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In Euclidean spaces, the empirical mean vector as a mean estimator has poly-

nomial concentration unless a strong tail assumption is imposed. The idea of

median-of-means tournament has been considered as a way of robustification

for the empirical mean vector. In this paper, to address the sub-optimal per-

formance of the empirical mean in a more general setting, we consider general

Polish spaces with a general metric, which are allowed to be non-compact and

of infinite-dimension. We discuss the estimation of the associated population

Fréchet mean, and for this we extend the existing notion of median-of-means to

this general setting. We devise several new notions and inequalities associated

with the geometry of the underlying metric, and using them we show that the

new estimators achieve exponential concentration under only second moment

condition on the underlying distribution, while the empirical Fréchet mean

has polynomial concentration. We focus our study on spaces with non-positive

Alexandrov curvature since they afford slower rates of convergence than spaces

with positive curvature.
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Chapter 1

Introduction

The notion of Fréchet mean extends the definition of mean, as a center of

probability distribution, to metric space settings. Given a Borel probability

measure P on a metric space (M, d) and a functional η : M×M → R, the

Fréchet mean (or the barycenter) [Fré48] of P is any x∗ such that

x∗ ∈ arg min
x∈M

∫
M
η(x, y) dP (y). (1.1)

This accords with the usual definition of the Euclidean mean for M = RD

when η(x, y) = d(x, y)2 = |x− y|2. In this paper, we consider the estimation of

the Fréchet mean driven from a heavy-tailed distribution. Our problem is to

find estimators that have better non-asymptotic accuracy than the empirical

Fréchet mean

xn ∈ arg min
x∈M

1

n

n∑
i=1

η(x,Xi) (1.2)

when P is heavy-tailed on M. Our main results assertively answer this ques-

tion for global non-positive curvature (NPC) spaces, also called CAT(0) or

Hadamard spaces, that are of finite- or infinite-dimension.

Our coverage with NPC spaces is genuinely broad enough. It includes
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Hilbert spaces with Euclidean spaces as a special case, and various other types

of metric spaces, some of which are listed below.

• A hyperbolic space HD has constant non-positive sectional curvature,

which results in rich geometrical features with explicit expression for the

log and exp maps. The deviation of two geodesics in a hyperbolic space

accelerates while drifting away from the origin, which allows a natural

hierarchical structure in neural networks [GBH18; TBG18].

• The space S+
D of symmetric positive definite matrices has non-constant

and non-positive sectional curvature, which appears frequently in diffu-

sion tensor imaging [Fil+05; Fil+07]. The space S+
D is not only a Rieman-

nian manifold, but also an Abelian Lie group with additional algebraic

structure [Ars+07; Lin19; PSF19]. Thus, structural modeling is allowed

for random elements taking values in S+
D [LMP21].

• The Wasserstein space P2(R) over R has vanishing Alexandrov curva-

ture [Klo10] and plays a fundamental role in optimal transport [Vil09].

The Wasserstein space has rich applications in modern theories, such as

change point detection [HKW21], and Wasserstein regression [CLM21;

ZKP22; GP21].

Apart from the above-mentioned examples, there are other NPC spaces that

are of great importance in application, such as phylogenetic trees [PSF19;

BHV01] and Euclidean buildings [Rou04].

A great deal of statistical inference is fundamentally based on the estima-

tion of the Fréchet mean x∗. While classical statistics leaned toward asymptotic

behavior of estimators, the derivation of non-asymptotic probability bounds,

called concentration or tail inequalities, has drawn increasing attention re-

cently. For an estimator x̂ = x̂(X1, . . . , Xn) of x∗, concentration inequalities
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for x̂ are given in the form of

P (d(x̂, x∗) ≤ r(n,∆)) ≥ 1−∆, (1.3)

where r(n,∆) is the radius of concentration corresponding to a tail probability

level ∆ whose dependence on n is typically determined by the metric-entropy

of M. There have been only a few attempts to establish such concentration

inequalities when (M, d) is not Euclidean, and all of them have been restricted

to the empirical Fréchet mean x̂ = xn, to the best of our knowledge. ForM =

RD, it is widely known that the empirical mean xn is sub-optimal achieving

only polynomial concentration for heavy-tailed P in the sense that ∆−1 =

f(n, r(n,∆)) for some f with f(n, r) for fixed n being a polynomial function

of r.

A solution to alleviating the sub-optimality of the empirical mean xn is

to partition {X1, . . . , Xn} into a certain number of blocks and then take

a ‘median’ of the within-block sample means. The above idea of robusti-

fication against heavy-tailed distribution, while inheriting the efficiency of

the empirical mean for light-tailed distribution, was first introduced by Ne-

mirovsky and Yudin [NY83]. When M = R, the resulting estimator, termed

as median-of-means, achieves the concentration inequality (1.3) with r(n,∆) =

C×n−1/2
√

log(1/∆) for some constant C > 0 [Cat12; Dev+16]. Lugosi [LM19]

extended the result to M = RD by developing the idea of ‘median-of-means

tournament’. Both results establish exponential concentration for the median-

of-means estimator x̂ in the sense that ∆−1 = f(n, r(n,∆)) with f(n, r) for

fixed n being an exponential function of r. All of the above-mentioned works,

however, treated Euclidean spaces for η = d2 with extensive use of the asso-

ciated inner product. Hsu [HS16] treated arbitrary metric spaces for η = d2.

However, the latter work does not use the geometric features of the underlying
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metric space but assumes certain high-level conditions. The conditions include

the existence of an estimator x̂ and a random distance DIST on (M, d) such

that P (d(x̂, x∗) ≤ ε) ≥ 2/3 for some ε > 0 and P(d(x, y)/2 ≤ DIST (x, y) ≤
2d(x, y)) ≥ 8/9 for all x, y ∈M.

In this paper, we first extend the notion of median-of-means to general

metric spacesM. Then, we address the problem of robust estimation by taking

into account the metric geometry of the underlying space. To this end, we

use the CN, quadruple and variance inequalities, which are not well known

in statistics, instead of inner product. We show that, when M is an NPC

space and η(x, y) = d(x, y)α, the corresponding geometric-median-of-means

estimator achieves exponential concentration for all α ∈ (1, 2], under only the

second moment condition E d(x∗, X)2 < +∞. In particular, for the treatment

of the ‘bridging’ case where α ∈ (1, 2), we introduce a further extended notion

of the geometric-median-of-means, for which we devise generalized versions

of the CN and variance inequalities. Our work is the first that provides with

concentration inequalities for median-of-means type estimators with explicit

constants, when η is not necessarily d2 orM is a possibly infinite-dimensional

non-Euclidean space.

We work with (possibly non-compact) NPC spaces for the geometric-median-

of-means estimators since the Fréchet mean xn has poor performance in such

spaces. In fact, the concentration properties of xn depend heavily on the

compactness and curvature of M. For general Polish spaces, an exponential

concentration inequality may be established with xn if the space is compact

[ACLGP20]. For non-compact geodesic spaces, however, only polynomial con-

centration is possible with xn unless a strong assumption on the tail of P is

imposed. The latter was proved for Euclidean spaces, a special case of non-

compact spaces [Cat12]. As for the curvature of the underlying space, xn has a
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poorer rate of convergence for M with non-positive curvature than with pos-

itive curvature (Chapter 3 and Section 4.3). Curvature and compactness are

related in caseM is a Riemannian manifold. The Bonnet-Myers theorem states

that, if the sectional curvature of a Riemannian manifold is bounded from be-

low by κ > 0, then diam(M) ≤ π/
√
κ so that it is compact. To complement

the existing works for xn, we demonstrate the polynomial concentration of xn,

as well, for general Polish spaces in Chapter 3, and for NPC spaces as a spe-

cialization of the latter in Section 4.2. We note that there have been few works

on non-asymptotic theory of xn for non-EuclideanM, although its asymptotic

theory has been widely studied [BP03; BP05; LGL17; SCG03]. The work in

Chapter 3 for the empirical Fréchet mean xn paves our way for developing the

main results in Chapter 5 for the geometric-median-of-means estimators.

Our treatment of NPC spaces relies on the metric geometry of the under-

lying space M, rather than on the differential geometry of M. Consequently,

the radius of concentration r(n,∆) in the exponential inequalities in Chapter 5

does not involve any term related to the structure of the tangential vector space

ofM, which corresponds to ΣX in Lugosi [LM19] whenM = RD. We find that

assuming E d(x∗, X)2 < +∞ is enough to deduce the exponential concentra-

tion. The flexibility inherent in our framework thus allows our work to serve as

the basic constituent for a wide range of principal methods for non-Euclidean

data. In particular, the theoretical development achieved in this paper may be

adapted to the robustification of various recent Fréchet regression techniques

[LMP21; CLM21; ZKP22; GP21; PM19].
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Chapter 2

Assumptions

In this chapter, we present main structures of the underlying metric, where we

base our theory, and key assumptions on the entropy of the underlying space.

The validity of the assumptions will be discussed in Chapter 4.

Let (M, d) be a separable and complete metric space (Polish space). Con-

sider the set of all probability measures on M denoted by P(M). Let P be a

probability measure with finite second moment, i.e.

P ∈ P2(M) :=
{
P ∈ P(M) :

∫
M
d(x, y)2 dP (y) < +∞ for some x ∈M

}
.

We note that, if
∫
M d(x, y)2 dP (y) < +∞ for some x ∈ M, then it holds for

all x ∈ M. Let η : M ×M → R be a measurable function. Throughout

this paper, we assume that there exists x∗ ∈ M at (1.1) for the underlying

measure P . Let X1, X2, . . . , Xn be the i.i.d. observations of a random element

X governed by a probability measure P , and Pn be its empirical probability

measure. Then, the empirical Fréchet mean xn at (1.2) can be written as

xn ∈ arg min
x∈M

∫
M
η(x, y) dPn(y).
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To analyze the deviation of xn from x∗ by making use of the difference of

their η-functional values, we introduce two assumptions on P ∈ P2(M):

(A1) Quadruple inequality: There is a nonnegative function l : M×M →
[0,+∞), called growth function, such that, for any y, z, p, q ∈M,

l(y, z) = 0 ⇔ y = z,

η(y, p)− η(y, q)− η(z, p) + η(z, q) ≤ 2l(y, z) · d(p, q).

(A2) Variance inequality: There exist constants K > 0 and β ∈ (0, 2) such

that, for all x ∈M,

l (x, x∗)2 ≤ K

(∫
M

(η(x, y)− η (x∗, y)) dP (y)

)β
.

