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 The conventional measurement method of suspended sediment 

concentration (SSC) in the riverine system is labor-intensive and time-

consuming since it has been conducted using the sampling-based direct 

measurement method. For this reason, it is challenging to collect high-

resolution datasets of SSC in rivers. In order to overcome this limitation, remote 
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sensing-based techniques using multi- or hyper-spectral images from satellites 

or UAVs have been recently carried out to obtain high-resolution SSC 

distributions in water environments. However, suspended sediment in rivers is 

more dynamic and spatially heterogeneous than those in other fields. Moreover, 

the sediment and streambed properties have strong regional characteristics 

depending on the river type; thus, only models suitable for a specific period and 

region have been developed owing to the increased spectral variability of the 

water arising from various types of suspended matter in the water and the 

heterogeneous streambed properties. 

  Therefore, to overcome the limitations of the existing monitoring 

system, this study proposed a robust hyperspectral imagery-based SSC 

measurement method, termed cluster-based machine learning regression with 

optical variability (CMR-OV). This method dealt with the spectral variability 

problem by combining hyperspectral clustering and machine learning 

regression with the Gaussian mixture model (GMM) and Random forest (RF) 

regression. The hyperspectral clustering separated the complex dataset into 

several homogeneous datasets according to spectral characteristics. Then, the 

machine learning regressors corresponding to clustered datasets were built to 

construct the relationship between the hyperspectral spectrum and SSC. 

 The development and validation of the proposed method were carried 

out through the following processes: 1) analysis of confounding factors in the 
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spectral variability through experimental studies, 2) selection of an optimal 

regression model and validation of hyperspectral clustering, and 3) evaluation 

of field applicability. In the experimental studies, the intrinsic hyperspectral 

spectra of suspended sediment were collected in a completely mixed state after 

removing the bottom reflection using a horizontal rotating cylinder. Then, 

hyperspectral data on various sediment properties (particle size and mineral 

contents) and river bed properties (sand and vegetation) were collected from 

sediment tracer experiments in field-scale open channels under different 

hydraulic conditions and compared with intrinsic hyperspectral spectra. 

Consequently, the change of the hyperspectral spectrum was different 

according to the sediment type and particle size distribution. In addition, under 

the shallow water depth condition of 1 m or less, the shape of the hyperspectral 

spectrum changed significantly depending on the bed type due to the bottom 

reflectance. The bottom reflectance substantially affected the hyperspectral 

spectrum even when the high SSC was distributed.   

As a result of combining the GMM and RF regression with building a 

relationship between the SSC and hyperspectral data reflecting the spectral 

variability, the accuracy was substantially improved compared to the other 

methods. In particular, even when nonlinearity is considered based on the 

existing optimal band ratio analysis (OBRA) method, spectral variability could 

not be reflected due to the limitation of considering only a narrow wavelength 

range. On the other hand, CMR-OV showed high accuracy while considering a 
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wide range of wavelengths with clusters having distinct spectral characteristics. 

Finally, the CMR-OV was applied to the straight and meandering 

reaches of the Hwang River and the confluence of the Nakdong and Hwang 

Rivers in South Korea to assess field applicability. There was a remarkable 

improvement in the accuracy and precision of SSC mapping under various river 

conditions compared to the existing models, and CMR-OV showed robust 

performance even with non-calibrated datasets. At the river confluence, the 

mixing pattern between the main river and tributary was apparently retrieved 

from CMR-OV under optically complex conditions. Compared to the non-

clustered model, hyperspectral clustering played a primary role in improving 

the performance by separating the water bodies originating from both rivers. It 

was also possible to quantitatively evaluate the complicated mixing pattern in 

detail compared to the existing point measurement. Therefore, it is expected 

that the accuracy and efficiency of river investigation will be significantly 

improved through the SSC measurement method presented in this study. 

Keywords: river suspended sediment measurement, remote sensing, 

hyperspectral imagery, spectral variability, machine learning, spatial 

distribution mapping 

Student number: 2018-28430 
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1. Introduction 

 

1.1 Background and necessities of study 

In rivers, the dynamics of suspended sediment exert a significant 

impact on river morphology and the ecosystem; they also affect flow and 

transport behaviors of pollutants (Kabir and Ahmari, 2020; Leite Ribeiro et al., 

2012; Umar et al., 2018a). To improve our understanding of the suspended 

sediment transport mechanisms in riverine system, high-resolution spatio-

temporal data of the suspended sediment are required for analysis of the 

complex interactions between suspended sediments and the hydraulic and 

environmental factors such as river discharge, velocity, and water quality 

variables (Vercruysse et al., 2017). In the conventional method, measurement 

of the suspended sediment concentration (SSC) relied on in-situ measurements 

based on the sampling of the river water. This in-situ measurement approach is 

highly labor-intensive and time-consuming, and it provides low-resolution 

temporal and spatial datasets (Qu et al., 2016). Laser-diffraction-based optical 

sensors and turbidity sensors have frequently been used as alternatives of the 

conventional method, to obtain high-resolution temporal SSC data using high 

measurement frequency (Haun et al., 2013; Lokhov et al., 2020; Pedocchi and 

García, 2006; Pomázi and Baranya, 2020). These sensors can semi-

automatically provide sufficient temporal data and trends after calibration with 
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point samples; however, the labor costs are high for producing high-spatial-

resolution data because these sensors only provide point measurements 

(Pomázi and Baranya, 2020; Rai and Kumar, 2015). Acoustics-based SSC 

measurements are an alternative to these point-based measurement methods; 

they are obtained using an acoustic Doppler current profiler (ADCP) to 

determine the cross-sectional distribution of suspended sediment (Simmons et 

al., 2020; Son et al., 2021; Wosiacki et al., 2021). Despite this distinct advantage 

over other methods, ADCP is limited in differentiating the change between SSC 

and the particle size distribution (PSD) of the suspended sediment, because 

single or multiple frequencies should be selected for use in ADCP (Aggarwal 

et al., 2011). Therefore, the error increases with variations in PSD; the ADCP 

data are accurate in a limited PSD range depending on the specific frequencies 

in the ADCP (Thorne and Hanes, 2002; Thorne and Hurther, 2014).  

In recent years, with the advances in image processing techniques, 

numerous studies have used remote sensing approaches to retrieve high-

resolution spatial data on the quality of large bodies of water from multispectral 

or hyperspectral satellite images (Arisanty and Nur Saputra, 2017; Caballero et 

al., 2018; Dekker, 1993; Dekker et al., 2001; Dethier et al., 2020; Ismail et al., 

2019; Kabir and Ahmari, 2020; Ross et al., 2019; Topp et al., 2020; Umar et al., 

2018a). The principle underlying the remote sensing SSC measurement in 

aquatic environments is based on the optical characteristics of sunlight, which 
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is absorbed intensively in the water body. By sensing the sunlight intensity, the 

spectral signals of solar radiation at visible (VIS) and near-infrared (NIR) 

wavelengths can be captured by multispectral or hyperspectral cameras 

(Dethier et al., 2020; Fonstad and Marcus, 2005; Kwon et al., 2020; Wei et al., 

2019). These spectral signals of solar radiation are recorded as the radiance of 

discrete spectral bands with respect to wavelength. The VIS and NIR regions 

are the most relevant spectral band when using this feature of the remote 

sensing technique; they best represent SSC based on the correlation between 

SSC and the radiance of the bands. To identify the relationship between SSC 

and the relevant spectral bands, many researchers applied simple regression 

models, including linear, exponential, polynomial, and log-linear models 

(Doxaran et al., 2003; Islam et al., 2001; Liu et al., 2017; Ma and Dai, 2005; 

Pereira et al., 2019; Schiebe et al., 1992; Shen et al., 2010; Topliss et al., 1990; 

C. Wang et al., 2017; F. Wang et al., 2009; J.-J. Wang et al., 2009). Additionally, 

machine learning approaches were applied to improve the accuracy of the 

regression model with more diverse spectral bands, effectively resolving the 

nonlinearity between the input spectral values and the target SSC values 

(Peterson et al., 2018; Umar et al., 2018). 

In terms of the water bodies, most remote-sensing studies were 

conducted in marine and coastal environments because it is possible to acquire 

sufficient amount of relevant spatial data from satellite images, and the effect 
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of bottom reflectance is less pronounced in marine and coastal areas than in the 

shallow water bodies of rivers. Due to the relative narrowness of rivers, remote 

sensing-based SSC measurements have rarely been applied to riverine systems 

(Pham et al., 2018). The recently launched Sentinel-2 and Sentinel-3 satellites 

have improved the spatial resolution of available images by up to 5–10 m; 

however, coarse spectral resolution, which has a bandwidth of 60–80 nm, is still 

a crucial shortcoming of satellite-based remote sensing for the measurement of 

water quality and SSC in rivers (Dekker, 1993; Kwon et al., 2022a, 2020). To 

overcome this limitation, UAV (unmanned aerial vehicle)-based hyperspectral 

remote sensing was carried out to measure water depth, algal blooms, and 

cyanobacteria concentration with higher spatio-temporal resolution and a 

narrower spectral band width than those provided by multispectral sensors 

(Kwon et al., 2020; Legleiter et al., 2019; Legleiter and Harrison, 2019; Pyo et 

al., 2020a). However, the research on the hyperspectral measurement of SSC in 

rivers is currently insufficient due to the regional characteristics of suspended 

sediment and stream bed (Dethier et al., 2020; Gebreslassie et al., 2020; Kabir 

and Ahmari, 2020; Kwon et al., 2021b). Especially in shallow waters, the 

variety of stream bed types makes the hyperspectral measurement of SSC even 

more challenging since it is influenced by bottom reflectance. 

