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Peripheral blood transcriptomic clusters 
uncovered immune phenotypes of asthma
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Abstract 

Background: Transcriptomic analysis has been used to elucidate the complex pathogenesis of heterogeneous dis‑
ease and may also contribute to identify potential therapeutic targets by delineating the hub genes. This study aimed 
to investigate whether blood transcriptomic clustering can distinguish clinical and immune phenotypes of asthmat‑
ics, and microbiome in asthmatics.

Methods: Transcriptomic expression of peripheral blood mononuclear cells (PBMCs) from 47 asthmatics and 21 non‑
asthmatics was measured using RNA sequencing. A hierarchical clustering algorithm was used to classify asthmatics. 
Differentially expressed genes, clinical phenotypes, immune phenotypes, and microbiome of each transcriptomic 
cluster were assessed.

Results: In asthmatics, three distinct transcriptomic clusters with numerously different transcriptomic expressions 
were identified. The proportion of severe asthmatics was highest in cluster 3 as 73.3%, followed by cluster 2 (45.5%) 
and cluster 1 (28.6%). While cluster 1 represented clinically non‑severe T2 asthma, cluster 3 tended to include severe 
non‑T2 asthma. Cluster 2 had features of both T2 and non‑T2 asthmatics characterized by the highest serum IgE level 
and neutrophil‑dominant sputum cell population. Compared to non‑asthmatics, cluster 1 showed higher CCL23 and 
IL1RL1 expression while the expression of TREML4 was suppressed in cluster 3. CTSD and ALDH2 showed a significant 
positive linear relationship across three clusters in the order of cluster 1 to 3. No significant differences in the diversi‑
ties of lung and gut microbiomes were observed among transcriptomic clusters of asthmatics and non‑asthmatics. 
However, our study has limitations in that small sample size data were analyzed with unmeasured confounding fac‑
tors and causal relationships or function pathways were not verified.

Conclusions: Genetic clustering based on the blood transcriptome may provide novel immunological insight, which 
can be biomarkers of asthma immune phenotypes.
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Background
Therapeutic strategies for asthma have been established 
based on phenotypic features such as symptom sever-
ity and lung function [1]. However, conventional thera-
peutic approaches are often insufficient for adequate 
disease control, especially in severe cases due to the 
heterogeneous nature of asthma pathogenesis [2]. The 
asthma immune phenotypes have been used to explain 
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the heterogeneity with various inflammatory and immu-
nologic pathways involved in its pathogenesis [3]. For 
example, biomarkers of type 2 (T2) cell-mediated inflam-
mation including eosinophils in sputum or blood cells, 
serum immunoglobulin E (IgE) levels, and fractional 
exhaled nitric oxide (FeNO) are used to identify poten-
tial candidates who may benefit from treatment with bio-
logic agents targeting T2 inflammation. Recent clinical 
trials showed that anti-IL-4 or anti-IL-5 biologic agents 
successfully reduced the number of exacerbations and 
improved lung functions in T2 asthmatics [4, 5]. The con-
ceptual classification of T2 and non-T2 asthma has led 
to a better understanding of the molecular mechanisms 
behind the heterogeneous phenotypes of asthma [6, 7]. 
Despite recent progress, the management of inhaled 
corticosteroid (ICS) refractory non-T2 asthma remains 
problematic, and the details of non-T2 asthma pathogen-
esis still need to be identified.

The transcriptome is a set of all the ribonucleic acid 
(RNA) transcripts for a specific biological condition. 
Transcriptome clustering has the potential to provide a 
deeper understanding of the biologic status [8]. Consid-
ering that over 80% of gene expressions are identified in 
peripheral blood mononuclear cells (PBMCs), transcrip-
tomic analysis of peripheral blood samples is a relatively 
non-invasive, reproducible method of obtaining data. 
However, studies on transcriptomic cluster analyses 
using PBMCs are lacking in asthma patients. In addition, 
a recent study showed that transcriptome and microbi-
ome profiles in the nasal epithelium of asthmatics were 
different from that of healthy controls, and these find-
ings suggest that host-microbiome associations may exist 
in severe persistent asthma patients [9]. However, the 
association between the transcriptomic expressions of 
PBMCs and microbiome in the lung and gut has not been 
well evaluated in asthmatics.

