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Abstract 
 

 

Lane changes are critical contributors to road traffic safety on 

highways. Among the safety indexes aimed to evaluate the risks of these 

lane changes, the lane-change risk index (LCRI) is used to determine the 

potential collision probability of a lane-changing vehicle group in lane-

change situations. This paper estimates the impact of driver behavior and 

vehicle type on the LCRI, using individual vehicle trajectory data. I defined 

a subject vehicle and its surrounding vehicles (i.e., lead, lag, front and rear 

vehicles) as a lane-changing vehicle group in a lane change situation. Each 

of their vehicle type (i.e., truck, bus, car, and motorcycle) and driver 

behavior (i.e., aggressive, ordinary, and timid) are categorized for 

regression analysis. Driver behavior is classified through time-space 

deviations between each vehicle’s trajectories and expected trajectories 

from Newell’s car-following model. In addition, to consider the 

heterogeneity among the lanes, this paper uses a linear mixed model, which 

reflects fixed and random effects. And the latent class analysis was used to 

classify the lane-changing vehicle group into a number of groups reflecting 

the characteristics of vehicle groups. Three unique findings of the present 

study are that (i) I quantified and analyzed the complex interaction between 

vehicle type and driver behavior within the lane-changing vehicle group in 

the situation of changing lanes, (ii) I found that the influence of the vehicle 

type and driver behavior in the lane-changing vehicle group had great 

heterogeneity depending on the lane, using the random parameter model, 

and (iii) when the lane-changing vehicle group was classified, most of the 

variables were observed to be statistically significant within two distinct 

classes. The findings of this study are expected to provide detailed lane-

change strategies for autonomous vehicles as well as to evaluate the 

causative factors for lane-change risk. 

Keyword : Driver Behavior, Vehicle Type, Lane-Changing Vehicle Group, Lane 

Change Risk Index, Latent Class Analysis 

Student Number : 2020-27547 
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Chapter 1. Introduction 
 

 

Lane changes are critical contributors to road traffic safety on 

highways. Traffic crashes related to lane changes account for 4% to 

10% of total crashes in the United States (Lee et al., 2003) and 13% 

of injury crashes in Germany (Mann et al., 2008). During lane 

changing, a driver interacts with neighbor vehicles in the current and 

the target lanes, considering driver position, speed, and acceleration. 

Predicting the movements of vehicles in the lane-changing vehicle 

group is important for a safe lane change. However, some drivers 

could behave unexpectedly due to driver behavior and/or vehicle type, 

which require complex decision-making and risk evaluation to avoid 

a traffic crash.  

The risk of lane change situations has been evaluated by 

surrogate safety measures (SSM) quantifying the potential of crash 

risks. Time-to-collision (TTC) is a well-known SSM, indicating the 

time remaining to avoid an accident if a vehicle continues to drive in 

the same direction and speed (Hayward et al., 1972). More 

sophisticated SSMs have been proposed to consider the complexity 

of lane change situations. The crash propensity metric (CPM) has 

been proposed to estimate the probability of a simulated conflict 

considering the uncertainties of drivers and vehicles (Wang et al., 

2014). These uncertain (i.e., unpredictable) behaviors of a vehicle in 

a lane-changing vehicle group have been reported to significantly 

increase the crash risk of the lane-changing vehicle group in lane 

change situations (Joo et al., 2021). The lane-change risk index 

(LCRI) proposed by Park et al. (2018) evaluates the collision 

probability of the lane-changing vehicle group by incorporating the 

exposure time and the expected severity level of potential crashes 

(Park et al., 2018). The CPM and LCRI can quantitatively evaluate 

the crash risk of the lane-changing vehicle group in lane change 

situations. Further, to better understand and predict the crash risk of 

lane changes, factors affecting the risk to the lane-changing vehicle 

group should be investigated. 
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Among the various factors affecting lane change, this study 

focuses on those characterizing the lane-changing vehicle group, 

including four surrounding vehicles (i.e., front and rear vehicles in 

the current lane and lead and lag vehicles in the target lane). Because 

the interactions of surrounding vehicles can be attributed to the 

speed, acceleration (Ma et al., 2021), and the SSM of each vehicle 

(Weng et al., 2018), I investigated two factors, driver behavior (i.e., 

aggressive, ordinary, and timid) and vehicle type (i.e., truck, bus, car, 

and motorcycle) to characterize the lane-changing vehicle group. 

The heavy vehicle (e.g., truck and bus) has different lane-change 

and car-following behavior from those of ordinary vehicles due to 

their differences in driving ability (Moridpour et al., 2009, 2008). 

Also, they have more significant influences on adjacent vehicles 

(Moridpour et al., 2012, 2010). Mixing different types of vehicles on 

intercity highways increases the LC ratio (Gu et al., 2018). This 

mixture also contributes to enticing effects in the fast lane, especially 

in the left-most lane. Accordingly, the traffic characteristics of the 

mixed types of vehicles must be adequately investigated in order to 

comprehend their relationship with lane-changing decisions 

(Moridpour et al., 2008). Also driver behavior is an important factor 

affecting road traffic safety. Driver behavior such as aggressiveness 

and reaction pattern significantly influence car-following behavior 

and interactions within the lane-changing vehicle group (Chen et al., 

2014, 2012). Aggressive driving behavior can increase roadway 

crash potential as well as reduce travel speed (Park et al., 2019). 

Especially, aggressive driving behavior is well known to be closely 

related to the severity and occurrence of collisions (Stephens et al., 

2014).  

Despite these impacts of aggressive driver behaviors and heavy 

vehicles on traffic situations, their impact on the crash risk of lane 

change has not been fully investigated. Park et al. (2019), for 

example, evaluated the crash potential index (CPI) in various 

aggressive driving events, based on a driving simulator and 

microscopic traffic simulation (Park et al., 2019). Their findings 

revealed that aggressive driving deteriorates safety performance 
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represented by CPI. Although this study reported the significant 

impact of driver aggressiveness on lane-changing risk, the risk was 

not evaluated at the vehicle group level.  

As a remedy, this study aims to evaluate the impact of driver 

behavior and vehicle type on the crash risk of the lane-changing 

vehicle group in the lane change situation. A car-following model to 

consider the driver's behavior has been proposed in several studies. 

Tan et al. (2017) proposed ‘an aggressive car-following model’ 

based on the Krauss model (Krauss et al., 1997) that defines a safe 

distance between vehicles (Tan et al., 2017). The aggressive car-

following model considers the driving style using the situation when 

the safe distance breaks. Tang et al. (2014) suggested the full 

velocity difference (FVD) model that considers the driver's attributes 

such as vehicle’s speed, acceleration, driver behavior (i.e., 

aggressive, neutral, and conservative) (Tang et al., 2014), which was 

classified through vehicle speed and acceleration. They also showed 

that the aggressive driver had much greater vehicle speed and 

acceleration than other drivers (i.e., neutral, conservative). Lastly, 

Laval and Lecelercq (2010) proposed the L-L model to consider 

driver aggressiveness in car-following model (Laval et al., 2010). 

