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Abstract 

Exploring the mechanism of the 

hypoglycemic effect of 

metformin mediated by the gut 

microbiota and endogenous 

metabolites 
Yujin Lee 

The Interdisciplinary Program of 

Clinical Pharmacology Major 

Graduate School of Department of Medicine 

Seoul National University 
 

Introduction: Metformin, the most widely used antidiabetic drug, is 

known to activate AMP-mediated protein kinase (AMPK) in the liver, 

thereby inhibiting the biosynthesis of fatty acids and production of 

glucose. Recently, as the mechanism of metformin through the 

gastrointestinal tract has emerged, interest in effects of gut microbiome 

on hypoglycemia is increasing. Several previous studies have shown 

that metformin alters the microbial composition in both animal and 

human, and suggested that the microbiota contributes to the 

hypoglycemic effect of metformin via modulation of microbial 

metabolites. However, the microbial functions on hypoglycemic effect 
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of metformin have not been elucidated. Therefore, in this study, two 

clinical trials were performed to explore various interactions between 

gut and the hypoglycemic effect of metformin. Finally, potential 

pathways that correlated with the hypoglycemic effects of metformin 

were suggested through metagenomics- and metabolomics approaches. 

Methods: To evaluate effects of metformin on microbiome and 

metabolites, an open-label and single-arm clinical trial was performed 

in 20 healthy Korean male adults. The subjects received 1000 mg of 

oral metformin twice daily for 4 days. In addition, to assess impacts of 

gut environmental changes on the hypoglycemic effect of metformin, 14 

healthy Korean males were involved in this four-period clinical study: 

baseline; metformin (i.e., multiple oral doses of 1000 mg metformin on 

day 1-2); cholestyramine (i.e., multiple oral doses of 4g 

cholestyramine on day 3-9); cholestyramine+metformin (i.e., multiple 

oral doses of 1000 mg metformin on days 8-9). In each period of two 

clinical trials, serum glucose and insulin concentrations, stool samples 

for gut microbial analysis, and plasma, urine, and stool samples for 

metabolomic analysis were obtained. Global metabolomics was 

performed using GC-TOFMS and network analysis was applied to 

explore potential pathway of the hypoglycemic effect. 

Results: After metformin administration, the relative abundances of 

Escherichia, Romboutsia, Intestinibacter, and Clostridium were changed. 
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In addition, carbohydrates, amino acids, and fatty acids were altered. 

These alterations in microbiome and metabolites were correlated with 

the hypoglycemic effect of metformin. After cholestyramine 

administration, the relative abundances of Rothia and Veillonella were 

increased. Additionally, microbial metabolites such as bile acids and 

short-chain fatty acids were altered. The alterations in microbiome and 

microbial metabolites reduced to the pharmacodynamics of metformin 

and affected to profiles of endogenous metabolites changed by 

metformin administration. Furthermore, energy metabolism, branched-

chain amino acid metabolism, and purine metabolism were suggested as 

major metabolic pathways related to the hypoglycemic effect of 

metformin. 

Conclusions: These studies indicated that specific alterations in both 

microbiome and metabolites affected to the hypoglycemic effect of 

metformin. The alterations impacted host metabolism, which is 

correlated with hypoglycemia. In particular, energy metabolism, 

branched-chain amino acids metabolism, and purine metabolism were 

related to the hypoglycemic effect of metformin. The results will help 

uncover the potential underlying mechanisms of metformin within the 

gastrointestinal tract. 
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* Part of this work has been published in Diabetes Research and 

Clinical Practice (Yujin Lee et al. Diabetes Research and Clinical 

Practice 178 (2021): 108985). 

---------------------------------------------------------------------------------------------- 

Keyword: Metformin, Type 2 diabetes, Microbiome, Metabolomics, 

Pharmacodynamics 

Student Number: 2017-20297 
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Introduction 

Metformin is the most widely used antidiabetic drug for treating 

patients with type 2 diabetes (T2D) and is recommended as a first-

line therapy due to its specific hypoglycemic effect, relative safety, and 

low cost [1, 2].  

Metformin is known to induce glucose utilization and reduce 

gluconeogenesis through the activation of AMP-mediated protein 

kinase (AMPK) in the liver by entering hepatocytes through organic 

cation transporter 1 (OCT1) [3, 4]. By activating AMPK, the activity 

of enzymes involved in the biosynthesis of fatty acids is reduced, and 

glucose production is inhibited [4]. 

Metformin is an orally administered drug that is absorbed in the small 

intestine. The absolute oral bioavailability of metformin is 

approximately 40 to 60% [5]. In addition, the concentration of 

metformin in the human intestine is typically 30-300 times higher than 

that of plasma [6], and a study using [11C]metformin positron emission 

tomography (PET) showed that the concentration of orally 

administered metformin was high in the intestines [3]. A previous study 

showed that metformin administered intravenously to rats and humans 

had fewer hypoglycemic effects than oral dosing [7, 8]. Thus, the 
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possibility cannot be excluded that the intestine is an essential organ 

involved in the effect of metformin to improve hyperglycemia. 

The intestines play a number of roles in regulating blood glucose 

levels, such as secreting glucagon-like peptide 1 (GLP1) and peptide 

YY, regulating bile acid metabolism, and affecting the growth and 

composition of the gut microbiome [9, 10]. Some studies have shown 

that metformin can change the microbial composition [1, 2, 11] and 

have suggested that the microbiota contributes to the hypoglycemic 

effect of metformin via the modulation of microbial metabolites, 

including bile acids and short chain fatty acids (SCFA) [12]. The 

primary bile acids, which are cholesterol-derived metabolites, are 

transformed into secondary bile acids by enteric anaerobic bacteria. 

The bile acids are involved in the regulation of glucose metabolism in 

the liver and small intestine by binding to nuclear receptors, including 

farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 

(TGR5) [13]. Some previous studies showed that cholic acid decreased 

the expression of the gluconeogenic genes, including 

phosphoenolpyruvate kinase (PEPCK), glucose-6-phosphatase, and 

fructose-1,6-bisphosphatase, through FXR activation [14, 15]. In line 

with this finding, obeticholic acid decrease insulin resistance through 

activation of FXR signaling [16]. Therefore, the bile acids certainly 

impact regulation of glucose homeostasis. 
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Short chain fatty acids (SCFA), one of the other microbial 

metabolites, are fermentation products of diets that are undigested in 

the gut and are produced by SCFA-producing microbiota such as 

Shewanella (Proteobacteria) and Blautia (Firmicutes) [1, 17]. Previous 

works demonstrated that the increase in production of the SCFA 

triggers intestinal gluconeogenesis in mice [11] and abnormalities in 

the production or absorption of SCFA were correlated with an increased 

risk of T2D [18]. 

Some previous studies showed that changes in microbiome and their 

metabolites were correlated with the hypoglycemic effect of metformin. 

However, the exact microbial genus and microbial metabolites that are 

related to the hypoglycemic effect and how these are responsible for 

the hypoglycemic effect of metformin remain undefined. 

Therefore, two clinical studies were performed to explore various 

interactions between the gut and the hypoglycemic effect of metformin. 

The first study was conducted to identify changes in microbiome and 

metabolites after metformin administration. The second study was 

conducted to explore the effects of gut environmental changes on the 

hypoglycemic effect. These studies indicated that metformin altered 

specific microbiota and metabolites and that the hypoglycemic effect 

was affected by changes in the intestinal environment. Finally, to 

explain the mechanism of metformin in the intestine, potential pathways 
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that correlated with the hypoglycemic effect of metformin were 

suggested through metagenomics and metabolomics approaches.   
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Methods 

Subjects 

STUDY Ⅰ 

This study aimed to recruit 20 healthy adult male subjects who were 

19-45 years old and had a body mass index (BMI) of 18.0-28.0 kg/m2 

during the screening visit. Subjects with active or a history of clinically 

significant diseases of the kidney or the digestive, nervous, endocrine, 

or immune systems were excluded from the study. In addition, subjects 

with a history of gastrointestinal disorders or surgery that could affect 

the absorption of metformin were also excluded. Subjects with 

defecation less than five times a week or more than three times a day 

or who had excessively hard or soft stools were excluded from the 

study. Subjects whose blood aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT) values exceeded 1.5 times the upper 

limit of the normal range during the screening visit or whose estimated 

glomerular filtration rate (eGFR) calculated by the Modification of Diet 

in Renal Disease (MDRD) was less than 80 mL/min/1.73 m2 were also 

excluded. 

 

STUDY Ⅱ 
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This study aimed to include 15 healthy adult male subjects who were 

19-50 years old and had a BMI of 18.0-28.0 kg/m2 during the 

screening visit, and 14 subjects completed the entire study. Subjects 

with active or a history of clinically significant diseases of the liver or 

the kidney, digestive, nervous, endocrine, or immune systems were 

excluded from the study. In addition, subjects with a history of 

gastrointestinal disorders or surgery that could affect the absorption of 

drugs were also excluded. Subjects with defecation less than five times 

a week or more than three times a day or who had excessively hard or 

soft stools were excluded from the study. Subjects with genetic 

problems such as galactose intolerance, lactase deficiency or glucose-

galactose malabsorption were excluded. Also, subjects whose blood 

AST and ALT values exceeded 2 times the upper limit of the normal 

range during the screening visit or whose eGFR calculated by the MDRD 

was less than 80 mL/min/1.73 m2 were excluded. 