In this study, we clustered asthmatics based on differ-
ent blood transcriptomic expressions and investigated 
the clinical features, immune phenotypes, and microbi-
ome compositions among clusters to gain a better under-
standing of asthma pathogenesis and to identify potential 
therapeutic targets.

Methods
Study design and eligibility criteria
In this cross-sectional study, we analyzed the medi-
cal records, transcriptome and microbiome data of the 
adult asthma cohort of asthmatics and non-asthmatic 
volunteers who visited thirteen medical centers across 
Korea from 2016 to 2019 [10]. All of the subjects in this 
cohort provided informed consent that was approved by 
the Institutional Review Board (IRB) of Seoul National 
University Hospital (IRB No. 1607-148-778). This study 

was conducted in compliance with the reporting of 
genetic association studies statement [11]. The transcrip-
tome data extracted from PBMCs and microbiome data 
obtained from induced sputum and stool samples of all 
patients were included in the analysis.

Patients were diagnosed as asthmatics if they met the 
following criteria: (1) the presence of respiratory symp-
toms related to chronic airway inflammation including 
cough, sputum, dyspnea, and wheezing with (2) airway 
reversibility defined as a 12% and 200  mL or greater 
increase in forced expiratory volume in 1  s  (FEV1) after 
the use of an inhaled short-acting bronchodilator or (3) 
airway hyperresponsiveness defined as a reduction of 
 FEV1 20% or more after inhalation of less than 16 mg/mL 
of methacholine [12].

Patients were considered to have severe asthma if they 
had reduced lung functions  (FEV1 < 80% of predicted 
value) and asthma control questionnaire (ACQ) scores 
of 1.5 or higher with a daily inhaled corticosteroid (ICS) 
requirement equivalent to 1000 μg of beclomethasone or 
greater [13]. Patients who used antibiotics or experienced 
an acute exacerbation event within three months prior to 
the study were excluded.

Assessment of clinical parameters
We obtained demographic and clinical information 
regarding age, sex, body mass index, smoking status, fam-
ily history of asthma, pets, underlying conditions, results 
of lung function tests, and FeNO values. For asthmat-
ics, we additionally obtained clinical information about 
asthma severity, levels of asthma control, ACQ-7 scores, 
asthma control test (ACT) scores, and doses of inhaled 
corticosteroids, oral steroids, long-acting beta2 agonists 
(LABA), long-acting muscarinic antagonists (LAMA), 
leukotriene receptor antagonists (LTRA), theophylline, 
omalizumab, and macrolides. To evaluate the immune 
phenotypes of asthmatics, sputum samples were counted 
for eosinophils (%), neutrophils (%), and macrophages 
(%). Blood samples were measured for total IgE, vitamin 
D, interferon (IFN)-γ, periostin, interleukin (IL)-4, IL-5, 
IL-13 and eosinophils (%).

Samples and clinical parameters
We collected 2.5 mL of peripheral blood samples in the 
PAXgene Blood RNA Tube (BD Biosciences, San Jose, 
CA, USA) from each eligible patient. At least 2  mL of 
induced sputum samples were collected in the Falcon 
50 mL conical centrifuge tube. We followed a standard-
ized method to obtain induced sputum samples [14]. 
Sputum samples that contained squamous epithelial 
cells less than 20% of the total cell count were considered 
appropriate [15]. We collected at least 0.2 g of stool sam-
ples in a stool container (SPL Life Sciences, Pocheon-si, 
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Korea). The collected blood, sputum, and stool samples 
were stored at − 70 °C.

RNA extraction and transcriptome sequencing
RNA extraction was performed with a PAXgene Blood 
RNA kit IVD (QIAGEN, Hilden, Germany). The RNA-
seq library was prepared with a TruSeq Stranded mRNA 
Sample Preparation Kit (Illumina, San Diego, CA, USA). 
The messenger RNA libraries were sequenced by paired-
end 100 cycles on the HiSeq 2500 (Illumina). Low-quality 
bases in the raw reads were filtered out by FastQC ver 
0.11.5 [16] and potentially existing sequencing adapters 
were trimmed with Skewer ver 0.2.2 [17]. The high-qual-
ity reads were mapped to the human reference genome 
hg19 (downloaded from UCSC genome browser, https:// 
genome. ucsc. edu) by STAR ver 2.6 [18]. The gene expres-
sion level was quantified based on the aligned reads by 
Cufflinks package ver 2.2.1 [19]. The gene annotation of 
the reference genome was used as gene models and the 
expression values were calculated in Fragments Per Kilo-
base of transcript per Million fragments mapped (FPKM) 
unit.