Among the above models, I chose the L-L model for three reasons: 

(a) the L-L model is the simplest model based on Newell’s model 

and considers the driving behavior using a single parameter and thus, 

it can minimize the effects of other parameters; (b) the L-L model 

could reproduce the traffic oscillation caused by the situation when 

lane-change frequently occurred (Zheng et al., 2011); (c) the 

NGSIM data used in this study was also utilized to verify the 

performance of the L-L model (Chen et al., 2012). Based on 

empirical vehicle trajectory data, I measured the aggressiveness of 

each vehicle’s driver in the congested traffic (Chen et al., 2014, 

2012).  

Then, four surrounding vehicles and subject vehicles were 

characterized by driver behavior and vehicle type. A linear mixed 

model (LMM) was applied to estimate the effect of driver behavior 

and vehicle type on the crash risk measured by LCRI. Based on the 
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estimation results of LMM, I found that (a) vehicle type of the subject 

and surrounding vehicles are significantly associated with the LCRI 

of a lane-changing vehicle group; (b) aggressive drivers in the front 

and lag vehicle tend to increase the LCRI; (c) for the effect of driver 

behavior and vehicle type, there exist significant random effects 

across the lanes.  

Additionally, in this study, the lane-changing vehicle group was 

classified based on the attributes of vehicle groups. A method of 

classifying groups can be largely divided into a hierarchical method 

and a non-hierarchical method. The K-means method is a 

representative non-hierarchical clustering method, and it divides the 

clusters by grouping them based on the distance within the group. 

However, when analyzing categorical variables, there is a 

disadvantage in that it is difficult to calculate and analyze the distance 

between variables (Singh et al., 2011). Therefore, to solve these 

problems, this study intends to apply the Latent Class Analysis (LCA) 

based on the probabilistic model. A LCA is an analysis method that 

can explain differences between classes by stratifying groups with 

similar characteristics based on their probability of belonging to each 

class (Wu et al., 2021). Furthermore, it classifies the latent classes 

with similarities based on the observed variables and finds out the 

types of the class (Collins, L. M. & Lanza, S. T., 2010). As a result, 

a LCA showed the results of defining group-specific characteristics 

and classifying groups according to a gaussian distribution. Based on 

the estimation results of LMM classified by LCA, I found that (a) the 

lane-changing vehicle group was classified by the model according 

to group attributes such as average speed within the vehicle group 

and inter-vehicle gap. (b) most of the variables were statistically 

significant within two distinct classes; latent class 1 (38.6% of the 

data sample) and latent class 2 (61.4% of the data sample). (c) 

compared with the LMM classified by LCA and the existing LMM, it 

was confirmed that there was a difference between the internal 

groups. 

These two model approaches were adopted for the following 

reasons. While LMM was used to reflect the effect across the lanes 
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through random effect, the LCA was used to identify differences 

between internal groups. 

The rest of this paper is organized as follows. First, I described 

the study site and methods for measuring driver behavior and LCRI 

in detail. Then, I discussed the findings from the estimation results 

of the existing LMM and the LMM classified by LCA. Last, I made 

concluding remarks and note plan for future research. 
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Chapter 2. Methodology 
 

 

 

2.1. Data 
 

 

Data description 

This paper used US-101 data among NGSIM dataset (NGSIM, 

2008). The NGSIM datasets are vehicle trajectory data extracted 

from videos. The sampling frequency for NGSIM trajectories is 0.1 

seconds; each sample contains lateral and longitudinal positions, 

instantaneous speed, acceleration, vehicle length, and vehicle type 

(He, 2017). The US-101 dataset was collected from a section of the 

US-101 Highway of Los Angeles, California. This section is about 

640 m long and contains six lanes. The data collection period is 45 

min (i.e., from 7:50 am to 8:35 am on June 15, 2005). 

In Figure 2.1, a lane-changing vehicle group in the lane change 

situation is defined as a total of four surrounding vehicles, including 

the front (𝑉𝐹) and rear (𝑉𝑅) vehicles in the current lane and the lead 

(𝑉𝐿𝑒) and lag (𝑉𝐿𝑎) vehicles in the target lane, which affect risk when 

the subject vehicle changes lanes (Park et al., 2018; Ma et al., 2021; 

Li et al., 2020; Chen et al., 2021; Chen et al., 2019). Vehicle 

position/speed, vehicle type, and driver behavior of each vehicle in 

the lane-changing vehicle group are measured by individual vehicle 

trajectory data.  
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Figure 2.1 Definition of lane-changing vehicle group under lane 

change used in this study 

 

Figure 2.2 illustrates the definition of lane change in this paper. 

Based on this definition, this study measures the starting point and 

ending point of lane change as well as lane-change time and distance 

(Park et al., 2018). 

 

 

 

Figure 2.2 Definition of lane change used in this study 

 

Table 2.1 shows a description of the dependent and independent 

variables selected for the regression analysis. In the models, the 

LCRI was used as a dependent variable indicating the lane change 

risk, and the remaining variables were used as independent variables. 

Traffic density was used as an indicator for traffic conditions; it was 

calculated by dividing the total number of vehicles observed when 

changing lanes by the length of the road (640 m). In NGSIM data, 
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vehicles were classified as cars, trucks, buses, and motorcycles. 

However, the proportion of motorcycles among all observed vehicles 

is very small at 0.7%, and the motorcycle has a large difference in 

interaction with other vehicles during the lane change process. 

Therefore among them, I classified the vehicle types as automobiles 

and the trucks/buses that are heavy vehicles. Regarding driving 

behavior, the indicator of aggressiveness 𝜼𝒊(𝒕) in Equation 8 is a 

continuous variable by definition. I had attempted to analyze the 𝜂𝑖(𝑡) 

as a continuous variable, or with categories of aggressive, timid, and 

ordinary, but both of them did not provide statistically significant 

parameter estimates for the aggressiveness. Therefore, I 

categorized the driver’s aggressiveness into only aggressive and 

others (timid, ordinary). I only set the variable if a driver is 

aggressive. To represent the lane-changing vehicle group’s safety 

condition during the lane change, I included the minimum TTC, lane 

change time, and the lane-changing vehicle group’s average speed 

as independent variables. 
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TABLE 2.1 Description of the Independent and Dependent Variable  

 

Variable Name Explanation Data 

Type 

Ratio by 

Variable 

LCRI (Dependent) Lane change risk index Numeric  

Traffic state    

Density Indicator by dividing the total number 

of vehicles during lane change by 640 

m 

Numeric  

Driver’s behavior     

Subject’s behavior 1=Aggressive;  

0=Otherwise (Timid, Ordinary) 

Dummy 33.7% 

Front’s behavior 1=Aggressive;  

0=Otherwise (Timid, Ordinary) 

Dummy 35.7% 

Rear’s behavior 1=Aggressive;  

0=Otherwise (Timid, Ordinary) 

Dummy 33.7% 

Lead’s behavior 1=Aggressive;  

0=Otherwise (Timid, Ordinary) 

Dummy 37.21% 

Lag’s behavior 1=Aggressive;  

0=Otherwise (Timid, Ordinary) 

Dummy 36.77% 

Vehicle’s type    

Subject’s type 1=Heavy vehicles (Bus, Truck);  

0=Otherwise (Car, Motorcycle) 

Dummy 1.47% 

Front’s type 1=Heavy vehicles (Bus, Truck);  

0=Otherwise (Car, Motorcycle) 

Dummy 2.75% 

Rear’s type 1=Heavy vehicles (Bus, Truck);  

0=Otherwise (Car, Motorcycle) 

Dummy 2.06% 

Lead’s type 1=Heavy vehicles (Bus, Truck);  

0=Otherwise (Car, Motorcycle) 

Dummy 2.56% 

Lag’s type 1=Heavy vehicles (Bus, Truck);  

0=Otherwise (Car, Motorcycle) 

Dummy 5.72% 

Lane-changing 

situation 

   

Minimum TTC Minimum TTC among the lane-

changing vehicle group 

Numeric  

Average speed Average speed of the lane-changing 

vehicle group 

Numeric  

    

Lane-change time Time taken by subject vehicle to 

change lanes 

Numeric  
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2.2. Lane-Changing Risk Index (LCRI) 
 

 

Vehicles driving along the road continue to interact with 

surrounding vehicles. In this paper, I defined these interacting 

vehicles as a lane-changing vehicle group in a lane change situation. 