 

Study design 

STUDY Ⅰ① 

 

① Clinical trial (study Ⅰ) was performed by Eunwoo Kim and Prof. Jae-Yong 

Chung 
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This was an open-label, single-arm study (Figure 1). The subjects 

received the first dose of 500 mg of oral metformin on day 1 at 9 a.m. 

for the safety of the subjects, and then they received 1000 mg twice 

daily from day 1 (1 d, 1:30 p.m.) to day 4 (4 d) in the morning. Plasma 

samples for the pharmacodynamics (PD) evaluation of metformin were 

collected before the first metformin dose (baseline) and on day 4 after 

the last metformin dose (metformin period). Stool samples for 

metagenomics were collected on the morning of day 1 before the first 

metformin dose and on day 4 after the last metformin dose. The sample 

used for analysis was from the first stool in the morning. Urine samples 

were collected on day -1 and day 4. Additionally, plasma, stool, and 

urine samples were used for untargeted metabolomic analysis. 

The subjects were provided with a normal diet, not a high-fat, high-

fiber diet, that met the recommended daily caloric intake of 

approximately 2700 kcal for adult men, and they were limited the intake 

of foods containing lactic acid bacteria, grapefruit, and caffeine. In 

addition, they were asked to eat the full amount of the meal during 

hospitalization, and any meals other than the provided meals were 

prohibited. 
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Figure 1. Study design of part 1 study. 

 

STUDY Ⅱ② 

This was an open-label, single center study. The study consisted of 

four periods, which were baseline (-1d or 1d, baseline of metformin 

period), metformin (2d), cholestyramine (8d, baseline of 

cholestyramine+metformin period), and cholestyramine+metformin 

(9d), according to the treatment given in each period (Figure 2). The 

subjects were admitted to the clinical trial center at Seoul National 

University Bundang Hospital one day before administration of the 

clinical trial drugs (day -1). Then, the subjects received the first dose 

of 500 mg of oral metformin on day 1 at 1:30 p.m. for the safety of the 

subjects, and then they received 1000 mg once daily from day 1 (1 d, 

9 p.m.) to day 2 (2 d) in the morning. After the washout period, the 

 

② Clinical trial (study Ⅱ) was performed by Deok Yong Yoon and Prof. Jae-

Yong Chung 
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subjects administered 4g of cholestyramine 3 times a day with meals 

from day 3 to day 9 in the morning. Metformin was administered again 

from day 8 to day 9 in the same manner as on day 1 to day 2.  

Plasma samples for the PD evaluation of metformin were collected 

before the first metformin dose (baseline, 1d), on day 2 after the last 

metformin dose (metformin period, 2d), on day 8 after administration 

of cholestyramine alone (cholestyramine period, 8d), and on day 9 after 

the last metformin dose (cholestyramine+metformin period, 9d). Stool 

samples for metagenomics were collected on the morning of day 1 and 

on day 8. The sample used for analysis was from the first stool in the 

morning. 12h-interval urine samples were collected on day -1, 1, 7, 

and 8. Additionally, plasma, stool, and urine samples were used for 

global metabolomics. 

 

Figure 2. Study design of part 2 study. 
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Pharmacodynamic (PD) assessments of metformin 

STUDY Ⅰ 

For PD evaluation of metformin, an oral glucose tolerance test (OGTT) 

was performed, and the serum insulin concentration was measured at 

baseline (before the first dose of metformin) and metformin period (2 

hours after the last dose of metformin) (Supplementary Figure 1). In 

brief, a solution containing 75 g glucose was administered to the 

subjects on an empty stomach, and samples for determining the serum 

glucose concentration were collected at 0 (before administration of the 

solution containing 75 g glucose), 0.25, 0.5, 0.75, 1, 1.5, and 2 h. The 

serum insulin concentration was measured only at 0 h (before 

administration of the solution containing 75 g glucose). 

To evaluate glucose parameters, the maximum serum glucose 

concentration (Gmax) was presented as the actual observed value, and 

the area under the glucose curve (AUGC) was calculated by the linear-

linear trapezoidal method. Homeostatic model assessment of insulin 

resistance (HOMA-IR) was calculated as (glucose·insulin)/405. 

The baseline corrected PD parameters, including ΔGmax, ΔAUGC, and 

ΔHOMA-IR, after the last metformin administration were defined by 

subtracting the baseline values from the metformin values (i.e., Gmax at 

metformin period – Gmax at baseline). Smaller ΔAUGC, ΔGmax, and 
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ΔHOMA-IR values, i.e., larger absolute values of the parameters, were 

interpreted as stronger effects of metformin treatment. The PD 

parameters were confirmed whether the data had a normal distribution 

through a normality test. Then, the paired t test was used for Gmax and 

AUGC, and the Wilcoxon signed rank test was used for HOMA-IR, with 

significance determined at the level of 0.05. Statistical analysis was 

performed using GraphPad Prism 7 (GraphPad Software, Inc., San 

Diego, CA, USA). 

 

STUDY Ⅱ 

An OGTT was performed for PD evaluation, and the serum insulin 

concentration was measured at each of the four periods. A solution 

containing 75 g glucose was administered to the subjects on an empty 

stomach, and samples for determining the serum glucose concentration 

were collected at 0 (before administration of the solution containing 75 

g glucose), 0.25, 0.5, 0.75, 1, 1.5, and 2 h. The serum insulin 

concentration was measured only at 0 h. 

To evaluate glucose parameters, the maximum serum glucose 

concentration (Gmax) was presented as the actual observed value, and 

the area under the glucose curve (AUGC) was calculated by the linear-

linear trapezoidal method. Homeostatic model assessment of insulin 

resistance (HOMA-IR) was calculated as (glucose·insulin)/405. 
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The baseline corrected PD parameters, including ΔGmax and ΔAUGC, 

after metformin administration were defined by subtracting the baseline 

values from that of the metformin period (i.e., Gmax at metformin period 

– Gmax at baseline), and subtracting the values of cholestyramine period 

from that of the cholestyramine+metformin period. Smaller ΔAUGC 

and ΔGmax values, i.e., larger absolute values of the parameters, were 

interpreted as stronger hypoglycemic effects of metformin treatment. 

The PD parameters were confirmed whether the data had a normal 

distribution through a normality test. Then, the Wilcoxon test was used 

for HOMA-IR and the paired t test was used for Gmax, AUGC, ∆Gmax, 

and ∆AUGC with significance determined at the level of 0.05. 

The pharmacodynamics parameters were obtained by non-

compartmental methods with Phoenix® WinNonlin® software version 8.0 

(Certara USA Inc., Princeton, NJ, USA). In addition, statistical analysis 

was performed using GraphPad Prism 7 (GraphPad Software, Inc., San 

Diego, CA, USA). 

 

Analysis of the gut microbiome 

STUDY Ⅰ③ 

 

③ 16S rRNA sequencing (study Ⅰ) was performed by DNA Link, Inc 
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Stool samples were collected from all the recruited subjects for 16S 

rRNA sequencing. The samples were mixed using a 3M sample mixer, 

dispensed into Eppendorf tubes and frozen at -70°C until analysis. 

DNA was extracted from the stool samples using the PowerSoil® 

DNA Isolation Kit, and amplification of the 16S rRNA gene was 

conducted using the 16S V3-V4 primers. Normalization and pooling of 

the final product were performed using PicoGreen. The size of the 

libraries was verified using TapeStation DNA ScreenTape D1000 

(Agilent), and sequencing was performed using the MiSeq™ platform 

(Illumina, San Diego, USA). Taxonomic profiling was performed using 

a module of MicrobiomeAnalyst for marker data profiling. 

The alpha diversity (within-sample diversity, species eveness) is 

presented as the Shannon index, and the Kruskal-Wallis test was 

performed for comparisons between periods. The beta diversity 

(between-sample diversity, community dissimilarity) is presented on 

a principal coordinate analysis (PCoA) plot, and Bray-Curtis 

dissimilarity was evaluated by permutational multivariate analysis of 

variance (PERMANOVA). Significantly different genera between 

periods were identified by linear discriminant analysis (LDA) effect 

size (LEfSe) analysis, and the data were subjected to total sum 

normalization. This treatment yielded a relative proportional value for 

each feature by dividing each count of each feature by the size of the 
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total library, which eliminated bias related to different sequencing 

depths. The cutoffs for the false discovery rate (FDR)-adjusted p-

value and LDA scores were 0.05 and 2.0, respectively. The change 

induced in the gut microbiome by metformin administration was 

identified through comparison between baseline and metformin periods. 

 

STUDY Ⅱ④ 

The Illumina next generation sequencing (NGS) was performed in each 

stool samples. For library construction, DNA/RNA is extracted from 

samples and performing quality control (QC), qualified samples proceed 

to library construction. The sequencing library is prepared by random 

fragmentation of the DNA or cDNA sample, followed by 5’ and 3’ 

adapter ligation. Alternatively, “tagmentation” combines the 

fragmentation and ligation reactions into a single step that greatly 

increases the efficiency of the library preparation process. Adapter-

ligated fragments are the PCR amplified and gel purified. For cluster 

generation, the library is loaded into a flow cell where fragments are 

captured on a lawn of surface-bound oligos complementary to the 

library adapters. Each fragment is then amplified into distinct, clonal 

 

④ 16S rRNA sequencing (study Ⅱ) was performed by Macrogen, Inc 
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clusters through bridge amplification. When cluster generation is 

complete, the templates are ready for sequencing. Then, sequencing 

data is converted into raw data for the analysis. Also, Taxonomic 

profiling was performed using a module of MicrobiomeAnalyst for 

marker data profiling. 