Clustering and transcriptome expression analysis
To identify any disease subsets within the asthmatic 
group, we explored the gene expression patterns using a 
hierarchical clustering method. The R-function “hclust” 
with the Euclidean distance and complete linkage option 
was used for the clustering analysis of gene expression 
profiles in FPKM values. The resultant clusters within the 
asthmatic group were designated as cluster 1, 2, and 3. 
The non-asthmatic group was not included in the clus-
tering analysis and was regarded as an independent con-
trol cluster. The Principal Component Analysis (PCA) 
plots were generated using the R program. Heatmaps 
were plotted using the heatmap package and the Euclid-
ean distance method. Different transcriptome expres-
sions were analyzed, and comparisons were made among 
the three clusters as well as between asthmatics and 
non-asthmatics.

Microbiome analysis
Metagenomic deoxyribonucleic acid (DNA) was 
extracted from 1 mL of induced sputum and 0.2 g of stool 
using a FastDNA SPIN Kit (MP Biomedicals, Irvine, CA, 
USA). The bacterial 16S ribosomal RNA (rRNA) gene 
was amplified using the extracted DNAs as templates. 
For the polymerase chain reaction, primers 341F and 
805R and 2X KAPA HiFi HotStart ReadyMix (KAPA Bio-
systems, Roche, Wilmington, MA, USA) were used [20]. 
The sequencing library was constructed according to the 
16S metagenomic sequencing library preparation meth-
ods (Illumina) [21]. The amplicon was purified using a 

XSEP MagBead (Celemics Inc., Seoul, Korea) and 300 bp 
paired-end sequencing using the MiSeq v3 platform (Illu-
mina) was performed.

The resultant sequences were analyzed using Quantita-
tive Insights in Microbial Ecology software (QIIME) [22] 
and the EzBiocloud 16S rRNA gene sequence database 
[10]. The beta-diversity was calculated using the weighted 
normalized UniFrac distance. The Principal coordinate 
analysis (PCoA) and PERMANOVA implemented in the 
Vegan package of the R software were used to compare 
the microbiome structures.

Statistical analyses
The R statistical software, version 3.6.3 [R Core Team 
(2018), Vienna, Austria] was used for statistical analy-
sis. A  Log2 fold change > 2 or < -2 and a q-value < 0.05 
were considered to be statistically significant. Categori-
cal variables were analyzed with the Chi-square test 
and the Fisher’s exact test. Continuous variables were 
analyzed with the Kruskal–Wallis test. Differentially 
expressed genes (DEGs) were analyzed using the DESeq2 
package [23]. The volcano plots for the expression-fold 
changes were drawn with the EnhancedVolcano package 
[24]. The difference of bacterial abundance was evalu-
ated by Kruskal–Wallis test and Benjamini–Hochberg 
adjustment.

Results
Differences in asthmatics and non‑asthmatics
A total of 46 asthmatic patients and 21 non-asthmatics 
met the eligibility criteria, and their baseline charac-
teristics are summarized in Additional file  1: Table  S1. 
Asthmatics were older, had more asthma-related comor-
bidities with worse lung functions, and had more fre-
quent family histories of asthma.

Transcriptomic clusters and their phenotypes in asthmatics
A total of 19,841 transcriptomic expressions was 
observed in the blood samples. Although most tran-
scriptomic expressions in PBMCs were similar in both 
asthmatics and non-asthmatics (Fig.  1A), VSTM4 and 
CCL23 were expressed significantly higher in asthmatics 
(VSTM4,  log2 fold change = 5.14, q-value = 1.41 ×  10–5; 
CCL23,  log2 fold change = 2.41, q-value = 1.41 ×  10–5) 
(Additional file 1: Table S2).

Among asthmatics, three distinct clusters were 
obtained based on the blood transcriptomic expressions: 
21, 11, and 15 patients were grouped into three clusters, 
which were visualized through PCA (Fig. 1B). The heat-
map for transcriptomic expression showed distinctive 
pattern expressions among the three clusters (Fig. 1C).