We note that (A1) and (A2) together imply the uniqueness of the Fréchet mean

x∗.

Example 1. Consider the case where M is a Hilbert space H with an inner

product 〈·, ·〉 and d(x, y) = ‖x − y‖ for the induced norm ‖ · ‖ of 〈·, ·〉. Let

η = d2. If X has finite second moment, i.e. E d(x∗, X)2 < +∞, then x∗ = EX

is the unique barycenter of X in the sense of Bochner integration. Also, it holds

that

η(y, p)− η(y, q)− η(z, p) + η(z, q)

= (2〈y − q, q − p〉+ ‖q − p‖2)− (2〈z − q, q − p〉+ ‖q − p‖2)

= 2〈y − z, q − p〉 ≤ 2‖y − z‖ · ‖p− q‖.

Thus, (A1) holds with l = d. Moreover, (A2) is satisfied with equality holding

always for all x ∈M with K = β = 1:

E (η(x,X)− η (x∗, X)) = E
(
2〈x∗ −X, x− x∗〉+ ‖x− x∗‖2

)
= 2〈x∗ − EX, x− x∗〉+ ‖x− x∗‖2 = ‖x− x∗‖2.
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For curved spaces, the inequality in (A2) may be satisfied, but with equality

not holding always for all x ∈ M in general, contrary to the Hilbetian case.

Moreover, both xn and x∗, defined in the format of M-estimation, do not

have a closed form expression for curved metric spaces. Therefore, in order

to derive a concentration inequality for xn, we need an inequality that gives

an upper bound to the discrepancy l (xn, x
∗) between xn and x∗. The variance

inequality (A2) implies that l (xn, x
∗) can be controlled by the positive function

η(xn, ·)− η (x∗, ·), called the empirical excess risk of η:

l (xn, x
∗)2 ≤ K

(∫
M

(η(xn, y)− η (x∗, y)) dP (y)

)β
. (2.1)

For the usual choice η = d2, it turns out that (A1) and (A2) hold with l =

d,K = β = 1 for general NPC spaces M, see Section 4.1 for details.

Bounding the right hand side of (2.1) with a high probability depends on

the geometric properties of the class of functions η(x, ·)−η (x∗, ·) for x ∈M. It

turns out that the dependence is through the centered functional ηc defined by

ηc(x, ·) = η(x, ·)−
∫
M η(x, y)dP (y). Put fη(x, ·) = ηc(x, ·)− ηc(x∗, ·), x ∈M.

Definition 1. For δ ≥ 0,

Mη(δ) =

{
x ∈M :

∫
M

(η(x, y)− η (x∗, y)) dP (y) ≤ δ

}
,

Fη(δ) = {fη(x, ·) : x ∈Mη(δ)},

σ2
η(δ) = sup

{∫
M
fη(x, y)2 dP (y) : x ∈Mη(δ)

}
.

Example 2. Consider the η and X in Example 1. Let ΣX : H ×H → R be

the covariance operator of X defined by ΣX(x, y) = E (〈x,X − x∗〉〈y,X − x∗〉)
and λmax be its largest eigenvalue. From Example 1, it is straightforward to
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see that

Mη(δ) = B(x∗,
√
δ),

E η(x,X) = E η(x∗, X) + ‖x− x∗‖2 = tr(ΣX) + ‖x− x∗‖2,

ηc(x, y) = η(x, y)− Eη(x,X) = ‖x− y‖2 − ‖x− x∗‖2 − tr(ΣX),

fη(x, y) = ηc(x, y)− ηc(x∗, y)

= ‖x− y‖2 − ‖x∗ − y‖2 − ‖x− x∗‖2 = 2〈x− x∗, x∗ − y〉,

‖fη(x, ·)− fη(y, ·)‖22,P = 4E
(
〈x− y,X − x∗〉2

)
= 4 ΣX(x− y, x− y),

where B(x, r) denotes the ball centered at x with radius r, and ‖f‖2
2,P =

E f(X)2. Note that fη(x, ·) : H → R is an affine function and fη(x
∗, ·) ≡ 0 ≡

fη(·, x∗). Also, from the Cauchy-Schwarz inequality, we have

σ2
η(δ) = sup

{
4E(〈x− x∗, X − x∗〉2) : x ∈ B(x∗,

√
δ)
}

= sup
{

4ΣX(x− x∗, x− x∗) : x ∈ B(x∗,
√
δ)
}

= 4δ · λmax.

Under the assumptions (A1) and (A2), it holds that

sup
x∈Mη(δ)

fη(x, y)

= sup
x∈Mη(δ)

∫
M

(η(x, y)− η(x∗, y)− η(x, z) + η(x∗, z)) dP (z)

≤ 2 sup
x∈Mη(δ)

∫
M
l(x, x∗)d(y, z) dP (z)

≤ 2
√
Kδβ

∫
M
d(y, z) dP (z) =: Hδ,η(y).

(2.2)

By definition Hδ,η envelops the class Fη(δ) of functions under the assumptions

(A1) and (A2). Let ‖ · ‖2,Pn be defined by

‖f‖2
2,Pn = n−1

n∑
i=1

f(Xi)
2, f :M→ R.
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Note that ‖ · ‖2,Pn is a pseudo metric. To analyze high probability concentra-

tion, toward zero, of the right hand side of (2.1), we consider the following

assumption on the ‖ · ‖2,Pn-metric entropy of M.

(B1) Finite-dimensional M: There are some constants A,D > 0 such that,

for any δ > 0 and n ∈ N,

N (τ‖Hδ,η‖2,Pn ,Fη(δ), ‖ · ‖2,Pn)) ≤
(
A

τ

)D
, 0 < τ ≤ 1.

The constantD in the assumption (B1) is related to the index of VC(Vapnik-

C̆ervonenkis)-type class of functions, which appears frequently in M-estimation.

According to the common definition [GN21], Fη(δ) is of VC-type with respect

to Hδ,η if

sup
Q∈P(M)

N (τ‖Hδ,η‖2,Q,Fη(δ), ‖ · ‖2,Q)) ≤
(
A

τ

)Dvc

(2.3)

for some constants A,Dvc > 0. The constant Dvc, termed as VC index, may not

equal the dimension of M in general, but is usually larger, and (2.3) implies

(B1) with D = Dvc, the latter being what we actually need in our framework.

Because of the implication, Fη(δ) with (B1) may be regarded as a weak VC-

type class of functions, and D as a weak VC index. In Proposition 3 given

later in Chapter 4 we show that (B1) holds with D = dim(M) in case M is

an NPC space with dim(M) < +∞ and η = d2.

For infinite-dimensional scenarios, we make the following assumption on

the geometric complexity of M.

(B2) Infinite-dimensionalM: There are some constants A, γ > 0 such that,

for any δ > 0 and n ∈ N,

logN (τ‖Hδ,η‖2,Pn ,Fη(δ), ‖ · ‖2,Pn)) ≤ A

τ 2γ
, 0 < τ ≤ 1.

10



The constant γ describes how quickly the covering number grows as τ de-

creases. For probability measures P with non-compact support, the complex-

ity constant depends largely on the curvature ofM. Here and throughout the

paper, ‘curvature’ means sectional curvature for Riemannian manifolds, and

Alexandrov curvature for general metric spaces. In case η = d2, we get that

γ = 1 for Hilbert spacesM, γ ≤ 1 for geodesic spaces with positive curvature,

and γ ≥ 1 for geodesic spaces with non-positive curvature, see Section 4.3.

Based on this, we call γ the curvature complexity of M.
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Chapter 3

Empirical Fréchet Means

In this chapter, we present two theorems that establish polynomial concen-

tration for empirical Fréchet means under the assumptions (A1), (A2), (B1)

and (B2) in the case where M is a general Polish space. The theorems are

used in developing exponential concentration for geometric-median-of-means

estimators to be introduced in Chapter 5. Throughout this chapter, we assume

that P has finite second moment, i.e., σ2
X := E d(x∗, X)2 < +∞.

Theorem 1. Assume (A1), (A2) and (B1), and let (K, β) and (A,D) be the

constant pairs that appear in (A2) and (B1), respectively. Then, for all n ∈ N

and ∆ ∈ (0, 1),

l(xn, x
∗) ≤ C∆ ·

(
σX√
n

) β
2−β

with probability at least 1−∆, where C∆ is given by

C∆ = K
1

2−β

{
32

(
24
√
AD +

√
2

∆

)} β
2−β

.

In the case whereM is an NPC space to be introduced in the next chapter,

choosing η = d2 gives l = d and K = β = 1, see Section 4.1. In this case,
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Theorem 1 provides an upper bound of order σX/
√
n∆ for d(xn, x

∗). Note

that, in the trivial case where M = RD with d(x, y) = |x− y|, an application

of the Chebyshev inequality gives

P
(
|xn − x∗| ≤

σX√
n∆

)
≥ 1−∆.

Here and throughout this paper, | · | denotes the Euclidean norm. We pay

extra factors in C∆ related to the complexity ofM to deal with general metric

spaces. The following theorem is for infinite-dimensional scenarios with the

assumption (B2).

Theorem 2. Assume (A1), (A2) and (B2), and let (K, β) and (A, γ) be the

constant pairs that appear in (A2) and (B2), respectively. Then, there is a

universal constant CA,γ depending only on A > 0 and γ > 0 such that, for all

n ∈ N and ∆ ∈ (0, 1),

l(xn, x
∗) ≤



K
1

2−β

(
CA,γ ·

1

n1/2
· σX√

∆

) β
2−β

, if 0 < γ < 1

K
1

2−β

(
CA,1 ·

log n

n1/2
· σX√

∆

) β
2−β

, if γ = 1

K
1

2−β

(
CA,γ ·

1

n1/2γ
· σX√

∆

) β
2−β

, if γ > 1

with probability at least 1−∆.

An explicit form of the constant CA,γ in Theorem 2 may be found in the

proof of the theorem in Section 7.1. The theorem demonstrates that the consis-

tency of the empirical Fréchet mean xn remains to hold for infinite-dimensional

(M, d), but with slower rates of convergence to x∗ for increasing n when γ ≥ 1,

compared to the finite-dimensional case in Theorem 1. It tells that, for infinite-

dimensional geodesic spacesM, decreasing the curvature ofM results in slow-

ing down the rate of convergence of xn to x∗ since the curvature complexity γ
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gets larger as the curvature decreases. This implies that the rate is slower for

M with non-positive curvature than with positive curvature. We note that, for

the finite-dimensional case, the rate of convergence of xn does not depend on

the curvature, as is shown in Theorem 1. The constant A in C∆, however, gets

larger as the curvature of M decreases in case M is a Riemannian manifold

and η = d2, see Section 4.3.