The alpha diversity is presented as the observed features and 

Shannon index. Also, the Mann-Whitney test was performed for 

comparisons between periods. The beta diversity is presented on a 

PCoA plot, and Bray-Curtis dissimilarity was evaluated by 

PERMANOVA. Significantly different genera between periods were 

identified by LEfSe analysis, and the data were subjected to total sum 

normalization. This treatment yielded a relative proportional value for 

each feature by dividing each count of each feature by the size of the 

total library, which eliminated bias related to different sequencing 

depths. The cutoffs for the FDR-adjusted p-value and LDA scores 

were 0.1 and 2.0, respectively. The change induced in the gut 

microbiome by cholestyramine administration was identified through 

comparison between metformin period and cholestyramine+metformin 

period. 
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Chemicals 

The fatty acid methyl ester mixture (FAME) used for the relative 

retention time index and the authentic standards used for the 

identification of significant metabolic markers were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). The extraction solvents used for 

sample preparation, such as isopropanol, acetonitrile, and water (HPLC 

grade), were obtained from J.T. Baker Chemical Co. (Phillipsburg, NJ, 

USA). Pyridine, methoxamine hydrochloride (MeOX), and N-methyl-

N-(trimethylsilyl) trifluoroacetamide (MSTFA) were used for 

derivatization and purchased from Sigma-Aldrich. For quantification of 

plasma bile acids, Biocrates® Bile Acid Kit was purchased from 

Biocrates Life Science AG. For quantification of stool bile acids, 

deoxycholic acid (DCA), lithocholic acid (LCA), deoxycholic acid-d4 

(DCA-d4), and lithocholic acid-d4 (LCA-d4) were purchased from 

Sigma-Aldrich. All the SCFAs including acetic acid, propionic acid, 

butyric acid, and valeric acid were purchased from Sigma-Aldrich. 

Acetic acid-d4, hydrochloric acid (HCl, 37%), and tert-methyl butyl 

ether (MTBE) were also obtained from Sigma-Aldrich. Butyric acid-

d7 was obtained from Cayman Chemical (MI, USA). 
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Sample preparation for metabolomic analysis 

For untargeted metabolomic analysis, all the samples were prepared 

using a protocol from a previous study with minor modifications. Frozen 

plasma, urine, and stool samples were thawed on ice, and quality control 

(QC) samples, made by pooling equal volumes (100 µL of the 1st 

extracted solution) of each sample, were used to validate the stability 

of the analytical performance and perform data filtering. For 

preparation of the plasma and urine samples, a 50 µL sample was 

extracted using 1 mL of N2-degassed 1st extraction solution (3:3:2, 

acetonitrile:isopropanol:H2O). For preparation of the stool sample, the 

1st extraction solution was spiked into the stool sample at a sample 

mass to solution volume ratio of 50 mg of stool sample to 1 mL of the 

1st extraction solution. Then, the samples were mixed for 15 min and 

centrifuged for 10 min at 18945 RCF and 4℃. Four hundred microliters 

of the supernatant was dried using a SpeedVac for 6 hours at 45℃ and 

5.1 vacuum pressure. The dried samples were re-extracted with 400 

µL of N2-degassed 2nd extraction solution (1:1, acetonitrile: H2O). 

Then, the extracted samples were redried using a SpeedVac for 8 hours 

under the same℃ onditions used in the first extraction step. The dried 

samples were derivatized with methoxyamine (20 mg/mL in pyridine) 

at 30℃ for 90 min and subsequently trimethylsilylated with a mixture 
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of fatty acid methyl ester (used for the retention time index) in N-

methyl-N-(trimethylsilyl)-trifluoroacetamide at 70℃ for 45 min. 

Finally, 1 µL of the prepared samples was split-injected into an Agilent 

7890 series gas chromatography system (Agilent, Santa Clara, CA) 

coupled to a time-of-flight mass spectrometer (LecoCorp., St. Joseph, 

MI, USA) (GC-TOFMS) for untargeted metabolomics analysis. 

Plasma bile acid quantification was performed using the Biocrates® 

Bile Acid Kit (Biocrates Life Science AG, Innsbruck, Austria) with 

SCIEX liquid chromatography tandem mass spectrometry (AB Sciex 

API 4000™) according to the manufacturer’s instruction.  

For stool bile acid, 500mg of each wet stool samples were 

deproteinized with 450 µL ice-cold methanol. The samples were 

sonicated for 15 min and shaken for 20 min at room temperature. After 

shaking, the samples were centrifuged for 20 min at 18945 RCF and 

4℃. The supernatants were diluted with methanol (1:200, v/v) and then 

they were diluted again with 30% methanol (1:1, v/v). Ten-microliter 

of internal standards were spiked into the diluted samples. The analysis 

of samples were performed using an Agilent 1260 Infinity II Prime 

(Agilent Technologies, California, USA) coupled to an Agilent 6460 

Triple Quad Mass Spectrometer equipped with an ESI source. The ion 

detection was performed in negative mode and also the multiple 

reaction-monitoring mode (MRM) was used. The mobile phases 
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consisted of 5mM ammonium acetate (A) and methanol (B) at 40:60 

(v/v). The composition of mobile phases was gradually changed; at the 

initial state of ammonium acetate-methanol (40:60, v/v) was held for 

12 min, the gradient was changed to 30:70 (v/v) for 12.2-17min and it 

returned to its initial conditions 40:60 (v/v) for 17.2-20 min. The total 

run time was 20min and the flow rate was 0.3 mL/min with an injection 

volume of 5 μL. 

For SCFAs quantification, stool was weighed 50 ± 20 mg and 

homogenized using water (1:10 ratio). Then, both ten-microliters of 

1.0 M HCl and internal standard (IS) mixtures were spiked into 100 µL 

of plasma and homogenized stool samples. The samples were extracted 

by 200 µL of MTBE and the extracted samples were analyzed using 

7000C mass spectrometer (Agilent, CA, USA) coupled with a 7890B 

gas chromatography (Agilent, CA, USA).  

 

Untargeted metabolomic data analysis 

For untargeted metabolomic data, Chroma TOF version 4.72 (LECO 

Corporation, MI, USA) was used for peak extraction, peak alignment, 

peak deconvolution, and peak identification. Data processing and 

multivariate analysis were performed using MetaboAnalyst 4.0. 

Detected metabolic features with greater than 50% missing values were 
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removed, and then, the metabolic features were filtered out according 

to a relative standard deviation of greater than 30% in the QC samples. 

The filtered metabolic features were normalized by sum, and Pareto 

scaling was applied for multivariate analysis.  

 

Statistical analyses 

The metabolic markers were selected using a paired t-test with a p-

value and FDR adjusted p-value cutoff value of less than 0.05 in study 

1 and study 2 studies, respectively. Pearson correlation and Spearman 

correlation analyses were performed after the normality test. Statistical 

analysis and correlation analysis were performed in GraphPad Prism 7 

(GraphPad Software, Inc., San Diego, CA, USA) and R (v. 4.1.1). 

 

Identification of metabolic markers 

For metabolic marker identification, the online HMDB database 

(https://hmdb.ca/) and three commercially available libraries (NIST, 

LECO-Fiehn Rtx5, and Wiley 9) were used. After matching the mass 

fragments of the markers with the libraries, authentic standards were 

analyzed to compare the mass fragments. Then, the retention times of 

the markers and the standards were compared by calculating the 

https://hmdb.ca/
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relative retention index. A network diagram was generated by using 

MetaMapp and Cytoscape (version 3.5). 

 

Correlation analysis 

STUDY Ⅰ 

Pearson correlation and Spearman correlation analyses were 

performed after the normality test. Spearman correlation analysis was 

performed between the relative abundance of the microbiome and 

metabolic markers and between the abundance of the microbiome and 

PD parameters (△Gmax, △AUGC, and △HOMA-IR). Pearson 

correlation analysis was performed between the relative abundance of 

metabolic markers and PD parameters. Correlation analyses were 

performed using GraphPad Prism 7 (GraphPad Software, Inc., San 

Diego, CA, USA), and the p-value cutoff was 0.05. 

 

STUDY Ⅱ 

The correlation analyses were performed after the normality test. We 

applied Spearman correlation among the relative abundance of the 

microbiome, metabolic markers, and PD parameters. The correlation 

analyses were performed using Corrplot package in R (v. 4.1.1), and 

the p-value cutoff was 0.05. 
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Safety 

All subjects were tested for vital signs, physical examinations, and 

clinical laboratory tests. All adverse events (AEs) were collected by 

the investigator and the subjects. Each AE was classified based on the 

first dose at each period. For example, AEs that occurred after the first 

administration of metformin and before the first administration of 

cholestyramine were classified as AEs of metformin period. All AEs 

were monitored and assessed by the investigators to determine their 

severity and relationship to the study drugs. 
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Results 

STUDY Ⅰ. Microbial changes influence the 

hypoglycemic effect of metformin through the 

altered metabolic pathways. 

 

Demographics 

A total of 20 healthy adult male subjects were enrolled in this study, 

and all subjects completed the entire study. The mean ± standard 

deviation (SD) of the baseline demographic characteristics were 

followed: age, 24.85 ± 3.51 years; height, 176.0 ± 4.66 cm; weight, 

73.43 ± 9.53 kg; BMI, 23.66 ± 2.72 kg/m2. 

