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ABSTRACT 

Objectives: To validate deep-learning (DL) algorithms for detecting active 

pulmonary tuberculosis and lung cancers in screening chest radiographs and 

optimizing candidate selection for lung cancer CT screening (LCS). 

Methods: Validation of DL algorithms were performed using chest 

radiographs from the following cohorts: 1) a cohort undergoing systematic 

screening for tuberculosis between January 2013 and July 2018, 2) a cohort 

in a single check-up center between January 2008 and December 2012 (for 

detecting lung cancers), and 3) a cohort in the same health check-up center 

between January 2004 and June 2018 (for optimizing selection for lung 

cancer CT screening candidates). The area under the receiver operating 

characteristic curves (AUC) for detecting tuberculosis and lung cancers and 

prediction of lung cancers were measured. For lesion-detection tasks, 

accuracy measures including sensitivities, specificities, positive predictive 

values (PPVs), negative predictive values (NPVs) were calculated at pre-

defined operating thresholds (for tuberculosis: high sensitivity 

threshold=0.16, high specificity threshold= 0.46; for lung cancers: high 

sensitivity threshold=0.16). For identifying LCS candidates, discrimination 

and calibration of the model for incident lung cancer and its added value to 
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the 2021 US Preventive Services Task Force (USPSTF) recommendations 

were evaluated in terms of the lung cancer detection rate, the proportion of 

selected CT screening candidates, and PPV. 

Results: In a systematic screening cohort for tuberculosis of 20,235 chest 

radiographs from 19,686 asymptomatic individuals (21±2 years, 19,475 men), 

all five radiographs from four individuals with active pulmonary tuberculosis 

were correctly classified as having abnormal findings by the DL algorithm 

with specificities of 95.9% and 99.7%, PPVs of 0.6% and 6.8%, and NPVs of 

both 100% at high sensitivity and specificity thresholds, respectively. With 

high specificity thresholds, DL algorithm showed comparable diagnostic 

measures to the pooled radiologists (P-values>0.05). As for lung cancers, in 

a subset comprising 10,285 chest radiographs from 10,202 individuals 

(54±11 years, 5,857 men) with 10 radiographs of visible lung cancers, the 

algorithm’s AUC was 0.989 (95% confidence interval [CI]: 0.968 – 0.999), 

and it showed comparable sensitivity (90% [9 of 10]) to the radiologists (60% 

[6 of 10], P=0.248) with a lower specificity (96.9% [9,956 of 10,275] vs. 99.8% 

[10,249 of 10,275], P<0.001). In the screening cohort of 100,525 radiographs 

from 50,070 individuals (53±11 years, 28,090 men) with 47 radiographs of 

visible lung cancers, the algorithm’s AUC was 0.969 (95% CI: 0.946 – 0.992), 
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and its sensitivity and specificity were 83% (39 of 47) and 97% (97,479 of 

100,478), respectively. For optimization of candidate selection for LCS in the 

entire population and the subset of USPSTF-eligible individuals, the AUCs 

were 0.677 (95% CI: 0.623 – 0.731) and 0.745 (95% CI: 0.677 – 0.813), 

respectively. In individuals with pack-year information (n=17,390), when the 

model-driven optimization strategy was applied to the USPSTF-eligible 

population by excluding low-to-indeterminate risk, the proportion of selected 

CT screening candidates decreased to 35.8% (6,233 of 17,390) from 45.1% 

(7,835 of 17,390; P<0.001) with 3 missed lung cancers (0.19% [3 of 1,602]). 

The lung cancer detection rate (0.3% [53 of 17,390]; P=0.848) and PPV (0.9% 

[53 of 6,233]; P=0.416) remained unaffected. 

Conclusion: Deep-learning algorithms can be a promising tool in real-world 

screening chest radiographs in terms of detecting active pulmonary TB and 

lung cancers, and optimizing candidate selection for lung cancer CT 

screening. 

Keywords: deep learning; diagnosis; screening; tuberculosis, lung cancer, 

chest radiographs, computer-assisted  
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INTRODUCTION 

Deep learning (DL) algorithms have demonstrated excellent performance 

in various fields of medicine, including detecting active pulmonary 

tuberculosis (TB) and lung cancers on chest radiographs and predicting lung 

cancers (1-5). TB is the single most common life-threatening infectious 

disease and one of the leading causes of death worldwide (6-8). To reduce 

transmission of and mortality from TB, the World Health Organization (WHO) 

recommends systematic screening for active TB in high-risk groups, and a 

symptom screen has been a major initial test (7-11). However, up to half of 

bacteriologically-confirmed TB cases do not have any symptom (7-9). In a 

recent review of TB prevalence surveys conducted since 2000, more than 

50% of all confirmed cases reported no symptoms at the time of diagnosis 

(8). It is increasingly clear that symptom screening is insufficiently sensitive 

as an initial triage tool in mass screening (12). Chest radiographs have long 

been used as an alternative screening test, because of their high sensitivity 

for pulmonary TB (7, 8). However, there have been limitations associated 

with their use, including low specificity for pulmonary TB (46% to 86%) and 

intra-reader and inter-reader variabilities (6-8). Additionally, in resource-
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constrained environments, there is often a lack of trained experts who can 

interpret the radiographs (6, 7, 13). In the context of mass screening, 

interpretation of chest radiographs is time-consuming and labor-intensive; 

involvement of experts may be costly for programs that are intended to be 

cost-efficient (7, 8). To overcome these issues, computer-aided detection 

(CAD) has been developed and applied to the detection of TB (14-18). While 

these have shown promise in some studies, CAD systems have had limited 

accuracy in screening of asymptomatic individuals (7, 15). 

As for TB, multiple previous studies dealing with DL algorithms have 

already reported the excellent classification performance of DL algorithm on 

chest radiographs in disease-enriched datasets (1, 2, 4). Hwang et al. (2) 

reported in their external validation study consisting of six independent test 

datasets (TB proportion, 39% to 60%) that their DL algorithm showed very 

excellent detection performance of active pulmonary TB on radiographs, in 

which the sensitivities and specificities ranged between 94.3 - 100% and 91.1 

- 100%, respectively at high sensitivity threshold and 84.1 - 99.0% and 99.1 

- 100%, respectively at high specificity threshold. In addition, Qin et al. also 

showed that their DL algorithm had excellent classification performance 

(area under the curve [AUC] of 0.94) of active pulmonary TB in a high-
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prevalence setting (TB prevalence of 9.1%) (4). 

Lung cancer is a leading cause of cancer death worldwide, accounting for 

up to one-quarter of all cancer deaths (19). Since lung cancers are diagnosed 

in an advanced stage in most cases, screening of early-stage lung cancer 

has emerged as a strategy for reducing lung cancer mortality (20-22). Indeed, 

lung cancer CT screening (LCS) for high-risk smokers reduced lung cancer 

mortality by 20% in the National Lung Screening Trial (NLST) and by 24% in 

male participants in the Nederlands-Leuvens Longkanker Screenings 

Onderzoek (NELSON) trial (23-25). In contrast, the value of using chest 

radiographs as a screening modality could not be proven for either early lung 

cancer detection or lung cancer mortality reduction (26). Thus, it is 

controversial whether lung cancer screening should be performed using 

chest radiographs. Nonetheless, chest radiographs are widely used as an 

initial screening tool for several important thoracic diseases, including lung 

cancer, in the general population thanks to their low cost, easy accessibility, 

negligible radiation dose, and reasonable diagnostic capability (27-29). Nam 

et al. reported that a DL algorithm achieved a sensitivity of 71 – 91%, a 

specificity of 93 – 100%, and an AUC of 0.92 – 0.99 in their validation 

datasets with a lung cancer prevalence of approximately 60 – 68% (3). Sim 
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et al. reported that another DL algorithm had comparable diagnostic 

performance to that of radiologists in the detection of lung cancer in their 

study population composed of 75% lung cancer-containing chest 

radiographs (30). Also, they showed that assistance from their algorithm 

improved sensitivity (from 65% to 73%) and reduced the false-positive rate 

(FPR) (from 20% to 18%) (30). But those previous studies (1-4, 30) validated 

their DL algorithms with arbitrarily-selected test datasets, instead of datasets 

reflecting real-world clinical practice. 

Meanwhile, concerns regarding LCS include the considerable number of 

negative screening examinations (i.e., normal baseline or follow-up screens) 

with unnecessary radiation exposure and medical expenditures, and false-

positive results that potentially lead to invasive diagnostic procedures (23, 

24, 31-38). Lu et al. (5) recently developed and validated a deep-learning 

model to identify high-risk candidates for LCS. The model uses easily-

obtainable inputs including age, sex, smoking status, and a chest radiograph 

image, and it showed a higher AUC and sensitivity than the Centers for 

Medicare & Medicaid Services eligibility criteria (AUC, 0.755 vs. 0.634, 

P<0.001; sensitivity, 74.9% vs. 63.8%, P=0.012), while missing 30.7% fewer 

incident lung cancers (5). However, model validation in the prior study was 
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based on publicly available chest radiographs from 2 US clinical trials which 

first enrolled participants in 1993 (24, 39). Therefore, for generalizability, 

external validation with recent real-world data including non-US data is 

necessary (5). In addition, the potential interaction of the model output with 

the recently updated 2021 US Preventive Services Task Force (USPSTF) 

recommendations was not analyzed (40). 

The purpose of this study was to evaluate the usefulness of DL algorithms 

on chest radiographs in real-world screening settings in terms of detecting 

active pulmonary TB and lung cancers and optimizing candidate selection for 

LCS. This dissertation contains the contents previously published in two 

journals at the time of the examination (41, 42). 
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MATERIALS AND METHODS 

This retrospective studies were approved by the institutional review board 

of the Armed Forces Medical Command of Korea (IRB number: AFMC-

18028-IRB-18-025) and Seoul National University Hospital (IRB number: 

1808-038-964, 2010-174-1169), and the requirement for informed consent 

was waived. 

 

Study population 

Systematic screening for TB 

This study was performed at an armed forces hospital which covers a 

majority of military personnel in the capital city, Seoul. We collected all 

chest radiographs from servicepersons who visited the hospital for the 

routine medical check-up and, underwent chest radiographs for TB 

screening between January 2013 and July 2018. Screening was done 

systematically as part of routine evaluation for TB, rather than prompted by 

evaluation for clinical symptoms (7, 8). If servicepersons had clinical 

symptoms such as fever, cough, or sputum, they were referred to clinical 

interview with medical doctors and excluded from this screening program. 
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Detection of lung cancers on chest radiographs 

We collected all chest radiographs from individuals who participated in a 

health check-up program at Healthcare System Gangnam Center, Seoul, 

Korea between January 2008 and December 2012. The center provides a 

comprehensive medical check-up and screening program for non-

communicable diseases such as malignancies (43), and chest radiographs 

are a core test in this screening program to detect any lung disease 

requiring further diagnostic tests or treatments (43). The participants in this 

study paid the screening costs at their own expense and they were not 

assessed based on the predefined lung cancer risk factors. In this regard, 

the study population was an average-risk general population, rather than an 

LCS population that was carefully selected in terms of age and history of 

cigarette smoking. All individuals underwent chest radiographs as part of 

the health check-up, not for an evaluation of specific symptoms or signs. 

The following individuals were excluded from the study population: (a) 

individuals with a past history of lung cancer; (b) those with lung lesions 

pathologically confirmed as pre-invasive lesions of lung cancer, not 

definitive lung cancer. 
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Optimization of candidate selection for LCS  

 All chest radiographs from consecutive participants in the same center 

(Healthcare System Gangnam Center) between January 2004 and June 

2018 were collected. If an individual had several radiographs during the study 

period, we included a chest radiograph taken at the time the individual's 

smoking status was first recorded. Inclusion criteria were then applied: (a) 

individuals who had posteroanterior chest radiographs, (b) individuals aged 

50 to 80 years as recently recommended by the USPSTF (40), and (c) 

current or former smokers (5). The exclusion criteria were: (a) individuals with 

pre-invasive lesions (e.g., adenocarcinoma in situ, atypical adenomatous 

hyperplasia) or metastasis from extrathoracic malignancy (n=4), and (b) 

those with presumptive lung cancers that were not pathologically or clinically 

confirmed, as the ground truth for those nodules was indeterminate (n=4). 

 In subgroup analyses, we aimed to validate the CXR-LC model for 

predicting incident lung cancer within 3 and 5 years, respectively, from the 

date of chest radiographs. Among those diagnosed with lung cancer, 

individuals with less than 3 and 5 year intervals between chest radiographs 

and the date of diagnosis were included. For those without incident lung 

cancer, we included individuals who had low-dose chest CT examinations 
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at least 3 and 5 years after their radiographs, respectively, to strictly 

guarantee the absence of incident lung cancer. Keyword searching of the 

CT reports was then performed to identify and exclude individuals with 

indeterminate lung nodules or who had undergone lung resection. 

