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Abstract 

Essays on scientific knowledge and 

inventor mobility 

Seungryul Ryan Shin 

Technology Management, Economics, and Policy Program 

College of Engineering 

Seoul National University 

 

Facilitating technological innovation in various fields and stimulating economic growth 

based on innovation is vital today. Both scientific knowledge and human capital are key 

components in seeking technological innovation. This dissertation studies the 

mechanisms of innovation from the aspects of scientific knowledge diffusion and 

inventor mobility. Each chapter here investigates the diffusion of government science, 

causes, and implications of inventor mobility. This dissertation develops and applies data 

analytics and causal inference techniques to conduct empirical analyses for each chapter. 

This dissertation also expands the academic discussion on innovation and suggests policy 

and managerial implications conducive to innovation and economic growth. 

The first chapter of the dissertation examines the role of a patent filed by government 

scientists in the dissemination of scientific discoveries in government laboratories. It 

collects a data sample on scientific discoveries originating from US federally funded 
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R&D centers and adopt a difference-in-differences approach to compare similar scientific 

discoveries. The results confirm that while a patent filed by government scientists 

decreases the rate of follow-on patents in a technological area overlapping with those of 

the focal patent, it increases the rate of follow-on patents in non-overlapping 

technological areas. Increase in follow-on inventions is attributable to risk-taking 

inventions, that is, inventions involving a high chance of resulting in either impactful or 

failure patents rather than incremental inventions. It is also characterized by inventions 

with a high level of originality. The results also show that inventors in distant locations in 

terms of geographical and technological proximity are the most affected by patents filed 

by government scientists. This patent effect is pronounced when government scientists 

involved in the focal discovery have fewer social connections and when the scientific 

field is less familiar in the industry. 

The results of the first chapter help policymakers design policies on the patenting 

activities of government scientists by providing relevant empirical evidence. The results 

also suggest policymakers to leverage patents and implement other means to increase 

interaction between government scientists and industrial laboratories. Furthermore, the 

chapter contributes to building a complementary structure between government 

laboratories and industrial firms by suggesting important policy implications conducive to 

the diffusion of scientific discoveries in government laboratories responding to industrial 

landscape changes in the current era. 

The second chapter of the dissertation uncovers the determinants of inventors’ 
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mobility choices. It demonstrates that an inventor’s emigration from a location is 

negatively associated with the historical share of the same surname in a given location. 

This surname effect on inventors’ geographical mobility is valid even after controlling for 

inventor individuals’ length of invention experience, productivity, quality; previous 

mobility pattern, active technological fields; and current location characteristics. 

Additionally, the chapter uncovers specific conditions wherein the surname effect is 

moderated and wherein the surname effect loses its significance. The chapter also 

examines heterogeneity effects by gender, showing that surname effect differs by gender. 

The results of the second chapter provide empirical evidence that inventors’ 

geographical mobility may be predicted by historical surname distribution and how other 

factors influence this relationship. These findings provide empirical evidence and 

implications that help attract and retain inventors. Particularly, by demonstrating that the 

surname effect is less susceptible to other individual-level invention-related 

characteristics, the results increase the generalizability of using historical surname 

distribution to track inventors’ geographical mobility.  

The third chapter of the dissertation estimates the impact of inventor inflow on the 

formation and success of local venture-backed startups and on local shifts in venture 

capital investments. Moreover, it strengthens causality with a shift-share instrument based 

on historic spatial distribution of surnames. The results show that the arrival of inventors 

increases the number of venture-backed startups, but only in the same technological fields 

of newly arrived inventors. Inventor arrivals also increase the number of successful 
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startups while reducing failed ones, demonstrating that inventors improve startup quality. 

Furthermore, inventor inflow incurs venture capital investments to reallocate from low-

tech unsuccessful startups to high-tech successful startups. This shows an increase in the 

efficiency of venture capital investments. 

The results of the third chapter provide empirical evidence on the role of inventors in 

venture-backed startup activities and investment shifts. This suggests implications for 

policymakers who aim to foster an entrepreneurial ecosystem that they may improve the 

quantity and quality of startups as well as efficiency of investments by attracting 

inventors. Additionally, the shift-share instrument developed in this chapter would be 

useful in estimating the effect of human capital mobility on regional outcomes in future 

research. 

In conclusion, this dissertation enhances the understanding of the effects of scientific 

knowledge and inventor mobility on innovation and economic growth. It provides several 

policy implications through theoretical discussions and empirical analyses centered on 

innovation. It also expands and contributes to a number of research streams that each 

chapter draws upon. 

 

Keywords: Scientific knowledge, Government laboratory, Knowledge diffusion, 

Inventor mobility, Innovation, Entrepreneurship 

Student Number: 2017-31119 
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Chapter 1. Introduction 

1.1 Backgrounds 

Innovation scholars focus on scientific knowledge and human capital to enhance the 

understanding of technological innovation. Scientific knowledge helps us understand 

fundamental principles and propel further applications to technological inventions 

(Nelson, 1959; Kline & Rosenberg, 1986; Fleming & Sorenson, 2004). Scientific human 

capitals, such as scientists, inventors, or engineers, apply scientific and engineering 

principles to resolve technical problems, increasing useful and novel innovation (Arrow 

& Capron, 1959; Rosenberg & Nelson, 1994; Arts & Fleming, 2018). As technological 

innovation becomes key in economic growth in modern society (Lee, 2013), scholars 

strive to uncover the antecedents, mechanisms, and impact of innovation from the aspects 

of scientific knowledge and human capital, providing relevant implications for 

policymakers and firm managers. 

Prior literature on scientific knowledge emphasizes science as a key driver of 

technological inventions. Fleming and Sorenson (2004) suggest that science enables 

effective management of R&D processes and leads to novel and useful combination of 

knowledge. Ahmadpoor and Jones (2017) and Poege et al. (2019) provide empirical 

evidence that the majority of patented inventions are based on scientific discoveries, and 

a patented invention is more likely to be impactful when it is closely linked to a scientific 

paper. They also show that the value of patented inventions is closely related to the 
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quality of the scientific papers cited. Using data on corporate scientific research, Arora et 

al. (2021) provide empirical evidence on how a firm’s internal scientific research 

contributes to its downstream inventions and, at the same time, results in spillovers to 

rival firms.     

Scholars also seek to uncover the antecedents of scientific research. For instance, 

scholars examine how public investment influences scientific research (Li et al., 2017) 

and further leads to technological innovation (Fleming et al., 2019). Myers (2020) 

examines the elasticity of scientists in changing the direction of their research work, 

providing an estimate of the switching costs of science. Agrawal et al. (2018) investigate 

the change in collaboration structure of research fields in response to an influx of 

scientific knowledge in the field. Azoulay et al. (2019) demonstrate the evolution and 

direction changes in scientific fields following the loss of a luminary of the field. 

Another research stream investigates scientific human capital that shapes innovation 

and contributes to regional economic growth. As Arrow (1962) suggests that the mobility 

of human capital involves the transfer of knowledge and information, scholars pay 

particular attention to the mobility of scientific human capital. Determinants of mobility 

of inventors are investigated at the individual (e.g., Palomeras and Melero, 2010; Ganco, 

2013), organizational (e.g., Singh & Agrawal, 2011; Agarwal et al., 2009; Cheyre et al., 

2015), and institutional levels (e.g., Marx et al. 2009; Hombert & Matray, 2017; Starr et 

al., 2018; Melero et al., 2020), suggesting managerial and policy implications for 

scientific human capital. Furthermore, scholars also examine the implications of the 
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mobility of scientific human capital. Prior studies demonstrate how inventor mobility 

increases interfirm knowledge flow (e.g., Rosenkopf & Almeida, 2003), technology-

oriented collaboration (e.g., Wagner & Goossen, 2018), and innovation performance (e.g., 

Chemmanur et al., 2019) at the organizational level. The implication of inventor mobility 

in productivity is also examined at the individual (e.g., Hoisl, 2007) and regional levels 

(e.g., Cappelli et al., 2019). 

Extending prior literature on innovation, the dissertation uncovers the mechanism of 

dissemination of scientific research, especially those focusing on government science. It 

also examines the determinants and implications of the geographical mobility of 

inventors. 

 

1.2 Research objectives 

The dissertation aims to extend prior literature on innovation and enhance the 

understanding of innovation and consequent economic growth. To this end, this 

dissertation conducts three different studies, each of which investigates innovation from 

the aspects of scientific knowledge and human capital. This approach allows for a 

multifaceted analysis and discussion of innovation. 

 The first study (Chapter two) aims to understand the mechanism of dissemination of 

scientific knowledge. Among various sources of scientific knowledge, it focuses on 

government laboratories for the following reasons: 1) a significant source of scientific 

knowledge requiring a long-term and persistent research, 2) idiosyncratic knowledge 
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accumulated within the laboratory, and 3) inadequate information on the technological 

potential available to outside researchers. A detailed examination of the mechanism of 

scientific knowledge dissemination is necessary to facilitate dissemination of scientific 

knowledge from such organizations. This study focuses on the role of patents filed by 

government scientists in the dissemination of government science. Adopting theoretical 

discussion in research streams on patent protection and relationship between science and 

technology, this study theorizes the mechanism by which government science is 

disseminated and adopted by follow-on inventions. This study also provides empirical 

evidence supporting the theoretical explanations. 

The second study (Chapter three) aims to identify the determinants of inventors’ 

geographical mobility. This is important as attracting incoming inventors and retaining 

existing inventors contributing to regional entrepreneurship (as the third study finds), 

which, in turn, leads to the growth of the regional economy. This study examines the 

effect of historical surname distribution on inventors’ mobility decisions. It further 

investigates how historical surname distribution interacts with various other factors. This 

study provides empirical evidence on the determinants of mobility. 

The third study (Chapter four) aims to understand how skilled human capital 

contributes to regional entrepreneurial ecosystems. It also aims to develop a shift-share 

instrument that helps isolate and estimate the causal effect of human capital on various 

regional outcomes. Among the various types of human capital, this study focuses on 

inventors with technological expertise and technological developments. For outcome 
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variables, the study adopts the quantity and quality of startups founded and venture 

capital investments in high and non-high technology sectors. This study provides precise 

estimates of the regional effect of inventors and discusses regional entrepreneurship. 

 

1.3 Research outline 

Chapter two, three, and four provide theoretical or empirical analyses on the research 

questions that the dissertation addresses. These chapters study innovation from the angles 

of scientific knowledge and skilled human capital. Figure 1-1 describes the overall 

research models and how these chapters contribute to innovation literature. Table 1-1 

provides a detailed overview of each chapter.  

Chapter two examines how patents filed by government scientists affect follow-on 

inventions based on scientific discoveries in government science. It begins by reviewing 

relevant research streams—studies on government laboratories, patent protection, and the 

relationship between science and technology. It also explains the background of policy 

changes for US government laboratories. Then, it theoretically discusses how patent filing 

by government scientists influences the dissemination of scientific knowledge and 

follow-on inventions. Chapter three performs an empirical analysis using science data 

from US federally funded R&D centers (FFRDCs). It examines how patenting influences 

the direction and characteristics of follow-on inventions, how effect of patent filing 

depends on proximity of knowledge adopters, and the heterogeneous effects of patenting 

that vary by other characteristics of scientists or fields. Based on the empirical findings, 
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Chapter three provides policy implications that help facilitate dissemination and 

utilization of scientific discoveries in government laboratories. 

Chapter three focuses on demographic factors that influence mobility decision of 

inventors. First, it focuses on whether the distribution of the same surname in a given 

county influences the geographical mobility of inventors. Then, it examines how historic 

surname distribution and other factors, i.e., family-specific, inventor-specific, and 

institutional factors, interact to shape mobility decision of inventors. This provides 

consistent evidence that historic surname distribution predicts the geographical mobility 

of inventors and how this relationship may be altered by other factors. 

Chapter four examines the impact of inventors on regional entrepreneurship. To 

resolve the endogeneity problem hindering the estimation of inventor effects, the chapter 

develops a shift-share instrument based on historic surname distribution in the US in 

1940. This explains how the shift-share instrument may be used to create an exogenous 

variation for inventor mobility events. With the shift-share instrument, Chapter four 

estimates how inventor inflow influences the rate of startup foundation, quality of 

startups, and reallocation of startup activities across sectors. Moreover, it provides 

relevant policy implications and explains how the findings may help explain the 

agglomeration mechanism. 

Chapter five concludes the dissertation by summarizing the chapters and suggests 

directions for future research. 
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Figure 1-1. Research outline 
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Table 1-1, Research overview 

 Chapter 2 Chapter 3 Chapter 4 

Topics 
The diffusion of  

government science 

Demographics and 

mobility choice of 

inventors 

Inventor mobility and  

startup formation 

Focus Scientific knowledge Skilled human capital Skilled human capital 

Research 

Questions 

How does a patent filed 

by government scientists 

influence diffusion of 

government science? 

When do inventors move? 

Demographics and 

mobility decision 

How does regional 

entrepreneurship respond 

to the inflow of inventors? 

Methodology 

Coarsened Exact 

Matching + Difference-in-

Differences approach 

OLS Regression +  

Interactions between 

factors 

Instrumental variable 

approach 

(w/ Shift-share 

instrument) 

Implication 

Patents filed by 

government scientists 

help disseminate 

knowledge from 

government laboratories 

and increase follow-on 

inventions.  

Historical surname 

distribution predicts 

geographical mobility of 

inventors. 

Inflow of inventors 

increases not only the rate 

of startup foundation, but 

also the quality of 

startups. 
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Chapter 2. The diffusion of scientific 

discoveries in government laboratories1 

2.1 Introduction 

Scientific discoveries of government laboratories are a prominent source of industrial 

research and development (R&D). With substantial public investment—US federal 

laboratories, for instance, spent about $52 billion on research in 2017 (NSB, 2020)—

government laboratories conduct basic science and applied research that is essential for 

technological advancement (Fleming & Sorenson, 2004; Jaffe & Lerner, 2001). The 

resulting scientific discoveries are transferred to the industry through direct pathways, 

such as cooperative research and development agreements (CRADAs), patent licenses 

and facility sharing (Adams et al., 2003). In addition to direct pathways, government 

laboratories also contribute to technological advancement through broader dissemination 

of scientific knowledge in the public domain (Bozeman et al., 2015; Mowery & Ziedonis, 

2015). This broad knowledge dissemination of government science is important because 

firms in the industry often rely on external scientific knowledge to achieve further 

innovation (Arora et al., 2018; Poege et al., 2019). Importantly, government laboratories 

are also responsible for creating a broader societal impact with the full use of the results 

of public investment in research (Fini et al., 2018; Yin et al., 2021).  

                

1 This chapter is adapted from joint work with Junseok Hwang, Yura Jung, and Jisoo Lee. For the original 

article, please see the article titled “The diffusion of scientific discoveries in government laboratories: The 

role of patents filed by government scientists” (Conditionally accepted in Research Policy Journal as of 

January 1st, 2022) 
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Among various means that policymakers implement to ensure the full use of the 

scientific discoveries of government laboratories, we focus on the role of a patent filed by 

government scientists who participated in the research at the government laboratory. As 

patenting allows the protection of intellectual property rights as well as the commercial 

use of discoveries through licensing, government laboratories file patents on discoveries 

to appropriate their value, and policymakers have also encouraged such practices (Jaffe & 

Lerner, 2001; Lerner, 2002). Taking the United States as an example, the number of US 

patents filed has increased since the early 1980s as a series of policies were enacted to 

boost the transfer of knowledge from government laboratories through patents. In 

particular, the amendments enacted by the Federal Technology Transfer Act (FTTA) of 

the United States enacted in 1986 allowed scientists—including former employees who 

participated in the research at the time—to possess title to their discoveries at the 

government laboratory, resulting in a sharp increase in the number of patents filed by 

government laboratories (Jaffe & Lerner, 2001). Despite such encouragement of patenting 

activities, empirical evidence is lacking as to whether such activities facilitate or impede 

the adoption of government science in follow-on inventions. 

Conceptually, the practice of scientists filing a patent on their discoveries in a 

government laboratory may have a double-sided effect on technological applications to 

follow-on inventions. To obtain this in more detail, we focus on the two distinctive 

aspects of government laboratories. First, scientific research becomes idiosyncratic or 

specialized within a government laboratory because of the long-term nature and 
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persistency of research (Saavedra & Bozeman, 2004). Second, the accessibility of 

information on the technological applicability of government research for external 

researchers is often limited (Link et al., 2011). These characteristics act as barriers for 

other inventors, either in industrial laboratories or in universities, in their attempts to 

adopt science from government laboratories. Considering these characteristics, from a 

conceptual perspective, we argue that the double-sided aspects of patent protection, that is, 

the preemption of technological opportunity (Heller & Eisenberg, 1998; Galasso & 

Schankerman, 2015) and disclosure of technological information to the public (Czarnitzki 

& Toole, 2011; Graham & Hegde, 2015; Hegde & Luo, 2018), manifests depending on 

the relevance of the application areas and the characteristics of the inventors adopting the 

government science. 

To estimate the effect of a patent filed by government scientists on follow-on 

inventions, we analyze a dataset of research papers published by scientists in US 

Federally Funded R&D Centers (FFRDCs) using a combination of the coarsened exact 

matching (CEM) technique with restrictive criteria and a difference-in-differences 

approach. We construct a matched sample comprising 740 research papers published by 

scientists from FFRDCs, i.e., 370 papers patented by government scientists and 370 

counterfactual papers. When CEM matches, we match exactly on the laboratory (FFRDC), 

paper publication year, narrowly defined scientific field, and similar impact factor of the 

journal in which the paper is published. This allows us to compare government research 

that is patented to research not patented by government scientists but similar otherwise. 
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Then, adopting a difference-in-differences approach, we compare the rate of follow-on 

inventions based on scientific papers from government laboratories before and after a 

patent that was granted to government scientists relative to analogous changes observed 

in a counterfactual scientific paper. 

We find that a patent filed by government scientists impedes follow-on inventions in 

technological areas overlapping with the focal patent but facilitates the rate of follow-on 

inventions in non-overlapping technological areas, consistent with our theoretical 

discussion on the double-sided effects of patent protection. Investigation of the increase 

in follow-on inventions in non-overlapping areas reveals that the follow-on inventions are 

mainly attributed to risk-taking inventions, that is, inventions with a high likelihood of 

resulting in either impactful or failure patents, rather than incremental inventions. 

Moreover, it shows that a patent filed by government scientists increases inventions with 

a high level of originality in particular. When we further examine the characteristics of 

inventors who adopt government science, we find that a patent filed by government 

scientists mainly increases inventions by inventors in distant locations in terms of both 

geographical and technological proximity. Based on the heterogeneity analysis by 

characteristics of government scientists and scientific fields, we find that the patent effect 

is pronounced when the government scientists involved in the focal discovery have fewer 

social connections and when the scientific field is less familiar in the industry. This 

provides empirical evidence on the one-sided mechanism that a patent filed by 

government scientists provide technological information or the potential of government 
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science to the public and, thus, increases follow-on technological applications of 

government science. 

This study provides valuable contributions to the academic literature on government 

laboratories, patent protection, and the relationship between science and technology. We 

extend the literature on government laboratories by focusing on the diffusion of 

government science. We shed light on the important role of a patent filed by government 

scientists in knowledge dissemination and add detailed nuance on how government 

laboratories may create a broader societal impact with their scientific discoveries. We also 

contribute to the literature on patent protection and the relationship between science and 

technology by adding empirical evidence on how government science links to 

technological applications via patents. 

We provide policy implications conducive to the full use of scientific discoveries in 

government laboratories. We suggest that policymakers consider the potential overlap or 

relatedness with a certain area that they strategically aim to improve using government 

science when designing policies on the patenting activities of government scientists. We 

also suggest that policymakers not only leverage patents but also implement other means 

to increase the interaction between government scientists and industrial laboratories. 

Moreover, our findings may be used to motivate government scientists, as these findings 

alleviate the uncertainty of the impact of such scientists’ long-term research in 

government laboratories. Finally, we emphasize the importance of establishing a structure 

that facilitates knowledge transfer from government laboratories to industrial firms, 
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thereby creating synergy between the two types of organizations in response to the 

industrial landscape changes in the current era. 

 

2.2 Related literature 

This study contributes to and connects three distinct streams of research. First, it 

advances the literature on government laboratories by uncovering one of the mechanisms 

through which government science is disseminated and used in technological applications. 

Despite the importance of government laboratories as a pillar of the National Innovation 

System (Mowery, 1992; Nelson, 1993; Fagerberg & Srholec, 2008), research on the role 

of government laboratories has not been as prolific as research on the other two pillars, 

i.e., universities and firms in industry. Bozeman and Crow have examined the role of 

government laboratories focusing on technology transfer from government laboratories 

and related public policy in a series of studies (Bozeman & Crow, 1991; Crow & 

Bozeman, 1998; Bozeman, 2000; Bozeman et al., 2015). Jaffe and Lerner (2001) studied 

how patent policy on government laboratories changes over time and have demonstrated 

the trends in government laboratories’ patent activities. Adams et al. (2003) showed that 

collaborative work between firms and government laboratories through CRADAs 

positively influences the research of the firms that adopt science of the government 

laboratory. In a relatively recent study, Fini et al. (2018) considers the mission of 

government laboratories for a broader societal impact and suggests the importance of 

effective scientific knowledge transfer into practical applications. We extend the prior 
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research by suggesting patent protection on government laboratories’ scientific 

discoveries as a significant institutional factor that determines scientific knowledge 

dissemination from government laboratories to other inventors’ technological applications. 

Our study also relates to studies on patent protection. The effects of patent protection 

on knowledge dissemination or follow-on invention is still on a debate among scholars. 

On one hand, scholars emphasize the positive aspect of disclosure of technological 

information through a credible and standardized channel. Studies suggest that the 

disclosure of technological information through patents allow to publicize inventions’ 

existence and scope (Graham & Hedge, 2015), thereby increasing efficiencies in market 

for ideas (Gans et al., 2008; Hegde & Luo, 2018) and reducing duplicative follow-on 

research (Luck et al., 2020). On the other hand, scholars also suggest the negative aspect 

of the fragmentation of intellectual property rights, overlapping claims, and confinement 

of knowledge within the originating organization (Heller & Eisenberg, 1998; Ziedonis, 

2004). Heller & Eisenberg (1998) suggest this as “the tragedy of the anticommons”, in 

which describes patents hinder follow-on research and applications as many owners hold 

rights on prior discoveries. Galasso & Schankerman (2015) provides empirical evidence 

on this by showing that invalidation of a patent leads to an increase in follow-on 

inventions based on the focal patent. Melero et al. (2020) suggests that the legal 

protection of patent converts the individual participating inventors’ expertise into the 

patent-holder-specific human capital, and adds empirical evidence that patents induce 

inventors to stay in the patent-holding organization. Extending such findings on the 
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implication of patent protection in prior studies, we add empirical evidence on the debate 

by focusing on patent protection around scientific discoveries in government laboratories. 

This is particularly important as the mechanism by which government science is applied 

to follow-on inventions is distinctive relative to that of scientific knowledge generated in 

private industry or universities.     

Finally, this study contributes to the literature on the relationship between science and 

technology. Science has long been emphasized as a key driver of technological innovation. 

It facilitates technological innovation by enabling effective management of R&D 

processes, reducing fruitless trial-and-error methods, and allowing novel and useful 

combinations of knowledge to form (Fleming & Sorenson, 2004; Owen-Smith, 2001). 

Indeed, researchers have presented empirical evidence that science facilitates 

technological innovation and enhances the quality of innovation through analyzing the 

relationship between journal papers and patents. Cockburn et al., (1999) emphasize how 

adoption of science-based drug discovery leads to higher R&D productivity and uncover 

that firms’ organizational factors alter the rate of adoption, especially focusing on the 

pharmaceutical industry. Sorenson and Fleming (2004) show how science-based patents 

are more likely to be diffused and utilized by future inventions. Ahmadpoor and Jones 

(2017) found that more than 60% of patents link to a scientific paper, and patents with 

direct linkage to a scientific paper are found to be more useful in each field. A recent 

study by Poege et al. (2019) further investigates the impact of the quality of science on 

patent value, and shows a significant relationship between the quality of papers and value 
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of patents. Government laboratories are a key source of scientific discoveries, especially 

those that involve persistent investment and time. Thus, it is important to demonstrate 

how inventors adopt and apply science for their technological inventions, focusing on 

scientific research conducted in government laboratories. 

 

2.3 Background: Technology transfer and patent policy for US 

government laboratories 

 

Since 1980, the US Congress has enacted a series of laws to promote technology 

transfer and scientific knowledge dissemination from US government laboratories to non-

government laboratories, such as universities and R&D laboratories in the private sector. 

The Stevenson-Wydler Act enacted in 1980 was the first enactment that aimed to 

disseminate knowledge and information that originate in government laboratories by 

encouraging government laboratories to participate in technology transfer activities. For 

instance, it required government laboratories to spend a particular portion of their budget 

on technology transfer activities and to establish an Office of Research and Technology 

Application in laboratories with more than two hundred staff members. The ownership of 

intellectual property that results from government-funded research was addressed in the 

Bayh-Dole Act in 1980, which allowed government laboratories to retain rights to their 

inventions. Especially, the significance of the Bayh-Dole Act is emphasized from the 

various aspects in prior studies, e.g., on technology licensing and patenting (Mowery et 
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al., 2001; Thursby & Thursby, 2003), commercialization of science (Kenney & Patton, 

2009), and scientist entrepreneurship (Aldridge & Audretsch, 2011). The Federal 

Technology Transfer Act (FTTA) of 1986, which enacted several amendments to the 

Stevenson-Wydler Act, enables government laboratories to enter or participate in 

CRADAs with industry as well as negotiate licensing for their patented inventions 

developed in their laboratories. This legislation from the 1980s constitutes policy changes 

that shifted in favor of permitting exclusive rights for government science aiming to 

promote follow-on technological applications or commercialization (Bozeman, 2000; 

Adams et al., 2003). 