 

Glucose parameters and PD parameters indicated 

the hypoglycemic effect of metformin 

PD parameters of metformin according to glucose parameters, such as 

the values of Gmax, AUGC, and HOMA-IR were evaluated. The serum 

glucose levels after the OGTT at baseline and metformin periods are 

presented in Figure 3. The Gmax values of baseline and metformin 

periods were 169.1 ± 19.68 mg/dL and 138.1 ± 15.43 mg/dL, 
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respectively. The AUGC values of the baseline and metformin periods 

were 287.2 ± 36.29 h∙mg/dL and 235.8 ± 26.17 h∙mg/dL, 

respectively. The Gmax and AUGC values were significantly decreased 

after metformin administration. However, the HOMA-IR value did not 

show a statistically significant change (p-value=2.71E-06 for Gmax; 

4.74E-06 for AUGC; 0.0539 for HOMA-IR) (Table 1). The values of 

the PD parameters, including △Gmax, △AUGC, and △HOMA-IR, are 

listed in Table 1. 

 

 

Figure 3. Mean serum glucose concentration-time profiles at baseline 

and metformin periods. Bars represent standard deviations. Meformin, 

after the last metformin dose. 
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Table 1. Glucose parameters and Pharmacodynamic parameters of 

metformin. 

Parameter Baseline Metformin p-value 

Gmax (mg/dL) 169.1 ± 19.68 138.1 ± 15.43 2.71E-06 

AUGC (h∙mg/dL) 287.2 ± 36.29 235.8 ± 26.17 4.74E-06 

HOMA-IR 2.745 ± 3.944 1.529 ± 0.3737 0.0539 

△Gmax (mg/dL) -31.05±19.69 - 

△AUGC(h∙mg/dL) -51.41±34.11 - 

△HOMA-IR -1.22±3.840 - 

Data are presented as the arithmetic mean ± standard deviation. Gmax, 

maximum glucose concentration; AUGC, area under the glucose 

concentration curve from time 0 to the last measurable time point; 

HOMA-IR, homeostatic model assessment of insulin resistance. 

The paired t test was used for Gmax and AUGC. The Wilcoxon signed 

rank test was used for HOMA-IR. 

 

Metformin affected to the gut microbial 

composition  

Difference in relative abundance of gut microbiome at the genus level 

was observed between baseline and metformin periods. The relative 

abundances were changed after administration of metformin. The alpha 

diversity, which represented the species evenness in the samples, was 

significantly increased in the metformin period (Kruskal-Wallis test, 

p-value=0.043) (Figure 4a). A beta diversity showed significantly 

higher in the metformin period than at baseline (PERMANOVA, p-value 

< 0.004), indicating a more heterogeneous genus composition at the 

metformin period than at baseline (Figure 4b).  
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LEfSe analysis, for determining both statistical and biological 

relevance, was used for microbial biomarker discovery (FDR adjusted 

p-value < 0.05, linear discriminant analysis (LDA) score > 2.0). As a 

result, four microbiota were significantly changed after metformin 

administration. The relative abundances of Intestinibacter, Clostridium, 

and Romboutsia were decreased in the metformin period compared to 

those at baseline, whereas the abundance of Escherichia was increased 

in the metformin period (Figure 4c). 

 

Figure 4. Metformin changed the composition of the gut microbiota. (a) 

Alpha diversity (Shannon index) and (b) PCoA plot were represented. 

(c) Microbiota that changed by metformin represented at the genus 

level (FDR adjusted p-value < 0.05, LDA score > 2.0). Histogram 
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showing the genera of bacteria that were more abundant at baseline 

(red color) or metformin period (blue color). Box plots showing 

medians as well as the lower and upper quartiles. Each dot represents 

an individual sample. 

 

Hypoglycemic effect was related to gut microbial 

changes 

To confirm whether the hypoglycemic effect of metformin was 

correlated with the microbial changes, correlation analysis was 

performed between the PD parameters and the relative abundance of 

altered microbiome at the phylum and genus levels (Figure 5). At the 

phylum level, Firmicutes was negatively correlated with the PD 

parameters. Conversely, Proteobacteria was positively correlated with 

the parameters (Figure 5a). Furthermore, at the genus level, the △Gmax 

and △AUGC values were positively correlated with Escherichia. 

However, the PD parameters were negatively correlated with 

Intestinibacter, Clostridium, and Romboutsia (Figure 5b). 
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Figure 5. Spearman correlation analysis of the pharmacodynamic 

parameters (PDs) of metformin and the relative abundance of 

microbiome (a) at the phylum level and (b) at the genus level. The y-

axis represents PDs, and the x-axis represents microbial taxa. Each 

square shows the correlation coefficient value. Blue color indicate a 

positive correlation, and red color indicate a negative correlation. *p-

value < 0.05. 

 

Metformin treatment altered metabolic profiling 

Metabolites that altered after administration of metformin were 

analyzed as key drivers between the hypoglycemic effect and 

microbiome. Untargeted metabolomic analysis of urine, stool, and 

plasma samples was performed to identify changed metabolites 

between baseline and metformin periods. The reliability of the 

analytical performance and the quality of the data were validated by 

using QC samples that were tightly clustered in a plot of the principal 

component analysis (PCA) score derived from the urine, stool, and 

plasma metabolites (Figure 6). Twenty five urine, 10 stool, and 4 
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plasma metabolites were significantly changed after metformin 

administration (Table 2). All urinary amino acids were decreased at the 

metformin period. Also, most urinary carbohydrates and stool 

carbohydrates were decreased. Fatty acid such as palmitoleic acid were 

decreased in the metformin period. Furthermore, 13 urine, 4 stool, and 

1 plasma  metabolites were classified as microbial metabolite. Also, 

most microbial metabolites were decreased in the metformin period, as 

listed in Table 2. 

 
Figure 6. Principal component analysis (PCA) score plots of the 

baseline and metformin periods. PCA score plot of the (a) urinary 

metabolome, (b) stool metabolome, and (c) plasma metabolome. Green 

circles: baseline, red circles: metformin, and blue circles: quality 

control (QC) samples. 
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Table 2. List of changed metabolic markers from all samples between the baseline and metformin groups. 

Name p-value FDR adjusted p-value Fold change Class 

Urine     

†
Scyllo-inositol 0.006 0.024 0.830 Alcohols 

Serine < 0.001 < 0.001 0.661 Amino acids 
†
Pyroglutamic acid < 0.001 < 0.001 0.772 Amino acids 

Threonine < 0.001 < 0.001 0.520 Amino acids 

Alanine < 0.001 < 0.001 0.642 Amino acids 

Glycine < 0.001 0.001 0.668 Amino acids 
†
β-Alanine < 0.001 0.002 0.781 Amino acids 
†
Valine 0.001 0.007 0.830 Amino acids 

Lysine 0.018 0.055 0.558 Amino acids 

Phenylalanine 0.019 0.057 0.861 Amino acids 
†
Hippuric Acid < 0.001 < 0.001 5.692 Benzoic acids 

Glyceric acid < 0.001 < 0.001 0.639 Carbohydrates 

D-Galactose < 0.001 < 0.001 0.138 Carbohydrates 

Ribonic acid < 0.001 0.001 0.815 Carbohydrates 
†
D-Glucuronic acid < 0.001 0.002 0.854 Carbohydrates 
†
Threonic acid < 0.001 0.005 0.838 Carbohydrates 

1,5-Anhydrosorbitol < 0.001 0.005 1.213 Carbohydrates 

Adonitol 0.006 0.025 0.839 Carbohydrates  
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2,3-Dihydroxybutanoic acid 0.014 0.045 1.383 Hydroxy acids 
†
2,4-Dihydroxybutyric acid < 0.001 < 0.001 0.683 Hydroxy acids 

†
Glycolic acid < 0.001 < 0.001 0.673 Hydroxy acids 
†
Lactic acid < 0.001 0.003 0.570 Hydroxy acids 

†
3,4-Dihydroxybutyric acid 0.002 0.011 0.793 Hydroxy acids 

†
3-Hydroxyisobutyric acid 0.001 0.004 0.644 Hydroxy acids 

†
Hypoxanthine < 0.001 < 0.001 2.197 Purines 

Feces     

†
Pipecolic acid < 0.001 0.005 0.435 Amino acids 

Phenylalanine 0.020 0.163 1.695 Amino acids 

L-Serine 0.011 0.115 0.565 Amino acids 
†
L-Isoleucine 0.038 0.241 1.365 Amino acids 

Glyceric acid 0.006 0.086 0.620 Carbohydrates 

Glucose 0.002 0.051 0.609 Carbohydrates 

D-Fructose 0.013 0.120 0.406 Carbohydrates 
†
Palmitoleic acid 0.026 0.207 0.595 Fatty acids 
†
Glycolic acid 0.004 0.071 0.630 Hydroxy acids 

4-(Dimethylamino)butanoic acid 0.024 0.191 0.256 Hydroxy acids 

Plasma     

L-Tyrosine 0.013 0.596 1.083 Amino acids 

L-Ornithine 0.030 0.904 1.099 Amino acids 

Tryptophan 0.036 0.904 1.100 Amino acids 
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†
Palmitoleic acid 0.036 0.904 0.755 Fatty acids 

†microbial metabolites 
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Changes in carbohydrates, amino acids, and fatty 

acids were correlated with gut microbiota 

To investigate functional changes in the gut microbiome using 

metabolites as mediators, correlation analysis was performed between 

gut microbiota and metabolites whose relative abundance significantly 

changed at the metformin period. The carbohydrates, amino acids, 

hydroxy acids, and fatty acids were correlated with the microbiome 

(Figure 7). The Intestinibacter was positively correlated with urinary 

carbohydrates. The Intestinibacter and Clostridium were positively 

correlated with urinary amino acids (Figure 7a). In urinary metabolic 

markers, D-galactose, glyceric acid, glycolic acid, and 2,4-

dihydroxybutyric acid were positively correlated with the 

Intestinibacter, Clostridium, and Romboutsia. In contrast, hypoxanthine 

and hippuric acid were negatively correlated with the Intestinibacter, 

Clostridium, and Romboutsia. In the correlation of stool metabolic 

markers and microbiome, essential amino acids such as phenylalanine 

and L-isoleucine were negatively correlated with the Intestinibacter, 

Clostridium, and Romboutsia. The three genera were positively 

correlated with carbohydrates, fatty acids, hydroxy acids, and L-serine, 

which are classified as nonessential amino acids (Figure 7b). For 

plasma metabolic markers, amino acids were positively correlated with 
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the genera, and palmitoleic acid was positively correlated with 

Escherichia (Figure 7c). 