Therefore, I measured the risk of the lane-changing vehicle group in 

lane-changing using the LCRI (Park et al., 2018), which estimates 

the collision risk, taking into account the exposure time and the 

expected severity level of potential crashes during lane-change. 

Individual vehicle trajectory data were used to calculate the LCRI. 

Here, the concept of LCRI is provided based on the process of 

Park et al. (2018). The LCRI is based on the fault tree analysis 

(FTA), a widely used method for analyzing complex events caused 

by several reasoning factors (i.e., risk-severity level (RSL) and 

risk-exposure level (REL)). The FTA aims to identify the 

relationship between whole system failure and the failure of each 

system components (i.e., event failure); both RSL and REL are 

measured by the stopping distance index (SDI), which is an indicator 

determining the risk of rear collision on stopping sight distances 

(SSDs). In Figure 1, the front spacing 𝑺𝒕(𝟏) in the current time step 

(t) is derived based on front vehicle and subject vehicle. SSD and 

SDI can be respectively obtained using Equation 1 and Equation 2. In 

Equation 1, 𝑉  is the vehicle speed (kph), f is the coefficient of 

friction, g is the grade (decimal), and 𝒕𝒓 is the perception-reaction 

time (2.5 seconds). The f and g are set as 0.28 and 1, respectively, 

based on the highway capacity manual (Highway Capacity Manual, 

2000) and the average grade of the study site (Tan et al., 2017). In 

Equation 2, 𝑺𝑫𝑰𝒕(1) calculated by letting front vehicle (𝑽𝑭) be leading 

vehicle and subject vehicle (𝑽𝑺) be the following vehicle at time step 

t, 𝑺𝒕(1) is the gap between subject vehicle (𝑽𝑺) and front vehicle (𝑽𝑭) 

at time step t, 𝑺𝑺𝑫𝒕
𝑽𝑺 is stopping sight distance for subject vehicle 

(𝑽𝑺), 𝑺𝑺𝑫𝒕
𝑽𝑭 is stopping sight distance for front vehicle (𝑽𝑭) and 𝒍𝑽𝑭

 

is length of front vehicle (𝑽𝑭):  
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     𝑆𝑆𝐷 =  
𝑉2

254 × (𝑓 ± 𝑔)
+  𝑡𝑟  × 𝑉 ×  0.278 (1) 

  

{

𝑆𝐷𝐼𝑡(1) =  𝑓(𝑥) = 𝑆𝑡(1) + 𝑆𝑆𝐷𝑡
𝑉𝐹 −  𝑆𝑆𝐷𝑡

𝑉𝑆 − 𝑙𝑉𝐹

𝑆𝐷𝐼𝑡(1) > 0 ⇒ 𝑠𝑎𝑓𝑒(0)

𝑆𝐷𝐼𝑡(1) ≤ 0 ⇒ 𝑠𝑎𝑓𝑒(1)

 (2) 

 

 

An SDI greater than zero indicates a situation in which 𝑽𝑺 can 

safely stop when 𝑽𝑭 suddenly stops. On the other hand, if SDI is less 

than zero, it is a dangerous situation, where 𝑽𝑺  cannot properly 

evade a collision with the vehicle in front of it. Using the previously 

obtained SDI, I derived risk exposure level (REL) and risk severity 

level (RSL). 

The degree to which a subject vehicle is exposed to a collision 

risk situation during a lane change is defined as an indicator of the 

increase in the likelihood of a collision, such as REL (Equation 3). 

Unsafe lane change duration (ULCD) is calculated by adding time 

steps with SDI less than zero and total lane change duration (TLCD) 

is calculated as total lane change time. Therefore, REL(i) is the 

proportion of unsafe lane-change duration among total lane-change 

duration. The risk severity level (RSL), developed to reflect 

situations in which the severity of the collision increases due to a 

relatively high collision rate, increases the absolute value of SDI if 

the subject vehicle’s speed is faster than the leading vehicle’s speed. 

Therefore, the absolute value of such SDI can be defined as the 

potential crash severity. In Equation 4, 𝑺𝑫𝑰𝑴𝑨𝑿
𝒐𝒃𝒔  is the observed 

maximum SDI during TLCD; 𝑺𝑫𝑰𝒄𝒓𝒊 is theoretical maximum SDI: 

 

    𝑅𝐸𝐿 =  
𝑈𝐿𝐶𝐷

𝑇𝐿𝐶𝐷
  (3) 
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    𝑅𝑆𝐿 =  
𝑆𝐷𝐼𝑀𝐴𝑋

𝑜𝑏𝑠

𝑆𝐷𝐼𝑐𝑟𝑖
  (4) 

 

𝑺𝑫𝑰𝒄𝒓𝒊  was obtained assuming that the speed of the following 

vehicle was the fastest among all the vehicles in the data and the 

interval between leading and following vehicles was 0 m. Therefore, 

RSL(i) is defined by observed maximum stopping distance index (SDI) 

divided by theoretical maximum SDI.  

This study assumed that the REL(i) and RSL(i) represent the 

components of the probability of event failure in the perspective of 

duration and severity, respectively. This is the key assumption that 

the LCRI can be viewed as a probability interpretation. Based on this 

assumption, the system failure (i.e., probability of not performing a 

safe lane change) can be defined by integrating all event failures 

regarding adjacent vehicles (φ(i)). An event failure (φ(i)) between 

the subject vehicle and the i-th surrounding vehicle (𝑉𝐹, 𝑉𝑅, 𝑉𝐿𝑒 , 𝑉𝐿𝑎) 

could be obtained by the product of REL(i) and RSL(i) as in Eq. (5).  

 

φ(i) = REL(i) × RSL(i)  (5) 

 

The system failure (i.e., probability of not performing a safe lane 

change) can be defined by integrating all event failures regarding 

adjacent vehicles (φ(i)). Since the system failure occurs even if only 

one event failure occurs, the system failure can be calculated as Eq. 

(6). The system failure is the fault of the top-level event, and event 

failure (φ(𝑖)) is the cause event that spreads up system failure. Event 

failure is defined as the failure to maintain safe interactions between 

the subject vehicle and the adjacent vehicles, which causes the 

probability of not performing a safe lane change. 

 

    LCRI = φ(𝑉𝑆) = 1 − ∏ [1 −  𝜑(𝑖)]4
𝑖=1   (6) 
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2.3. Driver Behavior Measurement 
 

 

Figure 2.3 shows the trajectories of vehicles in the time-space 

diagram. At this time, the traffic volume indicates how many vehicles 

have passed at a fixed location. In addition, the time difference 

between the leading and the following vehicles at the current location 

is defined as time headway, calculated as the reciprocal of the traffic 

volume. 