Theorems 1 and 2 reveal that, for fixed n, the empirical Fréchet mean

achieves only polynomial concentration speeds. In Chapter 5 we discuss in

depth alternative estimators that afford exponential speeds, basically replacing

1/∆ by log(1/∆) in the concentration inequalities.
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Chapter 4

Consideration of Assumptions

In this section, we discuss the validity of the assumptions (A1), (A2), (B1)

and (B2) for non-positive curvature (NPC) spaces. We also derive generalized

versions of the CN and variance inequalities.

Definition 2. A Polish space (M, d) is called an (global) NPC space if for

any x0, x1 ∈M, there exists y ∈M such that

d(z, y)2 ≤ 1

2
d(z, x0)2 +

1

2
d(z, x1)2 − 1

4
d(x0, x1)2, z ∈M.

Example 3. Any Hilbert space (H, 〈·, ·〉) is an NPC space: for any x0, x1, z ∈
M

1

2
d(z, x0)2 +

1

2
d(z, x1)2 − 1

4
d(x0, x1)2

=
1

4

(
2‖z − x0‖2 + 2‖z − x1‖2 − ‖(z − x0)− (z − x1)‖2

)
=

1

4
‖(z − x0) + (z − x1)‖2

= d

(
z,
x0 + x1

2

)2

.

Throughout this section, M is an NPC space. Also, when there is no con-

fusion, with an abuse of terminology, ‘Riemannian manifold’ means a smooth,
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complete and connected finite-dimensional Riemannian manifold. By the Hopf-

Rinow Theorem, such Riemannian manifold is geodesically complete.

4.1 Common choice η = d2

Let us first discuss some properties of NPC spaces when η(x, y) = d(x, y)2.

The geometry of metric measure spaces with non-positive curvature is mainly

developed by Sturm [SCG03]. Note that the existence and uniqueness of the

Fréchet mean for any probability measure are guaranteed for such spaces.

We have seen in Example 1 that, for Hilbert spaces, the inner product

structure allows us to easily verify (A1) and the equality in (A2) with l = d,

K = β = 1. For curved spaces, however, d(x, y)2−d(x∗, y)2 cannot be expressed

nicely, thus our assumptions (A1) and (A2) may not be easy to check. For

example, for Riemannian manifoldsM, the relationship between the embedded

distance ‖ logp x − logp y‖ for p, x, y ∈ M and the original distance d(x, y)

depends considerably on the curvature, see Remark 1 below. Nevertheless,

using the fact that the geodesic deviation accelerates as two geodesics move

further away from the origin, one may prove the following inequalities for global

NPC spaces M, see [SCG03] for details.

CN inequality: For any y ∈M and for any geodesic γ : [0, 1]→M,

d(γt, y)2 ≤ (1− t)d(γ0, y)2 + t d(γ1, y)2 − t(1− t)d(γ0, γ1)2, t ∈ [0, 1].

Quadruple inequality: For any y, z, p, q ∈M,

d(y, p)2 − d(z, p)2 − d(y, q)2 + d(z, q)2 ≤ 2d(y, z)d(p, q).

Variance inequality: For any x ∈M and for any P ∈ P2(M),

d (x, x∗)2 ≤
∫
M

(
d(x, y)2 − d (x∗, y)2) dP (y).
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Here, ‘CN’ stands for Courbure Négative in French. Therefore, not only for

Hilbert spaces but also for NPC spaces, our assumptions (A1) and (A2) are

satisfied with K = β = 1, l = d for the usual choice η(x, y) = d(x, y)2.

Remark 1. We note that η = d2 satisfies the Hamilton-Jacobi equation, see

(14.29) in [Vil09], and the homogeneous Taylor polynomial of order 4 for η

gives the following formula: for any p ∈M and v, w ∈ TpM,

d
(
expp(tv), expp(tw)

)2
= ‖v − w‖2 · t2 − 1

3
Riem(v, w, w, v) · t4 +O(t5),

where ‘Riem’ stands for the Riemannian curvature tensor.

4.2 Cases with η = dα

Here, we consider the choice η = dα, or equivalently η = d2
α with dα = dα/2,

for α ∈ (1, 2]. We note that the Fréchet mean x∗ corresponding to α = 1 is

analogous to the conventional median forM = R, thus is often called Fréchet

median. We exclude the case α = 1 in our discussion, however, for the reason

to be given shortly. We also note that dα is a metric for α ∈ (1, 2], and is often

called power transform metric. The associated Fréchet mean is called α-power

Fréchet mean. With a slight abuse of notation we continue to denote it by x∗

throughout this paper.

Fig. 4.1 illustrates the α-power Fréchet means for several α ∈ [1, 2] when

M = R2, d(x, y) = |x− y| and P has the equal probability mass 1/3 at three

points a1 = (0, h), a2 = (−
√

3, 0), a3 = (
√

3, 0). The right panel depicts t in

x∗ = (0, t) as a function of h. For α = 2, x∗ = (a1 + a2 + a3)/3 = (0, h/3)

becomes most sensitive to the change of a1 = (0, h) from a certain point on the

scale of h. For α = 1, x∗ = arg minx∈R2 xa1 + xa2 + xa3, known as the Fermat

point, is invariant for h ≥ 1. As the cases α = 1.1 and α = 1.5 demonstrate, x∗
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for α ∈ (1, 2) is resistent to outlying a1 = (0, h) to a certain extent depending

on α: the smaller α is, the more it resists.

Fig. 4.1 also indicates that all α-power Fréchet means for different values of

α meet at (0, 1) when a1 = (0, 3). This is not a coincidence. Proposition 5 in the

Supplement shows that, if the underlying probability measure P is invariant

under rotation around a point z, then z is the unique α-power Fréchet mean

for all α ≥ 1.

Figure 4.1: The left panel depicts the positions of the α-power Fréchet mean

x∗ and the three points a1, a2, a3 having equal mass. The right panel shows

the change of x∗ as a1 moves with a2 and a3 staying fixed, for α = 1/1.1/1.5/2

(solid/dashed/dotted/dot-dashed).

The rates of convergence for α-power Fréchet means are studied for NPC

spaces with α ∈ [1, 2] in Schötz [Sch19]. In the latter work it is proved that the

assumption (A1) holds with l(·, ·) = α2−α+1d(·, ·)α−1: for any y, z, p, q ∈M,

d(y, p)α − d(z, p)α − d(y, q)α + d(z, q)α ≤ α2−α+2d(y, z)α−1d(p, q), α ∈ [1, 2].

(4.1)
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Moreover, according to Appendix E in [Sch19], no growth function satisfying

(A1) exists for α > 2 and 0 < α < 1. For α = 1, (4.1) implies (A1) with the

growth function l(y, z) = I(y 6= z), but with this the assumption (A2) makes

no sense, so that Theorems 1 and 2 are not meaningful for η = d. For the case

where α = 1, [Bac̆14a] provided some results analogous to Theorems 1 and 2.

[Bac̆14b], [Bac̆18] also introduced stochastic proximal point algorithms (PPA)

to compute Fréchet medians in NPC spaces.

We are not aware of any types of CN or variance inequalities for the power

transform metric in the literature. In the next two propositions we derive

generalized CN and variance inequalities for α ∈ (1, 2]. Thus, the theorems in

Chapter 3 remain valid for α-power Fréchet means as well.

Proposition 1 (Power transform CN inequality). Let γ : [0, 1] → M be a

geodesic and α ∈ [1, 2]. Then, it holds that, for any δ ≥ 0, t ∈ [0, 1] and

z ∈M,

d(γt, z)
α ≤ (1 + δ)1−α/2 [(1− t)α/2d(γ0, z)

α + tα/2d(γ1, z)
α
]

− δ1−α/2 [t(1− t)d(γ0, γ1)2
]α/2

.

Our result in Proposition 1 reduces to the CN inequality in Section 4.1

when α = 2. It is believed to be a sharp generalization since it is derived from

the CN inequality in Section 4.1 and a version of Hölder’s inequality, both of

which are sharp. With given three points x, y, z ∈M, Proposition 1 enables us

to get an upper bound for the power transform metric η(·, z) = d(·, z)α along

the geodesic from x to y, which does not seem to be feasible for general η. We

will illustrate how to use this inequality in a concrete way in the proof of the

following proposition, and also in the proofs of the concentration inequalities

given in Theorems 5 and 6 later in Section 5.2.
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To state the second proposition, for α > 0 we let

Pα(M) :=
{
P ∈ P :

∫
M
d(x, y)αdP (y) < +∞ for some x ∈M

}
.

For P ∈ Pα(M), define Fα(·) =
∫
M d(·, y)αdP (y) and

bα(x) = sup
t∈(0,1]

Fα(γxt )−
{
tα/2 + (1− t)α/2

}
Fα(x∗)

tα/2d(x, x∗)α
, x ∈M \ {x∗},

where γx : [0, 1]→M is the geodesic from x∗ to x.

Proposition 2 (Power transform variance inequality). Let α ∈ [1, 2] and P ∈
Pα(M). If bα(x) > 0, then

d (x, x∗)α ≤ 1

bα(x)

∫
M

(d(x, y)α − d (x∗, y)α) dP (y), x ∈M \ {x∗}.

Therefore, if

Bα := inf
x∈M\{x∗}

bα(x) > 0, (4.2)

then for any x ∈M,

d (x, x∗)α ≤ 1

Bα

∫
M

(d(x, y)α − d (x∗, y)α) dP (y).

Proposition 2 tells that, in order to establish the power transform variance

inequality, it suffices to check that, for all x ∈ M \ {x∗}, Fα(γxt ) gets apart

from
(
tα/2 + (1− t)α/2

)
Fα(x∗) by more than a positive constant multiple of

t
α
2 d(x, x∗)α, at some point γxt along the geodesic from x∗ to x. Note that

Fα(x∗) = infx∈M Fα(x) and tα/2 + (1 − t)α/2 ≥ 1 for all t ∈ [0, 1]. For the

common choice η = d2, i.e. α = 2, it follows from the (power transform) CN

inequality that, for any x ∈M \ {x∗},

b2(x) = sup
t∈(0,1]

F2(γxt )− F2(x∗)

t · d(x, x∗)2
≥ sup

t∈(0,1]

t2 · d(x, x∗)2

t · d(x, x∗)2
= 1.
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Thus, we may take B2 = 1 in this case and the proposition gives the usual

variance inequality in Section 4.1. For η = dα with α ∈ (1, 2] in general,

if P ∈ Pα(M) satisfies the condition (4.2), then (A1) and (A2) hold with

l(y, z) = α2−α+1d(y, z)α−1, K = α22−2α+2B
−2+2/α
α and β = 2 − 2/α ∈ (0, 1].