 
Figure 7. Heatmap showed the Spearman correlation coefficient 

between the relative abundances of individual microbial genera and the 

relative abundances of (a) urinary metabolite, (b) fecal metabolite, and 

(c) plasma metabolite. The y-axis represents the microbial genus, and 

the x-axis represents metabolites. The intensity of the colors 

represents the degree of the association. †microbial metabolites. *p-

value < 0.05, **p-value < 0.005, ***p-value < 0.001, ****p-value < 

0.0001. 

 

Changed metabolites were correlated with the 

hypoglycemic effect 

A correlation analysis was performed to determine whether changes in 

the PD parameters of metformin correlated with changes in metabolites 

(Figure 8). The PD parameters were positively correlated with urinary 

metabolic markers except for β-alanine and lysine (Figure 8a). The 
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stool amino acids were weakly positively correlated with the PD 

parameters, and carbohydrates were negatively correlated with the PD 

parameters (Figure 8b). Plasma metabolic markers were positively 

correlated with the PD parameters except for L-tyrosine (Figure 8c). 

 
Figure 8. Pearson correlation analysis was performed to investigate the 

association between PDs (△Gmax and △AUGC) and (a) urinary 

metabolites, (b) fecal metabolites, and (c) plasma metabolites. The y-

axis represents PDs, and the x-axis represents metabolites. Each 

square shows the correlation coefficient value. Blue squares indicate a 

positive correlation and red squares indicate a negative correlation. 
†microbial metabolites. *p-value < 0.05, **p-value < 0.005. 
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Changed metabolites were involved in 

gluconeogenesis, amino acid metabolism, and 

carbohydrate metabolism 

The changed metabolites after metformin administration were 

correlated with microbiome and hypoglycemic effects. Thus, a 

metabolite set enrichment analysis was performed to explore the 

potential pathways. As a result, the metabolites were involved in 

various metabolism. In addition, throughout pathway mapping analysis, 

networks between the metabolites involved in the metabolism were 

explored. In the network of urinary metabolites, carbohydrate 

metabolism and serine-glycine metabolism were altered by 

administration of metformin (Figure 9a). In addition, urinary and stool 

microbial metabolites were involved in branched-chain amino acid 

metabolism and gluconeogenesis (Figure 9b).
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Figure 9. Metabolic correlation network diagram. (a) A fully connected network of metabolites detected in the urine samples. (b) 

Urinary and stool microbial metabolite correlation network diagram. The metabolites and microbiome are shown in color: red 

represents increase, blue represents decrease at metformin period, and gray represent no changes. The size of the nodes 

represents fold change of metabolites. The blue solid line represent chemical relationship and red solid line represent biochemical 

relationship. The red dashed line denotes negative correlation and blue dashed line denotes positive correlation.
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Safety 

Safety was evaluated in the 20 subjects administered metformin at least 

once. There were 15 adverse events (AEs) after administration of 

metformin. Of these AEs, 10 were gastrointestinal disorders. One case 

of diarrhea and one case of vomiting were evaluated as moderate AEs, 

and one case of vomiting was evaluated as a severe AE. All other AEs 

were mild. 
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STUDY Ⅱ. Changes in intestinal environment can 

impact pharmacodynamics of metformin through 

alterations in host metabolic pathways. 

 

Demographics 

A total of 15 healthy adult male subjects were enrolled in this study, 

with 14 subjects having completed the entire study after 1 subject 

withdrew consent. The mean ± standard deviation (SD) of the 

baseline demographic characteristics were as follows: age, 27.5 ± 

6.23 years; height, 176.16 ± 7.51 cm; weight, 70.8 ± 11.69 kg; body 

mass index, 22.76 ± 2.96 kg/m2. 

 

Composition of microbial metabolites were altered 

by cholestyramine 

Overall, the administration of cholestyramine markedly changed levels 

of microbial metabolites and their composition. In plasma bile acids, 

deoxycholic acid (DCA), glycoursodeoxycholic acid (GUDCA), and 

ursodeoxycholic acid (UDCA) were significantly reduced. While, 

glycocholic acid (GCA) and taurocholic acid (TCA) were significantly 
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increased after cholestyramine administration (Table 3). Regarding 

stool bile acids, the secondary bile acids such as DCA and lithocholic 

acid (LCA) were increased. The cholestyramine facilitated the 

excretion of secondary bile acids in stools. In addition, the plasma 

SCFAs, including butyrate, propionate, and valerate, were increased 

after cholestyramine administration (Table 3).  
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Table 3. Concentration of significantly changed bile acids and short-chain fatty acids (SCFA). 

 Metformin (2d) Cholestyramine+Metformin (9d) 
FDR adjusted  

p-value 

Plasma [µmol/L]  

 DCA 0.28±0.2 0.11±0.09 0.0190 

 GUDCA 0.16±0.13 0.01±0.01 0.0067 

 UDCA 0.17±0.15 0.04±0.07 0.0122 

 GCA 0.19±0.3 1.07±0.78 0.0034 

 TCA 0.02±0.04 0.06±0.05 0.0350 

 Butyrate 0.93±0.46 1.54±0.66 0.0187 

 Propionate 0.41±0.23 0.67±0.41 0.0100 

 Valerate 0.29±0.08 0.39±0.09 0.0100 

Stool [nmol/g]  

 DCA 23.66±17.54 148.34±60.92 0.0004 

 LCA 16.53±10.78 58.96±39.59 0.0006 

Data are presented as the arithmetic mean ± standard deviation. DCA, deoxycholic acid; GCA, 

glycocholic acid; GUDCA, glycoursodeoxycholic acid; TCA, taurocholic acid; UDCA, 

ursodeoxycholic acid; LCA, lithocholic acid. 

FDR adjusted p-value: the paired t-test was used. 
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Bile acid sequestrant affects gut microbiota 

A 16S rRNA sequencing was performed using stool samples. Alpha 

diversity did not change after administration of cholestyramine (p-

value = 0.89, Mann-Whitney test for observed features; 0.14, Mann-

Whitney test for Shannon index) (Figure 10a) and beta diversity based 

on the Bray-Curtis dissimilarity indices was used to evaluate the 

compositional dissimilarity (Figure 10b). Compared to the baseline, 

there were no overall changes in the beta diversity after 

cholestyramine administration (p-value < 0.748, PERMANOVA). 

Nevertheless, in linear discriminant analysis (LDA) coupled with effect 

size (LEfSe) analysis at the genus level, which is determining both 

statistical and biological relevance to discover a microbial biomarker, 

two genera were changed by cholestyramine administration. These 

included an increase in Veillonella and Rothia at genus level (FDR 

adjusted p-value < 0.1, LDA score > 2.0) (Figure 10c). 
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Figure 10. Changes in microbial composition following cholestyramine administration. (a) Alpha diversity was represented by 

observed features (OTUs) (p = 0.89, Mann-Whitney test) and Shannon index (p = 0.14, Mann-Whitney test). (b) Principal 

Coordinate Analysis (PCoA) plots showing beta diversity based on Bray–Curtis dissimilarity indices, which represents the 

dissimilarity of samples or groups. (c) Bacteria differentially represented between baseline and cholestyramine+metformin 

periods identified by linear discriminant analysis coupled with effect size (LEfSe). Histogram showing the genera of bacteria that 

were more abundant at cholestyramine+metformin period (FDR adjusted p-value < 0.1, LDA score > 2.0). The LDA score 

indicates the effect size and ranking of each differentially abundant genus. Violet: metformin period, Yellow: 

cholestyramine+metformin period. Box plots indicate the medians and the lower and upper quartiles. Each dot represents an 

individual sample. 
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Pharmacodynamics of metformin was affected by 

alterations in bile acids and gut microbiota 

The serum glucose profiles and parameters at baseline and 

cholestyramine periods were similar, corresponding to the baseline of 

metformin and cholestyramine+metformin periods, respectively 

(Figure 11). There were no significant differences in systemic glucose 

levels represented by Gmax and AUGC between baseline and 

cholestyramine periods (Table 5). After metformin administration, 

compared with baseline at each period, Gmax and AUGC were decreased 

in metformin and cholestyramine+metformin periods, respectively 

(Table 4).  

However, the absolute values of ∆Gmax and ∆AUGC, which represent 

the pharmacodynamic effects of metformin, were lower in the 

cholestyramine+metformin period than in the metformin period. 