 

 

 

Figure 2.3 Time-space diagram of vehicle trajectory 

 

In Figure 2.4, the Greenshield model showing the relationship 

between traffic volume and density is called the fundamental diagram. 

At this time, the model that simplified this model into line segments 

is the basic diagram of Newell’s triangle model. And where the time 

heady (τ) is the reciprocal of traffic volume. 
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Figure 2.4. Greenshield model (Traffic Volume – Density) and Newell 

Triangle model (Traffic Volume – Density) 

 

This study extracts driver behavior from individual vehicle 

trajectory data based on the definition of Chen et al. (2012, 2014). 

Specifically, I applied Newell’s car-following model (Newell, 2002) 

and triangular foundation, to obtain 𝝉𝒊(𝒕) in Figure 2.5, which is the 

wave trip time between two continuous congested vehicles. Then, the 

driving behavior is classified by 𝜼𝒊(𝒕) (Equation 8) representing the 

reaction patterns to the shockwaves or traffic oscillation: 

 

    τ =  
1

𝑘𝑤
  (7) 

 

where w is the wave speed and k is the jam density. 

 

    η𝑖(𝑡) = 
𝜏𝑖(𝑡)

𝜏
                                      (8) 

 



 

 １５ 

 

 

Figure 2.5. Measurement of 𝝉𝒊(𝒕) 

 

The 𝝉𝒊(t) in Equation 8 is the actual wave trip time, and τ is the 

average of 𝝉𝒊(𝒕) given by Equation 7 and Figure 2.5. Therefore, for 

τ, I took the average of 𝝉𝒊(𝒕) across all drivers in the sample. Before 

a driver experiences a stop-and-go disturbance, 𝛈𝒊(𝒕) is essentially 

consistent across time, but deviates as the driver accelerates and 

decelerates, depending on the driver's reaction pattern to lead vehicle. 

Thus 𝛈𝒊(𝒕) describes the time-dependent behavior of the driver. 

Here, among the samples, I observed that driver behavior follows a 

consistent pattern across traffic oscillations. This allows it to 

determine whether the driver is timid or aggressive based on the 

trajectories of Newell’s car-following model.  
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Figure 2.6. Examples of deviation from Newell trajectories and Driver 

behavior 

 

In Figure 2.6, if the follower is a timid driver, a driver reacts early 

when the leader decelerates or late when the leader accelerates (𝛈𝐢 ≥

𝟏. 𝟏). At the time, the time and distance difference between the leader 

and the follower increases. In other situations, if the follower is an 

aggressive driver, a driver reacts late when the leader decelerates 

or early when the leader accelerates ( 𝛈𝒊 ≤ 𝟎. 𝟗 ). The time and 

distance between the leader and the follower are reduced.  
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2.4. Linear Mixed Model (LMM)  
 

 

The NGSIM data show a significant difference in the ratio of 

heavy vehicles along lanes (Oh et al., 2015). Different heavy 

vehicles-to-lane ratios on these roads can affect road safety due to 

reduced capacity and behavior characteristics (e.g., lower 

acceleration performance and wider spacing than ordinary vehicles). 

In addition, various lane-specific factors, such as desire speed, 

proximity to on-/off-ramps and traffic composition, can affect lane 

change situations (Duret et al., 2012). 

To consider the effects of these lane-specific properties, in this 

study, I used a linear mixed model (LMM) that included random-

effect parameters in the linear regression model (LRM) (Kim et al., 

2020; Bates et al., 2014). The LMM is a statistical model that 

describes a continuous dependent variable as a combination of fixed 

effect and random effect (Pinheiro et al., 2000; Snijders et al., 2011; 

Gelman et al., 2006) as in Equation 9: 

 

    𝒀 =  𝑿𝜷 + 𝒁𝜸 + 𝜺, 

    𝜸 ~ 𝑁(0, 𝑮), 

    𝜺 ~ 𝑁(0, 𝑹). 

(9) 

 

where 𝒀 is the dependent variable, X is the design matrix for 

fixed-effects, Z is the design matrix for random- effects, 𝜺 is a 

residual error and follows a distribution with mean 0 and variance R, 

𝜷  is a vector of fixed-effect parameters, and 𝜸  is a vector of 

random-effect parameters and follows a distribution with  mean 0 

and variance G. To compare the LMM with LRM, I fitted the model 

using maximum likelihood rather than restricted maximum likelihood 

that is widely used for LMM. More details about the estimation 

procedure for LMM are described in (Bates et al., 2014).     

Here, I considered the LMM with random slopes, assuming that 

some parameters have random effects according to lanes since the 

effect of the vehicle type and driver behavior on LCRIs could vary by 
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lane. Random effects of intercept are excluded since it was estimated 

to be insignificant. All the cases of lane changes are grouped 

separately (e.g., from lane 1 to lane 2, from lane 2 to lane 1, and from 

lane 2 to lane 3). Since there are six lanes, the total cases of lane 

groups are 10. 
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2.5. Latent Class Analysis (LCA) 
 

 

In general, cluster analysis is a statistical method of grouping 

individuals with similarities. In this case, it is very important to 

search for a natural cluster by the similarity of individuals or 

variables in multivariate data. Also, such cluster analysis can be 

divided into a hierarchical method and a non-hierarchical method. 

The K-means method is a representative non-hierarchical 

clustering method, and it divides the clusters by grouping them based 

on the distance within the group. However, when analyzing 

categorical variables, there is a disadvantage in that it is difficult to 

calculate and analyze the distance between variables (Singh et al., 

2011). Meanwhile, existing cluster analyzes may not find optimal 

clusters because the analyst subjectively determines the number of 

clusters. To solve this problem, latent class analysis, which uses 

variables to classify the entire group into subdivided groups, can be 

used. The latent class analysis proposed by Lazarsfeld (1950) and 

Lazarsfeld & Henry (1968) has a model involving observed variables 

and latent variables (Lazarsfeld, 1950; Lazarsfeld & Henry et al., 

1968). The categories of latent variables are called latent classes. 

The latent class analysis, which is a case of model-based clustering 

for multivariate data, assumes that the observation value of each 

individual is extracted from one of several groups, and models each 

group with a probability distribution. In this analysis method, the data 

is modeled by assuming that the data of each individual is extracted 

from a mixture of a finite number of different distributions. At this 

time, it was assumed that the probability distribution for each group 

followed a Gaussian distribution. 

In addition, the commonly used model selection method uses all 

variables, not just those useful in determining the number of groups. 

In this case, in LCA, only useful variables are selected and the data 

are modeled to determine the appropriate number of groups. In this 

study where many variables exist, LCA was used to classify the 

groups for the as above reasons. 
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The algorithm of latent class analysis (Kim, 2013) can be 

expressed as Equation 10.  

 

P(Y𝑖1 =  𝑦𝑖1,…, 𝑌𝑖𝑛 =  𝑦𝑖𝑛)                                     (10) 

= ∑ 𝑃(𝐿𝑖 = 𝑟)𝑃(𝑐
𝑟=1 Y𝑖1 =  𝑦𝑖1,…, 𝑌𝑖𝑛 =  𝑦𝑖𝑛|𝐿𝑖 = 𝑟)               

 

Equation 10, 𝑃( 𝐿𝑖 = r) represents the probability that the 

individual i belongs to class r. For example, suppose I have two 

classes.  