Phenotypic features of each cluster are described in 
Table 1. Phenotype analyses showed that the proportion 

https://genome.ucsc.edu
https://genome.ucsc.edu


Page 4 of 12Lee et al. Respiratory Research          (2022) 23:237 

of severe asthmatics was lowest at 28.6% in cluster 1 
and highest in cluster 3 at 73.3%. Accordingly, cluster 3 
involved more patients with an ACT score < 20 and had 
the lowest  FEV1 and forced expiratory flow between 25 
and 75%  (FEF25–75%). The use of LAMA was found only 

in cluster 3. Cluster 1 had the highest levels of IL-5 and 
IL-13 while cluster 3 had the lowest levels of IL-5 and 
IL-13. There were no differences of serum IL-4 and IFN-γ 
levels among the three clusters. The blood IgE level and 
the sputum neutrophil count was highest in cluster 2.

Fig. 1 Distinctive patterns of transcriptomic expression of three clusters in asthmatics and non‑asthmatics
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Table 1 Baseline characteristics and clinical features of the asthmatics

Cluster 1 (n = 21) Cluster 2 (n = 11) Cluster 3 (n = 15) p‑value

Age, mean (SD) 57.0 (8.5) 53.6 (6.9) 61.1 (7.4) 0.061

Female, n (%) 13 (61.9) 7 (63.6) 9 (60.0) 0.982

BMI, mean (SD) 24.1 (3.1) 24.0 (3.8) 24.5 (4.4) 0.947

Smoking, n (%) 5 (23.8) 0 (0.0) 5 (33.3) 0.113

PY ≥ 10, n (%) 1 (4.8) 0 (0.0) 4 (26.7) 0.047

Severe asthma (%) 6 (28.6) 5 (45.5) 11 (73.3) 0.029

Levels of asthma control

 Day symptom, n (%) 8 (38.1) 5 (45.5) 10 (66.7) 0.231

 Limit of activity, n (%) 5 (23.8) 3 (27.3) 11 (73.3) 0.007

 Night symptom, n (%) 5 (23.8) 4 (36.4) 7 (46.7) 0.355

 SABA use for symptom control, n (%) 6 (28.6) 4 (36.4) 7 (46.7) 0.538

 Acute exacerbation ≥ 2/year, n (%) 5 (23.8) 4 (36.4) 6 (40.0) 0.553

ACQ‑7 score > 1.5, n (%) 6 (28.6) 3 (27.3) 8 (53.3) 0.245

ACT score < 20, n (%) 4 (19.0) 2 (18.2) 10 (66.7) 0.005

ICS dose

 High‑dose, n (%) 1 (4.8) 2 (18.2) 4 (26.7) 0.180

 Medium‑dose, n (%) 5 (23.8) 6 (54.5) 8 (53.3) 0.113

 Low‑dose, n (%) 11 (52.4) 2 (18.2) 3 (20.0) 0.058

 No ICS, n (%) 4 (19.0) 1 (9.1) 0 (0) 0.185

Oral steroid, n (%) 0 (0.0) 0 (0.0) 1 (6.7) 0.336

LABA, n (%) 16 (76.2) 10 (90.9) 15 (100.0) 0.099

LAMA, n (%) 0 (0.0) 0 (0.0) 4 (26.7) 0.009

LTRA, n (%) 13 (61.9) 8 (72.7) 7 (46.7) 0.392

Theophylline, n (%) 3 (14.3) 0 (0.0) 3 (20.0) 0.308

Omalizumab, n (%) 0 (0.0) 2 (18.2) 1 (6.7) 0.136

Macrolide, n (%) 0 (0.0) 0 (0.0) 2 (13.3) 0.108

Lung function

 FVC mL, mean (SD) 3,150 (730) 2,954 (940) 2,763 (581) 0.310

 FVC %, mean (SD) 99 (16) 85 (15) 91 (16) 0.073

  FEV1 mL, mean (SD) 2,382 (601) 2,110 (830) 1,936 (393) 0.100

  FEV1%, mean (SD) 92 (18) 75 (23) 73 (11) 0.003

  FEV1% < 80%, n (%)a 5 (23.8) 6 (54.5) 9 (60.0)  < 0.001

  FEV1 /FVC %, mean (SD) 75 (6) 70 (13) 70 (9) 0.139

  FEF25‑75%, mean (SD) 68 (20) 54 (28) 43 (8) 0.001

FeNO ppb, mean (SD) 58 (54) 37 (23) 80 (20) 0.030

Blood

 IL‑4, pg/mL, mean (SD) 111.5 (108.1) 72.5 (38.9) 83.7 (67.2) 0.405

 IL‑5, pg/mL, mean (SD) 10.9 (7.0) 7.8 (3.6) 4.8 (4.1) 0.008