Moreover, a significant difference was detected for ∆AUGC, showing 

a %change of -44.7% in the cholestyramine+metformin period 

compared to the metformin period (p-value = 0.038) (Table 4). 
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Figure 11. Mean serum glucose concentration-time profiles. Bars 

represent standard deviation. Metformin, administration of metformin 

alone; Cholestyramine, administration of cholestyramine alone; 

Metformin+Cholestyramine, co-administration of metformin and 

cholestyramine. 
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Table 4. Pharmacodynamics of metformin. 

Parameters Baseline Metformin Cholestyramine 
Cholestyramine 

+metformin 
%changes† p-value* 

Gmax 

(mg/dL) 
162.21±31.51 131.36±21.84 157.79±29.86 134.36±14.44 -  

∆Gmax 

(mg/dL) 
- -30.86±16.79 - -23.43±21.27 -24.1% 0.33 

AUGC 

(h·mg/dL) 
269.62±50.34 225.28±32.74 260.35±39.33 235.83±20.02 -  

∆AUGC 

(h·mg/dL) 
- -44.34±25.76 - -24.52±27.06 -44.7% 0.038* 

Data are presented as the arithmetic mean ± standard deviation. Gmax, maximum glucose concentration; AUGC, 

area under the glucose concentration curve from time 0 to the last measurable time point; ∆Gmax and ∆AUGC 

obtained by calculating the value of ‘metformin’ – ‘baseline’ and ‘cholestyramine+metformin’ – ‘cholestyramine’, 

respectively.  
*p-value: Paired t-test was used. 
†Each ratio of changed value of PD parameters of ‘cholestyramine+metformin’ compared to corresponding value 

of ‘metformin’. 
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Metformin altered endogenous metabolites 

To explore changes in metabolic profiling after metformin 

administration, an untargeted metabolomics approach was performed. 

Serum and urine samples collected from all four periods were analyzed 

using GC-TOFMS. Overall, metabolic composition following metformin 

administration was observed to be different by alterations in bile acid 

and microbiota by cholestyramine. Especially, before alterations in bile 

acid and microbiota, carbohydrates and hydroxy acids were reduced in 

plasma by metformin administration. Also, urinary amino acids, 

carbohydrates, fatty acid, and hydroxy acids were reduced, except for 

citric acid (Table 5). These results were similar to those found in study 

Ⅰ.  

However, after alterations in bile acid and microbiota, only alanine 

was significantly changed in plasma by metformin administration. In 

urinary metabolites, amino acids, carbohydrates, fatty acid, hydroxy 

acids, and uric acid were all reduced (Table 5).  
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Table 5. List of significantly changed metabolic markers. 

Type Name p-value 
FDR-adjusted  

p value 

Fold 

Change 
Class 

Baseline vs. Metformin 

Plasma 

Glyceric acid 0.00297 0.03022 0.81 Carbohydrate 

Threonic acid 0.00120 0.02204 0.80 Carbohydrate 

Glycolic acid 0.00328 0.03268 0.80 Hydroxy acid 

2-Hydroxybutyric acid 0.00490 0.03779 0.85 Hydroxy acid 

2,4-Dihydroxybutanoic acid 0.00005 0.00391 0.77 Hydroxy acid 

Urine 

Serine 0.00913 0.04076 0.74 Amino acid 

Glycine 0.00000 0.00014 0.69 Amino acid 

L-Lysine 0.01018 0.04448 0.60 Amino acid 

L-Threonine 0.00050 0.00484 0.31 Amino acids 

Glyceric acid 0.00785 0.03719 0.82 Carbohydrate 

1,5-Anhydrosorbitol 0.00301 0.01790 0.68 Carbohydrate 

Glutaric acid 0.00049 0.00484 0.20 Carboxylic acid 

Citric acid 0.00081 0.00671 1.26 Carboxylic acid 

Pimelic acid 0.00017 0.00260 0.47 Fatty acids 

Glycolic acid 0.00091 0.00711 0.79 Hydroxy acid 

2,4-Dihydroxybutanoic acid 0.00070 0.00618 0.72 Hydroxy acid 

3,4-Dihydroxybutanoic acid 0.00020 0.00275 0.72 Hydroxy acid 

Picolinic acid 0.00656 0.03282 0.74 Pyridine 
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Cholestyramine vs. Cholestyramine+Metformin 

Plasma L-Alanine 0.00605 0.03987 1.27 Amino acid 

Urine 

Serine 0.00030 0.00307 0.58 Amino acid 

Glycine 0.00081 0.00630 0.71 Amino acid 

Phenylalanine 0.00499 0.02276 0.67 Amino acid 

L-Lysine 0.00375 0.01804 0.51 Amino acid 

L-Histidine 0.00870 0.03377 0.61 Amino acid 

Glyceric acid 0.00424 0.01979 0.84 Carbohydrate 

1,5-Anhydrosorbitol 0.00174 0.01036 0.68 Carbohydrate 

Glucuronic acid 0.00912 0.03456 0.83 Carbohydrate 

L-Cysteine 0.00681 0.02780 0.58 Carboxylic acid 

Pimelic acid 1.5.E-07 0.00002 0.33 Fatty acids 

Glycolic acid 0.00104 0.00730 0.78 Hydroxy acid 

2,4-Dihydroxybutanoic acid 0.00115 0.00790 0.80 Hydroxy acid 

3,4-Dihydroxybutanoic acid 0.00001 0.00026 0.69 Hydroxy acid 

Uric acid 4.0.E-06 0.00011 0.02 Purine 
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Alteration in bile acids, gut microbiota, metabolites, 

and metformin pharmacodynamics were correlated 

A correlation analysis was performed to identify the potential 

connections of the changes in bile acids, microbiota, metabolites, and 

metformin PDs. Firstly, there was found strong association between PD 

parameters and metabolites in the metformin period (Figure 12a). In 

particular, glucose parameters were correlated with 2-

hydroxybutanoic acid, 2,4-dihydroxybutanoic acid, glycine, L-lysine, 

and citric acid. Moreover, the changes in BA and microbiota were 

correlated with both glucose parameters and changes in metabolites 

(Figure 12b). The changes in the relative abundance of Romboutsia and 

Veillonella were negatively correlated with glucose parameters. 

Moreover, GUDCA and UDCA in plasma bile acids were positively 

correlated with the glucose parameters. However, plasma GCA, TCA, 

and stool bile acids were negatively correlated with the glucose 

parameters. 

Furthermore, all changed urinary metabolites were positively 

correlated with glucose parameters, whereas plasma alanine was 

negatively correlated with glucose parameters. In addition, the relative 

abundance of the microbiome was negatively correlated with 

carbohydrates and hydroxyl acids. 
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Figure 12. Spearman correlations between (a) baseline and metformin periods, and between (b) cholestyramine and 

cholestyramine+metformin periods. Circle size represents the correlation coefficient value. Gmax, maximum glucose concentration; 

AUGC, area under the glucose concentration curve from time 0 to the last measurable time point; P_, bile acids from plasma; S_, 

bile acids from stool. Blue color indicates a positive correlation and red color indicates a negative correlation. *p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.001. 
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The metabolic pathways that correlated with 

hypoglycemic effect were affected by bile acids 

composition. 

A pathway analysis was performed and network was depicted to 

interrogate metabolic pathways related to hypoglycemia. Interestingly, 

glycine-serine metabolism was similarly altered by metformin 

administration regardless of changes in bile acids and the microbiome 

(Figure 14a). In normal state, propionate metabolism and TCA cycle 

were changed by metformin administration. In contrast, after changes 

in bile acids and microbiome, bile acid biosynthesis, amino acid 

metabolism, and purine metabolism were changed by metformin 

administration (Figure 14b).
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Figure 13. Metabolic networks of metabolic markers (a) between baseline and metformin periods and (b) between cholestyramine 

and cholestyramine+metformin periods. The metabolites were indicated by color: red represents increase, blue represents 

decrease, and white represents no change. The size of the nodes represents fold change and the solid line represents the 

relationship between the metabolites. 
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Discussion 

These studies showed microbiota and metabolites that were changed 

by metformin and correlated with the hypoglycemic effect. In addition, 

it was identified that the changes in host’s intestinal environment may 

affect the effectiveness of metformin (Figure 14). 

Study Ⅰ was performed to identify changes in microbial composition 

and metabolites after metformin administration through metagenomic 

and metabolomic approaches. The subjects showed significant 

decreases in Gmax and AUGC values, with a nonsignificant but trending 

decrease in the value of HOMA-IR. These results were supported by 

studies of metformin treatment in T2D patients unable to control blood 

glucose due to insulin resistance, preferentially regulating hepatic 

glucose output by inhibiting gluconeogenesis rather than controlling 

insulin levels[19, 20].  

In addition, the subjects who taking metformin for 4 days showed 

significant changes in microbial composition, which was consistent with 

the results reported in T2D patients treated with metformin for 3 days 

[2]. Especially, the changes in various microbiome such as 

Akkermansia, Escherichia, Intestinibacter, Clostridium, and Romboutsia 

were observed, which was consistent with the results reported in 

previous studies [1, 11, 21]. The changes in Akkermansia were 
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observed after taking metformin but were not significant. The change 

in the relative abundance of Escherichia is assumed to be indirectly 

affected by bacteria-bacteria interactions or other physiological 

alterations [1]. Indeed, Escherichia was positively correlated with the 

hypoglycemic effect. The Escherichia could use glucose as a carbon 

source in the β-alanine pathway [22], and the increase in Escherichia 

was found to be related to improved glucose homeostasis by the 

regulation of metabolism, such as carbon uptake, catabolism, and 

energy and redox production [11, 23]. In fact, rats that underwent 

Roux-en-Y gastric bypass (RYGB) surgery to treat obesity had 

increased Escherichia and decreased glucose levels. Similarly, mice 

that underwent ileal interposition (IT) surgery to treat T2D had the 

same results [24, 25]. Therefore, an increase in the relative abundance 

of Escherichia after administration of metformin may contribute to 

improving the hyperglycemic effect. 