 

Y = (𝑦1, 𝑦2) = 𝑌1 = (𝑦11, 𝑦21), … , 𝑌𝑛 = (𝑦1𝑛, 𝑦2𝑛)                   (11)   

 

    P(𝑟𝑢,𝑡) =  𝜋1𝑃(𝑟𝑢,𝑡|𝐿1) + 𝜋1𝑃(𝑟𝑢,𝑡|𝐿2)                          (12) 

 

Equation 11, it is assumed that y1 and y2 are independent. This 

is the process of finding the probability that y1 and y2 are 1. The 

probability of belonging to which group is obtained. 

Here, in order to select the latent variable for LCA, I determined 

the group characteristics in the lane-changing vehicle group defined 

through a review of previous studies. In a lane change situation, 

through previous studies that considered vehicle groups rather than 

a single vehicle, the characteristics of vehicle groups could be 

determined as average speed, gap between vehicles, and lane change 

time(Chen et al., 2021; Maiti et al., 2017). Among these 

characteristics, the attributes that classify the vehicle group in 

consideration of the number of groups and interpretability were 

determined by the average speed and the inter-vehicle gap. 
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Chapter 3. Results  
 

 

3.1. Linear regression model and Linear mixed model 
 

 

In this paper, I applied two different modeling approaches: linear 

regression model (LRM) and linear mixed model (LMM). At this time, 

the model was applied by considering only the dangerous situation, 

excluding the sample when the lane change risk is 0. The LRM 

statistically provides a functional relationship between dependent and 

independent variables in the observed data to analyze their existing 

associations. I verified the validity of the LRM by testing whether the 

error term follows normal distribution using the Shapiro-Wilk 

normality test (Shapiro et al., 1965). The null hypothesis of the 

normality test is that the data are normally distributed, and the result 

for my data shows that the error term follows normal distribution 

with p-value of 0.2418 (i.e., it cannot reject the null hypothesis). 

The LRM cannot take into account intra-class correlation, leading to 

errors in which the standard error of parameter estimates is 

underestimated. To address this issue, I applied the LMM that 

explains data containing random effects as well as fixed effects. 

The bottom of Table 3.1 provides the measure for model fit such 

as Akaike information criterion (AIC) and Log-likelihood to compare 

the two models. These measures show that the LMM outperforms 

the LRM at a 95% level of confidence based on a likelihood-ratio test. 

This result indicates that there are significant random effects among 

the lanes in measuring LCRI, and those effects can be represented 

by parameters for driver behavior and vehicle type. Therefore, I 

analyzed the estimation results focusing on LMM. I included all 

variables including the insignificant ones in the model to provide all 

information for my model specification. 
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3.1.1 Linear Mixed Model (Fixed Effect) 
 

 

TABLE 3.1 Estimation Results of LRM and LMM 

 

Dependent Variable : Lane Change Risk Index (LCRI) 

Fixed Effect Coefficients Standard 

Errors  

t-Statistics 

LRM LMM LRM LMM LRM LMM 

Intercept 1.44** 1.39** 0.64 0.61 2.24 2.26 

Traffic State       

Density 8.25*** 7.81*** 2.71 2.58 3.04 3.03 

Driver Behavior        

Subject’s behavior -0.09 -0.05 0.19 0.18 -0.49 -0.28 

Front’s behavior 0.14 0.17* 0.18 0.29 0.76 2.60 

Rear’s behavior 0.17 0.19 0.19 0.18 0.90 1.08 

Lead’s behavior -0.05 -0.11 0.19 0.18 -0.25 -0.63 

Lag’s behavior 0.26* 0.28* 0.18 0.20 2.46 2.41 

Vehicle Type       

Subject’s type 0.30 0.48** 0.72 0.69 1.41 2.69 

Front’s type 2.17*** 2.34*** 0.43 0.41 5.03 5.70 

Rear’s type  0.25 0.26* 0.54 0.56 0.46 2.47 

Lead’s type 0.87 0.71 0.61 0.57 1.43 1.23 

Lag’s type -0.43 -0.35* 0.34 0.32 -1.30 -2.11 

Lane-Changing 

Situation 

      

Minimum TTC -10.34*** -9.76*** 1.10 1.06 -9.39 -9.25 

Average speed -0.10*** -0.11*** 0.03 0.03 -2.96 -3.42 

Lane-change time  0.30*** 0.32*** 0.10 0.09 3.09 3.50 

Random Effect Standard Deviation Variance  

Rear’s type 0.42 0.18  

Front’s behavior 0.68 0.46  

Lag’s behavior 0.27 0.07  

 LRM LMM Groups 10 

Number of 

Observations     

291 291   

AIC 1054.409 1050.912   

 Df Loglik Df Chisq Pr(>Chisq) 

LRM 16 -511.20    

LMM 19 -506.46 3 9.50 0.02** 

Notes: LRM is linear regression model; LMM is linear mixed model; Df is degree of 

freedom; 
* = p < 0.1; ** = p < 0.05; *** = p < 0.01 
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First, traffic density indicating traffic states shows significant 

positive effects on LCRI at the 1% significance level. In other words, 

the higher the density of vehicles in the lane, the greater the risk of 

the lane change. During lane change, higher density leads to a 

narrower space between the leading and following vehicles, and this 

spacing is critical for increasing LCRI. Also, the estimated coefficient 

is the highest among the parameters with significant positive effects. 

This result shows that traffic states are the dominant factor for the 

risk of collisions in the lane change, which comes from the increases 

in overall collision risk (Kononov et al., 2012, 2011). The significant 

impact of traffic states also has been reported in the analysis of actual 

lane-change collisions (Pande et al., 2006). 

 Regarding the lane-changing situations, lane-change time is 

significantly and positively associated with the LCRI, indicating that 

the longer the lane-change time of the vehicle in the lane, the greater 

the risk of the lane change. The average time taken to change lanes 

in this paper is 3.25 seconds, but the maximum is 12.8 seconds. This 

abnormal situation of a long-time lane change comes from the failure 

and retry of lane change, leading to drastic deceleration and close 

gap, which increases the risk of lane changes. According to Cao et al. 

(2013), lane change times are longer when maneuvers are more 

dangerous or when the interaction between the subject vehicle and 

surrounding vehicles is complex (Cao et al., 2013). In the higher 

traffic density situation, the lane change time was longer because it 

became difficult and dangerous to perform the lane change action 

(Toledo et al., 2007). Meanwhile, minimum TTC and average speed 

in the lane-changing vehicle group during a lane change show 

significant negative coefficients at the 1% significance level for LCRI. 

Considering the definition of TTC, a high TTC means a longer 

collision time with the leading vehicle, so the risk of lane change 

would be reduced at this time. At this time, the minimum TTC means 

the minimum value among the TTC values of vehicles belonging to 

the lane-changing vehicle group, not simply the TTC value of 

individual vehicles. Through this, it is possible to consider the effect 

of the deceleration of the leading vehicle on the overall lane-
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changing vehicle group. Minimum TTC is also an indicator of 

criticality since it indicates a near-accident (Vogel et al., 2003). In 

the NGSIM data, most traffic is in congested or near-congested 

conditions. Therefore, a high average speed of lane-changing vehicle 

group indicates the relaxation of congestion, which reduces the lane-

changing risk. 