Thus, in this general case as well, Theorems 1 and 2 hold under the entropy

conditions (B1) and (B2), respectively. The theorems give that

P

(
d(xn, x

∗) ≤ 64
(Kα/2

α

α

)1/(α−1)

·
(

24
√
AD +

√
2

∆

)
· σX√

n

)
≥ 1−∆ (4.3)

for finite-dimensional NPC spaces M and

P

(
d(xn, x

∗) ≤ 2
(Kα/2

α

α

)1/(α−1)

· CA,γ · ρn ·
σX√

∆

)
≥ 1−∆ (4.4)

for infinite-dimensional cases, where Kα = α22−2α+2B
−2+2/α
α and

ρn =


n−1/2 if 0 < γ < 1

n−1/2 · log n if γ = 1

n−1/2γ if γ > 1.

Note that the concentration rates in terms of ∆ and n in (4.3) and (4.4) do

not depend on α ∈ (1, 2].

4.3 Metric entropy

VC-type classes appear frequently in the study of empirical processes. Our as-

sumption (B1) on the complexity ofM in terms of the random entropy is cru-

cial for the derivation of non-asymptotic concentration properties of xn. It gives

universal non-stochastic bounds to the random entropies N (τ,Fη(δ), ‖ · ‖2,Pn).

The calculation of the (weak) VC index D in (B1), i.e. the uniform control of
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the random covering numbers, is difficult in many cases (see Section 7.2 in

[VH14]). A common technique to obtain D is to exploit the combinatorial

structure of the class of functions, provided that it is a VC subgraph class of

functions, see [BLM13; GN21; VH14] and references therein. However, with

a more explicit assumption (B1′) given below, which essentially characterizes

the dimension of the underlying spaces, we may calculate directly the (weak)

VC index without combinatorial notions of complexity such as shattering.

(B1′) There are some constants A1, D1 > 0 such that, for any τ ∈ (0, r],

N(τ, B(x∗, r), d) ≤
(
A1r

τ

)D1

.

Proposition 3. Let η = dα with 1 < α ≤ 2. Assume (A2) and (B1′). Then

(B1) holds with A = Aα−1
1 and D = D1/(α− 1):

N (τ‖Hδ,η‖2,Pn ,Fη(δ), ‖ · ‖2,Pn) ≤
(

A1

τ 1/(α−1)

)D1

, 0 < τ ≤ 1.

In particular, when η = d2 where (A2) is satisfied, (B1′) alone implies (B1)

with A = A1 and D = D1.

Considering that the VC index Dvc introduced in Chapter 2 is usually

larger than the dimension D1 of the underlying spaceM, the second result in

Proposition 3 is striking as it states that the (weak) VC index D equals D1 in

our framework when η = d2. It is noteworthy that the right hand side of the

inequality in Proposition 3 does not involve any term related to δ. This can

be interpreted as that the growth of ‖Hδ,η‖2,Pn counterbalances the increasing

complexity of the class Fη(δ) as δ gets larger.

WhenM is a Riemannian manifold and η = dα with α ∈ (1, 2], the constant

A in (B1) is indispensably related to the volume control problem, which is one
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of the fundamental problems in geometry. Indeed, the constant A1 in (B1′) for

a Riemannian manifold depends on how fast the volume of a ball grows as its

radius increases, which relies on the sectional (or Ricci) curvature of M. The

Bishop-Günther inequality gives an upper bound to the volume change in terms

of the sectional curvature, see Theorem 3.101 (ii) in [GHL90]. For the reversed

inequality, named as the Bishop-Gromov inequality, see [Vil09]. Because of

these inequalities, A1 thus A in (B1) becomes smaller as the curvature of M
increases when η = dα with α ∈ (1, 2].

To encompass infinite-dimensional cases, we made another complexity as-

sumption (B2) in Chapter 2. The following proposition demonstrates that,

when (M, d) is a Hilbert space and η = d2, the constants A and γ in (B2) turn

out to be calculated explicitly as A = 1/32 and γ = 1.

Proposition 4. Let M be a Hilbert space and η = d2 with d(x, y) = ‖x− y‖.
Then, for any probability measure P ∈ P2(M),

logN (τ‖Hδ,η‖2,P ,Fη(δ), ‖ · ‖2,P ) ≤ 1

32τ 2
, 0 < τ ≤ 1.

Furthermore, for the empirical measure Pn, it holds that

logN (τ‖Hδ,η‖2,Pn ,Fη(δ), ‖ · ‖2,Pn) ≤ 1

32τ 2
, 0 < τ ≤ 1.

Proposition 4 may be used to verify (B2) with η = d2 for Riemannian

manifolds (M, d). Note that d(x, y) ≤ ‖ logp x − logp y‖ for M with non-

negative curvature, while d(x, y) ≥ ‖ logp x− logp y‖ for M with non-positive

curvature, i.e. for Hadamard manifolds. By embedding M into the tangent

space Tx∗M and applying Proposition 4 to Tx∗M, one may argue that (B2)

is satisfied with some γ ≤ 1 for Riemannian manifolds with non-negative

curvature, and with some γ ≥ 1 for Hadamard manifolds. In fact, γ in (B2),

termed as curvature complexity, can be made smaller as the curvature of M
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gets larger. The latter follows from the Toponogov comparison theorem: the

larger is the sectional curvature of an underlying spaceM, the slower becomes

the acceleration of the deviation between two geodesics emanating from a single

point.

4.4 Wasserstein space

For a separable Banach space (X , ‖ · ‖), P2(X ) is called Wasserstein space and

can be written as

P2(X ) = {µ ∈ P(X ) :

∫
X
‖x‖2dµ(x) <∞},

where P(X ) denotes the set of all probability measures on X . The Wasserstein

space P2(X ) is equipped with the Wasserstein distance

W2(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X
‖x− y‖2dπ(x, y)

)1/2

, µ, ν ∈ P2(X )

where Π(µ, ν) denotes the family of all probability measures onM×M with

marginals µ and ν.

The Wasserstein space P2(X ) for a general Banach space X has non-

negative Alexandrov curvature at any probability measure µ ∈ P2(X ) that

is absolutely continuous with respect to all non-degenerate Gaussian measures

[ACLGP20; PZ20]. For X = R, however, P2(R) has vanishing Alexandrov

curvature [Klo10]. Thus, the latter is an NPC space, and (A1) and (A2) are

satisfied with K = β = 1 and l = W2 for the usual choice η(µ, ν) = W2(µ, ν)2,

see Section 4.1. For the metric entropy, P2(R) satisfies (B2) for any γ > 1/2

(see Example 2.6 of [ACLGP20]), thus the conclusion of Theorem 2 is valid

for P2(R).
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Chapter 5

Geometric-Median-of-Means

For empirical Fréchet means in non-compact metric spaces, polynomial con-

centration, as we derived in Chapter 3, is the best one can achieve. In this

section we introduce new estimators, for which we show that they have expo-

nential concentration in general NPC spaces. The definitions of the estimators

are for general metric spaces (M, d) and functionals η.

Let the random sample {X1, . . . , Xn} be partitioned into k disjoint and

independent blocks B1, . . . ,Bk of size m ≥ n/k. For each 1 ≤ j ≤ k, define

Fn,j(x) =
1

m

∑
Xi∈Bj

η(x,Xi). (5.1)

For two points a, b ∈ M, one may interpret Fn,j(a) < Fn,j(b) as that a is

‘closer’ than b to the ‘center’ of the jth block Bj. Indeed, in caseM = RD and

η(x, y) = |x− y|2,

Fn,j(a) < Fn,j(b) if and only if |a− Zj| < |b− Zj|, (5.2)

where Zj in general is the sample Fréchet mean of the block Bj defined by

Zj ∈ arg min
x∈M

Fn,j(x).
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More generally, when M is a Hilbert space and η(x, y) = ‖x − y‖2, then

Fn,j(a) < Fn,j(b) is equivalent to ‖a − Zj‖ < ‖b − Zj‖. This follows from

Fn,j(x) = Fn,j(Zj) + ‖x− Zj‖2.

Definition 3. For a, b ∈ M, we say that ‘a defeats b’ if Fn,j(a) ≤ Fn,j(b) for

more than k/2 blocks Bj. For x ∈M, let

Sx = {a ∈M : a defeats x}, rx = arg min{r > 0 : Sx ⊂ B(x, r)}.

We call Sx the ‘x-defeating region’ and rx the ‘x-defeating radius’. The new

estimator xMM of x∗ is then defined by

xMM ∈ arg min
x∈M

rx.

We call it ‘geometric-median-of-means’, or simply ‘median-of-means’ when

there is no confusion.

Remark 2. By definition, x defeats itself so that x ∈ Sx for all x ∈ M .

Also, ‘a defeats b’ does not always imply ‘b does not defeat a’. Both a and b

can defeat each other, and if it happens then there exists at least one j such

that Fn,j(a) = Fn,j(b). Furthermore, rx ≤ r if and only if any point a with

d(x, a) > r cannot defeat x since

rx = max {d(x, a) : a ∈M defeats x} .

In case M is a Euclidean space, the median-of-means may be interpreted in

terms of Tukey depth, see [Hop20].

In view of (5.2), our definition of ‘defeat’ is a natural extension of the

‘median-of-means tournament’ introduced in [LM19] forM = RD: ‘a defeats b’

if |a−Zj| ≤ |b−Zj| for more than k/2 blocks Bj. We note that, for curved metric

spaces, the equivalence between Fn,j(a) ≤ Fn,j(b) and d(a, Zj) ≤ d(b, Zj) is no
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longer valid in general. Our definition in terms of Fn,j(x) is preferable to the one

based on d(x, Zj) since the latter needs the much more onerous computation

of sample Fréchet means Zj for curved spaces. Our definition dispenses with

the calculation of Zj in all competitions between two points in M. In case

η :M×M→ [0,+∞) is continuous, the x-defeating region Sx for any x ∈M
is a closed subset of M containing x. This would entail that x 7→ rx is a

continuous function, from which one may argue that the minimum of rx over

x ∈M is attained at some point in M.