 

Reference standard 

Systematic screening for TB 

 The primary task was detection of active pulmonary TB, as defined by a 

positive microbiological test (smear microscopy, culture, or TB polymerase 

chain reaction) (7). The second task was classification of radiologically-

identifiable relevant abnormalities. The “radiologically-identifiable relevant 

abnormalities” in the present study refer to abnormalities detected on chest 

radiographs which require further diagnostic or therapeutic actions. We 

defined the reference standards of the second task with a three-step process 

applied to each radiograph. First, we considered the original radiological 

report of each radiograph as the first read, which was originally read by one 

of seven board-certified radiologists. Second, one experienced radiologist 

(J.H.L. with seven years of experience in thoracic radiology) blind to original 

radiological reports and available patients’ information, read all chest 
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radiographs independently, which was the second read. Third, for the chest 

radiographs read as having abnormal radiological findings either on the first 

or second read, two experienced radiologists (C.M.P. and J.M.G with 21 and 

29 years of experience in thoracic radiology, respectively) performed a 

consensus reading and jointly determined whether or not each radiograph 

contained “radiologically-identifiable relevant abnormalities.” In this step, 

lesion conspicuity and relevant level of each radiologic abnormality were 

labeled using 3 levels: no visible, visible but uncertain, certainly visible for 

lesion conspicuity; non relevant, equivocally relevant, and certainly relevant 

for relevant level. Chest radiographs that were judged as having ‘no visible’ 

or ‘non relevant’ abnormalities in the third step were classified as not having 

radiologically-identifiable relevant abnormalities and the remainder were 

classified as having abnormalities.  

 

Detection of lung cancers on chest radiographs and optimization 

of candidate selection for LCS 

Individuals diagnosed with lung cancer by November 2020 were identified 

through a search of electronic medical records. The health check-up center 

has a patient referral system through which individuals requiring further 
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diagnostic or therapeutic management are referred to a tertiary referral 

hospital (Seoul National University Hospital, Seoul, Korea). Therefore, 

individuals who had chest radiographs at the health check-up center and 

were subsequently diagnosed with lung cancer at further follow-up visits 

could be recognized. 

For the task of detection of lung cancers, we determined cancer-positive 

chest radiographs from individuals diagnosed with lung cancers using the 

following criteria: (a) lung cancer present on a chest CT scan taken within 3 

months of the chest radiograph, (b) if chest CT was not available, a chest 

radiograph taken within 15 months before being diagnosed with lung 

cancer. 

In contrast, if lung cancer or any significant but not confirmed as a benign 

nodule (i.e., non-calcified nodules of 6 mm or larger) was not present on a 

chest CT within 3 months of the chest radiographs, the radiographs were 

classified as cancer-negative. In addition, if chest CT was not available and 

follow-up radiographs after 12 months or longer revealed cancer-negative 

results, the prior chest radiographs were regarded as cancer-negative. 

For cancer-positive chest radiographs, two board-certified radiologists 

(J.H.L. and E.J.H., with 7 and 9 years of experience in thoracic radiology, 
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respectively) independently assessed the visibility of lung cancer on each 

chest radiograph, referring to the available chest CT examinations. In this 

assessment, the lung cancers on chest radiographs were dichotomized as 

visible or invisible. Finally, lung cancers on chest radiographs designated as 

visible by either radiologist were classified as visible lung cancers on chest 

radiographs, and chest radiographs concordantly judged as visible by both 

radiologists were categorized as clearly visible lung cancers on chest 

radiographs. Lung cancers determined as invisible by both radiologists 

were classified as invisible lung cancers on chest radiographs. 

 

Deep learning algorithms 

Systematic screening for TB and detection of lung cancers on 

chest radiographs 

 A commercially-available DL algorithm (Lunit INSIGHT for Chest 

Radiography, version 4.7.2; Lunit) was used. The algorithm was developed 

for the detection of major thoracic diseases (1). The DL algorithm provides 

both an image-wise probability value of a chest radiograph being abnormal, 

and a per-pixel localization map overlaid on the input chest radiograph 

identifying the location of abnormalities. All localization maps of chest 
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radiographs with positive results from the DL algorithm were checked to 

ensure that the algorithm adequately localized each lung cancer lesion on 

the chest radiographs (SUPPLEMENT). 

 

Optimization of candidate selection for LCS 

 The CXR-LC model was developed based on a convolutional neural 

network to predict long-term (up to 12-year) incident lung cancer using data 

from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 

(PLCO) and externally validated in the NLST (5). The inputs are clinical 

information (age, sex, and smoking status) and chest radiograph image, and 

the model calculates a probability for incident lung cancer ranging between 

0% and 100%. More detailed information can be found in the original study 

(5), and the model is available online (https://github.com/vineet1992/CXR-

LC). According to Lu et al. (5), the CXR-LC risk probabilities could be 

converted to the following ordinal risk categories : (a) low risk (< 2%), (b) 

indeterminate risk (2% to < 3.297%), (c) high risk (3.297% to < 8%), and (d) 

very high risk (≥ 8%) (SUPPLEMENT). 

 

Reader study 
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Systematic screening for TB 

 Based on the radiographs’ original radiologic reports, we calculated the 

diagnostic performances of the seven board-certified radiologists in terms of 

detection of active pulmonary TB and radiologically-identifiable relevant 

abnormalities on chest radiographs. Decision on active pulmonary TB on 

each radiograph was determined at the discretion of each radiologist, and 

the following image features were comprehensively checked to determine 

whether each radiograph indicated active pulmonary TB or not: abnormalities 

in the upper lobes of one or both lungs, presence of centrilobular nodules, 

cavitary lesions, consolidation, or miliary nodules. Diagnostic performance of 

pooled radiologists and per-radiologist were calculated, and compared with 

those of DL algorithm. 

 

Detection of lung cancers on chest radiographs 

 A subset of this cohort was sampled for a reader study who participated in 

this program between July 2008 and December 2008 (hereafter, validation 

set). The chest radiographs from this validation set were reviewed once by 

one of three board-certified radiologists (J.H.K. with 7 years of experience in 

reading chest radiographs, H.I.C. and J.P. with 6 years of experience in 
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reading chest radiographs; their subspecialties were not thoracic radiology). 

The three radiologists were blinded to all clinical information, and asked to 

determine whether each radiograph had suspicious abnormalities for lung 

cancer or not. 

 

Statistical Analysis 

Systematic screening for TB and detection of lung cancers on 

chest radiographs 

To measure the diagnostic performance of the algorithm and radiologists, 

receiver operating characteristic (ROC) curve analyses were performed 

and AUC was used as its measure for detection of active pulmonary TB. As 

for lung cancers, the ROC curve analyses of the DL algorithm with AUC 

calculation were appraised through the following three tasks: (a) detection 

of clearly visible lung cancers on chest radiographs, (b) detection of visible 

lung cancers on chest radiographs, and (c) discrimination between cancer-

positive chest radiographs and cancer-negative chest radiographs. These 

three evaluations were performed independently. 

For each task, diagnostic measures such as sensitivity, specificity, positive 

predictive value (PPV), negative predictive value (NPV), and accuracy were 
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also calculated with pre-defined thresholds (for TB, high sensitivity 

threshold, 0.16, high specificity threshold, 0.46; for lung cancer, high 

sensitivity threshold, 0.16), at which the DL algorithm demonstrated 95% 

sensitivity and 95% specificity, respectively in previous study (1). With these 

thresholds, the chest radiographs of which probability scores are of these 

cutoff values or higher are allocated as positive test result by the algorithm, 

and the chest radiographs with probability scores less than the thresholds 

are designated as negative results. McNemar’s tests were performed to 

compare classification between the algorithm and pooled radiologists, and 

comparison of PPVs and NPVs were performed using the method 

suggested by Moskowitz et al (44). 

For analysis of detection performance of pulmonary TB, Mann-Whitney U 

tests were performed for the comparison of DL algorithm-assigned 

probability scores according to lesion conspicuity and relevant levels. For 

lung cancer, we calculated the threshold value where the specificity of the 

algorithm matched that of the pooled radiologists. The corresponding 

sensitivity, NPV, and PPV at this threshold were also calculated and 

compared with those of the radiologists. 

Model calibration was investigated by plotting the observed versus 
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predicted probabilities and by using the P-value for the Spiegelhalter 

statistic (45, 46) 

 

Optimization of candidate selection for LCS 

 Baseline characteristics were compared between this study population 

and the development dataset of the CXR-LC model with the Student t-test 

for continuous variables and the Pearson chi-square test for categorical 

variables. 

 We evaluated the CXR-LC model performance for incident lung cancer 

prediction in 3 tasks: (a) incident lung cancer within the entire follow-up 

period by November 2020; (b) lung cancer within 3 years after chest 

radiographs; (c) lung cancer within 5 years after chest radiographs. In each 

task, lung cancer incidence was stratified according to CXR-LC risk 

categories (low, indeterminate, high, and very high risk) and compared with 

the Pearson chi-square tests. In addition, ROC curve analysis was 

conducted for these 3 tasks, and the AUC values were calculated. As 

additional diagnostic measures, sensitivity, specificity, PPV, and NPV were 

evaluated with a cutoff value of 3.297%, corresponding to the threshold 

between the low-to-indeterminate risk and the high to very-high-risk 
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categories (5). The aforementioned analyses at 3 time horizons were 

conducted for the total study population and USPSTF-eligible individuals, 

respectively. Model calibration was analyzed by plotting the observed 

versus predicted probabilities and by using the P-value for the Spiegelhalter 

statistic (45, 46). A statistically significant value of the Spiegelhalter Z-test 

indicated poor calibration. The calibration slope and intercept were also 

calculated. Considering that the follow-up interval of this study population is 

shorter (see Results) than the intended time horizon of the CXR-LC (i.e., 12 

years), the predicted probability was linearly transformed to 6-year incident 

lung cancer risk (i.e., the probability was divided by two) for the calibration 

analyses. 

 We also investigated the added value of applying the CXR-LC model 

to the 2021 USPSTF recommendations for LCS among individuals with 

available pack-year (PY) information. Specifically, we hypothesized that 

participants in low-to-indeterminate (cutoff, 3.297%) CXR-LC risk category 

could be excluded from the LCS, even if they met the current USPSTF criteria 

(40). This approach aimed to minimize negative CT screening examinations 

and enrich the screening population with higher risk individuals to potentially 

reduce false-positive results. The lung cancer detection rate, proportion of 
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selected CT screening candidates, and PPV were assessed. The lung 

cancer detection rate was defined as the proportion of CT screening 

candidates diagnosed with incident lung cancer among all individuals, and 

PPV was defined as the proportion of individuals with lung cancer among the 

USPSTF-eligible or CXR-LC model-positive individuals. These measures 

were compared between the USPSTF-eligible candidates with and without 

the CXR-LC risk category-based optimization.  

 Data were collected and saved in a spreadsheet (Excel 2016; 

Microsoft Corporation, Redmond, WA, USA). All statistical analyses were 

performed using R version 4.1.0 (R Project for Statistical Computing, 

Vienna, Austria), and a P-value of<0.05 was considered to indicate 

statistical significance. 
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RESULTS 

Part 1. Systematic screening for TB 

Study population 

 A total of 20,136 chest radiographs from 19,687 servicepersons were 

performed and collected. Among these, one radiograph was excluded for 

poor image quality. The final study population was comprised of 20,135 chest 

radiographs from 19,686 asymptomatic military servicepersons (19.475 men; 

211 women; mean age, 21±2 years; median number of chest radiographs 

per individual, 1; range, 1-6) (Figure 1). 

Five chest radiographs from four individuals had radiologic abnormalities 

confirmed as active pulmonary TB, and 28 chest radiographs from 26 

individuals were judged as having radiologically-identifiable relevant 

abnormalities. On chest radiographs confirmed with active pulmonary TB, 

the following image features were present: patchy opacities with nodules in 

left upper lung field (n=3), cavitary lesion in right upper lung field (n=1), and 

centrilobular nodules in left upper lung field (n=1). In 18 out of these 28 

chest radiographs with radiologically-identifiable relevant abnormalities, 

their abnormalities on chest radiographs were supported by clinical 
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diagnosis, bacteriological confirmation, or CT examination. Details about 

the radiological abnormalities identified are provided in Table 1. 
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Figure 1. Flowchart for study population and determining reference standards 

Reference standards of tuberculosis were defined as bacteriologically confirmed cases (n=5). Any radiologically-identifiable relevant 

abnormalities were judged by consensus reading of two experienced radiologists (n=28). This figure contains the contents previously 

published at the time of the examination (41). 
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Table 1. Description and classification of positive cases determined by the reference standards as determined by further clinical and 

diagnostic testing. This table contains the contents previously published at the time of the examination (41). 

