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Abstract

Estimation of Sparse Cross Correlation Matrix

Cao Yin
The Department of Statistics
The Graduate School

Seoul National University

In this thesis, we are motivated by an integrative study of multi-omics data
and are interested in estimating the cross correlation matrix of two high dimen-
sional random vectors. We rewrite the problem to a multiple testing problem
and propose a new method to estimate it by testing individual components of
the matrix simultaneously. We apply the proposed method to the integrative
analysis of the protein expression data (X) and the mRNA expression data (Y)

in TCGA breast cancer cohort.

Keywords: cross-correlation matrix, integrative analysis, local false discovery
rate, multiple testing, multi-omics data
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Chapter 1

Introduction

The occurrence of high-dimensional data in a large amount of applications has
prompted sustained interest in statistics in recent years. Statistical analysis
of such high-dimensional data sometimes requires knowledge of covariance or
correlation matrices with dimension far greater than the sample size. Exam-
ples include microarray analysis (Jaeger et al., 2003; Shedden and Taylor, 2004;
Qiu and Yakovlev, 2007), financial risk management (Fan et al., 2008), and
machine learning (Hastie et al., 2009). All of these applications include esti-
mating variance-covariance matrices of one variable vector, but a lot of times
researchers are more interested in finding the association between two mutually
exclusive sets of variables. Estimation of cross correlation matrix Rxvy, the off-
diagonal submatrix of correlation matrix, is highly involved in data integration
problems, especially in the context of multi-omics studies. A typical example
is measuring the same gene at two different molecular levels, with one set of
data measure the molecular template synthesis of the other set of data (DNA

to RNA, or RNA to protein). Using expression data for non-coding RNAs such



as microRNAs, coupled with mRNA and proteomics data, to reveal the degree
of post-transcriptional regulation is another common scenario (Cheng et al.,
2005). In this paper, we consider estimation and multiple testing of cross corre-
lation matrix with the structural assumption - sparse cross correlation matrix,
that is, most entries are zero (Bickel and Levina, 2008; Rothman et al., 2009;
Cai and Liu, 2011; Wang and Fan, 2017).

Multiple testing of covariance structures is a widely used methodology in
analysis of high-dimensional data. Liu (2013) considers multiple testing for par-
tial correlations under a Gaussian graphical model. Cai and Liu (2016) proposed
methods for simultaneous testing of correlations. Xia et al. (2015) proposed
methods for differential network analysis. Aimed for detecting significant cor-
relations between variables, large-scale multiple testing for correlations is an
important area in statistics with a wide range of applications including gene
expression (Carter et al., 2004; Dubois et al., 2010), spatial epidemiology (El-
liott and Wartenberg, 2004), and brain imaging (Bennett et al., 2009; Lindquist

and Mejia, 2005). The null hypotheses are usually
Hoji, : pjr = 0,

where pj; is the correlation between variable X; and Y}, for 1 < j < p, and
1 < k < q. With thousands or even millions of tests to perform at the same
time, it becomes challenging to control the overall Type I error rate while
maintaining the desired power due to complicated dependence structures. In
high-dimensional studies, controlling the false discovery rate (FDR), the pro-
portion of falsely rejected hypotheses among all rejected hypotheses, becomes
a common goal.

Methods of controlling FDR has been developed by a lot of researchers since

its first proposal by Benjamini and Hochberg in 1995. Under the assumption



that test statistics are independent, the BH step-up procedure (Benjamini and
Hochberg, 1995) controls FDR by thresholding the p-values of each individ-
ual test. Storey (2002) introduced the g-value which estimates the FDR for a
given cutoff value. Efron (2004) proposed an empirical Bayes analysis method
to examine the local false discovery rate. However, in the presence of strong
correlation, particularly when the matrices are sparse, the situation becomes
more difficult. Multiple testing procedures are very unstable when test statistics
are correlated because they have a high variability of the number of false and
true discoveries from sample to sample (Qiu et al., 2005). Some multiple testing
adjustment methods dealing with certain dependence types include Benjamini
and Yekutieli (2001) and Fan et al. (2012).

In this paper, we propose a multiple testing procedure for cross correla-
tions. We start from the sample correlation coefficient r;;, and use Fisher’s
z-transformation to construct the test statistic zj; for testing an individual
hypothesis Hg;i. We then use local false discovery rate procedure to perform
multiple testing. As a comparison of simulation performance, we apply both
our procedure and procedure proposed by Cai and Liu (2016) to breast can-
cer cohorts with paired proteomic data (X) and transcriptomic data (Y). We
identify significant correlation pairs for both procedures. The resulting cross
correlation matrix of our procedure has a higher coverage rate of known tran-
scription regulatory networks catalogued in the cancer cell biology literature.