Vehicle types excluding lead’s vehicle in the lane-changing 

vehicle group have shown significant effects for lane-change risk. 

Furthermore, except for the lag vehicle, the heavy vehicle in the 

lane-changing vehicle group tends to cause higher lane-change risk 

than a car and motorcycle at the 10% significance level. In particular, 

when the front vehicle is a heavy vehicle, the value of the coefficient 

is the highest, indicating the greatest impact of the front vehicle’s 

type. The characteristics of a heavy vehicle, which takes up more 

road space and has a lower driving performance, such as a lower 

deceleration and braking capability than lighter vehicles, causes risky 

simulations to the surrounding vehicles, particularly in congested 

conditions (Al-Kaisy et al., 2005). In addition, the number of lane 

changes per lane occurs more frequently when more heavy vehicles 

are present in the lane, and the frequent lane changes can increase 

lane-change risk due to the unexpected other lane change 

(Moridpour et al., 2015). Therefore, the risk of lane change of the 

lane-changing vehicle group can increase if the heavy vehicles are 

included. On the other hand, when the lag vehicle is a heavy vehicle, 

it appears to reduce the risk of lane change. This may be due to the 

fact that the front space gap of heavy vehicle is wider in order to 

provide brakes safely than that of a car, and the speed of the heavy 

vehicle is slower than that of the surrounding vehicles (Moridpour et 

al., 2015; Zhao et al., 2018). The length of heavy vehicle and the 

difficulty for truck drivers to see vehicles in adjacent lanes also 

would be the causes for the risk of collision during lane-change 

(Khattak et al., 1998). Therefore, when a vehicle in the current lane 

changes lanes, the lane-changing risk could be reduced because the 

space between heavy vehicle and the front vehicle is maintained to 

be wider.  
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For driver behavior, the variables indicating significant and 

positive association were front’s behavior and lag’s behavior. This 

means that the risk of lane change increases if the driver’s behavior 

of the front vehicle or lag vehicle is aggressive. Aggressive driving 

is a dangerous driving event that is likely to cause a traffic crash, 

which threatens other drivers via acts such as close driving and 

sudden deceleration and acceleration (Stephens et al., 2014). The 

aggressive follower reacts late when the leader slows down and early 

when the leader accelerates, thus reducing the time and distance 

between the leader and the follower. Therefore, the aggressive 

driving characteristics of the front vehicle (before lane change) and 

lag vehicle (after lane change), which pay the most attention to 

changing lanes, narrow the gap between space and time with the 

vehicle in front. Previous studies also reported that aggressive 

driving behavior could increase roadway crash potential (Park et al., 

2019), and it is closely related to the severity and occurrence of 

collisions (Stephens et al., 2014). 
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3.1.2 Linear Mixed Model (Random Effect) 
 

 

Some parameters for the vehicle type and driving behavior 

exhibit significant random effects across the 10 lane groups. Other 

insignificant random parameters with zero-variance were excluded 

in the model estimation. The coefficients of fixed effects are 

significantly changed by the LMM considering random effects. For 

example, the positive coefficient of the front’s type increases 7.83% 

from 2.17 to 2.34 in the LMM compared with LRM, and the negative 

coefficient of minimum TTC increases 5.6% from −10.34 to −9.76. 

Also, the LMM reveals some significant parameters that were not 

significant in the LRM, including front’s behavior, subject’s type, 

rear’s type, and lag’s type; thus, richer insights for lane change risk 

can be provided by LMM. These changes come from the different 

estimation methods of LMM that estimates group-specific effects 

and LRM that ignores all of the information about the groups.  

The variables with significant random effects across lanes are 

rear’s type, front’s behavior, and lag’s behavior. The large standard 

deviation of random effect can be interpreted as a variable’s effect 

heavily influenced by the lane. To represent the estimated random 

effect, I calculated conditional mode as shown in Table 3.2. The 

conditional mode represents a group-level value of the random 

effects, which is a conditional mean effect of the variable given 

groups (Bates et al., 2014). The coefficients for fixed effect and 

standard deviation of random effects indicate that the rear’s type and 

the front’s behavior can have significant proportions of both negative 

and positive values, and it is confirmed by the conditional mode as in 

Table 3.2. For the rear’s type, the heavy vehicles tend to decrease 

the risk of lane change from 4, 5 to 5, 4, unlike to other lanes. Since 

the lane 4 and 5 are the driving lane for the heavy vehicles, other 

vehicles may maintain the spacing when they encounter the heavy 

vehicles. However, in the other lanes where the desired speed is 

higher than lanes 4 and 5, the other vehicle may narrow the spacing 

to overtake the heavy vehicles. For the front’s behavior, the change 
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from lane 1 to lane 2 has significantly greater positive effects than 

other lanes, while other lanes showed negative and positive effects 

without specific patterns. Since lane 1 is the fastest lane, the 

following subject vehicle may have a tendency to reduce spacing due 

to the high desired speed, and this impact could be amplified by the 

aggressive driving behavior of the front vehicle. 

 

 

TABLE 3.2 Conditional Mode of Random Effects 

 

Group  Current 

Lane 

Target 

Lane 

Rear’s 

Type 

Front’s 

Behavior 

Lag’s 

Behavior 

1  1 2 0.00 1.22 0.12 

2  2 3 0.10 -0.11 -0.05 

3 3 4 0.00 -0.72 -0.09 

4 4 5 -0.12 -0.23 -0.11 

5 5 6 0.00 0.48 0.04 

6 2 1 0.00 -0.02 0.07 

7 3 2 0.28 -0.31 -0.12 

8 4 3 0.01 -0.39 -0.13 

9 5 4 -0.14 0.45 0.32 

10 6 5 0.02 -0.37 -0.04 

 

 

The large standard deviation of random parameters and the 

changes in the coefficient and significance of fixed effects highlight 

the relevance of grouping variables. These results can be supported 

by prior studies that reported the significant random effects among 

the lanes to take into account the ratio of heavy vehicles (Oh et al., 

2015) and the impact of on- and off-ramps per lane (Duret et al., 

2012) on NGSIM data. 
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3.2. Latent Class Analysis (LCA) 
 

 

In this paper, I compared the LMM classified into two classes by 

LCA and the existing LMM. The LMM is used to consider random 

effects among the lanes, whereas LCA is used to identify unobserved 

classes. When comparing the two models, the sign of the existing 

LMM parameters and the LMM parameters classified by LCA may be 

opposite. For example, in the existing LMM, the effect of variables is 

the result for the total data sample. But in the LMM classified by LCA, 

the effect of variables is the result for only a part of the data sample.  

The bottom of Table 3.3 provides to determine the optimal 

number of classes in the latent class analysis, IC (Information 

Criteria), which are indices of fitness, are considered. Among the 

log-likelihood functions, the most commonly used methods are AIC 

and BIC. Therefore, in this paper, the number of latent class was 

determined in consideration of the AIC, the number of groups, and 

interpretability. 