 IL‑13, pg/mL, mean (SD) 5.0 (3.5) 3.6 (2.3) 2.2 (2.5) 0.027

 Periostin, ng/mL, mean (SD) 53,644 (8943) 45,486 (13,949) 52,063 (13,706) 0.183

 Interferon‑γ, pg/mL, mean (SD) 19.7 (12.6) 17.5 (7.5) 17.0 (9.4) 0.714

 White blood cell/uL, mean (SD) 6,607 (1804) 7,273 (1873) 7,239 (2827) 0.608

 Eosinophil %, mean (SD) 4.6 (3.7) 2.8 (2.8) 5.9 (4.9) 0.152

 Eosinophil/uL, mean (SD) 314 (293) 195 (182) 421 (339) 0.153

 Total IgE, IU/mL, mean (SD) 361 (291) 768 (659) 311 (201) 0.009

 Vitamin D, ng/mL, mean (SD) 20.2 (8.8) 19.5 (8.2) 19.7 (12.4) 0.980

Sputum

 Eosinophil %, mean (SD) 15.7 (17.5) 9.1 (3.8) 20.1 (12.4) 0.146

 Neutrophil %, mean (SD) 0.7 (1.3) 16.0 (0.9) 6.0 (3.9)  < 0.001

 Macrophage %, mean (SD) 63.9 (24.7) 74.3 (4.9) 56.1 (11.9) 0.051
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Differential expression of transcriptome in asthmatic 
clusters compared to non‑asthmatics
The 20 most differentially expressed transcriptomes 
between each asthmatic cluster and non-asthmatics 
were selected based on the absolute value of  log2 fold 
changes, and these results are summarized in Table  2. 
Across the three clusters, the expression of VSTM4 
was consistently enhanced in each asthmatic cluster 
compared to non-asthmatics. In contrast, PWP2 was 
commonly suppressed in all asthmatic clusters. Cluster-
specifically, cluster 1 showed at least a twofold increase 
of CCL23 and IL1RL1 expression while the expression 
of TREML4 was significantly suppressed in cluster 3.

The differential expression of transcriptomes among 
the three asthmatic clusters are summarized in Fig.  2. 
The 20 most differentially expressed transcriptomes 
based on the absolute value of  log2 fold changes are 
described in Additional file  1: Table  S3. Pre-specified 
genes not included in the top 20 genes of each cluster 

were compared among three clusters of asthmatics 
(Additional file 1: Table S4).

CTSD and ALDH2 showed a significant positive linear 
relationship across three clusters in the order of cluster 1 
to 3 in the linear regression model after Bonferroni cor-
rection (Fig. 3 and Additional file 1: Table S5).

Lung and gut microbiomes in asthmatic clusters
Analyses of the alpha-diversity in the lung and the gut 
microbiomes did not show significant differences among 
three asthmatic clusters and non-asthmatics (Fig.  4). 
Analyses of the beta-diversity in the lung and gut micro-
biomes using the UniFrac distance showed no significant 
differences among three asthmatic clusters and non-asth-
matics. Among lung clusters, Streptococcus, Leptotrichia, 
Gemella, Alloprevotella, Granulicatella, Aggregatibac-
ter showed a difference in abundance compared to the 
non-asthmatics; however, these differences were attenu-
ated after the Benjamini–Hochberg adjustment with the 
exception of Alloprevotella which revealed a significantly 

Table 1 (continued)
a p-value was estimated using chi-squared test for trend in proportions