The rest of the paper is organized as follows. In Section 2, we review the
large-scale multiple testing procedure proposed by Cai and Liu (2016) as well as
some other FDR control procedure. In Section 3, we give a detailed description
of our procedure. A comparison between the method proposed and that of Cai
and Liu (2016) numerically using breast cancer data is also discussed in this

section. We conclude the paper with a few remarks for the proposed procedure



in Section 4.
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Chapter 2

Review

2.1 Cross covariance matrix and correlation matrix

Suppose for subject i = 1,...,n, we observed a vector pair (X;,Y;), where
X; = (X1, Xig, - - - ,Xip)T and Y; = (Y1, Y50, ..., Yiq)T are two random vectors
with dimension p and ¢, respectively. We assume the data Z; = (X;,Y/])T
for each subject follows the multivariate normal distribution with mean and

variance

©x Yxx XXy

Wy Yyx Xyy
The mean vectors pux and gy have length p and ¢, respectively. The covariance
matrices Xxx, Xxy and Xyy are of size p X p, p X ¢ and g X ¢q respectively. We
further arrange X; of all subjects into one matrix X € R"*P so that each row of

X contains data XlT for subject . Similarly for Y;, we have matrix Y € R"*4.



The resulting matrices can be represented as follows

X X1 X2 - Xy
XJ Xo1 X - X
. ‘2 _ .21 '22 .2p |
XZ an Xn2 to an
and
Y, Yiiu Yio - Yiq
Y, Yor Yo -0 Y
Y = =
Y;lr Ynl Yn2 to an

We are interested in the simultaneous correlation tests between X; and Yy,
Hyjp, : cov(X;,Yy) =0 versus  Hyjy : cov(Xj, Yy) #0,

for 1 < j <pand 1l <k < q. That is to say, we will apply multiple testing
procedure to find non-zero covariance pairs while controlling the false discovery
rate, the proportion of falsely rejected hypotheses among all rejected hypotheses

at given level a, at the same time.

2.2 Procedure by Cai and Liu (2016)

Cai and Liu (2011; 2016) proposed an adaptive thresholding method for sparse
covariance matrix estimation and a large-scale multiple testing procedure for
correlations in one sample case. In order to use their method, we rewrite the
paired vector data (X;,Y;) as Z; = (X, ,Y,)T, a single vector of length p + q.

The procedure simultaneously tests the hypotheses

Hoj 205, =0 versus Hyj : 05, #0,



for 1 < j <k < p+ q. They suggest using the test statistic

where

N R . .
Ujk = ﬁ Z(ZZ — Zj)(ZZk) — Zk)
=1

Let 0 < a < 1, the threshold level is defined as

G(t)(»* —p)/2 < }
AN « )
max{21<j<k<p+q I(|Tjk| = 1), 1}

where G(t) = 2—2®(t). If £ does not exist, they set £ = \/4log p. The procedure

{ = inf {0 <t< \/4logp— 2loglogp :

rejects Hj, whenever |Tji| > t.

2.3 Multiple testing

Multiple testing is a statistical analysis involving a set of tests simultaneously.
In general, if m mutually independent tests are each conducted at « level, the
probability of making at least one Type I error is 1 — (1 — «)™. As the num-
ber of tests being conducted increases, the probability of at least one Type 1
error increases. Over the years, different strategies have been proposed to ad-
dress for the problem of multiplicity. These methods usually require a stringent
significance level with which each individual hypothesis can be rejected.

The family-wise error rate (FWER), defined as FWER = P(V > 1), has
been widely used to account for the problem of multiplicity. The Bonferroni

correction provides the classic FWER control method. It tests each hypothesis



Null is true | Alternative is true | Total
Declared significant %4 S R
Declared non-significant U T m—R
Total mo m — my m

Table 2.1 Classification of tested hypotheses

at level a/m so that the FWER is guaranteed not exceed the prespecified level
a. A review of FWER procedures is give by Hochberg and Tamhane (1987) and
Shaffer (1995).

2.3.1 False discovery rate

As the number of tests increases, the power to reject an alternative hypothesis
while controlling FWER at the same time is greatly reduced. The false discovery
rate (FDR), or expected proportion of false rejections among all rejections, is
an alternative to FWER in multiple testing control. It has been showed that
the FDR has greater power to find true discoveries while still controlling the
proportion of Type I errors at a. Using the notation in Table 2.1, the FDR is
defined as
FDR — E(%|R > 0).