Earlier studies mainly focused on improving the prediction accuracy 

in the specific study areas where the relationship between suspended sediment 
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and optical properties of spectral bands is relatively apparent. However, the 

main wavelengths of the spectral bands involved in the regression equations 

were spread over a relatively wide range according to the trained area (Pereira 

et al., 2019). This regionality occurred because the optical characteristics of 

suspended sediment vary significantly according to the particle size, mineral 

content, sediment color of the suspended sediment, and stream bed types. These 

variables are collectively referred to as the spectral variability of suspended 

sediment (Kabir and Ahmari, 2020; Volpe et al., 2011). Therefore, it is highly 

challenging to use the existing methods in optically complex rivers, such as 

river confluences where sediment characteristics, water quality, and bathymetry 

vary to a great extent.  

To account for the spectral variability of suspended sediment, several 

empirical and semi-empirical models were developed (Bhargava and Mariam, 

1990; Gebreslassie et al., 2020; Kabir and Ahmari, 2020; Qu et al., 2016). 

Among them, a semi-empirical model, spectral mixing analysis (SMA), showed 

relatively accurate performance irrespective of the spectral variability of 

suspended sediment (Gebreslassie et al., 2020; Qu et al., 2016). This model can 

be developed from laboratory analysis to obtain the individual spectrum of 

constituents, including clean water and dry sediment. The spectral mixing 

abundance of each constituent can be estimated by decomposing the measured 

spectrum of river waters based on SMA. The spectral mixing abundance is 
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finally used as the independent variable of the SSC regression model. However, 

this model did not consider the bottom effect and has limitations in extending 

to the spatial mapping of SSC because it can be validated and applied only at 

the points where river water is sampled. Furthermore, a number of suspended 

sediment samples are required to represent the sediment characteristics of the 

target river adequately. It is also difficult to consider the suspended sediment as 

a single constituent if the sediment properties have a bimodal distribution of 

particle size or varied mineral contents. To develop an empirical model, Kabir 

and Ahmari (2020) established log-linear regression equations according to 

sediment color using an RGB camera-based laboratory experiment. They 

developed practical and accurate models and insisted on the necessity for 

classification of the SSC estimator according to suspended sediment variability. 

However, this model had limitations; the amount of available data was 

inadequate, and the performance in the field was relatively poor due to the 

discrepancy between the PSDs of suspended sediment samples used in model 

development and those used in the model application.  

Accounting for spectral variability is the most challenging factor in 

achieving a robust SSC estimator based on remote sensing technique (Dethier 

et al., 2020; Kwon et al., 2022b, 2022a). Therefore, the key objective of this 

study was to develop a UAV-based hyperspectral technique that maximizes the 

accuracy of SSC estimation through understanding the confounding factors of 
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spectral variability. Through this advancement in SSC estimation in rivers, the 

UAV-based hyperspectral technique could retrieve the high-resolution spatial 

distribution of SSC in various river conditions. Moreover, it could be used in 

the problems requiring high-resolution data, such as sediment mixing problems 

in river confluences, and it could give substantial insights into the physical 

process of suspended sediment in rivers. 
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1.2 Objectives and scopes 

The primary objective of this study was to develop a robust 

measurement method for suspended sediment concentration (SSC) using UAV-

based hyperspectral imagery and retrieve the spatial distribution of SSC in 

various field conditions in the riverine system. This main objective was 

achieved by following three tasks: (1) Experimental studies (Chapter 3); (2) 

Development of SSC measurement method using UAV-based hyperspectral 

imagery (Chapter 4); (3) Evaluation of field applicability of developed method 

(Chapter 5).  

In the first task, a laboratory experiment, field-scale experiments, and 

field surveys were conducted to figure out the spectral variability of suspended 

sediment (sediment properties, streambed properties, and vertical mixing state 

of suspended sediment) under various hydro-geomorphic conditions. The first 

experiment was conducted using the rotating horizontal cylinder in the 

laboratory. It was set to observe intrinsic optical properties of suspended 

sediment in a completely mixed state with non-bottom reflectance. Two field-

scale experiments were conducted in which various types of sediment were 

injected in field-scale straight and meandering channels. In these experiments, 

spatiotemporal hyperspectral images and the corresponding time-series of in-

situ measured SSC data were obtained in each case. Based on these 

experimental datasets, the confounding factors of spectral variability were 
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investigated by comparing the various spectra from hyperspectral images with 

each other and through principal component analysis (PCA). In addition, five 

field surveys were carried out in natural rivers of straight reach, meandering 

reach, and river confluence. In these surveys, both point data of in-situ 

measured SSC and spatially scanned hyperspectral images from UAVs were 

collected for the field applicability validation of the model in Chapter 5. 

In the second task, a robust machine learning regression framework 

for SSC estimation was proposed using hyperspectral imagery obtained from 

UAVs. This novel method, named the cluster-based machine learning 

regression with optical variability (CMR-OV), consists of three main 

algorithms: data clustering using Gaussian mixture model (GMM), spectral 

band selection using recursive feature elimination (RFE), and machine learning 

regression (MLR) for the relation between hyperspectral spectrum and SSC. 

Using GMM clustering, the hyperspectral datasets were clustered according to 

spectral similarity. Separate MLR models were built for every cluster, using 

corresponding spectral bands selected by RFE. The proposed framework aims 

to make remote sensing of SSC possible even in optically complex rivers using 

a wide range of spectral data from various experiments.  

In the third task, the field applicability of the proposed model (CMR-

OV) was evaluated in two types of testbeds: (1) a shallow river with a single 

spectral characteristic of river water with a strong bottom effect and (2) a river 



 

10 

 

confluence with two complex spectral characteristics from confluent flows. 

Remote sensing in shallow waters is challenging owing to the substantial 

bottom effect; therefore, this study evaluated how CMR-OV controls the 

bottom effect in a shallow river. The river confluences usually have optically 

complex conditions since river flow, bathymetry, and mixing characteristics 

vary rapidly. Therefore, the performance of CMR-OV in controlling the spectral 

variability was evaluated in a river confluence. Based on the feature of each 

testbed, the evaluations were focused on four aspects: (1) Cross-applicability; 

(2) Uncalibrated dataset applicability; (3) Classification of river regions using 

hyperspectral clustering; (4) Reproducibility of mapping SSC distribution. The 

objective of the first evaluation was to assess the uncertainty of trained CMR-

OV in various rivers. In this process, the accuracy of merged learning using the 

combined dataset of all field-scale experiments and field surveys was compared 

with local learning. Subsequently, 5-folds cross-validation was conducted 

based on merged learning to assess the cross-applicability. Secondly, the 

applicability in uncalibrated datasets was evaluated using independent datasets 

in natural rivers. Locality of estimator was the most critical limitation in 

previous studies; therefore, how much of that limitation can be overcome was 

evaluated using this assessment. The third evaluation was performed to verify 

whether CMR-OV can distinguish a tributary and mainstream in a confluence 

using just hyperspectral imagery. For this, the optical characteristics of river 

confluences were analyzed based on hyperspectral clustering by comparing 
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water quality and hydrodynamic conditions of each dataset. Finally, the trained 

CMR-OV model was assessed for accurately reproducing the spatial 

distributions under independent conditions and retrieval of high-resolution SSC 

distributions under varying hydrodynamic and morphological conditions in 

each testbed. 

Based on the three tasks mentioned above, the final objectives of this 

study were as follows: (ⅰ) evaluating confounding factors of hyperspectral 

imagery-based SSC estimation; (ⅱ) developing a robust algorithm to retrieve 

spatial distribution of suspended sediment concentration in optically complex 

rivers; (ⅲ) evaluating field-applicability of UAV-based hyperspectral approach 

in various field conditions. Achieving these objectives could enhance the 

competence to measure SSC and analyze the physical process of suspended 

sediment in rivers by overcoming the disadvantages of conventional analysis 

methods. An outline of this research structure was summarized in Fig. 1.1.
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Fig. 1. 1. Study overview. 
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2. Theoretical research 

 

2.1 Remote sensing technique for measurement of suspended 

sediment  

Developing remote sensing technique for suspended sediment in 

rivers using UAV-based hyperspectral images (HSI) consists of three main 

processes: (1) data acquisition, (2) preprocessing of HSI, and (3) regression 

model development (Fig. 2.1). In data acquisition, in-situ measured values of 

SSC are required as a reference value. HSIs can be obtained by two types, 

hovering and spatial scanning, according to the data format, as shown in Fig. 

