage products. Morrison et al. (2007) modified Eq. (2.33) to simulate 

a series of collisions of different specific energies, given as:  

 

 𝑃𝐵 = 1 − exp{−𝑏′∑ (𝐸𝑘 − 𝐸0)𝑘 }, (2.34) 

 

where 𝑏′ is a model parameter that characterizes the mechanical strength, 𝐸𝑘 is 

the mass-specific energy in the 𝑘 th collision event, and 𝐸0  is the mass-specific 

threshold energy. If 𝐸𝑘 is less than 𝐸0, the contribution to breakage from the 𝑘th 

collision is zero. 

Shi and Kojovic (2007) introduced a single parameter 𝑡10 to Eq. (2.33) to 

describe the progeny particle distribution (Eq. (2.35)).  

 

 𝑡10 = 𝑀[1 − exp{−𝑓𝑀𝑎𝑡𝑥𝑘(𝑊𝑚,𝑘𝑖𝑛 −𝑊𝑚,𝑚𝑖𝑛)}], (2.35) 

 

where 𝑀  is the maximum 𝑡10  when the material is broken. 𝑡𝑛  is the weight 

fraction of particles whose size is less than 1 𝑛⁄  of the original size. Because 𝑡10 

is related to 𝑡𝑛 , which indicates the other points comprising the particle size 

distribution, 𝑡10 can determine the overall particle size distribution (Narayanan and 

Whiten, 1988). Figure 2.6 shows the 𝑡𝑛 -family curves for various ore types 

(Narayanan and Whiten, 1988); 𝑛 is generally 2, 4, 25, 50, and 70, as shown in the 

plot. When 𝑡10 is determined using Eq. (2.35), a straight line perpendicular to the 

x-axis can be drawn, which indicates the particle size distribution of the 

corresponding 𝑡10.  
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Figure 2.6. 𝑡𝑛-family curves. 
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2.2. Discrete Element Method 

 

Discrete element method is a numerical method that tracks discrete particles which 

interact with each other. It was developed by Cundall and Strack (1979) to describe 

the motion of granular assemblies. To analyze the motion of particles using this 

method, first the net force acting on each particle is calculated. Then, Newton’s 

second law is applied to calculate the next motion of the particles, given as:  

 

 𝑎 =
ΣF

𝑚
, (2.36) 

   

 ΣF = F𝑐 + F𝑛𝑐, (2.37) 

 

where 𝑚 , ΣF , 𝑎 , F𝑐  and F𝑛𝑐  are the particle mass, net force, acceleration, 

contact force, and non-contact force (gravity, drag, and electromagnetic forces), 

respectively.  

Contact forces occur when several individual particles come into contact with 

each other. In the discrete element method schemes, a soft contact model is 

commonly used to evaluate the contact force, as it allows overlapping particles, 

which occurs when particles collide with each other. The overlap exhibits both 

elastic and non-elastic properties, represented as a spring and a dashpot, 

respectively. Furthermore, the force generated by the overlap can be decoupled into 

normal and tangential components. In this study, a damped linear spring model is 

used to describe the contact force in the normal and tangential directions. As shown 

in Figure 2.7, an applied contact model comprises a spring and a dashpot for the 
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normal component. For the tangential component, a slider is added to describe the 

tangential sliding. Based on this model, contact force F𝑐 can be written as: 

  

 F𝑐 = F𝑛
𝑐 + F𝑠

𝑐, (2.38) 

   

 F𝑛
𝑐 = −𝑘𝑛𝛿𝑛n̂ + 𝐶𝑛𝑣𝑟𝑒𝑙,𝑛, (2.39) 

   

 F𝑠
𝑐 = min (𝜇𝑓|F𝑛|, 𝑘𝑠𝛿𝑠 + 𝐶𝑠|𝑣𝑟𝑒𝑙,𝑠|)ŝ, (2.40) 

  

where 𝑘, 𝛿, 𝐶, v𝑟𝑒𝑙, and 𝜇𝑓 are the stiffness of the spring, overlap displacement 

between the particles, damping coefficient, relative velocity, and friction coefficient, 

respectively. Subscripts 𝑛  and 𝑠  indicate normal and tangential components, 

respectively. N̂  and ŝ  are the unit vectors for normal and tangential directions, 

respectively. The normal and tangential unit vectors are determined as the direction 

towards other particles and the relative velocity except for normal relative velocity, 

respectively. The tangential stiffness of the spring and the damping coefficient are 

proportional to the normal component values. 

The values of 𝑘𝑛 and 𝐶𝑛 should be determined carefully considering they 

can affect the overall dynamics in the discrete element method. In the standard 

discrete element method, the values of 𝑘𝑛  and 𝐶𝑛  depend on the physical 

properties of the particle such, as Poisson’s ratio, Young’ modulus, and restitution 

coefficient (Mishra and Cheung 1999). The spring stiffness is given as:  
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 𝑘𝑛 = 0.094𝐸
∗𝑅∗, (2.41) 

   

 
1

𝐸∗
=

1−𝜈1
2

𝐸1
+
1−𝜈2

2

𝐸2
, (2.42) 

   

 
1

𝑅∗
=

1

𝑅1
+

1

𝑅2
, (2.43) 

 

where 𝜈, 𝐸, and 𝑅 indicates Poisson’s ratio, Young’s modulus, and particle radius, 

respectively. The subscript 1 and 2 denotes each colliding particle. This method 

was established subject to assumption that the nonlinear relationship between 

overlap and force can be interpreted linearly when the overlap is relatively small. 

The damping coefficient is determined by the coefficient of restitution 𝜀 directly 

using the following equations:  

 

 𝐶𝑛 = √
4𝑚∗𝑘𝑛

1+𝛽𝐶
2 , (2.44) 

   

 𝛽𝐶 =
𝜋

ln (𝜀)
, (2.45) 

   

 
1

𝑚∗ =
1

𝑚1
+

1

𝑚2
, (2.46) 

 

The value of the tangential damping coefficient was same as that of the normal 

damping coefficient (Tsuji et al., 1992). 
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Particle motion includes both translational and rotational motions. The 

rotational motion of a particle is determined by the equation of rotational motion, 

which includes rolling friction based on the directional constant torque model (Eqs. 

(2.47–2.49)) (Ai et al., 2011). The direction of the torque of the rolling friction is 

always opposite to the relative rotation between the two colliding particles.  

 

 Α𝑎𝑐 =
Στ

𝐼
, (2.47) 

   

 Στ = R × ΣF +M𝑟, (2.48) 

   

 M𝑟 = −
ω𝑟𝑒𝑙

|ω𝑟𝑒𝑙|
𝜇𝑟𝑅

∗|F𝑛|, (2.49) 

 

where 𝛼𝑎𝑐 , Στ , 𝐼 , M
𝑟 , ω𝑟𝑒𝑙 , and 𝜇𝑟  are the angular acceleration, net torque, 

moment of inertia, torque of rolling friction, relative angular velocity, and rolling 

friction coefficient, respectively. 
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Figure 2.7. Contact force model for two colliding particles. 
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Chapter 3. Integration of the DEM Model into the 

Grinding Kinetics Model 

 

Although the grinding kinetics model is useful for understanding the grinding 

characteristics considering it provides the analysis of data-tendency in a 

phenomenological perspective, it does not resolve the machine-dependent changes 

in mechanical perspective. The DEM model analyzes interactions between elements 

inside the mill, and hence, the changes in the collision energy spectrum inside the 

mill with respect to the mill-dependent condition, such as the mill dimension and 

operating conditions can be analyzed. Therefore, by using the DEM model, it is 

possible to decouple the breakage characteristics into machine- and material-

dependent characteristics. 

 

3.1. Ball Mill Operating Variables 

 

Table 1 summarizes the mill dimensions and operating variables used for ball mill 

grinding simulation using the DEM model. The mill, ball media, and rocks were 

implemented as DEM elements in the simulations. A cylindrical mill with an internal 

diameter and length of 200 and 160 mm, respectively, was used. The mill was filled 

with a ball loading (𝐽) with a volume fraction of 0.2, and rocks with the fractional 

interstitial filling of void space of the ball bed (𝑈) was set to 0.5 according to a 

previous studies (Austin et al., 1984; Kwon et al., 2016). The mill rotational speed 

was set to 70% of its critical speed (𝜑𝑐), which is defined as the mill rotational speed 
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at which the ball media rotates along the mill case with the assumption of no-slipping, 

and is calculated by balancing gravity and centrifugal force when the ball is located 

on top of the mill, expressed as:  

 

 𝑚(𝐷 − 𝑑)𝜔2 = 2𝑚𝑔𝑎𝑐, (3.1) 

 

where 𝑚, D, d, 𝜔, and 𝑔𝑎𝑐 are the mass of the ball media, radius of the mill and 

the ball media, angular velocity of the mill, and the gravitational acceleration, 

respectively. If Eq. (3.1) is rearranged, the critical speed (in rpm) can be expressed 

as:  

 

 𝜑𝑐 =
60

2𝜋
√
2𝑔𝑎𝑐

𝐷−𝑑
=

42.2

√𝐷−𝑑
, (3.2) 

 

Furthermore, 8 isosceles trapezoid-shapes lifters were equally spaced along the mill 

case. The length of the parallel sides of the lifters was set based on the angle from 

the midpoint. The angle for the lower and upper sides were ±1.8° and 80% of the 

lower side, respectively, and the height of the trapezoid was 12 mm. Figure 3.1 shows 

the shape and size of the lifter. 

A single particle size fraction with size intervals of √2  was used for 

numerical grinding tests. However, even for a single-size fraction sample, not all 

particles were of the same size. Therefore, a mixture of particles classified into five 

sizes at constant ratios from 1 to 20.4 for the top size were used as a starting feed, and 

the weight fraction of each size was set to 0.2. The top size of the feed was varied 

from 3.34–9.44 mm to analyze the difference depending on the particle size. Subject 
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to these conditions, the number of DEM particles was 70 for the ball media and 

approximately 500–10 000 for the rock depending on the size of the feed. 

 

 

 

 

 

 

 

 

Figure 3.1. Shape and size of the lifter in the ball mill. 
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Table 3.1. Mill design and operational conditions of the ball mill 

Components Detailed components Value 

Mill 

Diameter (mm) 200 

Length (mm) 160 

Volume (cm3) 5024 

Rotational speed 70% of critical speed 

Number of lifters 8 

Lifter size 12% of mill radius 

Ball 

Diameter (mm) 25.4 

Formal ball filling, 𝐽 0.2 

Number of DEM particles 70 

Rock 

Diameter (mm) 3.34–9.44 

Formal powder filling, 𝑈 0.5 

Number of DEM particles 500–10 000 
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3.2. Parameters Used for the DEM Simulations 

 

Several physical property values are required to calculate the equation of motion in 

chapter 2.3. Table 3.2 lists the parameters used in this study. All parameters were set 

to reflect the physical properties of the material or the values in previous studies 

(Bian et al., 2017; Cleary et al., 2018). The value of Young’s modulus was set to 

approximately 1 100⁄  of the actual value. As this value decreased, the simulation 

time interval increased, which decreased the time required for simulation. However, 

the time interval should be small enough to maintain numerical stability. In the DEM 

scheme, the time interval is determined based on the contact duration calculated 

analytically from the reduced mass and spring constant. If the damping coefficient 

is zero, i.e., the collision is perfectly elastic, the contact duration is given as:  

 

 𝑇 = π√
𝑚∗

𝑘𝑛
, (3.3) 

 

where 𝑇  is the contact duration. The time interval is proportional to the contact 

period, and the proportionality constant is typically 1 20⁄  to 1 30⁄ . In this study, 

the time interval considered was 1 30⁄  of the contact period. In Eqs. (2.22) 

and(2.23), the normal spring constant was calculated from Young’s modulus. As 

Young’s modulus decreased, the normal stiffness of spring is decreased, which 

increased the contact period and time interval. Therefore, a value smaller than the 

real Young’s modulus is advantageous in terms of the time required for simulation. 

Conversely, the assumption that the length of the overlap and spring force are linear 

should be maintained owing to the increase in the overlap length. Additionally, as 
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described in the next section, the dissipation energy affecting the particle breakage 

is calculated by using the damping coefficient in Eq. (2.25). Considering the reduced 

Young’ modulus does not affect the dissipation energy, it is reasonable to change the 

Young’s modulus to decrease the simulation time. 

 

 

 

 

Table 3.2. Parameters used for simulation using the DEM 

Physical properties Value 

Coefficient of restitution (rock–rock) 0.3 

Coefficient of restitution (rock–steel) 0.5 

Coefficient of restitution (steel–steel) 0.8 

Friction coefficient 0.5 

Poisson’s ratio 0.2 

Coefficient of rolling friction 0.02 

Young’s modulus (rock) 500 MPa 

Young’s modulus (steel) 2000 MPa 

Specific gravity (rock) 3.5 g/cm3 

Specific gravity (steel) 7.8 g/cm3 
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3.3. DEM Schemes 

 

The DEM simulation was conducted in two stages, as shown in Figure 3.2. During 

the preparation stage, the particles were generated and stacked on the bottom of the 

mill chamber to attain a stable state after a free fall. In the second stage, the mill 

began to rotate, and the information of collision energy with time was recorded and 

analyzed. Additionally, the state of the mill motion was changed abruptly, which 

affected the number of particles that broke. Therefore, it is necessary to determine 

whether to contain the collision that occurs before the initial stabilization in the 

simulation result. Depending on the change in the average velocity of each particle 

group over time, it was confirmed that the time required to reach a stable state was 

approximately 3 to 4 s (Figure 3.3). Therefore, the dissipation energy affecting 

particle breakage was conservatively recorded 5 s after the onset of the simulation. 
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(a) 

 

 

(b) 

Figure 3.2. Ball mill representations at different simulation stages. (a) Particle 

generation stage and (b) Mill rotation stage. 
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Figure 3.3. Average velocity for the ball media and rock particles over simulation 

time. 
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It is important to determine the collision energy considering it is directly 

related to the occurrence of breakage of particles within the model. The collision 

energy can be determined from different perspectives, such as the kinetic energy at 

the time of impact (Mori et al., 2004; Iwasaki et al., 2010), dissipated energy (Mishra 

and Rajamani, 1992; Mishra and Rajamani 1994; Datta et al., 1999; Hlungwani et 

al., 2003), and the maximum impact energy (Wang et al., 2012). In this study, given 

the collision energy is the energy that affects the breakage of particles, the analysis 

was performed using the dissipation energy, which in turn is calculated as the 

numerical integration of the product of the damping force and the particle 

displacement during time interval.  