Additional US legislation followed in the 1990s and 2000s that facilitated the 

diffusion of the scientific knowledge of government laboratories by amending regulations 

on intellectual property. For example, the American Technology Preeminence Act of 1991 

included intellectual property as a potential contribution of the government laboratory 

under CRADAs, allowing intellectual property to be exchanged between the parties. The 

National Technology Transfer and Advancement Act of 1995 ensures that US firms obtain 

sufficient intellectual rights on inventions resulting from joint research under CRADAs 

with government laboratories. Furthermore, it increased the potential limit of payment in 

royalties, providing government scientists with financial incentives to develop research 

outcomes with commercialization potential. The Technology Transfer Commercialization 

Act of 2000 permitted technology licensing of existing inventions prior to a CRADA and 

allowed the granting of an exclusive or partially exclusive license to other organizations 
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with early notification to the agency (Federal Laboratory Consortium for Technology 

Transfer [FLC], 2019).  

Revising patent policy was also an important attempt to increase transfer or further 

use of the intellectual property of government laboratories. Notably, a number of 

amendments to the Stevenson-Wydler Act enacted by the FTTA of 1986 resulted in a 

substantial increase in patents filed by federal scientists. The FTTA enables current or 

former employees of government laboratories, such as scientists, engineers, or technical 

personnel, to possess title to the scientific discoveries that they make at the laboratory as 

well as to protect their intellectual properties and rights on discoveries by patenting the 

findings. Moreover, the Act requires royalty sharing 2  and rewarding 3  on licensed 

invention by law (Federal Laboratory Consortium for Technology Transfer [FLC], 2019; 

Federal Technology Transfer Act, 1986). These provide scientists of government 

laboratories with both financial and career incentives to file a patent for their invention 

made at the government laboratory, especially inventions that are considered impactful. 

As the statistics provided by Jaffe and Lerner (2001), the number of government 

laboratory patents sharply increases after 1986 (almost doubled from 1981 to early 1990s) 

while the R&D spending per fiscal year remains nearly constant.4  

                

2 FTTA specifies that the distribution of the royalties should not affect the regular payment of the employee, 

and that a fixed minimum reward system must be guaranteed. A certain percentage of the royalties received 

by the agency that exceeds a threshold amount is required to be shared with each inventor involved. This also 

stipulates that the total portion of royalty payments distributed to contributors shall exceed 15 percent of the 

total agency royalties of the fiscal year. 
3 FTTA requires the implementation of a reward system in each government laboratory to reward employees 

whose invention is highly recognized its value by invention activities of other institutes such as universities 

and firms in the private sector. 
4 Jaffe and Lerner (2001) provides statistics based on federally funded research and development centers 

(FFRDCs) operating under the US Department of Energy (DOE). 
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Table 2-1. US legislations to promote technology transfer 

Year Title Description 

1980 Stevenson-Wydler 

Technology Innovation 

Act 

- Allowed dissemination of knowledge and information from federal 

laboratories 

- Required federal laboratories to take an active role in cooperation by 

allocating a portion of the budget for technology transfer activities 

- Required each laboratory to establish an Office of Research and 

Technology Applications (ORTA) to coordinate, and thus, facilitate 

technology transfer 

1980 Bayh-Dole Act - Addressed the issue of ownership of intellectual property rights, in 

terms of boundaries and licenses, arising from government-funded 

research 

- Allowed government owned and government operated (GOGO) 

laboratories to grant exclusive patent licenses to commercial 

organizations 

1986 Federal Technology 

Transfer Act 

- Made amendments to the Stevenson-Wydler Act 

- Enabled government laboratories to enter or participate in cooperative 

research and development agreements (CRADAs) 

- Allowed current or former employees to retain titles or receive royalty 

payments on inventions or licensed patents 

- Required implementation of reward systems in each government 

laboratory 

1989 National Competitiveness 

Technology Transfer Act 

- Enabled government-owned contractor-operated (GOCO) facilities to 

transfer technology into the private industries 

- Offered protection from disclosure to third parties  

1991 American Technology 

Preeminence Act 

- Included intellectual property as a potential contribution of the 

laboratory under CRADAs 

- Allowed exchange of intellectual property among the parties 

1995 National Technology 

Transfer and 

- Made amendments to the Stevenson-Wydler Act 

- Allowed US companies to have a sufficient intellectual property rights 
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Advancement Act on inventions resulting from a CRADA with a federal laboratory 

- Allowed US companies to choose an exclusive or nonexclusive 

license for inventions resulting from a CRADA with a federal 

laboratory 

2000 Technology Transfer 

Commercialization Act 

- Permitted federal laboratories to grant a license for a federally owned 

invention that was created prior to the signing of a CRADA 

- Required licensees to provide a plan for the application of the 

invention within a reasonable period of time  

2007 America COMPETES 

Act 

- Authorized programs in multiple agencies to fund basic research that 

involves high-risk 

- Eliminated government departments that were responsible for 

reporting and analysis of technology transfer activities  

Note. Reorganized from Federal Technology Transfer Legislation and Policy (“The Green Book”), 6th Edition 

 

2.4 Conceptual framework 

We begin with a conceptual discussion on how scientific research in government 

laboratories has different characteristics, compared to scientific research from other types 

of research organizations. Given that the operation of government laboratories differs 

according to its purpose and that such laboratories conduct various types of scientific 

research, our conceptual discussion is not intended to be exhaustive. Rather, we pay 

particular attention to the two salient aspects of scientific research in government 

laboratories: 1) idiosyncratic knowledge accumulated within the government laboratory 

and 2) inadequacy of information on technological potential available to outside 

researchers. Building on prior research streams on government laboratories, patent 

protection and the application of science to technology, we explain the role of filing a 
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patent around scientific discoveries by government scientists in follow-on technological 

applications of the scientific research. 

 

2.4.1 Scientific research in government laboratories 

Scientific research in government laboratories differs from that of other research 

organizations such as firms in industry or university laboratories in several respects. First, 

government laboratories conduct research that requires long-term and persistent 

investments and that aligns with the benefit of the public rather than a particular group 

(U.S. Department of Energy, 2020). This differentiates government laboratories from 

firms in the private sector that pursue scientific research that ultimately contributes to 

their technological advantage or product development and that alter their R&D direction 

in response to timely market needs (Arora et al., 2021). It also differentiates the role of 

government laboratories from universities that tend to conduct relatively more market-

driven research activities (Link et al., 2011). Second, compared to firms that usually 

pursue scientific research by linking to their technological inventions and products or 

laboratories in universities, where the pressure of commercialization is more prevalent 

(Siegel et al., 2007), government laboratories are less prone to seek financial returns from 

their research. Although government laboratories also commercialize their scientific 

discoveries or technological inventions through partnerships (Jaffe & Lerner, 2001; 

National Academies of Sciences & Medicine, 2021) and the enactment of series of 

technology transfer-related bills, such as the Federal Technology Transfer Act (1986) and 



23 
 

the National Competitiveness Technology Transfer Act (1989) in the United States, have 

encouraged commercialization, their research is not fundamentally driven by financial 

incentives per se, nor is it closely linked to commercial outcomes in order to compete in 

the market.  

Such disparity in objectives and directions of research in government laboratories 

shape the distinct characteristics of their scientific discoveries. Due to the long-term 

nature and persistency of scientific research in government laboratories, relevant 

scientific knowledge and human capital have accumulated in government laboratories. 

This, in turn, leads to an increase in the idiosyncrasy and specialization of scientific 

knowledge within the originating government laboratories, which heightens the barriers 

for other scientists and inventors outside the laboratory when they attempt to utilize the 

scientific knowledge of government laboratories. Further, because scientific research in 

government laboratories centers on basic or applied research that was not originally 

intended for commercial use in the market and is less likely to be directed toward market 

needs (Link et al., 2011), information asymmetry exists in the application of scientific 

discoveries to follow-on technological inventions. That is, when scientists or inventors, 

either in industry or in academia, search for proper scientific knowledge in their invention 

process, they may find it difficult to recognize the scientific knowledge of government 

laboratories and its technological potential and applicability to their invention process. 
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2.4.2 Effect of patenting by government scientists on follow-on 

inventions  

As reviewed in Section 2.2, prior literature suggests both positive and negative effects 

of patent protection in knowledge transfer or follow-on inventions, which we expect to 

remain when it comes to government science and patenting related to the discovery. 

When government scientists file patents on their discoveries, they are able to preempt 

promising technological opportunities related to the scientific discoveries. The 

preemption of opportunities by government scientists with specialized knowledge and 

complementary assets in the scientific research would reduce follow-on technological 

applications by other scientists or inventors, or, at a minimum, require radical, rather than 

incremental, application approaches. In regard to an overlapping technology area in 

particular, the additional transaction costs incurred by increased legal protection of 

government science may further discourage others from adopting and applying for their 

inventions (Heller & Eisenberg, 1998; Woo et al., 2015).  

On the other hand, a patent filed by government scientists may help alleviate the 

inadequacy of information available to outside researchers. The patent filed by 

government scientists may inform the existence of scientific discovery and its 

technological potential for outside scientists or inventors (Graham & Hegde, 2015; 

Melero et al., 2020). In addition, it may contain information or guidelines regarding the 

technological application of the scientific discovery that government scientists may have 

perceived while participating in the process of the scientific research, thereby helping 
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other scientists or inventors who are less familiar with the scientific research understand 

or perceive the technological potential of the research (Baruffaldi & Simeth, 2020). As 

much of the prior literature provides empirical evidence on the benefit of a patent on 

knowledge diffusion, follow-on technological applications, and the reduction of 

duplicative research (e.g., Baruffaldi & Simeth, 2020; Hedge et al., 2018; Luck et al., 

2020), a patent filed by the government scientist may facilitate dissemination of the 

technological information or its potential to outside scientists or inventors who otherwise 

may find it challenging to adopt and apply the discovery in their inventions for a variety 

of reasons, such as distant geographical location, less relevant technological intellectual 

backgrounds, or the absence of social connections to government scientists. 

Considering the double-sided aspects of a patent filed by government scientists, we 

expect that filing a patent would have different effects on follow-on inventions depending 

on the relevance of the areas in which the government science is applied as well as the 

characteristics of the inventors adopting the government science. In the following section, 

we empirically analyze how patenting by government scientists affects the rate of follow-

on inventions using data on scientific discoveries in US federal laboratories. 

 

2.5 Data and Empirical Specification 

2.5.1 Data and Sample 

Our primary data sources are the Microsoft Academic Graph (MAG) and Reliance on 

Science (RoS) databases. The MAG database provides bibliographic data on scholarly 
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works, including authors, affiliations, and keywords (Sinha et al., 2015). The RoS 

database complements the MAG database with a novel dataset of patent citations to 

papers published since 1800. It also provides a crosswalk from the keywords of the MAG 

dataset to the scientific field classifications of other popular bibliographic databases such 

as the Web of Science and the OECD based on the probabilistic classification of the 

keywords (Marx & Fuegi, 2020). We gathered further data on each patent that cited at 

least one paper, including patent assignees and classification according to the Cooperative 

Patent Classification (CPC) system from the USPTO database. We complemented the 

patent data with the inventor and location data that was disambiguated and provided by 

Balsmeier et al. (2018). 

We use data on research papers published by federal scientists affiliated with a US 

Federally Funded R&D Center (FFRDC). With a substantial amount of expenditure—

accounting for 16.3% and 10.5% of the total R&D expenditures of the US government in 

2018 and 2019, respectively, FFRDCs carry out advanced scientific research in various 

fields that is difficult for a single private organization or university to conduct, such as 

research in defense, health, security, and energy. They have also emphasized the transfer 

of their scientific and technological knowledge since the enactment of the Stevenson-

Wydler Act in 1980, providing a suitable setting in which to analyze the role of patents in 

their scientific knowledge application to follow-on inventions. The empirical findings 

from the analysis will also provide relevant implications for US federal laboratories, 

specifically in terms of their patent policy. 
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To identify research papers published by US FFRDCs, we developed a rule-based 

text-matching algorithm to match the names of US FFRDCs from the raw affiliation 

strings provided by the MAG database. For the list of names of US FFRDCs, we used the 

master list of US FFRDCs, which is maintained by the National Science Foundation of 

the United States5. Our algorithm searches for the full or alternative names of each US 

FFRDC from the raw affiliation strings and identifies research papers that included 

federal scientists at US FFRDCs (see Appendix A1 for the detail). Out of a total of 

324,028 unique papers identified as a paper published by at least one author from a US 

FFRDC, 215,843 papers were published in our sampling period from 1986 to 2013. Using 

this comprehensive data, we could show the research activities and direction of US 

FFRDCs, as shown in Figure 2-1. Further, Figure 2-2 demonstrates yearly trends of 

scientific research of US FFRDCs being applied to follow-on US patents, showing an 

increase in the diffusion of FFRDC scientific knowledge and technological application of 

FFRDC scientific research over time.   

                

5 The full list is available at https://www.nsf.gov/statistics/ffrdclist/ 
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Figure 2-1. Research areas of US FFRDCs  

Note: The choropleth shows the share of research fields of each US FFRDC. The scientific fields and paper shares are calculated based on papers published between 1986 and 

2013 and identified as a paper of a scientist affiliated with an FFRDC by our rule-based text matching algorithm. The ten most prolific FFRDCs are labeled their name, whereas 

the remaining FFRDCs are listed on the side to avoid the complexity of the figure. Scientific papers are classified using the OECD subfields. The size of the pie chart of each 

FFRDC represents the amount of papers FFRDCs have published. Each pie chart is plotted based on the city location information of each FFRDC, while some locations are 

adjusted to avoid overlaps. 
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Figure 2-2. Increase in the number of US patents that build on scientific research of FFRDCs (1986 – 2013) 

Note: We plotted the number of US patents citing at least one research paper of each FFRDC published within a ten-year window prior to the application year of each follow-on 

patent. We plotted for overall US FFRDCs as well as for each of the ten most prolific US FFRDCs throughout the sampling period. 
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In the estimations below, we used a subsample of the data on FFRDC research papers 

to rule out any confounding factors and measurement errors. As Adams et al. (2003) find, 

joint research with firms or external parties through CRADAs is a significant channel that 

influences research and knowledge transfer from federal laboratories. Therefore, we 

restrict papers to those that consist of only scientists affiliated with the US FFRDC 

organization, leaving us 79,733 unique papers. This allows us to alleviate the concerns 

that unobserved heterogeneity stemming from external collaboration partners confounds 

our estimation when comparing research papers. We also excluded papers with no citation 

received from a patent or a paper. This leaves us with 10,122 unique papers published by 

US FFRDCs.  

Our identification strategy relies on a difference-in-differences approach using 

matched sample, which compares the rate of follow-on invention of research patented by 

the federal scientists who participated in the discovery versus research that is not patented 

by the federal scientists but otherwise similar. The approach of comparing samples 

matched based on similar underlying characteristics has the advantage of absorbing the 

effects of unobservable factors that otherwise may confound the estimation; thus, it has 

been adopted in many prior studies analyzing observational samples (see examples of 

similar patent comparison by Jaffe, Trajtenberg and Henderson (1993), Palangkaraya et al. 

(2011) and Moreira & Soares (2020) as well as a similar startup comparison by Polidoro 

Jr & Yang (2021)). We separate our treatment and counterfactual control groups of 

research papers published by US FFRDCs based on whether a paper has ever been 
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patented by the scientists who were actually involved in the process of discovery in the 

federal laboratory. Following Marx & Hsu (2021), we tracked the names of inventors for 

all patents that cite each research paper and indicate papers that are cited in a patent 

containing an inventor of the same name. We then define the research papers that are 

patented by federal scientists as our treatment group and those that have never been 

patented by federal scientists as our counterfactual group. Out of the total 10,122 unique 

FFRDC papers, 2,674 papers (26.4%) in our sample were patented by the same federal 

scientist. 

We then employed the coarsened exact matching (CEM) to match each paper with the 

most similar paper. The CEM technique improves the balance between papers in the 

treatment and control groups in terms of observable dimensions, reducing model 

dependence and causal estimation error (Iacus et al., 2009). Similar to the idea of using 

the twin design (Bikard & Marx, 2019), we employed exact matching for FFRDC 

organization, publication year, and keyword of the paper 6 , accounting for the 

characteristics of organization, time, and specific scientific field. To account for the 

quality difference of each paper, we also include the yearly impact factor of the journal 

when each paper was published. Using the journal impact factor has the advantage of 

accounting for the quality of each paper, as this factor is not determined by the quality of 

one single paper, a factor that is typically criticized when using the number of forward 

citations as a measure of paper quality. We use discrete buckets, separated by quantile 

                

6 Microsoft categorized science papers using abstracts and titles of the papers. There are more than 200 

thousand different subfields in this classification system as of 2020 MAG database. 
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between the minimum and maximum values (i.e., between 0 and 35.9). This procedure 

resulted in a matched sample comprising 740 papers (370 papers patented by federal 

scientists and 370 counterfactual papers), which originated from 14 US FFRDCs7. As we 

applied highly restrictive criteria to ensure that we included only papers that are matched 

with the most similar papers, that is, scientific research conducted by the same FFRDC in 

the same year in the same narrowly defined scientific field and published in journals of a 

similar quality, many paper observations and FFRDC organizations had to be dropped 

during the CEM matching process. Table 2-2 provides a summary of the observable 

characteristics of papers in each of the treatment and control groups before and after 

CEM matching.8 The difference in mean values between the treatment and control 

groups decreased after CEM matching. The t-tests for post-matching also indicate that 

there is no statistically significant difference for any of the observable covariates between 

the two groups, except for the number of scientists involved. This alleviates the concern 

regarding endogeneity in comparing treatment and counterfactual control groups for 

government science. 

 

                

7 Scientific papers included in our matched samples are the scientific discoveries originated from the followin

g US FFRDCs: Ames Laboratory, Argonne National Laboratory, Brookhaven National Laboratory, Idaho 

National Laboratory, Jet Propulsion Laboratory, Lawrence Berkeley National Laboratory, Lawrence Liver

more National Laboratory, Lincoln Laboratory, Los Alamos National Laboratory, Frederick National Lab

oratory for Cancer Research, National Renewable Energy Laboratory, Oak Ridge National Laboratory, P

acific Northwest National Laboratory, Sandia National Laboratories 
8 Please see the notes in Table 1 for the definition of each variable. 
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Table 2-2. Overview of FFRDC papers’ characteristics pre- and post-matching 
 

Patented by the federal 

scientist = 0 

Patented by the federal 

scientist = 1 

 

 N Mean SD N Mean SD t-statistics 

Panel A: Pre-CEM        

Total forward citations 7448 105.609 425.960 2674 109.719 351.785 -0.447 

JIF 7448 2.051 2.157 2674 2.300 2.267 -5.041*** 

JCIF 7448 0.050 0.072 2674 0.056 0.071 -3.926*** 

Number of unique authors 7448 3.112 2.243 2674 3.946 2.582 -15.829*** 

Prior experience of authors 7448 23.659 34.355 2674 23.570 31.820 0.117 

Self-citation ratio 7448 0.134 0.194 2674 0.152 0.197 -4.084*** 

Search breadth  7448 0.642 0.323 2674 0.658 0.310 -2.244** 

        

Panel B: Post-CEM        

Total forward citations 370 94.816 167.915 370 133.811 464.787 -1.518 

JIF 370 2.142 2.094 370 2.145 2.195 -0.022 

JCIF 370 0.050 0.057 370 0.051 0.061 -0.290 

Number of unique authors 370 3.311 2.392 370 3.943 2.725 -3.355*** 

Prior experience of authors 370 23.566 28.785 370 24.432 29.228 -0.406 

Self-citation ratio 370 0.141 0.194 370 0.160 0.220 -1.281 

Search breadth  370 0.615 0.326 370 0.630 0.335 -0.626 

Note. Panel A and Panel B summarize observable characteristics for the papers before and after the CEM matching, 

respectively. In the last column, we report t-statistics and p-values of two-sample t-tests for equal means. ***, **, * denote 

significance levels of 1%, 5%, and 10%, respectively. Total forward citations indicate the total number of forward citations 

that the focal paper received by research papers; JIF and JCIF indicate the yearly journal impact factor and journal 

commercialization impact factor provided by RoS database, respectively; Number of unique authors indicates the unique 

federal scientists listed as an author of the paper; Prior experience of authors indicates the average of cumulative counts of 

previous papers published by the authors; Self-citation ratio indicates the ratio of self-citation to one of the authors’ papers 

out of all backward citations; Search breadth indicates the extent of which the focal paper builds upon diverse fields of 

knowledge, measured by the proportion of unique narrowly defined scientific fields (i.e., MAG fields) in all backward 

citation counts. 
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To contrast the effect of patenting by the federal scientist, we created a yearly panel 

for five years before and after the grant year. We take five years for the pre-period 

because papers in our sample are first patented by the federal scientists within 5.93 years 

after the publication on average (median: 5 years).9 We use the grant year of the focal 

patent to separate the pre- and post-periods as patents become effective beginning when 

they are granted and, thus, create the above-theorized effects on follow-on inventions. 

Our final sample has 6,939 paper-year observations. Note that some papers have a time 

gap between publication year and the grant year of a patent of the federal scientist that is 

shorter than five years. For these papers, we only include years since their publication 

year, resulting in an unbalanced panel.  

Our main outcome variable of interest is the rate of inventions based on the focal 

FFRDC research paper. We count the number of patents applied for each year, which 

includes the focal FFRDC research paper in the list of the prior art. These patent citations 

to the focal research paper represent the knowledge flow from the science paper as well 

as the application of scientific discovery to a technological invention building upon the 

original scientific discovery (Roach and Cohen, 2013). To further analyze detailed aspects 

of follow-on inventions, we extend the measurement of patent counts by separating 

patents into a variety of bins that comprise related follow-on patents depending on the 

criteria of interest. Then, the follow-on patents in each bin are counted by aggregating the 

                

9 Our results are robust to alternative time windows. 
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patents at the focal paper and year levels. For instance, to analyze the differential effects 

of patenting on follow-on inventions in overlapping and non-overlapping technological 

areas, we separated the forward-citing patents into patents in overlapping and those in 

non-overlapping areas relative to the area of the focal patent granted to the federal 

scientist. Adopting the CPC classification of USPTO and using subgroup level 

classification, we separate patents with at least one overlapping subgroup and patents 

with no overlapping subgroups exclusively and count and aggregate the number of 

follow-on patents at the paper/year level to measure the rate of inventions in the 

overlapping and non-overlapping areas, respectively. 

Summary statistics of our focal variables included in the analysis are shown in Table 

2-3. FFRDC research papers included in our sample become a basis for 0.5 follow-on 

patents each year on average. Specifically, 0.21 follow-on patents with an overlapping 

subgroup are applied for each year, whereas 0.29 follow-on patents with no overlapping 

subgroups are applied for each year. The panel of papers in our sample spans from 1986 

to 2018. The papers in our study are cited by around 7 academic papers each year. The 

journal impact factor and journal commercialization impact factor of journals in which 

the papers were published are 2.84 and 0.05 on average, respectively. Papers resulting 

from a collaboration with at least one author affiliated with a university account for 47% 

of research papers published by FFRDCs each year, suggesting that FFRDCs in our final 

sample collaborate actively with university scientists. 
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Table 2-3. Summary statistics 

Variables Mean S.D. Min Median Max 

1. Overall follow-on patents 0.5 1.76 0 0 56 

2. Follow-on patents with overlapping subgroups 0.21 0.93 0 0 37 

3. Follow-on patents with  

no overlapping subgroups 
0.29 1.33 0 0 48 

4. Patented 0.5 0.5 0 1 1 

5. Post 0.5 0.5 0 1 1 

6. Forward citation received by research papers 6.96 29.04 0 2 873 

7. FFRDC’s collaboration with universities 0.47 0.12 0.08 0.48 0.74 

8. JIF 2.84 3.24 0 2 49.88 

9. JCIF 0.05 0.06 0 0.03 0.93 

 

2.5.2 Empirical specification 

We used a difference-in-differences estimation to compare the rate of follow-on 

invention of scientific discoveries in federal laboratories for which one of the federal 

scientists is granted a patent and those that are not patented. Because the difference-in-

differences estimation estimates the treatment effect based on the difference in outcomes 

between treatment and counterfactual groups, it alleviates potential endogeneity and 

selection bias problems in the estimation. We estimate the following specification: 

(1) 

where  represents the number of patents applied in year t building on the FFRDC 

research paper i.  and  are the main explanatory variables of interest. 
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 equals one for papers that have been patented by the federal scientist and 

zero otherwise.  equals one for the years after the patent is granted to the federal 

scientist.  captures the effect of patenting by the federal scientist on follow-on 

inventions.  is a set of time-variant control variables that may influence the outcome 

variables. To account for the quality or relevance of the paper in scientific research during 

the year, we control for the number of forward citations received from other scientific 

research published each year. We also include journal impact factors and journal 

commercial impact factors as control variables. Journals are important channels through 

which research papers are distributed; thus, journal effects should be controlled for. 