Task Diagnoses of positive 
cases 

Gold standards Radiological findings 

Detection of active 
pulmonary tuberculosis 

(n=5) 

Bacteriologically-
confirmed tuberculosis 

(n=5) 

Positive microbiological test Patchy opacities with nodules in left upper lung field 
(n=3) 

Cavitary lesion in right upper lung field (n=1) 
Centrilobular nodules in left upper lung field (n=1) Detection of radiologically-

identifiable relevant 
abnormalities (n=28) 

Bacteriologically-
confirmed tuberculosis 

(n=5) 

Positive microbiological test 

Bacteriologically-
confirmed pneumonia 

(n=2) 

Positive microbiological test Patchy opacity in left lower lung field (n=1) 
Centrilobular nodules in left middle lung field (n=1) 

Clinically-diagnosed 
pneumonia (n=2) 

A clinical course including a 
response to antibiotics and 

initial and follow-up CT 
findings 

Patchy opacities in left lower lung filed (n=1) and right 
lower lung field (n=1) 

Pulmonary 
sequestration (n=1) 

CT findings Mass in left lower lung field (n=1) 

Simple pulmonary 
eosinophilia (n=1) 

A clinical course including 
blood eosinophilia and initial 

and follow-up CT findings 

Well-defined nodule in right upper lung field (n=1) 

CT-based fibrosis 
and/or calcified 

nodules suggestive of 
healing and previous 

tuberculosis (n=7) 

CT findings Linear opacities and multifocal calcifications in both 
upper lung field (n=7)  
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Non-specified relevant 
radiologic 

abnormalities (n=10) 

Not specified* Nodules in right upper lung field (n=4), right lower lung 
field (n=2), and left middle lung field (n=1) 

Linear opacities in left upper lung field (n=2) and right 
upper lung field (n=1) 

* Not specified: Follow-up clinical course or images (chest radiographs or CT) did not confirm the diagnosis of the entities (n=6). The patients did 

not have further medical examination including radiological examinations (n=4)  
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Diagnostic performance of the DL algorithm 

Table 2 reports the diagnostic performances of the DL algorithm at the 

high sensitivity and high specificity thresholds. The algorithm classified 832 

and 74 chest radiographs as potential TB cases at the high sensitivity and 

high specificity thresholds, respectively.  

For detection of active pulmonary TB, the AUC of the DL algorithm was 

0.999 (95% confidence interval [CI]: 0.999 – 1.000) (Figure 2). The 

algorithm correctly classified all five chest radiographs with active 

pulmonary TB as abnormal chest radiographs (sensitivity of 100%; 95% CI: 

56.6% – 100%) with both the high sensitivity and high specificity thresholds 

(Figure 3). With the high sensitivity threshold, specificity, PPV, and NPV of 

the algorithm were 95.9% (95% CI: 95.6% - 96.2%), 0.6% (95% CI: 0.3% - 

1.4%), and 100% (95% CI: 100% - 100%), respectively. The algorithm’s 

specificity, PPV, and NPV with the high specificity threshold were 99.7% 

(95% CI: 99.6% - 99.7%), 6.8% (95% CI: 2.9% - 14.9%), and 100% (95% 

CI: 100% - 100%), respectively. 

For classifying radiologically-identifiable relevant abnormalities, the 

performance of the algorithm had an AUC of 0.967 (95% CI: 0.938 – 0.996) 

(Figure 2). Its sensitivity, specificity, PPV, and NPV were 82.1% (95% CI: 



- 26 - 

 

64.4% - 92.1%), 96.0% (95% CI: 95.7% - 96.2%), 2.8% (95% CI: 1.8% - 

4.1%), 99.9% (95% CI: 99.9% - 100%) at the high sensitivity threshold, and 

67.9% (95% CI: 49.3% - 82.1%), 99.7% (95% CI: 99.6% - 99.8%), 25.7% 

(95%: 17.1% - 36.7%), and 99.9% (95% CI: 99.9% - 100%) at the high 

specificity threshold. 

The model calibration was poor for detecting active pulmonary TB and 

radiologically-identifiable relevant abnormalities (P<0.001 for both), and the 

model overestimated the predicted value of both types of diseases.
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Table 2. Diagnostic performance of the DL algorithm on 20,135 screening chest radiographs for detection of active pulmonary TB. 

This table contains the contents previously published at the time of the examination (41). 

 Task Probability 
threshold 

Sensitivity P-value Specificity P-value Positive 
predictive 

value 

P-value Negative 
predictive 

value 

P-value Accuracy 

 
Detection 
of active 

pulmonary 
tuberculos

is 

High 
sensitivity 
threshold 

(0.16) 

100% 
(5 of 5) 

0.999 95.9% 
(19,303 of 
20,130) 

<0.001 0.6% 
(5 of 832) 

<0.001 100% 
(19,303 of 
19,303) 

0.327 96.0% 

High 
specificity 
threshold 

(0.46) 

100% 
(5 of 5) 

0.999 99.7% 
(20,061 of 
20,130) 

0.151 6.8% 
(5 of 74) 

0.936 100% 
(20,061 of 
20,061) 

0.317 99.7% 

Pooled 
radiologist

s 

80.0% 
(4 of 5) 

NA 99.7% 
(20,076 of 
20,130) 

NA 6.9% 
(4 of 58) 

NA 99.9% 
(20,076 of 
20,135) 

NA 99.7% 

 
Detection 

of 
radiologic

ally-
identifiabl
e relevant 
abnormalit

High 
sensitivity 
threshold 

(0.16) 

82.1% 
(23 of 28) 

0.999 96.0% 
(19,298 of 
20,107) 

0.001 2.8% 
(23 of 832) 

<0.001 99.9% 
(19,298 of 
19,303) 

0.936 96.0% 

High 
specificity 
threshold 

(0.46) 

67.9% 
(19 of 28) 

0.289 99.7% 
(20,052 of 
20,107) 

0.043 25.7% 
(19 of 74) 

0.010 99.9% 
(20,052 of 
20,061) 

0.157 99.7% 
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ies Pooled 
radiologist

s 

82.1% 
(23 of 28) 

NA 99.8% 
(20,072 of 
20,107) 

NA 39.7% 
(23 of 58) 

NA 99.9% 
(20,072 of 
20,077) 

NA 99.8% 

DL=deep learning; TB=tuberculosis 

Parenthesis of sensitivity, the number of true positive of actual positive cases 

Parenthesis of specificity, the number of true negative of actual negative cases 

Parenthesis of negative predictive value, true negative of predicted negative cases 

Parenthesis of positive predictive value, true positive of predicted positive cases. 

P-value: comparison of the DL algorithm’s performance with pooled radiologists. 
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Figure 2. Receiver operating characteristic (ROC) curves of the deep-learning (DL) detection algorithm  

(A) ROC curve of DL algorithm for TB. The area under the ROC curve (AUC) was 0.999 (95% confidence interval [CI]: 0.999 – 1.000). 

(B) ROC curve of the DL algorithm for any radiologically-identifiable relevant abnormalities. The AUC of the algorithm was 0.967 (95% 

CI: 0.938 – 0.996). This figure contains the contents previously published at the time of the examination (41). 

 . 
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Figure 3. Representative cases of the DL algorithm to detect active pulmonary TB on chest radiographs 

(A) A chest radiograph of a 21-years-old male taken for routine medical check-up. Ill-defined consolidations and linear infiltrations 

were identified in the left upper lung field, suggesting a typical finding of active pulmonary TB. (B) Chest computed tomography taken 

for further diagnostic evaluation demonstrated nodular infiltrations and consolidations in the left upper lobe. The patient was 

confirmed as having tuberculosis by a polymerase chain reaction and then underwent tuberculosis treatment. (C) The DL algorithm 

provided a probability value of 0.989 as positive case and correctly localized the lesions in the left upper lung field. This figure 

contains the contents previously published at the time of the examination (41). 
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Comparison of the probability scores of abnormal chest 

radiographs according to lesion conspicuity/relevance levels  

 For the 28 radiographs with radiologically-identifiable relevant 

abnormalities, lesion conspicuity and relevant levels and the algorithm’s 

reported probabilities were compared. For lesion conspicuity, chest 

radiographs with ‘certainly visible’ labels (n=16; median probability, 0.840; 

interquartile range [IQR]: 0.639 – 0.951) had significantly higher 

probabilities than those with ‘visible but uncertain’ labels (n=12; median, 

0.334; IQR: 0.104 – 0.684) (P=0.003). In terms of relevant levels, chest 

radiographs with ‘certainly relevant’ labels (n=18; median, 0.782; IQR: 

0.548 – 0.948) showed significantly higher probabilities than those of 

‘equivocally relevant’ labels (n=10; median, 0.261; IQR: 0.114 – 0.689) 

(P=0.016). 

 

Diagnostic performance compared with 7 board-certified 

radiologists 

Sensitivities, specificities, PPVs, and NPVs of pooled radiologists are 

described in Table 2, and the performance of individual radiologist is 

summarized in Table 3. For the detection of active pulmonary TB, the 
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algorithm showed comparable diagnostic measures to the pooled 

radiologists with both high sensitivity (sensitivity, 100% vs. 80%, P>0.999; 

NPV, 100% vs. 99.9%; P=0.327) and high specificity thresholds (sensitivity, 

100% vs. 80%, P>0.999; specificity, 99.7% vs. 99.7%, P=0.151; PPV, 6.8% 

vs. 6.9%, P=0.936; NPV, 100% vs. 99.9%; P=0.317); however, the 

algorithm had lower specificity (95.9% vs. 99.7%, P<0.001) and PPV (0.6% 

vs. 6.9%, P<0.001) at the high sensitivity threshold. 

For radiologically-identifiable relevant abnormalities, the algorithm had 

comparable sensitivities and NPVs to those of the pooled radiologists with 

both high sensitivity (sensitivity, 82.1% vs. 82.1%, P >0.999; NPV, 99.9% 

vs. 99.9%, P=0.936) and high specificity (sensitivity, 67.9% vs. 82.1%, 

P=0.289; NPV, 99.9% vs. 99.9%, P=0.157) thresholds. However, the 

algorithm showed lower specificities and PPVs than those of the 

radiologists with both high sensitivity (specificity, 96.0% vs. 99.8%, 

P<0.001; PPV, 2.8% vs. 39.7%, P<0.001) and high specificity (specificity, 

99.7% vs. 99.8%, P=0.043; PPV, 25.7% vs. 39.7%, P=0.010) thresholds. 
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Table 3. Diagnostic performance of the original radiological reports consisting of 7 board-certified radiologists. This table contains 

the contents previously published at the time of the examination (41). 

Task Reader Sensitivity Specificity Positive predictive 
value 

Negative 
predictive value 

Accuracy 

Detection of 
active 

pulmonary 
tuberculosis 

Pooled readers 80% 
(4 of 5) 

99.7% 
(20,076 of 20,130) 

6.9% 
(4 of 58) 

99.9% 
(20,076 of 20,135) 

99.7% 

Reader 1 NA NA NA NA NA 

Reader 2 100% 
(1 of 1) 

99.8% 
(3,268 of 3,275) 

12.5% 
(1 of 8) 

100% 
(3,268 of 3,268) 

99.8% 

Reader 3 NA NA NA NA NA 

Reader 4 NA NA NA NA NA 

Reader 5 NA NA NA NA NA 

Reader 6 50% 
(1 of 2) 

99.7% 
(2,255 of 2,261) 

14.3% 
(1 of 7) 

99.9% 
 (2,255 of 2,256) 

99.7% 

Reader 7 100% 
(2 of 2) 

99.4% 
(3,838 of 3,871) 

8% 
(2 of 25) 

100% 
(3,848 of 3,848) 

99.4% 

Detection of 
radiologically-

identifiable 
relevant 

abnormalities 

Pooled readers 0.821 
(23 of 28)  

99.8% 
(20,072 of 20,107)  

39.7% 
(23 of 58) 

99.9% 
(20,072 of 20,077) 

99.8% 

Reader 1 NA NA NA NA NA 

Reader 2 1.000 
(6 of 6) 

99.9% 
(3,268 of 3,270) 

75% 
(6 of 8) 

100% 
(3,268 of 3,268) 

99.9% 

Reader 3 0.250 
(1 of 4) 

99.8% 
(4,009 of 4,017) 

11.1% 
(1 of 9) 

99.9% 
(4,009 of 4,012) 

99.7% 

Reader 4 1.000 
(3 of 3) 

99.9% 
(2,492 of 2,493) 

75% 
(3 of 4) 

100% 
(2,492 of 2,492) 

100% 

Reader 5 0.500 
(1 of 2) 

99.9% 
(3,599 of 3,603) 

20% 
(1 of 5) 

99.9% 
(3,599 of 3,600) 

99.9% 

Reader 6 0.667 99.8% 28.6% 99.9% 99.7% 
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(2 of 3) (2,255 of 2,260) (2 of 7) (2,255 of 2,256) 

Reader 7 1.000 
(10 of 10) 

99.6% 
(3,848 of 3,863) 

40.0% 
(10 of 25) 

100% 
(3,848 of 3,848) 

99.6% 

Number of chest radiographs per each radiologist: reader 1 (n=601), reader 2 (n=3,276), reader 3 (n=4,021), reader 4 (n=2,496), reader 5 

(n=3,605), reader 6 (n=2,263), reader 7 (n=3,873)
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Part 2. Detection of lung cancers on chest radiographs 

Study population 

For the validation set, 13,640 individuals with 13,760 chest radiographs 

were initially included and 3,434 individuals with 3,471 chest radiographs 

were excluded due to the exclusion criteria. Finally, 10,206 individuals 

(5,859 men and 4,347 women; mean age, 54±11 years; age range, 18–95 

years) with 10,289 chest radiographs were included in the task of detecting 

cancer-positive radiographs. For detecting visible lung cancer, 10,285 chest 

radiographs from 10,202 individuals (5,857 men and 4,345 women; mean 

age, 54±11 years) were included. Four individuals were excluded because 

their lung cancers were invisible on chest radiographs (Figure 4 and Table 

4). 