ACQ asthma control questionnaire, ACT  asthma control test, BMI body mass index, FeNO fractional exhaled nitric oxide, ICS inhaled corticosteroid, LAMA acting 
muscarinic antagonist, LTRA  leukotriene receptor antagonists, FEF25–75 forced expiratory flow between 25 and 75%, FEV1 forced expiratory volume in 1 s, FVC forced 
vital capacity, PY pack years, SABA short-acting beta-agonist, SD standard deviation

Table 2 Top 20 transcriptomes differentially expressed between each cluster of asthmatics and non‑asthmatics

If fold changes are upper than 1 (each cluster of asthmatics > non-asthmatics), then log2 fold change becomes positive

Cluster 1 vs. Non‑asthmatics Cluster 2 vs. Non‑asthmatics Cluster 3 vs. Non‑asthmatics

Gene Log2 fold change q‑value Gene Log2 fold change q‑value Gene Log2 fold change q‑value

VSTM4 4.97 4.83 ×  10–4 VSTM4 4.62 1.21 ×  10–5 VSTM4 5.58 1.48 ×  10–6

CCL23 2.58 4.83 ×  10–4 WDFY4 − 3.90 3.11 ×  10–11 RPL36A − 3.49 1.37 ×  10–7

IL1RL1 2.05 9.16 ×  10–4 RP11-574F21.3 − 3.90 5.80 ×  10–8 USP6 − 3.50 1.37 ×  10–5

PWP2 − 23.78 5.83 ×  10–12 GOLGA8O − 4.02 2.25 ×  10–4 CTAGE1 − 3.51 8.35 ×  10–4

TREML4 − 4.32 0.010 ATP5L2 − 3.57 9.03 ×  10–4

NCR3LG1 − 4.39 3.39 ×  10–9 RNASEK-C17orf49 − 3.61 0.010

IFRG15 − 4.54 2.29 ×  10–4 PAGE1 − 3.65 0.002

BIVM-ERCC5 − 4.62 0.001 RPL34 − 3.67 4.16 ×  10–7

C7orf55-LUC7L2 − 4.62 0.009 RPEL1 − 3.71 0.004

RP11-603J24.9 − 4.73 0.007 RPL36A-HNRNPH2 − 3.80 0.016

GOLGA8R − 4.83 2.22 ×  10–6 LPA − 4.06 0.003

AC007192.4 − 4.89 0.036 ZNF578 − 4.22 1.09 ×  10–6

CTD-2370N5.3 − 5.35 4.12 ×  10–5 WTH3DI − 4.26 7.23 ×  10–5

COMMD3-BMI1 − 5.67 0.002 UQCRHL − 4.39 8.03 ×  10–11

RP11-449H3.3 − 5.68 5.94 ×  10–5 ATP5EP2 − 5.06 1.76 ×  10–7

CH507-9B2.1 − 6.97 1.92 ×  10–4 AC104534.3 − 5.53 0.037

TMEM189-UBE2V1 − 7.11 1.54 ×  10–8 KCNE1B − 5.84 0.003

PWP2 − 7.32 0.045 CTD-3074O7.11 − 6.61 0.016

RP11-343C2.11 − 8.14 8.46 ×  10–18 TREML4 − 6.63 0.001

FLJ20373 − 8.47 3.48 ×  10–10 PWP2 − 23.00 8.03 ×  10–11
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reduced abundance in cluster 3 (adjusted p-value = 0.049, 
Additional file 1: Table S6). The gut microbiome compo-
sition did not significantly differ among the three clusters 
and non-asthmatics.

Discussion
Transcriptome analysis of PBMCs from asthmatics 
uncovered three distinct clusters through hierarchical 
clustering with different distributions in the PCA plot. 
The three clusters with different transcriptome expres-
sion profiles showed distinctive immunophenotypic 
features: cluster 1 was representative of non-severe T2 
asthma, cluster 3 consisted of severe non-T2 asthmatics, 
and cluster 2 showed in-between clinical features with 
highest blood IgE and sputum neutrophil levels. These 
differences among clusters show that transcriptomic 
expressions of PBMCs may reflect the immunopheno-
typic features of asthmatics. However, we were unable 
to identify significant differences in the diversity of lung 
or gut microbiome among the three clusters in asthmat-
ics. Therefore, transcriptomic expression of PBMCs may 

be largely unaffected by the diversity of lung and gut 
microbiomes.