Finally, we include the extent to which FFRDCs collaborate with universities during the 

year as a control variable. This controls for potentially significant pathways through 

which the FFRDCs’ knowledge spills over in either direct or indirect ways.  

 and  denote a full set of year and scientific field fixed effects, respectively. We 

control for any time-invariant unobserved characteristics of scientific fields as well as for 

scientific field-specific trends by including scientific field-year fixed effects .  

is a full set of US FFRDC fixed effects, which absorb the unobserved characteristics of 

the US FFRDC in which the scientific research was conducted. The inclusion of US 

FFRDC fixed effects mitigates the concern that the effect is driven by FFRDC 

organization-level characteristics. Finally, we include matched research papers fixed 
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effect  to effectively control for unobserved characteristics that the matched research 

papers share. This ensures that our identification comes mainly from variation within the 

matched research papers before and after a patent granted to the federal scientist.  

We estimate the specification using Poisson regression as our main variables are non-

negative and skewed variables. Specifically, we adopt the Poisson pseudo maximum 

likelihood (PPML) regression because it allows zero values to be handled without any 

adjustments, and its estimator is robust to overdispersion (Hausman et al., 1984). In 

addition, the standard errors in PPML are robust to serial correlation, alleviating the 

concerns raised in difference-in-differences estimation with panel data (Azoulay et al., 

2019).  

 

2.6 Results 

2.6.1 Preliminary evidence of the rate of follow-on inventions 

after patenting by federal scientists 

Descriptive statistics of our outcome variables in Table 2-4 show how the rate of 

follow-on inventions based on the federal research changes before and after a patent is 

granted to federal scientists. The change in the rate of follow-on inventions is moderate 

and not statistically significant if we count and aggregate all follow-on inventions based 

on the focal federal research (Panel A, DiD mean = -0.053, p = 0.527). However, this 

change becomes evident when we further separate the follow-on patents into patents with 

and without overlapping subgroups. The follow-on patents with subgroups that overlap 
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with those of the patent filed by the federal scientist decrease after a patent is granted to 

the federal scientist relative to analogous changes observed among counterfactual 

research papers (Panel B, DiD mean = -0.187, p < 0.01). In contrast, follow-on patents 

with no overlapping subgroups increase after a patent is granted to the federal scientists 

compared to the counterfactual research papers (Panel C, DiD mean = 0.133, p < 0.05). 

This provides preliminary evidence for our core results on the effect of patenting related 

to discoveries at federal laboratories. We now turn to a regression framework to estimate 

the effect of patenting by federal scientists. 

 

Table 2-4. Rates of follow-on patents for the patented and comparison discovery 

 Panel A: Follow-on patents Panel B: Follow-on 

patents with overlapping 

subgroups 

Panel C: Follow-on 

patents with no 

overlapping subgroups 

 Before After Diff Before After Diff Before After Diff 

Control 0.365 0.367 0.002 0.027 0.033 0.006 0.337 0.334 -0.003 

Treatment 0.650 0.599 -0.051 0.478 0.297 -0.181 0.172 0.302 0.130 

Diff 0.285 0.232 -0.053 0.451 0.264 -0.187 -0.165 -0.031 0.133 

  

2.6.2 Main effect of patenting by federal scientists 

Table 2-5 and Figure 2-3 show the estimation results on the effect of patenting by 

federal scientists on the follow-on inventions based on a scientific paper of an FFRDC, 
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compared to the counterfactual similar scientific papers that are not patented by the 

federal scientists of the focal discovery. In Table 2-5, models (a) - (i) estimate Equation 

(1) for three different dependent variables that capture the rate of follow-on inventions, 

the count of all follow-on patents (models (a) - (c)), the count of follow-on patents with 

overlapping subgroups (models (d) - (f)), and the count of follow-on patents with no 

overlapping subgroups (models (g) - (i)). Models (a), (d), and (g) include only time-

variant control variables that account for differences at the paper, journal, and FFRDC 

levels. Models (b), (e), and (h) include only the main variables, Patented, Post, and their 

interaction term Patented  Post, while models (c), (f) and (i) are the full models 

containing the main variables, the interaction term, and the control variables. 

In model (c), no significant change in the rate of follow-on invention is found after a 

patent is granted to a federal scientist who participated in the discovery. Rather, an 

intriguing pattern is found when we further separate follow-on inventions into patents that 

are assigned one or more subgroups that overlap with the focal patent granted to the 

federal scientist and patents with no overlapping subgroups. Model (f) shows a stark 

decrease in the rate of follow-on inventions in the overlapping areas, compared to the 

counterfactual scientific papers. This finding is consistent with the view that federal 

scientists with specialized knowledge of the research may preempt the technological 

opportunities when they file a patent relating to their scientific discovery, discouraging 

other inventors from adopting federal science in their inventions. 

Model (i) shows that the relative rate of follow-on inventions with no overlapping 
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subgroups significantly increases after a patent is granted to the federal scientist of the 

focal discovery. In our preferred specification, model (i), the increase is estimated to be 

66%10. This finding of the increased rate of follow-on inventions in non-overlapping 

areas supports the view that a patent filed by federal scientists informs researchers outside 

government laboratories of the existence of the government science and disseminates 

technological information and the potential of the government science to other inventors. 

Figure 2-3 shows the dynamics of the effects of patenting by federal scientists on the 

rate of follow-on inventions with overlapping subgroups and with no overlapping 

subgroups. We interact the treatment effect with a set of indicators for each year relative 

to the grant year of the focal patent filed by the federal scientist of the focal discovery, 

and estimate a full model including all interacted terms. We used the coefficient obtained 

from the estimation for each year relative to the grant year of the focal patent and graphed 

for the rate of follow-on invention with overlapping subgroups and with no overlapping 

subgroups, along with a 95 percent confidence interval for each estimate (Panel A and 

Panel B in Figure 2-3, respectively). The graphs in Figure 2-3 show that the effect sizes 

increase over time. Particularly for the patents with no overlapping subgroups, Panel B in 

Figure 2-3 shows clear evidence that the rate of follow-on patents significantly increases 

after a patent is granted to the federal scientist of the focal discovery, and the increase 

lasts for the next five years, the timeframe that we use for the post-period in the sample.11  

                

10 ( %. 
11 The increase lasts up to the next seven years. See Appendix A1 for a graph with a longer post-period. 
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Table 2-5. Effect of patenting by the federal scientist on follow-on invention 

 DV: Rate of follow-on inventions 

 Follow-on patents Follow-on patents  

with overlapping subgroups 

Follow-on patents  

with no overlapping subgroups 

VARIABLES a b c d e f g h i 

          

Independent variables          

Patented  Post  -0.029 -0.103  -0.714** -0.710**  0.680*** 0.507*** 

  (0.175) (0.175)  (0.291) (0.287)  (0.191) (0.196) 

Patented  0.581** 0.555**  2.913*** 2.848***  -0.700** -0.685*** 

  (0.234) (0.218)  (0.415) (0.406)  (0.278) (0.243) 

Post  -0.113 -0.030  0.181 0.235  -0.240 -0.151 

  (0.153) (0.150)  (0.276) (0.274)  (0.227) (0.222) 

          

Control variables          

Forward citation received  0.008  0.008 0.006*  0.003 0.010**  0.010** 

by research papers (0.006)  (0.006) (0.003)  (0.003) (0.005)  (0.005) 

FFRDC’s collaboration  -1.884*  -1.890* -1.774  -2.005 -2.022  -2.127 

with universities (1.058)  (1.045) (1.378)  (1.406) (1.510)  (1.548) 

JIF 0.005  0.010 -0.021  0.023 0.037  0.035 

 (0.033)  (0.033) (0.028)  (0.040) (0.037)  (0.037) 

JCIF  2.854***  2.414*** 4.051***  2.345*** 1.629  2.001** 

 (0.686)  (0.654) (0.783)  (0.876) (1.023)  (1.019) 

          

Observations 6,939 6,939 6,939 6,939 6,939 6,939 6,939 6,939 6,939 

Number of Matched science pair 331 331 331 331 331 331 331 331 331 

Science Field - Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Note. Standard errors clustered at the matched science-pair level are reported in parentheses. ***, ** and * denote a 

significance level of 1%, 5%, and 10%, respectively. 
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Panel A. Follow-on patents with overlapping subgroups 

 

Panel B. Follow-on patents with no overlapping subgroups 

 

Figure 2-3. Effect of patenting by federal scientist on follow-on inventions 
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Further, as an ex-post validation of our identification strategy, the graphs in Figure 2-3 suggest that 

DiD estimators are not significantly different from zero before a patent is granted to the federal 

scientist of the focal discovery. 

 

2.6.3 Characteristics of follow-on inventions based on federal 

science 

In the remainder of the manuscript, we attempt to uncover the characteristics of the 

follow-on inventions based on federal science after a patent is granted to the federal 

scientist of the focal discovery. As we find in the previous section, follow-on inventions 

mainly decrease in the overlapping area and increase in non-overlapping areas. Thus, we 

focus on follow-on patents with no overlapping subgroups and exclude all patents that are 

assigned one or more overlapping subgroups with the focal patent filed by the federal 

scientist when counting patents for the dependent variables below. 

Impact of follow-on inventions. —We first seek to uncover how patenting by the 

federal scientist affects the quality aspect of the follow-on inventions and infer the 

research direction of the follow-on inventions from the results. To do so, we follow recent 

studies that consider the distribution of forward citations received in analyzing the impact 

of patent or publication outcomes and provide nuanced details on whether follow-on 

patents are incremental or risk-taking inventions (e.g., Balsmeier et al., 2017; Azoulay et 

al., 2019). We split the follow-on patents into five exclusive bins based on the distribution 

of total forward citation counts among all science-based US patents and count the patents 
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to measure the five outcome variables12: (1) the number of patents that fall into the 

bottom quintile of the forward citation distribution as well as failed patents with no 

forward citations; (2) the number of patents that fall into the second quintile; (3) the 

number of patents that fall into the third quintile; (4) the number of patents that fall into 

the fourth quintile; and (5) the number of patents that constitute the highest quintile. 

Models (a) – (e) in Table 2-6 report the estimation results for each outcome variable. We 

find that patenting by federal scientists significantly increases the number of follow-on 

patents that fall into the highest quintile as well as patents that failed or fall into the 

bottom quintile, while no evidence is found with regard to the number of follow-on 

patents that fall into the 2nd to 4th quintiles. We further separate the highest quintile into 

(6) patents that fall between the 80th and 90th percentile and (7) patents above the 90th 

percentile, for which models (f) and (g) in Table 5 report the estimation results. We find a 

significant change in the number of follow-on patents that fall between the 80th and 90th 

percentiles. If we consider patents that fall into the highest and lowest quintiles as risk-

taking inventions following Balsmeier et al. (2017), we can interpret these results as 

indicating that patents filed by federal scientists mainly influence risk-taking type of 

inventions rather than the incremental type of inventions. 

                

12 We present the results when we use the distribution within each CPC group and application year. We also 

find consistent results when we use distribution at a coarsened level, e.g., distribution within each CPC 

subsection and application year. 
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Table 2-6. Impact of follow-on inventions 

 Long run citation quintile 

 Failed 

and 

Bottom 

quintile 

2nd 

quintile 

3rd 

quintile 

4th 

quintile 

5th 

quintile 

Btw. 80th 

to 90th 

percentile 

Above 

90th 

percentile 

 a b c d e f g 

        

Patented  Post 0.689** 0.647 0.608 0.286 0.557** 0.740** 0.408 

 (0.308) (0.504) (0.395) (0.318) (0.245) (0.337) (0.322) 

        

Observations 6,939 6,939 6,939 6,939 6,939 6,939 6,939 

Number of Matched 

science pair 

331 331 331 331 331 331 331 

        

Other controls Yes Yes Yes Yes Yes Yes Yes 

Science Field-Year FE Yes Yes Yes Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes Yes Yes Yes 

Note. All regressions include independent terms of Patented and Post as well as all other controls. Standard errors clustered 

at the matched science-pair level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, and 10%, 

respectively. 

 

Novelty and originality of follow-on inventions. —We turn to see how patenting by 

the federal scientist of the focal discovery is linked to the novelty or originality of follow-

on inventions. Along with the impact of an invention, novelty and originality are key 

dimensions that determine an invention’s quality (Arts & Fleming, 2018; Jung and Lee, 

2016). To capture the novelty of each follow-on patent, we used pairwise subgroup 
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recombination following the existing literature (Arts & Fleming, 2018; Jung & Lee, 2016; 

Uzzi et al., 2013). We separated follow-on patents into two exclusive bins: (1) patents 

containing at least one pairwise subgroup recombination that had not previously existed 

among science-based patents in the USPTO database and (2) patents without such 

pairwise subgroup recombination. Models (a) and (b) in Panel A of Table 2-7 report the 

estimation results for the outcome variables. They suggest that patenting by federal 

scientists increases follow-on inventions both with and without novel recombination, but 

their effect sizes are not significantly different. Models (c) and (d) in Panel A of Table 2-7 

report the results from the same estimation but consider the first appearance of pairwise 

subgroup recombination among all patents in the USPTO database rather than simply the 

science-based patents. We find similar results here, suggesting that the effect of patenting 

by federal scientists does not differ based on the novelty of follow-on inventions. 

To measure the level of originality of each follow-on patent, we adopt the originality 

measurement based on the Herfindahl-Hirschman Index (HHI) following Hall, Jaffe, and 

Trajtenberg (2001). Referring to the backward citations that each patent made to the prior 

art, we calculate the originality of each patent using the following equation: , 

where  represents the share of each CPC group  out of all CPC groups assigned to 

the cited patents, and  represents the number of unique CPC groups assigned to the 

cited patents. We then split the follow-on patents based on the median value of originality 

based on the distribution of all science-based US patents. Models (a) and (b) in Panel B 
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of Table 2-7 report the results for follow-on patents with above median and below median 

originality, respectively. We find a positive and significant effect of patenting by federal 

scientists on follow-on patents with above-median originality, whereas no evidence is 

found for any changes in the number of follow-on patents with below-median originality. 

We also find consistent results in models (c) and (d), where we split the follow-on patents 

using the median value of originality based on the distribution of patents applied in the 

same year only. This can be interpreted as indicating that the increase in follow-on 

inventions following patents granted to federal scientists is mainly attributable to patents 

with a high level of originality. 
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Table 2-7. Novelty and originality of follow-on inventions 

 New-to-the-world subgroup 

recombination  

(among science-based patents) 

New-to-the-world subgroup 

recombination 

 

 Patents with 

novel 

recombination 

Patents without 

novel 

recombination 

Patents with 

novel 

recombination 

Patents without 

novel 

recombination 

 a b c d 

Panel A: Novelty     

Patented  Post 0.498** 0.593*** 0.468* 0.623*** 

 (0.253) (0.214) (0.258) (0.219) 

 Originality based in HHI 

(Median split using distribution of 

overall patents) 

Originality based in HHI (Median 

split using distribution of patents 

applied in the year) 

 Patents with 

above-median 

originality 

Patents with 

below-median 

originality 

Patents with 

above-median 

originality 

Patents with 

below-median 

originality 

 a b c d 

Panel B: Originality     

Patented  Post 0.443** 0.171 0.427** 0.221 

 (0.204) (0.280) (0.203) (0.278) 

     

Observations 6,939 6,939 6,939 6,939 

Number of Matched science pair 331 331 331 331 

Other controls Yes Yes Yes Yes 

Science Field-Year FE Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes 

Note. All regressions include independent terms of Patented and Post as well as all other controls. Standard errors clustered 

at the matched science-pair level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, and 10%, 

respectively. 
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2.6.4 Proximity of knowledge adopters 

In the previous sections, we demonstrate how patenting by federal scientists changes 

the rate of follow-on inventions as well as how it affects the detailed characteristics of 

follow-on inventions. Considering the aspect of knowledge adopters, that is, scientists or 

inventors who apply the focal federal science in their inventions, we examine how the 

effect of patenting by federal scientists differs depending on the proximity of the 

knowledge adopters to the focal federal science. Here, we examine three aspects of 

proximity: geographical proximity, technological proximity, and scientific intellectual 

proximity. Because patents may have multiple inventors, we consider the information of 

all inventors involved in each patent when we capture the proximity of knowledge 

adopters to the focal federal science.  

To examine geographical proximity, we use the boundaries of states in the United 

States and separate between (1) follow-on patents applied for by inventors in the same 

state as the state of the FFRDC from which the focal discovery originated and (2) follow-

on patents applied by inventors in different states. Models (a) and (b) in Table 2-8 report 

the estimation results, showing that patenting by federal scientists significantly increases 

the rate of follow-on inventions by inventors located in different states, while it does not 

have a significant effect on inventors in the same state. This finding is consistent with our 

conceptual discussion that patenting by federal scientists helps diffuse information on the 

focal discovery to inventors that otherwise may not be able to access such knowledge 
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from federal laboratories; specifically, it supports the role of patenting in knowledge 

diffusion across geographical boundaries. 

For technological proximity, we compared the set of subgroups in which inventors’ 

previous patents were assigned with the focal patent granted to the federal scientists. We 

separate between (1) follow-on patents applied for by inventors with overlapping 

subgroups in their previous patents and (2) follow-on patents applied for by inventors 

with no overlapping subgroups in their previous patents. Models (c) and (d) in Table 2-8 

report the results. Similar to the results on geographical proximity, these results show that 

patenting by federal scientists significantly increases the rate of follow-on inventions by 

inventors with no overlapping subgroups but not inventions by inventors with 

overlapping subgroups. This finding supports the role of patenting by federal scientists in 

knowledge diffusion, particularly, across technological boundaries. 

We also examine the proximity in the scientific intellectual background of inventors, 

as compared to the focal discovery (models (e) to (f) in Table 2-8) or the FFRDC from 

which focal discovery originates (models (g) to (h) in Table 2-8). We capture inventors’ 

scientific intellectual background using narrowly defined scientific fields (i.e., MAG 

field) of papers that their previous patents build upon, and compare them to the scientific 

field of the focal discovery or all scientific fields in which the FFRDC has publications. 

We find that the effect of patenting by federal scientists is significant for follow-on 

inventions regardless of the proximity in scientific intellectual background and that the 

effect sizes are not significantly different. 
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Table 2-8. Proximity of knowledge adopters 

 Geographical proximity Technological Intellectual 

proximity  

to the focal patent 

 Inventor team 

located in the 

same state 

Inventor team 

located in 

different states 

Inventor team 

with 

overlapping  

tech background 

Inventor team 

with no 

overlapping 

tech background 

 a b c d 

Patented  Post 0.048 0.583*** 0.158 0.489* 

 (0.270) (0.212) (0.298) (0.250) 

 Scientific Intellectual proximity  

to the focal discovery   

Scientific Intellectual proximity  

to the focal FFRDC  

 Inventor team 

with 

overlapping 

scientific 

background 

Inventor team 

with no 

overlapping 

scientific 

background 

Inventor team 

with 

overlapping 

scientific 

background 

Inventor team 

with no 

overlapping 

scientific 

background 

 e f g h 

Patented  Post 0.487* 0.474** 0.417* 0.800** 

 (0.256) (0.221) (0.219) (0.318) 

     

Observations 6,939 6,939 6,939 6,939 

Number of Matched science pair 331 331 331 331 

Other controls Yes Yes Yes Yes 

Science Field-Year FE Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes 

Note. All regressions include independent terms of Patented and Post as well as all other controls. Standard errors clustered 

at the matched science-pair level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, and 10%, 

respectively. 
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2.6.5 Heterogeneous effect of patenting by federal scientists 

We now turn to uncovering the heterogeneous effect of patenting by federal scientists 

along a number of dimensions with regard to federal scientists and scientific fields. First, 

we test whether the patenting effect differs by the extent to which federal scientists have 

established social networks with other scientists. To measure the social networks of 

federal scientists, we count the number of unique co-authors with whom federal scientists 

have collaborated up to ten years prior to the publication year of the focal discovery. 

Models (a) and (b) in Table 2-9 report the results for estimation using samples below and 

above the median value of the social networks of federal scientists. We find evidence for 

follow-on inventions increases for the samples below the median, whereas no evidence is 

found for the samples above the median. This is consistent with our expectation because 

the role of patents filed by federal scientists is amplified when detailed technological 

information is hardly available otherwise. If federal scientists are already well connected 

with other scientists, tacit knowledge around the discovery is more likely to be transferred 

via social networks, diluting the effect of patenting by federal scientists. 

We then uncover how the effect of patenting by federal scientists differs according to 

the characteristics of each field. Specifically, we examine the extent to which research 

from industrial laboratories (models (c) and (d) in Table 2-9) or government laboratories 

(models (e) and (f) in Table 2-9) accounts for the research activities in the field. These 

estimations are motivated by the idea that scientific fields with which industrial 

laboratories are not familiar require further guidance to adopt and apply the discoveries 
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from federal laboratories to their technological inventions.  

To capture the contribution of industrial and government laboratories in each 

scientific field, we used the MAG field classification and separately calculated the share 

of scientific papers that originated from industrial and government laboratories for each 

field. First, the origin of science was extrapolated based on author affiliation information 

provided by the MAG database. We developed a rule-based text-matching algorithm to 

classify affiliation types using raw strings provided by the MAG database (see Appendix 

A1 for details). Papers were classified as science originating in an industrial (government) 

laboratory if our algorithm identified one of the authors as affiliated with an industrial 

(government) laboratory. Then, we grouped these science papers by the MAG science 

field classification and each decade13, then we calculated the proportion of papers 

originating in industrial (government) laboratories. The overall average share of papers 

from industrial laboratories is 6.3%, and that of paper from government laboratories is 

17.7% for the fields included in our sample.  

Models (c) and (d) in Table 8 report estimations with samples split based on the 

median value of the share of research from industrial laboratories. Models (e) and (f) in 

Table 2-9 report estimations with samples split based on the median value of the share of 

research from government laboratories. The results show that the rate of follow-on 

inventions increases following patents filed by federal scientists if the scientific area is 

not familiar among industrial laboratories. Again, this supports our logic that patenting by 
                

13 Since the MAG field is a fine-grained classification based on the keywords, many fields scarce papers to 

calculate the contributions by industrial and government laboratories if we calculate the contributions for 

each year. This led us to aggregate the papers by each decade.  
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federal scientists benefits other inventors, especially in the industry, by providing 

technological information to those who are not familiar with the scientific field.  

 

Table 2-9. Heterogeneous effect of patenting by the federal scientists 

Note. All regressions include independent terms of Patented and Post as well as all other controls. Standard errors clustered 

at the matched science-pair level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, and 10%, 

respectively. 

 

 

 

 Social network with 

other scientists 

Share of scientific 

research from 

industrial research 

Share of scientific 

research from 

government 

laboratories 

 Below 

median 

Above 

median 

Below 

median 

Above 

median 

Below 

median 

Above 

median 

 a b c d e f 

       

Patented  Post 0.511** 0.416 1.002*** -0.124 0.254 0.200 

 (0.238) (0.266) (0.230) (0.242) (0.344) (0.225) 

       

Observations 3,452 3,487 3,456 3,483 3,466 3,473 

Number of Matched science pair 232 236 255 264 268 267 

       

Other controls Yes Yes Yes Yes Yes Yes 

Science Field-Year FE Yes Yes Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes Yes Yes 
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2.6.6 Placebo tests 

To further enhance the robustness of our results, we ran two placebo tests. Models (a) 

and (b) in Table 2-10 present the results from the estimation in which we include only 

papers for which the first patent built on the paper was not applied for by (model (a) in 

Table 2-10) or not granted to (model (b) in Table 2-10) one of the federal scientists who 

participated in the process of the respective scientific research. No evidence was found on 

the effect of patenting by federal scientists from these estimations. This alludes that 

providing guidance and information regarding the discovery in federal laboratories is 

among the key mechanisms by which patenting by federal scientists affects follow-on 

inventions, and such an effect is valid only when one of the federal scientists who 

actually participated in the scientific research at the federal laboratory files a patent 

related to the discovery. Models (c), (d), and (e) in Table 2-10 report the estimation of 

overall follow-on scientific research, only follow-on scientific research published in the 

same field, and only follow-on scientific research published in different fields, 

respectively. Similar to follow-on inventions, we used paper-to-paper citation data to 

capture follow-on scientific research that cites the focal paper in our sample. As discussed 

above, a patent filed by federal scientists either preempts technological opportunities or 

provides information on technological potential to subsequent inventions. However, this 

should matter only for technological applications and not for scientific research activities. 

Consistent with this logic, we find no evidence that patenting by federal scientists 

influences follow-on scientific research or its direction. 
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Table 2-10. Placebo tests 

Note. All regressions include independent terms of Patented and Post as well as all other controls. Standard errors clustered 

at the matched science-pair level are reported in parentheses. ***, ** and * denote a significance level of 1%, 5%, and 10%, 

respectively. 

 

 

2.7 Discussion and Conclusion 

By uncovering the effect of a patent filed by government scientists on follow-on 

inventions, this study makes several contributions to three different areas of research. 

First, it contributes to the literature on government laboratories by advancing the 

understanding of the dissemination of scientific knowledge from those laboratories. 