For the screening cohort, 71,951 individuals (37,938 men and 34,013 

women; mean age, 50±12 years) underwent 132,207 chest radiographs, 

and 21,853 individuals with 31,631 chest radiographs were excluded based 

on the exclusion criteria. Thus, 50,098 individuals (28,105 men and 21,993 

women; mean age, 53±11 years; age range, 18–99 years) with 100,576 

chest radiographs were included in the task of detecting cancer-positive 

radiographs. For the analysis of visible lung cancer detection, 51 
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radiographs of invisible lung cancers from 37 individuals were excluded, 

and 50,070 individuals (28,090 men and 21,980 women; mean age, 53±11 

years; age range, 18–99 years) with 100,525 chest radiographs were used. 

In the analysis of clearly visible lung cancer, 19 additional radiographs from 

15 individuals were excluded because these radiographs were judged as 

having invisible lung cancer by one of the two radiologists (J.H.L. and 

E.J.H.).
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Figure 4. Flowchart for study of detection of lung cancers on chest radiographs. (A) Validation set and (B) screening cohort. This 

figure contains the contents previously published at the time of the examination (42). 
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Table 4. Baseline clinical characteristics of Individuals and chest radiographs in the validation set and screening cohort. This table 

contains the contents previously published at the time of the examination (42). 

 Validation test Screening cohort 

Number of individuals 10,206 50,098 

Number of chest radiographs 10,289 100,576 

Mean age ± standard deviation in years (range) 54±11 (18 – 95) 53±11 (18 – 99) 

Sex   

 Men 5,859 28,105 

 Women 4,347 21,993 

Number of chest radiographs per individual 
(median and range) 

1 (1 – 4) 1 (1 – 20) 

Number of cancer-positive chest radiographs 14 (0.1% from 10,289 chest radiographs) 98 (0.1% from 100,576 chest radiographs) 

Number of chest radiographs with visible lung 
cancers on chest radiographs* 

10 (0.1% from 10,285 chest radiographs of 
10,202 individuals) 

47 (0.05% from 100,525 chest radiographs of 
50,070 individuals) 

Number of chest radiographs with clearly visible 
lung cancers** 

Not evaluated 28 (0.03% from 100,506 chest radiographs of 
50,057 individuals) 

* In the analysis of visible lung cancer, 4 and 51 chest radiographs of invisible lung cancers were excluded in validation test and screening cohort, 

respectively. 

** In the analysis of clearly visible lung cancer, 70 chest radiographs were excluded because these radiographs were judged as having invisible 

lung cancer by at least one of the two radiologists 



- 39 - 

 

Prevalence of lung cancer in study populations 

In the validation set, 14 individuals (0.1% of 10,206 individuals) with 14 

radiographs (0.1% of 10,289 chest radiographs) were confirmed to have 

lung cancers, and 10,192 individuals (99.9%) with 10,275 radiographs 

(99.9%) were judged to have no lung cancers. The 10 radiographs (0.1% of 

10,285 radiographs) of 10 individuals (0.1% of 10,202 individuals) judged to 

have visible lung cancers. 

In the entire screening cohort, 77 individuals (0.2% of 50,098 individuals) 

with 98 radiographs (0.1% of 100,576 chest radiographs) were confirmed to 

have lung cancers, and 50,031 individuals (99.9%) with 100,478 

radiographs (99.9%) were judged to have no lung cancers. Ten individuals 

were included in both categories because their chest radiographs were 

initially cancer-negative, but they were later diagnosed with lung cancer 

and their radiographs were cancer-positive (demonstration on chest CT, 

n=8; within 12 months of lung cancer diagnosis, n=2). Among the 98 

cancer-positive radiographs, 47 radiographs from 41 individuals were 

categorized as having visible lung cancers, and 28 radiographs from 27 

individuals were determined as having clearly visible lung cancers. In one 

patient, initial radiograph had invisible lung cancer, while the latter 



- 40 - 

 

radiograph taken 12 months after the initial radiograph had visible lung 

cancer. 

 

Lung cancer detection performance in the validation set 

The detection performances of the DL algorithm and pooled radiologists 

for visible lung cancers on chest radiographs are shown in Table 5. The 

algorithm’s AUC was 0.989 (95% CI: 0.968 – 0.999), and it detected three 

more lung cancers (9 of 10 radiographs; sensitivity, 90%) than the 

radiologists (6 of 10 radiographs; sensitivity, 60%) (Figure 5). However, this 

difference was not statistically significant (P=0.248). The algorithm had an 

equivalent NPV to the radiologists (99.9% vs. 99.9%, P=0.091), but lower 

specificity and PPV (specificity, 96.9% vs.99.8%, P<0.001; PPV, 2.7% vs. 

18.8%, P<0.001). At the threshold where the algorithm’s specificity matched 

that of the radiologists (0.847), the algorithm’s sensitivity, NPV, and PPV 

were 70%, 99.9%, and 21.2%, respectively, and all diagnostic measures of 

the algorithm were comparable to those of the radiologists (sensitivity, 

P>0.999; NPV, P=0.563; PPV, P=0.264).  

The classification of cancer-positive chest radiographs is presented in 

Table 6 and Figure 5. The algorithm’s AUC was 0.892 (95% CI: 0.794 – 
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0.989). It detected three more lung cancers (9 of 14 radiographs; sensitivity, 

64.3%) than the radiologists (6 of 14 radiographs; sensitivity 42.9%) 

(P=0.248). However, it had a lower specificity (96.9% vs. 99.8%; P<0.001) 

(Figure 6).
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Table 5. Comparison between the diagnostic performance of the DL algorithm and that of three board-certified radiologists for the 

detection of visible lung cancers on chest radiographs in the validation set. This table contains the contents previously published at 

the time of the examination (42). 

 Threshold Sensitivity P-value* Specificity P-value* Negative 
predictive 

value 

P-value* Positive 
predictive 

value 

P-value* Accuracy 

Visible 
lung 

cancers 
on 

chest 
radiogra

phs 

Pooled 
performan
ce of three 
radiologist

s 

60% 
[26%, 
88%] 

(6 of 10) 

NA 99.8%  
[99.7%, 
100%] 

(10,249 of 
10,275) 

NA 99.9% 
[99.9%, 
100%] 

(10,249 of 
10,253) 

NA 18.8%  
[7%, 36%] 
(6 of 32) 

NA 99.7%  
[99.7%, 
100%] 

(10,255 of 
10,285) 

Deep-
learning 

algorithm 
** 

90% 
[55%, 
100%] 

(9 of 10) 

0.248 96.9%  
[96.8%, 
97%]  

(9,956 of 
10,275) 

<0.001 99.9% 
[99.9%, 
100%] 

(9,956 of 
9,957) 

0.091 2.7%  
[1.3%, 
5.1%] 

(9 of 328) 

<0.001 96.9%  
[96.9%, 
97%] 

(9,965 of 
10,285) 

Matched 
threshold†

, 0.847 

70% 
[35%, 
93%] 

(7 of 10) 

>0.999 99.8%  
[99.8%, 
100%]  

(10,249 of 
10,275) 

NA 99.9% 
[99.9%, 
100%] 

(10,249 of 
10,252) 

0.563 21.2%  
[9%, 39%] 
(7 of 33) 

0.264 99.7%  
[99.7%, 
100%] 

(10,256 of 
10,285) 

* P-values are for comparisons with the pooled diagnostic performance of three board-certified radiologists. 

** A pre-defined threshold of 0.16 was used. 

† Corresponding threshold, sensitivity, negative predictive value, and positive predictive value when the specificity of the algorithm matched that 

of the radiologists. 
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Prevalence of visible lung cancers: 10 individuals (0.1% of 10,202 individuals) with 10 radiographs (0.1% of 10,285 radiographs) 

95% confidence intervals are presented in square brackets 

Parentheses for sensitivity: the number of true positives of actual positive cases; parentheses for specificity: the number of true negatives of actual 

negative cases; parentheses of negative predictive value: true negatives of predicted negative cases; parentheses of positive predictive value: 

true positives of predicted positive cases.  
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Figure 5. ROC curves of the DL algorithm for (A) the detection of visible lung cancer on chest radiographs and (B) cancer-positive 

chest radiographs compared with board-certified radiologists in the validation set. 

(A) In the validation set composed of 10,285 chest radiographs including 10 chest radiographs with visible lung cancer, the 

algorithm had an AUC of 0.989 (95% CI: 0.968 – 0.999) and the radiologists showed a sensitivity of 60% and a specificity 

of 99.8%. In the magnified illustration, a red dot that represents the performance of the radiologists is below the ROC 

curve of the algorithm. 

(B) In the validation set composed of 10,289 chest radiographs including 14 cancer-positive chest radiographs, the DL 

algorithm had an AUC of 0.892 (95% CI: 0.794 – 0.989). In comparison, the three board-certified radiologists showed a 

sensitivity of 42.9% and a specificity of 99.8% for this task. In the magnified figure, a red dot that represents the 

performance of the radiologists is below the ROC curve of the algorithm. 

This figure contains the contents previously published at the time of the examination (42). 
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Table 6. Comparison between the diagnostic performance of the DL algorithm and that of three board-certified radiologists for the 

detection of cancer-positive chest radiographs in the validation set. This table contains the contents previously published at the time 

of the examination (42). 

 Threshold Sensitivity P-value* Specificity P-value* Negative 
predictive 

value 

P-value* Positive 
predictive 

value 

P-value* Accuracy 

Cancer-
positive 
chest 

radiogra
phs 

Pooled 
performan
ce of three 
radiologist

s 

42.9%  
[18%, 
71%] 

(6 of 14) 

 99.8%  
[99.8%, 
100%] 

(10,249 of 
10,275) 

 99.9%  
[99.9%, 
100%] 

(10,249 of 
10,257) 

 18.8% 
 [7%, 
36%] 

(6 of 32) 

 99.7%  
[99.7%, 
100%] 

(10,255 of 
10,285) 

Deep-
learning 
algorithm 

** 

64.3%  
[35%, 
87%] 

(9 of 14) 

0.248 96.9%  
[96.9%, 
97%] 

(9,956 of 
10,275) 

<0.001 99.9%  
[99.9%, 
100%] 

(9,956 of 
9,961) 

0.105 2.7%  
[1.3%, 
5.1%] 

(9 of 328) 

<0.001 96.9%  
[96.9%, 
97%] 

(9,965 of 
10,285) 

Matched 
threshold†

, 0.808  

64.3%  
[35%, 
87%] 

(9 of 14) 

0.248 99.8%  
[99.8%, 
100%] 

(10,249 of 
10,275) 

NA 99.9%  
[99.9%, 
100%] 

(10,249 of 
10,254) 

0.089 25.7%  
[12%, 
43%] 

(9 of 35) 

0.192 99.7%  
[99.7%, 
100%] 

(10,256 of 
10,285) 

* P-values are for comparisons with the pooled diagnostic performance of three board-certified radiologists. 

** A pre-defined threshold of 0.16 was used. 
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† Corresponding threshold, sensitivity, negative predictive value, and positive predictive value when the specificity of the algorithm matched with 

that of the radiologists 

Prevalence of cancer-positive chest radiographs: 14 individuals (0.1% of 10,206 individuals) with 14 radiographs (0.1% of 10,289 chest 

radiographs) 

95% confidence intervals are presented in square brackets. 

Parentheses for sensitivity: the number of true positives of actual positive cases; parentheses for specificity: the number of true negatives of actual 

negative cases; parentheses of negative predictive value: true negatives of predicted negative cases; parentheses of positive predictive value: 

true positives of predicted positive case
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Figure 6. Representative case of the DL algorithm correctly detecting visible lung cancer on a chest radiograph in a health check-

up. 