From the discussion immediately before Definition 3, one may interpret ‘a

defeats b’ as that a is closer than b to the centers of more than half of the k

blocks. The idea of minimizing the radius of defeating region is that, if x is far

away from x∗, and thus from the block centers Zj, then it is more likely that

x would be defeated by some point located far from x, i.e. rx would be large.

Since xMM is determined by the ordering relation based on Fn,j rather than

by the magnitudes of Fn,j themselves, it reflects the geometric structure of η

and inherits the characteristics of the Euclidean median of Z1, . . . , Zk. Indeed,

when M = R and η(x, y) = |x − y|2, xMM in Definition 3 coincides with the

usual sample median of Z1, . . . , Zk.

To illustrate how xMM works, we simulated n = 10, 000 data points from a

bivariate distribution and chose k = 5 for the number of blocks. In Figure 5.1

we depicted them on [−1, 1]2 and also Zj (•) for 1 ≤ j ≤ 5. The figure demon-

strates that rx, which is the radius of the smallest ball centered at x = N

covering the ‘violet/sky-blue/blue’ regions, tends to decrease as x ∈ M gets

closer to the Fréchet mean x∗ = �. To see how sensitive xMM is to the change

of data points, imagine that the data points in a single block changes com-

pletely to arbitrary values. This would change only one Fn,j(·) among the five,

regardless how extreme the change of the data points is. Since the points a in
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Figure 5.1: A dataset of size n = 10, 000 was generated from a bivariate dis-

tribution on R2 with mean � = (0, 0), and partitioned into k = 5 blocks ran-

domly. Their sample means are depicted as • points. The color of each region

indicates for how many blocks the points a have Fn,j(a) ≤ Fn,j(N) (5:violet,

4:sky blue, 3:blue, ≤2:gray). Thus, the union of violet/sky-blue/blue colored

regions is the x-defeating region SN. The coordinates of N in the top-left and

top-right panels, respectively, are (0.45,0.6) and (0.3,-0.2). The bottom-right

panel is the zoomed-in picture of the bottom-left with N = (0, 0), which is

identical to the true mean �.

28



the violet and sky-blue regions, respectively, have Fn,j(a) ≤ Fn,j(N) for 5 and

4 blocks with the original dataset, they still defeat x = N with the modified

dataset. From this one may infer that there would be no significant change

in the ordering of rx across x ∈ M. This consideration suggests that xMM is

more robust than xn to large deviation of a few blocks, which results in xMM

having stronger concentration than xn, provided that the number of blocks

(k) is sufficiently large. The latter has been evidenced for M = R by [Cat12;

Dev+16] and for M = RD by [LM19].

In the next two subsections, we make precise the above heuristic discussion

for NPC spaces with η = dα for α ∈ (1, 2].

5.1 Common choice η = d2

Let X1, . . . , Xn be i.i.d. random elements taking values in an NPC space (M, d)

with finite second moment. Here, we focus on the case η = d2. The following

theorem is essential for deriving an exponential concentration for xMM when

M is of finite dimension.

Theorem 3. Assume (B1) with some constants A,D > 0. Let ∆ ∈ (0, 1) and

q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k = d1/(2q2) log(1/∆)e,
then it holds that, with probability at least 1 − ∆, x∗ defeats all x ∈ M with

d(x, x∗) > Rq but any such x does not defeat x∗, where

Rq = CqσX

√
log(1/∆)

n
, Cq =

32
√

2

q

(
24
√
AD +

2√
1− 2q

)
. (5.3)

Let E denote an event where, for all x with d(x, x∗) > Rq, x
∗ defeats x but

x does not defeat x∗. On E ∩ {d(xMM , x
∗) > Rq}, one has x∗ ∈ SxMM

, which

implies SxMM
* B(xMM , Rq) so that rxMM

> Rq. On E , one also gets that
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x /∈ Sx∗ for all x with d(x, x∗) > Rq, which implies Sx∗ ⊂ B(x∗, Rq) so that

rx∗ ≤ Rq on E . By the definition of xMM , it holds that rxMM
≤ rx∗ , however.

This means that

P
(
E ∩ {d(xMM , x

∗) > Rq}
)

= 0.

The foregoing arguments gives the following corollary of Theorem 3.

Corollary 1. Assume (B1) with some constants A,D > 0. Let ∆ ∈ (0, 1) and

q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k = d1/(2q2) log(1/∆)e,
then it holds that d(xMM , x

∗) ≤ Rq with probability at least 1−∆, where Rq is

the constant defined at (5.3).

The constant factor Cq in the radius of concentration Rq depends on q ∈
(0, 1/2). Taking too small (large) q close to 0 (1/2) leads to too large (small)

number of blocks k, which results in inflating the constant Cq and impairing the

concentration property of xMM . There is an optimal q in the interval (0, 1/2)

that minimizes Cq since Cq is a smooth function of q ∈ (0, 1/2) and diverges to

+∞ as q approaches either to 0 or to 1/2. We note that xMM with too small k

is not much differentiated from the empirical Fréchet mean xn, while with too

large k the block Fréchet means Zj would be scattered and thus there would

be no guarantee that points x close to x∗ have small x-defeating radius rx.

The following theorem is for infinite-dimensional M and also gives an ex-

ponential concentration for xMM .

Theorem 4. Assume (B2) with some constants A > 0 and γ ≥ 1. Let

∆ ∈ (0, 1) and q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k =

d1/(2q2) log(1/∆)e, then it holds that, with probability at least 1 − ∆, x∗ de-
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feats all x ∈M with d(x, x∗) > Rq but any such x does not defeat x∗, where

Rq,γ =


cq,1 · σX · log n ·

√
log(1/∆)

n
if γ = 1

cq,γ · σX ·
(

log(1/∆)

n

)1/2γ

if γ > 1

(5.4)

where cq,γ =
2CA,γ
q
√

1−2q
with CA,γ appearing in Theorem 2.

Corollary 2. Assume (B2) with some constants A > 0 and γ ≥ 1. Let

∆ ∈ (0, 1) and q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k =

d1/(2q2) log(1/∆)e, then it holds that d(xMM , x
∗) ≤ Rq,γ with probability at

least 1−∆, where Rq,γ is the constant defined at (5.4).

As in the case of the empirical Fréchet mean xn for infinite-dimensionalM,

see (4.4), decreasing the curvature ofM (increasing γ) results in slowing down

the rate of convergence of xMM to x∗. We can also make a similar remark for

the dependence of the constant factor cq,γ on q ∈ (0, 1/2) as in the discussion

of Corollary 1. In the infinite-dimensional case, however, cq,γ is minimized at

q = 1/3 regardless of the values of A and γ.

We note that the constants Cq and cq,γ in Theorems 3 and 4, respectively,

may not be optimal. One might improve them by careful sharpening of various

inequalities in the proofs of the theorems. Rather than optimizing the con-

stants, we lay stress on exponential concentration. It is also noteworthy that

our results do not involve terms such as tr(ΣX), as opposed to the radius of

concentration derived by Lugosi [LM19] for the caseM = RD, since we do not

assume any differential structure for the underlying NPC space.
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5.2 Cases with η = dα

Here, we consider a more general setting where η = dα for 1 < α ≤ 2. We

note that the CN inequality (1) in Section 4.1 plays an important role in

establishing Theorems 3 and 4. For the general case with η = dα, we use the

power transform CN inequality established in Proposition 1.

The general estimators are built on the following notion of ‘defeat by frac-

tion’. The definition applies not only to η = dα but also to a general measurable

function η :M×M→ R.

Definition 4. Let ρ be a positive real number. For a, b ∈ M, we say that ‘a

defeats b by fraction ρ’ if Fn,j(a) ≤ ρ ·Fn,j(b) for more than k/2 blocks Bj. For

x ∈M, let

Sρ,x = {a ∈M : a defeats x by fraction ρ},

rρ,x = min{r > 0 : Sρ,x ⊂ B(x, r)}

= max{d(x, a) : a ∈M defeats x by fraction ρ}.

We call Sρ,x the ‘x-defeating-by-ρ region’ and rx the ‘x-defeating-by-ρ radius’.

The estimator xρ,MM of x∗ is then defined by

xρ,MM ∈ arg min
x∈M

rρ,x.

We call it ‘ρ-geometric-median-of-means’, or simply ‘ρ-median-of-means’ if

there is no confusion.

Clearly, the case ρ = 1 in the above definition coincides with Definition 3.

By defintion, for any 0 < ρ1 < ρ2, if a defeats b by fraction ρ1, then a defeats

b by fraction ρ2. Therefore, for any fixed x ∈ M, the x-defeating-by-ρ region

Sρ,x increases as ρ increases, and ρ 7→ rρ,x is a monotone increasing function.
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For 0 < ρ < 1, the x-defeating-by-ρ region does not contain x since Sρ,x

collects those points in M that are ‘strictly better’ than x. If ρ is too small,

Sρ,x can be an empty set for some x ∈ M, in which case rρ,x = 0. We note

that the two events ‘a defeats b by fraction ρ’ and ‘b defeats a by fraction

1/ρ’ do not complement each other, but either of the two always occurs. Both

can occur simultaneously, and if so then there exists at least one j such that

Fn,j(a) = ρ · Fn,j(b). As in the case of ρ = 1, the minimum of rρ,x over x ∈M
is attained at some point in M when η :M×M→ R is continuous.

To state a generalization of Theorem 3 to the case η = dα, put

Mα,ρ = sup

{
δ1−α/2tα/2(1− t)α/2 : 0 < t < 1, δ > 0,

1− (1 + δ)1−α/2(1− t)α/2

(1 + δ)1−α/2 tα/2
≥ ρ
}
.

Note that Mα,ρ = 1/4 for α = 2 and ρ ≤ 1 since for any 0 < t < 1 and δ > 0,

1− (1 + δ)1−2/2(1− t)2/2

(1 + δ)1−2/2 t2/2
=
t

t
= 1.

However, for 0 < α < 2, we note that tα/2 + (1 − t)α/2 > 1 for all 0 < t < 1

and thus
1− (1 + δ)1−α/2(1− t)α/2

(1 + δ)1−α/2 tα/2
< 1 (5.5)

for all 0 < t < 1 and δ > 0. Hence, taking ρ ≥ 1 when η = dα for 0 < α < 2,

as (5.5) shows, would give Mα,ρ = sup ∅ = −∞. In fact, we find that the

derivation of exponential concentration is intractable for xρ,MM with ρ ≥ 1

when 1 < α < 2, which is why we introduce the new notions of ‘defeat by

fraction’ and ‘ρ-geometric-median-of-means estimator’. Fig. 5.2 demonstrates

the shapes of Mα,ρ as a function of ρ for several choices of α. It also depicts

M
−1/α
α,ρ on the log scale that appears in the constant factors in the concentration

inequalities in the following theorems and corollaries.
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Figure 5.2: The shapes of Mα,ρ (left) and logM
−1/α
α,ρ (right) as functions of ρ

for α = 1/1.1/1.5/2 (solid/dashed/dotted/dot-dashed).