 Effect of patenting by other scientists Follow-on scientific research 

 Exclude papers 

that the first 

patents applied for 

by the author 

Exclude papers 

that the first 

patents granted to 

the author 

Overall Same 

field 

Different 

field 

 a b c d e 

      

Patented  Post 0.046 0.231 0.090 0.158 0.071 

 (0.227) (0.276) (0.066) (0.145) (0.064) 

      

Observations 3,397 3,582 6,939 6,939 6,939 

Number of Matched science 

pair 

289 289 331 331 331 

      

Other controls Yes Yes Yes Yes Yes 

Science Field-Year FE Yes Yes Yes Yes Yes 

FFRDC FE Yes Yes Yes Yes Yes 

Matched science pair FE Yes Yes Yes Yes Yes 
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Extending prior studies focused on the full use of scientific knowledge or technology 

transfer from government laboratories via various channels (see Section 2 for a detailed 

literature review), the findings of this study suggest patent protection as a significant 

institutional means that influences the dissemination of government science. Specifically, 

the study shows how filing a patent on a scientific discovery in a government laboratory 

may assuage the distinctive characteristics of scientific research in government 

laboratories, that is, the idiosyncrasy of scientific knowledge and information inadequacy 

to outside researchers, which otherwise may act as a barrier for other inventors when 

attempting to adopt government science. This adds detailed nuance regarding how 

government laboratories can create broader societal impact with their scientific 

discoveries, which recent studies in the field suggest as an important mission of 

government laboratories (e.g., Bozeman et al., 2015; Fini et al., 2018)  

Second, the study advances the literature on patent protection by adding empirical 

evidence on how filing a patent on a scientific discovery affects follow-on inventions. 

Our results suggest that the double-sided effects of patent protection, that is, preemption 

of technological opportunity vs. disclosure of technological information to the public (see 

Section 2 for a detailed literature review), also apply to the patents filed on government 

science. While follow-on inventions decrease in the overlapping areas due to the 

preemption of the key opportunity related to government science by the focal patent, they 

increase in the non-overlapping areas as the focal patent provides guidance on 

technological application or the potential of government science. We add empirical 
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evidence of the patent effect to the literature, specifically focusing on scientific 

knowledge discovered in government laboratories.  

Third, this study contributes to the literature on the relationship between science and 

technology. Extending prior studies that emphasize science as a key source of 

technological innovation (see Section 2 for a detailed literature review), this study 

uncovers the underlying mechanism by which science in government laboratories is 

adopted and applied to follow-on inventions. In particular, it provides empirical evidence 

on how a patent filed by government scientists influences risk-taking and original follow-

on inventions. In addition to prior studies that suggest how science contributes to 

technological inventions (e.g., seminal study, Fleming and Sorenson (2004)), this finding 

suggests that the filing of patents related to a scientific discovery by the scientist who 

participated in the discovery may facilitate the full use of the focal scientific knowledge 

in its application to follow-on technological inventions. 

Along with the contributions to the academic literature, the findings of the study 

suggest invaluable policy implications. Policymakers should be aware of the double-sided 

effects of a patent filed by government scientists when designing policies that regulate 

government laboratories and scientists. Our findings demonstrate that a patent filed by 

government scientists leads to a decrease in follow-on inventions in overlapping areas, 

while it increases follow-on inventions in non-overlapping areas. Moreover, a patent filed 

by government scientists increases follow-on inventions characterized by risk-taking and 

high originality, and it benefits inventors who are not (geographically or technologically) 
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close to government science. Policymakers may exploit such findings and implement 

patent policies according to their strategic needs. For instance, policymakers often want 

to make improvements in particular technological areas for a national good, such as the 

United States Innovation and Competition Act of 2021, where US policymakers 

strategically aim to foster basic and applied technology research in certain strategic areas, 

such as artificial intelligence, semiconductors, and biotechnology. In such cases, scientific 

research conducted by government laboratories with relevant capabilities may become 

crucial ground for follow-on inventions in industrial research. Thus, policymakers can 

implement patent policy accordingly, that is, either encourage or discourage patenting on 

government science, considering the potential overlap in technological fields with follow-

on inventions in areas in which policymakers are willing to improve, thereby reducing 

any friction caused by the patents of government scientists and leveraging the benefit of 

technological information provided by the patents. 

The findings suggest that policymakers should not only leverage patents but also 

implement other means to increase the use of government science. A patent filed by 

government scientists increases the adoption of government science by inventors located 

in distant areas in terms of geographical and technological proximity. In addition, it has 

been found to increase the follow-on inventions when the government scientists of 

discovery have fewer social connections to other scientists as well as when industrial 

laboratories are less familiar with the focal scientific field. That is, technological 

information disclosed to the public via patents facilitates the follow-on use of government 
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science by other inventors whose access to the focal government science would otherwise 

be limited. On the other hand, the results show no evidence of the patent effect for closely 

located inventors, socially well-connected scientists, and fields already familiar to 

industrial laboratories. This alludes to the importance of opportunities to establish social 

networks as well as to share internal knowledge of government laboratories with 

inventors in the industry, suggesting that policymakers should devise and implement 

other means to increase interaction between government scientists and industrial 

laboratories.  

The findings of the study can be used to motivate government scientists to strive in 

their scientific research and to file patents related to their discoveries in government 

laboratories. Filing a patent itself benefits government scientists by allowing them to 

receive royalties on their inventions when their patented inventions are used in any 

subsequent inventions or product development. However, in addition to financial rewards, 

government scientists may also be motivated by how their research in government 

laboratories could be used and how it can have a broader impact on technological 

advancement or any practical uses. This is important because government scientists often 

face a sizable chasm between scientific research and technological applications. 

Combined with the nature of research projects in government laboratories that involve 

long-term investment, an unclear path forward may lead government scientists to become 

doubtful about their research conducted in government laboratories. The study provides 

important evidence that their scientific discovery indeed influences follow-on 
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technological inventions, especially when it is patented, thereby encouraging research in 

government laboratories.  

Finally, this study also provides timely and essential implications for the industrial 

landscape of the current era. Scientific or technological areas, such as space exploration, 

energy, and nuclear power, have been deemed as areas in which only government 

laboratories control all roles from basic research to the implementation of the relevant 

science for practical use. However, as many firms in the private sector diversify their 

business and startups jump into such fields, the role of commercialization or 

implementation for practical use is shifting toward the private sector. Taking the example 

of the space industry, Space Exploration Technologies Corp. (SpaceX) strives to develop 

spaceships operating with a recyclable rocket booster14, and Blue Origin recently carried 

out a successful launch of their spaceship15, opening the door for the possibility of space 

tourism. In the energy sector, incumbent firms or startups attempt to develop technologies 

to replace traditional sources of energy with clean energy. For instance, TAE 

Technologies Inc. and General Fusion Inc., which are backed by Google16 and Jeff Bezos 

from Amazon.com, Inc.17, respectively, strive to develop nuclear fusion technologies and 

turn them into viable energy sources.  

While such a shift is occurring in the industrial landscape, government laboratories 

                

14 https://www.reuters.com/article/us-space-spacex-launch-idUSKBN1711JY 
15 https://www.reuters.com/technology/jeff-bezos-worlds-richest-man-set-inaugural-space-voyage-2021-07-

20/ 
16 https://www.reuters.com/technology/google-backed-nuclear-energy-firm-tae-technologies-raises-280-mln-

2021-04-08/ 
17 https://www.bbc.com/news/science-environment-57512229 
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and industrial firms may complement each other. A recent study by Arora et al. (2018) 

provides empirical evidence that industrial firms reduce scientific research and rely 

instead on scientific knowledge from external sources (Arora et al., 2018). Thus, 

scientific research in government laboratories equipped with relevant capabilities is 

imperative to boost advancement in such areas. This calls for the establishment of a 

structure that facilitates knowledge or technology transfer from government laboratories 

to industrial firms to create synergy between organizations. Although this study provides 

only evidence on the diffusion of scientific knowledge facilitated through patents filed by 

government scientists, it sheds light on how scientific knowledge of government 

laboratories is diffused and who may benefit from it. Further investigation on various 

determinants or conduits that facilitate the diffusion of government science is warranted 

in future research to establish such complementary structures. 
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Chapter 3. Demographics and geographical 

mobility of inventors18 

3.1 Introduction 

The geographical mobility of inventors has received attention in the literature on 

inventor mobility. As inventors are key micro-level human capital for innovation 

(Fleming et al., 2007; Gruber et al., 2013), their mobility directly influences the number 

of inventions created in both departed and arrival regions (Breschi et al., 2017). In 

addition to inventions created by mobile inventors, scholars argue that mobile inventors 

facilitate knowledge transfer and spillover (Rosenkopf & Almeida, 2003; Oettl & 

Agrawal, 2008) and network creation, e.g., co-invention networking (Breschi & Lissoni, 

2009) or firm-level alliances (Wagner & Goossen, 2018), between two departed and 

arrival regions. 

Despite implications of the geographical mobility of inventors, causes of their 

geographical mobility have been less explored. Several studies suggest regional-level 

constraining or facilitating factors leading to geographical mobility of inventors between 

regions. For instance, Marx et al. (2015), from the employment policy aspect, suggests 

that the enforcement of non-compete agreements of a state makes inventors more likely to 

leave the state and migrate to other states that limit the enforcement of non-compete 

agreements. Taxation is also argued to be a significant dimension that causes the 

                

18 The results of this chapter support the validity of the instrument variable used in the study included in 

chapter four. Some results are included in the appendix or footnote of the study. 
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emigration of knowledge workers, both inventors (Akcigit et al., 2016) and scientists 

(Moretti & Wilson, 2017). Another study in finance suggests that the banking 

deregulation of the source state also drives inter-state mobility of inventors (Hombert & 

Matray, 2017). These studies mostly exploit regional-level regulation or policy changes 

and suggest factors of inventors’ geographical mobility from regulatory or policy aspects, 

remaining individual-specific determinants underexamined. 

In this study, we investigate the link between historical surname distribution and 

inventors’ geographical mobility, thereby suggesting a demographic factor of the 

geographical mobility of inventors. Given the widely accepted transmission rules (Piazza 

et al., 1987; Rossi, 2013) and surname diversity (3,364,157 unique surnames appear in 

1940 US census data), demographics on surnames are adopted in a variety of studies, 

such as research on migration of people, social network and mobility. Piazza et al. (1987) 

track migration rates of human populations using surname distribution in Italy. Degioanni 

and Darlu (2001) attempt to infer geographical origin of migrants in a given area using 

surnames. Darlu et al. (2011) show that surname distribution can be used to estimate 

people’s mobility using the example of Savoy, France. Studies also use surnames to 

investigate social mobility, e.g., whether social status changes over centuries (Clark & 

Cummins, 2014) and whether wealth moves over generations (Clark & Cummins, 2015). 

In a recent study, Grilli and Allesina (2017) perform a surname analysis on academic 

professors to uncover and compare patterns in each academic system of the US, France, 

and Italy. Following these studies, we exploit inventors’ surname information to test the 
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relationship between historical surname distribution and inventors’ geographical mobility. 

We show that the historical share of the same surname in a given location is negatively 

associated with the inventor’s emigration from the location. The essence of our argument 

is that inventors are more likely to stay in a region wherein more of their families and 

relatives have resided. 

We uncover the relationship between historical surname distribution and geographical 

mobility of inventors in the US. This demonstrates that inventors are less likely to 

emigrate a given county when a higher historic share of individuals with the same 

surname resided in the given county. Depending on the three specific variables of 

emigration, our results find that a 100 percent increase in historical surname share leads 

to a 0.47 percentage-point decrease, a 0.41 percentage-point decrease, a 3.2 percent 

decrease in the probability of leaving the county, the state, and in the emigration distance 

of mobility, respectively.  

Several additional analyses are performed to raise the robustness of the results and 

suggest conditions wherein the historical surname effects are moderated or lose 

significance. Our results reveal that surname effect is amplified as the average value of 

the house owned by individuals with the same surname in the county increases, as the 

foreign-born ratio of individuals with the same surname in the county decreases, or when 

the inventor resides in a state that enforces non-compete agreements. We find no evidence 

that the surname effects are susceptible to invention-related inventor characteristics, such 

as invention productivity, quality, or length of invention experience. Results from an 
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alternative way of testing the surname effect, i.e., using distance to geographical centroid 

of the surname, complement the results of the main analyses. A few placebo and 

robustness tests increase the confidence of the surname effect in predicting inventors’ 

geographical mobility. 

The study establishes the relationship between historical surname distribution and the 

geographical mobility of inventors in the US. Although the effect sizes are not large, 

systematic analyses of this study help us understand how the geographical mobility of 

inventors are, in part, determined by the historical share of the same surname in a given 

location. This study provides a useful and generalizable instrumental variable that can be 

used to correct for endogeneity in estimating the effect of the geographical mobility of 

inventors, thereby facilitating research on the implications of the geographical mobility of 

inventors. 

 

3.2 Data and Methodology 

3.2.1 Inventor data from USPTO patent data 

To track inventors’ geographical mobility, this study utilizes patent data from the 

United States Patent and Trademark Office database. Owing to the disambiguation efforts 

of prior researchers (e.g., Li et al., 2014), USPTO patents allow identification of 

individual inventors who applied and granted at least one or more patents and their 

geographical location with longitude and latitude information. Notably, full names are 

available for most inventors of granted patents, allowing us to use the surname 
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information to calculate our focal surname variables for each inventor. Moreover, detailed 

information on every patent, such as application and grant dates, prior arts, technological 

classifications, as well as on each inventor, such as gender, are available, thereby 

allowing to capture various aspects of inventor individuals and have detailed 

investigation considering the characteristics of inventor individuals. The USPTO patent 

database provides such information on hundreds of thousands of inventors since 1975. 

Due to these merits of USPTO patent data, studies on inventor mobility often utilize the 

patent data to track inventor mobility and examine its causes or consequences (e.g., 

Hombert & Matray, 2017; Marx et al., 2015). 

In this study, we use all inventors in granted patents applied between 1990 and 2010 

as our initial sample. We include only inventors who have applied USPTO patents within 

the US for at least once, as we confined our exploratory surname variables to within-US 

geographical locations. We also restricted our sample to inventors with at least two 

patents, as we observed the mobility of an inventor using subsequent patents of the same 

inventor (Cappelli et al., 2019; Arts & Fleming, 2018). This leaves us with 558,227 

unique inventors. We then track the geographical location histories of inventors using all 

granted USPTO patents applied between 1990 and 2013. Using application year of each 

patent and geographic location, we establish the location histories of each inventor for 

each year between the first and last patents applied by each inventor. As capturing the 

exact time that an inventor moves one location to the next location is impossible, we use 

the midpoint of the time window between the application years of two consecutive 
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patents of an inventor with different geographic location information (Hombert & Matray, 

2017; Marx et al., 2015). To deal with noise in location information and some prolific 

inventors for a given year, we use the most frequent geographic location wherein the 

inventor applies patents during the year and keep one observation per inventor-year-

location. Finally, considering that 1940 Census data does not provide information on 

foreign countries, Alaska, Hawaii, and US territories in the Caribbean Sea and the Pacific 

Ocean, we exclude inventor-year observations that inventors are located in those 

locations. Thus, the sample includes only inventor-year-location observations at risk of 

geographical mobility and is able to measure the historical surname share based on the 

1940 Census data coverage. The final sample includes 4,436,218 inventor-year 

observations. 

 

3.2.2 Variables 

3.2.2.1 Dependent variable 

To examine geographical mobility of inventors in detail, we measure an inventor’s 

emigration from a given county in three ways. The first and second dependent variables, 

Inter-county mobility and Inter-state mobility, are dichotomous variables we assign 1 if 

the inventor’s geographical location, i.e., county and state, respectively, changes in the 

following year (t+1) and otherwise 0. The third dependent variable, Distance to move-to 

county, is the distance between move-from and move-to counties. This variable weighs 

the mobility variable using movement distance. To reduce skewness of the variable and 
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help interpret the results, we take the natural log of Distance to move-to county. 

 

3.2.2.2 Independent variable 

Historical surname share, our independent variable, is the share of individuals with 

the same surname residing in a given county based on 1940 Census data. For instance, 

there were a total nine “Balsmeier”s in the 1940 Census data, and two of them resided in 

Sacramento county, California, which account for 22.2% of all “Balsmeier”s. Inventors 

whose surname is “Balsmeier” get the value 0.222 for this historical surname share 

variable if they reside in Sacramento county, California. For analyses, we convert the 

share values to percent values by multiplying one hundred and taking a natural log to 

reduce variable skewness and help interpret the results.  

 

3.2.2.3 Control variables 

We include several control variables at the inventor’s individual level to control for 

heterogeneity of inventor individual-level characteristics. Invention experience is 

measured by the number of years elapsed since the year the inventor applied for their first 

patent (Arts & Fleming, 2018; Conti et al., 2014). Invention productivity is the number of 

granted patents the inventor applied for between t-4 and t years (Conti et al., 2014; Hoisl, 

2007). Time spent in the county variable is included to control for the time the inventor 

spent in the current county. This is calculated using the number of years after the 

inventor’s first arrival in the current county. Cumulative count of mobility variable is 
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included to control for the geographical mobility tendency of the inventor (Hoisl, 2009). 

This is the cumulative count of the inter-county movements of the inventor. To control for 

the technological diversity of the inventor’s invention portfolio, we include Technological 

diversity variable by measuring the number of unique CPC groups assigned to inventors’ 

patents applied between t-4 and t years. Invention quality is the number of forward 

citations received during the time window between t+1 and t+3 years for patents applied 

between t-4 and t years (Akcigit et al., 2016; Palomeras & Melero, 2010). Technological 

field variable controls the technological fields wherein the inventor is active. As inventors 

with multiple inventions have multiple CPC groups in their invention portfolio, we 

construct a continuous variable to control for technological field heterogeneity of 

inventors, using the first component values from the Principle component analysis (PCA). 

To reflect the importance of a technological field to the inventor, we apply the term 

frequency-inverse document frequency (TF-IDF) weighting to all CPC groups or patent 

types assigned to each inventor’s patents applied between t-4 and t years. We then 

perform PCA and take the first component values, which assign a similar value to 

inventors with highly related CPC groups by occurrence (El Ghaoui et al., 2013). When 

no CPC groups are assigned to the inventor between t-4 and t years, we use the average 

technological field value of the inventor. 

 

3.2.2.4 Econometric model specification 

Our baseline specification is as follows: 
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 (1) 

where is the outcome variable, i.e., inter-county mobility, inter-state mobility, and 

distance to move-on county, in inventor i, county j, and year t. 

 is the historical share of the same surname of the inventor i 

in the county j.  denotes county fixed effects that control for time-invariant unobserved 

county characteristics.  denotes year fixed effects that account for varying 

macroeconomic conditions. The parameter of interest is . It measures the effect of the 

historical share of the same surname on the likelihood of inventor emigration from the 

location. We estimate above specification using OLS. We clustered the standard errors by 

the inventors to account for repeated observations of inventor individuals. 

 

3.3 Result 

Table 3-1 presents the summary statistics of the variables included in the analyses. 

Table 3-2 presents a set of specifications that model geographical inventor mobility. All 

models include year and county fixed effects. Model 1 predicts the probability of the 

inter-county geographical mobility. Model 2 predicts the probability of inter-state 

geographical mobility. Model 3 predicts the distance of geographical mobility. 
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Table 3-1. Summary statistics and correlations for the main variables in the analyses 
 

Mean Std. Dev. Min Max 

1. Inter-county mobility 0.050 0.219 0 1 

2. Inter-state mobility 0.032 0.177 0 1 

3. Log(Mobility distance) 0.307 1.407 0 8.974 

4. Log(Historical surname 

share %) 

0.216 0.544 0 4.615 

5. Invention experience 7.637 7.253368 0 39 

6. Invention productivity 3.340 6.549 0 935 

7. Time spent in the county 4.521 4.514 0 25 

8. Cumulative count of mobility 0.313 0.806 0 21 

9. Technological diversity 2.815 2.864 0 213 

10. Invention quality 13.701 77.079 0 57985 

Note. The sample includes 4,436,218 inventor-year observations 

 

 

Regressing the historical share of the same surname in a given county on geographical 

mobility, i.e., inter-county mobility, inter-state mobility, distance of mobility, we find a 

consistent pattern wherein the historical surname share decreases the probability of 

emigration of an inventor. Specifically, a 100 percent increase in historical surname share 

leads to 0.47 percentage-point, 0.41 percentage-point, and a 3.2 percent decrease in the 

probability of leaving the county, the state, and the distance of mobility, respectively. A 

3.2 percent decrease in the distance of mobility corresponds to an absolute decrease of 

2.96 miles of movement. The results are robust to a variety of control and fixed effects 

estimations. 

 



74 
 

 

Table 3-2. The effect of historical surname share on inventor emigration 

 (1) (2) (3) 

 Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Log(Historical surname share %) -0.00473*** -0.00410*** -0.0316*** 

 (0.000285) (0.000306) (0.00253) 

Invention experience -0.000461*** -0.000218*** -0.00266*** 

 (0.0000402) (0.0000442) (0.000292) 

Invention productivity 0.000365*** 0.0000220 0.00159*** 

 (0.0000628) (0.0000412) (0.000384) 

Time spent in the county -0.00132*** -0.000703*** -0.00769*** 

 (0.000155) (0.000164) (0.00141) 

Cumulative count of mobility 0.0393*** 0.0318*** 0.269*** 

 (0.000653) (0.000826) (0.00474) 

Technological diversity 0.00323*** 0.00274*** 0.0231*** 

 (0.000170) (0.000181) (0.00152) 

Invention quality -0.00000458* -0.000009*** -0.0000616*** 

 (0.00000218) (0.00000244) (0.0000166) 

Constant 0.0383*** 0.0206*** 0.215*** 

 (0.000391) (0.000398) (0.00275) 

Technological field control Yes Yes Yes 

Year FE Yes Yes Yes 

County FE Yes Yes Yes 

N.  4436167 4436167 4436154 

R-squared 0.0317 0.0294 0.0346 

adj. R-squared  0.0311 0.0288 0.0340 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. 
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The results on the effects of control variables on inventor mobility are mostly 

consistent with general expectations. We find that inventors are less likely to emigrate 

from the current location as they have a longer invention experience, stayed in the county 

for a longer period, and higher prior invention quality. They are also more likely to 

emigrate from the current location as they have higher invention productivity, more 

diversified technological portfolio, and more frequent mobility history (e.g., Hoisl, 2009). 

Moreover, the effects of prior invention quality and productivity on geographical inventor 

mobility are found opposite to their effects on the inter-organizational inventor mobility 

demonstrated in Palomeras and Melero (2010). This suggests that there may exist 

discrepancy in the invention-related factors for geographical and inter-organizational 

mobility of inventors. 

 

3.4 Additional analyses 

3.4.1 Moderating effects of average value of houses  

To better understand the effect of historical surname on inventor mobility, we 

investigate the moderating effects of house values on the surname effect. The underlying 

rationale is that families that owned a highly valued house would be more likely to settle 

around the location and, thus, enhance the surname effect on inventors’ geographical 

mobility. In order not to be affected by the number of individuals in measuring the 

average value of houses, we use only household-level information and the house head’s 

surname. Households with no house ownership information are excluded; only 
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households with “owned” or “rented” house ownership status are included. We assign 

zero house value for households with a rented house. We measure the average value of 

houses owned by individuals (only those who are house heads in their household) with 

the same surname in a given county and calculate the Average house value variable as the 

logarithmic transformation of one plus the average value of houses. We estimate our 

specification, including Average house value and its interaction term with Historical 

surname share variable. Table 3-3 presents the results, and Figure 3-1 shows graphs of 

the interaction effects and estimated average marginal effects. Consistent with our 

expectations, our results show that the negative effect of the historical surname share on 

inventor mobility amplifies as the average house value of the surname in the given county 

increases. 
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Table 3-3. Interaction between surname share and average house value 

 (1) (2) (3) 

 Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Log(Historical surname share %) -0.00404*** -0.00373*** -0.0253*** 

 (0.000324) (0.000304) (0.00250) 

Log(Avg. house value) 0.000605*** 0.000899*** 0.00440*** 

 (0.0000703) (0.0000585) (0.000471) 

Log(Historical surname share %)  -0.000918*** -0.00106*** -0.00732*** 

 Log(Avg. house value) (0.0000755) (0.0000539) (0.000442) 

Inventor individual level controls Yes Yes Yes 

Technological field control Yes Yes Yes 

Year FE Yes Yes Yes 

County FE Yes Yes Yes 

N.  4436167 4436167 4436154 

R-squared 0.0319 0.0298 0.0348 

adj. R-squared  0.0313 0.0292 0.0342 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. Main variables have been mean-centered. 