A 56-year-old woman with a radiograph taken as part of a comprehensive health check-up and screening. (a) The radiograph 

showed an ill-defined lesion with a diameter of 3.5 cm (arrowhead) that was faintly identified in the right upper lung apex, which was 

obscured by the bony thorax. (b) A non-contrast chest CT scan taken on the same day as the radiograph demonstrated a 4.1-cm 

lung mass (arrowhead) with a spiculated margin in the right upper lobe apex on axial-plane. Right upper lobe lobectomy was then 

performed and the mass was pathologically proven to be invasive adenocarcinoma with an acinar and bronchioloalveolar pattern. (c) 

The DL algorithm provided a probability value of 0.85 for this being a positive case and correctly localized the lesions in the right 

upper lung apex (arrowhead). This lung mass was missed by a board-certified radiologist in the reader study. 

This figure contains the contents previously published at the time of the examination (42). 
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Lung cancer detection performance of the DL algorithm in the 

entire screening cohort 

The performance metrics of the DL algorithm for lung cancer detection in 

the entire screening cohort are tabulated in Table 7. The algorithm 

classified 3% (3,038 of 100,576 radiographs for cancer-positive 

radiographs, 3,038 of 100,525 radiographs for visible lung cancers on chest 

radiographs, and 3,027 of 100,506 radiographs for clearly visible lung 

cancers on chest radiographs) of chest radiographs as abnormal.  

For the classification of cancer-positive radiographs, the AUC of the 

algorithm was 0.78 (95% CI: 0.728 – 0.833) (Figure 7). The algorithm 

correctly classified 39 of the 98 cancer-positive radiographs (sensitivity, 

39.8%). The specificity, NPV, and PPV of the algorithm were 97%, 99.9%, 

and 1.3%. 

In the detection of visible lung cancers on chest radiographs, the algorithm 

had an AUC of 0.969 (95% CI: 0.946 – 0.992) (Figure 7). Visible lung 

cancers were correctly detected on 39 out of 47 radiographs (sensitivity, 

83%). The specificity, NPV, and PPV of the algorithm for detecting visible 

lung cancers were 97%, 99.9%, and 1.3%. 

For the detection of clearly visible lung cancers on chest radiographs, the 
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algorithm showed an AUC of 0.998 (95% CI: 0.997 – 0.999) (Figure 7). 

Clearly visible lung cancers were correctly detected on all 28 out of 28 

chest radiographs (sensitivity, 100%). The specificity, NPV, and PPV of the 

algorithm were 97%, 100%, and 0.9% (Figure 8). When the three ROC 

curves were compared with each other, the performance of the algorithm 

improved with increased visibility (all P-values between the AUCs of the 

three ROC <0.05). 

The model calibration was poor for classifying cancer-positive, visible, and 

clearly visible lung cancers on chest radiographs (all P<0.001), and the 

model overestimated the risk of lung cancers.
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Table 7. Diagnostic performance of the DL algorithm for detection of lung cancers on health screening cohort chest radiographs. 

This table contains the contents previously published at the time of the examination (42). 

 Sensitivity  Specificity Negative predictive 
value 

Positive predictive 
value 

Accuracy 

Cancer-positive 
chest radiographs 

39.8% 
[30%, 50%] 
(39 of 98) 

97% 
[97%, 97%] 

(97,479 of 100,478) 

99.9% 
[99.9%, 100%] 

(97,479 of 97,538) 

1.3% 
[0.9%, 1.8%] 
(39 of 3,038) 

97% 
[97%, 97%] (97,518 

of 100,576) 

Visible cancers on 
chest radiographs 

83% 
[69%, 92%] 
(39 of 47) 

97% 
[97%, 97%] 

(97,479 of 100,478) 

99.9% 
[99.9%, 100%] 

 (97,479 of 97,487) 

1.3% 
[0.9%, 1.8%] 
(39 of 3,038) 

97% 
[97%, 97%] (97,518 

of 100,525) 

Clearly visible 
cancers on chest 

radiographs 

100% 
[88%, 100%] 

(28 of 28) 

97% 
[97%, 97%] 

(97,479 of 100,478) 

100% 
[100%, 100%] 

(97,479 of 97,479) 

0.9% 
[0.7%, 1.3%] 
(28 of 3,027) 

97% 
[97%, 97%] (97,507 

of 100,506) 

A pre-defined threshold of 0.16 was used 

Prevalence of cancer-positive chest radiographs: 77 individuals (0.2% of 50,098 individuals) with 98 radiographs (0.1% of 100,576 chest 

radiographs) 

Prevalence of visible lung cancers: 41 individuals (0.1% of 50,070 individuals) with 47 radiographs (0.05% of 100,525 chest radiographs) 

Prevalence of clearly visible lung cancers: 27 individuals (0.05% of 50,057 individuals) with 28 radiographs (0.03% of 100,506 chest radiographs) 

95% confidence intervals are presented in square brackets. 

Parentheses for sensitivity: the number of true positives of actual positive cases; parentheses for specificity: the number of true negatives of actual 
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negative cases; parentheses of negative predictive value: true negatives of predicted negative cases; parentheses of positive predictive value: 

true positives of predicted positive cases. 
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Figure 7. ROC curves of the DL algorithm for the detection of lung cancer on chest radiographs in a health check-up screening 

cohort. 

(A) ROC curve of the DL algorithm for the classification of cancer-positive chest radiographs in a health check-up screening. The 

AUC was 0.78 (95% CI: 0.728 – 0.833). (B) ROC curve of the DL algorithm for visible lung cancers on chest radiographs, with an 

AUC of 0.969 (95% CI: 0.946 – 0.992). (C) ROC curve of the DL algorithm for the detection of clearly visible lung cancers on chest 

radiographs. The AUC of the algorithm was 0.999 (95% CI: 0.997 – 0.999). 

This figure contains the contents previously published at the time of the examination (42). 
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Figure 8. Representative case of the DL algorithm detecting clearly visible lung cancer on a chest radiograph in a health check-up 

screening.  

A 67-year-old man with chest radiograph taken as part of a comprehensive health check-up and screening. (A) The radiograph 

showed a faintly visible lung mass (arrowhead) with a diameter of 3.5 cm was present in the left middle lung field. (B) A non-contrast 

chest CT scan taken on the same day as the chest radiograph demonstrated a 3.3-cm lung mass (arrowhead) with a spiculated 

margin and an air-bronchogram in the left lower lobe on axial plane. The patient underwent left lower lobe lobectomy and this mass 

was pathologically proven to be a squamous cell carcinoma. (C) The deep-learning algorithm provided a probability value of 0.91 for 

the patient having lung cancer and correctly localized the lesion in the left middle lung field (arrowhead). 

This figure contains the contents previously published at the time of the examination (42). 
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Part 3. Optimization of candidate selection for LCS 

Study Population  

 A total of 19,488 individuals (18,467 men and 1,021 women; mean age, 

57.7±6.4 years) were included. The flow diagram is given in Figure 9. For 

the study population, clinical information (age, sex, smoking status [current 

or former smoker] with PY) collected as part of the medical check-up, was 

obtained. Among the 19,488 individuals, PY information was available for 

17,390 (16,635 men, 755 women; mean age, 57.6±6.4 years), and 7,835 

(7,699 men, 136 women; mean age, 57.4±6.1 years) met the updated 

USPSTF guidelines for LCS (i.e., 20-PY smoking history and currently 

smoking or having quit within the past 15 years). 

 In the subgroup analysis, 6,768 (6,513 men and 255 women; mean age 

57.1±6.2 years) and 4,874 (4,689 men and 185 women, mean age 

57.2±6.1 years) individuals were included in the subgroup analyses to 

predict incident lung cancer within 3 and 5 years, respectively (Table 8). Of 

these individuals, 5,932 (5,770 men and 162 women; mean age 57.0±6.1 

years) and 4,192 (4,082 men and 110 women; mean age 57.0±6.0 years) 

had PY information and 2,751 (2,715 men and 36 women; mean age 

56.9±5.9 years) and 1,972 (1,944 men and 28 women; mean age 56.9±5.8 
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years) were USPSTF-eligible, respectively. 

 The baseline characteristics of our study and the development cohort of 

the CXR-LC are compared in Table 8. Age and sex were significantly 

different between these 2 populations (age, mean 57.7 years vs. 62.4 

years, P<0.001; men, 94.8% vs. 51.7%, P<0.001). The study population 

contained a significantly higher proportion of current smokers than the 

development dataset (31.1% vs. 19.3%, P<0.001). Lung cancer incidence 

was lower in the study population (0.6%; 107 of 19,488) than in the model 

development dataset (2.3%; 962 of 41,856) (P<0.001). The lung cancer 

incidence rates within 3 and 5 years were 0.7% (49 of 6,768; P<0.001) and 

1.3% (64 of 4,874; P<0.001), respectively, in our study. Other clinical 

variables including age, sex, and smoking status also differed significantly 

between the 2 datasets (P<0.001 for all variables). 

 The median follow-up interval between the chest radiographs and the 

individuals’ last radiographs was 11.6 months (IQR: 0 – 58.8 months). The 

median interval between the chest radiographs and the date of lung cancer 

diagnosis was 40 months (IQR: 0 – 85 months).
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Figure 9. Flowchart of the study of optimization of candidate selection for LCS population.  
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Table 8. Baseline characteristics of the study population and development dataset of the CXR-LC model. 

 CXR-LC 
development 

dataset 

Study 
population 

Subgroup analysis 

   Incident lung cancer within 3 years Incident lung cancer within 5 years 

Number of 
individuals 

41,856 19,488 6,768 4,874 

Number of chest 
radiographs 

85,478* 19,488 6,768 4,874 

Age (years) 62.4 ± 5.4 57.7 ± 6.4§ 57.1 ± 6.2§ 57.2 ± 6.1§ 

Sex     

Male 21,648 
(51.7%) 

18,467 
(94.8%)§ 

6,513 (96.2%)§ 4,689 (96.2%)§ 

Female 20,208 
(48.3%) 

1,021 (5.2%) 255 (3.8%) 185 (3.8%) 

Smoking status†     

Current smoker 4,392 (19.3%) 6,067 (31.1%)§ 2,062 (30.5%)§ 1,413 (29.0%)§ 

Former smoker 18,319 
(80.7%) 

13,421 (68.9%) 4,706 (69.5%) 3,461 (71.0%) 

Lung cancer 
incidence 

2.3% (962 of 
41,856)‡ 

0.6% (107 of 
19,488)§ || 

0.7% (49 of 6,768)§ 1.3% (64 of 4,874)§ 

* The development dataset included both enrollment (T0) and the first annual (T1) chest radiographs. 

† CXR-LC model: a deep-learning model to predict incident lung cancer. This convolutional neural network model was first developed in 

smokers (current smokers, n=4,392; former smokers, n=18,319) and nonsmokers (n=19,145) from the Prostate, Lung, Colorectal, and Ovarian 

Cancer Screening Trial (PLCO), then fine-tuned in the subset of smokers. The final CXR-LC model was validated in smokers from the PLCO 
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independent data sets and NLST external validation data sets. 

‡ Lung cancer incidence reported at 12 years.  

§ P-values for the comparison of variables between the development dataset and this study population were below 0.001 

|| While 105 cancers were pathologically confirmed, 2 lung cancers were clinically diagnosed.
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Diagnostic Performance of the CXR-LC Model 

 The incidence of lung cancer was proportional to the CXR-LC risk 

categories: low risk, 0.2% (5 of 2,707); indeterminate risk, 0.2% (6 of 

2,500); high risk, 0.4% (31 of 7,786); and very high risk, 1.0% (65 of 6,495) 

(P<0.001). For the USPSTF-eligible individuals, the model risk category 

also stratified the incidence of lung cancer: low risk, 0.1% (1 of 834); 

indeterminate risk, 0.3% (2 of 768); high risk, 0.3% (10 of 2,979); and very 

high risk, 1.3% (43 of 3,254) (P<0.001). Consistent associations were found 

for incident lung cancers within 3 and 5 years (P<0.001 for both) (Table 9). 

 The AUCs of the CXR-LC model were 0.677 (95% CI: 0.623 – 0.731) and 

0.745 (95% CI: 0.677 – 0.813) for the entire study population and the 

USPSTF-eligible individuals, respectively. For lung cancer within 3 and 5 

years, the AUCs of the model were 0.761 (95% CI: 0.693 – 0.829) and 

0.739 (95% CI: 0.677 – 0.801) for the total study population, and 0.783 

(95% CI: 0.695 – 0.871) and 0.782 (95% CI: 0.700 – 0.782) for the 

USPSTF-eligible individuals, respectively (Table 10 and Figure 10). 

 With the cutoff value of 3.297%, the model showed sensitivity of 89.7% 

(95% CI: 82.4% - 94.8%), specificity of 26.8% (95% CI: 26.2% - 27.4%), 

PPV of 0.7% (95% CI: 0.6% - 0.7%), and NPV of 99.8% (95% CI: 99.6% - 
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99.9%). For the USPSTF-eligible individuals, it had sensitivity of 94.6% 

(95% CI: 85.1% - 98.9%), specificity of 20.6% (95% CI: 19.7% - 21.5%), 

PPV of 0.9% (95% CI: 0.8% - 0.9%), and NPV of 99.8% (95% CI: 99.4% - 

99.9%) The diagnostic results of the CXR-LC model for lung cancer within 3 

and 5 years are shown in Table 10. 