 

TABLE 3.3 Selection of the number of classes (avg_speed, inter-

vehicle gap) 

  

Class 
Model fit Classification rate(%) 

AIC BIC 1 2 3 4 5 

2 3812.985 3882.778 0.386 0.614    

3 3835.215 3886.641 0.385 0.454 0.161   

4 3841.588 3889.747 0.425 0.108 0.296 0.171  

5 3929.281 3962.341 0.019 0.268 0.183 0.062 0.467 

 

The smallest number in the AIC value was determined as the 

optimal cluster value. The lowest AIC is when the number of class is 

two. Total variables were observed to be statistically significant 

within two distinct classes; latent class 1 (38.6% of the data sample) 

and latent class 2 (61.4% of the data sample).  
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The Figure 3.1 shows the range of the common latent factor used 

to classify the class respectively.  

 

  

  

Figure 3.1 Box plots of average speed and inter-vehicle gap for two 

classes 

 

Table 3.4 also shows the range of common latent factors for each 

specific class. The characteristics of the classes can be defined 

through the average of each value. In the case of class 1, it can be 

seen that the gap between the vehicle is wide, and the average speed 

in the vehicle group is low. On the other hand, in the case of class 2, 

it can be seen that the gap between the vehicle is narrow, the average 

speed in the vehicle group is high. Since the length of the section 

where the data was collected was 640 m, there was no significant 

difference in the gap between vehicles between the two classes.  

 

TABLE 3.4 Average speed and inter-vehicle gap by classes (Range) 

 

Class Class Probability Gap distance (Mean) (m) Average speed (Mean) (kph) 

1 0.386 11.14 ~ 71.01 (30.11) 1.40 ~ 11.78 (6.55) 

2 0.614 12.50 ~ 94.69 (28.38) 11.54 ~ 34.42 (17.46) 
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In Table 3.5, as explained earlier, in the LMM classified into two 

classes by LCA, I focused on the variables with opposite signs for 

each class or value differences in coefficient values. In addition, since 

I tried to identify the differences between internal groups through the 

attributes of the vehicle group, I concentrated on the vehicle type and 

driver behavior variables within the vehicle group for the analysis. 

First, among the driver behavior variables, lag’s behavior showed 

opposite sign coefficients at the 5% significance level for LCRI by 

class. For lag’s behavior in class 2, the aggressive driving tends to 

increase the risk of lane change, unlike in class 1. In the vehicle group 

with a high average speed and a close gap between vehicles, the 

higher speed of the lag vehicle results in a narrower space for the 

vehicle to change lanes. At this time, the risk when changing lanes 

may increase due to the urgency of the driver to complete the lane 

change (Chen et al., 2021).  

Heavy vehicles except for the front and lead vehicle showed 

significant results for the risk of lane change at the 10% significance 

level in both classes. In addition, in both classes, when front and lead 

vehicle were excluded, heavy vehicles tend to cause a higher risk of 

lane change than cars and motorcycles. According to Zhao et al. 

(2018), when heavy vehicles maintain a narrow space from the 

vehicle in front, the lane-change risk is higher because heavy 

vehicles take longer to decelerate to avoid a collision compared to 

cars (Zhao et al., 2018). 

The changes and the value differences in the coefficient highlight 

the differences between internal groups.  

 

 

 

 

 

 

 

 

 

 

 
 



 

 ３１ 

3.2.1 LMM classified by LCA 
 

 

TABLE 3.5 Estimation Results of LMM classified into two classes by 

LCA 

 

Dependent Variable : Lane Change Risk Index (LCRI) 

Fixed Effect Coefficients Standard 

Errors  

t-Statistics 

Class1 Class2 Class1 Class2 Class1 Class2 

Intercept 1.99** 2.45*** 1.14 0.68 -1.75 3.61 

Traffic State       

Density 5.96*** 4.17** 4.40 2.60 4.99 2.10 

Driver Behavior        

Subject’s behavior -0.44 0.05** 0.26 0.19 -1.68 -2.26 

Front’s behavior 0.05*** 0.02** 0.37 0.23 2.69 2.07 

Rear’s behavior 0.63 0.18 0.27 0.19 1.35 0.99 

Lead’s behavior -0.07 -0.07 0.27 0.19 0.27 0.39 

Lag’s behavior -0.44** 0.25** 0.67 0.24 2.06 1.99 

Vehicle Type       

Subject’s type 0.99** 12.21** 0.82 2.15 2.22 -5.68 

Front’s type 1.31 2.55** 0.82 0.43 1.60 5.96 

Rear’s type  0.28** 0.37** 1.22 0.50 -2.04 2.74 

Lead’s type 0.80 0.35 0.99 0.59 0.81 0.59 

Lag’s type 0.09** 0.79** 0.43 0.35 -2.83 -2.19 

Lane-Changing 

Situation 

      

Minimum TTC -8.96 -8.78 1.78 1.11 -5.02 -7.93 

Average speed 0.01 -0.26 0.03 0.04 0.41 -6.12 

Lane-change time  -0.06 0.53 0.09 0.08 -0.66 6.78 

Random Effect Standard Deviation Variance  

Rear’s type 0.02 0.01 0.01 0.65  

Front’s behavior 0.69 0.37 0.47 0.14  

Lag’s behavior 1.71 0.41 2.93 0.17  

 Class1 Class2 Groups 10 

Latent Class 

Probability 

0.386 0.614   

Loglik -125.34     

Notes: LCA is Latent class analysis; LMM is linear mixed model; Df is degree of 

freedom; 
* = p < 0.1; ** = p < 0.05; *** = p < 0.01 
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Chapter 4. Conclusions 
 

 

Lane changes are important for road traffic safety on highways. 

Thus far, the risk of lane-change situations has been assessed by 

the surrogate safety measures (SSM), which quantifies the 

probability of collision risk, and various safety indicators exist in this 

regard. Among these indicators, this study adopts LCRIs (Park et al., 

2018) to evaluate the potential collision probability of the lane-

changing vehicle group by integrating the exposure time and the 

expected severity level of potential crashes in lane-change 

situations. I investigated the impact of driver behavior and vehicle 

type on the LCRI using vehicle trajectory data collected in congested 

conditions. For a lane-changing vehicle group consisting of four 

adjacent vehicles and a subject vehicle, I characterized the lane-

changing vehicle group using vehicle type (i.e., heavy vehicle or 

car/motorcycle) and driver’s behavior (i.e., aggressive or 

ordinary/timid) of each vehicle in the lane-changing vehicle group. I 

employed an LMM to identify fixed and random effects of driver 

behavior and vehicle type and found that heavy vehicles and 

aggressive driver behaviors had different effects on crash risks of 

lane-changing vehicle group, depending on the role in lane change 

situations. Also the LCA was used to identify differences between 

internal groups. The characteristics of each class were defined by 

LCA, and the results of comparing the existing LMM and LMM 

classified by LCA showed that some heavy vehicles and aggressive 

driver behaviors had different effects on the collision risk of the 

lane-changing vehicle group by class. 