2.2. By hovering UAVs over the cross-section of interest, the spatiotemporal 

image in the cross-section can be obtained, as shown in Fig. 2.2 (a). To acquire 

HSI covering a large area, multiple strips are obtained by scanning the space 

(Fig. 2.2 (b)), and then spatial information of a large area is obtained by co-

registering them using coordinates of geo-reference points on the ground. The 

essential principle in developing a remote sensing-based estimator is to 

construct a regression model by finding the relationship between the physical 

quantity of the target variable and the spectral band in the hyperspectral 

spectrum that responds to its optical characteristics. Accordingly, the in-situ 

measured SSC dataset is required with corresponding HSIs. Before developing 

a regression model, the HSI needs to be preprocessed to extract the spectral 
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bands in the hyperspectral spectrum under identical conditions. First of all, it is 

necessary to standardize the HSI taken under different conditions (radiometric 

correction) and to remove noise such as surface reflection (noise filtering). 

Then, the geometric distortion due to the gap between the field of view (FOV) 

of the camera and its recorded coordinates of each pixel must be corrected using 

geo-reference points (geometric correction).  
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Fig. 2. 1. Flowchart of a remote sensing technique for measurement of 

suspended sediment. 

 



 

16 

 

 

 

Fig. 2. 2. Types of UAV-based HSI acquisition. 
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After preprocessing, the regression model can be developed using an 

in-situ measured SSC dataset and corresponding hyperspectral spectrum as 

dependent and independent variables (Fig. 2.3). In this process, band selection 

can enhance the model accuracy by selecting relevant bands because the 

hyperspectral spectrum has several redundant bands with the suspended 

sediment. In addition, the form of the regression model is vital to the accuracy. 

Therefore, finding the optimal form of the model is required according to the 

given dataset. The finally constructed regression model can retrieve the high-

resolution SSC map using preprocessed HSI (Fig. 2.3). However, the 

uncertainty of this method increases in optically complex conditions due to the 

variety of suspended sediment and river conditions. Moreover, applying the 

model to uncalibrated areas is challenging because of the high locality. Based 

on this knowledge of the general remote sensing approach, the general process 

of building the SSC remote sensing estimator is described in the following 

sections of Chapter 2. Further, a novel method to overcome the general method 

is proposed in Chapter 3.
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Fig. 2. 3. Schematic diagram of hyperspectral regression model for SSC measurement. 
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2.1.1 Pre-processing of hyperspectral image (HSI) 

UAV-based hyperspectral images need a different and more 

complicated pre-processing than satellite-based multispectral images due to the 

low acquisition height, inconstant movement of the UAVs, and the strong 

influence of the illumination according to camera angle. Existing software for 

processing UAV-based RGB images is often not applicable for hyperspectral 

images since most hyperspectral cameras are line scanning type-based push-

broom sensors (Barreto et al., 2019; Fowler, 2014). Therefore, the 

preprocessing technique for UAV-borne RGB images can also not handle the 

size and especially the data format of hyperspectral imagery. Considering these 

characteristics of hyperspectral image (HSI), preprocessing for UAV-borne HSI 

analysis consists of three main steps as follows: (1) geometric correction, (2) 

radiometric correction, and (3) noise filtering. The methods of HSI 

preprocessing in recent studies based on the UAV platform are summarized in 

Table 2.1.  
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Table 2. 1. HSI pre-processing methods used in previous studies using UAV-

borne hyperspectral images. 

Reference 
Geometric 

correction 

Radiometric 

correction 

Noise 

filtering 
 Target 

Jakob et al. 

(2016) 

Georeferencing 

with RGB image 

Rikola software,  

Empirical line 

method using 

tarps 

SAVGOL 
Mineral 

Exploration 

Legleiter et 

al. (2019) 

Georeferencing 

with kinematic 

GPS 

Empirical line 

method using 

tarps 

- 
Water 

depth 

(River) 

Kwon et al. 

(2020) 

Georeferencing 

with kinematic 

GPS 

Empirical line 

method using 

tarps 

SAVGOL, 

Wiener2 
Agal bloom 

(Lake) 

Gai et al. 

(2020) 

Georeferencing 

with kinematic 

GPS 

FLAASH 

(ENVI) 
SAVGOL 

Chl-a 

(Coastal) 

Booysen et 

al. (2021) 

Georeferencing 

with RGB image 

Rikola software,  

Empirical line 

method using 

tarps 

SAVGOL 
Rare earth 

elements 

Wei et al. 

(2021) 

Georeferencing 

with ground 

measured points 

Ground 

measured 

spectra based 

empirical line 

method 

- 

Suspended 

sediment 

(Lake, 

River) 
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The geometric correction is necessary to acquire spatially precise 

images since the UAV-mounted sensor moves slightly during flight, causing 

spatial shifts, as shown in Fig. 2.4 (Jaud et al., 2018). The geometric correction 

matches the HSI and the corresponding coordinates with the orientation system 

(POS) (Wei et al., 2019). From both HSI and POS, the coordinate system was 

transformed to establish the correspondence between the image pixels and the 

coordinates of the geo-reference points. The data of geo-reference points can 

be obtained by ground GPS at discrete points (Wei et al., 2019) or the RGB 

orthophoto measured by RTK-GPS mounted drone (Booysen et al., 2020; Jakob 

et al., 2017). After the geo-referencing, corrected images can be coregistered to 

make an entire image. The overlapping area of images is accordingly 

mosaicked without additional ground control points.   
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Fig. 2. 4. Field of view (FOV) projection of UAV-mounted camera and its 

spatial shifts of the frame. 
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Concurrently, a radiometric correction is needed to convert a digital 

number (DN), which stores the radiance as an integer on the hyperspectral 

camera, to relative reflectance. Since the radiance recorded in the hyperspectral 

camera did not coincide with the actual energy emitted or reflected by the 

surface due to the azimuth angle and elevation of the sun, a radiometric 

correction is needed to normalize the images, as shown in Fig. 2.5. For this 

correction, DN should be first converted to radiance by gain and offset of each 

pixel. These gain and offset values are typically retrieved from the metadata 

from the hyperspectral sensor. After this conversion, the radiance can finally be 

converted to relative reflectance using the empirical line method (ELM) based 

on the reference reflectance values (Smith and Milton, 1999). The reference 

reflectance values for calibration are usually obtained using the calibration tarps, 

which offer the Lambertian reflectance, as shown in Fig. 2.5. The Lambertian 

reflectance denotes the isotropic reflected light intensity, which serves as a 

reference for radiometric correction regardless of the camera angle (Baek et al., 

2019). The spectrometer can also measure the reference value of reflectance 

through ground point measurement of reflectance (Wei et al., 2019). Therefore, 

the normalized HSI provides the enhanced interpretability and quality of the 

hyperspectral data (Jeon et al., 2019; Kim et al., 2020; Kwon et al., 2020; 

Legleiter et al., 2019; Meyer et al., 1993).  
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Fig. 2. 5. Schematic diagram of radiometric correction using ELM. 
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On the other hand, HSI usually includes noise, which usually arises 

from sensor sensitivity, sun glint, and solar conditions (e.g., cloud coverage) 

(Mishra et al., 2019; Zeng et al., 2017). When capturing the HSI in rivers, 

surface reflection usually occurs from irregular water surfaces owing to 

turbulence or at a point where the water surface changes rapidly. In addition, 

suspended substances or bubbles on the water surface induce the water surface 

reflection. In these cases, the back-scattered radiance from the water column 

from reaching the sensor can be disturbed by substantial surface radiance, as 

shown in Fig. 2.6. When the surface reflection occurs, the measured radiance 

shows a shape similar to the spectrum of sunlight, as illustrated in Fig. 2.6. This 

radiance spectrum has high values and is entirely different from the spectral 

characteristics of the water column; thus, preprocessing of this signal is 

necessary. Therefore, the de-nosing of HSI is essential for spectral analysis. 

Two ordinary filters for this process are Savitzky-Golay (SAVGOL) filter and 

the median filter (Eon and Bachmann, 2021; Kwon et al., 2020; Mishra et al., 

2019; Okyay et al., 2016). SAVGOL uses different polynomial functions to 

smooth signals using a window-based technique (Savitzky and Golay, 1964). 

Median filtering is also a window-based filter, replacing each measured value 

with the median value of the data inside the window. These filtering methods 

can be used independently for each hyperspectral spectrum of a pixel in the HSI. 

Nevertheless, if the noise level is too high, these filters need to determine the 

optimum window size for filtering, but it is a user-dependent parameter. Further, 
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the spectral profile can be deformed if the noise is present in subsequent 

wavelengths.  



 

27 

 

 

Fig. 2. 6. Noise in HSI due to surface reflection and its removal with filtering. 
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2.1.2 Optical characteristics of suspended sediment in rivers 

2.1.2.1 Theory of solar radiation transfer in rivers 

The principle of detecting the scattering feature of the suspended 

sediment as radiance and converting it into concentration is physically clear, 

but the radiance detected by the hyperspectral camera consist of complex 

signals. In addition, the scattered radiance is significantly affected by the 

variability of sediment and stream properties, and it is essential to understand 

the spectral variability by clarifying this principle. Therefore, in this chapter, 

the optical characteristics of rivers and suspended sediment are discussed.  

The total radiance recorded at each pixel in the hyperspectral image of 

the water environment consists of four major sub-radiance: upwelling radiance 

from the bed (Lb), backscattered radiance from the water body (Lc), upwelling 

radiance from the interface between the atmosphere and the water body (Ls), 

and upwelling path radiance from the atmosphere (Lp) (Fig. 2.11) (Baek et al., 

2019; Niroumand-Jadidi et al., 2018; Legleiter et al., 2004). Among these 

components, Lp can be removed by atmospheric correction or minimized by 

low-altitude flights of UAVs. Ls is influenced by roughness and sun glittering 

from the water surface; it is usually assumed to be negligible or removed by 

glint removal algorithms (Legleiter et al., 2017; Overstreet and Legleiter, 2017). 