 

   

Figure 3-1. Interaction effects of surname share and average house value on inter-county 

mobility, inter-state mobility, mobility distance, respectively (Average marginal effects of 

surname share with 95% CIs) 
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3.4.2 Moderating effects of foreign-born ratio 

We also investigate how surname effects are moderated by foreign-born ratio of 

individuals. As families with a higher proportion of foreign-born individuals are less 

likely to have settled at a location in the US, we expect that the foreign-born ratio 

weakens surname effects on geographical mobility. Foreign-born ratio variable is 

calculated as the logarithmic transformation of one plus the average ratio of foreign-born 

individuals with the same surname in a given county. We estimate our specification, 

including Foreign-born ratio and its interaction term with Historical surname share 

variable. Table 3-4 presents the results, and Figure 3-2 shows its graph of the interaction 

effects and estimated average marginal effects. In consistent with our expectation, the 

results show that the negative effect of the historical surname share on inventor mobility 

is amplified as the foreign-born ratio of the surname in the county decreases, that is, as 

more individuals with the same surname in the county were born in the US. 
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Table 3-4. Interaction between surname share and foreign-born ratio 

 (1) (2) (3) 

 Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Log(Historical surname share %) -0.00611*** -0.00553*** -0.0440*** 

 (0.000312) (0.000360) (0.00294) 

Log(Foreign-born ratio) 0.00445** 0.00770*** 0.0469*** 

 (0.00147) (0.000937) (0.00853) 

Log(Historical surname share %)  0.00657*** 0.00491*** 0.0546*** 

 Log(Foreign-born ratio) (0.00115) (0.00104) (0.00861) 

Inventor individual level controls Yes Yes Yes 

Technological field control Yes Yes Yes 

Year FE Yes Yes Yes 

County FE Yes Yes Yes 

N.  4436167 4436167 4436154 

R-squared 0.0318 0.0295 0.0347 

adj. R-squared  0.0312 0.0289 0.0341 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. Main variables have been mean-centered. 

 

   

Figure 3-2. Interaction effects of surname share and foreign-born ratio on inter-county 

mobility, inter-state mobility, mobility distance, respectively (Average marginal effects of 

surname share with 95% CIs) 
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3.4.3 Moderating effects of inventor characteristics 

We investigate the possible moderating effects of inventor characteristics on the 

surname effect. Specifically, we test how Historical surname share interact with 1) 

Invention experience, 2) Invention quality, and 3) Invention productivity to affect 

inventors’ geographical mobility. As shown in Table 3-5, we do not find clear patterns for 

all the moderating effects of inventor characteristics from the analyses. Hence, we can 

infer that the surname effect is less likely to be susceptible to inventors’ invention-related 

characteristics, i.e., prior invention quality, productivity, experience, for geographical 

mobility. 

 

Table 3-5. Interaction between surname share and inventor characteristics (Invention 

experience, quality and productivity) 

Panel A: Invention experience 

 (1) (2) (3) 

 Inter-county mobility Inter-state mobility Log(Mobility distance) 

Log(Historical surname share %)  -0.000558* -0.000230 -0.00205 

 Log(Invention quality) (0.000220) (0.000163) (0.00135) 

N.  4436167 4436167 4436154 

R-squared 0.0318 0.0294 0.0346 

adj. R-squared  0.0312 0.0288 0.0340 

Panel B: Invention quality 

 (4) (5) (6) 

 Inter-county mobility Inter-state mobility Log(Mobility distance) 

Log(Historical surname share %)  -0.000636 0.000195 0.00108 

 Log(Invention productivity) (0.000658) (0.000632) (0.00551) 

N.  4436167 4436167 4436154 

R-squared 0.0319 0.0294 0.0346 
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adj. R-squared  0.0313 0.0288 0.0340 

Panel C: Invention productivity 

 (7) (8) (9) 

 Inter-county mobility Inter-state mobility Log(Mobility distance) 

Log(Historical surname share %)  0.00103 0.000283 0.00600 

 Log(Invention experience) (0.000560) (0.000534) (0.00479) 

N.  4436167 4436167 4436154 

R-squared 0.0317 0.0294 0.0346 

adj. R-squared  0.0311 0.0288 0.0340 

Inventor individual level controls Yes Yes Yes 

Technological field control Yes Yes Yes 

Year FE Yes Yes Yes 

County FE Yes Yes Yes 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. Took natural log on Invention quality, Invention productivity, and Invention experience variables. All independent 

terms of Log(Historical surname share %) and invention characteristics (i.e., Invention quality, Invention productivity, and 

Invention experience) are included. 

 

3.4.4 Interaction with employee non-compete agreement 

Prior studies demonstrate that inventor mobility is influenced by the state enforcement 

of non-compete agreements on employees, which functions as a constraint for inventors’ 

organizational mobility (Younge et al., 2015) or as a stimulus for inventors’ inter-state 

emigration (Marx et al., 2015). As non-compete enforcement is an institutional factor 

directly influencing inventors’ career choices, investigating how the surname effect on 

geographical mobility manifests depending on the enforcement of non-compete 

agreements is worthwhile. Most US states allow non-compete agreements, except for the 
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following states that limit enforcement of non-competes: Alaska, California, Connecticut, 

Minnesota, Montana, Nevada, North Dakota, Oklahoma, Washington, West Virginia 

(Stuart & Sorenson, 2003; Younge et al., 2015). Therefore, we construct a dummy 

variable Non-compete enforcement with a value 1 for inventor-year observations at a 

county belonging to one of the states enforcing non-competes for inventors; otherwise it 

is assigned a value of 0. As the same non-compete clause applies for an entire state, our 

particular interest here is inter-state inventor emigration. Hence, among the three 

dependent variables of the study, we only estimate our specification on the dependent 

variable Inter-state mobility, including the Non-compete enforcement and its interaction 

term with the Historical surname share. 

Table 3-6 presents the results, and Figure 3-5 shows its graph of the interaction effects 

and estimated marginal effects. The results demonstrate that the surname effect is 

enhanced in a state enforcing non-compete agreements. That is, when inventors reside in 

a state enforcing the non-compete agreements, their families or relatives become a 

stronger factor that attracts the inventors to stay, rather than emigrating to another state 

for their career. On the contrary, when inventors reside in a state limiting the non-compete 

agreement, the surname effect on geographical mobility is reduced. 
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Table 3-6. Interaction between surname share and Non-compete enforcement (DV: inter-

state mobility) 

 Inter-state mobility 

Log(Historical surname share %) -0.000573 

 (0.00182) 

Non-compete enforcement 0.00351 

 (0.00224) 

Log(Historical surname share %)  -0.00339† 

 Non-compete enforcement (0.00173) 

Inventor individual level controls Yes   

Technological field control Yes 

Year FE Yes 

County FE Yes 

N.  4436218 

R-squared 0.0253 

adj. R-squared  0.0253 

Note. Standard errors in parentheses, clustered by inventor. † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001, Observations 

with singleton fixed effects are dropped before the estimation (Correia, 2015). Year fixed effects included for all models. 

Main variables have been mean-centered. 
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Figure 3-3. The marginal effects of surname share with 95% CIs (DV: inter-state 

mobility) 

 

3.4.5 Distance-to-centroid measurement 

We test the effect of historical surname distribution on inventor mobility using an 

alternative variable, Distance-to-centroid. We begin by calculating the geographical 

centroid of each surname using the weighted mean of the latitude and longitude of 

individuals with the same surname in the 1940 Census. In order to calculate this variable 

for a surname, it requires at least one individual with the surname resided in the US in 

1940. Thus, analyzing of the surname effect using Distance-to-centroid variable excludes 

inventors with a surname that does not exist in the 1940 Census. We then measure the 
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distance between inventor’s location in a given year and the geographical centroid of their 

surname in 1940. We estimate our specifications to uncover how an inventor’s distance to 

geographical centroid of their surname links to their emigration from the given location. 

Table 3-7 presents the results with full inventor samples. We find that a 100 percent 

increase in distance from a given location to the centroid of the same surname leads to 

0.53 percentage-point, 0.54 percentage-point, and 4.2 percent increase in inter-county 

emigration, inter-state emigration, and distance of mobility, respectively. 

 

Table 3-7. Effect of Distance-to-centroid (All inventors) 

 (1) (2) (3) 

 Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Log(Distance-to-centroid) 0.00525*** 0.00542*** 0.0416*** 

 (0.000240) (0.000281) (0.00225) 

Inventor individual level controls Yes Yes Yes 

Technological field control Yes Yes Yes 

Year FE Yes Yes Yes 

County FE Yes Yes Yes 

N.  4059432 4059432 4059422 

R-squared 0.0317 0.0307 0.0353 

adj. R-squared  0.0311 0.0301 0.0346 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. 
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3.4.6 Gender of inventors (Male vs. Female inventors) 

Considering the American custom wherein women take their husband’s family name 

upon marriage (e.g., see Goldin & Shim, 2004), we expect, generally, that the historical 

surname effects on geographical mobility would be significant for male inventors, rather 

than for female inventors. Thus, we test our specifications using two separate inventor 

subsamples comprising male and female inventors. Table 3-8 presents the results. 

Consistent with our expectations, the historical surname effect on the geographical 

mobility of inventors loses its significance for female inventors, while it is significant for 

male inventors. 

 

Table 3-8. Effect of surname share by gender 

 (1) (2) (3) (4) (5) (6) 

 Only male inventors Only female inventors 

 Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Inter-county 

mobility 

Inter-state 

mobility 

Log(Mobility 

distance) 

Log(Historical surname share %) -0.00421*** -0.00360*** -0.0291*** -0.00314 -0.00158 -0.0159 

 (0.000391) (0.000336) (0.00274) (0.00174) (0.00162) (0.0139) 

Inventor individual level controls Yes Yes Yes Yes Yes Yes 

Technological field control Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

County FE Yes Yes Yes Yes Yes Yes 

N.  755004 755004 755003 162516 162516 162516 

R-squared 0.0315 0.0342 0.0415 0.0296 0.0230 0.0281 

adj. R-squared  0.0292 0.0319 0.0392 0.0220 0.0153 0.0204 

Note. Standard errors in parentheses, clustered by inventor., * p < 0.05, ** p < 0.01, *** p < 0.001, Observations with 

singleton fixed effects are dropped before the estimation (Correia, 2015). Year and county fixed effects included for all 

models. 
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3.5 Discussion and Conclusion 

The study investigates the relationship between the geographical mobility of inventors 

and historical surname distribution in the US in 1940. This demonstrates that the 

historical share of the same surname of an inventor in a given county and the 

geographical mobility of the inventor, in terms of inter-county mobility, inter-state 

mobility, and distance of mobility, are negatively associated. Our analyses show that the 

surname effect on geographical mobility is enhanced when the average value of houses 

owned by households with the same surname is higher and when the ratio of foreign-born 

individuals with the same surname is lower. While surname effect is valid regardless of 

whether the inventor stays in a state enforcing non-compete agreements, it becomes 

stronger in states wherein non-compete agreements are enforced. Our analyses do not find 

significant moderating effects of invention-related characteristics for the surname effect 

on the geographical mobility of inventors. An alternative way of estimating the surname 

effect, i.e., estimation with the distance-to-centroid variable, provides consistent results, 

complementing the main results found with historical surname share variable.  

Results from some additional tests show the more detailed conditions wherein the 

surname effect becomes more effective in predicting the geographical mobility of 

inventors. Specifically, while the surname effect is significant for male inventors, it is not 

significant for female inventors. Thus, these criteria should be considered when using the 

surname variable to track inventors’ geographical mobility in future studies. 

Our study contributes to the research stream on geographical mobility of inventors by 
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providing a useful and generalizable instrumental variable for the geographical mobility 

of US inventors. Although prior studies emphasize the important role of inventors moving 

across regions (Almeida & Kogut, 1999; Jaffe et al., 2000; Rosenkopf & Almeida, 2003), 

systematic and direct investigation of the mobility effect and its size has often been 

limited owing to the endogenous nature of the geographical mobility of inventors and the 

observational data used to track their mobility. Inventor mobility decisions are 

endogenous to empirical models of various pre- and post-mobility factors, such as 

performance (e.g., invention productivity and quality) and invention-related behaviors 

(e.g., collaboration). Additionally, designing a randomized experiment for inventor 

mobility study is difficult (and almost impossible). That is, instructing the geographical 

mobility of inventors and randomly treating a certain inventor or inventor group to 

investigate the implications of inventor mobility is difficult (or too expensive). Moreover, 

as patent data allow for identifying a large number of inventors and tracking their 

locations (Li et al., 2014), researchers in recent studies rely on patent publication data to 

investigate inventor mobility and its consequences. For these reasons, models estimating 

the effects of the geographical mobility of inventors often confront causal ambiguity, 

errors-in-variables, or omitted variable problems (Bascle, 2008). Without controlling for 

potential endogeneity, the estimation of inventor mobility effects would become biased, 

and the causal inference would not be accurate. 

By using historical surname distribution in the US and uncovering its effect on the 

geographical mobility of inventors in the US, the study provides an instrumental variable 
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for inventors’ geographical mobility. As USPTO patents and the inventor disambiguation 

data provide surnames of most inventors with at least one patent applied to USPTO, these 

historical surname variables, i.e., historical surname share and distance to geographical 

centroid variables, are generalizable for all US inventors. Furthermore, this surname 

variable can be aggregated to the level of organization or region to instrument for the 

effect of inventor mobility at the organizational or regional level. 

The results of the interaction analyses increase the credibility of the historical surname 

variable as an instrumental variable for the geographical mobility of inventors. 

Specifically, the moderating effects of the average house values of households with the 

same surname in a given county and the ratio of foreign-born individuals with the same 

surname in a given county on the surname effect are found to be significant. This raises 

confidence that the geographical mobility of inventors is influenced by historical 

demographics, although this might be a minor factor. Moreover, no consistent pattern 

found in the analyses on the moderation of invention-related characteristics suggests that 

the surname effect is less likely to be susceptible to other invention-related characteristics 

of the inventor. Therefore, this increases the credibility of using historical surname 

variables to instrument the geographical mobility of an inventor when estimating the 

mobility effects on post-mobility invention-related outcomes. 

The study also contributes to the research stream focusing on non-compete 

enforcement and its influence on inventor mobility. Prior studies suggest that the non-

compete enforcement of a state affects highly skilled knowledge workers (Stuart & 
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Sorenson, 2003). Focusing particularly on inventors, studies suggest that non-compete 

enforcement influences inventors’ inter-organizational mobility (Younge et al., 2015), 

inter-state mobility (Marx et al., 2015), and inter-technological field mobility (Arts & 

Fleming, 2018). Extending this research stream, this study examines how historical 

demographics, i.e., historical surname share, interact with non-compete enforcement to 

influence inter-state inventor mobility. Our results show that the surname effect on inter-

state mobility is amplified in a state wherein non-compete agreements are enforced. 

When inventors’ career choices are constrained by non-compete agreements, they are 

more likely to choose to stay around their families or relatives. 

These findings on the interaction effect between non-compete enforcement and 

historical surname share provide a few implications for firm managers and policymakers. 

Firms located in a state enforcing non-compete agreements may place inventors in a 

regional location with more of their families or relatives to prevent their departure as the 

surname effect is more effective in these states. However, this study suggests that the 

surname effect becomes weaker in states limiting enforcement of non-compete 

agreements. Thus, firms in such states should devise other measures to keep their 

inventors as not only institutional constraints but also surname constraints of 

geographical mobility are not as strong in such states, compared to states enforcing non-

compete agreements. For policymakers, the results suggest that enforcing non-compete 

agreements allows to retain inventors within the state and prevent departure of inventors 

to other states, especially when the state was historically comprised of a large population 
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of individuals with the same surname of inventors currently working in the location. 
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Chapter 4. Inventor mobility and 

entrepreneurial ecosystem19 

4.1 Introduction 

Entrepreneurship—especially when driven by novel technologies—has been 

recognized as an essential source of economic growth and improved quality of life since 

Smith (1776) and Schumpeter (1942). Recent evidence confirms that newly-founded 

firms are responsible for job creation (Decker et al., 2014; Glaeser et al., 2015), 

productivity (Gennaioli et al, 2013), and additional innovation (Kortum & Lerner, 2001; 

Lee, 2013). Unsurprisingly, policymakers worldwide have sought to spur startup activity, 

often in hopes of replicating the entrepreneurial dynamics of California’s Silicon Valley. 

That so many efforts have fallen far short (Lerner, 2009) speaks to a lack of 

understanding and causal evidence for an earlier stage in the chain: if entrepreneurship 

drives economic growth, what drives entrepreneurship? Further, given that the vast 

majority of new firms fail (Haltiwanger et al., 2013)—including 75% of venture-capital 

backed firms (Hall & Woodward, 2010)—what are the critical inputs for successful 

startups?  

The co-occurrence of the words “innovation and entrepreneurship” is ubiquitous in 

both academic and popular circles. In this paper, we examine whether productive 

entrepreneurship (i.e., successful startups) depends critically on innovation—or, more 

                

19 This chapter is adapted from joint work with Benjamin Balsmeier, Lee Fleming, and Matt Marx. For a 

working paper version, please see: https://doi.org/10.3386/w27605 
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precisely, on the inventors who are responsible for innovations.20 To be sure, scholars 

have long observed that human capital, including technical talent, is an important 

ingredient in the entrepreneurial recipe. Lerner & Nanda (2020) claim that “[r]egions like 

Silicon Valley have an abundance of resources for entrepreneurs, [including] excellent 

engineers…” Jensen & Thursby (2001) likewise argue that scientific inventors need to be 

fully engaged and motivated for technologies to be successfully commercialized in new 

firms (see also Zucker et al, 1998; Marx & Hsu, 2021).21 Larger-scale, if suggestive, 

evidence for the role of inventors in high-growth entrepreneurship comes from 

correlations between the supply of technical workers’ levels of patenting, entrepreneurial 

firm founding, and employment (e.g. Kerr, 2013; Maloney & Caicedo, 2016; Azoulay et 

al., 2020). Glaeser & Kerr (2009) find that talent explains 60-80% of the variance in 

regional entrepreneurship in U.S. manufacturing, concluding that “the broad stability of 

this finding suggests that people and their human capital are probably the crucial 

ingredient for most new entrepreneurs” (p. 659). 

Indeed, even absent causal evidence it might seem self-evident that inventors play an 

essential role in high-growth entrepreneurship. Steve Wozniak, who invented what would 

                

20 Our focus on inventors builds on recent advances in disambiguation, which enabled identification of these 

inventors and facilitated progress on the question of how individuals contribute to innovation, productivity, 

and economic growth (Bhaskarabhatla et al., 2021; Kline et al. 2019; Azoulay et al. 2020). 

21 Not all high-growth firms in the U.S. are high-tech, and vice-versa. However, Hathaway (2018) reports 

that high-tech firms are overrepresented by 4x among high-growth firms (21% vs. 5% of all firms) as defined 

by Inc. Magazine’s annual list of the 5,000 fastest-growing privately held firms in the U.S (see also Lerner 

and Nanda, 2020). 



94 
 

become the Apple I while working at Hewlett-Packard, famously could not convince his 

superiors to commercialize the invention and subsequently left to found a new firm with 

Steve Jobs. At the same time, several successful startups including Slack, Skype, 

Whatsapp, Alibaba, and BaseCamp, largely contracted out engineering and product 

development activities to geographically distant locations, and investors regularly 

pressure their portfolio companies to outsource technical development. As Jim Breyer, 

managing general partner of Accel Partners, remarked: “There isn't a board meeting that 

goes by that we don't ask, Why aren't you being more aggressive [with software 

development] in India and China?"22 Therefore, the direction of causality between the 

supply of technical talent and entrepreneurship remains unclear (Burchardi et al., 2020). 

The correlations found by Glaeser & Kerr (2009) could reflect not a causal effect of talent 

on entrepreneurship but rather the flocking of skilled workers to opportunity. Or, it might 

be that investors like Jim Breyer are correct and technical talent is simply not as 

important as conventional wisdom might (like to) assume.  

In pursuit of causal evidence on this point, we investigate how the supply of key 

technical talent—including technology- and task-specific capital (Gibbons & Waldman, 

2004)—influences the funding and success of high-growth ventures.23 We focus on 

                

22 https://www.sfgate.com/business/article/looking-offshore-investors-vc-firms-push-for-2813526.php 

23 Related to this paper, several studies have addressed the role of local inventors in regional productivity. 

For example, Agrawal et al. (2011) show that inventor emigration decreases local knowledge flow in the 

source region but also drives knowledge back into the departed region. A growing and influential literature on 

foreign immigration suggests positive impacts on the U.S. of an influx of inventors from outside its borders, 

including greater patenting and innovation (Bernstein et al., 2018; Hunt & Gauthier-Loiselle, 2010; Burchardi 
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venture-backed startups as a particularly promising subset of new firms. Although only 

0.5% of new businesses obtain venture financing (Puri & Zarutskie, 2009), nearly one-

half of firms that complete an Initial Public Offering had received venture capital backing 

(Lerner & Nanda, 2020). We address reverse-causality concerns by instrumenting 

inventor inflows with the share of inventors’ surnames in a county based on the 

nationwide distribution of surnames from the 1940 U.S. Census. Our shift-share 

instrument represents an advance over prior efforts in two ways. First, because the 

“shares” stem from more than three million unique surnames across more than 3,000 

counties, it is less vulnerable to critiques of such instruments with low variation or a few 

highly-determinative shares (see Goldsmith-Pinkham et al., 2020, Adao et al., 2019, and 

Borusayak et al., 2018, for a fuller discussion of the issue). Second, focusing on the U.S. 

lessens concerns regarding endogenous origin-destination combinations (e.g., Indian 

engineers migrating to Silicon Valley) and also addresses the issue of potential 

endogenous choice of regions and selection of incoming inventors at the national level 

(Moser et al., 2014; Parey et al., 2017). 

We find that the (exogenous) arrival of inventors in a county has a substantial impact 

on entrepreneurial activity. Arriving inventors increase the number of venture-backed 

startups in a county, in the same sectors as the arriving inventors and at the expense of 

other sectors. Not only does the arrival of inventors produce more startups; the influx of 

                                         

et al., 2020; Kerr & Lincoln, 2010), wages (Peri et al., 2015) and TFP (Capelli et al., 2019). Our study differs 

from these in that we study internal migration and entrepreneurship. 
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technical talent yields startups with more successful outcomes (IPO or attractive 

acquisition). Our preferred empirical specifications suggest that counties may expect one 

additional venture-backed startup for every 28 additional inventors, whereas a successful 

startup requires an additional 460 inventors. Incoming inventors even contribute to an 

increase in the number of “unicorn” startups (i.e. exit valuation exceeding $1B). However, 

the increase in successful exits is not merely the result of more “shots on goal”; these 

correspond with a reduction in bankruptcies as well as so-called “fire-sale” acquisitions. 

Therefore, the local availability of technical talent appears to improve the efficiency of 

venture investment, reallocating away from failed, low-tech startups. These results are 

robust to a variety of alternative instrument specifications and placebo tests and are 

moreover not restricted to the top ten counties by entrepreneurial activity (Silicon Valley, 

etc.). 

 

4.2 Data 

We assemble three different sources at varying degrees of aggregation and times to 

arrive at a panel dataset at the county-year level.  

4.2.1 Historic Census data 

We begin with the complete 1940 U.S. Census records for 131,940,709 citizens in 

38,382,088 households (http://sites.mnhs.org/library/content/1940-census). As we will 

explain in detail in the next section, our identification strategy relies on being able to 

observe the name and location of each U.S. citizen in 1940 in order to predict inventor 

http://sites.mnhs.org/library/content/1940-census
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moves. The historic data include 3,363,932 different surnames, of which 27% appear only 

once. (The median is 3, mean is 39, and maximum is 1,359,079 for Smith.) Figure 4-1 

illustrates the sparse geographical distributions of “Marx”. After some cleaning and 

standardizing procedures, described in detail in Appendix 2, there were 42,268 Flemings, 

6,232 Marxes, 153 Shins, and 9 Balsmeiers in the 1940 census data. All analyses below 

are robust to excluding prolific surnames as indicated by high (local) frequency or wealth, 

e.g. the Smiths and Rockefellers. The 1940 U.S. Census records consist of 3097 counties 

and other districts based on the county system in 1940. In order to help matching with the 

location information of inventors, we translate 19 counties or districts, which are old and 

no longer in use, to the 2020 concordance. (based on https://www.census.gov/programs-

surveys/geography/technical-documentation/county-changes.2010.html from 1970 to 

2020). Please see Appendix 2 for details on geographic disambiguation. 

             
Spatial distribution of “Marx” in 1940 (4,762 in total) 

 

Figure 4-1. Spatial distribution of the surname “Marx” in 1940 (each red dot = 50 

https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html%20from%201970%20to%202020
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html%20from%201970%20to%202020
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html%20from%201970%20to%202020
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individuals). 

 

4.2.2 Inventor data 

We begin with raw data from the United States Patent and Trademark Office (USPTO) 

from 1976-2018 (only the intersection of patent and entrepreneurship data are used, see 

below). Although the USPTO lists inventors for every patent, it does not provide unique 

identifiers for them. For example, even the relatively rare name of Matthew Marx is listed 

as inventing many patents, including 5,995,928, “Method and apparatus for continuous 

spelling speech recognition with early identification, 6,173,266, “System and method for 

developing interactive speech applications,” and 7,271,262, “Pyrrolopyrimidine 

derivatives.” In this simple example, it would seem reasonable based on the titles alone 

that the same inventor authored the first two but not the last patent, and that is indeed the 

case. Inventor names can be disambiguated with a variety of algorithms, here we use 

Balsmeier et al. (2018). After applying the name cleaning and standardizing procedures 

and the matching algorithm, described in detail in Appendix 2, we match 91.1% of 

inventors’ surname to a surname from the 1940 Census. Note that the name cleaning 

exercise has no significant effect on the size of the estimated coefficients but decreases 

matching errors and improves precision of the instrument. 

We used the inventor ID and location to identify inventor moves across U.S. counties. 