Theorem 5. Assume (B1) with some constants A,D > 0 and that there exists

a constant Bα > 0 such that

d (x, x∗)α ≤ 1

Bα

∫
M

(d(x, y)α − d (x∗, y)α) dP (y). (5.6)

Let ρ ∈ (0, 1], ∆ ∈ (0, 1) and q ∈ (0, 1/2). Put Kα = α22−2α+2B
−2+2/α
α . Let

k denote the number of blocks Bj. If k = d1/(2q2) log(1/∆)e, then it holds

that, with probability at least 1−∆, x∗ defeats by fraction 1/ρ all x ∈M with

d(x, x∗) > Rq,α,ρ but any such x does not defeat x∗ by fraction ρ, where

Rq,α,ρ = Cq,α,ρ σX

√
log(1/∆)

n
,

Cq,α,ρ = M−1/α
α,ρ · 16

√
2Kα

q

(
24
√
AD +

2√
1− 2q

)
.

(5.7)

Recall that Proposition 2 gives a sufficient condition for the existence of

Bα > 0 such that (5.6) holds. Also, we note that (5.6) holds with Bα = 1 when
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α = 2, see Section 4.1. Thus, when α = 2 and Mα,ρ = 1/4, we have Kα = 1

so that Theorem 5 with ρ = 1 reduces to Theorem 3. The following corollary

may be derived from Theorem 5 as Corollary 1 is from Theorem 3.

Corollary 3. Assume the conditions in Theorem 5. Let ρ ∈ (0, 1], ∆ ∈ (0, 1)

and q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k = d1/(2q2) log(1/∆)e,
then it holds that d(xρ,MM , x

∗) ≤ Rq,α,ρ with probability at least 1 −∆, where

Rq,α,ρ is the constant defined at (5.7).

The constant factor Cq,α,ρ depends on q and ρ. As in Corollary 1 for xMM ,

it is minimized at some point q ∈ (0, 1/2). The minimizing q depends on A and

D, but is independent of α and ρ. As for the dependence on ρ, we note that ρ ∈
(0, 1) 7→ Cq,α,ρ ∈ (0,+∞) is an increasing function when 1 < α < 2, as is well

illustrated by the right panel of Fig. 5.2. The increasing speed gets extremely

fast as ρ approaches to 1. Since taking a smaller ρ shrinks the defeating regions

Sρ,x, it results in having xρ,MM stay closer to x∗, which explains the result that

the radius of concentration Rq,α,ρ gets smaller for smaller ρ.

Below, we present versions of Theorem 5 and Corollary 3 when M is of

infinite-dimension satisfying the entropy condition (B2). Again, when α = 2,

we have Kα = 1 and Mα,ρ = 1/4 so that Theorem 6 with ρ = 1 reduces to

Theorem 4.

Theorem 6. Assume (B2) with some constants A > 0 and γ ≥ 1 and that

there exists a constant Bα > 0 such that (5.6) holds. Let ρ ∈ (0, 1], ∆ ∈ (0, 1)

and q ∈ (0, 1/2). Put Kα = α22−2α+2B
−2+2/α
α . Let k denote the number of

blocks Bj. If k = d1/(2q2) log(1/∆)e, then it holds that, with probability at

least 1 − ∆, x∗ defeats by fraction 1/ρ all x ∈ M with d(x, x∗) > Rq,α,ρ but
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any such x does not defeat x∗ by fraction ρ, where

Rq,α,ρ,γ =


cq,α,ρ,1 ·

log n

n1/2
· σX ·

√
log

1

∆
if γ = 1

cq,α,ρ,γ ·
1

n1/2γ
· σX ·

(
log

1

∆

)1/2γ

if γ > 1,

cq,α,ρ,γ = K1/2
α M−1/α

α,ρ · CA,γ
q
√

1− 2q

(5.8)

and CA,γ is the constant that appears in Theorem 2.

Corollary 4. Assume the conditions in Theorem 6. Let ρ ∈ (0, 1], ∆ ∈ (0, 1)

and q ∈ (0, 1/2). Let k denote the number of blocks Bj. If k = d1/(2q2) log(1/∆)e,
then it holds that d(xρ,MM , x

∗) ≤ Rq,α,ρ,γ with probability at least 1−∆, where

Rq,α,ρ,γ is the constant defined at (5.8).

From (4.3) and (4.4) in Section 4.2 we have observed that the concentra-

tion rates for xn in terms of ∆ and n do not depend on α ∈ (1, 2]. This is

also the case with the geometric-median-of-means estimators xMM and xρ,MM ,

which can be seen by comparing Corollaries 1 and 2 with Corollaries 3 and 4,

respectively. The dependence pattern of the rate of convergence of xρ,MM on

γ is the same as xn and xMM . Also, the dependence of cq,α,ρ,γ on ρ is the same

as in the finite-dimensional case. For the dependence on q, as in the case of

xMM , the constant factor is minimized at q = 1/3 irrespective of A, γ and ρ.

Remark 3. For NPC spaces M with η = d2, the curvature complexity γ is

greater than or equal to 1. However, γ may be γ < 1 when 1 < α < 2. In such

case, one may prove that Rq,α,ρ,γ in Theorem 6 is given by

Rq,α,ρ,γ = cq,α,ρ,γ ·
1

n1/2
· σX ·

√
log

1

∆
, 0 < γ < 1

for the same constant cq,α,ρ,γ given at (5.8).
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Chapter 6

Discussion

Our results can be applied to any NPC spaces of finite or infinite dimension,

such as Hilbert spaces, hyperbolic spaces, manifolds of SPD matrices, and

the Wasserstein space P2(R), etc. Our work is an extensive generalization of

previous works on the methods of median-of-means. It is the first attempt that

extends the notion of median-of-means to a general class of metric spaces with

a rich class of metrics, and derives exponential concentration for the extended

notions of median-of-means in such a general setting. As we discussed in this

paper, we stress that the sample Fréchet mean has poor concentration for non-

compact or negatively curved spaces. For such spaces, our geometric-median-

of-means estimators are efficient antidotes to the sample Fréchet mean.
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Chapter 7

Proofs

Throughout the Appendix, for a measurable space (S,B), a probability mea-

sureQ on B and a measurable function f : S → R, we often denote
∫
S f(y) dQ(y)

simply by Qf . For instance, Pf = E (f(X)) and Pnf = n−1
∑n

i=1 f(Xi). We

also suppress the dependence on η of Mη(δ) and other associated terms.

7.1 Proofs of theorems in Chapter 3

To provide an upper bound to the right hand side of (2.1) with high probabil-

ity, we need a tail inequality for empirical processes. In our setup, ‖η(x, ·) −
η (x∗, ·) ‖∞ may be unbounded as x moves. Under some strong condition on

the tail of P , one may be able to obtain an exponential tail inequality, see

[Ada08; GL13]. Since we assume only finite second moment of P , we use the

following polynomial tail inequality.

Lemma 1 ([LVDG14]). Let X1, . . . , Xn be i.i.d. copies of X taking values in a

measurable space (S,B) with probability measure P , and let G be a count-

able class of measurable functions f : S → R with Pf = 0. Put Z =
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supf∈G (P − Pn) f and σ2 = supf∈G Pf
2. Assume that the envelope H of the

class G satisfies E(Hp) ≤Mp for some p ≥ 1 and M > 0. Then, for any ε > 0,

it holds that

P (Z ≥ 4E(Z) + ε) ≤ min
1≤l≤p

l · Γ(l/2)
(√

32/nM
)l

εl
.

If E(H2) ≤M2, in particular, we get that, for any ∆ ∈ (0, 1),

P
(
Z ≤ 4E(Z) +

8M√
n∆

)
≥ 1−∆.

Below, we present two more lemmas for the proof of the theorems. The proof

of the following lemma is deferred to the Supplement. Recall the definition of

Hδ ≡ Hδ,η given at (2.2), which envelops F(δ) ≡ Fη(δ).

Lemma 2. Let η :M×M→ R be a measurable function and X anM-valued

random element with Fréchet mean x∗ and covariance σ2
X . Let δ > 0. Then,

under the assumptions (A1) and (A2),

σ(δ) ≤ σ̄(δ), E
(
Hδ(X1)2

)
≤ σ̄(δ)2, E

(
‖Hδ‖2

2,Pn

)
≤ σ̄(δ)2,

where σ̄(δ) = 4
√
Kσ2

Xδ
β.

Proof of Lemma 2. Recall the definition of Hδ at (2.2). Then,

max
{
σ2(δ),EHδ(X1)2

}
≤ 4Kδβ

∫
M

(∫
M
d(y, z) dP (z)

)2

dP (y)

≤ 4Kδβ
∫
M

∫
M
d(y, z)2 dP (z) dP (y)

≤ 8Kδβ
∫
M

∫
M

(
d(y, x∗)2 + d(z, x∗)2

)
dP (z) dP (y)

= 16Kσ2
Xδ

β.
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Now, let X ′1, . . . , X
′
n be an independent copy of X1, . . . , Xn. By the triangular

inequality, it holds that

E
(
‖Hδ‖2

2,Pn

)
= E

(
1

n

n∑
i=1

Hδ(Xi)
2

)
=

1

n

n∑
i=1

4KδβE
(∫
M
d(Xi, z) dP (z)

)2

=
4Kδβ

n

n∑
i=1

E
(∫
M
d(Xi, z)

2 dP (z)

)
=

4Kδβ

n

n∑
i=1

E
(
d(Xi, X

′
i)

2
)

= 4Kδβ E
(
d(X1, X

′
1)2
)

≤ 8Kδβ E
(
d(X1, x

∗)2 + d(X ′1, x
∗)2
)
≤ 16Kσ2

Xδ
β.

The following lemma provides an improved chaining bound for Gaussian

processes. For a proof, see Theorem 5.31 in [VH14] or Lemma 5.1 in [ACLGP20].