As PBMCs are easily accessible through blood sampling 
and can reflect the presence of systemic inflammation, 
previous studies have evaluated the association between 
gene expression patterns in PBMCs and immune pheno-
types in asthmatic patients. In one study, transcriptomic 
clustering analysis of PBMCs revealed systemic changes 
such as activation of innate immunity and antigen-inde-
pendent T cell activation during acute exacerbation of 
asthma [25]. A clustering analysis based on transcrip-
tomic profiles of PBMCs in asthmatic children identified 
a distinct cluster with a gene expression pattern associ-
ated with Th1 or Th17 inflammation and poor treat-
ment outcomes [26]. In another study, severe asthmatics 
showed enhanced inflammatory mechanisms related to 
myeloid cell trafficking while lymphoid cell development 
in the same patients was attenuated [27]. Complemen-
tary to the findings of these previous studies, our study 
also showed that transcriptomic expression among the 
three clusters in adult asthmatics had distinct features 

Fig. 2 Volcano plots for differential expression of transcriptome among three clusters in asthmatics. FC fold change

Fig. 3 Linear regression analysis for transcriptome expression among three clusters in asthmatics and non‑asthmatics
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Fig. 4 Alpha‑/beta‑diversity and phylum composition of lung and gut microbiomes in three clusters in asthmatics and non‑asthmatics. a 
Alpha‑diversity of lung microbiome, b Alpha‑diversity of gut microbiome, c Beta‑diversity of lung microbiome, d Beta‑diversity of gut microbiome, 
e Phylum composition of lung and gut microbiome
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related to T2 or non-T2 asthma. Therefore, transcrip-
tome expression in PBMCs may predominantly show the 
immune phenotype of asthma while not including lung 
structural changes associated with asthma.

The expression of VSTM4, a B7-like protein that down-
regulates T cell activation [28], was higher in asthmat-
ics compared to non-asthmatics regardless of cluster 
subtypes. Given that VSTM4 reduces IFN-γ and IL-2 
produced by T cells and inhibits naïve  CD4+T cell dif-
ferentiation into Th1 cells [28], VSTM4 may contribute 
to a relative predominance of Th2 inflammation over 
Th1 inflammation in asthma. There may be a correla-
tion between respiratory syncytial virus (RSV) infection 
and VSTM4 in children. RSV showed a relationship with 
higher serum IgE levels and elevated Th2 inflammatory 
responses [29]. The causal relationship between expres-
sion of VSTM4 and RSV infection is a topic that warrants 
further investigation.

CCL23, an eosinophilic-derived cytokine belonging to 
the CC chemokine family, has high chemotactic activ-
ity for resting T cells associated with eosinophilic airway 
inflammation [30, 31]. Although CCL23 expression was 
increased in asthmatics compared to non-asthmatics, a 
higher transcriptomic expression of CCL23 may be more 
closely related to T2 inflammatory features in cluster 1. 
As CCL23 is produced and released from eosinophils, 
its expression is associated with increased eosinophilic 
inflammation [32, 33]. In nasal epithelial tissue and 
blood, higher expressions of CCL23 were also reported in 
chronic eosinophilic rhinosinusitis [30, 34]. In our study, 
the expression of CCL23 was higher in the PBMCs of 
cluster 1 compared to that of non-asthmatics. Similarly, 
the expression of IL1RL1 was also higher in cluster 1 
compared to non-asthmatics. IL1RL1, also known as ST2 
which binds to IL-33, is associated with T2 inflammatory 
pathways and are upregulated in atopic asthma [35]. In 
bronchial epithelial cells of asthmatic patients, a higher 
expression of IL1RL1 correlated with Th2 inflammation 
[36]. These results show that cluster 1 may be related to 
systemically enhanced Th2 inflammation caused by the 
activation of the IL-33/ST2 axis.