FDR is zero when no hypothesis is rejected.

2.3.2 BH step-up procedure

A common technique for controlling the FDR is provided by Benjamini and
Hochberg (1995). Consider testing simultaneously m null hypotheses Hy, Ho, ..., Hy,
with pi1, pa, ..., pm their corresponding p-values. Let p(;) < po) < ... < p(m) be

ordered p-values, and denote H ;) the null hypothesis corresponding to p(;y. The



BH procedure is the following step-up procedure:
Let k = max{i : p;) < ia/m},then reject all Hfori=1,2,...,k.

When the test statistics are independent, the BH procedure controls the FDR
at level a. The procedure does not need any assumption of p-value distribution;
it controls the FDR regardless of the distribution of p-values. However, without
the distribution information in the sample, BH (2000) argued that the procedure
is conservative when some of the hypotheses are from non-null distributions. In
fact, the BH step-up procedure controls the FDR at level (1 — p)a, where p is

the proportion of non-nulls.

2.3.3 Storey’s g-value procedure

Realizing the conservativeness of the BH step-up procedure, Storey (2002) in-
troduced the positive False Discovery Rate (pFDR) and the g-value. Storey’s
approach uses the information of p and estimated the FDR for a given cutoff,
contrary to the BH step-up procedure, where level « is fixed and cutoff values
are estimated.

Let p be the proportion of non-nulls and G be the marginal distribution of
the p-value. For a given p-value cutoff A, the pFDR is defined as

(1-pA

PFDR(\) = E(%]R >0) = Sk

For a set of m hypotheses with independent p-values and rejection region [0, ],
the g-value is the minimum pFDR level such that a hypothesis with p-value p;
is just rejected, that is

() = iuf (GFDR()} = it {

Y=Di

(1-p)y
GW)}'



Chapter 3

Estimation sparse correlation
matrix

3.1 Procedure

In this section, we propose a large-scale multiple testing procedure for esti-
mating sparse cross correlation matrices. We first construct a test statistic for
testing no correlation between each pair (Xj,Yy), Hoji : 0ji = 0, so that the
constructed test statistic asymptotically follows a standard normal distribution
under the null hypothesis Hp;x. Then we use the local false discovery rate to
handle the problem of multiplicity when testing a large number of hypotheses.
The overall FDR is controlled under given level .
The typical statistic for correlation detection is the sample correlation co-
efficient, 73, which is defined as
= > i1 (Xij — X5) (Yie — Y) |
VI (X — X520 (Vi — Ya)?

where X; = %2?21 Xij, and Yy, = %Z?Zl Y.

10



Since the variance of sample correlation coefficient becomes smaller as the
population correlation coefficient gets closer to +1, we use the variance stabi-
lization method, Fisher’s z-transformation, so that the resulting variable ap-
proximately follows a normal distribution with a variance that is stable for

different values of correlation. Fisher’s z-transformation of rj; is defined as

1 1+7"'k
F(rjg) = 511171 — Tj'k
J

I

where 7, is the sample correlation coefficient. Under the condition of (X;', Y, )T

follows a multivariate normal distribution, it has been showed that F(r;) ap-
proximately follows a normal distribution (for large samples, n > 50) with mean
p = 0 and standard deviation o = ﬁ,where n is the sample size.

Using the approximation, the following statistic is standardized normal

Zjk = F(rj;;)—,u =+vn—3F(rj;) — N(0,1).

We will use z;;, as the test statistics and then apply local false discovery rate

procedure to those z values.

3.1.1 Local false discovery rate

The traditional FDR calculates a rate applying generally to all hypotheses
in the same rejection region. In practical application, the fact that some test
statistics are much more extreme than others, or to say, that not all hypotheses
are equally likely to contribute the false discoveries makes the FDR a somewhat
unsatisfying metric.

The local false discovery rate proposed by Efron (2004) extends the concept
of FDR to give a posterior probability at the single hypothesis level. It is a Bayes
version of Benjamini and Hochberg (1995)’s procedure focusing on densities

rather than tail areas.

]
11 -i == T



Suppose m null hypotheses, each with its own test statistic, are test simul-
taneously

Null hypOtheSGS: H01, HOQ, ces 7I’I()Z‘, R ,H()m
Test statistics: z1,29,...,%i,...,2Zm-

Assume each of m hypotheses is either null with prior probability pg and density

fo(z) or non-null with prior probability p; = 1 — pp and density fi(z)
po = Pr(null is true) density = fo(z) if null
p1 = Pr(non-null is true) density = fi(z) if non-null.