Lemma 3. Let (Xt)t∈F be a real-valued process indexed by a pseudo metric

space (F , d) with the following properties: (i) there exists a countable subset

F ′ ⊂ F such that Xt = lims→t,s∈F ′ Xs a.s. for any t ∈ F ; (ii) Xt is sub-

Gaussian, i.e.

logE
(
eθ(Xs−Xt)

)
≤ θ2d(s, t)2/2

for any s, t ∈ F and θ ∈ R; (iii) there exists a random variable L such that

|Xs −Xt| ≤ Ld(s, t) a.s. for all s, t ∈ F . Then, for any S ⊂ F and any ε ≥ 0,

it holds that

E
(

sup
t∈S

Xt

)
≤ 2 εE(L) + 12

∫ +∞

ε

√
logN(u,F , d) du.

Proof of Theorem 1. Define δn = P (η (xn, .)− η (x∗, .)) and

φn(δ) = sup {(P − Pn) (η(x, .)− η (x∗, .)) : x ∈M(δ)}

= sup {(P − Pn) (ηc(x, .)− ηc (x∗, .)) : x ∈M(δ)}
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for δ ≥ 0. Since xn is a minimizer of Pnη(x, .), it follows from the definition of

φn that

δn ≤ (P − Pn) (η (xn, .)− η (x∗, .)) ≤ φn (δn) .

Applying Lemmas 1 and 2 we get that, with probability at least 1− (∆/2),

φn(δ) ≤ 4Eφn(δ) +
8
√

2 · σ̄(δ)√
n∆

. (7.1)

We first get an upper bound to Eφn(δ). Let {εi} be a Rademacher sequence,

i.e. random signs independent of Xi’s. Then, by the symmetrization of the

associated empirical process (see [GN21]) we obtain

Eφn(δ) ≤ 2E
(

sup
x∈M(δ)

n−1

n∑
i=1

εi (ηc(x,Xi)− ηc(x∗, Xi))

)
= 2E

(
sup

x∈M(δ)

n−1

n∑
i=1

εi ηc(x,Xi)

)
.

One can easily check that the Rademacher empirical process {Yf : f ∈ (F(δ), ‖ · ‖2,Pn)}
for the pseudo metric space (F(δ), ‖ · ‖2,Pn) given by

Yf :=
1√
n

n∑
i=1

εif(Xi)

is sub-Gaussian and
√
n-Lipschitz with respect to ‖·‖2,Pn , conditionally on the

Xi’s. Thus, it satisfies the conditions of Lemma 3 (see [ACLGP20]). Applying

Lemma 3 with (B1) and using the inequalities for Hδ given in Lemma 2, we
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get

Eφn(δ) ≤ 2E inf
ε≥0

(
2ε+

12√
n

∫ ∞
ε

√
logN(u,F(δ), ‖ · ‖2,Pn)du

)
≤ 2E inf

ε≥0

(
2ε+

12√
n

∫ ‖Hδ‖2,Pn
ε

√
D log

(
A‖Hδ‖2,Pn

u

)
du

)

= 2E (‖Hδ‖2,Pn) · inf
ε′≥0

(
2ε′ +

12√
n

∫ 1

ε′

√
D log

(
A

u

)
du

)

≤ 48E (‖Hδ‖2,Pn) ·
√
AD

n

≤ 48 σ̄(δ)

√
AD

n
,

(7.2)

where in the third inequality we have used log x ≤ x− 1 ≤ x for x > 0.

The inequalities (7.1) and (7.2) imply that, with probability at least 1 −
(∆/2),

φn(δ) ≤ σ̄(δ)

(
192

√
AD

n
+

8
√

2√
n∆

)

≤ 32

√
Kσ2

Xδ
β

n

(
24
√
AD +

√
2

∆

)
=: bn(δ,∆).

Since φn(δ) is a increasing function and bn(δ,∆) is decreasing in ∆ for fixed δ,

it follows from Theorem 4.3 in [Kol11] that

δn ≤ φn(δn) ≤ bn(∆) := inf

{
τ > 0 : sup

δ≥τ
δ−1bn

(
δ,∆

δ
τ

)
≤ 1

}
(7.3)

with probability at least 1−∆. Since σ̄(δ)/δ is decreasing in δ as β ∈ (0, 2),

sup
δ≥τ

δ−1bn

(
δ,∆

δ
τ

)
=
bn(τ,∆)

τ
= 32

√
Kσ2

Xτ
−(2−β)

n

(
24
√
AD +

√
2

∆

)
.
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This gives

bn(∆) = inf

{
τ > 0 : 32

√
Kσ2

Xτ
−(2−β)

n

(
24
√
AD +

√
2

∆

)
≤ 1

}
(7.4)

=

{
32

√
Kσ2

X

n

(
24
√
AD +

√
2

∆

)} 2
2−β

Applying (7.4) to (7.3), we obtain that, with probability at least 1−∆,

l(xn, x
∗) ≤

√
K · δβ/2n

≤ K
1

2−β

{
32

(
24
√
AD +

√
2

∆

)
σX√
n

} β
2−β

.

This completes the proof of Theorem 1.

Proof of Theorem 2. The proof is similar to that of Theorem 1 for the case of

finite-dimensional M. The difference is in the covering number N(u,F(δ), ‖ ·
‖2,Pn). We get

Eφn(δ) ≤ 2E inf
ε≥0

2ε+
12√
n

∫ ‖Hδ‖2,Pn
ε

√
A‖Hδ‖2γ

2,Pn

u2γ
du


= 4E (‖Hδ‖2,Pn) · inf

ε≥0

(
ε+ 6

√
A

n

∫ 1

ε

u−γ du

)

≤ 4E (‖Hδ‖2,Pn)×



6

1− γ

√
A

n
if 0 < γ < 1

6

√
A

n

(
1− log

(
6

√
A

n

))
if γ = 1

γ

γ − 1

(
6

√
A

n

)1/γ

if γ > 1.

.
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Therefore, φn(δn) ≤ bn(∆) with probability at least 1−∆, now with

bn(∆) =



(
32
√
Kσ2

X

(
12

1− γ

√
A

n
+

√
2

n∆

)) 2
2−β

if 0 < γ < 1(
32
√
Kσ2

X

(
12

√
A

n

(
1− log

(
6

√
A

n

))
+

√
2

n∆

)) 2
2−β

if γ = 132
√
Kσ2

X

 2γ

γ − 1

(
6

√
A

n

)1/γ

+

√
2

n∆

 2
2−β

if γ > 1.

This gives the theorem.

7.2 Proofs of propositions in Chapter 4

Proof of Proposition 1. Since 1/2 ≤ α/2 ≤ 1, we have aα/2 + bα/2 ≥ (a+ b)α/2

for any a, b ≥ 0, so that

(1 + δ)1−α/2 {(1− t)α/2d(z, γ0)α + tα/2d(z, γ1)α
}
− d(z, γt)

α

≥ (1 + δ)1−α/2 {(1− t)d(z, γ0)2 + td(z, γ1)2
}α/2 − d(z, γt)

α.
(7.5)

An application of Hölder’s inequality gives

(δ1 + δ2)1−α/2 (a1 + a2)α/2 ≥ δ
1−α/2
1 a

α/2
1 + δ

1−α/2
2 a

α/2
2

for all δi, ai ≥ 0 and α ∈ (0, 2). The above inequality also holds for α = 0

and 2. Applying the inequality with δ1 = 1, δ2 = δ, a1 = d(z, γt)
2, a1 + a2 =

(1− t)d(z, γ0)2 + td(z, γ1)2 to the right hand side of the inequality at (7.5), we

get

(1 + δ)1−α/2 ((1− t)α/2d(z, γ0)α + tα/2d(z, γ1)α
)
− d(z, γt)

α

≥ δ1−α/2 ((1− t)d(z, γ0)2 + td(z, γ1)2 − d(z, γt)
2
)α/2

≥ δ1−α/2 (t(1− t)d(γ0, γ1)2
)α/2

.

We note that a2 ≥ 0 and the last inequality follows from the CN inequality.
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Proof of Proposition 2. For x ∈ M \ {x∗}, we apply Proposition 1 to δ = 0

and γ being the geodesic γx : [0, 1] →M with γx0 = x∗ and γx1 = x, and then

integrate both sides of the inequality with respect to z. This gives

(1− t)α/2Fα(x∗) + tα/2Fα(x)− Fα(γxt ) ≥ 0 (7.6)

for any 0 ≤ t ≤ 1. Take an arbitrary ε > 0. By the definition of bα(x), it holds

that, for any x ∈M \ {x∗}, there exists t ≡ t(x) > 0 such that

Fα(γxt )−
(
tα/2 + (1− t)α/2

)
Fα(x∗) ≥ (bα(x)− ε) t

α
2 d(x, x∗)α. (7.7)

From (7.6) and (7.7), it follows that

tα/2 (Fα(x)− Fα(x∗)) ≥ (bα(x)− ε)tα/2d(x, x∗)α,

so that Fα(x) − Fα(x∗) ≥ (bα(x) − ε)d(x, x∗)α. Since ε > 0 was arbitrarily

chosen, we have

Fα(x)− Fα(x∗) ≥ bα(x) · d(x, x∗)α,

which completes the proof of the proposition.

Proof of Proposition 3. Recall Hδ(y) = 2
√
Kδβ

∫
M d(y, z) dP (z) from (2.2).

Now, for x, y ∈M(δ),

‖f(x, ·)− f(y, ·)‖2
2,Pn

=
1

n

n∑
i=1

(ηc(x,Xi)− ηc(y,Xi))
2

=
1

n

n∑
i=1

(∫
M

(d(x,Xi)
α − d(y,Xi)

α − d(x, z)α + d(y, z)α) dP (z)

)2

≤ α22−2α+4

n
· d(x, y)2α−2

n∑
i=1

(∫
M
d(Xi, z)dP (z)

)2

=
α22−2α+2

Kδβ
· d(x, y)2α−2‖Hδ‖2

2,Pn ,
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where the inequality follows from (4.1). Since l(·, ·) = α2−α+1d(·, ·)α−1 and

β = 2− 2/α,

M(δ) ⊂ B

(
x∗,

(
Kδβ

α22−2α+2

) 1
2(α−1)

)
.

Thus, it holds that

N (τ‖Hδ‖2,Pn ,F(δ), ‖ · ‖2,Pn)

≤ N

((
τ 2Kδβ

α22−2α+2

) 1
2(α−1)

,M(δ), d

)

≤ N

((
τ 2Kδβ

α22−2α+2

) 1
2(α−1)

, B

(
x∗,

(
Kδβ

α22−2α+2

) 1
2(α−1)

)
, d

)

≤
(

A1

τ 1/(α−1)

)D1

.