Lc is influenced by the inherent optical properties (IOPs) of constituents in the 
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water column, in which IOPs are independent optical properties with the 

illumination (i.e., backscattering (bb) and absorption (a) coefficient) (Fan et al., 

2015; Olmanson et al., 2013; Pinet et al., 2017; Wong et al., 2019). The water 

properties and constituents in the water column, including suspended sediment, 

determine these IOPs, especially bb and a, as shown in Fig. 2.7. However, 

radiance is Apparent Optical Properties (AOPs), which are dependent on 

illumination conditions. Therefore, the relation between radiance and 

suspended sediment is significantly complex. This relation can be theoretically 

understood from the radiative transfer theory, which connects radiance and 

IOPs (Mobley, 1999).  
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Fig. 2. 7. Solar radiation transfer in water environments (modified from Beak 

et al., 2019). 
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Since Lc is highly related to the suspended sediment, SSC can be 

inversely converted from the Lc using radiative transfer theory with 

backscattering and absorption coefficients of suspended sediment (Lee et al., 

2002). However, Lc cannot be measured separably from Lb in hyperspectral 

images in shallow waters, which usually interferes with measuring intrinsic Lc 

value. To overcome such limitation, Lc and Lb signals are interpreted in 

connection with the analytical or semi-analytical method based on radiative 

transfer theory (Eqs. 2.1 and 2.2) (Lee et al., 1999; Pinet et al., 2017; Volpe et 

al., 2011).   
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where rsR  denotes the remote sensing reflectance, uL  is the total radiance 

recorded at the sensor,    denotes wavelength, dE   is irradiance, R  is the 

reflectance of the infinitely deep water column, h is water column depth, 

( )K    is attenuation coefficient, b   is bottom albedo, which is distinctive 
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properties according to bottom type. This equation indicates that the water 

column radiance, the first term on the right hand, is exponentially increasing 

with the ( )K   and H, and it has a maximum value when the water depth is 

infinitely deep ( ( ) ( )rsR R =  ). The relation between both confounding 

optical variables, R   and ( )K   , and suspended sediment is described in 

Chapter 2.1.2.2. The second term in the right hand is bottom reflectance, which 

is also a function of ( )K   and h. Differently from water column reflectance, 

the bottom reflectance exponentially decreases as h increases with the b  as 

the maximum value. The effect of bottom reflectance on total reflectance 

measured at the sensor is elaborated in Chapter 2.1.2.3. 

Although this physics-based approach has the advantage of being 

robust even when using a small number of data, it requires prior information 

about the IOPs of water constituents and bottom albedo (Niroumand-Jadidi et 

al., 2019a). Moreover, the IOPs and bottom albedo are challenging to measure 

since they vary considerably according to the variety of suspended sediment 

and bottom characteristics in the water environments (Pinet et al., 2017). 

In this study, three confounding factors that influence the spectral 

variability of suspended sediment in rivers were investigated in detail. The first 

factor is the heterogeneity of sediment properties (i.e., particle size distribution, 

mineral characteristics, and particle density). This factor varies Lc in Eq. 2.2 

since the sediment properties change the backscattering coefficient (bb) and 
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absorbance coefficient (a) of the water column. Therefore, the optimal 

wavelength of suspended sediment is hard to be selected if various suspended 

sediment exists in the water column (Volpe et al., 2011). The second factor is a 

variety of bottom properties, which determine the Lb in Eq. 2.1. Especially in 

shallow waters, suspended sediment retrievals are challenging since the bottom 

signal critically disturbs the intrinsic signal of suspended sediment. Therefore, 

almost all previous studies did not account for the effect of bottom properties 

on suspended sediment retrievals since they mainly used low-resolution 

satellite images. Lastly, the third factor is the dynamic vertical profile of 

suspended sediment. Because of the non-uniform profile of suspended sediment 

in the vertical direction in the water bodies, the amount of light that passes 

through the water column is inconsistent with the same depth-averaged SSC. 

These three factors are detailed in the following Chapters 2.1.2.2~2.1.2.4, 

respectively. 

 

2.1.2.2 Heterogeneity of sediment properties 

Solar radiation, scattered by suspended sediment in the water column, 

depends on sediment properties (volume and particle size) and refractive index 

relative to water, which depends on the mineral characteristics of sediment (Liu 

et al., 2020; Pinet et al., 2017). Since particle size of suspended sediment is 

relatively larger than the wavelength of the visible range (500-700 nm) to Near-
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Infra Red (NIR) (700-1000 nm), the Mie scattering theory has been used in 

many previous studies to calculate the IOPs and AOPs of turbid waters 

(Doxaran et al., 2009; Woźniak and Stramski, 2004). Based on the hypothesis 

of homogeneous spherical particles in Mie scattering theory, the Mie scattering-

based model was proposed to calculate both backscattering coefficient (
SSbb ) 

and absorbance coefficient (
SSa ) of suspended sediment (de Rooij and van der 

Stap, 1984). This model can compute the IOPs of suspended sediment 

populations considering PSD. In specific, the PSD in this model assumed 

power-law PSD to calculate both bbSSC and aNAP, as follows: 
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where 
bbQ  and 

aQ  are efficiency factors for backscattering and absorbance, 
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respectively, N is the PSD representing the number of particles having size d, 

SSCv is the volume concentration of suspended sediment, J is Junge’s exponent, 

and ss is particle density. The efficiency factors (
bbQ  and 

aQ ) offer the 

amount of incident light backscattered and absorbed, which are intrinsic values 

according to the mineralogy of suspended sediment. The effect of particle size 

and density is also accounted for by integrated PSD and particle density in Eq. 

2.4 and 2.5. 

 Therefore, five variables are needed to calculate the 
SSbb  and 

SSa , 

and all of these variables can be determined by the sediment properties, as 

described in Table 2.2. Moreover, the reflectance of infinitely deep water 

column (R∞) and downward diffuse attenuation coefficient (Kd) are calculated 

from 
SSbb  and 

SSa  using the following equations (Lee et al., 1999; Mobley, 

1999; Pinet et al., 2017): 
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where TOTa   and TOTb   represent total absorbance and scattering coefficient 

including suspended sediment and other particles, as illustrated in Fig. 2.7; 'G  

is a coefficient defined as the relative contribution of the scattering to the 

vertical attenuation of the irradiance, and its range is from 0.233 to 0.264 (Kirk, 

1994).  

From this relationship between AOPs and IOPs, it can be seen that 

backscattered reflectance in the simplified radiative transfer equation (Eq. 2.2), 

( )( )(1 )K HR e  −

 − , is apparently related to sediment properties. Moreover, 

the spectral variability caused by suspended sediment properties is inevitable 

in rivers, and thus the contribution of the effect of heterogeneity of sediment 

properties must be necessarily investigated in respect to hyperspectral image-

based passive remote sensing. 
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Table 2. 2. Variables to estimate the optical properties and the related 

properties of the sediment. 

Symbol Description Related properties 

aQ
 

Absorption efficiency factor Mineralogy 

bbQ
 

Backscattering efficiency factor Mineralogy 

ss  Particle density Sediment density 

d Particle size Sediment particle size 

( )N d  Particle size distribution 
Sediment particle size 

distribution 
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2.1.2.3 Effects of bottom reflectance 

Since most studies of SSC estimation using remote sensing data were 

conducted by satellite images, remote sensing techniques for SSC were 

developed primarily for large and deep water environments, such as coastal 

waters (Jiang et al., 2021; Koestner et al., 2020; Spyrakos et al., 2018; Zhang 

et al., 2020), eustray (Doxaran et al., 2003; Islam et al., 2001; Shen et al., 2010), 

and large rivers (Kilham et al., 2012; Peterson et al., 2018; Umar et al., 2018). 

Therefore, despite the successful application of remote sensing models for SSC 

measurement in these areas, the contribution of bottom reflectance was not 

considered actively owing to its nonsignificant contribution in deep water 

environments.  

Recently, the use of a UAV-mounted hyperspectral camera for 

monitoring water quality parameters has been explored. This system provides 

spatio-temporally high-resolution hyperspectral images for shallow water 

analysis with radiance values in a wide range of wavelengths, even though this 

system has been used extensively in bathymetry retrievals of shallow waters 

with the advantage of satisfactory resolution (Kim et al., 2019; Legleiter and 

Harrison, 2019). Contrary to bathymetry retrievals, applying this system to 

suspended sediment retrievals in shallow waters is challenging because the 

bottom signal critically disturbs the intrinsic signal of suspended sediment. 