 The model calibration was poor for the entire study population and the 

USPSTF-eligible individuals, respectively (P<0.001 for both), and the model 

overestimated the risk of lung cancer as would be expected as the CXR-LC 

model was originally calibrated for 12-year lung cancer (Table 11). Similar 

results were observed for incident lung cancer within 3 and 5 years.
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Table 9. Lung cancer occurrence stratified by the CXR-LC risk categories. 

CXR-LC model: a deep-learning model to predict incident lung cancer 

* CXR-LC lung cancer risk over 12 years: Low risk: < 2%, indeterminate risk: 2 to <3.297%, high risk: 3.297 to <8%, very high risk: ≥8%  

† 2021 US Preventive Services Task Force (USPSTF) eligibility criteria for lung cancer screening: adults aged 50 to 80 years who have a 20 

pack-year smoking history and currently smoke or have quit within the past 15 years. 

‡ The median interval between the chest radiographs and the date of lung cancer diagnosis was 40 months (interquartile range: 0 to 85 months) 

  

   CXR-LC risk categories*  

Task Group Incidence of lung 
cancer 

Low risk Indeterminate risk High risk Very high risk P-value 

Incident lung 
cancer 

50-80 y, 
smokers 

107 of 19,488 
(0.5%) 

5 of 2,707 
(0.2%) 

6 of 2,500 
(0.2%) 

31 of 7,786 
(0.4%) 

65 of 6,495 
(1.0%) 

<0.001 

USPST
F 

eligible† 

56 of 7,835 (0.7%) 1 of 834 
(0.1%) 

2 of 768 
(0.3%) 

10 of 2,979 
(0.3%) 

43 of 3,254 
(1.3%) 

<0.001 

Incident lung 
cancer within 3 

years 

50-80 y, 
smokers 

49 of 6,768 (0.7%) 1 of 1,012 
(0.1%) 

1 of 924 
(0.1%) 

13 of 2,750 
(0.5%) 

34 of 2,082 
(1.6%) 

<0.001 

USPST
F 

eligible† 

29 of 2,751 (1.1%) 0 of 335 
(0%) 

1 of 287 
(0.3%) 

6 of 1,083 
(0.6%) 

22 of 1,046 
(2.1%) 

<0.001 

Incident lung 
cancer within 5 

years 

50-80 y, 
smokers 

64 of 4,874 (1.3%) 1 of 703 
(0.1%) 

2 of 679 
(0.3%) 

18 of 2,015 
(0.9%) 

43 of 1,477 
(2.9%) 

<0.001 

USPST
F 

eligible† 

34 of 1,972 (1.7%) 0 of 237 
(0%) 

1 of 215 
(0.5%) 

7 of 777 
(0.9%) 

26 of 743 
(3.5%) 

<0.001 
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Table 10. Discrimination performance of the CXR-LC model for incident lung cancer. 

CXR-LC model: a deep-learning model to predict incident lung cancer; AUC: area under the curve; PPV: positive predictive value; NPV: negative 

predictive value; Numbers in brackets are raw data. Numbers in parentheses are 95% confidence intervals. 

* A cutoff value of 3.297% 12-year lung cancer risk was used for the CXR-LC model. 

† 2021 US Preventive Services Task Force (USPSTF) eligibility criteria for lung cancer screening: adults aged 50 to 80 years who have a 20 

pack-year smoking history and currently smoke or have quit within the past 15 years. 

Task Group AUC Sensitivity* Specificity* PPV* NPV* 

Incident 
lung cancer 

50-80 y, smokers 0.677 
(0.623 – 0.731) 

89.7% 
[96 of 107] 

(82.4% to 94.8%) 

26.8% 
[5,196 of 19,381] 
(26.2% to 27.4%) 

0.7% 
[96 of 14,281] 
(0.6% to 0.7%) 

99.8% 
[5,196 of 5,207] 

(99.6% to 99.9%) 

USPSTF eligible† 0.745 
(0.677 – 0.813) 

94.6% 
[53 of 56] 

(85.1% to 98.9%) 

20.6% 
[1,599 of 7,779] 

(19.7% to 21.5%) 

0.9% 
[53 of 6,233] 

(0.8% to 0.9%) 

99.8% 
[1,599 of 1,602] 

(99.4% to 99.9%) 

Incident 
lung cancer 

within 3 
years 

50-80 y, smokers 0.761 
(0.693 – 0.829) 

95.9% 
[47 of 49] 

(86.0% to 99.5%) 

28.8% 
[1,934 of 6,719] 

(27.7% to 29.9%) 

1.0% 
[47 of 4,832] 

(0.9% to 1.0%) 

99.9% 
[1,934 of 1.936] 
(99.6% to 100%) 

USPSTF eligible† 0.783 
(0.695 – 0.871) 

96.6% 
[28 of 29] 

(82.2% to 99.9%) 

22.8% 
[621 of 2,722] 

(21.1% to 24.4%) 

1.3% 
[28 of 2,129] 

(1.2% to 1.4%) 

99.8% 
[621 of 622] 

(98.9% to 100%) 

Incident 
lung cancer 

within 5 
years 

50-80 y, smokers 0.739 
(0.677 – 0.801) 

95.3% 
[61 of 64] 

(86.9% to 99.0%) 

28.7% 
[1,379 of 4,810] 

(27.4% to 30.0%) 

1.7% 
[61 of 3,492] 

(1.7% to 1.8%) 

99.8% 
[1,379 of 1,382] 

(99.3% to 99.9%) 

USPSTF eligible† 0.782 
(0.700 – 0.863) 

97.1% 
[33 of 34] 

(84.7% to 99.9%) 

23.3% 
[451 of 1,487] 

(21.4% to 25.2%) 

2.2% 
[33 of 1,520] 

(2.0% to 2.3%) 

99.8% 
[451 of 452] 

(98.5% to 100%) 
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Figure 10. ROC curves of the CXR-LC model for the following three tasks: (A) incident lung cancer within the entire follow-up period, 

(B) incident lung cancers within 3 years from chest radiographs; (C) incident lung cancer within 5 years from chest radiographs. CXR-

LC model: a deep-learning model to predict incident lung cancer. 

 
  



- 68 - 

 

Table 11. Calibration performance of the CXR-LC model for incident lung cancer. 

CXR-LC model: a deep-learning model to predict incident lung cancer 

* 2021 US Preventive Services Task Force (USPSTF) eligibility criteria for lung cancer screening: adults aged 50 to 80 years who have a 20 

pack-year smoking history and currently smoke or have quit within the past 15 years. 

† Results of the Spiegelhalter Z-test 

  

Task Group Slope Intercept P-value† 

Incident lung cancer 50-80 y, smokers 0.94 -2.06 < 0.001 

USPSTF eligible* 1.46 -0.42 < 0.001 

Incident lung cancer within 3 years 50-80 y, smokers 1.57 0.19 < 0.001 

USPSTF eligible* 1.83 1.07 < 0.001 

Incident lung cancer within 5 years 50-80 y, smokers 1.41 0.32 < 0.001 

USPSTF eligible* 1.83 1.60 < 0.001 
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Added Value of CXR-LC to the 2021 USPSTF Recommendations 

 When the USPSTF recommendations were applied to 17,390 individuals 

in whom PY information was available, 7,835 LCS candidates were 

selected; however, 37 individuals with lung cancer (0.47%, 37 of 7,835) 

were missed. The lung cancer detection rate, proportion of selected CT 

screening candidates, and PPV were 0.3% (56 of 17,390), 45.1% (7,835 of 

17,390), and 0.7% (56 of 7,835), respectively. 

 When the CXR-LC model was used to exclude the low-to-indeterminate 

risk categories, the LCS candidates decreased by 20.4% (1,602 of 7,835), 

while 3 individuals with lung cancer (incidence of 0.19% [3 of 1,602] in the 

excluded population) were missed (Table 12). The proportion of selected 

CT screening candidates (35.8% [6,233 of 17,390]) was lower than that of 

the entire USPSTF-eligible group (P<0.001). However, the lung cancer 

detection rate and PPV were still maintained at 0.3% (53 of 17,390, 

P=0.848) and 0.9% (53 of 6,233, P=0.416), respectively. In the analyses 

predicting incident lung cancer within 3 and 5 years, significant decreases 

in the proportion of selected CT screening candidates were consistently 

demonstrated (P<0.001 in all cases) with the lung cancer detection rate and 

PPV maintained (P>0.05 in all cases) (Table 12).
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Table 12. Added value of the CXR-LC model to the 2021 US Preventive Services Task Force (USPSTF) Recommendations in 

smokers aged 50 to 80 years with available pack-year information. 

Task Incidence of 
lung cancer 

Group Missed lung 
cancer 

CT screening 
candidates 

Lung cancer 
detection rate  

Proportion of 
selected CT 
screening 
candidates 

Positive 
predictive value 

Incident 
lung 

cancer  

0.5% 
(93 of 

17,390) 

USPSTF 
eligible* 

0.39% (37 of 
9,555) 

7,835 0.3% (56 of 
17,390) 

45.1% (7,835 of 
17,390) 

0.7% (56 of 
7,835) 

USPSTF 
eligibility with 

CXR-LC model 
≥ indeterminate 

risk † 

0.30% (40 of 
13,157) 

6,233 

0.3% (53 of 
17,390) 

35.8% (6,233 of 
17,390) 

0.9% (53 of 
6,233) 

Differences or 
their P-values 

0.19% (3 of 
1,602) 

1,602 
0.848 <0.001 

0.416 

Incident 
lung 

cancer 
within 3 
years 

0.7% 
(42 of 5,932) 

USPSTF 
eligible* 

0.41% (13 of 
3,181) 

2,751 0.5% (29 of 
5,932) 

46.4% (2,751 of 
5,932) 

1.1% (29 of 
2,751) 

USPSTF 
eligibility with 

CXR-LC model 
≥ indeterminate 

risk † 

0.37% (14 of 
3,803) 

2,129 0.5% (28 of 
5,932) 

35.9% (2,129 of 
5,932) 

1.3% (28 of 
2,129) 

Differences or 
their P-values 

0.16% (1 of 622) 622 >0.999 <0.001 0.479 

Incident 
lung 

cancer 
within 5 

1.3% 
(56 of 4,192) 

USPSTF 
eligible* 

0.99% (22 of 
2,220) 

1,972 0.8% (34 of 
4,192) 

47.0% (1,972 of 
4,192) 

1.7% (34 of 
1,972) 

USPSTF 
eligibility with 

0.86% (23 of 
2,672) 

1,520 0.8% (33 of 
4,192) 

36.3% (1,520 of 
4,192) 

2.2%(33 of 
1,520) 
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CXR-LC model: a deep-learning model to predict incident lung cancer; Lung cancer detection rate (the number of lung cancer cases / the number 

of test cases); Proportion of selected CT screening candidates (the number of test-positive cases / the number of test cases); Positive predictive 

value (the number of lung cancer cases / the number of test-positive cases) 

* 2021 US Preventive Services Task Force (USPSTF) eligibility criteria for lung cancer screening: adults aged 50 to 80 years who have a 20 

pack-year smoking history and currently smoke or have quit within the past 15 years. 

† Low-to-indeterminate risk: <3.297% 12-year lung cancer risk based on CXR-LC 

years CXR-LC model 
≥ indeterminate 

risk † 

Differences or 
their P-values 

0.22% (1 of 452) 452 >0.999 <0.001 0.407 



- 72 - 

 

DISCUSSION 

In this study, we validated the DL algorithm for detection of active pulmonary 

TB in the systematic screening chest radiographs and lung cancers in the 

health check-up radiographs. The algorithm correctly identified all five chest 

radiographs from individuals with microbiologically-confirmed active 

pulmonary TB, while maintaining high specificities (95.9% - 99.7%) and 

NPVs (100%). The algorithm showed comparable diagnostic performances 

to the pooled radiologists for screening chest radiographs with active 

pulmonary TB, especially at the high specificity threshold. Regarding lung 

cancer detection, the algorithm had an AUC of 0.989 and a comparable 

sensitivity (90% vs. 60%, P=0.245) to radiologists, with a lower specificity 

(96.9% vs. 99.8%. P<0.001). Finally, we externally validated the CXR-LC 

model to predict incident lung cancer in a medical check-up population. Lung 

cancer incidence was positively associated with the CXR-LC risk categories 

in the total study population and the USPSTF-eligible individuals. We 

corroborated the added value of the model to the updated USPSTF 

recommendations for LCS candidate selection by excluding the low-to-

indeterminate risk subset with only few lung cancers. 
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Prior studies of DL algorithms for the detection of pulmonary TB and lung 

cancers on chest radiographs had limitations in their applicability to real-

world settings for the following reasons (47-49): (a) they were tested using 

disease-enriched datasets (TB prevalence, 14.4% – 50%; lung cancer 

prevalence, 16% - 75%), which were clearly unrealistic; (b) their test datasets 

were arbitrarily selected in terms of the size, number, and location of the lung 

lesions; and (c) their test datasets comprised clearly dichotomized cases 

(chest radiographs with TB or lung cancer vs. normal chest radiographs), 

which intentionally excluded any indeterminate chest radiographs or 

radiographs with other pathologies. By contrast, we performed our study in a 

real-world screening setting. Therefore, we believe that the algorithm 

analyzed in our study could be reasonably applied for the detection of lung 

lesions on chest radiographs in a systematic screening for TB or health 

check-up population with an average risk of lung cancer. 