Define the mixture density

f(2) = pofo(z) + p1fi(2).

The local false discovery rate is the posterior probability that a case is null

given that we observed test statistic z. Using Bayes rule, it can be expressed as

_ pofo(2)
f(z)

In our procedure, the test statistics are zj;’s for j = 1,2,...,pand k = 1,2, ..., q.

fdr(z) = P(null | 2)

The usual cutoff threshold is fdr < 0.2.

3.1.2 fdr Estimation

Mixture Density Estimation

Assume the distribution of z values are smooth, Efron (2005) estimate the
mixture density f(z) with Poisson regression using Lindsey’s method. The range
of the sample z1,..., 2, is divided into K equal intervals, with s; being the
number of z values in interval k, and z(;) being the midpoint of interval k. The
Lindsey’s method assumes counts s follow an independent Poisson distribution,

ind

s~ Poi(\y) k=1,2,...,K

12 Sk



with
A = mAf(2x)),

where A is the width of interval.
The method estimates log(\g) with a pth degree polynomial function of 2(k)s
so that the mixture density f(z) can be estimated by maximum likelihood of

the following function
P
f(z) = 69619{ ZBJ‘Z]}
7=0

satisfying [ f(z) = 1.

Efron (2005) also remarked that Lindsey’s method with a Poisson regression
is almost efficient for estimating f(z) when z;’s are independent. Although under
most cases z;’s are dependent and over dispersed, Lindsey’s method will still be

nearly unbiased at the cost of losing estimating efficiency.

Empirical Null Estimation

The theoretical null distribution z; ~ N(0,1) is usually used in individual
hypothesis test. With thousands of z values to exam at once, the conventional
theoretical null may be inappropriate for the situation in large-scale hypothesis
testing. Estimating the empirical null distribution adjusts the theoretical null
for the dataset at hand.

Efron and Hastie (2016) assume the two-class model with fp(z) normal
f(](Z) ~ N((S(), Ug)

To estimate the three parameters (dg, g, po), the mean and standard deviation
of the null density and the proportion of null cases, Efron and Hastie (2016)

make the zero assumption that pg is large, and that most of the z; near 0 are

13 -":er -I_I' 1_-“



null cases. R-package locfdr (Efron et al., 2005; Efron, 2016) uses the following

steps to estimate the null distribution: let Ay be the set near 0, and let
zZ0 = {Zl 1z € Ap,i = 1,2,...,m},

Z():{itziEAo,izl,Q,...,m},

mo = |z0].
Define
1 _(2*55))2
2) = e 260 ,
¢6o,00( ) \/m
PGoson) = [ s (21
Ao
and

0 = poP(do, 00).

Then the density of zg is the product of two terms: probability of having my
of z; in Ap, and conditional probability of those z; in Ay,
m — ®s0,0 (Zz)
= gmo(1 — gym—mo Pdo,00\ %) |
Froamm(z0) = | (1 )omo(1.— oy ] [lz_l Floe)
Maximum likelihood based on the above density gives the empirical null esti-

mates (b, 5¢). 0 = ™0 can be obtained from the first binomial probability term,

- 6
so then pg = PGod0)"

3.2 Data

We next applied the proposed method to integrative analysis of the protein
expression data (X) and the mRNA expression data (Y) in TCGA breast cancer
cohort, with group information representing the co-regulation of gene expression
by complexes of transcription factor proteins. In total, 76 subjects have both

transcriptomics and proteomics data as distributed through the data portals

14 Sk



of TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC). In
invasive ductal carcinomas, the gene expression variation across patients is well
known to be determined by the expression level of the estrogen receptor (ER)
protein in the tumor (Rosato et al., 2018), which in turn acts as a nuclear
transcription factor and drives gene expression program for cell proliferation.
As a benchmark analysis, we first aimed to verify that the non-zero elements of
the cross covariance matrix between the transcription factor and co-activator
proteins (denoted by TFA hereafter) and the mRNA expression levels of their
target genes are the most pronounced variation in the data.

We capitalized on the fact that the TFAs are assembled into protein com-
plexes while in action, and thus hypothesized that utilizing the protein-protein
interaction will allow us to first identify the TFA groups associated with large
variation in the proteomics data, and their target gene expression levels should
be consistently reflected in the transcriptomics data. To this end, we collected
bona fide protein-protein interaction data from credible sources (Razick et al.,
2008; Huttin et al., 2015) for the human TFA proteins (1195 proteins), which
have been known to regulate as many as 3114 target genes according to the
TF and regulatory element databases such as TRED (Zhao et al., 2005), ITFP
(Zheng et al., 2008), ENCODE, and TRRUST (Han et al., 2015).