Proof of Proposition 4. Recall from Example 2 thatM(δ) = B(x∗,
√
δ), ‖f(x, ·)−

f(y, ·)‖2
2,P = 4 ΣX(x−y, x−y). Also, F(δ) =

{
2〈x−x∗, x∗−·〉 : x ∈ B(x∗,

√
δ)
}

and supx∈F(δ) f(x, ·) = 2
√
δ‖ · −x∗‖ is the envelope of the class F(δ). By Su-

dakov’s minorisation (see Theorem 2.4.12. in [GN21] and also [Fer75] for the

specified constant),

logN (τ,F(δ), ‖ · ‖2,P ) ≤ 1

8

(
Eg
(
Σ

1/2
X (g, g)

)
τ/
√
δ

)2

≤ tr(ΣX)δ

8τ 2

where g is a standard Gaussian random element taking values in (H, d). Since

‖Hδ‖2
2,P = 4 δ E (〈X − x∗, X − x∗〉) = 4 δ tr(ΣX), we have

logN (τ‖Hδ‖2,P ,F(δ), ‖ · ‖2,P ) ≤ 1

32τ 2

With the same machinery, one can also deduce the same result for the empirical

measure Pn.
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7.3 Proofs of theorems in Chapter 5

Without loss of generality, we assume that n = m · k, where k is the number

of blocks in splitting the sample and m is the size of each block.

Proof of Theorem 3. Let F (x) =
∫
M η(x, y) dP (y). By the definition of x∗ it

holds that, for each block Bj,

Fn,j(x
∗)− Fn,j(Zj) ≤ Fn,j(x

∗)− Fn,j(Zj)− F (x∗) + F (Zj).

The right hand side has an upper bound that is analogous to φn(δn) in the

proof of Theorem 1, which is obtained by substituting the empirical measure

corresponding to Bj for Pn and Zj for xn. Thus, replacing ∆ by (1− 2q)/2 (so

that 1−∆ by q + 1/2) and n by m = n/k with K = β = 1, we get from (7.3)

and (7.4) that

P
(
Fn,j(x

∗)− Fn,j(Zj) ≤ ε2
k,q

)
≥ q +

1

2
, (7.8)

where

εk,q = 32

√
kσ2

X

n

(
24
√
AD +

2√
1− 2q

)
. (7.9)

By the CN inequality in Section 4.1, we have

Fn,j(Zj) ≤ Fn,j(γ
x
1/2) ≤ Fn,j(x)

2
+
Fn,j(x

∗)

2
− d(x∗, x)2

4

⇔ Fn,j(x)− Fn,j(Zj) ≥ − (Fn,j(x
∗)− Fn,j(Zj)) +

d(x∗, x)2

2
,

where γx : [0, 1]→M is the geodesic with γx0 = x∗ and γx1 = x. Thus, denoting

by En,j the event

Fn,j(x) > Fn,j(x
∗) for all x ∈M with d(x, x∗) > 2εk,q,

we get from (7.8) that P (En,j) ≥ q+1/2 since Fn,j(x
∗)−Fn,j(Zj) ≤ ε2

k,q implies

Fn,j(x)− Fn,j(Zj) > − (Fn,j(x
∗)− Fn,j(Zj)) + 2ε2

k,q ≥ Fn,j(x
∗)− Fn,j(Zj)
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for all x with d(x, x∗) > 2εk,q. By applying Høffding’s inequality to
∑k

j=1 I(En,j),
we obtain

1−∆ ≤ 1− e−2q2k

≤ P

 k∑
j=1

I(En,j) > k/2


≤ P

 k∑
j=1

I (Fn,j(x) > Fn,j(x
∗)) > k/2 for all x ∈M with d(x, x∗) > 2εk,q

 .

This completes the proof of the theorem.

Proof of Theorem 4. The proof is essentially the same as that of Theorem 3

except that we use Theorem 2 instead of Theorem 1. We obtain (7.8) now with

εk,q =



CA,1 ·
log(n/k)√

n/k
· σX√

(1− 2q)/2
, if γ = 1

CA,γ · (k/n)1/2γ · σX√
(1− 2q)/2

, if γ > 1.

(7.10)

Since

1√
2q

log n
√

log(1/∆)√
n

=

√
k log n√
n

≥ log(n/k)√
n/k

,

1√
2q
n−1/2γ

(
log

1

∆

)1/2γ

≥
(

2q2n

log(1/∆)

)−1/2γ

= (k/n)1/2γ,

(7.11)

we get εk,q ≤ Rq/2. The rest of the proof is the same as in the proof of

Theorem 3.

Proof of Theorem 5. First, we follow the lines leading to (7.8), now using (7.4)

with K = Kα and β = 2− 2/α instead of K = β = 1. We may prove

P
(
Fn,j(x

∗)− Fn,j(Zj) ≤ Kα/2
α εαk,q

)
≥ q +

1

2
. (7.12)

48



By integrating both sides of the inequality in Proposition 1 with respect to z

for γ = γx : [0, 1]→M, we obtain that, for all 0 ≤ t ≤ 1 and δ > 0,

(1 + δ)1−α/2 ((1− t)α/2Fn,j(x∗) + tα/2Fn,j(x)
)
− Fn,j(γxt )

≥ δ1−α/2 (t(1− t)d(x, x∗)2
)α/2

.

From the definition of Zj and the above inequality, we get

Fn,j(Zj) ≤ Fn,j(γt) ≤ (1 + δ)1−α/2 ((1− t)α/2Fn,j(x∗) + tα/2Fn,j(x)
)

− δ1−α/2 (t(1− t)d(x, x∗)2
)α/2

.

This gives that, on the event where Fn,j(x
∗)− Fn,j(Zj) ≤ K

α/2
α εαk,q,

(1 + δ)1−α/2tα/2Fn,j(x)

>
(

1− (1 + δ)1−α/2(1− t)α/2
)
Fn,j(x

∗) +
(
δ1−α/2tα/2(1− t)α/2 −Mα,ρ

)
·
K
α/2
α εαk,q
Mα,ρ

or equivalently

Fn,j(x) >
1− (1 + δ)1−α

2 (1− t)
α
2

(1 + δ)1−α
2 t

α
2

· Fn,j(x∗) +
δ1−α

2 t
α
2 (1− t)

α
2 −Mα,ρ

(1 + δ)1−α
2 t

α
2

·
K
α/2
α εαk,q
Mα,ρ

for all x ∈ M with d(x, x∗) > K
1/2
α M

−1/α
α,ρ εk,q. Thus, from (7.12) and the

definition of Mα,ρ it follows that

P

(
Fn,j(x) > ρ · Fn,j(x∗) for all x ∈M with d(x, x∗) >

K
1/2
α εk,q

M
1/α
α,ρ

)
≥ q +

1

2
.

(7.13)

Applying Høffding’s inequality as in the proof of Theorem 3 with (7.13), we

may complete the proof of the theorem.

Proof of Theorem 6. The proof is essentially the same as that of Theorem 5

except that we use the definition of εk,q at (7.10) instead of the one at (7.9).

Using (7.11) we get K
1/2
α M

−1/α
α,ρ εk,q ≤ Rq,α,ρ.
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7.4 Additional proposition

Proposition 5. Let P be a probability measure in RD and η(x, y) = ψ(|x−y|)
where ψ : [0,+∞) → R is strictly increasing and convex. Assume that there

exists z ∈ RD such that

P (A) = P (Q(A− z) + z) , A ∈ B(RD)

for an orthogonal matrix Q ∈ RD×D with I+Q+· · ·+Qm−1 = 0 for some integer

m ≥ 2. Then, z is the unique Fréchet mean with respect to η : RD ×RD → R.

Proof of Proposition 5. We write d(x, y) = |x − y|. Since Q ∈ RD×D is an

orthogonal matrix, it holds that, for any x, y ∈ RD,

m−1∑
j=0

d(x,Qjy) =
m−1∑
j=0

d(Qx,Qjy) = · · · =
m−1∑
j=0

d(Qm−1x,Qjy). (7.14)

By (7.14) and the subadditivity of the Euclidean norm, we get

m−1∑
j=0

d(x,Qjy) =
1

m

m−1∑
l=0

m−1∑
j=0

d(Qlx,Qjy)

≥
m−1∑
j=0

d

(
1

m

m−1∑
l=0

Qlx,Qjy

)
=

m−1∑
j=0

d(0, Qjy).

Now, by Jensen’s inequality,

1

m

m−1∑
j=0

ψ(d(x,Qjy)) ≥ ψ

(
1

m

m−1∑
j=0

d(x,Qjy)

)
≥ ψ

(
1

m

m−1∑
j=0

d(0, Qjy)

)

and the equality holds if and only if x = 0. Considering translation, for any

x, y ∈ RD,

m−1∑
j=0

ψ
(
d(x,Qj(y − z) + z)

)
≥

m−1∑
j=0

ψ
(
d(z,Qj(y − z) + z)

)
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and the equality holds if and only if x = z. Therefore,∫
RD
η(x, y)dP (y) =

1

m

∫
RD

m−1∑
j=0

ψ
(
d(x,Qj(y − z) + z)

)
dP (y)

≥ 1

m

∫
RD

m−1∑
j=0

ψ
(
d(z,Qj(y − z) + z)

)
dP (y)

=

∫
RD
η(d(z, y))dP (y)

and the equality holds if and only if x = z.
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국문초록

유클리드공간에서 표본평균 벡터는 평균 추정량에 대해 오직 다항적 집중만을

가진다.이에,중앙값-평균(median-of-means)추정량이표본평균벡터의강건화

의 일환으로 제시되었다. 본 논문에서는 비옹골(non-compact) 혹은 무한 차원

폴란드공간(Polish space)에서일반적인거리가주어졌을때의프레셰(Fréchet)

모평균 추정에 관한 문제를 다룬다. 이를 위해, 기존의 중앙값-평균의 정의를

확장하였고, 주어진 공간의 기하학적 성질을 반영하기 위해 고안된 개념들과

부등식을이용하여표본프레셰평균은다항적집중만을가지는반면,본문에서

제시한 새로운 추정량은 지수적 집중을 가짐을 보인다. 특히, 본 연구는 양곡률

공간보다 수렴속도가 더 느린 음곡률 공간에 초점을 두고 있다.

주요어 :집중부등식,음곡률공간,비유클리드기하,중앙값-평균,프레셰평균,

멱 평균 거리.

학 번 : 2018-28485
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