Generally, systematic screening for active pulmonary TB involves a greater 

workload and costs compared with passive detection of symptomatic 

individuals presenting for medical care, in whom the number needed to test 

to identify a case is much lower (7-9). Therefore, the use of a sensitive 

screening tool which can identify high-risk individuals for further screening 



- 74 - 

 

can reduce costs while maintaining high overall sensitivity of the program (7, 

8). In the WHO systematic review of screening approaches for TB, chest 

radiographs had the highest sensitivity of any screening tool (7, 8). However, 

using chest radiographs in systematic screening for active pulmonary TB 

generally requires skilled radiologists, which can be an obstacle for its wide 

utilization, particularly in resource-constrained settings (6-9). The DL 

algorithm in this study had comparable diagnostic performance for detection 

of active pulmonary TB as board-certified radiologists. We thought DL 

algorithm can be a potential option or a powerful triaging tool for mass 

screening program of active pulmonary TB in such resource-constrained 

settings. Indeed, the WHO recommends a sensitive tool to identify individuals 

who should undergo bacteriological examinations in systematic screening 

strategy (7, 8), and the DL algorithm could be used in the process of this 

strategy, thanks to its high sensitivity for TB. In settings where expert 

radiologists are available, the DL algorithm could be used as a screening aid 

to focus the efforts of radiologists, decreasing their workload and the program 

costs (7-9). 

The sensitivity for the detection of visible lung cancers on chest radiographs 

has been reported to be highly variable with 20% to 92%, and radiologists’ 



- 75 - 

 

perceptual errors reported to be the most common and preventable cause 

for failure to diagnose lung cancers, or missed lung cancers on chest 

radiographs (50-53). Given that the DL algorithm classified only 3% of chest 

radiographs as having a high probability of being abnormal in this study, it 

can help reduce diagnostic errors caused by simple mistakes or perceptual 

errors due to radiologists’ insufficient expertise, as this algorithm showed a 

consistent and high detection performance for lung cancers on chest 

radiographs and was not vulnerable to the perceptual errors of human 

readers. 

 In LCS, negative screening examinations impose unnecessary radiation 

exposure and false-positive CT examinations increase diagnostic work-ups, 

including invasive procedures, leading to increased healthcare 

expenditures (23, 24, 31-33, 54). When the CXR-LC low-risk exclusion 

scheme was added to the USPSTF recommendations, proportions of 

selected CT screening candidates decreased significantly without reduction 

in lung cancer detection rates and PPVs, implying a decrease of negative 

and, potentially, false-positive CT screening examinations. As the goal of 

LCS is to detect lung cancers cost-effectively, the CXR-LC model may be 

suitable for this goal. Indeed, 20.4% (1,602 of 7,835) of the LCS candidates 
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could be reduced by excluding the low-to-indeterminate risk categories at 

the expense of only few missed lung cancers. 

 Several limitations of this study should be mentioned. First, this study was 

performed retrospectively at a single center per each investigation. Second, 

despite the DL algorithm showing outstanding performance in detecting 

active pulmonary TB or lung cancers on chest radiographs, we did not 

evaluate the added value of the DL algorithm to the diagnostic 

performances of the radiologists in this study. Further studies evaluating the 

added value of the algorithm in a screening setting would be warranted. 

Third, for lung cancers detection or prediction tasks, not all participants had 

contemporaneous chest CT exams at the time of their chest radiographs. 

This fact is problematic, as there could be nodules that are missed by our 

method of relying on longitudinal follow-up as the gold standard. Very 

slowly-growing lung cancers might not be found using our method for 

follow-up. Fourth, although the CXR-LC model was developed to predict 

12-year lung cancer incidence, the median follow-up interval in this study 

was only 11.6 months, and we predicted incident lung cancers within a 

period shorter than 12 years. This was why the calibrations of the models 

were poor. 
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 In conclusion, DL algorithms detected active pulmonary TB and lung 

cancers on chest radiographs with performance comparable to that of 

radiologists in the screening settings, and it will be helpful for optimization 

of candidate selection for LCS. 

  



- 78 - 

 

References 
 

1. Hwang EJ, Park S, Jin K-N, Im Kim J, Choi SY, Lee JH, Goo JM, Aum J, 

Yim J-J, Cohen JG. Development and validation of a deep learning–based 

automated detection algorithm for major thoracic diseases on chest 

radiographs. JAMA network open 2019;2(3):e191095-e191095.  

2. Hwang EJ, Park S, Jin K-N, Kim JI, Choi SY, Lee JH, Goo JM, Aum J, Yim 

J-J, Park CM. Development and validation of a deep learning–based 

automatic detection algorithm for active pulmonary tuberculosis on chest 

radiographs. Clinical Infectious Diseases 2019;69(5):739-747.  

3. Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, Vu TH, Sohn JH, 

Hwang S, Goo JM. Development and validation of deep learning–based 

automatic detection algorithm for malignant pulmonary nodules on chest 

radiographs. Radiology 2019;290(1):218-228.  

4. Qin ZZ, Sander MS, Rai B, Titahong CN, Sudrungrot S, Laah SN, Adhikari 

LM, Carter EJ, Puri L, Codlin AJ. Using artificial intelligence to read chest 

radiographs for tuberculosis detection: A multi-site evaluation of the 

diagnostic accuracy of three deep learning systems. Scientific reports 

2019;9(1):1-10.  

5. Lu MT, Raghu VK, Mayrhofer T, Aerts HJ, Hoffmann U. Deep learning 

using chest radiographs to identify high-risk smokers for lung cancer 

screening computed tomography: development and validation of a prediction 

model. Annals of Internal Medicine 2020;173(9):704-713.  

6. (2019) WHO. Global tuberculosis repot 2019. 



- 79 - 

 

https://www.who.int/tb/publications/global_report/en/. 

7. (2016) WHO. Chest radiograpehy in tuberculosis detection: summary of 

current WHO recommendations and guidance on programmatic approaches. 

https://www.who.int/tb/publications/chest-radiography/en/. 

8. (2013) WHO. Systematic screening for active tuberculosis: principles and 

recommendations. . https://www.who.int/tb/tbscreening/en/. 

9. (2011) WHO. Early detection of tuberculosis: an overview of approaches, 

guidelines and tools. https://apps.who.int/iris/handle/10665/70824. 

10. Organization WH. The global plan to stop TB, 2016-2020. 

http://www.stoptb.org/global/plan/plan2/. 

11. (2010) WHO. Public-private mix for TB care and control. 

https://www.who.int/tb/publications/tb-publicprivate-toolkit/en/. 

12. Yoon C, Dowdy DW, Esmail H, MacPherson P, Schumacher SG. 

Screening for tuberculosis: time to move beyond symptoms. The Lancet 

Respiratory Medicine 2019;7(3):202-204.  

13. Dara M, Solovic I, Sotgiu G, D'Ambrosio L, Centis R, Tran R, Goletti D, 

Duarte R, Aliberti S, De Benedictis FM. Tuberculosis care among refugees 

arriving in Europe: a ERS/WHO Europe Region survey of current practices. 

European Respiratory Journal 2016;48(3):808-817.  

14. Melendez J, Sánchez CI, Philipsen RH, Maduskar P, Dawson R, Theron 

G, Dheda K, Van Ginneken B. An automated tuberculosis screening strategy 

combining X-ray-based computer-aided detection and clinical information. 

Scientific reports 2016;6(1):1-8.  

15. Pande T, Cohen C, Pai M, Ahmad Khan F. Computer-aided detection of 



- 80 - 

 

pulmonary tuberculosis on digital chest radiographs: a systematic review. 

The International Journal of Tuberculosis and Lung Disease 

2016;20(9):1226-1230.  

16. Hogeweg L, Mol C, de Jong PA, Dawson R, Ayles H, van Ginneken B. 

Fusion of local and global detection systems to detect tuberculosis in chest 

radiographs.  International conference on medical image computing and 

computer-assisted intervention: Springer, 2010; p. 650-657. 

17. Rahman MT, Codlin AJ, Rahman MM, Nahar A, Reja M, Islam T, Qin ZZ, 

Khan MAS, Banu S, Creswell J. An evaluation of automated chest 

radiography reading software for tuberculosis screening among public-and 

private-sector patients. European Respiratory Journal 2017;49(5).  

18. Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, 

Xue Z, Palaniappan K, Singh RK, Antani S. Automatic tuberculosis screening 

using chest radiographs. IEEE transactions on medical imaging 

2013;33(2):233-245.  

19. Siegel RL MK, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 

2020;70(1):7-30.  

20. Van Iersel CA, De Koning HJ, Draisma G, Mali WP, Scholten ET, 

Nackaerts K, Prokop M, Habbema JDF, Oudkerk M, Van Klaveren RJ. Risk‐

based selection from the general population in a screening trial: selection 

criteria, recruitment and power for the Dutch‐Belgian randomised lung cancer 

multi‐slice CT screening trial (NELSON). International Journal of Cancer 

2007;120(4):868-874.  

21. Wille MM, Dirksen A, Ashraf H, Saghir Z, Bach KS, Brodersen J, 



- 81 - 

 

Clementsen PF, Hansen H, Larsen KR, Mortensen J. Results of the 

randomized Danish lung cancer screening trial with focus on high-risk 

profiling. American journal of respiratory and critical care medicine 

2016;193(5):542-551.  

22. Hocking WG, Hu P, Oken MM, Winslow SD, Kvale PA, Prorok PC, Ragard 

LR, Commins J, Lynch DA, Andriole GL. Lung cancer screening in the 

randomized Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer 

screening trial. JNCI: Journal of the National Cancer Institute 

2010;102(10):722-731.  

23. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, 

Heuvelmans MA, Lammers J-WJ, Weenink C, Yousaf-Khan U, Horeweg N. 

Reduced lung-cancer mortality with volume CT screening in a randomized 

trial. New England Journal of Medicine 2020;382(6):503-513.  

24. Team NLSTR. Reduced lung-cancer mortality with low-dose computed 

tomographic screening. New England Journal of Medicine 2011;365(5):395-

409.  

25. Pinsky PF. Lung cancer screening with low-dose CT: a world-wide view. 

Translational lung cancer research 2018;7(3):234.  

26. Dominioni L, Poli A, Mantovani W, Pisani S, Rotolo N, Paolucci M, Sessa 

F, Conti V, D’Ambrosio V, Paddeu A. Assessment of lung cancer mortality 

reduction after chest X-ray screening in smokers: a population-based cohort 

study in Varese, Italy. Lung Cancer 2013;80(1):50-54.  

27. Shankar A, Saini D, Dubey A, Roy S, Bharati SJ, Singh N, Khanna M, 

Prasad CP, Singh M, Kumar S. Feasibility of lung cancer screening in 



- 82 - 

 

developing countries: challenges, opportunities and way forward. 

Translational lung cancer research 2019;8(Suppl 1):S106.  

28. Gossner J. Lung cancer screening-don’t forget the chest radiograph. 

World Journal of Radiology 2014;6(4):116.  

29. Dominioni L, Rotolo N, Mantovani W, Poli A, Pisani S, Conti V, Paolucci 

M, Sessa F, Paddeu A, D'Ambrosio V. A population-based cohort study of 

chest x-ray screening in smokers: lung cancer detection findings and follow-

up. BMC cancer 2012;12(1):1-12.  

30. Sim Y, Chung MJ, Kotter E, Yune S, Kim M, Do S, Han K, Kim H, Yang 

S, Lee D-J. Deep convolutional neural network–based software improves 

radiologist detection of malignant lung nodules on chest radiographs. 

Radiology 2020;294(1):199-209.  

31. Jonas DE, Reuland DS, Reddy SM, Nagle M, Clark SD, Weber RP, 

Enyioha C, Malo TL, Brenner AT, Armstrong C. Screening for lung cancer 

with low-dose computed tomography: updated evidence report and 

systematic review for the US Preventive Services Task Force. Jama 

2021;325(10):971-987.  

32. Henschke CI, Yip R, Yankelevitz DF, Smith JP. Definition of a positive test 

result in computed tomography screening for lung cancer: a cohort study. 

Annals of internal medicine 2013;158(4):246-252.  