 

 𝐸𝑑 = ∫ 𝐹𝑑𝑣𝑟𝑒𝑙,𝑛𝑑𝑡
𝑇𝑐
0

, (3.4) 

 

where 𝐸𝑑, 𝐹𝑑, and 𝑇𝑐 are the dissipation energy, damping force, and contact time, 

respectively. When slipping occurs in the tangential direction, the friction force is 

used instead of the damping force. Because the dissipation energy is calculated for 

each particle, it must be allocated to satisfy the energy conservation law. When rock 

particles collide with each other, the dissipation energy splits into two and is assigned 

to each rock particle to simplify the problem. In the collision between the ball media 

and rock particle, 90% of the dissipation energy is allocated to the rock particle based 

on the previous research (Cleary et al., 2018). 

Figure 3.4 shows the fundamental algorithm of the simulation of mill rotation 

step. The part that determines whether or not particles are broken is introduced to the 

typical DEM simulation process for analysis. The analysis of the particle breakage 
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potential is performed 5 s after the simulation begins. Eq. (3.5) demonstrates the 

probability of particle breakage owing to n collisions, which is transformed from Eq. 

(2.33) and (2.35). If the dissipation energy is less than the threshold energy, the 

collision has no effect on the particle breakage. Conversely, the difference between 

the two values was used to calculate the probability of particle breakage. Instead of 

the sum of the effective energies, the difference in energy at each collision was used 

to determine whether to break at each collision. 

 

 𝑃𝐵 = 1 − exp {−
(𝐸𝑘−𝐸0)

𝐸𝑏
}, (3.5) 

 

where 𝐸𝑏 is the energy representing the particle strength that normalizes the applied 

energy by collision and affects the probability of particle breakage. For convenience 

purposes, some studies considered this value as a constant (Cleary et al., 2018). 

However, considering Eq. (3.5) is a modified form of Eqs. (2.33) and (2.35), 𝐸𝑏 

should depend on the particle size, and should be related to parameter 𝑓𝑀𝑎𝑡 . 

According to Shi (2016), 𝑓𝑀𝑎𝑡 is size dependent, given as: 

 

 𝑓𝑀𝑎𝑡 = 𝑝𝑓𝑥
−𝑞𝑓, (3.6) 

 

where 𝑝𝑓  and 𝑞𝑓  are the model parameters that can be determined through 

breakage tests. Therefore, it can be inferred that 𝐸𝑏 can be expressed by:  

 

 𝐸𝑏 = 𝑝𝐸𝑥
−𝑞𝐸, (3.7) 
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where 𝑝𝐸 and 𝑞𝐸 are model parameters. Eq. (3.7) demonstrates that as the particle 

size increases, 𝐸𝑏 and the strength of the particle decrease infinitely. However, the 

correlation between particle size and strength eventually converge, although the 

strength decreases as the particle size increases (Tavares and King, 1998). 

Mathematically, it is expressed as: 

 

 𝐸50 = 𝐸∞ {1 + (
𝑥0,𝑓

𝑥𝑖
)
𝜒
}, (3.8) 

 

where 𝐸50, 𝐸∞, 𝑥0,𝑓, and 𝜒 are the mass-specific median particle fracture energy, 

fracture energy at coarse size, size of the fracture energy that is twice the 

convergence value, and the slope of the size-fracture energy plot, respectively. In this 

study, Eq. (3.8) was used to describe the relationship between the size and strength. 

After calculating the particle breakage probability, the probability was 

compared with random numbers between 0 and 1. It was found that the particle broke 

when the probability was higher than the random number. As the simulation 

progressed, each particle underwent repeated collisions, and the breakage of the 

particles was recorded for each collision. Finally, the simulation results were 

interpreted based on the rate process. The first-order breakage was confirmed by 

plotting the change in weight fraction remaining at the top size class over time in 

log-linear scale. In this study, the effect of changes in the particle size distribution in 

the mill and particle weakening owing to repeated collisions on the first-order 

kinetics were investigated. 
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Figure 3.4. Flowchart of the DEM code.  
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3.3.1. Particle Weakening Simulation Method 

There are various models that describe particle weakening or incremental damage 

caused by repeated collisions (Cleary and Morrison, 2016; Tavares and King, 2002; 

Han et al., 2003). In this study, the particle weakening model proposed by Tavares 

and King (2002) were used considering it can effectively describe material 

weakening using a single parameter. The model is derived from the reduction in 

stiffness through repeated impacts in the force-displacement profile. The relationship 

between the mass-specific fracture energies owing to successive impacts is 

expressed as: 

 

 𝐸𝑓,𝑛 = 𝐸𝑓,𝑛−1(1 − 𝐷𝑛), (3.9) 

 

where 𝐸𝑓,𝑛 and 𝐸𝑓,𝑛−1 are the mass-specific fracture energy of the particle before 

and after 𝑛th collision, respectively. 𝐷𝑛 is the amount of damage received by the 

𝑛th collision and is given as: 

 

 𝐷𝑛 = {
2𝛾𝐷

(2𝛾𝐷−5𝐷𝑛+5)

𝐸𝑘

𝐸𝑓,𝑛−1
}

2𝛾𝐷
5

, (3.10) 

 

where 𝛾𝐷 is the damage accumulation constant and determined through experiment. 

Considering 𝐷𝑛 is implicit in Eq. (3.10), an iterative method should be used. This 

study used the bisection method. The energy value 𝐸𝑘  in Eq. (3.1) should be 

replaced with a corresponding value, so that the difference (𝐸𝑘 − 𝐸0), which is the 

energy available to break particles, can be substituted to calculate the damage. 𝐸𝑏 

in Eq. (3.8) corresponds to 𝐸𝑓,𝑛−1 in Eq. (3.10) considering they both are related to 
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the particle strength. However, if the difference (𝐸𝑘 − 𝐸0) is to the same as 𝐸𝑏 in 

Eq. (3.8), the probability of the particle breakage is approximately 63% or more, 

which indicates that the particle may not be broken. Then, if the damage is calculated 

using the ratio of the difference and 𝐸𝑏, the particle is considered too weak, which 

would result in unconditional particle breakage in the next effective collision. 

Therefore, the damage was calculated by using the value at which the particle 

breakage probability of Eq. (3.8) became 99% with respect to the applied effective 

energy. After calculating the damage, the weakening effect of the particle is 

expressed as: 

 

 𝐸𝑏,𝑛 = 𝐸𝑏,𝑛−1(1 − 𝐷𝑛), (3.11) 

 

 𝐸0,𝑛 = 𝐸0,𝑛−1(1 − 𝐷𝑛), (3.12) 

 

where subscripts 𝑛 and 𝑛 − 1 indicate the parameter changes before and after the 

𝑛th collision, respectively. 

 

3.3.2. Progeny Particle Size Distribution 

As described in Section 2.1, a progeny particle size distribution can be determined 

using the 𝑡𝑛-family curve. However, the size index 𝑡10 should be known, and is 

calculated as: 

 

 𝑡10 = 𝑀 {1 − exp (
𝐸𝑘−𝐸0,𝑛

𝐸𝑏,𝑛
)}, (3.13) 

 



51 

 

Eq. (3.13) shows the 𝑡10 value when the particle is broken by the 𝑛 + 1th collision. 

Although this equation is a modified form of Eq. (2.35), the difference is that it does 

not consider all collision energies that have occurred because it is calculated at every 

collision. As seen in Eq. (2.35), the incremental damage owing to repeated collision 

appears in the form of a number of effective collisions. In this case, only the progeny 

particle size distribution changes whereas the probability of the particle breakage 

remains the same. In this study, by reducing 𝐸0  and 𝐸𝑏  based on the particle 

weakening effect caused by repeated collisions, the breakage probability was set to 

increase as the weakening progressed. Additionally, considering the previous 

collisions were already expressed as parameter change, the value of 𝑡10  can be 

calculated without summation, that is, there is no need to record the previous 

collision data. 

After determining 𝑡10, the 𝑡𝑛-family curve was used to calculate the other 

values of 𝑡𝑛. Because the 𝑡𝑛 values are out of the geometric sequence of the size 

interval, it must be converted into the weight fraction for each size class, which in 

turn was determined using spline regression. In this case, the progeny particle cannot 

exist in the parent particle size class. The BII method was used to calculate the 

progeny particle size distribution. Furthermore, the minimum size of rock particles 

was set to 1.72 mm. When the broken particle was in size class 𝑗, the cumulative 

weight fractions from 1.72 mm (size class 𝑛) to size class 𝑗 + 1 were calculated 

using the BII method. Next, the weight fraction of each size class was replaced by 

the number of particles. As the simulation progressed, the weight fraction of the top 

size decreased below the certain percentage, which stopped the simulation. Then, the 



52 

 

particle size distribution inside the mill was changed by performing a particle 

generation stage to reflect the calculated number of progeny particles.  

 

3.4. Results 

 

3.4.1. First-Order Breakage Kinetics 

The first-order breakage kinetics indicates that the breakage rate of each size class is 

proportional to the weight of each size class. In the grinding kinetics model, the first-

order breakage kinetics should be established to apply the analytic solution of the 

size-mass balance equation. Therefore, the first-order breakage kinetics in the ball 

mill simulation were analyzed through single-fraction breakage tests using DEM. In 

ball mill simulation, whenever rock particles collide, the first-order breakage kinetics 

determines whether the particle is broken or not. If broken, the mass of the broken 

particle is excluded from the calculation of the weight fraction in the top size class. 

The simulation is performed until the weight faction of the top size class reaches 10% 

of the initial mass. The breakage probability parameters 𝑥𝐸0 and 𝐸𝑏 were set to 2 

Jmm/kg and 8.1 J/kg, respectively. 

Furthermore, it was investigated whether the first-order breakage kinetics 

was established when the particle size distribution inside the mill was changed as the 

simulation progressed. First, as shown in Figure 3.2, the rock particles comprising a 

single-fraction were generated in the preparation stage, and the ball mill grinding 

simulation was performed during the mill rotation stage. Whenever each rock 

particle collided, it determined whether the particle was broken depending on the 

collision energy and recorded the information on each particle. If the particle was 
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broken, the corresponding collision energy was stored in each particle. When the 

weight fraction of the particles unbroken in the top size class reached 70%, the 

fragment size distributions of all broken particles were calculated according to the 

stored collision energy by using 𝑡10 and 𝑡𝑛, as mentioned in Section 3.1.3.2. Then, 

the first simulation ends. In the next preparation step, the previously broken particles 

are replaced with the fragment distribution and generated with unbroken particles. 

Next, the ball mill simulation after the grinding time was stopped was described by 

repeating the simulation in the mill rotation stage. In this instance, the particle 

breakage was calculated after 5 s, which is the time required to reach the stable state. 

This process was repeated every time the weight fraction of the top size class reached 

70% of the start of the mill rotation stage, and the simulation was performed until 

the weight fraction of the top size class reached 10% of the initial mass. Figure 3.5 

shows the simulation algorithm of the change in the size distribution of the mill. As 

seen in Figure 3.5(b), when the weight fraction of the top size was approximately 

17%, the total number of particles was approximately 12 000. 

Figure 3.6 shows the change in the size distribution inside the mill. The color 

bar is based on the radius of the particles. Considering the ball media was large 

compared to the rock particles, they appeared red whereas the smallest particles 

appeared blue. As the weight fraction of the top size class decreased, the number of 

smaller particles rapidly increased.  
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Figure 3.5. Simulation algorithm of the change in the size distribution inside the 

mill. 
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(a) 

 

 

(b) 

Figure 3.6. Change in the size distribution inside the mill: (a) Weight fraction of 

top size is approximately 49% and (b) Weight fraction of top size class is 

approximately 17%. 
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The collision energy spectrum per particle can be calculated as the DEM 

tracks all collisions during the simulation time. The energy spectrum was derived by 

discretizing the energy and measuring the collision frequency for each energy class. 

Figure 3.7 shows the changes in the collision energy distribution of the top size class 

according to the particle size distribution inside the mill. The frequency of collisions 

with high collision energy was low considering the type of collision and ball 

movements that generates high collision energy was limited. The motion of the ball 

inside a tumbling mill can be classified into two modes, namely, cascading and 

cataracting stream. In the middle regime of the chamber, a ball bed is formed, and 

the ball raised by the lifters can roll down the surface of the bed, which is called 

cascading. When the ball is ejected from the lifter surface at a higher angle than the 

bed surface, the ball falls directly on to the bed surface or to the other side, which is 

called cataracting. The high collision energy is caused by the cataracting motion, 

which occurs relatively infrequently. 
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Figure 3.7. Collision frequency according to the collision energy. 
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As shown in Figure 3.7, almost the same collision frequency appears 

regardless of the weight fraction of the top size class in the high energy region, 

considering the collision frequency per particle is maintained even though the 

collision frequency decreases owing to the decrease in the number of particles of the 

top size class. This indicates the probability that a particle break is constant, that is, 

even if the particle size distribution changes with the simulation time, the probability 

for breaking a single particle remains constant. Therefore, changes in the number or 

weight of the top size over simulation time remains constant. In the low energy 

region, the smaller is the weight fraction of the top size class, the higher is the 

collision frequency, which is caused by the collisions with fragments. However, 

because the low energy region is smaller than the threshold energy, it has no effect 

on both the particle breakage and the breakage rate. 