The growth of Firmicutes, including Intestinibacter, Clostridium, and 

Romboutsia, was impeded by metformin [11, 21]. In addition, a 

decrease in Firmicutes has been reported to decrease insulin resistance 

and other factors that lead to the development of T2D [26]. 

Intestinibacter, Clostridium, and Romboutsia, belonging to Firmicutes, 

were negatively related to the hypoglycemic effect. Firmicutes can 

generate surplus energy from carbohydrates by fermenting unabsorbed 
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carbohydrates, and the accumulation of surplus energy can cause 

obesity and T2D [27]. In an animal study, Firmicutes were increased 

in ob/ob mice, and body fat mass and energy harvesting ability were 

increased in germ-free mice transplanted with ob/ob microbiomes, 

such as Firmicutes [28]. Thus, hyperglycemia may be improved as the 

relative abundance of Firmicutes decreases after administration of 

metformin. 

The untargeted metabolomic analysis was used to explore the 

underlying pathway of the hypoglycemic effect in the study Ⅰ. The 

untargeted metabolomic analysis showed changes in metabolic 

signatures, including amino acid, carbohydrate, and fatty acid 

metabolism. In particular, amino acids, hippuric acid, glyceric acid, 

galactose, and palmitoleic acid were largely changed by administration 

of metformin. The hippuric acid, largely increased by administration of 

metformin, is a normal urinary component derived from the degradation 

of phenols and aromatic amino acids by a range of microbiome [29]. 

The level of hippuric acid decreased in obese patients and increased 

approximately 30-fold in patients who underwent RYGB surgery [29] 

and was also associated with impaired glucose tolerance [30]. 

Additionally, the decrease was reduced in T2D patients after treatment 

with antidiabetic drugs, which is correlated with a protective effect on 

gut microbiota metabolism [31]. The intermediates of energy 
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metabolism were altered after administration of metformin. In previous 

studies, myo-inositol, the bio-converted form of scyllo-inositol, is 

known to be elevated in T2D patients [32]. The high level of myo-

inositol is due to competitive inhibition with glucose in renal tubular 

transport, and the level was decreased after administration of 

antidiabetic drugs. Thus, both the levels of myo-inositol and scyllo-

inositol are expected to be good indicators of T2D treatment by 

antidiabetic drugs. Fatty acids, including palmitoleic acid, were 

increased in gestational diabetes mellitus patients. In particular, 

palmitoleic acid, produced by desaturation of palmitic acid, promotes 

gluconeogenesis [33]. In this study, the changes in these metabolites 

may affect the hypoglycemic effect of metformin. 

In terms of the comprehensive metabolic effects on hypoglycemia, 

amino acid metabolism, fatty acid β-oxidation, and BCAA metabolism 

were important metabolic pathways. First, amino acid metabolism, such 

as serine-glycine metabolism, influences signaling associated with 

obesity and insulin resistance [34]. In particular, mammalian target of 

rapamycin complex (mTORC), which has been implicated in specific 

human pathologies, including obesity, T2D, and cancer, is affected by 

amino acid metabolism [35, 36]. Metformin inhibits mTORC1, which 

reduces ATP levels and activates AMPK [37], but amino acids 

stimulate mTORC1 signaling by activating a family of GTPases [38]. 
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Therefore, a decrease in amino acids could affect mTORC1 signaling, 

thereby lowering blood glucose levels through the regulation of AMPK. 

Moreover, AMPK activation can also affect fatty acid β-oxidation 

[39]. Fatty acid β-oxidation, the first step of fatty acid catabolism, is 

an energy production process. In T2D patients, fatty acid β-oxidation 

was decreased and associated with insulin resistance by impaired β-

cell function [40]. Under this condition, more fatty acids were 

metabolized to more diacylglycerols, which inhibited the interaction 

between insulin and glucose transporter type 4 (GLUT4) [41]. 

Peroxisome proliferator–activated receptor-gamma (PPAR-γ) is a 

nuclear receptor that regulates fatty acid metabolism and glucose 

metabolism [42], and it is known to be activated by metformin [43]. 

The activation of AMPK by metformin induces PPAR-γ activity, 

which plays an important role in the transcriptional control of 

mitochondrial fatty acid β-oxidation by upregulating the expression 

of genes involved in fatty acid β-oxidation [39, 43]. 

BCAA metabolism could be affected by Escherichia, which 

contributes to an increase in BCAA biosynthesis and a reduction in 

BCAA transport into bacterial cells [44]. However, the role of BCAA is 

still controversial. On the one hand, insulin resistance is related to 

increased levels of BCAAs [44], but on the other hand, glucose 

homeostasis and insulin sensitivity are improved in mice fed a diet 
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enriched in leucine [45]. We confirmed that the hypoglycemic effect is 

influenced by BCAAs and Escherichia. 

Additionally, to determine the effect of changes in the intestinal 

environment on the pharmacodynamics of metformin, study Ⅱ was 

conducted and explored the relationship between the microbiome, 

microbial metabolites, and the hypoglycemic effect of metformin. There 

was identified that the hypoglycemic effect of metformin was related to 

the alteration in microbial taxonomy and their metabolites, as well as 

endogenous metabolites. 

In addition to the changes of total plasma bile acids by cholestyramine, 

plasma bile acid profiling presented a significant shift toward a more 

hydrophobic configuration. These hydrophobic bile acids were 

negatively correlated with hypoglycemic effect. Indeed, the 

hydrophobic bile acids increased in ob/ob mice [46] and high 

concentration of hydrophobic bile acids are known to be related with 

cytotoxicity [47]. Especially, the increases in plasma GCA and TCA 

which belong to hydrophobic bile acids, were related with metabolic 

diseases. In bile acid profiling of obese subjects, the GCA and TCA 

were higher in the subjects with HOMA-IR above the median value 

than those with HOMA-IR below the median value [48]. In addition, 

previous studies in both in vitro and in rats suggested that TCA elevates 
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secretin-stimulated cAMP levels, and the elevation induces hepatic 

gluconeogenesis [49]. 

In contrast, hydrophilic bile acids such as GUDCA and UDCA were 

positively correlated with the hypoglycemic effect. In the study, 

GUDCA and UDCA were reduced, and these bile acids belonged to both 

the FXR and TGR5 agonist, including DCA. The changes are supported 

by previous works in both mice and humans. In the mice studies, FXR 

deficient (FXR-/-) mice exhibited increased gluconeogenesis in the 

liver and impaired glucose tolerance [14, 50]. Also, a reduction of bile 

acids belonging to FXR agonist decreased energy expenditure, 

interpreted as weight gain and insulin resistance [51]. In treatments 

using a FXR agonist, blood glucose levels were decreased by inhibiting 

hepatic gluconeogenesis and improved glycogen synthesis and storage 

[14]. Moreover, Tsuchida, et al. showed an antidiabetic effect of UDCA 

using mice fed a high-fat diet. The UDCA treatment improves hepatic 

insulin resistance by reducing plasma glucose, plasma insulin, and 

HOMA IR [52]. 

Another bile acid receptor, TGR5, is activated by both GUDCA and 

DCA. While TGR5 depleted mice display both impaired glucose 

tolerance and decreased GLP-1 secretion, activation of TGR5 

improves mitochondrial function and increases energy expenditure, and 

incretin secretion [53]. In addition, T2D patients treated using a TGR5 
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agonist had improved blood glucose levels [54]. Therefore, the changes 

in bile acids might be affecting the hypoglycemic effect of metformin.  

Impacts of bile acids on the gut microbiome are complicated. The 

moderate changes at genus level and no differences in the alpha and 

beta diversity demonstrated a relatively stable gut microbial community 

of the subjects during cholestyramine administration, which was 

consistent with the results obtained from icteric primary biliary 

cholangitis patients treated with cholestyramine [55]. Nevertheless, 

LEfSe analysis provided significant microbial changes at genus level. It 

is worth noting that the abundance of two genus, including Rothia and 

Veillonella, were significantly increased by cholestyramine 

administration and these microbiomes were negatively correlated with 

the hypoglycemic effect. 

Rothia and Veillonella are known to the oral microbiota but present 

at relatively low abundances in the gut. In addition, they are sensitive 

to bile acid and hydrolyze bile acid conjugates to primary bile acids [56, 

57]. Also, they tend to increase in disease groups [58-60]. The Rothia 

genera is increased in relative abundance in high-fat diet fed rats and 

correlated with both fasting glucose and insulin [61]. Moreover, the 

predominant Rothia is associated with elevated expression of carnitine 

acetyltransferase (CRAT). The CRAT converts acetyl-CoA to the 

acetylcarnitine in fatty acid oxidation and it is suggested to play a role 
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in the upregulation in insulin-resistant states[61, 62]. The Veillonella 

genus, which belongs to Firmicutes phylum, is gram-negative and 

known as a harmful bacteria [63]. In obese patients, the Veillonella was 

significantly increased in the high insulin-resistance group and found 

to be positively correlated with pro-inflammatory factors [64]. The 

microbiota is able to ferment lactate to propionate and acetate, but 

these SCFA do not induce mucin synthesis, which could result in an 

increase in gut permeability. This situation is able to induce insulin 

resistance and decrease secretion of intestinal hormones, such as 

GLP-1 and PYY, controlling glucose homeostasis [65]. 