We drop all inventors with a single patent. Then, using patent application year as a 

timestamp, we count an inward move in the first year we first observe an inventor in a 

county. As noted by Cheyre et al. (2015), patent application dates do not necessarily 
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correspond with dates of employment and in particular may lag actual moves. Hence, the 

inventor may have moved into a county earlier than we detect, leading to a fuzzy lower 

bound of the actual lag between our variable of interest and the actual inward moves. In 

96% of cases, we observe an incoming inventor patenting elsewhere within 5 years earlier 

(mean = 2.6). Results are robust to excluding inventor moves with longer gaps between 

two patenting events, or temporary stops at a third county. If an inventor appears on two 

or more patents within a given year, we follow Moretti & Wilson (2014) and take the 

most frequent location. 

 

4.2.3 Entrepreneurship data 

To measure high-growth entrepreneurship, we use VentureXpert, which is part of 

Thompson’s economic data suite and covers all venture-backed firms in U.S. It offers 

detailed information on the location, industry classification and significant growth events 

(M&As and IPOs) of the funded companies. The data is sourced from venture capital 

firms, company filings and various news sources.  

Our baseline sample consists of all startups with available information on founding 

year, industry and location, starting in 1987 as VentureExpert lacks comprehensive 

coverage beforehand. Our sample ends in 2007 to avoid truncated measures of whether a 

startup achieved a significant event (successful M&A or IPO) within ten years since 

founding. It is worthwhile to note that our sample of venture-backed startups represents a 

positive selection of startups as VCs typically only fund firms with attractive growth 



100 
 

prospects. We focus on such events because they drive economic dynamism, innovation, 

and long-term economic (Lerner & Nanda, 2020). Although this focus ignores other types 

of entrepreneurship, e.g. hairdressers, nail polish studios and various sole proprietorships, 

where productivity growth has been notoriously difficult to achieve because of limited 

possibilities to leverage technological progress (Baumol & Bowen, 1966), our sample 

retains low-technology VC backed startups. Figures 4-2, 3, 4, 5 illustrate that the local 

supply of inventors and high-growth entrepreneurship are indeed strongly correlated, 

follow similar trends over time, and tend to be regionally clustered.  

While suggestive, Figures 4-2, 3, 4, 5 cannot speak to whether these patterns reflect 

self-selection of inventors towards previously successful regions or whether there exists 

an arguably causal link between the local supply of inventors and entrepreneurship. 

Furthermore, they fail to differentiate between successful and failed startups and between 

high-tech (biotechnology, life science, computer and communication and semiconductor 

industries) and low-tech startups (various categories ranging from food processing to 

transportation as explicitly defined by VentureXpert). Figures 4-6 illustrates the spatial 

distributions of these technological categories and mobile inventors and implies a 

technology-specific link between inventors and startups that can be exploited both 

theoretically and econometrically.  
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Figure 4-2. Graphical representation of raw data 

 

 

Figure 4-3. Graphical representation of US inventor moves 
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Figure 4-4. Graphical representation of venture-backed startup creation 
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Figure 4-5. Geographical clustering of inventor moves, startups, and high-growth 

startups, 1987 to 2007 

 

 

Figure 4-6. Geographical clustering of inventor moves, startups, and high-growth 

startups, 1987 to 2007 by major technology within county 
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Following Ewens & Marx (2018), we define a successful startup as having completed 

a merger, acquisition, or initial public offering with valuation exceeding 125% of the total 

invested venture capital within 10 years since founding. We also measure a 500% return 

on invested capital as well as “unicorns” i.e., startups which exit with a valuation of $1B 

or greater. Because VentureXpert is missing many acquisition values (and some IPO 

values), we fill these in using data from Pitchbook and Crunchbase via exact match on 

website URL and state (Dorn et al., 2020). Where VentureXpert was missing capital 

invested, we filled in these values from those databases in order to calculate the return on 

invested capital. We also filled in founding years from the databases when they are 

missing in VentureXpert. 

For failed startups, we used the current status of each startup indicated in 

VentureXpert, indicating failure if they were listed as “Defunct” or “Bankruptcy.” 

Differentiating between failed and successful startups is crucial, as Decker at al. (2014) 

show that it is the few high-growth startups that survive the first ten years of their 

existence that are responsible for about 50% of US gross job creation. Where a startup 

had not exited within ten years of founding, it was neither counted either as having failed 

or succeeded.24  

                

24 Considering sectors where startups often take longer than 10 years to make it to an exit such as 

biopharmaceutical industry, we also test with a 12-year window, instead of 10-year window, to capture the 

successful and failed startups. We use only county-year observations between 1987 and 2005 as we cut the 

last 2 years to allow for 12 years of observations. The estimation results are almost identical to our main 
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Table 4-1 provides descriptive statistics of the dataset at the county-year level. For the 

sample of 27,619 venture-backed startups, 26% achieve an M&A or IPO within 10 years 

of their foundation, with an average return of 1646% (median 203%) on the invested 

capital (note that these values may be over-estimated as we calculated based on only ones 

that their exit values are available). For failed startups in our sample, there are total 3386 

venture-backed startups that are indicated as “Defunct” or “Bankruptcy” in 

VentureXpert.25   

 

Table 4-1. Descriptive statistics at U.S. county level, N=65,247 

Variable mean median std dev min max 

Number of incoming inventors 2.15 0.00 11.96 0.00 700.00 

Instrument 1.98 0.70 8.68 0.00 356.03 

Number of overall venture-backed startups 0.42 0.00 4.20 0.00 314.00 

Number of successful startups (RoR ≥ 125%) 0.04 0.00 0.60 0.00 38.00 

Number of successful startups (RoR ≥ 500%) 0.02 0.00 0.28 0.00 19.00 

Number of successful startups (Exit ≥ 1B) 0.00 0.00 0.05 0.00 4.00 

Number of failed startups 0.05 0.00 0.83 0.00 91.00 

Number of failed startups (inc. RoR < 125%) 0.08 0.00 0.08 0.00 123.00 

Number of high-tech startups 0.34 0.00 3.79 0.00 306.00 

Number of low-tech startups 0.09 0.00 0.70 0.00 38.00 

Notes. This table reports summary statistics of the key variables used in our regression analyses at the county level, 

covering 3107 counties 1987-2007. “Successful” startups are those that complete either an IPO or successful acquisition 

within 10 years, and we have three different cutoffs at an exit value ≥ 125%, 500% of total venture capital acquired or an 

absolute exit value ≥ 1B dollars. “Failed” startups are those that are currently “Defunct” or “Bankruptcy” as indicated in 

                                         

results. 

25 In unreported naïve regressions of local GDP growth on successful and failed startups we find a significant 

and positive effect of successful startups as opposed to an insignificant effect of failed startups.   
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VentureXpert database. In addition, we have another variable for “Failed” startups that includes startups that complete 

either an IPO or successful acquisition within 10 years, but achieve a value < 125% of total venture capital acquired. High- 

vs. low-tech startups are categorized according to VentureXpert classifications. 

 

4.3 Shift-share instrument construction 

We want to find the impact of inventor inflows on entrepreneurship. We can estimate 

this via OLS:  

  (1) 

where  is a dependent variable observed for county d in year t.  is the 

number of inventors who moved to county d in year t-1.  denotes year fixed effects 

and  denotes state fixed effects. We control for state-year specific shocks, such as 

varying state-level economic conditions and policy changes, through state-year fixed 

effects .  controls for time-invariant unobserved county characteristics that 

may confound our identification of .  is the error term. 

The key econometric challenge with Equation (1) is that unobserved factors influence 

both the rate of incoming inventors and local economic conditions; for example, 

innovative counties are attractive to inventors. Although county fixed effects will 

effectively control for any persistent differences in innovation levels across counties, this 

misses temporary local trends that might attract inventors. To address this threat to 

identification, we construct a shift-share instrument for inventor inflows that builds on the 
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work of Bartik (1991) and its application to international immigration to the U.S. (Card, 

2001). Prior studies had noted that immigrants tend to locate near previous immigrants 

from the same country of origin (Bartel, 1989; Lalonde & Topel, 1991). Card (2001) and 

others (see Jaeger et al. (2018) for an overview) exploited this observation to predict 

immigrant inflows into particular regions, by interacting past shares of immigrants from 

an origin country to a given region with the contemporaneous total inflow or shift of 

migrants from the same country at the national level. 

We leverage this idea to create an instrument for the contemporaneous inflow of U.S. 

inventors to a certain county based on the spatial distribution of U.S. surnames across 

counties in 1940. The intuition is simple: although a host of factors influence where 

inventors locate—or, more important to our study, re-locate—on the margin, an inventor 

should prefer to move to a county where there are likely to be more relatives. Although 

we lack data on family structure and relationships for the entire population of U.S. 

inventors, we borrow an approach from the immigration literature which utilizes the 

observation that people with a certain family name are found more frequently at places 

where there were other people with same name in the past (see Darlu et al. (2011) for the 

example of Savoy, France and Clark & Cummins (2015) for England). We illustrate 

below that these patterns hold for individual US inventors. Specifically, we define our 

instrument as: 

  (2) 
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where  is the population of people in county d with surname n in 1940,  is 

the number of people with surname n in the entire U.S. in 1940 and  is the number 

of inventors with surname n who move from any county in the U.S. to any other county 

in the U.S. in year t. The expected inflow of inventors in county d at time t is thus 

the weighted sum of inventors that move across the U.S. with surname n (the “shift”) 

with the historical distribution of the same family names (the “shares”) serving as weights. 

The intuitive appeal behind this instrument (as in prior immigration studies) is that it 

generates variation at the local level by exploiting variation at the national level, which is 

arguably not influenced by local conditions. (That is, the total number of inventors with 

the name Fleming who move from within the entire U.S. is unlikely to be driven by the 

local economic conditions of one out of the more than 3,000 U.S. counties.) 

 

4.3.1 Variation and non-persistence of the county-level 

instrument 

One advantage of this instrument over prior shift-share instruments generally, and 

settlement instruments in particular, is the greater variation in the distribution of names 

(i.e., the “shares”) that stem from more than 3 million unique surnames in 1940 across 

varying destination and origin areas. (By contrast, immigration studies typically analyze 

192 different countries, often with particularly influential origin-destination 

relationships.) Our estimation should therefore be less vulnerable to problems that arise 
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from low independent variation in shares or overly strong influences of a single or few 

shares (see critiques in the recent literature, Borusyak et al., (2018), Goldsmith-Pinkham 

et al. (2020), or Adao et al. (2019), and our placebo tests below).  

A second advantage of our U.S.-focused shift-share instrument is that a given surname 

is typically not bound to a specific county of origin (as is more common with country-

level analysis, see Moser et al. (2014); Parey et al. (2017)). Thus, the spatial distribution 

of the origin of mobile inventors with a surname varies substantially over time (and is the 

only variation we exploit in our IV). This makes an endogenous origin-destination 

combination (such as Indian engineers coming into Silicon Valley over long periods of 

time) highly unlikely to drive our results. Put differently, that mobile inventors with 

certain names come from various origin counties means that it is less likely that our 

“shift” is correlated with unobserved endogenous characteristics of origin areas. The 

considerable variation in the distribution of surnames over time also addresses the 

“persistence problem” with shift-share instruments in the immigration literature (Jaeger et 

al., 2018). Our instrument thus minimizes serial correlation between specific origin and 

destination regions, as criticized in studies of international migration. 

Figures 4-7, 8, 9 illustrate the variation over time and space with the example of all 

inventors that moved across the U.S. between 1976 to 2015 and have the last name 

Fleming (75 moves in total). Figure 4-7 shows how the number of mobile inventors with 

surname Fleming varies over time yet does not exhibit a trend. The maps in Figure 4-8 

show to which counties the Flemings moved to in the 1980s, 1990s, and 2000s, and the 
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maps in Figure 4-9 show the origin counties the Flemings moved away from in the 1980s, 

1990s, and 2000s, illustrating significant variation in origin and destination counties over 

time. In fact, to our eyes only one or two of the counties from which Flemings emigrated 

in the 1990s was also a significant source of Flemings in the 2000s (Figure 4-9). The 

same appears true for destination counties in Figure 8, as just one example of why our 

county-level instrument should be less susceptible than a country-level instrument to the 

“persistence problem.”  

 

 

Figure 4-7. Frequency of moving inventors within the U.S. named Fleming over time 
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Figure 4-8. Destination counties of moving inventors within the U.S. named Fleming 
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Figure 4-9. Origin counties of moving inventors within the U.S. named Fleming 
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4.3.2 Final instrument with “leave-out” 

A remaining concern could be that at least some national movements of inventors are 

still driven by local economic conditions, and that these might be correlated with past 

shocks. It could be, for instance, that inventors and families with the name Fleming were 

always interested in mechanical engineering and thus would have settled in areas where 

mechanical engineering was in high demand in 1940. If the same area experiences a high 

demand in mechanical engineering today, then inventors with the name Fleming might be 

more likely move to that region for endogenous reasons. To reduce these endogeneity 

concerns, we leave out county d’s own inflows from the national flow of inventors with 

the same surname (see Buchardi et al. (2020), Wozniak & Murray (2012), or Hunt (2017) 

for similar approaches). Our preferred instrument is thus: 

  (3) 

where  is the total number of inventors with name n who move to 

counties outside of d. The leave-out strategy ensures that the potentially-endogenous 

choice of Flemings to move to county d does not drive changes in our instrument. 

It should be noted that both stages of our IV include county fixed effects. 

Identification thus derives from weighted time-varying changes in the number of moving 

inventors for a given surname at the national level, excluding those moving to county d, 

combined with representation of the same surname in county d in 1940. Ideally, 
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 is truly exogenous and can be used to estimate the causal impact of 

inventor inflows on using Equation (1), instrumenting  with  as in 

(3).  

 

4.3.3 Industry-specific version of the instrument 

Although most of our analyses focus on the overall number of inventors who move 

into a certain county, we are also interested in the industry-specific inflow of inventors 

and their influence on the industry-specific rate of startup foundation, e.g. how many 

biotech startups are founded in a county in response to the inflow of inventors with a 

biotech background. To this end, we create an additional dataset at the destination county-

industry-year level. We differentiate between each of the four high-tech classifications 

and the low-tech sector as defined by VentureXpert. We match inventors with these 

industries based on the technology classification assigned to each patent. If an inventor 

filed patents in more than one tech class we used the most frequent and in case of a tie the 

earliest (see Appendix 2 for details). Armed with this dataset we can, similar to (1), 

estimate the following equation with OLS:  

  (4) 

where  stands for a dependent variable observed for county d, industry i at time t. 

 is the number of inventors with a technological background closely related to 
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industry i that moved to county d in year t-1. The key difference to (1) is that we can 

control for county-year specific shocks through county-year fixed effects , i.e. we 

can effectively control for any unobserved county characteristic, irrespective of whether it 

is varying or not varying over time. This includes, for instance, the total number of 

inventors. Put differently, identification of  will only come from relative differences 

across industries within a county and year. Hence, we only expect  to be positive if, for 

instance, a higher fraction of biotech inventors out of all inventors moving into a given 

region at a given time would lead to a higher fraction of biotech startups within the same 

region and at the same time. To absorb unobserved industry-specific trends we add 

industry times year fixed effects , and to address unobserved industry-specific 

advantages or disadvantages of certain places we add industry times county fixed effects 

. Since all fixed effects enter the first and second stage of our IV regressions, they 

should further alleviate concerns with respect to unobserved trends in the attractiveness of 

certain regions that influence the movement of inventors, e.g. Silicon Valley for computer 

scientists. The match between industry-specific human capital with industry-specific 

entrepreneurial activity should also reduce measurement error, so we expect  to be 

larger when estimated with (4) than with (1). 
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4.3.4 First-stage instrument plausibility check (using 

individual -level regressions) 

Before applying our instrument at the county or county-industry level to obtain results, 

we first establish the plausibility of its first stage by investigating the linkage between the 

historical surname distribution and the geographical mobility of individual inventors. This 

approach rests on an extensive demographic literature, including the migration of people, 

social networks and mobility (Rossi, 2013). For example, Piazza et al. (1987) tracks 

migration rates using surname distribution in Italy, Degioanni & Darlu (2001) infer the 

geographical origin of migrants in a given area using surnames, and Darlu et al. (2011) 

show that surname distribution can be used to estimate mobility using the example of 

Savoy, France. Studies also use surnames to investigate social mobility, e.g., whether 

social status changes over centuries (Clark & Cummins, 2014) and whether wealth moves 

over generations (Clark & Cummins, 2015). In a recent study, Grilli & Allesina (2017) 

perform a surname analysis on academic professors to compare academic systems in the 

U.S., France, and Italy. 

Our IV approach rests on the assumption that historic surname shares can discriminate 

between destination counties of moving inventors with a given last name, conditional on 

moving. We empirically test this assumption by estimating a dyadic model that reflects 

the complete choice set of a moving inventor. To this end, we construct a dataset at the 

inventor-origin-destination county level that contains each potential destination county 

combined with the actual county a given inventor is emigrating from. We mark the county 
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the inventor actually moved to with a dummy and for the actual and each potential 

destination county, include the share of people in the 1940 Census with the same surname. 

Armed with this dyadic dataset covering 258,657 moves from 1988-2014, we estimate the 

following model with OLS: 

  (5) 

where  is a dummy indicating the destination 

county d.cty a given inventor i with name n moved to from origin county o.cty in year t. 

 is the population in county d with surname n in 1940;  is the population with 

surname n in the entire U.S. in 1940;  denotes a full set of year fixed effects to control 

for varying macroeconomic conditions;  controls for time-invariant unobserved 

destination county characteristics; and  controls for time-invariant unobserved origin 

county characteristics that may confound our identification of , and  is the error 

term. We estimate four versions of Equation (5): (a) only with year fixed effects; (b) year 

and destination-county fixed effects; (c) year and origin-county fixed effects; (d) year and 

destination-origin county combination fixed effects. Variant (d) absorbs time-invariant 

county-pair relationship characteristics including, for instance, the geographic distance 

between two counties. Table 4-2 presents the results. 
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Table 4-2. Destination county choice 

 origin-destination county move 

  a b c d 

Destination county 0.044*** 0.021*** 0.044*** 0.013*** 

Historic surname fraction (0.006) (0.002) (0.006) (0.001) 

N  524,583,139 524,583,139 524,583,139 523,553,217 

Year FEs Yes Yes Yes Yes 

Destination county FEs No Yes No No 

Origin county FEs No No Yes No 

Origin-destination county FEs No No No Yes 

R2 0.000 0.008 0.000 0.061 

Notes. This table presents OLS regressions of a dummy indicating an origin-destination county move of an inventor within 

the period 1980-2015 on destination counties’ historic surname shares in 1940. Unit of observation is the origin-destination 

county dyad. Standard errors clustered at the destination county appear in parentheses. ***, ** and * indicate a significance 

level of 1%, 5%, and 10%, respectively. 

 

Although we cannot interpret our LPM specification as a probability model, all 

specifications consistently show that an increase in the historic surname share in a 

potential destination county leads to a significantly higher probability of observing a 

given inventor moving to that specific destination county as compared to all other 

potential destination choices. The results in Table 4-2 support the plausibility of our 

instrument. The increase in explained variation when destination and destination-origin 

county fixed effects are included reinforces that unobserved time invariant factors also 

explain mobility decisions. 
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4.4 Results 

We begin in Table 3 by analyzing the impact of incoming inventors on entrepreneurial 

quantity. These baseline models regress the logged number of venture-backed startups 

founded in county d during year t on the logged number of incoming inventors in t-1 

(where t-1 is an upper bound of the actual time of arrival, see above for details). Table 4-3, 

model (a) estimates Equation (1) via naïve OLS. Model (b) applies our IV approach with 

the instrument defined in (3). Model (c) includes state-year fixed effects to absorb 

unobserved impacts from US states’ policy changes and model (d) adds county fixed 

effects. Model (e) shows estimates that exclude the top 10 entrepreneurial counties 

including Silicon Valley.26  

Interpreting Table 4-3, model (a) shows a strong correlation between the number of 

incoming inventors in a county with the count of venture-backed startups founded the 

following year, consistent with Glaeser & Kerr (2009). The remaining models (b-d) 

employ the IV approach and all show a significant positive impact of incoming inventors 

in a given county on the local rate of startup formation. The strength of the instrument 

drops somewhat after the inclusion of county fixed-effects; however, the first stage F 

value always remains well above conventional levels, suggesting that the IV regression 

does not suffer from weak instrument bias (Stock & Yogo, 2002; Lee et al., 2021). 

                

26 The top 10 entrepreneurial counties include Alameda County, Los Angeles County, Orange County, San 

Diego County, San Francisco County, San Mateo County, Santa Clara County in California, Middlesex 

County in Massachusetts, New York County in New York and King County in Washington. 
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Table 4-3. Impact of incoming inventors on local venture backed startups 

 Venture-backed startups founded 

 a b c d e 

 

OLS IV IV IV 

IV  

(w/o top 10 

counties) 

Incoming Inventorst-1 0.360*** 0.510*** 0.513*** 0.180*** 0.170*** 

  (0.019) (0.027) (0.027) (0.040) (0.040) 

N 65,247 65,247 65,247 65,247 65,058 

First stage F  804.265 781.375 175.723 139.252 

Year FE Yes Yes No No No 

State FE Yes Yes No No No 

State-Year FE No No Yes Yes Yes 

County FE No No No Yes Yes 

R2 0.500     

Notes. This table presents OLS regressions of log(number of venture-backed startups + 1). Incoming inventors as well as 

the instrument are log-transformed. Specifications (b)-(d) show results of our IV regression as described above, where 

incoming inventors are instrumented with the shift-share instrument (leave-out) in the first stage. Specification (e) show 

results of our IV regression, but excluding top 10 entrepreneurial counties from the sample. First stage F is the Kleibergen-

Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level appear in parentheses. ***, 

** and * indicate a significance level of 1%, 5%, and 10%, respectively. 

 

In our preferred model (d), the coefficient also drops below the naïve OLS estimate, 

arguably because the IV reduces bias from self-selection of inventors into more 

prosperous counties. Model (e) further supports that our results are not limited to Silicon 

Valley and similar areas. Rather, arriving inventors give rise to more startups generally. 

Under the assumption that the estimated coefficient can be interpreted as an elasticity, 

model (d) suggests that a 10% increase in the rate of incoming inventors increases the rate 
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of venture-backed startups founded by 1.8% at the mean.27 Translating the relative 

increases into absolute numbers suggests that 10 more inventors lead to 0.035 more 

startups. Put differently, a county can expect one additional venture-backed startup for 

every 28.4 incoming inventors.  

 

4.4.1 Technology-specific effect 

One concern with the baseline analysis is that the linkage between the arrival of 

inventors in fields unrelated to the industry where startups are founded, which may add 

measurement error and downward bias our results. If for example a focal county only had 

software inventors move in, but all of the increase in startup activity was in biotechnology, 

we might wonder whether our model accurately enough resembles the notion of an 

application of task-specific human capital (Gibbons & Waldman, 2004) to relevant new 

ventures. To this end, we turn to the county-industry level instrument, as described above 

and formally shown in Equation 4, where inventors are mapped to specific VentureXpert 

industry categories based on the corresponding technology classes of their patents (Table 

A2-1 in Appendix 2). The analysis resembles that of Table 4-3, but the dependent variable 

is the number of startups (models a and b) founded in industry i at a given county c and 

time t. The finer unit of measurement leads to an increase in the number of observations 

                

27 It requires a careful interpretation of the estimate. As we did not consider detailed characteristics or types 

of inventors, the estimate may have been either upward or downward biased. For instance, corporate 

inventors who are affiliated in a firm may have fewer incentives to found a startup compared to lone inventors 

if they relish job security or complementary assets within the firm. In contrast, they may also have more 

chances to spin off and create a startup based on their knowledge developed in the previous firm. Thus, a 

careful consideration of detailed characteristics is required when interpreting the estimate.    
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although the underlying data source stays the same. Econometrically it has the advantage 

of allowing absorption of any unobserved shocks at the county level, whether time variant 

or invariant, through a richer set of fixed effects: county-industry, county-year, and 

industry-year. 

Table 4-4, model (a), estimates a positive effect on the founding of ventures in the 

same industry as the inventors of supporting technologies. Table 4-4 model (a) implies 

that a 10% increase in the rate of incoming inventors increases the rate of venture-backed 

startup formations in their field by 5.1% at the mean. The larger positive coefficient, 

relative to Table 4-3 model (d), is consistent with a reduction in measurement error. This 

result suggests that the findings in Table 4-3 are not spurious due to a generally “rising 

tide” of startups due to an overall increase in population or supply of technical talent 

overall; rather, startups arise in the same sectors in which talent has recently been boosted. 

This supports the inference that an increase in the local supply of technical human capital 

is causally responsible for entrepreneurial activity in that same sector. It is reminiscent of 

Bell et al.’s (2020) finding that children are not only more likely to become inventors 

when they are born in the vicinity of more inventors, but they are more likely to become 

inventors in the same fields as the inventors they are exposed to. 

The field-specific nature of this exposure is further reinforced by model (b), which 

reveals a negative effect for unrelated technical sectors. This offsetting result makes sense 

in the context of venture-backed startups, as venture investors must decide how to 

allocate their dollars. If biotech inventors arrive in the county and biotech startups get 
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funded, it follows that fewer (local) dollars are available for non-biotech startups, as we 

see in model (b). These results support Lerner & Nanda’s (2020) arguments that VCs look 

for, “…a very narrow band of technological innovations…” (p. 238) and that venture 

capital reaches a relatively small proportion of entrepreneurial startups.  