Figure 3.8 shows the rate of change of the weight fraction of the top size class 

with the simulation time. The rate of change appears as a straight line in the log-

linear graph, regardless of the change in the particle size distribution inside the mill 

according to the grinding time. The specific rate of breakage can be calculated from 

the slope of the graph. As seen in the figure, it takes approximately 1 min for the 

weight fraction of top size to reach 10%, which is shorter than the grinding time for 

real rocks. This can be attributed to the accelerating particle breakage to ensure the 

simulation time does not increase significantly. Furthermore, the grinding time was 

reduced by decreasing the breakage probability parameter 𝐸𝑏. The simulation result 

for when the weight fraction reached 10% over about 3 min was compared with the 

simulation result by accelerating the breakage, which confirmed that accelerating 
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breakage can be used effectively to analyze the first-order breakage kinetics and the 

change in the weight fraction with the grinding time. 

 

 

 

 

 

 

 

Figure 3.8. First-order breakage kinetics according to the particle size distributions 

(PSDs) inside the mill. 
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Further analysis was performed to determine the effect of changes in the 

particle size distribution inside the mill for a particle size of 6.675 mm. First, the 

particle size distribution was changed whenever the weight fraction of the top size 

class reached 80% of the value at beginning by shortening the fragments 

regeneration cycle. This made the particle size distribution similar to the actual one. 

Next, the first-order breakage kinetics were analyzed when 𝑀 , representing the 

maximum value of 𝑡10 in Eq. (3.14), changed. Even if the particle broke owing to 

the same energy, if 𝑀  is large, 𝑡10  increases. As a result, the fragment size 

distribution determined by 𝑡𝑛 -family curve becomes finer. Figure 3.9 shows the 

change in the ratio in the weight fraction of the top size class with the grinding time 

for each case. The graph appears identical to the previous result, and hence, the first-

order breakage kinetics can be established no matter how the particle size 

distribution inside the mill changes.  
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Figure 3.9. First-order plot for various conditions of the particle size distribution 

inside the mill. 
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3.4.2. Particle Weakening 

As the simulation progresses, the rock particles collide repeatedly, causing an 

increase in both the number of weakened particles and the degree of weakening of 

each particle. Therefore, the weakening effect increases the breakage rate. Figure 

3.10 shows the change in the weight fraction of top size class when the weakening 

effect is applied to the various particle size. It was confirmed that when the 

weakening effect is applied for all particle sizes, the breakage rate increased with the 

grinding time. To compare the weakening effect quantitatively, the area surrounded 

by 3 lines (x = 0, y = 0.1, and the graph of weight fraction change) were calculated, 

which after applying the weakening effect was similar at approximately 74% 

regardless of the particle size, compared to before the weakening effect. 

As shown in Figure 3.10, 𝛾𝐷 is set to 2, indicating that the weakening effect 

occurs even at low energies, as shown in Figure 3.11. Figure 3.11(a) shows the effect 

of the damage coefficient. In the case of a large 𝛾𝐷, if the collision energy is lower 

than the fracture energy, a relatively low weakening effects occurs. Therefore, the 

larger the damage coefficient, the slower is the increase in breakage rate, whereas 

the change in the weight fraction of the top size class with the grinding time becomes 

more linear, as shown in Figure 3.11(b). 
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Figure 3.10. Changes in the breakage rate when the weakening effects is applied. 
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(a) 

 

 

 

(b) 

Figure 3.11. Effect of the damage coefficients. (a) Changes in the damage and (b) 

Changes in the weight fraction of the top size class with the grinding time. 
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3.4.3. Calculation of the Breakage Rate 

During DEM simulation, all collision energies for each particle can be obtained, 

indicating that the machine-dependents are determined. Therefore, by changing the 

material-dependents, the breakage rate of the samples with different breakage 

properties can be calculated. For this, it is necessary to calculate the breakage rate 

from the energy distribution of the DEM simulation. First, based on the energy 

distribution of each particle, the change in the weight fraction of the top size class 

over time was determined when simulating the particle breakage in a manner similar 

to the simulation. The collision energy and collision time were obtained for each 

particle from the DEM for effective collisions, where the collision energy was higher 

than the threshold energy. Then, the survival probability was calculated for collisions 

that occur within a given time. Herein, unlike the simulation where the particle 

breakage is determined through comparison with a random number, the weight 

fraction remaining in the top size class was calculated using the expected value for 

particle survival. Figure 3.12 shows that the calculated results according to the 

grinding time agree well with the simulated results. 
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Figure 3.12. Comparison of the changes in the weight fraction over time between 

the calculation and simulation results. 
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Although the same result as the simulation in Figure 3.12 was obtained, the 

simulation must be performed to obtain the required data. Therefore, for using the 

model effectively, it should be possible to calculate the breakage rate from the basic 

energy data, that is, the energy distribution when the particle breakage and 

weakening effects do not work. Using this data, the change in the weight fraction 

over time when the particle breakage and weakening effects were applied was 

calculated in the following processes. First, the total effective collision energy that 

occurred within a given time was calculated, followed by the damage using the total 

energy. After updating the breakage probability parameters 𝐸0  and 𝐸𝑏 , the total 

energy was recalculated considering the effective energy section is extended. 

Furthermore, the expected value of the weight fraction remaining in the top size class 

over time for all particles was determined as:  

 

 𝐸𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑ (𝐸𝑘 − 𝐸0)
𝑁𝑡
𝑘=1 , (3.14) 

 

 𝐷 = {
2𝛾𝐷

(2𝛾𝐷−5𝐷+5)

𝐸𝑡𝑜𝑡𝑎𝑙

𝐸𝑓, 0
}

2𝛾𝐷
5

, (3.15) 

 

 𝑃𝑆 = exp (
𝐸𝑡𝑜𝑡𝑎𝑙
’

𝐸𝑏
’ ), (3.16) 

 

 
𝐸𝑆(𝑡) =

∑ [𝑤𝑖 exp(
𝐸𝑡𝑜𝑡𝑎𝑙
’ (𝑡)

𝐸𝑏
’ )]𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

, 
(3.17) 

 

where 𝐸𝑡𝑜𝑡𝑎𝑙(𝑡) , 𝑁𝑡 , 𝐸𝑓,0 , 𝐸𝑡𝑜𝑡𝑎𝑙
′  , 𝐸𝑏

′  , and 𝐸𝑆(𝑡)  are the sum of the effective 

energy for given time 𝑡, number of effective collisions for time 𝑡, initial particle 

fracture energy, recalculated sum of the effective energy by using updated threshold 
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energy 𝐸0
′ , an updated parameter, and the expected remaining weight fraction in top 

size class for a given time, respectively. For basic energy data, it is possible to 

successfully describe the change in the weight fraction by applying the particle 

weakening effect, as shown in Figure 3.13. 

 

 

 

 

 

 

 

Figure 3.13. Calculation results of weakening from the basic energy data 
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3.4.4. Relationship Between the Breakage Rate and Breakage Probability 

Parameters 

The breakage probability parameter has a direct relationship to the breakage of the 

particle. That is, it is closely related to the tendency of particles in the top size class 

to disappear, the specific rate of breakage. The breakage rate represents the rate of 

change in the weight fraction of each particle size class with the grinding time. In 

the single-fraction test, the weight fraction of the top size class at time t is expressed 

as shown in Eq. (2.2). The breakage probability is a calculated value for a single 

particle, and the expected survival value is the weight fraction remaining in the top 

size class. In this case, the average collision energy is similar to the breakage rate. 

The weight fraction remaining in the top size class according to the number of 

collisions is expressed as: 

 

 𝐸𝑖(𝑁𝑡) = exp {−
(𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )𝑖

𝐸𝑏
𝑁𝑡}, (3.18) 

 

where 𝑬𝒊(𝑵𝒕)  and (𝑬 − 𝑬𝟎̅̅ ̅̅ ̅̅ ̅̅ ̅)𝒊  are the weight fraction remaining in the top size 

class of particle 𝒊 according to the number of collisions and the average effective 

energy for 𝑵𝒕 collisions of 𝒊th particle, respectively. 

To analyze the relationship between the breakage probability parameters and 

breakage rate, Eq. (3.18) is modified to a time-dependent equation. By multiplying 

the frequency of effective collision, Eq. (3.18) is transformed to: 

 

 𝐸𝑖(𝑡) = exp {−
𝑓(𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )𝑖

𝐸𝑏
𝑡}, (3.19) 
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where 𝑓 is the frequency of collision, which is higher than the threshold energy, 

and 𝐸𝑖(𝑡) is the weight fraction remaining in the top size class with the grinding 

time. 

On comparing Eqs. (3.19) and (2.2), it was seen that the term inside the 

exponential function had the same meaning as the breakage rate. However, given 

that the breakage rate represents the change in the weight fraction of all particles in 

the specific particle size class, the average of all particles should be calculated. 

Mathematically, it is given as: 

 

 𝑆 = −ln [
∑ 𝑤𝑖 exp{−

𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖
𝐸𝑏

}𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

], (3.20) 

 

Even in a single-fraction test, owing to the difference between the particle masses 

within a class, the breakage rate should be calculated using the weight average. The 

breakage rates calculated using Eq. (3.20) and obtained from the slope of the first-

order plot were approximately same, with values 2.05 and 2.07, respectively, when 

the particle size, 𝑥𝐸0 , and 𝐸𝑏  were set to 6.675 mm, 2 Jmm/kg, and 8.1 J/kg, 

respectively. Figure 3.14 shows that the estimated and simulated values are in good 

agreement for various breakage probability parameters. 
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Figure 3.14. Comparison of the specific rate of breakage for the calculated and 

simulation values. 
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Assuming the particle size in the top size class can be represented by a 

specific value, such as median particle size, Eq. (3.20) can be simplified to Eq. (3.21) 

for two cases where Eq. (3.22) holds. First, where the breakage rate is sufficiently 

small, that is, the terms in the exponential function are small, so that the exponential 

function can be assumed to be linear. And second, where the dispersion of energy 

applied by the particles in the top size class is very small, indicating that the particles 

receive almost the same energy. 

 

 𝑆 =
𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )

𝐸𝑏
, (3.21) 

 

 
∑ exp{−

𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖
𝐸𝑏

}𝑛
𝑖=1

𝑛
≅ exp [

∑ {−
𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑖

𝐸𝑏
}𝑛

𝑖=1

𝑛
], (3.22) 

 

In Eq. (3.21), the relationship between the breakage rate and breakage 

probability parameter is easily understood, especially 𝐸𝑏, which can be calculated 

from Eq. (3.8) using the material properties obtained through experiments. 

Substituting Eq. (3.8) into Eq. (3.21) provides Eq. (3.23). Taking the logarithm of 

both sides and rearranging the equation provides Eq. (3.24). If 𝑥𝑖  is sufficiently 

smaller than 𝑥0,𝑓, Eq. (3.24) can be modified to Eq. (3.25). 

 

 𝑆 =
𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )

𝐸∞{1+(
𝑥0,𝑓

𝑥𝑖
)
𝜒

}
, (3.23) 

 

 log(𝑆) = log (
𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )

𝐸∞
) − log {1 + (

𝑥0,𝑓

𝑥𝑖
)
𝜒
}, (3.24) 
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 log(𝑆) = log (
𝑓 (𝐸−𝐸0̅̅ ̅̅ ̅̅ ̅̅ )

𝐸∞
) + 𝜒 log (

𝑥𝑖

𝑥0,𝑓
), (3.25) 

 

From Eqs. (3.23) to (3.25), the relationship between the material property 

and the breakage rate can be analyzed. First, in the case of 𝐸∞ , it is inversely 

proportional to the breakage rate and 𝐴 in Eq. (2.2). However, in the case of 𝜒, if 

the particle size is small enough, it becomes the slope in the log-log plot of the 

breakage rate and relative particle size. That is, 𝛼 in Eq. (2.2) is closely related to 

the 𝜒. 

First, the relationship between 𝐸∞ and the breakage rate was analyzed. The 

change in the breakage rate for various 𝐸∞ was plotted on a log-log scale graph. 

Considering 𝐸∞ and the breakage rate are inversely proportional, the slope of the 

graph was calculated as -1. The graph comparing the same 𝐸∞ with different 𝐸𝑏 

by changing 𝑥0,𝑓 and 𝜒 is shown in Figure 3.15. Herein, 𝑥𝐸0 is 2 Jmm/kg and 

the particle size is 6.675 mm. 

 

 

 

 

 

 

 

 

 

 



74 

 

 

 

 

 

 

 

 

 

Figure 3.15. Relationship between 𝐸∞ and the breakage rate for different 𝑥0,𝑓 

and 𝜒. 
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In both cases, the graph appears linear; however, the slope differs by -0.90 and -0.97, 

respectively. Particularly, when 𝑥0,𝑓 and 𝜒 are 50 mm and 0.6, respectively, which 

is the case for larger values of 𝐸𝑏, the slope is close to -1 to establish the relationship 

between the breakage rate and 𝐸∞ identified in Eq. (3.25). For the same energy 

distribution, the breakage rate decreases as 𝐸𝑏 increases. That is, the exponential 

function is assumed to be linear as the breakage rate decreases. 

Additionally, the case where the particle size and 𝑥𝐸0 change were analyzed. 