Therefore, the precisely optimal wavelength of suspended sediment is disturbed 

by the bottom types (Volpe et al., 2011). 
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In the simplified radiative equation (Eq. 2.2), the bottom reflectance 

is expressed as ( )K hb e 



−  . This term reveals that the bottom reflectance 

exponentially decreases according to water depth H, while the backscattered 

reflectance increases exponentially with increasing water depth, as described in 

Section 2.1.2.1. Fig. 2.14 shows the effect of water depth on total, water column, 

and bottom reflectance in 550 nm calculated by Eq. 2.2. For calculation with a 

reasonable range of each parameter, it was assumed that 1(550 ) 1K nm m−=  

and (550 ) 0.5R nm = , which is adapted by the values included in the range 

suggested by Albert and Mobley (2003). For the bottom albedo in this equation, 

the value corresponding to the sediment and vegetation in 550 nm was used to 

compare the effect of the bottom type difference. This figure reveals that bottom 

and water column reflectance are changing dramatically with water depth 

where the water depth is smaller than 2 m. Furthermore, the bottom reflectance 

shows different values in this sensitive range according to bottom types. In this 

respect, the varying water depth and variety of bottom properties increase the 

spectral variability, especially in shallow waters such as small to medium rivers 

(Niroumand-Jadidi et al., 2019b).
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Fig. 2. 8. Reflectance calculated from simplified radiative transfer equation, Eq. (2.2), according to water depth; (a) sediment 

bottom and (b) Macrophyte (vegetation) bottom. 
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2.1.2.4 Vertical distribution of suspended sediment 

 The vertical distribution of suspended sediment concentration in rivers 

is non-uniform due to the interaction between turbulent diffusion and sediment 

settling in the water column. As shown in Fig. 2.15, the vertical advection-

diffusion equation under steady flow is expressed as follows: 

 

 0s z

C C
w

z z z


   
+ = 

   
 (2.8) 

 

where C is concentration, ws is settling velocity of suspended sediment, z  

is the vertical turbulent diffusion coefficient, z denotes vertical direction. In 

this equation, the first term is the settling mass flux, and the second term is 

the rate of upward concentration diffusion caused by turbulent mixing.  
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Fig. 2. 9. Mechanics of vertical transport of suspended sediment in rivers. 
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where   is the ratio of z  and  ,   is the Von Kármán constant, *u  is 

shear velocity, and h is local water depth. From this expression and Eq. 2.7, 

Rouse (1937) derived an equation for the vertical profile of suspended sediment 

concentration at a distance z from the bed as follows: 
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where xz  is the reference distance, */sP w u =   is referred to as the 

Rouse number, which indicates the ratio of the lift force from turbulent 

diffusion and downward gravity force.  

 In the Rouse equation, the vertical SSC distribution is determined by 

P as a shape factor. Fig 2.10 shows the variation of vertical SSC distribution 

according to P. As shown in this figure, the variation of SSC with the water 

depth is more profound for the higher value of P (Rouse, 1937). For the high 

value of P (large particles), SSC is higher near the river bottom and is 

monotonically decreasing as z increases approaching the water surface, whereas 

SSC distribution is almost uniform for the low value of P (small particles). 

While the variables related to turbulent diffusion in P are dominantly 
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determined by flow and channel conditions, the ws strongly depends on the 

particle size of suspended sediment. Therefore, the P is heterogeneously 

distributed in the river since the various PSDs in rivers induce separation 

between particles with significantly different settling velocities. In terms of 

solar radiation transfer in the river, this variability of the SSC vertical profile 

causes spectral variability. Even with the same depth-averaged SSC, the 

different profile of SSC influences how much light can pass through the water 

column. 
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Fig. 2. 10. Variation of SSC along with the flow depth (revised from Rouse 

(1937)). 

  



 

46 

 

2.1.3 Retrieval of suspended sediment from remote sensing data  

2.1.3.1 Remote sensing-based regression approach 

Remote sensing of suspended sediment depends on the absorption of 

incoming solar energy by the water column. Suspended sediment in water 

reflects this energy more strongly than pure water, particularly in the VIS and 

NIR wavelengths (Bhargava and Mariam, 1991; Z. M. Chen et al., 1991; 

Dethier et al., 2020; Novo et al., 1989) (Fig. 2. 11). Based on this premise, many 

studies tried to clarify empirical relationships between reflectance and SSC 

using spectral bands in the VIS and NIR wavelengths. Developing this 

relationship requires a dataset including in situ SSC measurements and 

corresponding reflectance data of river pixels. However, finding relevant 

spectral bands among the wavelength range of hyperspectral imagery is crucial 

to developing pertinent regression models in the study area. The most widely 

used band selection method in remote sensing of the water environment is 

optimal band ratio analysis (OBRA), which determines the relevant bands by 

searching the band ratio with the highest correlation coefficient with SSC 

(Legleiter, 2021; Legleiter et al., 2019, 2004; Montanher et al., 2014). Most 

earlier researchers developed simple regression models, such as linear, 

exponential, polynomial, and log-linear models, using optimal band ratio or 

most correlated single band with SSC as an independent variable (Table 2.3). 
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Fig. 2. 11. Remote sensing reflectance (Rrs) by clear water (blue) and water 

with chlorophyll (green), CDOM (navy), and sediment (brown) (revised from 

Hafeez et al. (2019)). 
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Table 2. 3. Regression models for remote sensing-based SSC measurement 

Author Sensor Model 
Band 

selection 
X Wavelength Site Remarks 

Islam et al. 

(2001)  

Satellite 

MODIS 69.39 201SSC X= −  Correlation R(λ1) λ 1: 449–479 nm Lake 
Explicit model using single 

spectral band 

Doxaran et 
al. (2003) 

Satellite 
SPOT 

27.423exp(0.0279 )SSC X=  
OBRA 

( 1)
log

( 2)

R

R





 
 
 

 λ1: 500–590 nm 

λ2: 790–790 nm 
Estray Explicit model using band ratio 

Doxaran et 

al. (2003) 

Satellite 

Landsat  
( )29.022exp 0.0335SSC X=  

OBRA 
( 1)

log
( 2)

R

R





 
 
 

 
λ1: 555 nm 

λ2: 865 nm 
Estray Explicit model using band ratio 

Doxaran et 

al. (2003) 

Satellite 

SPOT 
( )18.895exp 0.0322SSC X=  

Correlation R(λ1) 
λ1: 841-876 nm 

Estray 
Explicit model using single 

spectral band 

Doxaran et 

al. (2003) 

Satellite 

Landsat 
( )26.083exp 0.0326SSC X=  

 
OBRA 

( 1)
log

( 2)

R

R





 
 
 

 
λ1: 555 nm 

λ2: 865 nm 
Estray Explicit model using band ratio 

Islam et al. 

(2003) 

Satellite 

Landsat 

TM 
16.826 5.2369SSC X= −  OBRA 

( 1)
log

( 2)

R

R





 
 
 

 λ1: 450–520 nm 

λ2: 520–600 nm 
Estray Explicit model using band ratio 

Chu et al. 

(2009)  

Satellite 

MODIS 

1.6

7.510

X

SSC

− 
 
 =  Correlation R(λ1) 

λ1: 620–670 nm 
Lake 

Explicit model using single 

spectral band 

Wang et al. 

(2009) 

Satellite 

MODIS 
exp(43.23 1.37)SSC X= +  Correlation R(λ1) λ1: 841–876 nm Estray 

Explicit model using single 
spectral band 

Fang et al. 

(2010) 

Satellite  

EO-1 

AL1 

1229.5 53.795SSC X=− +  
Correlation R(λ1) 

λ1: 549 nm 
Estray 

Explicit model using single 

spectral band 

Wang and Lu 
(2010)  

Satellite 
MODIS 

( )exp 4.177 0.262SSC X= +  OBRA 
( 1)

log
( 2)

R

R





 
 
 

 λ1: 841–876 nm 

λ2: 1230–1250 

nm 

Lake Explicit model using band ratio 
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Table 2. 3. Regression models for remote sensing-based SSC measurement (continued). 

Author Sensor Model 
Band 

selection 
X Wavelength Site Remarks 

Wang et al. 
(2010)  

Satellite 
MODIS 23.03 60.24SSC X=− +  OBRA 

( 1)
log

( 2)

R

R





 
 
 

 λ1: 841–876 nm 

λ2: 1230–1250 

nm 

Lake Explicit model using band ratio 

Wang et al. 

(2010)  

Satellite 

Landsat  
( )exp 4.177 0.262SSC X= +  Correlation R(λ1) λ 1: 800-1100 nm Lake 

Explicit model using single 

spectral band 
Espinoza 
Villar 

(2013) 

Satellite 

MODIS 
2.941020SSC X=  

Model 
validation 

result 

( 1)
log

( 2)

R

R





 
 
 

 λ1: 620–670 nm 

λ2: 841–876 nm 
River Explicit model using band ratio 

Montanhe

r et al. 
(2014)  

Satellite 

Landsat 

TM 
SSC aX b= +  

Correlatio

n 
R(λ1) 

λ 1: 1550-1750 

nm 
River 

Multiple explicit equations 

according to water types 

Liu et al. 
(2017) 

Satellite 

Sentinel-

2 

1.3572950SSC X=  

Model 

validation 

result 

R(λ1) λ 1: 773-793 nm Lake 
Explicit model using single 
spectral band 

Wang et 

al. (2017) 

Satellite 

Landsat 

TM 

2245287 585.92 27.599SSC X X= − +  Reference R(λ1) λ 1: 760-900 nm Estray 
Explicit model using single 

spectral band 

Umar et 

al. (2018) 

Satellite 

Landsat 

TM 
Random Forest (RF) 

Model 
validation 

result 

R(λ1)… 

R(λ7) 

λ 1 ~ λ 7: 450–
2350 nm 

River 
Implicit model (machine learning 

regression) 

Wei et al. 