 

Table 4-4. Industry-specific inventors and startups  

 Venture-backed startups founded 

  a b 

 

In same  

industry 

In different 

industries 

 IV IV 

Incoming 

Inventorst-1 

0.507*** -0.320*** 

  (0.052) (0.033) 

N 326,235 326,235 

First Stage F 143.955 143.955 

County-Industry 

FE 
Yes Yes 

County-Year FE Yes Yes 

Industry-Year FE Yes Yes 

Notes. This table presents OLS regressions of log(number of venture-backed startups + 1). All specifications show results 

of our IV regression as described above, where incoming inventors are instrumented with the shift-share instrument (leave-

out) in the first stage. Specifications (a) and (b) present the results for number of venture-backed startups founded in the 

same and different industries compared to the expertise of incoming inventors, respectively. First stage F is the Kleibergen-

Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level appear in parentheses. ***, 

** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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4.4.2 Quality of startups (Successful vs. Failure) 

So far, we have established that the arrival of inventors is responsible for the founding 

of new firms. Although many governments adopt the number of startups as an easy-to-

count metric (Lerner, 2009), to truly contribute to jobs, productivity, and growth one 

would want to measure successful startups. Haltiwanger et al. (2013) note that although 

startups create many jobs, they also destroy many jobs because failure is the modal 

outcome. But “success” is not easily discerned. Although Initial Public Offerings almost 

always indicate a successful startup, acquisitions can be an ambiguous indicator of 

success. Puri & Zarutski (2012) report that many venture-backed failures are “disguised” 

as acquisitions, often sold for pennies on the dollar. As noted above, VentureXpert was 

missing many exit values, so we merged Pitchbook and CrunchBase data with 

VentureXpert to augment coverage.  

In Table 4-5 we only consider the venture-backed startups founded in county d during 

year t as the dependent variable that become successful within a ten-year window. In 

model (a), “Successful” is determined retrospectively as the number of firms founded that 

achieved an IPO or were acquired with a 125% rate of return (as per Ewens & Marx, 

2018).  The estimates from model (a) suggest that a 10% increase in the rate of incoming 

inventors increases the rate of successful venture-backed startups founded by 1.0% at the 

mean. Translating the relative increases into absolute numbers suggests that 10 more 

inventors lead to 0.022 more successful startups. Put differently, a county can expect one 

additional successful venture-backed startup for every 460 incoming inventors.  
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The result in model (a) indicates that incoming inventors are not only responsible for 

an increase in entrepreneurial activity, as in Table 4-4, but also an upshot in successful 

startups and assumedly the accompanying jobs, innovations, growth, and liquidity events. 

One might wonder whether these inventors are only responsible for startups that “just 

barely” succeeded in returning capital to investors, as opposed to generating some of the 

more spectacular returns and success stories. We further raised the threshold of an exit 

value to 500% of total venture capital acquired in model (b), which substantially reduces 

the magnitude of the estimated coefficient but remains statistically significant. In model 

(c), we show that inventors even give rise to so-called “unicorn” startups with exit values 

in excess of 1 billion dollars. 

Of course, this increase in the number of successful startups—at all levels—could be 

a mechanical result of “more shots on goal” so to speak. That is, investors place more 

bets on more startups and win more often. Therefore, we also test how the influx of 

inventors affects the failure rate of startups, i.e., venture-backed startups founded in 

county d during year t that eventually failed. In model (d), we use the traditional measure 

of “failed” startups as those that are currently Defunct or Bankrupt as indicated in 

VentureXpert. The results suggest arriving inventors reduce formation of failed startups in 

the county. Mindful of the Puri & Zarutskie (2012) discovery of failed venture-backed 

startups “disguised” as acquisitions, in model (e) we include with bankruptcies exits with 

a valuation lower than 125% of total venture capital invested. Model (e) likewise shows a 

negative effect of incoming inventors on failed startup foundations (and is robust to 
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eliminating exits with >100% return on investment, or >50%). We conclude that 

inventors not only causally improve the quantity but also the quality of entrepreneurship.  

 

Table 4-5. Venture-backed startups: Successful vs. Failure  

  
Successful venture-backed startups 

 Failed venture-backed 

startups 

 a b c  d e 

 

Successful 

(RoR ≥ 

125%) 

 Successful 

(RoR ≥ 

500%) 

Successful 

(Exit ≥ 1B) 

 

Failed 

Failed  

or RoR < 

125% 

 IV IV IV  IV IV 

Incoming 

Inventorst-1 

0.104*** 0.068*** 0.014**  -0.212*** -0.123*** 

  (0.033) (0.023) (0.006)  (0.028) (0.027) 

N 65,247 65,247 65,247  65,247 65,247 

First Stage F 175.723 175.723 175.723  175.723 175.723 

State-Year FE Yes Yes Yes  Yes Yes 

County FE Yes Yes Yes  Yes Yes 

Notes. This table presents OLS regressions of log(number of venture-backed startup foundations + 1). All specifications 

show results of our IV regression as described above, where incoming inventors are instrumented with the shift-share 

instrument (leave-out) in the first stage. In specification (a), we define “successful” startups as those that complete either an 

IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture capital acquired. In specification 

(b), we raised the threshold of an exit value to 500% of total venture capital acquired. In specification (c), we define we 

define “successful” startups as those that complete either an IPO or successful acquisition within 10 years and achieve an 

absolute value ≥ 1B dollars, respectively. In specification (d), we define “failed” startups as those that are currently 

“Defunct” or “Bankruptcy” as indicated in VentureXpert database. In specification (e), we also include startups that 

complete either an IPO or successful acquisition within 10 years, but achieve a value < 125% of total venture capital 

acquired. Incoming inventors as well as the instrument are log-transformed. First stage F is the Kleibergen-Paap Wald F 

statistic of the first stage regression. Standard errors clustered at the county level appear in parentheses. ***, ** and * 

indicate a significance level of 1%, 5%, and 10%, respectively. 
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4.4.3 Reallocation from low-tech into high-tech sectors 

In Table 4-6 we dig deeper into the dynamics underlying the reallocation in Table 4-5 

from lower to higher quality investments. In exploring these mechanisms, we are mindful 

of past findings that venture investors are local in their investment ability (Sorenson & 

Stuart, 2001), sensitive even to the availability of direct vs. connecting flights (Bernstein 

et al., 2016). Therefore, state- and even county-level investment decisions may be 

influenced by the local supply of inventors. We separate high-tech (biotechnology, life 

science, computer and communication and semiconductor) from low-tech ventures as 

defined by VentureXpert. Models (a) and (d), which resemble Table 4-3 in using count of 

startups as the dependent variable, show a shift from low-tech to high-tech startups upon 

inventor arrival.  

Models (b, c and e, f) of Table 4-6 explore the dynamics of this reallocation from low- 

to high-tech, breaking down high- and low-tech into Successful vs. Unsuccessful as in 

models (a) and (d) of Table 5. Model (c) of Table 6 shows a clear shift away from failed 

low-tech startups.  Model (b) shows that successful low-tech startups also decrease in 

response to arrival of inventors, though the estimated coefficient is much smaller in 

magnitude than that of failed low-tech startups and also less precisely estimated. This 

suggests that the shift is primarily away from the failed startups in low-tech industries; in 

other words, investors appear savvy enough to keep investing in low-tech firms that prove 

successful, but they avoid less promising low-tech vehicles when inventors arrive. 
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Models (e) and (f) largely echo the results of Table 4-5, again suggesting that the influx of 

inventors improves the efficiency of venture investment, reallocating away from failed, 

low-tech startups toward successful, high-tech startups. 

 

Table 4-6. Venture-backed startups: high-tech vs low-tech, successful vs. unsuccessful  

 Low tech  High tech 

 a b c  d e f 

 All startups Successful Failed  All startups Successful Failed 

 IV IV IV   IV IV IV 

Incoming Inventorst-1 -0.136*** -0.017* -0.163***  0.356*** 0.128*** -0.083*** 

  (0.029) (0.010) (0.022)  (0.042) (0.034) (0.018) 

N 65,247 65,247 65,247  65,247 65,247 65,247 

First Stage F 175.723 175.723 175.723  175.723 175.723 175.723 

State-Year FE Yes Yes Yes  Yes Yes Yes 

County FE Yes Yes Yes  Yes Yes Yes 

Notes. This table presents OLS regressions of log(number of startup foundations + 1) separated by high tech and low tech 

industries. High- vs. low-tech are categorized according to VentureXpert classifications. Specification (a) and (d) show 

results of all venture-backed startups foundations. Specification (b) and (e) show results of successful venture-backed 

startups foundations, where “successful” startups are defined as newly founded venture-backed startups that complete 

either an IPO or successful acquisition within 10 years and achieve a value ≥ 125% of total venture capital acquired. 

Specification (c) and (f) show results of failure venture-backed startups foundations, where “failed” startups are defined as 

those that are currently “Defunct” or “Bankruptcy” as indicated in VentureXpert database. Incoming inventors as well as 

the instrument are log-transformed. All specifications show results of our IV regression as described above, where 

incoming inventors are instrumented with the shift-share instrument (leave-out) in the first stage. First stage F is the 

Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors clustered at the county level appear in 

parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, respectively. 
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4.4.4 Robustness - Alternative instrument constructions 

Although the validity of shift-share instruments does not require exogeneity of the 

shares, and concerns should be lessened by the inclusion of county fixed effects, we 

nonetheless estimate robustness checks that should further alleviate concerns of 

potentially-endogenous share characteristics. We re-estimate model (d) of Table 4-4, 

replacing the instrument with alternative calculations of the historic name shares (still 

applying the leave out strategy). Table 4-7 shows the results for these alternative 

instruments. 

For the first alternative instrument (model a), we consider only people in the 1940 

Census that lived in a given county before 1935. We thus effectively enlarge the gap 

between the shares and the actual moves of inventors and reduce potential correlation 

between historic and current inventor migration shocks. In model b, we exclude the 50 

surnames that appear most frequently in the historic data, which should reduce concerns 

that correlated shares of two counties may lead to an over-rejection problem (as shown by 

Adao et al., 2019). In our third construction (model c), we exclude wealthy families of 

each county as inventors may benefit even generations later from their ancestors’ wealth. 

Using the historic house value in the 1940 Census, we excluded families holding more 

than 1% of the total house value of a given county. 

Our fourth construction (model d) departs from the shift-share approach, instead 

calculating the inventor’s separation from their surname’s historic geographic centroid. 

We use the inverse geographic distance between each county centroid and the geographic 
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centroid for an inventor’s surname as weights when constructing the instrument. The 

distance between a county’s centroid and a surname’s historic geographic centroid has the 

advantage of a very low correlation with any future county or inventor specific 

characteristics. A limitation of this fourth instrument construction is that most surnames 

are clustered in multiple geographic and typically urban regions. Thus, even if there is 

one largest centroid, we will calculate distance from it even if a somewhat smaller but 

much-closer aggregation exists. The shift-share instrument does not suffer from this 

limitation and remains our preferred instrument. 

The coefficient sizes remain robust across different specifications, although the 

strength of the instrument declines in model (d) compared to our original instrument. 

Especially with respect to our centroid-distance instrument, this is not surprising. That the 

instrument strength and coefficient size does not decline greatly when excluding 

particularly influential families supports the assumption that either 1) there is no direct 

link between the historic name shares and the second stage regression, or 2) the county 

fixed effects effectively absorb such potentially worrying relationships. 

 

4.4.1 Placebo tests: random reassignment of instrument 

Given the relative strength of the instrument, one might wonder whether our IV 

effectively absorbs unobserved local characteristics and hence leads to an overly strong 

rejection of the null hypothesis. To address these concerns, we run three placebo tests in 

the spirit of Adao, Kolesár, & Morales (2019, henceforth AKM). We randomly reassign  
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Table 4-7. Alternative instruments 

 Successful venture-backed startups founded  

  a b 
 

c 
 

d 

 

Only 

individuals 

settled by 1935 

Dropped 50 

most frequent 

surnames 

Dropped 

wealthy 

families  

Alternative 

instrument 

using centroid 

 IV IV IV IV 

Incoming Inventorst-1 0.110*** 0.109*** 0.106*** 0.272** 

  (0.036) (0.035) (0.033) (0.109) 

N 65,247 65,247 65,247 65,247 

First Stage F 159.068 162.303 183.076 22.971 

State-Year FE Yes Yes Yes Yes 

County FE Yes Yes Yes Yes 

Notes. This table presents OLS regression of log(number of successful venture-backed startups founded + 1), where  

“successful” startups are defined as newly found venture backed companies that complete either an IPO or successful 

acquisition within 10 years and achieve a value > 125% of total venture capital acquired. Incoming inventors as well as the 

instrument are log-transformed. Model (a) restricts the instrument to those who settled in the county of the 1940 Census by 

1935; (b) excludes the 50 most frequent surnames; (c) excludes the wealthiest 1% of surnames per 1940 Census house 

value; (d) replaces the shift-share approach with the inverse geographic distance between the county and the centroid for 

the inventor’s surname. First stage F is the Kleibergen-Paap Wald F statistic of the first stage regression. Standard errors 

clustered at the county level appear in parentheses. ***, ** and * indicate a significance level of 1%, 5%, and 10%, 

respectively. 

 

the instrument in three ways: (1) across the entire sample, (2) across counties within a 

given year, and (3) across time within a given county. Then, we re-run our baseline model 

with each placebo 1000 times. Table 4-8 summarizes the results of the first and second 

stages. All three placebos consistently show that a random assignment effectively 

eliminates a significant prediction of incoming inventors in the first stage, and false 
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identification of a causal impact of incoming inventors on the number of successful 

venture-backed startups in the second stage. Hence, our IV estimates do not seem to 

suffer from the artificial over-rejection of the null hypothesis as identified in many other 

applications of shift-share instruments by AKM. The reason would seem to lie in the 

effective absorption of unobserved time-invariant heterogeneity at the county level. 

 

Table 4-8. Results from placebo analysis 

 a b c d 

 Coefficient Std. Err. Rejection rate 

 (Mean) (Std. Dev.) (Median) (%) 

Panel A: Placebo IV randomly shuffled across the overall sample 

1st stage 0.000 0.002 0.002 5.5 

2nd stage 2.223 67.497 0.598 0.0 

Panel B: Placebo IV randomly shuffled across counties within each year 

1st stage 0.000 0.002 0.002 5.2 

2nd stage 0.090 11.871 0.638 0.1 

Panel C: Placebo IV randomly shuffled across years within each county 

1st stage -0.004 0.008 0.007 8.5 

2nd stage -0.264 4.164 0.742 0.1 

Notes. We randomly shuffle our instrument to construct placebo instrument variables across the overall sample (Panel A), 

across counties within each year (Panel B), and across years within each county (Panel C). For each placebo instrument 

variables, we ran 1000 regressions of log(number of successful venture-backed startup foundation + 1) on incoming 

inventors, instrumented with the placebo IV that is newly generated for each regression. Incoming inventors as well as the 

placebo instrument are log-transformed. Column (a) and (b) report the mean and standard deviation of the coefficients 

obtained from 1000 placebo regressions, respectively. Column (c) reports the median value of the standard error for the 

coefficient of each regression over 1000 placebo regressions. Column (d) reports the rate of which the regression rejects the 

null hypothesis of no effect at the 5% significance level over 1000 placebo regressions. We report these values 

corresponding to each of the first and second stages of the placebo regressions. 
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4.5 Conclusion 

We have provided arguably causal evidence regarding how the arrival of inventors 

influences both the quantity and quality of entrepreneurship. Our shift-share instrument, 

based on the county-level distribution of surnames in the 1940 U.S. Census, addresses 

limitations of similar instruments in the international-migration literature. We are able to 

show a sector-specific uptick in entrepreneurial activity and also tie the arrival of 

inventors to a rise in successful startups as well as a lowering of unsuccessful startups. 

Our estimates indicate that approximately 460 new inventors in a county can create a 

successful startup, and even “unicorn” startups with >$1B exits can be traced to inventor 

arrivals. The approach further illustrated how venture capital firms shifted their 

investment towards high technology opportunities, at the expense of unsuccessful low 

technology opportunities. The shift away from unsuccessful low tech to high tech firm 

starts held across all U.S. counties—not just Silicon Valley and similar hotspots—as well 

as a variety of instruments, and measures. 

Although this work sought to explain how the supply of inventors influenced high-

growth entrepreneurship, it can also speak to the classic question of why industries cluster 

geographically (Rosenthal & Strange, 2004; Overman & Puga, 2010; Ellison et al., 2010). 

Much work has validated the Marshallian agglomeration arguments of production 

economies, labor pooling, and knowledge spillovers, yet that work has often struggled to 

isolate and estimate causal mechanisms (Glaeser & Kerr 2009). The shift share 
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instrument developed here enabled investigation of one arguably causal linkage; inventor 

arrival fuels an increase and funding in startups in those inventors’ specific industries. 

Furthermore, if inventors move towards incipient clusters (e.g., semiconductors in Silicon 

Valley in the 1960s), their impact on field-specific entrepreneurship and venture capital 

investment could create a feedback dynamic that directly and dramatically fuels industry 

concentration. 

Given the increasing importance of technology, innovation, and the growth of the 

knowledge economy, these results also imply an ever-increasing role for STEM labor 

pooling amongst the three classic Marshallian mechanisms. Assuming that inventor 

immigration to a region bolsters this role, these results would imply that pooling drives 

investment which could in turn result in the co-location of production assets. Given that 

knowledge spillovers are localized and probably reliant upon personal inventor 

communication (Saxenian, 1996; Thompson and Fox-Kean 2005), then inventor pooling 

should also increase knowledge spillovers. Future research should seek to disentangle the 

Marshallian mechanisms that drive agglomeration, estimate their feedback effects, and 

quantify their relative importance. 

The mutual reinforcement of these agglomeration mechanisms could partially explain 

the rapid emergence of Silicon Valley and the growth in inequality across regions in the 

U.S. (Glaeser & Hausman, 2020; Lerner & Nanda, 2020). Moretti (2012) labels this 

phenomenon the “Great Divergence” and provides an example of two relatively similar 

California towns in 1969 – Menlo Park and Visalia. Surprisingly, given their wide 
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differences now across wealth, crime, education, and health measures, the towns had 

relatively similar incomes and educational levels in 1969. The venture capital firm 

Kleiner-Perkins founded their operations in Menlo Park in 1972 and became prominent 

after a series of high-profile successes, including Amazon, Google, and Genentech. Their 

private success and similar successes by other nearby investors created a striking 

concentration of wealth (Lerner & Nanda, 2020), for example, for many years, real estate 

on Menlo Park’s Sand Hill road was the most expensive in the world. 

Independent from its implications for regional inequality, this work enables a crude 

estimate of the “value” of an inventor; geography and mobility in this respect simply 

provide an instrument to get at that estimate. This estimate is obviously sensitive to the 

region in which it is derived; the value of an inventor surely varies across regions, based 

on the inventor, the region, and the interaction of the two. Although this work used arrival 

in a county to back out the value of an arriving inventor, a home-grown inventor might be 

just as useful to local entrepreneurship (for example, Steve Wozniak already lived and 

worked in Silicon Valley before founding Apple). Indeed, if a home-grown inventor had 

easier access to existing networks of friends, family, investors, and fellow entrepreneurs, 

they might be even more effective at supporting the success of high-tech firms. It would 

be interesting to explore whether inventor arrival crowds out–or complements—locally 

grown inventors and entrepreneurship (Azoulay et. al. 2021). 

Though beyond the scope of this work, this study leaves several possibilities for 

future research. This study does not consider specific characteristics of inventors and 
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estimate the heterogeneous effect of inventors with different characteristics. Inventors 

with different characteristics, for instance, by type of their expertise (e.g., Arts & Fleming, 

2018), individual characteristics (e.g., Zwick et al., 2017), affiliation status (e.g., Singh & 

Fleming, 2010), or intangible assets (e.g., Paruchuri & Eisenman, 2012), would have a 

differential impact on regional entrepreneurship. These are not included in this study as 

the purpose of this work is to obtain an accurate estimate of the value of inventors in 

terms of entrepreneurship using the novel shift-share instrument. Thus, future work could 

explore the heterogeneous effect of inventors depending on their individual 

characteristics. The causal effect of startup activities in a region on inventor mobility 

to/from the region is another important research gap to address. Though this study rules 

out the issue of reverse causality in estimating the causal impact of inventors on 

entrepreneurship, the foundation of startups and the career opportunities would influence 

the mobility of inventors. Cheyre et al. (2015) showed how spinoffs promote mobility of 

inventors moving from incumbents to recent entrants focusing on the semiconductor 

industry in Silicon Valley. Since regional entrepreneurship is not limited to spinoffs, a 

further investigation is required to fully understand the influence of startup activities. 

Future work could also estimate how the loss of inventors impacts the source region. 

Our back of the envelope calculations implied that inventor arrivals enable 17.9% of 

high-tech entrepreneurship, however, this calculation ignores the probably negative 

impact on the home regions of the arrivals. Although beyond the scope of this work, a full 

accounting of these effects might enable an estimate of the social welfare of inventor 
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mobility. This could then inform policy, for example, should policies encourage industries 

and technologies to cluster, because such clustering improves innovative efficiency (for 

one example, through increases in knowledge spillovers), or should policies encourage 

industries to disperse, and hence distribute jobs and wealth in a more geographically 

equitable way? 

Beyond inventor pooling and investment, regional entrepreneurship ecosystems also 

depend on physical and institutional infrastructure, lawyers, and non-technical 

entrepreneurial talent. There are surely declining marginal returns as the supply of tech 

talent outstrips complementary resources needed for entrepreneurship. This can be seen in 

the negative effects inventors in one field have on the financing of startups in other fields. 

Future work should investigate whether the arrival of an inventor in one county decreases 

entrepreneurship in nearby counties, possibly due to competition for complementary 

resources. 



137 
 

Chapter 5. Conclusion 

The dissertation extends prior literature on innovation by demonstrating how 

scientific knowledge and human capital are key components of innovation and economic 

growth. 

Using a data sample comprising scientific discovery in US FFRDCs, Chapter two of 

this dissertation shows how the patents filed by government scientists influence the 

dissemination of scientific discovery and follow-on inventions based on scientific 

knowledge. It finds a means of which help disseminate scientific discoveries in 

government laboratories, i.e., patent filing by the responsible government scientists. This 

finding provides important practical implications for policymakers regarding government 

laboratories, especially those aiming to create a complementary structure between 

government and industrial laboratories.   

Chapter three of this dissertation explores the conditions that influence mobility 

decision of inventors. This chapter demonstrates that historic surname distribution 

influences the geographical mobility of inventors and how it interacts with other families, 

inventors, and institutional factors to shape the mobility decision. It provides practical 

guidance for policymakers to attract or retain inventors in their locations. 

Chapter four of this dissertation presents the significant role of inflowing inventors in 

regional entrepreneurship. The newly developed shift-share instrument allows the 

estimation of the effect of incoming inventors on startup activities at the county level. 



138 
 

Empirical evidence on various aspects of surname effects in Chapter three supports the 

plausibility of the share part of the shift-share instrument. Strengthening the causality 

with the instrument, Chapter four estimates the effect size of inventors on the rate and 

quality of startup foundations based on comprehensive data on inventors and venture-

backed startups in the US. This provides empirical evidence to understand how Silicon 

Valley was possible, and thus help policymakers plan for a regional innovation ecosystem. 

The dissertation leaves directions for future studies in the field of innovation. Chapter 

two of the dissertation examines only one of the many means that may help disseminate 

scientific discovery in government laboratories. Considering the importance of 

dissemination and utilization of government science, there are still many research 

possibilities around the means to diffuse government science, e.g., collaboration of 

scientists, conference participation, etc. Chapter three and four of the dissertation develop 

and test the plausibility of the shift-share instrument for the geographical mobility of 

inventors. This instrument can aid future studies that estimate the causal impact of 

inventors or other types of human capital on regional outcomes, opening up possibilities 

for estimating the value of human capital in various aspects.    
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Appendix 1: Appendix for Chapter two  

Rule-based text matching algorithm to classify the origin of science papers 

We use data on scientific papers provided by the Microsoft Academic Graph (MAG) to 

identify scientific papers that originate in each type of laboratory: 1) US FFRDCs, 2) 

government laboratories in general, and 3) industrial laboratories. The MAG database 

provides information on the authors and the corresponding affiliations for each paper-

author. The affiliation information is provided in a raw string format, which includes the 

names and addresses of affiliated institutions. Thus, to classify the origin types of 

scientific papers, it is necessary to develop a rule-based text matching algorithm that 

captures the institution information from the raw string and identifies each scientific 

paper as originating from a government laboratory. 

 

1) Identifying scientific papers of US FFRDCs 

We start by making a dictionary of possible names for each FFRDCs based on the master 

list of US FFRDCs, which has been maintained by the National Science Foundation of 

the United States. We include the official name of FFRDC, previous name, and 

alternative names, such as abbreviations. Table A1 provides the list of FFRDCs and their 

alternative names. We match the names on the entire string with a strict restriction 

applied for the string before and after the word. We also consider possible alternatives for 

the word ‘Laboratory’ (i.e., ‘Lab’, ‘Labs’, ‘Laboratories’) and ‘Observatory’ (i.e., 

‘Observatories’) in the name of FFRDCs. 