In both cases, a decrease in the breakage rate and a change in the energy distribution 

worked in combination. Simulations were performed for the cases where the particle 

size was 6.675 and 4.72 mm, and 𝑥𝐸0 was 2 and 6 Jmm/kg (Figure 3.16). 

 

 

Figure 3.16. Relationship between 𝐸∞ and the breakage rate for different particle 

sizes and 𝑥𝐸0. 
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Although a linear graph was observed in all cases, differences were observed 

in the slopes, which were not close to -1. When 𝑥𝐸0 increased from 2 to 6 Jmm/kg, 

the breakage rate and absolute value of the slope decreased, indicating that Eq. (3.22) 

does not hold, and the change in energy distribution has a greater effect than the 

change in the breakage rate. This also occurs when the particle size changes. As the 

particle size decreases, the breakage rate and absolute value of the slope of the graph 

decrease. Figure 3.17 shows the histogram of the average collision energy for each 

particle in each case. 
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(a) 

 

 

(b) 

Figure 3.17. Histogram of the average collision energy. (a) Change of 𝑥𝐸0 and (b) 

Change of particle size. 
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Figure 3.17 shows the number of particles for each energy class according to 

the log-scale energy class. As 𝑥𝐸0 increased, the average energy decreased and the 

energy distribution dispersed, as shown in Figure 3.17(a). The same result is shown 

in Figure 3.17(b) for when the particle size decreases. The breakage rate decreased 

as 𝐸𝑏 increased and average energy decreased. 

The breakage rate parameter 𝛼 is related to 𝜒 in the Eq. (3.25). However, 

considering the frequency and energy distribution are also functions of particle size, 

𝛼 does not exactly correspond to 𝜒. Figure 3.18 shows the change of 𝛼 with 𝜒 

for particle sizes ranging from 3.34–9.44 mm. In this case, 𝑥0,𝑓 was set to 50 mm 

to simulate a region where 𝐸𝑏 is linear according to the particle size. Additionally, 

the graph in the case of different values of 𝐸∞ was plotted. 

 

 

Figure 3.18. Relationship between 𝜒 and 𝛼. 
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As shown in Figure 3.18, 𝜒 and 𝛼 have a linear relationship and their slope 

is 1, which indicates that the relationship in Eq. (3.25) is reflected except for the 

difference in the energy distribution owing to the particle size. Also, this relationship 

is maintained regardless of 𝐸∞, and confirms that 𝐸∞ does not affect 𝛼. 

Additionally, an analysis was performed for the case where 𝑥𝐸0  is not 

considered, which is adopted in several studies (Carvalho and Tavares, 2013). An 

𝑥𝐸0  value of 0 means that collision energy affects particle breakage. Even very 

small energies directly affect the breakage when the number of collisions is large. 

However, given that a small amount of energy is generated during the DEM 

simulation, it should be excluded. In this section, only energies with mass-specific 

energy greater than 0.1 J/kg were considered. 

First, the relationship between 𝐸∞ and breakage rate was confirmed. Figure 

3.19 shows the results of the simulation under the conditions applied in Figure 3.15. 
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Figure 3.19. Relationship between 𝐸∞ and breakage rate when 𝑥𝐸0 is 0. 
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Even if the value of 𝐸𝑏 changes, the slope is almost constant, and the values 

are -0.97 and -0.99. Unlike in Figure 3.15, the slope here is close to -1 even when 

the breakage rate is relatively large. This can be attributed to the fact that the 

distribution of energy is dense and the probability calculation using the average 

energy is possible. In fact, as shown in Figure 3.20, when 𝑥𝐸0 is 0, the energy is 

denser than when 𝑥𝐸0 is 2 Jmm/kg. 

 

 

 

 

 

Figure 3.20. Histogram of the average collision energy for different values of 𝑥𝐸0. 
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Figure 3.21 shows the graph of change of 𝛼  according to 𝜒  under the 

conditions shown in Figure 3.18. Not only is the graph linear, but the values of 𝛼 

and 𝜒  are almost the same. This result is in perfect agreement with Eq. (3.25). 

Additionally, when 𝑥𝐸0 is 0, the difference between the average collision energy 

and collision frequency according to the particle is not big. When 𝑥𝐸0 is non-zero, 

𝐸∞ has no effect on 𝛼. 

 

 

 

 

 

Figure 3.21. Relationship between 𝜒 and 𝛼 when 𝑥𝐸0 is 0. 
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Results show that the probability parameter and breakage rate exhibit the 

relationship demonstrated in Eq. (3.20), that is, when the breakage rate is small or 

the average energy distribution of the particles is dense, it exhibits a more simplified 

relationship, as demonstrated in Eq. (3.23). Herein, 𝐸∞ is inversely proportional to 

the breakage rate and does not affect 𝛼, which is related to particle size sensitivity 

of the breakage rate. Additionally, 𝜒 and 𝛼 have a linear relationship with a slope 

of 1, as demonstrated in Eq. (3.25). 

 

3.4.5. Scale-Up Factor 

Operating conditions applied in industries is different from those applied in 

laboratories. Therefore, a scale-up factor must be considered to apply the 

experimental results in industrial-scale mill operations. For the grinding kinetics 

model, an empirical formula based on the scale-up factor is used to predict the 

changes in the specific rate of breakage when the operating conditions change 

(Austin et al., 1984). Here, DEM simulations were performed under various 

operating conditions. Correspondingly, the breakage rate was calculated based on 

the results and was then compared with the values obtained using the empirical 

formula. Additionally, when machine-dependents were determined by DEM 

simulation, results were obtained for various materials by changing the material-

dependents. 

 

3.4.5.1. Formal ball and powder filling 

First, the formal ball filling J and formal powder filling U were changed, and the 

motion of the particles inside the mill and collision energy distribution were 
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compared as shown in Figures 3.22 and 3.23. It was seen that J varied from 0.2–0.6 

whereas U varied from 0.5–1.3. 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 3.22. Simulation snapshots for different formal ball filling (J) when the 

formal powder filling (U) was 0.5, (a) J = 0.2, (b) J = 0.3, and (c) J = 0.4. 
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Figure 3.23. Energy distribution as a function of formal ball filling (J) when the 

formal powder filling (U) is 0.5. 
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As shown in Figure 3.22, as the formal ball filling J increased, the behaviors 

of both the balls and powders changed, resulting in more cascading streams. 

Additionally, the position of the shoulder, where the balls and powders were ejected 

after being lifted to a certain height in the mill by a lifter was almost constant; 

however, the particle bed expanded and the toe where the ejected balls fell on the 

particles and collided shifted to the left. Therefore, there was difficulty in moving 

the particles ejected by cataracting stream to a sufficient distance. The change in the 

energy distribution according to J caused by changes in the movements is shown in 

Figure 3.23. As the cascading stream increased, the low energy collision increased 

and the high-energy collision caused by the cataracting stream decreased, 

considering the fall distance of cataracing stream decreases as J increases. 

Figure 3.24 shows the changes in the behaviors of the particles inside the mill 

according to U. It was observed that U does not significantly affect the movement of 

particles inside the mill, especially the ball media. Therefore, there is minimal 

difference in the energy distribution compared to other operational conditions, as 

shown in Figure 3.25. Furthermore, relatively large energies of approximately 0.3 

J/kg or more occur more frequently considering U is smaller. This is because, even 

if the balls show similar movements, the number of particles differ, and hence, the 

collision frequency per particle decreases. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3.24. Simulation snapshots for different formal powder filling (U) when the 

formal ball filling (J) is 0.2. (a) U = 0.5, (b) U = 0.7, and (c) U = 0.9. 
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Figure 3.25. Energy distribution as a function of formal powder filling (U) when 

the formal ball filling (J) is 0.2. 
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Formal ball filling J and formal powder filling U affect the specific rate of 

breakage. Austin et al. (1984) explained the effect in terms of the probability of a 

ball-powder collision that caused breakage. As J and U increase, the probabilities of 

the ball-ball and powder-powder collisions, which are not effective for breakage, 

increase. As a result, the specific rate of breakage decreases. Through experiments, 

these authors proposed regression models to analyze the relationship between the 

breakage rate and J and U, give as: 

 

 𝑆 ∝
exp[−𝑐𝑈]

1+6.6𝐽2.3
, (3.26) 

 

where c is the wet/dry coefficient, which is typically 1.2 and 1.32 for dry and wet 

grinding, respectively. Figures 3.26 and 3.27 show the change in the specific rate of 

breakage according to J and U, respectively. To conveniently compare simulations 

and empirical formulas, the ratio between the breakage rates for different parameters, 

and a reference value of J = 0.2 and U = 0.5 were used. The breakage probability 

parameters 𝑥𝐸0  and 𝐸𝑏  were set to 2 Jmm/kg and 8.1 J/kg, respectively. 

Furthermore, the breakage rate was calculated with various 𝑥𝐸0 and 𝐸𝑏 values to 

compare the results for various materials. 
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(a) 

 

 

(b) 

Figure 3.26. Changes in the specific rate of breakage according to the formal ball 

filling (J): (a) First-order plot and (b) Relative breakage rate values. 
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(a) 

 

 

(b) 

Figure 3.27. Change in the specific rate of breakage according to the formal 

powder filling (U). (a) First-order plot and (b) Relative breakage rate values. 
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The simulation and empirical results showed a similar tendency or a 

reasonable agreement according to the material properties in Figures 3.26(b) and 

3.26(b). In the energy distribution of Figures 3.23 and 3.25, it was observed that the 

energy greater than 𝐸0  occurred more frequently as J and U decreased, thereby 

resulting in an increase in the breakage rate. In both operational conditions, 𝐸𝑏 does 

not affect the change in the breakage rate. As discussed in Section 3.4.4, the breakage 

rate is inversely proportional to 𝐸𝑏. Next, each operating condition was analyzed in 

detail. 

When J is 0.3 or more, the decrease in the breakage rate appears faster than 

the empirical formula. In the empirical formula, the relationship with the breakage 

rate was derived by considering the effective number of collisions; however, in the 

simulation, an additional factor decreased the breakage according to the changes in 

the ball movement. If these effects are excluded by changing other operating 

conditions, results consistent with the empirical formula could be achieved. In 

Section 3.4.6, the effect of changing the lifter size was analyzed. Additionally, when 

J was changed, the simulated results appeared almost the same regardless of the 

material-dependents. This is because the energy distribution of approximately 0.3 

J/kg or more in the energy distribution in Figure 3.23 was almost parallel. Although 

a difference was observed in the maximum energy region, it was difficult to directly 

affect the breakage rate considering the frequency was very low. 

In case of U, only when 𝑥𝐸0 was 2 Jmm/kg, it differed from other material 

properties owing to the energy distribution. As shown in Figure 3.25, the energy 

distribution in high energy regions was almost parallel, but the graphs intersected 

around 0.3 J/kg. When 𝑥𝐸0  was 2 Jmm/kg, given that the threshold energy was 
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about 0.3 J/kg, it was interpreted that the energy distribution was affected and the 

difference in the breakage rate according to U decreased significantly. 

 

3.4.5.2. Diameter of the mill and ball media 

The diameters of the mill and ball media are essential in the scale-up of a 

grinding mill. In particular, for the mill diameter, the size of the mill used in the 

industry is much larger than that used in the laboratory for high-capacity operation. 

Accordingly, the sizes of the ball media varies. Simulations were performed for 

various diameter conditions; however, the lifter size remained constant even if the 

mill and ball diameter changed. The simulation snapshot and energy distribution 

according to change in mill diameter are shown in Figures 3.28 and 3.29, respectively. 

The mill diameter D varied from 0.2–0.5 m. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3.28. Simulation snapshots for various mill diameters (D) when the ball 

diameter (d) was 25.4 mm. (a) D = 0.2 m, (b) D = 0.3 m, and (c) D = 0.4 m. 
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Figure 3.29. Energy distribution as a function of the mill diameter (D) when the 

ball diameter (d) is 25.4 mm. 
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As shown in Figure 3.28, although the fractional volume filling remained 

constant, the behavior of the particles differed. As the mill diameter increased, the 

shoulder position gradually lowered, resulting in weak cataracting. In addition, as 

the cascading bulk of the charge increased, its depth also increased. The location of 

the toe varied slightly as a function of the mill diameter. The collision energy 

distribution according to the mill diameter is shown in Figure 3.29. It can be seen 

that the number of collisions increased as the mill diameter increased for all collision 

energy regions, despite the weakening of the cataracting stream. For high collision 

energy regions, the actual travel distance increased owing to the increase of the mill 

diameter. Furthermore, as the surface area of the cascading bulk of the charge 

increased, traveling a sufficient distance at once when the particles cascaded down 

became feasible, thereby resulting in an increased collision energy.  