33. Yip R, Henschke CI, Yankelevitz DF, Smith JP. CT screening for lung 

cancer: alternative definitions of positive test result based on the national 

lung screening trial and international early lung cancer action program 

databases. Radiology 2014;273(2):591-596.  



- 83 - 

 

34. Rampinelli C, De Marco P, Origgi D, Maisonneuve P, Casiraghi M, 

Veronesi G, Spaggiari L, Bellomi M. Exposure to low dose computed 

tomography for lung cancer screening and risk of cancer: secondary analysis 

of trial data and risk-benefit analysis. bmj 2017;356.  

35. Gareen IF, Duan F, Greco EM, Snyder BS, Boiselle PM, Park ER, Fryback 

D, Gatsonis C. Impact of lung cancer screening results on participant health‐

related quality of life and state anxiety in the National Lung Screening Trial. 

Cancer 2014;120(21):3401-3409.  

36. van den Bergh KA, Essink-Bot M-L, Borsboom GJ, Scholten ET, Prokop 

M, de Koning HJ, van Klaveren RJ. Short-term health-related quality of life 

consequences in a lung cancer CT screening trial (NELSON). British journal 

of cancer 2010;102(1):27-34.  

37. Byrne MM, Weissfeld J, Roberts MS. Anxiety, fear of cancer, and 

perceived risk of cancer following lung cancer screening. Medical Decision 

Making 2008;28(6):917-925.  

38. Pinsky PF. Assessing the benefits and harms of low-dose computed 

tomography screening for lung cancer. Lung cancer management 

2014;3(6):491-498.  

39. Oken MM, Hocking WG, Kvale PA, Andriole GL, Buys SS, Church TR, 

Crawford ED, Fouad MN, Isaacs C, Reding DJ. Screening by chest 

radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and 

Ovarian (PLCO) randomized trial. Jama 2011;306(17):1865-1873.  

40. Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, Caughey 

AB, Davis EM, Donahue KE, Doubeni CA, Kubik M. Screening for lung 



- 84 - 

 

cancer: US preventive services task force recommendation statement. JAMA 

2021;325(10):962-970.  

41. Lee JH, Park S, Hwang EJ, Goo JM, Lee WY, Lee S, Kim H, Andrews JR, 

Park CM. Deep learning–based automated detection algorithm for active 

pulmonary tuberculosis on chest radiographs: diagnostic performance in 

systematic screening of asymptomatic individuals. European Radiology 

2021;31(2):1069-1080.  

42. Lee JH, Sun HY, Park S, Kim H, Hwang EJ, Goo JM, Park CM. 

Performance of a deep learning algorithm compared with radiologic 

interpretation for lung cancer detection on chest radiographs in a health 

screening population. Radiology 2020;297(3):687-696.  

43. Lee C, Choe EK, Choi JM, Hwang Y, Lee Y, Park B, Chung SJ, Kwak M-

S, Lee J-E, Kim JS. Health and Prevention Enhancement (H-PEACE): a 

retrospective, population-based cohort study conducted at the Seoul 

National University Hospital Gangnam Center, Korea. BMJ open 

2018;8(4):e019327.  

44. Moskowitz CS, Pepe MS. Comparing the predictive values of diagnostic 

tests: sample size and analysis for paired study designs. Clinical trials 

2006;3(3):272-279.  

45. Tammemägi MC, Ten Haaf K, Toumazis I, Kong CY, Han SS, Jeon J, 

Commins J, Riley T, Meza R. Development and validation of a multivariable 

lung cancer risk prediction model that includes low-dose computed 

tomography screening results: a secondary analysis of data from the 

National lung screening trial. JAMA network open 2019;2(3):e190204-



- 85 - 

 

e190204.  

46. Walsh CG, Sharman K, Hripcsak G. Beyond discrimination: a comparison 

of calibration methods and clinical usefulness of predictive models of 

readmission risk. Journal of biomedical informatics 2017;76:9-18.  

47. Ting DSW, Tan T-E, Lim CT. Development and validation of a deep 

learning system for detection of active pulmonary tuberculosis on chest 

radiographs: Clinical and technical considerations. Oxford University Press 

US, 2019. 

48. Ting DS, Yi PH, Hui F. Clinical applicability of deep learning system in 

detecting tuberculosis with chest radiography. Radiology 2018;286(2):729-

731.  

49. Park SH. Diagnostic case-control versus diagnostic cohort studies for 

clinical validation of artificial intelligence algorithm performance. Radiology 

2019;290(1):272-273.  

50. Quekel L, Goei R, Kessels A, van Engelshoven J. Detection of lung 

cancer on the chest radiograph: impact of previous films, clinical information, 

double reading, and dual reading. Journal of clinical epidemiology 

2001;54(11):1146-1150.  

51. Berlin NI, Buncher CR, Fontana RS, Frost JK, Melamed MR. The 

National Cancer Institute Cooperative Early Lung Cancer Detection Program: 

Results of the Initial Screen (Prevalence) Early Lung Cancer Detection: 

Introduction. American Review of Respiratory Disease 1984;130(4):545-549.  

52. Gavelli G, Giampalma E. Sensitivity and specificity of chest x‐ray 

screening for lung cancer. Cancer 2000;89(S11):2453-2456.  



- 86 - 

 

53. Muhm JR, Miller W, Fontana R, Sanderson D, Uhlenhopp M. Lung cancer 

detected during a screening program using four-month chest radiographs. 

Radiology 1983;148(3):609-615.  

54. van Klaveren RJ, Oudkerk M, Prokop M, Scholten ET, Nackaerts K, 

Vernhout R, van Iersel CA, van den Bergh KA, van't Westeinde S, van der 

Aalst C. Management of lung nodules detected by volume CT scanning. New 

England Journal of Medicine 2009;361(23):2221-2229.  



87 

 

SUPPLEMENT 

Supplement Text. Information about the deep-learning algorithms used in 

systematic screening for active pulmonary TB and detection of lung cancers 

on chest radiographs (Lunit INSIGHT) and Optimization of candidate 

selection for LCS (CXR-LC model). 

 The commercially available deep-learning algorithm (Lunit INSIGHT for 

Chest Radiography, version 4.7.2; Lunit) used in this study was designed for 

the detection of major thoracic diseases (pulmonary malignancy, active 

pulmonary tuberculosis, pneumonia, and pneumothorax) on the chest 

radiographs. It was developed with 54,221 normal chest radiographs and 

35,613 chest radiographs in patients with major thoracic diseases (13,926 

chest radiographs with pulmonary malignancy; 6,768 chest radiographs with 

active pulmonary tuberculosis; 6,903 chest radiographs with pneumonia; 

8,016 chest radiographs with pneumothorax). For these training data sets, 

chest radiographs were collected in the patients with pathological (pulmonary 

malignancy), bacteriological (active pulmonary tuberculosis and pneumonia) 

confirmation, or relevant radiological report (pneumothorax), and then these 

chest radiographs were reviewed by the board-certified radiologists. For 
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each input chest radiograph, the algorithm provided probability score as 

continuous value between 0 and 1 as the image-level probability of abnormal 

CR. Heat maps overlaid on the input chest radiograph with per-pixel 

localization probability maps were provided to the users.  

 The CXR-LC model was developed with chest radiographs from both 

smokers and nonsmokers from the Prostate, Lung, Colorectal, and Ovarian 

Cancer Screening Trial (PLCO) dataset to predict incident lung cancers (up 

to 12 years). It was validated using chest radiographs from only smokers in 

the PCLO and National Lung Screening Trial datasets. The inputs are clinical 

information (age, sex, and smoking status) and chest radiographs, and the 

model calculates a probability for incident lung cancer ranging between 0% 

and 100%. In the original study and this study, the CXR-LC risk probabilities 

were converted to the following ordinal 12-year lung cancer risk categories: 

(a) low risk (< 2%), (b) indeterminate risk (2% to < 3.297%), (c) high risk 

(3.297% to < 8%), and (d) very high risk (≥ 8%). The threshold of 3.297% 

was determined to correspond to the Centers for Medicare & Medicaid 

Services-defined screening population size, and the < 2% and ≥ 8% 

thresholds were chosen to represent a low and very high 12-year risk, 

respectively.  
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초   록 

서론: 인공지능 기반 병변 검출 딥러닝 (DL) 알고리듬의 검진 흉부 

X 선 검사에서 활동성 결핵과 폐암 검출능을 확인하고, 폐암 발생을 

예측하는 인공지능 알고리듬 (CXR-LC 모델)을 이용하여 폐암 검진 

CT 수검자 선택 최적화에 관한 유용성을 검증하고자 한다. 

방법: 병변 검출 DL 모델과 CXR-LC 모델의 유용성을 다음의 

코호트들에서 평가하고자 한다. 1) 2013 년 1 월부터 2018 년 7 월까지 

단일 군병원에서 시행 된 결핵검진프로그램에 참여한 코호트 (폐 결핵 

검출능 확인), 2) 2008 년 1 월부터 2012 년 12 월까지 단일 건강검진 

기관에 참여한 코호트 (폐암 검출능 확인), 3) 2004 년 1 월부터 

2018 년 6 월까지 동일한 건강검진 기관에 참여한 코호트 (CXR-LC 의 

폐암 예측능 확인). 병변검출 DL 모델의 결핵 및 폐암 검출에 대한 

진단능을 area under the receiver operating characteristic curves 

(AUC), sensitivity, specificity, positive predictive value, negative 

predictive value, accuracy 를 기결정 된 thresholds (폐 결핵: high 

sensitivity threshold=0.16, high specificity threshold= 0.46; 폐암: 
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high sensitivity threshold=0.16)을 기준으로 계산하고, 영상의학 

전문의와 그 결과를 비교하였다. CXR-LC 모델의 폐암 검진 CT 수검자 

선택능은 폐암 발생 예측에 대한 구별 (discrimination)과 

보정(calibration)을 확인하고, 추가로 2021 년 US Preventive 

Services Task Force (USPSTF) recommendations 에 추가적인 

이득이 있는지를 lung cancer detection rate, proportion of selected 

CT screening candidates, positive predictive value 를 이용하여 

확인하였다. 

결과: 총 19,686 명의 결핵 검진군의 20,235 흉부 X 선 중, 4 명의 

5 장의 흉부 X 선이 활동성 결핵으로 확인되었다. 병변 검출 DL 모델은 

이에 대해서 high sensitivity, high specificity thresholds 모두에서 

폐결핵을 찾아내었다. 이때 각각의 specificities 는 95.9% 와 99.7%, 

PPVs 는 0.6% 와 6.8%, NPVs 는 모두 100%였다. 특히 high 

specificity threshold 에서 이러한 진단능은 영상의학전문의와 차이가 

없었다 (P>0.05). DLAD 의 폐암검출의 위한 코호트는 50,070 명의 

검진군의 100,525 흉부 X 선이 포함되었고 그 중 47 장에서 폐암이 

보였다. 그 중, reader study 를 위한 validation set 으로 10,202 명의 
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검진군의 10,285 장의 흉부 X 선이 선별되었고, 그 중 10 장에서 

폐암이 보였다. 이 validation set 에서 보이는 폐암에 대한 DLAD 의 

AUC 는 0.989 로 나타났고, 영상의학전문의와 비슷한 수준의 

sensitivity 를 보였지만 (P=0.248), 유의하게 낮은 specificity 를 

보였다 (96.9% vs. 99.8%, P<0.001). 전체 검진군에서는 보이는 

폐암에 대해 AUC 0.969 을 가졌고, sensitivity 는 83%, specificity 는 

97%를 나타내었다. 폐암 검진 CT 수검자를 위한 코호트는 총 

19,488 명의 검진군의 19,488 장의 흉부 X 선이 포함되었고, 그 중 

폐암은 107 명에게서 발생하였다. CXR-LC 모델은 폐암 발생에 대한 

AUC 0.676 을 가졌고, 특히 USPSTF-eligible 검진군에게서는 AUC 

0.745 를 가졌다. 흡연량이 조사 된 17,390 명에게서 USPSTF-

eligible 검진자에게 추가로 CXR-LC 를 적용하여 low-to-

indeterminate risk 에 해당하는 검진자를 제외하였을 때, proportion of 

selected CT screening candidates 가 45.1%에서 35.8%로 유의하게 

감소하였고 (P<0.001), 동시에 lung cancer detection 

rate(P=0.848)와 positive predictive value(0.416)는 변화가 없었다. 
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결론: 병변 검출 DL 모델은 검진 흉부 X 선 검사에서 활동성 결핵과 

폐암 검출을 영상의학 전문의 수준으로 할 수 있고, 폐암 발생을 

예측하는 CXR-LC 모델은 유의한 정도의 폐암 검진 CT 수검자를 

줄이는 동시에 폐암 검출 능은 감소하지 않았다.  

주요어: 딥러닝; 진단; 검진; 결핵; 폐암; 흉부 X 선; computer-assisted 

학번: 2020-36356 
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