(2019) 

UAV-

mounted 

HSI 

camera 

Support Vector Regression (SVR) - 
R(λ1)… 

R(λ150) 

λ 1 ~ 150: 400–
1000 nm 

Lake, 

River 

Implicit model (machine learning 

regression) 

Kabir et 

al. (2020) 

UAV-

mounted 

RGB 

camera  

ln( )SSC aX b= +  - R(λ1) λ 1: 600 nm River 
Multiple explicit equations 

according to sediment colors 
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Among these studies, Liu et al. (2017) developed exponential and 

power-law equations for SSC retrievals using reflectance of a single band from 

a multispectral satellite image in a lake. This study suggested the optimal 

equation and spectral band by comparing two equation types and each of the 

nine spectral bands in the multispectral image as an independent variable. Wang 

et al. (2017) proposed a quadratic model using the ratio of logarithmic 

transformed red band and NIR band using satellite images in estuaries and 

coasts. Also, Espinoza Villar (2013) used the ratio of red band and NIR as an 

independent variable of a power-law equation to map the SSC distribution in 

large rivers. Montanher et al. (2014) compared the reflectance of a single band 

and the ratio of reflectance of the spectral bands as an independent input 

variable for the linear regression model to estimate the SSC in rivers. While 

these simple regression models have the advantage that they can develop 

explicit equations, they have the disadvantage that only a narrow wavelength 

range can be utilized.  

In recent years, Machine Learning Regression (MLR) has been 

applied to overcome the limitation of the explicit models. Various MLR models 

(a decision tree model-based model, a mathematical function-based nonlinear 

model, and a neuron-based deep learning model) have been used to solve 

complex problems in water environments (Ardabili et al., 2020; Kwon et al., 

2021a; Pyo et al., 2020c; Stanev et al., 2018; Yao et al., 2008; Yaseen et al., 

2019). These models made it possible to solve the nonlinear relation between 
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independent and dependent variables that could not be solved by conventional 

regression methods. Although MLR is an implicit model which cannot clarify 

the algebraic relationship between reflectance and SSC, this approach has 

apparent advantages: (1) modeling of a non-linear relationship between 

reflectance and SSC; (2) suitability for high dimensional data processing; (3) 

featurization of spectral bands in the wide range of wavelength.  

Umar et al. (2018) developed Random Forest (RF) regressor using 

multispectral satellite images in the confluence of large rivers. This model 

successfully retrieved the spatial distribution of SSC and captured the dynamic 

mixing process of suspended sediment in this complex area. Wei et al. (2019) 

first applied the UAV-borne hyperspectral image to estimate SSC in the lake 

and shallow river. Since the hyperspectral image used in their study contains 

150 spectral bands in 400 – 1,000 nm, it has dealt with much higher-

dimensional data than existing satellite-based studies. These high-dimensional 

data were featured through the Support Vector Regression (SVR) model, and 

their model showed accurate performance in both lake and river. However, the 

effect of bottom reflectance reduced the accuracy of their model in shallow 

waters.  

Despite the successful estimation of SSC in previous studies, the 

wavelength range of selected spectral bands was distributed widely according 

to the study area. Kwon et al. (2021a) validated several models from previous 

studies in the Nakdong River, and they revealed that exixting empirical 
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equations have a limitation on the transferability to the uncalibrated areas, 

which have heterogeneous spectral characteristics of water environments. 

Despite the successful attempts of the remote sensing approach, few studies 

have addressed the cause of locality; therefore, the globally applicable remote 

sensing technique for suspended sediment is insufficient.  

 

2.1.3.2 Clustering of remote sensing data  

As described in Section 2.1.2, spectral variability in the water column 

induces the heterogeneous relationship between SSC and the spectrum of 

reflectance. In this study, to improve the SSC estimator and understanding of 

spectral variability, the clustering approach was applied by grouping the SSC-

reflectance dataset with optically homogeneous clusters. Cluster analysis using 

hyperspectral images can classify spectral clusters based on abundant spectral 

information. Moreover, this approach can analyze their physical properties 

through the relationship between the spectral characteristics and the physical 

variables, as depicted in Fig. 2.12. The clustering method is included in the 

unsupervised machine learning model. It can group the datasets based on the 

similarity standard and be categorized into several algorithms according to the 

similarity standard (Ni et al., 2020; Patel and Kushwaha, 2020; Zhou et al., 

2018). The most widely used clustering algorithms are K-means clustering and 

hierarchical clustering. K-means clustering needs to determine a specified 
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number of clusters before clustering, and then it can find the mutually exclusive 

cluster of spherical shape based on Euclidian distance (Q. Wang et al., 2017). 

Hierarchical clustering is a method of clustering based on Euclidian distance. 

This method searches a hierarchy of clusters without a pre-specified number of 

clusters. However, it is high time-consuming and has difficulty with space 

complexity (Wu et al., 2021). Unlike the above two methods, Gaussian Mixture 

Model (GMM) is based on probability density rather than the Euclidian 

distance of each data. The GMM describes each cluster as a separate Gaussian 

distribution, so the probability of belonging to each cluster can be estimated. 

This algorithm can cluster the overlapping data, which is not statistically 

apparent (Herms et al., 2021; Ni et al., 2020; Zhou et al., 2018). Due to such 

characteristics, GMM is robust to outliers and can find random shape clusters. 

The advantage and disadvantages of these clustering algorithms are 

summarized in Table 2.4, and the process of hyperspectral clustering is 

elaborated in Chapter 3. 
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Fig. 2. 12. Flowchart of hyperspectral clustering. 
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Table 2. 4. Comparison of clustering methods. 

 Advantage Disadvantage 

K-means 

Based on Euclidian distance, 

an efficient and less complex 

method 

Non-robust to the outlier, 

challenging to find the 

non-convex shape 

Hierarchical 

clustering 

Based on Euclidian distance, 

good visualization, no need to 

specify the number of clusters 

in advance 

Non-robust to the outlier, 

time-consuming 

GMM 

Robustness to outlier (can 

find random shape cluster), 

probabilistic framework, the 

best result for overlapped 

datasets 

Need large datasets, hard 

to estimate the number of 

clusters 
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2.2 Mapping of suspended sediment concentration in rivers 

2.2.1 Traditional method for spatial measurement 

The spatial distribution of SSC in rivers has not been thoroughly 

measured owing to the limitation of the measurement method. Among the 

conventional measuring techniques, the manual collection of samples using a 

water sampler was widely used to measure suspended sediment (Edwards and 

Glysson, 1999; Latosinski et al., 2014; Yang and Julien, 2019). To apply this 

method in large rivers, the spatial distribution measurement has relied on the 

possibility of deploying reel-mounted water samplers on a bridge, cableway, 

and boat due to their non-wadeable condition (Umar et al., 2018). Even though 

this sampling method is the most accurate measurement method, it is labor-

intensive and time-consuming and requires measuring the dry weight of the 

sediment in the laboratory. Therefore, in recent years, the ADCP-based cross-

sectional measurement has been used as an alternative method to collect 

datasets of spatial distribution, despite relatively high uncertainty. This method 

is more suitable for obtaining spatial distribution than the sampling method 

because it is possible to obtain high-resolution data by making the boat path 

dense and converting the data into a continuous spatial distribution using an 

interpolation technique (Kwak et al., 2020; Son et al., 2021). However, the 

movement of the boat usually disturbed the suspended sediment distribution, 

and the interpolated data is not sufficiently reliable.  
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All such methods enable the collection of accurate SSC data within 

individual points and cross-sections at a specific time. Nevertheless, such 

methods are still insufficient to analyze the complex mixing processes of 

suspended sediment in the complex river system, which requires high-

resolution data. In terms of mixing analysis, the suspended sediment which 

moves with the flow in rivers can be used as the most natural and efficient 

alternative tracers to observe river mixing without the need for artificial tracer 

injection. Therefore, the remote sensing-based SSC measurement technique can 

be an ideal platform to analyze the mixing dynamics with a large spatio-

temporal scale, even though it focuses on measuring the surface concentration. 

The hyperspectral imagery-based SSC measurement in this study is suitable for 

measuring high-resolution SSC distribution; thus, it is expected to give 

substantial insight into exploring complex mixing processes in river systems. 

 

2.2.2 Spatial measurement at river confluences 

2.2.2.1 Dynamics of flow and mixing at river confluences 

River confluences are the most representative area where the complex 

spatial distribution of suspended sediment occurs because considerable changes 

are generated by the convergence of flows from the tributary into the main river 

(Fig. 2.13). These tributary flows commonly have different discharges, 
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momentums, velocities, and bottom elevations from those of the main river; 

thus, the turbulent mixing, exchange of momentum, and mixing of suspended 

matters (e.g., suspended sediment, pollutant, algal bloom) occur with various 

patterns at the near-field of confluence, named the confluence hydrodynamic 

zone (CHZ) as depicted in Fig. 2.14 (Constantinescu et al., 2012; Konsoer and 

Rhoads, 2014; Rhoads and Johnson, 2018; Rhoads and Kenworthy, 1995; 

Sukhodolov et al., 2017; Yuan et al., 2021, 2019; Zinger et al., 2013). In this 

figure, the mixing process can be divided into three stages: near-field mixing, 

intermediate-field mixing, and far-field mixing. Among these regions, mixing 

processes in the near field or CHZ are the most complex and dynamic, and shear 

interface and helical motions in CHZ significantly affect the mixing 

mechanisms of suspended sediment downstream of the CHZ, especially the 

intermediate field (Fig. 2.14).   