The simulation snapshot and energy distribution according to change in ball 

diameter are shown in Figures 3.30 and 3.31. The ball diameter d varied from 19.05–

44.45 mm. Figure 3.30 shows the changes in the behavior of the flow when the ball 

diameter varied. The visually dominant part of the change was the position of the 

shoulder, which was affected by the lifter. The lifter size remained constant when the 

ball diameter changed, indicating that the lifter size became relatively small, which 

in turn prevents the ball from being effectively transported to the top of the mill, 

resulting in a weak cataracting stream. In addition, the number of balls decreased as 

the ball diameter increased, which affected both the collision energy and the number 

of collisions between balls and powders, and resulted in the change in the energy 

distribution, as shown in Figure 3.31. As the ball diameter increased, the number of 

collisions decreased in almost all energy regions. Only collisions close to the 
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maximum energy occurred more frequently considering the collision energy per 

mass increased as the ball size increased. 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 3.30. Simulation snapshots for various ball diameter (d) when the mill 

diameter (D) was 0.2 mm. (a) d = 25.4 mm, (b) d = 31.75 mm, and (c) d = 38.1 

mm. 
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Figure 3.31. Energy distribution as a function of d when the mill diameter (D) is 

0.2 m. 
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The probability of collision between the balls and powder increased in 

proportion to the mill diameter; however, the critical mill rotational speed decreased 

inversely proportional to the square root of the mill diameter. As a result, the specific 

rate of breakage was proportional to the square root of the mill diameter. For the 

diameter of the ball media, as the ball size decreased, the number of ball media 

increased, and the number of collisions with the particles increased. Therefore, an 

inverse relationship was observed with the specific rate of breakage. The empirical 

formula for the change in the specific rate of breakage according to the mill diameter 

and the diameter of the ball media in the grinding kinetics model is given as (Austin 

et al., 1984): 

 

 𝑆 ∝
√𝐷

𝑑
, (3.27) 

 

Figures 3.32 and 3.33 shows the changes in the specific rate of breakage 

according to D and d, respectively. The ratio between breakage rates for different 

parameters and a reference value of D = 0.2 m and d = 19.05 mm was used. The 

breakage probability parameter 𝑥𝐸0 and 𝐸𝑏 were set to 2 Jmm/kg and 8.1 J/kg, 

respectively. Furthermore, to compare the results for various materials, the breakage 

rate was calculated for different values of 𝑥𝐸0 and 𝐸𝑏. 
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(a) 

 

 

(b) 

Figure 3.32. Changes in the specific rate of breakage according to the mill diameter 

(D). (a) First-order plot and (b) Relative breakage rate values. 
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(a) 

 

 

(b) 

Figure 3.33. Changes in the specific rate of breakage according to the ball diameter 

(d). (a) First-order plot and (b) Relative breakage rate values. 
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As shown in Figure 3.32, the change in the breakage rate according to the 

mill diameter was significantly different from that of the empirical formula, as a 

result of the difference in the simulation snapshot shown in Figure 3.28. In the 

empirical formula, the relationship between the mill diameter and the breakage rate 

was explained based on the collision probability and the changes in the mill 

rotational speed. Although the changes in rotational speed in the simulation exhibited 

the same effect, the collision probability did not. In the simulation, as the cataracting 

stream occurred actively, the effect of increasing the collision energy became greater 

than the increase in the number of collisions. Unlike the number of collisions, the 

collision energy was not proportional to breakage rate considering it exhibited an 

exponential relationship with the breakage probability. This made the simulation 

results different from that of the empirical formula, and it is predicted that this gap 

will be reduced if the cataracting stream is weakened by changing the operational 

conditions. 

The effect of changes in the diameter of the ball media on the breakage rate 

showed a different tendency from the previous operating conditions. As shown in 

Figure 3.33(b), the simulation results of the reference condition, represented by the 

filled circle dots, were in good agreement with the empirical formula. Additionally, 

compared to the previous results, 𝐸𝑏 does not affect the change in the breakage rate. 

However, big differences were observed in the results depending on 𝑥𝐸0 , 

considering the graphs in the energy distribution in Figure 3.31 were not parallel but 

intersected each other. At energies greater than 0.3 J/kg, which is the threshold 

energy when 𝑥𝐸0  is 2 Jmm/kg, the energy distribution of particle whose size is 

19.05 mm intersected with the energy distribution of the reference size and 
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positioned below, indicating that as 𝑥𝐸0 increased, the decreasing ratio of effective 

energy for particle breakage was relatively large. Therefore, the breakage rate 

decreased faster than the reference size. The case where the relative breakage rate 

becomes large is also explained in a similar manner. In conclusion, this difference 

can be attributed to the changes in the collision frequency occurring due to the 

difference in the size of the ball media. 

 

3.4.5.3. Mill rotational speed 

Figures 3.34 and 3.35 show the simulation snapshot and energy distribution 

according to the change in the rotational speed, respectively. The mill rotational 

speed was determined by the fraction of the critical speed, which varied from 0.5 to 

0.9. As shown in Figure 3.34, as the rotational speed increased, both the balls and 

the powders traveled up the wall to a higher position, resulting in a cataracting stream 

and an increase in position of the shoulder. Additionally, the toe moved to the left as 

the ball was ejected from the lifter surface at a higher angle. In particular, when the 

fraction was 0.5, cataracting hardly occurred, and only cascading occurred. 

Conversely, when the fraction was 0.8, the centrifugal force became too large, and 

the ball and powder rotated along the wall past the top of the circle. Because this is 

caused by lifters, not all balls were carried, and some balls fall along the way. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3.34. Simulation snapshot according to the changes in the rotational speed. 

(a) 0.5𝜑𝑐, (b) 0.7𝜑𝑐, and (c) 0.8𝜑𝑐. 
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Figure 3.35. Energy distribution according to the changes in the rotational speed. 
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As shown in Figure 3.35, the changes in energy distribution according to the 

mill rotational speed is more complex compared to other operating conditions. First, 

energy with a magnitude between 0.1 and 1 J/kg was different when the ratio to 

critical speed was greater than or equal to 0.8 and less than 0.8, respectively. When 

0.8 or more, the collision frequency was relatively small considering the number of 

effective collisions decreases as the ball rotates attached to the wall, as shown in 

Figure 3.34(c). Furthermore, when the energy is 1 J/kg or more, the frequency in the 

case of the fraction of 0.5 decreases sharply, and the frequency in the case of the 

fraction of 0.8 is reversed. As shown in Figure 3.34(a), when the fraction is 0.5, 

cataracting stream does not occur significantly, and hence, it is rare that a collision 

energy of 1 J/kg or more could occur. The maximum collision energy generated by 

each mill rotational speed was the greatest when the fraction was 0.7, followed by 

0.6 and 0.5.  

The relationship between the breakage rate and mill rotational speed 

suggested by Austin (1984) is related to the net power required to rotate the mill. The 

maximum in net power is usually found in range from 0.7 to 0.85 of the critical speed, 

considering the range where the maximum value occurs is different depending on 

the diameter of the mill and the type of lifter. The empirical relationship between the 

breakage rate and mill rotational speed proposed by Austin (1984) is given as: 

 

 𝑆 ∝ (𝜑𝑟 − 0.1) (
1

1+exp{15.7(𝜑𝑟−0.94)}
), (3.28) 

 

where 𝜙𝑟  is the fraction of the rotational speed to the critical rotational 

speed. Figure 3.36 shows the changes in the specific rate of breakage according to 
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the mill rotational speed expressed as the fraction of the critical speed. As a reference 

value, the breakage rate when the fraction was 0.7 was used. The breakage 

probability parameter 𝑥𝐸0 and 𝐸𝑏 were set to 2 Jmm/kg and 8.1 J/kg, respectively. 

Additionally, the breakage rate was calculated for different values of 𝑥𝐸0 and 𝐸𝑏 

to compare the results for various materials. 
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(a) 

 

 

(b) 

Figure 3.36. Change in the specific rate of breakage according to the mill rotational 

speed. (a) First-order plot and (b) Relative breakage rate values. 
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As shown in Figure 3.36, the change of breakage rate according to the mill 

rotational speed differed from that of the empirical formula. In the empirical formula, 

the maximum value of the breakage rate appeared when the fraction of the critical 

speed was about 0.8. However, in the simulation results, it appeared when it was 

about 0.7, and the breakage rate decreased when it was 0.8. This could be due to the 

mill conditions in the simulation, especially the size of the lifter. As shown in Figure 

3.34(c), as the balls rotated along the wall surface, the breakage was inevitably 

inefficient. In the energy distribution shown in Figure 3.35, the order of the mill 

rotational speed with the largest maximum collision energy was the same as the order 

of the breakage rate. Considering the energy distribution graph according to mill 

rotational speed in Figure 3.35 also intersected, the change in the breakage rate 

varied significantly with 𝑥𝐸0. When the rotational speed fraction was larger than the 

reference value, the changes in the breakage rate was similar considering the graphs 

are parallel. However, when the rotational speed is smaller than the reference value, 

the ratio of the breakage rate decreases considering the graphs intersect and locate 

below.  

 

3.4.6. Effect of the Lifter Size 

The specific rate of breakage changes not only according to the operating conditions 

of the mill, but also according to the lifter size. In particular, as shown in Figure 3.34, 

the lifter significantly influences the movement of the ball according to the mill 

rotational speed. The critical rotational speed, which is the standard of the mill 

rotational speed, is the speed at which the ball rotates attached to the wall without 

falling considering gravity and centrifugal force acting on the ball are balanced. The 
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lifter moves the ball to the top of the mill more easily, and hence, depending on the 

lifter, the balls centrifuge on the mill and do not tumble even below the critical speed. 

In this study, a trapezoidal lifter, as shown in Figure 3.1, was used. To analyze the 

effect of the lifter size on the breakage rate, simulation was performed for lifter 

height of 8 and 16 mm. The probability parameters and operating conditions were 

same as in Section 3.4.5. The change in the breakage rate according to operating 

conditions was compared with Section 3.4.5. After calculating the breakage rate 

using the empirical formula, one point of the results matched to the breakage rate 

determined from the simulation results with a ball mill with an 8 mm lifter. Then, the 

empirical formula and simulation results were compared. 

 

3.4.6.1. Formal ball and powder filling 

Figure 3.37 shows the simulation snapshot according to the formal ball filling when 

the size of the lifter changes. In particular, it shows the cases where J is 0.2 and 0.3 

with a noticeable difference. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.37. Comparison of the simulation snapshots when the lifter size and 

formal ball filling (J) vary. (a) J = 0.2 and 8 mm lifter, (b) J = 0.2 and 12 mm lifter, 

(c) J = 0.2 and 16 mm lifter, (d) J = 0.3 and 8 mm lifter, (e) J = 0.3 and 12 mm 

lifter, and (f) J = 0.3 and 16 mm lifter. 
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When the lifter size is 8 mm and J is 0.2 mm, a cascading stream is 

predominantly generated, whereas a cataracting stream occurs occasionally. 

However, unlike when the lifter size is larger, the ball media often fall on the particle 

bed without reaching the toe (Figure 3.37(a)). For larger lifter sizes, the cataracting 

stream dominates. As shown in Figure 3.37(c), although the ball does not centrifuge 

on the mill, the energy received by the particle is relatively small considering the ball 

is ejected from near the top of the mill. When J is larger than 0.3, the distance 

between the shoulder and toe decreases regardless of the lifter size, even when a 

cataracting stream occurs as the particle beds expand like the size of the lifter is large. 

This results in collisions that are inefficient for particle breakage. The energy 

distribution for 8 and 16 mm lifters are shown in Figure 3.38. 
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(a) 

 

 

(b) 

Figure 3.38. Change in the energy distribution according to the formal ball filling 

(J). (a) 8 mm lifter and (b) 16 mm lifter. 
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The energy distribution changes according to the difference in the ball 

movement. When J is 0.3 for small lifter sizes, it shows a higher collision frequency 

in the whole energy section compared to when J is 0.2 owing to the weakened 

cataracting stream (Figure 3.38(a)). Except for this phenomenon, the energy 

distributions in Figure 3.38 showed a similar trend. However, on comparing the 

energy distribution in the case of simulation with an energy distribution of 12 mm 

lifter in Figure 3.23, it was found that the collision frequency slightly increased for 

small lifter sizes in the change of the collision energy distribution according to 𝐽. 

This is because particle beds are formed gently owing to the decreased in the lifter 

size, which allowed the cataracting stream to travel more easily. Conversely, when 

the lifter size was large, the distance traveled by the cataracting stream decreased 

considering the lifter carries the ball closer to the top of the mill, and hence, the 

energy of collision becomes relatively low. 

Figure 3.39 shows the changes in the ratio of breakage rate according to the 

formal ball filling using the breakage rate when the J is 0.2 as a reference value. Here, 

the empirical formula and results of 3.4.5.1 when 𝑥𝐸0  is set to 2 Jmm/kg are 

denoted as straight lines. 
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Figure 3.39. Changes in the specific rate of breakage according to the formal ball 

filling (J) for different lifter sizes. 
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The change in the breakage rate is similar to that shown in Figure 3.26, except 

that the breakage rate is relatively large when J is 0.3. Although the size of the lifter 

had changed, the decrease in the breakage rate owing to the increase of J is faster 

than the decrease in the breakage rate explained by the empirical formula. This can 

be attributed to the fact that only the decrease in the effective number of collisions 

is considered as the cause of the decrease in the breakage rate in the empirical 

formula. However, as a result of the performing simulation, it can be confirmed that 

there is another factor. In the ball movement in Figure 3.37, as J increases, the 

occurrence of a blockage of the cataracting stream as the particle beds expand affects 

the breakage rate. 

Next, the effect of lifter size on the relationship between formal powder 

filling and breakage rate was analyzed. Because the difference according to U is not 

significantly affected by the size of the lifter, a simulation snapshot is shown in 

Figure 3.40 only when U is 0.9. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3.40. Comparison of the simulation snapshots when the lifter size and 

formal powder filling (U) vary. (a) U = 0.9 and 8 mm lifter, (b) U = 0.9 and 12 mm 

lifter, and (c) U = 0.9 and 16 mm lifter. 
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As the size of the lifter decreased, the cascading stream became more active, 

as shown in Figure 3.40. However, even if the size of the lifter changes, the 

movement of the ball remains almost the same regardless of the U, as in Figure 3.24. 

However, the energy distribution according to U becomes denser as the size of the 

lifter increases, as shown in Figure 3.41. The larger the lifter size is, the more 

dominantly the cataracting stream occurs. Herein, the collision frequency between 

the ball and powder is relatively low depending on the location where the ball falls. 