However, it has been suggested that subtle alterations in microbial 

composition was able to shift microbial function profoundly. As 

microbial metabolites were considered as readouts of microbial function, 

targeted metabolomics was carried out to further explore the profiling 

of microbial metabolites. Interestingly, SCFA, including butyrate, 

propionate, and valerate were increased by cholestyramine. It has been 

reported in animal models fed high-fat diets that cholestyramine 

administration could increase the SCFA [66, 67]. This increase was 

associated with an increased ratio of Firmicutes to Bacteroidetes [28]. 

In addition, the increased valerate promotes intestinal energy 

harvesting and supports the development of metabolic disease [68]. 



 

６３ 

 

Finally, the untargeted metabolomic profiling of endogenous 

metabolites was performed to understand how alterations in bile acids, 

microbiota, and microbial metabolites affect the hypoglycemic effect of 

metformin from mechanistic perspective. After the alteration, changes 

of the endogenous metabolites by metformin administration were 

different from those before the alteration. Specifically, changes 

involved in TCA cycle and purine metabolism. The TCA cycle is 

inhibited by metformin, which reduces production of ATP and elevating 

the hypoglycemic effect [37]. Moreover, citric acid, an intermediator 

of TCA cycle, tended to decrease in plasma (data not shown) but 

urinary citric acid was significantly increased. The citric acid level is 

regulated by metformin and a reduction in citric acid levels may be 

caused by an antidiabetic effect. Therefore, levels of citric acid were 

suggested as an indicator to observe the antidiabetic effect of 

metformin treatment in diabetic fatty rats [69].  

The urinary uric acid, an intermediator of purine metabolism, was 

significantly reduced after the combination of cholestyramine and 

metformin. Serum uric acid has been reported to positively correlate 

with the risk of T2D and is suggested as a biomarker of T2D [70, 71]. 

Also, as serum uric acid acts as an oxidant in the environment of T2D 

[72], an increase in serum uric acid causes oxidative stress, 

predisposing individuals to the risk of T2D [73]. The serum uric acid 
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levels tend to be inversely proportional to urinary uric acid levels [74]. 

Thus, the increase in urinary uric acid may interfere with the 

hypoglycemic effect of metformin. 

In these studies, paired samples were used to reduce the effect of 

inter-individual variations, a common issue in previous studies 

exploring the effect of metformin on the human gut microbiome [1, 11, 

75, 76]. Additionally, because diet is a major modifiable factor 

influencing the microbial composition, the subjects of study Ⅰ were 

hospitalized and fed the same diet for 2 days prior to starting metformin 

administration to reduce the effect of dietary intake on the human gut 

microbiome. As the microbial diversity can be altered short-term, 

dramatic dietary intervention [77], the dietary intervention might be 

sufficient to match between microbial composition in subjects prior to 

start the study. Thus, the design of the study enabled to decrease the 

effect of confounding factors that have an impact on the human gut 

microbiome.  

Moreover, these studies revealed the underlying pathway of the 

hypoglycemic effect of metformin within the gastrointestinal tract 

through metagenomic and metabolomic approaches utilizing plasma, 

urine, and stool samples from healthy Korean subjects. However, these 

studies have some limitations. First, the suggested metabolic markers 

and the proposed pathway of the hypoglycemic effect has been 
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presented only as a correlation. In particular, further studies are needed 

on the role of microbial metabolites as intermediators between gut 

microbiome and hypoglycemia. Second, the clinical trials were 

conducted on Korean adults who were provided a normal diet, not a 

high-fat/high-fiber diet, to reduce the effect of diet on the results. 

Nevertheless, the human gut microbiota is affected by genetic and 

environmental factors, including diet, medications, and stress [78], and 

varies across different ethnic groups. Thus, further evaluation is 

needed in different ethnic groups with different diets. Third, the stool 

samples were not collected to validate the effect of metformin on 

microbial composition in study Ⅱ. Therefore, it was difficult to validate 

microbial change in study Ⅰ.  
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Figure 14. Summary of study Ⅰ and study Ⅱ. 
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Conclusion 

In conclusion, these studies provided an interesting perspective into the 

hypoglycemic effect of metformin in the intestine through analyzing the 

changes of microbial composition and metabolites.     

The alterations found within the gut environment, including 

microbiome and microbial metabolites, impacted on the hypoglycemic 

effect. Especially, amino acid metabolism, TCA cycle, BCAA 

metabolism, and purine metabolism were changed and correlated with 

the hypoglycemic effect. Therefore, as the mechanism of the 

hypoglycemic effect in the intestine has not been elucidated, it is 

noteworthy that these studies suggest potential pathways to correlate 

with the hypoglycemic effect. 
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국문 초록 

서론: 가장 널리 사용되는 항당뇨병 약물인 메트포르민은 간에서 AMP 

매개 단백질 키나아제(AMPK)를 활성화시켜 지방산의 생합성과 포도당 

생성을 억제하는 것으로 알려져 있지만, 최근들어 메트포르민이 장내 

미생물군집에 영향을 미친다는 연구결과가 증가하고 있다. 일부 선행 

연구에서는 메트포르민 투여 후 장내 미생물 조성 변화를 관찰하여 장내 

미생물의 변화가 메트포르민의 혈당 저하 효과에 기여할 수 있음을 

보고하였다. 하지만 현재까지 메트포르민의 장내 미생물군을 통한 혈당 

강하 효과의 기전에 대해서는 분명하게 밝혀지지 않았다. 따라서, 본 

연구에서는 건강한 성인 남성을 대상으로 진행한 두 개의 임상 연구를 

통해 메트포르민이 장내에서 미치는 영향 및 다양한 상호작용에 대하여 

파악하고 메타지노믹스와 메타볼로믹스 분석법을 활용하여 위장관을 통한 

메트포르민의 혈당 강하 효과의 잠재적인 메커니즘을 설명하고자 하였다. 

방법: 메트포르민이 장내 미생물군 및 대사산물에 미치는 영향을 평가하기 

위해 20 명의 건강한 한국 남성을 대상으로 공개 및 단일군 임상 연구를 

수행하였다. 연구 대상자들은 4 일 동안 하루에 두 번 경구 메트포르민 

1000mg 을 복용하였다. 또한, 메트포르민의 혈당 강하 효과에 대한 

미생물 대사 산물의 영향을 평가하기 위해 14 명의 건강한 한국 남성이 

임상시험에 모집되었으며, 4 개의 시기(period)인 baseline(기저치), 

metformin(1-2 일째에 1000mg 메트포르민의 반복 경구투여), 

cholestyramine(장내 미생물군 및 미생물 유래 대사체의 전반적인 변화를 
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유도하기 위해 3-9 일째에 콜레스티라민 4g 의 반복 경구투여), 

cholestyramine + metformin(8-9 일째에 1000mg 메트포르민의 반복 

경구투여)의 순서로 진행되었다. 두 임상 연구의 각 시기에는 혈청 포도당 

및 인슐린 농도 측정을 위하여 경구 포도당 내성 검사 전후에 혈액 검체를 

수집하였다. 또한, 장내 미생물 분석을 위한 대변 샘플, 대사체 분석을 

위한 혈장, 소변 및 대변 검체를 수집하였으며, 메트포르민의 혈당 강하 

효과의 잠재적 경로를 탐색하기 위해 네트워크 분석을 진행하였다. 

결과: metformin 투여에 의해 Escherichia, Romboutsia, Intestinibacter 

및 Clostridium 의 상대풍부도(relative abundance)가 변했으며, 탄수화물, 

아미노산 및 지방산에 해당하는 대사체가 변했음을 확인했다. 이러한 장내 

미생물군집 및 대사체의 변화는 메트포르민의 혈당 강하 효과와 

상관관계를 보였다. 담즙산 격리제인 cholestyramine 투여에 의해 

Rothia 와 Veillonella 의 상대풍부도가 증가하였고, 담즙산 및 단쇄 

지방산과 같은 미생물 유래 대사체가 변했다. 이러한 변화는 메트포르민의 

약력학 및 메트포르민 투여에 의해 변화된 내인성 대사체의 

프로파일링에도 영향을 미쳤다. 또한, 네트워크 분석을 통해 메트포르민의 

혈당 강하 효과와 관련된 주요 대사경로로 에너지 대사, 분지쇄 아미노산 

대사, 퓨린 대사를 제시하였다. 

결론: 본 연구를 통해 특정 장내 미생물군과 미생물 유래 대사체의 변화가 

메트포르민의 혈당 강하 효과에 영향을 미친다는 것을 확인하였다. 이러한 

변화들은 혈당 강하와 관련있는 숙주 대사에 영향을 미쳤다. 특히, 에너지 

대사, 분지쇄 아미노산 대사 및 퓨린 대사가 메트포르민의 혈당강하 
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효과와 관련이 있었으며, 최종적으로 본 연구의 결과는 위장관을 통한 

메트포르민의 잠재적인 기전을 밝히는 데 도움을 줄 수 있을 것으로 

기대한다. 

*본 내용의 일부는 Diabetes Research and Clinical Practice 학술지(Yujin 

Lee et al. Diabetes Research and Clinical Practice 178 (2021): 

108985)에 출판 완료된 내용임. 

----------------------------------------------------------------------------------------------  

주요어: 메트포르민, 제 2 형 당뇨병, 장내 미생물, 대사체학, 약력학 

학  번: 2017-20297 
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