In our study, the severity of asthma increased with a 
linear trend of cathepsin D (CTSD) and aldehyde dehy-
drogenase 2 (ALDH2) expression from non-asthmatics to 
cluster 3. CTSD, a protease that breaks down abnormal 
or denatured proteins in airway, was more expressed with 
lung inflammation, especially in cystic fibrosis [37]. Con-
sidering that CTSD showed a potential role in the degra-
dation of tumstatin that inhibits airway remodeling and 
airway hyperresponsiveness [38, 39], increased CTSD 
expression may be associated with severe asthma pre-
dominance in cluster 3. Deficiency in ALDH2, an enzyme 
that catalyzes the transformation from acetaldehyde to 

acetic acid, results in increased blood acetaldehyde lev-
els and is related to the pathogenesis of alcohol-induced 
asthma [40]. In addition, ALDH2 plays a protective role 
in the inflammatory damage caused by reactive oxygen 
species [41], which is known to be related with aggra-
vated airway damage in asthma [42]. Therefore, a higher 
expression of ALDH2 may be a protective response in 
asthmatics with high oxygen stress.

Gene expression patterns of airway structural cells are 
different to that of PBMCs. Among 90 DEGs in nasal epi-
thelial cells and 4 DEGs in airway smooth muscle cells 
discovered in previous studies [43, 44], none were con-
sistent with our findings using PBMCs. A recent study 
found 5 hub genes (SERPINB2, SERPINB4, LTF, MUC5B, 
and CST4) related to the pathogenesis of asthma in bron-
chial and nasal cells [45]. SERPINB2 and LTF expres-
sions in PBMCs were higher in cluster 3 compared to 
non-asthmatics and clusters 1 and 2. SERPINB2 protects 
macrophages from apoptosis and regulates chemokines 
such as CCL2 associated with monocyte and macrophage 
influx. As SERPINB2 is upregulated during immune reac-
tions to lipopolysaccharide, its high expression in non-T2 
cluster 3 is not unexpected. Lactoferrin encoded by LTF 
is an immunomodulator with antimicrobial activity [46], 
and its increased expression may reflect the pathology of 
non-T2 neutrophilic asthma [47].

The relationship between transcriptomic profiles and 
the host microbiome is currently a topic of interest. Dif-
ferent IL1A expressions in airway epithelium of asthma 
patients were identified according to various microbi-
ome profiles [48]. Transcriptomic profiles of PBMCs 
may provide a glimpse of systemic inflammatory features 
partly reflecting the inflammatory features in the lower 
respiratory tract in asthma [49]. We hypothesized that a 
relationship between the PBMC transcriptome and lung 
or gut microbiomes exists. However, we were unable to 
find a link between transcriptomic profiles in the periph-
eral blood and the diversity and taxonomy of microbi-
omes in the lung and gut. In fact, there have been studies 
that reported no significant differences in microbiome 
according to the phenotypes of asthma. The diversity and 
composition of lung and gut microbiome were broadly 
similar between asthmatics and non-asthmatics [50, 51]. 
In a comparison between patients with obstructive lung 
disease and control subjects, the diversity and composi-
tion of microbiome in BAL fluid were similar, when the 
samples were obtained using the same method [52]. The 
lack of such a relationship suggests that the immune 
response induced by the microbiome may be limited to 
the local environment.

This study has several limitations. First, the small 
sample size may have hindered the detection of  impor-
tant but small differences in immune phenotypes and 
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microbiomes among clusters. Although the sputum 
eosinophil count, blood eosinophil count, and IL-4 lev-
els seemed to differ among the three clusters, we could 
not find statistical significance behind these differences 
due to the large standard deviations. Second, due to the 
cross-sectional design of this study, we were unable to 
identify the causal relationship between transcriptomic 
profiles and clinical phenotypes or immune phenotypes. 
To prove the pathogenic causality, a longitudinal cohort 
study is needed. Third, confounding factors were not fully 
controlled. The results of our study should be interpreted 
with caution because different treatment regimens were 
used across the three clusters. Further studies with bet-
ter control over confounding factors are needed. Fourth, 
although numerously different transcriptomic expres-
sions were discovered among three clusters, we still do 
not know which inflammatory or functional pathways 
are responsible for the phenotypic differences among the 
clusters. Finally, caution is needed in generalizing our 
results, because validation analysis was not performed in 
a different cohort. Further external validation is neces-
sary in a larger cohort of asthmatics.

Conclusions
Transcriptomic profiles of PBMCs successfully differenti-
ated asthmatics into three groups with different clinical 
and immune phenotypes, and differentially expressed 
genes may be potentially used as biomarkers representing 
asthma immune phenotypes.
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