Generally, when U increases, the number of effective collisions decreases owing to 

the increase of the powder. However, when the lifter size is large, the number of 

collisions increases considering the powder in the mill increases, and hence, the 

change in the number of collisions is offset. Therefore, the larger the lifter size is, 

the smaller is the change in the energy distribution as U increases, resulting in a 

denser energy distribution. Finally, when the lifter size decreases, the change in the 

breakage rate according to U becomes closer to the empirical formula, as shown in 

Figure 3.42, considering the smaller the lifter size is, the lower is the number of 

collisions, given that U dominantly affects the breakage rate. The difference 

according to material properties is similar to Section 3.4.5.1 for small lifter sizes. 

However, for large lifter sizes, the material properties do not affect the change in the 

breakage rate considering the energy distribution according to U is almost identical 

as that shown in Figure 3.41(b). 
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(a) 

 

 

(b) 

Figure 3.41. Change of the energy distribution according to the formal powder 

filling (U). (a) 8 mm lifter and (b) 16 mm lifter. 
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Figure 3.42. Changes in the specific rate of breakage according to the formal 

powder filling (U) for different lifter sizes. 
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3.4.6.2. Diameter of the mill and ball media 

Figure 3.43 shows the difference in the ball behavior according to the lifter size when 

the mill diameter is 0.3 m. The cataracting stream weakened as the lifter size 

decreased. However, changes the ball behavior towing to an increase in mill diameter 

was the same as that in Figure 3.28. As a result, the energy distribution appeared 

similar to that in Figure 3.29, and as shown in Figure 3.44, and the difference in 

energy distribution according to the change in the mill diameter decreased as the 

lifter size decreased. This is because the larger the lifter size is, the easier it is to 

cause a high collision energy by cataracting stream to travel a sufficient distance as 

the mill diameter increased. 

Figure 3.45 shows a comparison of the breakage rate, which clearly shows 

the effect of reducing lifters. Considering the cataracting stream weakens as the lifter 

size decreases, the difference in the number of collisions is more pronounced 

compared to the difference in the collision energy as the mill diameter changes, as 

mentioned in Section 3.4.5.2. Additionally, as shown in Figure 3.44, when the lifter 

size decreases, the difference in energy distribution according to mill diameter 

decreased. As a result, the change in the breakage rate according to the mill diameter 

becomes closer to the empirical formula, as shown in Figure 3.45. 
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(a) 

 

 

(b) 

 

 

(c) 

Figure 3.43. Comparison of the simulation snapshots when the lifter size and mill 

diameter (D) vary. (a) D = 0.3 m and 8 mm lifter, (b) D = 0.3 m and 12 mm lifter, 

and (c) D = 0.3 m and 16 mm lifter. 
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(a) 

 

 

(b) 

Figure 3.44. Changes in the energy distribution according to the mill diameter (D). 

(a) 8 mm lifter and (b) 16 mm lifter. 
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Figure 3.45. Changes in the specific rate of breakage according to the mill diameter 

(D) for different lifter sizes. 
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Changes in the ball diameter when the lifter size is the same causes variations 

in the relative size of the lifter, indicating that the ability of the lifter to carry the 

ball to the top of the mill has changed. To analyze the change in ball movement 

caused by the decrease in the lifter size, ball diameters of 19.05, 31.75, and 44.45 

mm were analyzed, are shown in Figure 3.46. 

In Figure 3.46, the difference in the relative size of the lifter is the greatest 

when the ball dimeter is 19.05 mm, so the difference in the movement of the ball is 

also the greatest. The smaller the lifter size, the relatively weaker the cataracting 

stream. If the diameter of the ball is larger than 19.05 mm, in case of the 8 mm lifter, 

the movement of the ball changes with a similar tendency with 12 mm lifter. 

However, there is a difference in ball movement for 16 mm lifter. Even with the 

reference size of 25.4 mm, the ball does not fall from a height that can cause an 

effective collision to breakage, but travels higher along the wall and then falls. 

Therefore, when the ball becomes large, the size of the lifter becomes relatively small, 

so that a fall from an optimal height can occur. This can offset the effect that the 

number of balls decreases as the balls become larger. It means that the number of 

collisions is reduced, thereby reducing the breakage rate. Figure 3.47 shows the 

energy distribution change according to the change of the ball diameter. 

 

 

 

 

 

 



126 

 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 3.46. Comparison of the simulation snapshots when lifter size and ball 

diameter (d) vary. (a) d = 19.05 and 8 mm lifter, (b) d = 19.05 and 12 mm lifter, (c) 

d = 19.05 and 16 mm lifter, (d) d = 31.75 and 8 mm lifter, (e) d = 31.75 and 12 mm 

lifter, (f) d = 31.75 and 16 mm lifter, (g) d = 44.45 and 8 mm lifter, (h) d = 44.45 

and 12 mm lifter, and (i) d = 44.45 and 16 mm lifter. 
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(a) 

 

 

(b) 

Figure 3.47. Changes in the energy distribution according to the ball diameter (d). 

(a) 8 mm lifter and (b) 16 mm lifter. 
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As shown in Figure 3.47. the energy distribution shows that the smaller the 

ball diameter is, the higher is the collision frequency up to a certain energy level. As 

the ball diameter increased, the magnitude and frequency of the maximum collision 

energy become relatively high, however, because the absolute value remains small, 

it is not directly related to the breakage rate. As shown in Figure 3.31, the breakage 

rate changes according to the ball diameter. However, comparing the collision 

frequency at the minimum ball size, it is lower for the 12 mm lifter in Figure 3.31 

than the 8 mm lifter in Figure 3.47. This can be attributed to the fact that the ball 

reaches the top of the mill when the lifter is large. The energy distribution according 

to ball diameter in Figures 3.31 and 3.47 show that it intersects in high energy regions, 

wherein, the larger the ball diameter is, the greater is the frequency of the high energy 

region. This indicates that the cataracting stream causes an effective collision for 

breakage even though the ball becomes larger considering large balls can be moved 

by larger lifters, as in Figure 3.46. 

Changes in breakage rate, as shown in Figure 3.48, for small lifter is similar 

to that in Figure 3.33. When 𝑥𝐸0 is 2 Jmm/kg, it appears in a form that is almost 

consistent with the empirical formula, which indicates that the change in the number 

of collisions according to the change in the diameter and number of balls is inversely 

proportional to the particle breakage. For a large lifter, even when 𝑥𝐸0 is 2 Jmm/kg, 

the change in the breakage rate according to the ball diameter is different from the 

empirical formula. If the ball diameter is 31.75 mm or more, the breakage rate 

increases as a result of combining the effect of reduction in the number of collisions 

owing to the reduction in the number of balls and the effect that the cataracting 

stream favorably acts on the particle breakage by the large lifter. When 𝑥𝐸0 is larger 
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than 2 Jmm/kg, the larger the ball diameter is, the smaller is the decrease in the 

number of collisions greater than the threshold energy. Therefore, similar to Figure 

3.33, Figure 3.48 shows a large difference in the breakage rate depending on the 

changes in the material properties.  

 

 

 

 

 

Figure 3.48. Changes in the specific rate of breakage according to ball diameter (d) 

for various lifter sizes. 
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3.4.6.3. Mill rotational speed 

The changes in the breakage rate according to the mill rotational speed is the most 

sensitive operating condition to the lifter size. Figure 3.49 shows the simulation for 

different mill rotational speed and lifter size, with the critical rotation speed ratios of 

0.6 and 0.8, where the difference according to the lifter size is most evident. 

In both cases, a big difference was observed in the stream of the ball. When 

the fraction was 0.6, the ball bed formed a steeper slope as the lifter size increased, 

as shown in Figures 3.49(a) to (c). When the lifter size decreased, the cascading 

stream occurred predominantly; however, when the lifter size increased, the 

cataracting stream occurred actively. When the fraction increased to 0.8, the 

cataracting stream became active even when the lifter size was small, as in Figure 

3.49(d). Conversely, when the lifter size was large, the ball gets attached to the wall 

and rotates (Figure 3.49(e), (f)), which indicates that the increasing mill rotational 

speed prevents the ball from falling effectively and causing breakage. This 

phenomenon occurred when the fraction was 0.9 for small lifter sizes. Figure 3.50 

shows the change in energy distribution depending on the mill rotational speed 

caused by changes in the ball movement when the lifter size is changed. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 3.49. Comparison of the simulation snapshots when the lifter size and mill 

rotational speed vary. (a) 0.6𝜑𝑐 and 8 mm lifter, (b) 0.6𝜑𝑐 and 12 mm lifter, (c) 

0.6𝜑𝑐 and 16 mm lifter, (d) 0.8𝜑𝑐 and 8 mm lifter, (e) 0.8𝜑𝑐 and 12 mm lifter, 

and (f) 0.8𝜑𝑐 and 16 mm lifter. 
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(a) 

 

 

(b) 

Figure 3.50. Changes in the energy distribution according to the mill rotational 

speed. (a) 8 mm lifter and (b) 16 mm lifter. 
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For smaller lifters, the overall change in the energy distribution for the mill 

rotational speed is similar to the energy distribution for the original lifter size, as 

shown in Figure 3.35. However, a difference of 0.1 was observed in the mill 

rotational speed having a similar energy distribution, that is, the distribution of 

fractions 0.7 and 0.8 in Figures 3.50 and 3.35, respectively, are similar. Another 

difference is the maximum collision energy at each rotational speed. As shown in 

Figure 3.35, the maximum collision energy is greater at the mill rotational speed at 

which the breakage rate is greater, and the order of the mill rotational speed with a 

large breakage rate is 0.7, 0.6, and 0.5. Although the same phenomenon does not 

appear in Figure 3.50, the product of effective energy and collision frequency above 

the given threshold energy of 0.3 J/kg appears larger in the order of 0.8, 0.7, and 0.6 

(0.352, 0.350, and 0.325 J/kg/sec, respectively). When larger lifter sizes, the energy 

distribution shows a different pattern. When the fraction of the mill rotational speed 

is 0.8 or more, the energy distribution is lower than that in for 0.5. This is because 

cataracting occurs actively even if the fraction of the mill rotational speed is small, 

as in Figure 3.49. Additionally, when the fraction of the mill rotational speed is 0.6, 

the effective collision occurs more frequently, and the energy distribution when the 

mill rotational speed changes appear almost parallel. 

Changes in the breakage rate according to the mill rotational speed is shown 

in Figure 3.51 by using the breakage rate when the rotational speed is 0.7 of the 

critical speed as a reference value. Herein, the calculation results for various 𝑥𝐸0 

are shown together, and the empirical formula and results of 3.4.5.3 are indicated as 

straight lines.  
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Figure 3.51. Change in the specific rate of breakage according to the mill rotational 

speed for different lifter sizes. 
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Figure 3.51 shows that the relationship between the breakage rate and mill 

rotational speed, which agrees well with the empirical formula for the small lifter. 

This is due to the change of energy distribution according to the change in the lifter 

size. As the lifter size decreased, breakage occurred most effectively when the 

rotational speed fraction was 0.8, as in the empirical formula. As the balls eject from 

the lifter surface in the most efficient position, the effective collision energy occurs 

more frequently. Furthermore, the scale-up changes significantly depending on the 

properties of the material. For a large lifter, the breakage rate is relatively highest 

when the fraction of the mill rotational speed is 0.6 of the critical rotational speed. 

This is because the aforementioned ball movement and energy distribution are most 

favorable for particle breakage. Additionally, as shown in Figure. 3.50, because the 

energy distribution was almost parallel to the mill rotational speed, there was little 

difference in the breakage rate according to the material properties. 
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Chapter 4. Prediction of the Size-Grade Distribution 

of the Breakage Products by Coupling the Grinding 

and Liberation Model 

 

Liberation is a one of the purposes of the grinding and an important factor in the 

subsequent separation process. A model that predicts the particle size and grade 

distribution is essential for designing an efficient grinding process. As equipment for 

measuring grade distribution has developed, it has become possible to easily measure 

various information. However, there are few cases where the measured data was 

effectively applied to the particle size-grade coupled model. In this chapter, the 

grinding and liberation parameters were determined by performing ball mill grinding 

experiments and MLA analysis of iron ore samples with various grades and sizes. 

Based on the grain size distribution, a method for determining the liberation size was 

developed. In addition, as one of the model applications, the target particle size of 

ball mill grinding process was set based on the degree of liberation. 

 

4.1. Materials 

 

The experiment was conducted using an iron ore from the Sinyemi mine, Jeongseon, 

Korea. Because the test ore was large to perform the ball mill grinding, the ore was 

crushed using a hammer mill (Large Holmes Hammermill Coal Crusher). The 

rotation speed of the shaft of the hammer mill was 1260 rpm, and screen plates in 

round-hole perforation had a diameter of 9.5 mm. Then, the breakage products of the 
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hammer mill were subjected to X-ray fluorescence (XRF) analysis to compare the 

element content based on particle size. The weight fraction of oxides of five elements 

Fe, Si, Al, Ca, and Mg was analyzed according to the particle size, as shown in Figure 

4.1. Deviation in the weight fraction of each oxide with respect to the particle size 

was found to be insignificant, that is, the size reduction of the test ore occurred owing 

to the non-preferential breakage. Then, the breakage products were sieved to prepare 

single-size fraction (0.59–0.42 mm) sample, which was then subjected to magnetic 

separation to prepare samples of various iron grades for analyzing the difference of 

breakage characteristics according to the grade: concentrate, middling, and tailing. 

The grade of the samples were analyzed using inductively coupled plasma optical 

emission spectroscopy (ICP-OES). Table 4.1 summarizes the mass and iron grade of 

the samples.  
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Figure 4.1. Weight fraction of the oxides according to the particle size. 