The velocity field in river confluences is highly complex when the two 

flows from the main river and tributary are merged. In order to understand the 

effects of the hydrodynamics of flow on the mixing process in river confluences, 

the hydrodynamic features in confluences are important since it has disparate 

features compared to general rivers. In analyzing the dynamics of flow in the 

river confluence, Best et al. (1987) proposed six hydrodynamic features: 

stagnation zone, flow deflection zone, flow separation zone, maximum velocity, 

flow recovery, and shear layers. These features of confluences vary according 

to physical variables of confluences: W/H, confluence angle (α), momentum 
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ratio (MR), discharge ratio (QR), velocity ratio (VR), and bed discordance 

(Horna-Munoz et al., 2020; Lewis et al., 2020; Rhoads and Kenworthy, 1995). 

Despite several field studies on many confluences, the relationship between 

these variables and hydrodynamic features of confluence has not been 

thoroughly clarified because its variability (Pouchoulin et al., 2020). 

Within the near-field (CHZ) of confluences, the helical motion, 

including secondary currents, is abruptly produced by confluent flows and 

channel curvature, as illustrated in Figs. 2.13–2.14 (Lewis et al., 2020; Rhoads 

and Johnson, 2018). This abnormal flow induces various patterns of the shear 

layer, which controls the mixing in the near field by producing strong large-

scale and turbulent eddy at the interface of confluent flows (Cheng and 

Constantinescu, 2020; Penney et al., 2020). The mixing layer is generated when 

confluent flows with different SSC are entrained into this shear layer. The types 

of the shear layer in near-field can be classified into wake mode and Kelvin-

Helmholtz (KH) mode according to VR and MR, as shown in Fig. 2.15 (Cheng 

and Constantinescu, 2021; Constantinescu et al., 2012; Gualtieri et al., 2019; 

White and Helfrich, 2013). In this figure, U1 and U2 are the streamwise velocity 

of tributary and main rivers, respectively. The wake mode is developed when 

the confluent flow has a similar velocity or momentum to those of the main 

river (VR ≈1 or MR ≈1). In this mode, the turbulent wake is developed behind 

the stagnation zone shown in Fig. 2.14. This wake induces negative velocities 
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associated with vortex shedding of two counter-rotating horizontal eddies 

within the shear layer. Two shear layers are developed due to velocity deficit 

from the convergence of two boundary layers of the confluent flows. Then, the 

shear layer dissipates downstream, where the velocity deficit disappears. 

Contrarily, KH mode is developed with co-rotating horizontal eddy if the 

momentum or velocity of confluent flows has considerably different values 

from those of the main river. With vortex pairing, the shear layer of KH mode 

usually has a larger length scale of width than the wake mode (Cheng and 

Constantinescu, 2021; Constantinescu et al., 2014, 2012; Gualtieri et al., 2019).  

Although the growth of the shear layer enhances the lateral mixing in 

the near field, the shear layer is rapidly dissipated owing to the effect of form 

roughness by large river bed forms such as dunes and riffles, especially at the 

large and shallow confluences (W/H>100) (Constantinescu et al., 2014; 

Gualtieri et al., 2019; Uijttewaal and Booij, 2000). In large and shallow 

confluences, the eddy is hard to grow in a vertical direction since the length 

scale is limited to water depth, as shown in Fig. 2.14 (c). On the contrary, the 

horizontal eddy is less affected by the boundary, so the transverse mixing is 

more dynamic even in the near field at the confluences. The strong eddy caused 

by the advective lateral momentum is much larger than the turbulent eddy in 

the transverse direction, which was proven by the numerical model and 

experiment results (Cheng and Constantinescu, 2020; Constantinescu et al., 

2012; Lewis et al., 2020; Lewis and Rhoads, 2015; Rhoads and Sukhodolov, 
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2008). It means that the dispersion from secondary current is pronounced at the 

near field of confluences. However, confluence mechanisms are so complex 

that each has very different characteristics. Confluence angle, density 

differences, and bed discordance affect confluence mechanisms. Due to 

difficulty obtaining high-resolution flow and SSC observations, there is still a 

considerable lack of information on the mixing process and hydrodynamic 

mechanism in confluences.
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Fig. 2 13. Spatial distribution of SSC at large river confluences (revised from Jung et al. (2019)). 
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Fig. 2. 14. Eddy dynamics at large river confluences (revised from Jirika and Uijttewaal (2004)): (a) wake mode; (b) Kelvin-

Helmholz mode; (c) vertical eddy generation.
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2.2.2.2 Field experiments in river confluences 

The dynamics of flow and suspended sediment in river confluences 

have been studied experimentally in various ways, as described in Table 2.5. 

This table shows that most studies were undertaken in small-to-medium rivers, 

where the width to depth ratio (W/H) is less than 50, and spatial measurement 

of flow and suspended sediment has not been conducted owing to the 

limitations of measurement techniques. In these rivers, spatial measurement of 

the CHZ region is mainly conducted using three-dimensional numerical models 

or large-scale particle image velocimetry (LSPIV) measurements due to the 

expensive computational load (Constantinescu et al., 2012; Lewis and Rhoads, 

2018; Sabrina et al., 2021). However, in more recent years, using the ADCP, 

many studies have measured hydrodynamic features in CHZ of large rivers in 

detail (Gualtieri et al., 2018; Yuan et al., 2021). The results of these studies 

demonstrated that hydrodynamics and sediment mixing in large rivers with a 

W/H larger than 100 are more affected by form roughness than in small rivers. 

Therefore, secondary currents quickly dissipated, showing completely different 

phenomena with small-to-medium river confluences. 

Table 2.5 shows that SSC measurements were conducted using ADCP 

or remote sensing by satellite. Gualtieri et al. (2018) measured SSC at several 

points in the Negro and Solimo˜es Rivers in Brazil. However, the number of 

SSC data is insufficient to analyze the spatially mixing of suspended sediment 
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with flow characteristics. Using the backscatter intensity signal of ADCP as a 

surrogate for suspended sediment concentration, several studies conducted 

cross-sectional measurements by mounting ADCP on a moving boat at large 

confluences (Son et al., 2021; Szupiany et al., 2009; Yuan et al., 2021). 

Although this method can efficiently measure many SSC data with water depth 

and velocity profiles, it also has a relatively low resolution to quantify the 

mixing patterns and rates accurately. Umar et al. (2018) measured detailed 

information on spatial distributions of SSC using satellite remote sensing in the 

Mississippi and Missouri Rivers in the USA. However, the spatial resolution of 

multispectral satellite imagery is not enough to capture detailed mixing patterns 

of suspended sediment, as described in Chapter 2.1.2. Thus, the mixing of 

suspended sediment at river confluences has not been widely studied owing to 

the lack of a high-resolution SSC dataset. 
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Table 2. 5. Summary of field experiments of previous studies in river confluences.  

Reference Site W (m) W/H QR 
SSC 

measurement 

Spatial 

measurement 

Rhoads and 

Kenworthy (1995, 

1998) 

Kaskaskia River and Copper Slough, Illinois, 

USA 
8–12 

44.74, 

24.28 
0.47 - - 

Sukhodolov and 

Rhoads (2001) 

Kaskaskia River and Copper Slough, Illinois, 

USA + Saline and Salt Fork 
8–15 16-30 

0.25-

1.18 
-   

Rhoads and 

Sukhodolov (2004) 

Kaskaskia River and Copper Slough, Illinois, 

USA 
8–12 

44.74, 

24.28 
0.47 - - 

Boyer et al. (2006) 
Bayonne and Berthier Rivers, Quebec, 

Canada 
8–10 8–10 - - - 

Parsons et al. (2007) 
Confluence‐diffluence in Río Paraná, 

Argentina 

600-

1,000 

38.99, 

84.91 
0.2,0.5 - - 

Rhoads and 

Sukhodolov (2008) 

Kaskaskia River and Copper Slough, Illinois, 

USA 
8–12 

44.74, 

24.28 
0.47 - - 

Szupiany et al. (2009) 
Confluence‐diffluence in Río Paraná, 

Argentina 

600-

1,000 

38.99, 

84.91 
0.2,0.5 ADCP - 

Constantinescu et al. 

(2012) 

Kaskaskia River and Copper Slough, Illinois, 

USA 
8–12 

44.74, 

24.28 

0.47, 

0.95 
  3D modeling 

Ramón et al. (2013) Ebro and Segre Rivers, Spain 400 57 
0.13-

0.40 
- - 

Konsoer and Rhoads 

(2014) 

Wabash and Ohio River, Wabash and 

Vermilion River, Indiana, USA 

500-

675 
68.7 

0.12-

1.02 
- 

Cross-

sectional 

analysis 

Baranya et al. (2015) 
Mosoni‐Duna and River Rába, Hungary Ebro 

and Segre Rivers, Spain 
40-60 - 

0.12-

1.02 
- 3D Modeling 

Riley et al. (2015) 
Wabash and Ohio River, Wabash and 

Vermilion River, Indiana, USA 

500-

675 
68.7 

0.12-

1.02 
- - 
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Table 2. 5. Summary of field experiments of previous studies in river confluences (continued). 