3.3 Results

Figure 3.1 shows the histogram of the 1195 x 3114 = 3,121,230 z-values. The
green curve, f(z), is the Poisson regression fit to the histogram counts. Curve
f(2) emphasizes the central peak around z = 0, showing that a large proportion
of (TFA, mRNA) pairs are not correlated. The blue dashed curve is the density
po fo estimated by MLE. Both the MLE and central matching estimates (CME)

]
15 =4



give nearly close approximation of null distribution N (0, 1).

Our procedure of estimating cross correlation matrix uses fdr cutoff value
0.1. More than 99.9% of the entries are penalized to zero, resulting in a sparse
estimate of correlation matrix. A total of 60,693 (TFA, mRNA) pairs have non-
zero correlation, with more than 89% pairs having correlation values less than

|0.5| and around one hundred pairs having large correlations.

150000
|

100000
I
—
=

Frequency

4 {
i
1
1

o ﬂ-fﬂﬂlﬂ ’mm _____________________ .

I T T 1
-5 0 5 10

50000
1

MLE: delta: 0.051 sigma: 1.248 p0: 0.98
CME: delta: 0.049 sigma: 1.244 p0: 0.977

Figure 3.1 Histogram of z-values

We also estimated sparse cross correlation matrix using the adaptive thresh-
olding procedure proposed by Cai and Liu (2016). Since their procedure is
designed for testing correlation between elements of one vector from one sam-
ple, we put together the transcriptomics data (¢ = 3114) and the proteomics
data (p = 1195) of all subjects into a single matrix Z, and estimated sparse
variance-covariance matrix of the entire data first, and took the submatrix cor-
responding to the cross covariance matrix after the whole estimation process. A
total of 163,726 pairs are found significant or have non-zero covariance. Among

non-zero values, more than 59% are between -0.1 and 0.1, suggesting that the

16 ; H kl 1_'.]| [



cross covariance matrix has relatively small values compared to the values of
variance-covariance matrix. The problem of over-penalization of cross correla-
tion matrix arises: we only need a p x g part of the variance-covariance matrix

but in fact we used values of the whole matrix when deciding thresholds.

Cross Correlation in TF-target = 3304 Cai and Liu in TF-target = 5085

e N \\

me =90 [/ m;=3214 \ mg= 1871
|' '|

1y = 5266 "-\ ny =55427 [ng =108209 |
Cross Correlation = 60693 Cai and Lin = 163726

Figure 3.2 Venn Diagram

As a part of procedure accuracy measurement process, we benchmark (TFA,
mRNA) pairs with non-zero correlation against the known transcription regu-
latory networks, and compare the coverage rate between two procedures. The
Venn diagram showing the number of non-zero correlation (TFA, mRNA) pairs
with and without benchmark for both procedures is given by Figure 3.2. The
TF-target pairs are benchmark pairs used. For our procedure, for example, a
total of 60,693 (TFA, mRNA) pairs have non-zero correlation, and among these
3304 pairs are also in the known transcription regulatory literature database.

The pairs with non-zero correlation founded using our procedure have a higher

17 ; .H kl 1_'.]'| (<
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proportion that overlaps literature-based regulation, almost two times than
the overlap rate of adaptive thresholding procedure. The adaptive thresholding

procedure produced a substantial amount of unique non-zero correlation pairs

(ng = 108,299), more than 60% (%) of its all non-zero correlation pairs

ng
ni+ng

compared to about 10% ( ) using our procedure. However, the proportion
of unique non-zero correlation pairs under benchmark among all unique non-
zero correlation pairs (% and %) are nearly the same, around 1.7%, suggesting

that the adaptive thresholding procedure is not efficient in finding unique pairs.

18 J’—'! k= ‘_]l



Chapter 4

Conclusion

In this thesis, we propose a new method to estimate the cross-correlation matrix
of Rxy of two random vectors X and Y based on a multiple testing procedure.
The new method rewrites the problem as a multiple testing problem, and es-
timate the support by testing individual hypotheses on pjis. In doing so, we
adapt the Efron’s local false discovery rate procedure (Efron, 2004) to test the
hypotheses simultaneously. Using the analysis of breast cancer data in TCGA,
we show the procedure performs better than Cai and Liu (2016)’s procedure.
However, with the recent advances in multiple testing literature, we may be

able to refine our procedure in this thesis. We leave this as our next step.

T
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