 

 

 

Table 4.1. Mass and iron grade of the samples 

Item Feed 

Products of magnetic separator 

Concentrate Middling Tailing 

Mass (%) 100 42 47.3 10.7 

Fe (%) 32 52 28 6 
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4.2. Methodology 

 

Samples of various size-grade classes were treated separately to analyze the grinding 

and liberation characteristics. A ball mill was used to investigate the grinding kinetics 

of the samples based on the particle population balance modeling technique. Four 

grade classes of samples were ground using a stainless-steel mill charged with 

stainless steel balls and samples. Table 4.2 summarizes the mill design and operating 

variables. The specific gravities of the four grade classes of the samples (feed, 

concentrate, middling and tailing) were 2.20, 2.33, 2.06, and 1.80 respectively. 

Several grinding times (1, 2, 4, 8, and 16 min) were applied to each sample. After 

each grinding time, the mill was emptied and the discharge of the mill was sieved 

into nine fractions using a series of √2 spaced sieves from -0.59 +0.42 mm to -0.038 

mm. A new sample was loaded for each test, considering over 5 g of each size classes 

was required for the following mineral liberation analysis. In other words, the total 

amount of the samples cannot be conserved. In case of tailing, only the grinding test 

was conducted considering there was not enough sample for the mineral liberation 

analysis. 
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Table 4.2. Mill design and operating conditions for the grinding test 

Components Detailed component Value 

Mill Inner diameter, (mm) 200 

 Length, (mm) 160 

 Volume, (cm3) 5024 

 Rotation speed 75% of critical speed 

Ball Diameter, (mm) 25.4 

 Specific gravity, (g/cm3) 7.85 

 Formal ball filling, J 0.2 

Material Formal powder filling, U 0.5 

 Mass of injected feed, (kg) 0.440 

 
Mass of injected concentrate, 

(kg) 
0.466 

 
Mass of injected middling, 

(kg) 
0.412 

 Mass of injected tailing, (kg) 0.360 
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Samples before and after grinding were analyzed to investigate mineral grade 

distribution by MLA. For the breakage products, all four size classes (- 0.59 + 0.42 

mm, - 0.29 + 0.21 mm, - 0.15 + 0.10 mm, and - 0.073 + 0.052 mm) were used to 

analyze the mineral liberation. Each sample was characterized using the FEI Mineral 

Liberation Analyzer (FEI MLA) at KIGAM, which is an automated mineral analysis 

system based on SEM and provides mineral composition of particles in the polished 

section (Gu, 2003). The XBSE measurement mode was used and the quantitative 

data was obtained using the MLA Dataview software. By analyzing the sample 

before grinding, the minerals contained in the sample, magnetite, olivine, diopside, 

actinolite and phlogopite, were examined. Magnetite, an iron oxide, was selected as 

the target mineral. In addition, the size distribution of the magnetite grain of the three 

starting input sample were analyzed. The grade distributions of the magnetite were 

obtained for all samples before and after grinding. Based on the experimental data, 

the optimal parameters characterizing the liberation properties of samples were 

found and applied to the coupled grinding and liberation model to predict the 

breakage products. Figure 4.2 shows the flowchart of the whole process. 
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Figure 4.2. Flowchart of the overall process. 
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4.3. Results 

 

4.3.1. Breakage Characteristics 

The breakage rate of the single-size fraction sample was determined by plotting the 

ratio of the weight fraction that remained in the original size and the initial weight 

fraction over the grinding time. Figure 4.3(a) shows the results. As seen from the 

figure, the first-order kinetics of grinding were established for all except the tailing. 

The specific rate of breakage of the top size was obtained from the slope of the plot, 

and was found to be similar, as shown in the graph. For the tailing, the slope was 

calculated after 2 min of grinding time. Furthermore, the cumulative breakage 

distributions were estimated from the size distribution of short grinding time (1 min) 

using the BII method. The value of 𝐵𝑖𝑗  for all samples was plotted against the 

relative size, which can be fitted by the empirical function of breakage distribution, 

shown in Eq. (2.8). Figure 4.3(b) shows the cumulative breakage distribution of the 

ore, and Table 4.3 shows the estimated parameters for each sample. 
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(a) 

 

 

(b) 

Figure 4.3. Breakage characteristics of iron ore. (a) First-order kinetics and (b) 

Cumulative breakage distribution. 
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Table 4.3. Breakage distribution parameters 

Breakage parameters Feed Concentrate Middling Tailing 

Φ 0.4956 0.5757 0.4996 0.3591 

γ 0.6152 0.6569 0.6378 0.5242 

β 3.6968 3.3023 4.2308 4.1820 
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Back-calculation was performed to estimate the specific rate of breakage 

parameters. When an experiment is performed in a small particle size region, the 

breakage rate in Eq. (2.2) was simplified to Eq. (4.1). In other words, it excludes the 

reduction in the breakage rate occurring in the large particle size region. 

 

 𝑆 = 𝐴 (
𝑥𝑖
𝑥0
)
𝛼

 (4.1) 

 

By using Eqs. (2.8) and (4.1), breakage parameters 𝐴 and 𝛼 were determined and 

it is listed, as shown in Table 4.4. Tables 4.3 and 4.4 show that 𝐴  is constant 

regardless of the grade; however, the other breakage function parameters exhibit 

different values depending on the grade of the samples. As shown in Figure 4.4, the 

estimated results using breakage function parameters in Tables 4.3 and 4.4 showed 

good agreement with experimental results. 

 

 

 

Table 4.4. Breakage rate parameters 

Breakage parameters Feed Concentrate Middling Tailing 

𝐴 0.295 0.295 0.295 0.295 

α 0.8323 0.8844 0.8477 0.7014 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 4.4. Measured and predicted size distributions. (a) Feed, (b) Concentrate, (c) 

Middling, and (d) Tailing. 
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In the population balance equation Eq. (2.12), two breakage functions 

according to the particle size and grade are required. Breakage parameters, except 

for 𝐴, were assumed to vary linearly with the magnetite grade depending on the 

experimental results shown in Figure 4.5. The grade of magnetite is measured using 

MLA in the next section, and the grades of feed, concentrate, and middling were 

calculated as 0.44, 0.73, and 0.41, respectively. For the tailing, the grade was set to 

0 considering MLA analysis was not performed, and the tailing was expected to have 

very low magnetite content. As shown in Table 4.1, the iron grade of the tailing is 

6%. If all iron-bearing minerals are assumed to be magnetite, the grade of magnetite 

would be approximately 0.08. According to Eq. (4.1), Figure 4.5(a), and parameter 

𝐴, which remains constant regardless of the grades shown in Table 4.4, calculate the 

breakage rate according to the particle size for each grade. For the same particle size, 

the higher the grade is, the larger is the breakage rate, and larger is the difference as 

the particle size decreases. This indicates that greater the content of magnetite 

compared to other minerals, greater is the resistance to breakage. The effect of grade 

on the breakage distribution parameters can be analyzed from Figures 4.5(b), 4.5(c), 

4.5(d), and 4.3(b). As shown in Figure 4.5(b), the higher the grade is, the larger is 

the value of 𝛷. Generally, a larger 𝛷 indicates that the particle breakage is caused 

by shatter, and fine particles are more likely to occur. In other words, the higher the 

grade, the finer is the breakage distribution. If 𝛷 remains the same, the smaller 𝛾 

becomes, and finer is the breakage distribution. As shown in Figure 4.5(c), the higher 

the grade, the larger is the value of 𝛾, which indicates that the effect of 𝛾 is opposite 

to the effect of 𝛷  according to the grade. However, 𝛾  has a relatively small 

difference in grade compared to 𝛷, and hence, the effect can be weaker. If the slope 
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of the breakage distribution is maintained up to a particle size region smaller than 37 

μm, the tailing with a small 𝛾 could exhibit the highest weight fraction of the ultra-

fine particles. 

As shown in Figure 4.3(b), the higher the grade, the higher is the 𝐵𝑖𝑗 plot 

located in the graph, which indicates that there are more fine particles. 𝛽 in Figure 

4.5(d) reflects the distribution in the large particle section, and it can be seen that the 

smaller the grade, the larger is the value of 𝛽, which indicates that the smaller the 

grade, the more distributed the coarser particles are. If the trend is interpreted based 

on the breakage rate, the higher the grade is, the higher is the particle resistance to 

breakage for a particle size of 1 mm or less, and the finer is the particle size 

distribution (PSD) after grinding. When both the breakage rate and breakage 

distribution are considered, the PSD over time can be determined. If the grinding 

time is short, the breakage products of the high-grade sample exhibit a finer PSD. 

However, as the grinding time increases, the 𝛼 of the breakage rate significantly 

influences PSD as the amount of fine particle increases. Accordingly, the PSD of the 

breakage product of the high-grade sample with a large 𝛼 becomes coarser. In fact, 

if the PSD of the breakage product of each sample after 8 min is calculated, the lower 

the grade, the finer the PSD of the breakage product after grinding for over 32 min. 
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(c) 

 

 

(d) 

Figure 4.5. Breakage parameters according to the grade: (a) 𝛼, (b) 𝛷, (c) 𝛾, and 

(d) 𝛽. 
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4.3.2. Mineral Liberation Analysis 

The grade distribution for each particle size class of various breakage products was 

analyzed using MLA to describe the liberation characteristics. Four size classes 

among the breakage products of various grade classes samples were analyzed, and 

the MLA results of the maximum and minimum size of the 4 min breakage product 

of middling are shown in Figure 4.6. The different colors in Figure 4.6 represent the 

different minerals. Magnetite, the target mineral in this study, is represented in purple. 

Approximately 5000–20 000 particles were analyzed to ensure representativeness of 

the analyzed particles. As shown in Figure 4.6(a), the grain size of magnetite is 

relatively small compared to the particle size, which confirms that the magnetite 

grains are mixed with other minerals in each particle. Conversely, as shown in Figure 

4.6(b), a large number of particles were close to perfectly liberated particles 

considering the particle size was sufficiently small as the grain size. 
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(a) 

 

 

(b) 

Figure 4.6. Examples of the MLA results for the middling samples. (a) – 0.59 + 

0.42 mm and (b) – 0.073 + 0.052 mm. 
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The grade distribution obtained using MLA was separated into 12 classes, 

comprising 0, 1, and 10 classes equally spaced from 0 to 1. However, because the 

results were presented in 10 classes, grades 0 and 1 were added to grade classes 0 to 

0.1 and 0.9 to 1, respectively. The analyzed results before grinding are shown in 

Figure 4.7. As shown in Figure 4.7(a), high-grade particles were concentrated in the 

concentrate. Furthermore, the feed sample comprised liberated particles. The 

average grade of magnetite in the feed sample was approximately 45%, but a 

difference was observed in the weight fraction of the liberated gangue and valuable 

minerals. Considering the ore is not an ideal binary mineral system, only magnetite 

should be excluded for the liberated gangue, which is relatively easier than producing 

a particle made entirely of magnetite. Additionally, during middling, the weight 

fraction of liberated gangue was found to be similar to that of the feed. It is inferred 

that a large amount of liberated gangue exists in tailings. As shown in Figure 4.7(b), 

the grain size exists over a wide range from 0.048 to 0.59 mm, which indicated that 

the grains contained in concentrate were coarser than the feed and middling. 
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(a) 

 

 

(b) 

Figure 4.7. MLA results of the samples before grinding. (a) Grade distribution and 

(b) Grain size distribution. 
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Figure 4.8 shows the grade distribution depending on the particle size for the 

4 min breakage products of all samples using MLA analysis. As the particles become 

finer, the weight fraction of grades between 0.1 and 0.9 decreases, which increases 

the almost pure gangue and magnetite particles, taking a more distinct U-shape 

distribution. 
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(b) 

 

 

(c) 

Figure 4.8. Grade distribution according to the particle size. (a) Feed, (b) 

Concentrate, and (c) Middling. 

 



159 

 

Figure 4.9 shows the grade distribution of the three size fractions obtained 

after grinding the middling sample at various grinding times. For the same size 

fractions, the grade distributions were similar regardless of the grinding times, 

thereby indicating that for a given composition of a particles, the liberation 

characteristics does not change with time, and hence, can be described by the same 

set of liberation model parameters, 𝜂 and 𝛿0. These aspects decrease the number 

of model parameters significantly, making modeling more practical. 

 

 

 

 

 

(a) 
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(b) 

 

 

(c) 

Figure 4.9. Grade distribution according to the grinding times. (a) – 0.29 + 0.21 

mm, (b) – 0.15 + 0.10 mm, and (c) – 0.073 + 0.052 mm. 
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If the particle size and grade distribution is known, the degree of liberation 

can be determined. Considering only the measured data for four particle size classes 

was known, the overall grade distribution for a certain grinding time was calculated 

using the average of the total weight fraction of the measured classes, given as: 

 

 𝑤𝑖,𝑎𝑙𝑙(𝑡) =
∑ 𝑤𝑗(𝑡)𝑤𝑖𝑗(𝑡)𝑗

∑ 𝑤𝑗(𝑡)𝑗
 (4.2) 

 

where 𝑤𝑖,𝑎𝑙𝑙(𝑡) is the weight fraction of grade class 𝑖 considering all size classes at 

grinding time 𝑡. Then, the degree of liberation was calculated by using the ratio of 

the weight fraction of liberated particle to that of the total magnetite, while using 

particles with a grade of 90% or higher. As shown in Figure 4.10, the degree of 

liberation increases from 15% to 40% depending on the grinding time. However, 

there is a limit to determining the degree of liberation using the experimental value. 