 

Table A1-1. Name of FFRDCs 

Num. Official name Previous names Alternative Names 

0 Aerospace Federally Funded Research 

and Development Center 

 

Aerospace FFRDC 

1 Ames Laboratory 

 

  

2 Argonne National Laboratory 
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3 Arroyo Center 

 

  

4 Brookhaven National Laboratory 

 

  

5 National Security Engineering Center C3I Federally Funded Research and 

Development Center 

C3I; C3I FFRDC 

6 Center for Advanced Aviation System 

Development 

 

CAASD 

7 Center for Enterprise Modernization IRS Federally Funded Research and 

Development Center 

IRS FFRDC; Internal 

Revenue Service 

8 Center for Naval Analyses 

 

  

9 Center for Nuclear Waste Regulatory 

Analyses 

 

  

10 Center for Communications and 

Computing 

Institute for Defense Analyses 

Communications and Computing 

IDA 

Communications and 

Computing 

11 CMS Alliance to Modernize Healthcare Centers for Medicare and Medicaid 

Services Federally Funded Research 

and Development Center 

CMS FFRDC 

12 Fermi National Accelerator Laboratory 

 

Fermilab 

13 Homeland Security Operational 

Analysis Center 

 

HSOAC 

14 Homeland Security Systems 

Engineering and Development Institute 

Homeland Security Studies and 

Analysis Institute; Homeland Security 

Institute 

HSSEDI 

15 Idaho National Laboratory Idaho National Engineering and 

Environmental Laboratory; Idaho 

National Engineering Laboratory; 
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National Reactor Testing Station 

16 Jet Propulsion Laboratory 

 

JPL 

17 Lawrence Berkeley National 

Laboratory 

 

Lawrence Berkeley 

Laboratory 

18 Lawrence Livermore National 

Laboratory 

 

Lawrence Livermore 

Laboratory 

19 Lincoln Laboratory 

 

  

20 Los Alamos National Laboratory 

 

  

21 National Biodefense Analysis and 

Countermeasures Center 

 

  

22 Frederick National Laboratory for 

Cancer Research 

National Cancer Institute at Frederick; 

Frederick Cancer Research and 

Development Center; NCI Frederick 

Cancer Research and Development 

Center 

NCI-Frederick; 

National Cancer 

Institute-Frederick; 

NCI Frederick; 

National Cancer 

Institute Frederick 

23 National Cybersecurity Center of 

Excellence 

 

NCCoE 

24 National Center for Atmospheric 

Research 

 

  

25 National Defense Research Institute 

 

  

26 NSF's National Optical-Infrared 

Astronomy Research Laboratory 

National Optical Astronomy 

Observatory; Cerro Tololo Inter-

American Observatory; Kitt Peak 

National Observatory; Sacramento 

National Optical-

Infrared Astronomy 

Research Laboratory; 

National Optical 
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Peak Observatory Infrared Astronomy 

Research Laboratory; 

NOIRLab 

27 National Radio Astronomy Observatory 

 

  

28 National Renewable Energy Laboratory Solar Energy Research Institute   

29 National Solar Observatory 

 

  

30 Oak Ridge National Laboratory  Holifield National Laboratory   

31 Pacific Northwest National Laboratory 

 

  

32 Princeton Plasma Physics Laboratory  

 

  

33 Project Air Force 

 

  

34 Sandia National Laboratories 

 

Sandia 

35 Savannah River National Laboratory Savannah River Technology Center   

36 Science and Technology Policy Institute Critical Technologies Institute IDA Science and 

Technology Policy 

Institute; IDA STPI 

37 SLAC National Accelerator Laboratory Stanford Linear Accelerator Center   

38 Software Engineering Institute 

 

  

39 Systems and Analyses Center 

 

IDA SAC 

40 Thomas Jefferson National Accelerator 

Facility 

Continuous Electron Beam 

Accelerator Facility 

Jefferson Lab 
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2) Identifying scientific papers of government laboratories in general 

We start by matching based on keywords that often appear in the names of government 

laboratories. To avoid confounding or matching errors, we first used keywords consisting 

of two or more consecutive words. Then, for several prolific laboratories with an 

abbreviated name and one-word keywords representing a government organization, we 

match the keywords with a strict restriction applied for the string before and after the 

word. Finally, we used a list of government laboratory names that were collected through 

a manual search. 

 

Table A1-2. Examples of words included for each of the steps to identify government 

laboratories in general 

Two-word Keywords ‘AMERICAN OBSERVATORY’, ‘METROPOLITAN INSTITUTION’, ‘METROPOLITAN 

INST.’, ‘NATIONAL ACCELERATOR’, ‘NATIONAL CENTER’, ‘NATIONAL 

CYBERSECURITY’, ‘NATIONAL FACILITY’, ‘NATIONAL INST.’, ‘NATIONAL 

LABORATORIES’, ‘NATIONAL LABORATORY’, ‘NATIONAL OBSERVATORIES’, 

‘FEDERALLY FUNDED’, ‘NATIONAL OBSERVATORY’, ‘NATIONAL PROGRAM’, 

‘NATIONAL RESEARCH COUNCIL’, ‘NATIONAL SECURITY’, ‘NATIONALLY 

FUNDED’, ‘POLICY INSTITUTE’, ‘POLICY RESEARCH’ 

One-word keywords  

(inc. abbreviations) 

‘AGENCY’, ‘AIR FORCE’, ‘AMES’, ‘ARGONNE’, ‘ARROYO’, ‘BROOKHAVEN’, ‘C3I’, 

‘CMS’, ‘CNRS’, ‘CSIR’, ‘INRIA’, ‘INSERM’, ‘LAWRENCE’, ‘LIVERMORE’, 

‘MINISTRY’, ‘NCATS’, ‘NCCIH’, ‘NCMRR’, ‘NCRR’, ‘NHGRI’, ‘NHLBI’, ‘NIAAA’, 

‘NIAID’, ‘NIAMS’, ‘NIBIB’, ‘NICHD’, ‘NIDA’, ‘NIDCD’, ‘NIDCR’, ‘NIDDK’, ‘NIEHS’, 

‘NIGMS’, ‘NIMH’, ‘NIMHD’, ‘NINDS’, ‘NINR’, ‘RIKEN’, ‘SANDIA’, ‘SAVANNAH’, 

‘TRIUMF’ 

Manual collection ‘ACADEMIA SINICA’, ‘AGENCY FOR DEFENSE DEVELOPMENT’, ‘AKADEMIE DER 

WISSENSCHAFTEN DER DDR’, ‘AMERICAN HEALTH FOUNDATION’, ‘AMERICAN 

RED CROSS’, ‘CARNEGIE INSTITUTION OF WASHINGTON’, ‘CENTER FOR 

ADVANCED AVIATION SYSTEM DEVELOPMENT’, ‘CENTER FOR 

COMMUNICATIONS AND COMPUTING’, ‘CENTER FOR ENTERPRISE 

MODERNIZATION’, ‘CENTER FOR NAVAL ANALYSES’, ‘CENTER FOR NUCLEAR 

WASTE REGULATORY ANALYSES’, ‘CENTRE NATIONAL DE LA RECHERCHE 
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SCIENTIFIQUE’, ‘CHINESE ACADEMY OF MEDICAL SCIENCES’, ‘CMS ALLIANCE 

TO MODERNIZE HEALTHCARE’, ‘COMMONWEALTH OF AUSTRALIA’, 

‘COMMONWEALTH SCIENTIFIC & INDUSTRIAL RESEARCH ORGANISATION’, 

'’CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS’, ‘CONSIGLIO 

NAZIONALE DELLE RICERCHE’, ‘COUNCIL OF SCIENTIFIC & INDUSTRIAL 

RESEARCH’, ‘DEUTSCHES KREBSFORSCHUNGSZENTRUM’, ‘HEALTH 

PROTECTION AGENCY’, ‘HOMELAND SECURITY OPERATIONAL ANALYSIS 

CENTER’, ‘HOMELAND SECURITY SYSTEMS ENGINEERING AND DEVELOPMENT 

INSTITUTE’, ‘INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE’, ‘JAPAN 

AEROSPACE EXPLORATION AGENCY’, ‘JAPAN SCIENCE AND TECHNOLOGY 

AGENCY’, ‘JET PROPULSION LABORATORY’, ‘JUDICIARY ENGINEERING AND 

MODERNIZATION CENTER’, ‘LINCOLN LABORATORY’, ‘MAX PLANCK’, 

‘NATIONAL BIODEFENSE ANALYSIS AND COUNTERMEASURES CENTER’, 

‘NATIONAL CANCER INSTITUTE’, ‘NATIONAL EYE INSTITUTE’, ‘RESEARCH 

CENTER BORSTEL’, ‘SOFTWARE ENGINEERING INSTITUTE’ 

Note. The complete list is available upon request 

 

3) Identifying scientific papers of industrial laboratories 

We resort to corporate endings of different forms of businesses or their abbreviations. We 

use the followings: 'CORPORATION', 'CORP.', 'CORP', 'COMPANY', 

'INCORPORATED', 'INC.', 'INC', 'LIMITED', 'LTD.', 'LTD', 'GMBH', 'S.P.A.', 'PLC.', 

'PLC', 'CO.', 'LLC'. We match these endings on the entire string with a strict restriction 

applied for the string before and after the word. 

 

Dynamics of the effects of patenting by federal scientist on follow-on inventions 

Figure A1 shows the dynamics of the effects of patenting by federal scientists on the rate 

of follow-on inventions with overlapping subgroups (Panel A) and with no overlapping 

subgroups (Panel B). We used a ten-year window for the post-period sample to show how 

long the patent effect lasts for follow-on inventions. 
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Panel A. Follow-on patents with overlapping subgroups 

 

Panel B. Follow-on patents with no overlapping subgroups 

 

Figure A1-1. Effect of patenting by federal scientist on follow-on inventions (up to 10 

years after the focal patent granted) 
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Appendix 2: Appendix for Chapter four 

Matching between surnames in patent and Census data  

Matching surnames between Census and patent data requires cleaning of the surname raw 

strings. We convert all surnames to lower cases and delete unnecessary punctuations and 

other noise in the surnames (e.g., ’ ”_ / & ; ( ) - =). We also remove suffixes and other 

extra words after commas (e.g., ‘Foster’, ‘Sr.’, ‘deceased’). This process reduces unique 

surname strings down to 3,313,643 unique surnames in the Census data and 330,098 

unique surnames in the patent data. Out of 374,988 inventor surname raw strings, a total 

of 275,849 (73.6%) find a match in the census surname. Compared to the matching 

without these cleaning processes, which finds 230,421 census surname matches out of 

374,988 inventor surname raw strings (61.4%), our name cleaning process adds 12.2% of 

matches. In our data sample specifically, out of 3,165,207 unique inventors that applied 

for at least one patent in US, 2,894,917 inventors (91.5%) match their surname to the 

Census data. 

 

Disambiguating geographic location and matching to a county  

Although most U.S. patent front pages provide strings for the hometown and state of each 

inventor, much work must be done to accurately map those strings to counties. Figure A1 

illustrates the geographic disambiguation process. We begin with updated data processed 

via Balsmeier et al. (2018) methods, from 1976 to 2018, which includes 16,215,831 

“patent-inventor pairs” because many inventors have multiple patents. Exclusion of non-

U.S. and entirely missing data fields leaves 8,065,290 U.S. patent-inventor data points. 

Amongst these there are 72,122 unique city-state pair strings. Note that this number 

includes misspellings, neighborhoods and unincorporated areas that do not correspond to 

city and state, and outright errors. 

We exactly matched 27,299 city-state data points for 7,718,350 patent-inventors using the 

SimpleMaps (https://simplemaps.com/) concordance. We took the remaining unique and 

unmatched locations and ran them through the Google Geocoding API 

(https://developers.google.com/maps/documentation/geocoding/overview). This left 

10,413 unique city-state pairs and 85,046 patent-inventor pairs, which manual inspection 

revealed to be mainly errors. 7,980,244 patent inventor pairs were ultimately matched to a 

https://simplemaps.com/
https://developers.google.com/maps/documentation/geocoding/overview
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city and state, for a 98.9% match rate. 

Given that our instrumentation and analysis is at the county level, we need to next map 

city-state locations to counties. This is complicated by the fact that our data span 1940-

2018 and that there have been minor changes to this mapping over time. To address this, 

we begin with U.S. census records of changes from 1970 to present: 

(https://www.census.gov/programs-surveys/geography/technical-documentation/county-

changes.2010.html). Then, we manually search for changes between 1940 and 1969. We 

incorporate substantial changes to counties such as county consolidation, part annexation, 

and FIPS code changes. We build a transitive association file which tracks the changes 

and anchors all historic changes to the 2020 SimpleMaps concordance (file will be posted 

upon publication). The 1940 Census doesn't cover VI (Virgin Islands), PR (Puerto Rico), 

AK (Alaska), and HI (Hawaii), hence, these locations are not considered in the analyses.  

 

 

Figure A2-1. Geographic disambiguation process for U.S. inventor city and state 

 

 

https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.2010.html


164 
 

Mapping patent classes and inventors to VentureXpert categories 

To estimate the impact of the influx of technology specific inventors on the startup 

activities of their corresponding industry, we matched NBER technological categories 

provided by Hall et al. (2001) with VentureXpert industry categories. Table A1 details the 

manual mapping of NBER technological categories to VentureXpert’s major industry 

groups, i.e., Biotechnology, Communications and Media, Computer Related, 

Medical/Health/Life Science, Semiconductors/Other Elect, and Non-High-Technology. 

As underlying technologies overlap between the Biotechnology and Medical/Health/Life 

Science industry groups, we merged the two industry groups. As VentureXpert does not 

have corresponding industry groups for mechanical and chemical NBER technological 

categories, we excluded patent classes corresponding to these technological categories.  

Using the concordance between VentureXpert industry groups and NBER patent 

classification, we classified inventors into each of the five industry groups based on the 

most frequent industry group that each inventor had patented in. In case of a tie, we took 

the earliest industry group. We excluded inventors who patented only in patent classes 

without a corresponding VentureXpert industry group. As a result, out of 763,715 U.S. 

inventors who had more than two granted patents (whose mobility could be tracked), we 

were able to assign 602,971 inventors to each of the five VentureXpert industry groups. 
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Table A2-1. Concordance between VentureXpert industry groups and NBER patent 

classification 

Industry (VentureXpert) Sub-

Category 

Code 

Sub-Category Name Patent Classes 

Biotechnology + 

Medical/Health/Life 

Science 

31 Drugs 424, 514 

32 Surgery & Medical 

Instruments 

128, 600, 601, 602, 604, 606, 607 

33 Biotechnology 435, 800 

39 Miscellaneous-Drug 

& Med 

351, 433, 623 

Communications and 

Media 

21 Communications 178, 333, 340, 342, 343, 358, 367, 370, 375, 379, 

385, 455 

Computer Related 22 Computer Hardware 

& Software 

341, 380, 382, 395, 700, 701, 702, 704, 705, 706, 

707, 708, 709, 710, 712, 713, 714 

23 Computer 

Peripherals 

345, 347 

24 Information Storage 360, 365, 369, 711 

Semiconductors/Other 

Elect 

41 Electrical Devices 174, 200, 327, 329, 330, 331, 332, 334, 335, 336, 

337, 338, 392, 439 

42 Electrical Lighting 313, 314, 315, 362, 372, 445 

43 Measuring & Testing 73, 324, 356, 374 

44 Nuclear & X-Rays 250, 376, 378 

45 Power Systems 60, 136, 290, 310, 318, 320, 322, 323, 361, 363, 

388, 429 

46 Semiconductor 

Devices 

257, 326, 438, 505 

49 Miscellaneous-Elec 191, 218, 219, 307, 346, 348, 377, 381, 386 

Non-High-Technology 61 Agriculture, 

Husbandary, Food 

43, 47, 56, 99, 111, 119, 131, 426, 449, 452, 460 

62 Amusement Devices 273, 446, 463, 472, 473 
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63 Apparel & Textile 2, 12, 24, 26, 28, 36, 38, 57, 66, 68, 69, 79, 87, 

112, 139, 223, 450 

64 Earth Working & 

Wells 

37, 166, 171, 172, 175, 299, 405, 507 

65 Furniture, House 

Fixtures 

4, 5, 30, 70, 132, 182, 211, 256, 297, 312 

66 Heating 110, 122, 126, 165, 237, 373, 431, 432 

67 Pipes & Joints 138, 277, 285, 403 

68 Receptacles 53, 206, 215, 217, 220, 224, 229, 232, 383 

69 Miscellaneous 

Others 

1, 14, 15, 27, 33, 40, 52, 54, 59, 62, 63, 84, 101, 

108, 109, 116, 134, 135, 137, 150, 160, 168, 169, 

177, 181, 186, 190, 199, 231, 236, 245, 248, 249, 

269, 276, 278, 279, 281, 283, 289, 292, 300, 368, 

404, 412, 428, 434, 441, 462, 503 
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Abstract (Korean) 

본 학위논문은 과학지식의 확산과 발명가 이동의 관점에서 기술혁신과 

지역 경제 성장을 연구한다. 세부적으로, 정부출연연구소의 발명에 대한 

특허화가 과학 지식의 확산에 미치는 영향, 발명가의 지리적 이동을 결정 

짓는 요인, 발명가의 유입이 지역 혁신생태계와 창업 활동에 미치는 영향에 

대해 탐구하는 세 가지 소 연구로 구성된다. 각 소 연구의 분석을 위해 

대량의 데이터를 수집 및 분석하는 빅데이터 기법과 관찰 데이터에 기반하여 

주요 변인 간의 인과 관계를 추론하는 인과추론 기법을 개발 및 적용한다. 각 

연구 질문에 대한 이론적 논의와 실증 분석 결과에 기반하여, 기술혁신에 

대한 학술적 논의를 확장하고 경영적∙정책적 측면의 함의를 제시한다.  

첫 번째 소 연구에서는 정부출연연구소의 과학자들의 발명을 특허화 하는 

것이 정부출연연구소의 과학지식 확산에 미치는 영향을 규명한다. 기존의 

정부출연연구소, 특허보호, 그리고 과학기술 간의 관계에 대한 연구문헌에 

기반하여 정부출연연구소 내 과학발명에 대한 특허화가 과학지식 확산에 미칠 

수 있는 양면적 영향에 대해 논증한다. 실증분석을 위해 1986년부터 

2013년까지 과학 저널에 게재된 전 미국 연방 정부출연연구소의 과학 발명 

데이터를 수집한다. Coarsened Exact Matching 방식을 활용하여 관측가능한 

특성이 유사한 과학 발명을 추리고 이중차분법(Difference-in-Differences 

Method)을 통해 발명 특허화의 영향을 비교분석 한다. 이를 통해, 

정부출연연구소 과학자가 과학발명에 대해 특허화 하는 것이 같은 기술 
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분야에서의 혁신은 줄이는 반면 타 기술 분야에서의 혁신은 촉진하는 것을 

보인다. 또, 이로 인해 증가하는 기술 혁신은 점진적 발명보다는 위험감수형 

발명의 성격을 보이며, 높은 수준의 참신성을 가짐을 확인한다. 특히, 

정부출연연구소 연구자들의 특허 등록은 지리적, 기술적으로 거리가 먼 

발명가들의 발명활동에 유의한 영향을 미치는 것을 확인한다. 나아가, 

특허화의 영향은 해당 연구에 참여한 과학자가 더 적은 사회적 연결성을 

가질수록, 해당 과학 지식 분야가 산업에서 덜 익숙한 분야 일수록 더욱 

강화되는 것을 확인한다. 

첫 번째 소 연구을 통해 정부출연연구소의 과학자들이 직접 참여한 연구에 

대해 특허를 출원 및 등록하도록 장려하는 것이 정부출연연구소 지식의 

확산과 활용에 긍정적으로 작용한다는 이론적∙실증적 근거를 제시한다. 또, 

다양한 세부 특성 및 이질성에 대한 검증 결과를 제시함으로써, 

정책입안가들이 정부출연연구소의 특허 정책을 수립하는데 활용할 수 있는 

실질적 근거를 제시한다. 해당 소 연구의 결과는 정부출연연구소의 지식 

확산을 위해 정부출연연구소 과학자들이 외부 기업과 보다 활발히 교류할 수 

있는 기회를 만들어야 함을 제시한다. 나아가, 정부출연연구소 내부 

과학지식의 확산을 촉진하는 유의한 제도적 방안을 제안함으로써, 

정부출연연구소와 산업 내 기업 연구소가 함께 공생하고 상호 보완하는 

구조를 만드는데 기여한다. 

두 번째 소 연구에서는 발명가의 지역적 이동을 결정하는 인구통계학적 

요인에 대해 연구한다. 실증 분석을 위해 1990년과 2010년 사이 미국 
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내에서 미국 특허를 출원한 발명가 55만여 명의 지리적 이동 내역을 

추적하고, 미국 내 3천여개의 자치주(County)별 과거 인구 분포 정보를 

수집한다. 변인 간 관계의 분석을 위해 고정효과 회귀분석을 활용한다. 먼저 

인구 분포의 측면을 고려하여, 발명가가 다른 지역으로 이동하는 것은 이전 

지역에 과거 같은 성씨가 분포되어 있던 정도와 부정적인 관계를 가짐을 

확인한다. 이와 같은 과거 성씨 분포의 영향은 발명 경험, 생산성, 질, 이전 

이동 패턴, 주 활동 분야 등 발명가 개인 수준의 특성과 현재 위치한 지역의 

지역적 특성을 통제한 후에도 여전히 유의한 것을 확인한다. 추가적으로, 

성씨의 영향을 조절하거나 영향이 유의하지 않도록 하는 개인적, 가족적, 

제도적 요인을 검증한다. 또, 발명가의 성별에 따른 이질성 검증을 통해 성씨 

분포의 영향이 성별에 따라 다르게 나타나는 점을 확인한다. 

두 번째 소 연구를 통해 과거 성씨의 분포가 발명가들의 지리적 이동에 

유의한 영향을 미치는 것을 확인하고 여러가지 다른 요인과의 상호 작용을 

살펴본다. 이로써, 발명가의 유입 및 보존을 돕는 요인에 대한 실증적 근거와 

함의를 제공한다. 특히, 개인 수준의 발명 관련 요인에 대해 과거 성씨 

분포의 영향이 유의하게 변하지 않음을 보여 과거 성씨 분포를 활용한 

발명가의 지리적 이동 추적의 범용성을 높인다. 해당 소 연구의 분석 결과는 

과거 성씨 분포를 활용하여 Shift-share 도구 변수를 만드는데 대한 

타당성을 높인다. 

세 번째 소 연구에서는 발명가들의 유입이 해당 지역 내 벤처케피탈의 

투자를 받는 신생기업의 창업, 성장 패턴, 그리고 투자 자본 이동에 미치는 
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영향을 규명한다. 실증 분석을 위해 1987년부터 2007년 사이 벤처케피탈 

투자를 받은 미국 전역의 창업기업에 대한 정보를 수집하고 인수합병, 

기업공개, 투자유치 등 각 기업별 성장패턴에 대한 정보를 확보한다. 발명가 

유입이 지역 창업생태계에 미치는 인과적 영향을 추정하기 위해 미국 내 

성씨의 과거 지역분포에 기반한 Shift-share 도구변수를 개발하고 활용한다. 

이를 통해, 발명가들의 유입은 해당 지역 내 벤처케피탈의 투자를 받는 

신생기업의 창업 수를 늘려주는 것을 확인한다. 특히, 유입되는 발명가들의 

기술 분야와 같은 분야에서 신생기업의 창업이 늘어나며 다른 분야에서는 

줄어드는 것을 확인하여, 발명가들의 유입에 따라 분야 간의 투자 이동이 

일어나는 것을 보인다. 발명가의 유입은 창업의 수뿐만 아니라 인수합병이나 

기업공개 등을 통해 성공적으로 투자를 회수하는 창업 기업의 수를 늘려주며, 

실패로 이어지는 창업 기업의 수는 줄여주어 창업 기업의 질적 향상에 

기여함을 보인다. 나아가, 발명가의 이동은 비첨단 과학 산업의 실패 기업을 

줄이고 첨단 과학 산업의 성공 기업을 늘려 벤처케피탈의 자본 투자의 효율을 

높임을 보인다. 

세 번째 소 연구를 통해 발명가 인적 자본이 신생기업 창업 활동과 투자 

자본 이동에 미치는 영향에 대한 실증적 근거를 제시한다. 이는 지역 내 

신생기업 창업 활동을 장려하고 자본 투자를 촉진하고자 하는 

정책입안가들에게 발명가를 유입하여 창업의 양뿐만 아니라 질, 투자의 

효율을 높일 수 있다는 정책적 함의를 제시한다. 추가적으로 해당 소 

연구에서 제안한 도구변수는 향후 다양한 인적자본 이동이 지역 단위에 
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미치는 영향을 규명하는데 유용하게 활용될 것으로 기대한다. 

결론적으로 본 학위논문은 과학 지식과 발명가의 이동이 혁신과 

경제성장에 미치는 영향에 대한 이해를 높인다. 또, 혁신에 대한 이론적 

고찰과 실증적 분석을 통해 실무적으로 적용 가능한 경영적∙정책적 함의를 

제시한다. 학문적으로도 각 소 연구 별로 관련된 선행연구 흐름을 확장하는 

주요한 학문적 기여점을 갖는다.  

 

주요어 : 과학지식, 정부출연연구소, 지식확산, 발명가 이동, 혁신, 기업가정신 

학  번 : 2017-31119 
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