The findings of this study provide interesting insights into the 

lane-change risk of a lane-changing vehicle group. I quantified and 

analyzed the complex interaction between vehicle type and driver 

behavior within the lane-changing vehicle group in the situation of 

changing lanes through LCRI. Additionally, using the random 

parameter model LMM, I found that the influence of the vehicle type 

and driver behavior in the lane-changing vehicle group had great 



 

 ３３ 

heterogeneity depending on the lane. Based on the results of the 

LMM, the risk of lane changes was significantly associated with the 

vehicle type and driver behavior which is consistent with the 

expectation in the literature (Park et al., 2019; Stephens et al 2014; 

Al-Kaisy et al 2005; Moridpour et al., 2015; Zhao et al., 2018). The 

results show that when the vehicle type is a heavy vehicle, there is 

a significant correlation with LCRI. It implies that the lane change and 

car-following behavior of a heavy vehicle are different from an 

ordinary vehicle according to the difference in driving ability increase 

the possibility of a collision in a lane change situation. In particular, 

when the front vehicle is a heavy vehicle, the coefficient value is the 

highest, indicating that the type of the front vehicle has a greater 

influence than other adjacent vehicles. Meanwhile, the aggressive 

driver behavior had a significant positive coefficient for LCRI only for 

front and lag vehicles. The random-effects estimated by LMM were 

significant for rear’s type, front’s behavior, and lag’s behavior among 

the groups of 10 lanes.  

And when comparing the LMM classified into two classes by LCA 

and the existing LMM, I focused on the variables with opposite signs 

for each class or value differences in coefficient values. In addition, 

since I tried to identify the differences between internal groups 

through the attributes of the vehicle group, I concentrated on the 

vehicle type and driver behavior variables within the vehicle group 

for analysis. For lag’ behavior in class 2, the aggressive driving tends 

to increase the risk of lane change, unlike in class 1. In the vehicle 

group with a high average speed and a close gap between vehicles, 

the higher speed of the lag vehicle narrows the space between the 

vehicles, which increases the risk when the driver changes lanes. In 

addition, in both classes, when front and lead vehicle were excluded, 

heavy vehicles tend to cause a higher risk of lane change than car 

and motorcycle. Due to the low driving performance of heavy vehicles, 

maintaining a narrow space with the vehicle in front increases the 

risk. 

The proposed models evaluate the lane-change risk of the lane 

-changing vehicle group using LCRI. This measure can be applied to 
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evaluating network safety performance for lane change considering 

the attributes of vehicle group, the proportion of heavy vehicles, and 

aggressive drivers in a roadway and help to develop 

countermeasures such as reducing aggressive driving. Also, my 

model evaluates the risk at the level of the vehicle group rather than 

the single-vehicle. In the connected vehicle (CV) technology, the 

lane-changing vehicle group to improve the safety of cruise control 

has been defined similar to my study (Ma et al., 2020). Therefore, 

my findings would be particularly valuable in the CV environment. 

Lane change in mixed traffic with human-driving and autonomous 

vehicles (AVs) is a difficult decision for AVs due to complex 

interactions with human-driving vehicles. This would be particularly 

valuable in the mixed traffic situations with human-driving and 

autonomous vehicles (AVs). Lane change in mixed traffic is a difficult 

decision for AVs due to complex interactions with human-driving 

vehicles. My findings from empirical data are valuable not only for 

understanding the current driving situations but also for designing the 

lane-change strategy of autonomous vehicles that should consider 

the complex interactions with human-driven vehicles with different 

behavior. 

To further advance my findings, several limitations should be 

considered in future research. First, although I conducted a 

comprehensive analysis for 45 min of vehicle trajectory data, various 

traffic conditions, environmental conditions, and geometric conditions 

were not discussed because other trajectory data were not available. 

Recently collected vehicle trajectories from the advancement of 

traffic surveillance technologies such as unmanned aerial vehicles 

(UAV) (Kim et al., 2019) will enable further studies for various 

conditions. Through observation in a wider section, it may be possible 

to reflect the effects of more distant surrounding vehicles. Also, 

methodology such as Kaplan-Meier estimation was used to 

effectively estimate censored data related to missing data (Ozguven 

et al., 2008). Using this method can increase the number of samples 

and broaden the scope of the analysis. Second, this study measures 

the risk of lane-changing using LCRI (Park et al., 2018) and driver 
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behavior based on Newell’s car-following theory (Chen et al., 2012). 

Other measures for lane-changing risk and driver behavior can be 

applied to my model specification for generalizing my findings. 

Especially for driver behavior, driving simulation (Park et al., 2019) 

and micro traffic simulation (Habtemichael et al., 2014) would be the 

promising methods for more detailed consideration of behaviors. Last, 

the risk evaluation of a lane-changing vehicle group would be an 

important subject for studying mixed-traffic conditions. The driving 

data collected from autonomous vehicles can be analyzed to evaluate 

the risk of a lane-changing vehicle group in the lane change. Further, 

comparing the risk with the human-driving vehicle could provide 

valuable insights into designing lane-change strategies. 
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Abstract 

 

고속도로에서 주행을 하면서 운전자가 빈번하게 수행하는 차로 변경은 

도로 교통안전과 교통 흐름에 큰 영향을 미치는 행위라고 할 수 있다. 차로 

변경 시 위험을 평가하기 위한 안전 지표들 중에서 Lane Change Risk 

Index(LCRI)는 차로 변경 상황에서 차로를 변경하는 차량 그룹(lane-

changing vehicle group)의 잠재적 충돌 가능성을 결정하기 위해서 사용했다. 

본 연구의 목표는 개별 차량 궤적 데이터를 사용하여 LCRI에 대한 운전자 

행동 및 차량 종류가 미치는 영향을 추정하는 것이다. 이를 위하여 차로 변경을 

실시하는 차량과 그 주변 차량(차로변경 전 선행, 후행 차량과, 차로변경 후 

선행, 후행 차량)들을 차로를 변경하는 차량 그룹으로 정의했다. 각각의 차량 

종류(트럭, 버스, 자동차 및 오토바이)와 운전자 행동(공격적인, 보통 및 

소심한) 변수들은 회귀 분석을 위해 분류되었다. 이 때 운전자 행동은 각 

차량의 궤적과 Newell의 차량추종모델의 예상 궤적 간의 시공간 편차를 통해 

분류했다. 또한 본 연구는 차로 그룹 간의 이질성을 고려하기 위해 고정 효과와 

임의 효과를 반영할 수 있는 선형 혼합 모델을 사용하였다. 그리고 잠재 계층 

분석법을 이용하여 차로를 변경하는 차량 그룹을 차량 그룹의 특성을 반영하여 

여러 그룹으로 분류하였다.  

본 연구의 결과는 다음과 같다. 먼저 차로 변경 상황에서 차로를 변경하는 

차량 그룹 내의 차량 종류와 운전자 행동 사이의 복잡한 상호 작용을 

정량화하고 분석했다. 또한 Random parameter model을 사용하여 차로를 

변경하는 차량 그룹에서 차량 종류와 운전자 행동의 영향이 차로에 따라 큰 

이질성을 가지는 것을 발견했다. 끝으로 차로를 변경하는 차량 그룹들을 

분류했을 때, 대부분의 변수들은 두 개의 별개 집단 내에서 통계적으로 유의한 

것을 관찰했다. 이러한 발견들은 자율주행차의 세부적인 차로 변경 전략을 

제시하고 차로 변경 시 위험의 원인 요인을 평가하는 데 상당한 기여를 할 수 

있음을 시사한다. 

 

주요어 : 운전자 행동, 차량 종류, 차로를 변경하는 차량 그룹, 잠재 계층 분석  
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