As the grinding time increases, more fine particles occur, and based on the grain size 

distribution, the degree of liberation of particles smaller than -0.073+0.052 mm 

increases. Because it is practically impossible to develop a polished sample for the 

MLA analysis of smaller particles, the grade distribution of smaller particles cannot 

be reflected. Owing to this, the increase in the degree of liberation at 16 min is 

smaller than that at 8 min. Therefore, it is necessary to establish a model that can 

describe the overall size-grade distribution based on the MLA analysis. 
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Figure 4.10. Degree of liberation over grinding time. 
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4.3.3. Simulation with the Coupled Grinding and Liberation Model 

To predict the particle size-grade distribution, three liberation model parameters 𝐷𝑙𝑖𝑏, 

𝛿0, and 𝜂 were required. The liberation size, 𝐷𝑙𝑖𝑏, is the particle size at which the 

mineral starts liberating to be replaced by the grain size. However, the grain size 

distribution in Figure 4.7(b) shows the cumulative weight fraction of grains present 

in all particles according to their sizes. Considering grains present in individual 

particles have not been considered, Figure 4.7(b) cannot be considered to reflect the 

grain characteristics of the particles in each sample. Therefore, information on all 

grains constituting each particle can be obtained using MLA, and information on 

approximately 1000 or more particles and approximately 30 000 or more grains was 

measured for each sample before grinding. Based on the MLA data, the average grain 

size of magnetite contained in each particle was calculated, and the grain size 

distribution was reconstructed, as shown in Figure 4.11. 
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Figure 4.11. Grain size distribution based on the average grain size within each 

particle. 
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Figure 4.11 shows that the concentrate comprises particles with large grain 

size, which are clearly distinguished from the other two samples. Additionally, 

although the feed and middling showed a similar distribution, the fine grain appeared 

relatively more in the middling. Considering the grain size is distributed over a wide 

range, the liberation size cannot be set as a single value. Furthermore, to reduce the 

computational load, the liberation size is grouped into five size fractions based on 

the grain size distribution. Then, the total size-grade distribution is estimated by 

weight averaging the results obtained for each liberation size. From 𝑑10 to 𝑑90, it 

was separated into 5 sections at the same interval and same weight fraction of 20%.  

 

 

 

 

Table 4.5. Liberation size of each sample 

Samples (μm) Feed Concentrate Middling 

𝐷𝑙𝑖𝑏,1  533.85 545.03 515.50 

𝐷𝑙𝑖𝑏,2  386.74 433.38 304.10 

𝐷𝑙𝑖𝑏,3  156.42 214.20 98.53 

𝐷𝑙𝑖𝑏,4  75.68 93.80 47.51 

𝐷𝑙𝑖𝑏,5  33.77 40.48 25.06 
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The other liberation model parameters, 𝛿0  and 𝜂 , were determined using 

back-calculation that was in good agreement with the experimental data. Figure 4.12 

shows the model algorithms. Using the initially assumed values of 𝛿0 and 𝜂, first, 

the upper and lower grade bounds were determined, followed by calculating the beta 

distribution parameters that determine the distribution of grades within the grade 

range. After calculating the grade distribution within a progeny particle class, the 

breakage matrix, 𝑏𝑖,𝑗𝑘𝑙 was generated by summing up the results for each feed size 

and grade fraction. Simulations are performed on various combinations of variables 

to determine the optimal parameters. As the feed for grinding had the grade 

distribution, the breakage rates of each grade class were calculated using the 

relationship shown in Figure 4.5 to generate the 𝑆𝑖𝑗  matrix. The breakage of a 

particle of a certain grade and size produces a whole suit of progeny particles, which 

was calculated using Eq. (2.8) with the values for 𝛷, 𝛾, and 𝛽 varying with the 

grades, as shown in Figure 4.5. Finally, a numerical scheme was used to calculate 

the product size-grade distribution for a grinding time 𝑡 for a given feed size and 

grade. 
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Figure 4.12. Simulation model algorithm. 
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Parameters 𝛿0 and η that best fit the experimental data were found to be 

1.3 and 1.6, respectively. The 𝛿0 value of 1.3 indicates that a stricter constraint is 

given by the ore texture compared to the constraint of preserving the total amount of 

minerals. Similarly, the η value of 1.6, which is a parameter indicating how quickly 

the degree of liberation changes as the particle size decreases, indicates that the 

change of the particle size affects the shape of the grade distribution. Therefore, when 

larger than the liberation size, the grade distribution is dense and does not spread 

easily owing to the decrease in particle size. When smaller than the liberation size, 

the grade distribution changes rapidly to a U-shape. 

Figure 4.13 shows the simulated and experimental results, which confirms 

that the results are in good agreement. 
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(c) 

 

 

(d) 

Figure 4.13. Simulation and experimental results of the middling sample: (a) 1 min, 

(b) 2 min, (c) 4 min, and (d) 8 min. 
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To quantitatively compare the measured and predicted values, the degree of 

liberation of all measured samples was calculated through experiments and 

simulations, respectively. Figure 4.14 shows the comparison for all measured 

samples, and the coefficient of determination was 0.9004. 

 

 

 

 

 

 

Figure 4.14. Comparison of the degree of liberation for the analyzed sample. 
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The coupled model can be used to set the target particle size to achieve the 

desired degree of liberation. Based on the grain size distribution, it is possible to 

determine the minimum particle size to be simulated. Furthermore, by performing 

simulations with a minimum particle size of about 0.0092 mm, the size of which the 

cumulative weight fraction of the grain is 0.01, the degree of liberation can be 

calculated more accurately. As an example, the 80% passing size when the degree of 

liberation for the concentrated sample was determined to be 0.8. First, the grinding 

time at a degree of liberation of 0.8 is calculated to be approximately 38 min, as 

shown in Figure 4.15(a). Considering it was analyzed for the concentrated sample, 

it was confirmed that the degree of liberation is higher than that of the middling 

sample. After the grinding time is determined, the particle size distribution at that 

time can be predicted. The particle size at which the weight fraction is 0.8 in the 

graph was found to be approximately 0.060 mm (Figure 4.15(b)). 
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(a) 

 

 

(b) 

Figure 4.15. Application of the coupled model for setting the target particle size: (a) 

Grinding time when the degree of liberation is 0.8 and (b) Particle size when the 

weight fraction is 0.8.  
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Chapter 5. Conclusion 

 

In this study, a more practical ball mill grinding model was developed using 

experimental and numerical approaches. For the experimental method, the breakage 

product was predicted by applying a model that combined particle size and grade, 

whereas for the method, ball mill modeling was performed by integrating DEM into 

the grinding kinetics framework. 

First, the relationship between grade and breakage function parameters was 

investigated by performing single-fraction ball mill grinding tests for various grades. 

Furthermore, the MLA analysis was performed on various particle sizes and grades. 

As a result, the liberation size, one of the liberation parameters, was successfully 

derived based on the grade distribution and grain size distribution before grinding. 

Finally, other liberation parameters were determined using back-calculation, and the 

applicability of the coupled model was considered by deriving the target particle size 

to reach a specific degree of liberation. 

Second, a ball mill simulation using DEM was performed by applying the 

particle breakage probability model. The results were analyzed based on the grinding 

kinetics model, which made it possible to independently determine the machine- and 

material-dependent factors, and calculate the breakage rate based on each factor. 

By comparing the cases where the initial particle size distribution inside the 

mill was maintained and changed, it was confirmed that the first-order kinetics were 

established regardless of the particle size distribution inside the mill. Additionally, 

the particle weakening effect on repeated collisions was described using the damage 
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calculated from the energy applied to particles at every collision and the breakage 

probability parameters. 

The breakage rate was calculated based on the collision energy data, 

indicating that the breakage rate can be derived once the equipment conditions and 

material properties are determined. The breakage rate for various material properties 

was calculated to derive a correlation between the breakage probability and breakage 

rate parameters. As a result, it was confirmed that the breakage rate parameter, 𝐴, 

and probability parameter, 𝐸∞, are inversely proportional when the breakage rate is 

small enough or the average energy distribution of each particle is dense. 

Additionally, it was confirmed that 𝛼, which denotes the particle size sensitivity in 

the breakage rate, was proportional to 𝜒, which indicates the particle size sensitivity 

in the breakage probability. In this case, 𝐸∞ was independent of 𝛼. In particular, 

𝛼 and 𝜒 coincide only when the threshold energy is 0, which indicates that there is 

a close correlation between the breakage probability and the breakage rate 

parameters. 

On analyzing the scale-up of the ball mill, it was found that the diameter of 

the ball media and the mill rotational speed exhibited different changes in the 

breakage rate depending on the material properties. However, in case of the changes 

in the ball loading, powder loading, and mill diameter, the changes of the breakage 

rate with respect to the material properties were insignificant. Furthermore, the 

analysis of the breakage rate change depending on the changes in the operating 

conditions with reference to the material property showed reasonable agreement with 

the empirical formula, except for the mill diameter and mill rotational speed. In the 

case of the mill diameter, the change in the breakage rate was amplified owing to the 



176 

 

increase in the collision energy as the lifter size increased. Similarly, in case of the 

mill rotational speed, the critical speed decreased owing to the increase in the lifter 

size. This effect was too large for the size of the original lifter, and hence, deviated 

significantly from the empirical formula. 

Lastly, simulations were performed by changing the lifter size affecting the 

breakage rate and the operating conditions. It was observed that as the lifter size 

decreased, the breakage decreased in all cases. In addition, for the reference material 

characteristics, the changes in the breakage rate owing to changes in the operating 

conditions except the ball loading showed a tendency to be closer to the empirical 

equation. In particular, the graph of the breakage rate change according to the mill 

diameter and mill rotational speed was found to be close to the empirical formula. 

This study presented a more practical method for ball mill grinding modeling 

by conducting experimental and numerical methods. In the case of numerical 

methods, it is expected that a deeper understanding of the breakage characteristics 

of the particles can be achieved by expanding this study to the breakage distribution 

function and particle size distribution after breakage. 
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국문요지 

 

분쇄는 일반적으로 자원처리 공정의 첫 단계로 에너지 집약적인 

공정이다. 그러나 분쇄의 오랜 역사에도 불구하고, 분쇄 현상을 정확히 

모사하는 것은 천연 광물 광석의 불균질성에 기반하는 분쇄 메커니즘의 

복잡성 때문에 여전히 이루어지지 않고 있다. 본 연구에서는 실험적 및 

수치적 접근법을 통해 효과적으로 분쇄공정을 모델링하는 방법을 

도출하였다. 

먼저, 수치해석적 방법 중 하나인 DEM (Discrete Element 

Method)을 이용하여 볼밀 분쇄공정을 모사하고 장비 의존적인 요소와 

물질 의존적인 요소를 분리하여 시료의 분쇄 특성을 규명하였다. 분쇄 

속도론 모델은 물질의 분쇄 특성을 파악하여 분쇄 산물의 입도 분포를 

예측하는 데에 높은 성능을 보이지만 밀 내부에서 발생하는 분쇄 현상에 

대한 이해는 부족하다. 반대로, DEM 을 이용하면 밀 내부의 각 입자에 

대한 모든 충돌을 분석할 수 있으나 볼밀 분쇄공정을 모델링하기 위하여 

PBE (Population Balance Equation)와 결합하는 경우에는 상대적으로 

분쇄 산물의 입도 분포를 예측할 때의 정확성이 떨어진다. 본 

연구에서는 DEM을 이용하여 각 입자의 충돌 에너지 분포를 결정하였고, 

볼밀 시뮬레이션에서 볼과 광석 입자를 모두 구현함으로써 정확한 

에너지 데이터를 획득하였다. 뿐만 아니라 입자의 파괴 확률 모델을 
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도입함으로써 물질 의존적인 요소를 독립적으로 적용하였다. 최종적으로, 

분쇄 속도론 모델에 기반하여 시뮬레이션 결과를 해석함으로써 분쇄 

특성을 보다 정확하게 예측해보고자 하였다. 단일 입도 분쇄 시험 

시뮬레이션에서는 시간 경과에 따라 밀 내부의 입도 분포를 

변화시킴으로써 1 차 분쇄 속도론이 성립함을 확인하였고, 각 입자의 

충돌 에너지 분포를 바탕으로 반복 충돌에 의하여 입자 파괴가 

점차적으로 쉽게 발생하는 현상을 모사할 수 있었다. 또한, 파괴 확률 

변수와 분쇄율 변수 사이의 연관성을 조사하였으며, 밀의 scale-up 과 

리프터의 크기 변화에 따른 분쇄율의 변화를 분석하였다. 

둘째로, 실험을 통해 분쇄 속도론에 기반하여 분쇄 산물의 입도 

및 품위 분포를 예측하는 모델을 개발하였다. 단체분리 측정 장비의 

발전과 함께, 분쇄 전 후의 시료에 대한 다양한 정보를 쉽게 얻을 수 

있게 되었으나 이를 효과적으로 모델링에 활용하는 방법에 대한 연구는 

부족한 실정이다. 다양한 입도 및 품위의 자철석 시료에 대하여 볼밀 

분쇄 시험과 광물단체분리측정기를(MLA) 이용한 분석을 수행함으로써 

분쇄 산물의 입도 및 품위 분포를 얻었다. 이를 통해, 품위에 따른 분쇄 

특성과 단체분리 특성을 규명하였다. 특히, 단체분리 변수 중 하나인 

단체분리 크기를 MLA 로 측정 가능한 광물입자 크기 분포를 

사용함으로써 효과적으로 결정할 수 있었다. 또한, 분쇄-단체분리 결합 

모델을 이용하여, 단체분리도를 고려한 목적 입도와 분쇄 소요 시간을 

예측할 수 있었다. 
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이처럼, 본 연구는 수치적 및 실험적 방법을 통하여 더 

실용적으로 볼밀 분쇄공정을 시뮬레이션하는 방법을 제안하였다. 특히, 

수치적 방법의 경우에는 해당 연구 내용을 분쇄 후의 입도 분포를 

분석하는 데에 적용함으로써 입자의 분쇄 특성에 대한 더 심도 있는 

이해가 가능할 것으로 기대된다. 

 

핵심어: 입도-품위 모델, 볼밀, 분쇄 속도론, 분쇄율, 이산요소법, 

scale-up 
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