Reference Site W (m) W/H QR 
SSC 

measurement 

Spatial 

measurement 

Lewis and Rhoads 

(2015, 2018) 

Kaskaskia River and Copper Slough, Illinois, 

USA + Saline and Salt Fork 
8–15 16-30 

0.25-

1.18 
- LSPIV 

Sukhodolov et al. 

(2017) 

Ledra River and Torrente Sorgive die Bars, 

Italy 
10–17 13.75 0.57 - - 

Pouchoulin et al. 

(2020) 
Rhône and Saône Rivers, France 

270-

275 
29.69 

0.56-

0.90 
    

Umar et al. (2018) Mississippi and Missouri rivers, USA 1,000 - 0.4, 1.1 Satellite Satellite 

Gualtieri et al. (2018) Negro and Solimo˜es Rivers 
2,347-

3,134 
56-115 0.6 Sampling - 

Gualtieri et al. (2019) Negro and Solimo˜es Rivers 2,830 
115.98, 

58.42 

0.39, 

0.32 
- Moving boat 

Son et al. (2021) Nakong and Hwang Rivers, South Korea 
305.7-

317.8 

44.75-

47.9 

0.08-

0.14 
ADCP Moving boat 

Yuan et al. (2021) Yangtze and Poyang Lake, China 
1,133, 

1,930 

129, 

189 
0.2, 0.5 ADCP Moving boat 
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3. Experimental studies 

 

3.1 Experimental cases 

In this study, a laboratory experiment (Exp. 1) and field-scale 

experiments (Exps. 2-1 and 2-2) were conducted to understand the spectral 

characteristics of suspended sediment and confounding factors inducing 

spectral variability. The laboratory experiment aimed to observe the intrinsic 

optical properties of suspended sediment in a completely mixed state with non-

bottom reflectance. Field-scale experiments were conducted to evaluate the 

optical properties of suspended sediment under optically complex states. In the 

field-scale experiments, volumetric suspended sediment concentration (SSCv) 

was measured using a laser diffraction sensor. The hyperspectral images were 

collected using the UAV-mounted hyperspectral camera; this was performed 

through tracer tests with three types of sediments in a field-scale open channel. 

The characteristics of the optical variability of suspended sediment were 

investigated according to sediment properties, bottom types, background 

turbidity, and water depth.  

In laboratory and field-scale experiments, experimental cases were 

mainly determined based on the types of sediment, channel bottom, and 

turbidity of the water flowing in the channel (Table 3.1). For both experiments, 
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two different sediments were selected as the sample sediment: quartz sand and 

yellow loess. Further, two types of quartz sand and yellow loess with different 

densities and particle sizes were used in each experiment (Table 3.2). The 

density of the sediment samples used in lab-scale (Exp. 1) and field-scale 

experiments (Exp. 2-1, 2-2) was calculated from both the SSCv measured by 

laser in-situ scattering transmissometers (LISST-200X by Sequoia Scientific 

Inc., USA) and the weight concentration of suspended sediment (SSCW) 

measured through dry weight measurement (Fig. 3.1). In this procedure, 

distilled water was placed in a 1 L beaker, and the amount of the sample was 

increased when using LISST-200X. The full path flow-through chamber was 

utilized to circulate water and pass through the LISST-200X. Each 

concentration was measured for 1 min, and the mean concentration was used to 

calculate the density of each sediment. The PSD was measured using LISST-

200X during this procedure. The density of each sediment is shown in Fig. 3.2, 

and the measured PSD of each sediment is described in Table 3.2. The mean of 

the volume concentration and weight concentration resulted in a high R2 value, 

although the standard deviation of each volume concentration was relatively 

high. In addition, each sediment had apparently different density and PSD.  
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Table 3. 1. Properties of the sediment used in the experiments; a dominant fraction value of each sediment is indicated in bold 

in the shaded column. 

Sediment type 
Mineral 

contents 

ρs 

(g/cm3) 

d50 

(μm) 

Fraction (%) 

Clay 

(d < 4 μm) 

Silt 

(4 μm < d < 62 

μm) 

Sand 

(62 μm < d ) 

QS 1 

Quartz 

sand 

2.36 140 0.35 3.43 96.2 

QS 2 2.46 165 0.31 2.14 97.5 

YL 1 1.23 16.3 18.9 80.6 0.44 

YL 2 1.79 37.2 7.91 60.8 31.3 
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Table 3. 2. Summary of experimental studies: lab-scale and field-scale experiments. 

Type Exp. 
Channel 

type 

Sediment type 

(n) 

Bottom 

type 

Water 

depth 

(m) 

SSC 

range 

Background water 

quality 

Description 
Turbidity 

(FNU) 

Qhl-a 

(RFU) 

EC 

(µS/

㎝) 

Lab-

scale 
Exp. 1 

Rotating 

horizontal 

cylinder 

QS1 (1),  

QS2 (1),  

YL1 (1),  

YL2 (1) 

(4 cases) 

99% 

absorbance 

film 

0.6 
0~1333.3 

mg/L 
0 0 0 

Various sediment 

properties, 

non-bottom 

reflectance 

Field-

scale 

Exp. 2-1 
Straight 

channel 

QS1 (1),  

QS2 (1),  

mixture (1) 

(3 cases) 

Sand 0.8 

32.12 

~270.92 

µL/L 

60 0.60 150.2 

Various sediment 

properties, 

high turbidity 

Exp. 2-2 
Meandering 

channel 

QS1 (2),  

YL1 (2),  

YL2 (1),  

mixture (2)  

(7 cases) 

Sand, 

vegetation 
0.8 

10.59 

~317.63 

µL/L 

0.1 0.01 160.5 

Various sediment 

properties, 

low turbidity, 

bottom type, 

heterogeneous 

mixing 
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Fig. 3. 1 Experimental setting in the laboratory for (a) concentration, (b) PSD, and (c) density of sediment sample.
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Fig. 3. 2. Comparison of SSCW measured based on the dry weight of each 

sample and SSCV measured using LISST-200X: (a) QS1, (b) YL1, and (c) 

YL2. 
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Using Principal Component Analysis (PCA) and clustering analysis 

with experimental datasets, this study quantitatively detailed the most 

confounding factors of optical variability of SSC, such as sediment properties 

(mineral contents, particle size, density), background turbidity, water depth, and 

bottom substrate, as detailed in Chapter 2.1.2. The experimental dataset was 

used to develop CMR-OV. The summary of each experiment and related impact 

variables are described in Table 3.2, and each experiment is described in detail, 

in the following subchapters (Chap. 3.2.1 and 3.2.2). 

 

3.2 Laboratory experiment 

3.2.1 Experimental setup 

The primary approach to obtaining the relation between SSC and 

corresponding spectral signals is based on calibration between field samples 

and the spectrum obtained using a spectrometer. The measurement of intrinsic 

spectral properties is limited in a field experiment and involves high costs; 

therefore, laboratory-scale studies were performed through capturing the 

spectra of an opened water tank where the SSC varies (Chen et al., 1991; 

Choubey, 1994; Tolk et al., 2000; Kabir and Ahmari, 2020). The water tank-

based studies set uniformly mixed conditions of suspended sediment using 
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pumps and pipe systems (Tolk et al., 2000; Kabir and Ahmari, 2020). The pump 

system resuspends the sediment particles; however, the streamlines cannot 

cover the overall tank volume. If the mean particle size of sediment is large, it 

has a concise characteristic time scale for a particle to re-enter the turbulence 

region of the pump jet. Therefore, SSC over the water tank may vary unless the 

perforated pipe system is sufficiently dense to induce complete mixing. In 

addition, the water surface glittering may influence the measured spectrum 

when the water tank is open. Therefore, in this study, a more strictly controllable 

experimental setting was devised to determine the relationship between SCC 

and corresponding spectral signals. This experimental setting reduces the 

external uncertainty in measuring the suspended sediment’s scattering intensity 

and guarantees uniform mixing and non-bottom effect conditions.  

The hardware of the experimental setting consists of a rotating 

horizontal cylinder, halogen light sources, and measurement devices (Fig. 3.3). 

The cylinder (20.25 L) is connected to the angular frequency adjustable motor. 

Water and sediment are filled via three holes on the curved face of the cylinder. 

All faces of the cylinder can be detached. The curved face and the other side 

wall connected to the motor of the drum are black-coated, and the upper side 

opposite to the motor is transparent; 99% absorption film (Acktar light 

absorbent foil) was attached at the bottom of the drum, to prevent bottom 

reflection. The diagram of the horizontal agitator is illustrated in Fig. 3.3 (a). 

Halogen lamps, which provide almost constant illumination with a wide 
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spectral range, were used during the experiment since illumination stability and 

spectral range of light sources were key factors in this experiment. Two halogen 

lamps were installed at 45 degrees to the drum’s axis and 90 degrees to each 

halogen lamp to eliminate the shadow effect. Fig. 3.3 (b) and (c) show the 

apparatus and the experimental system. For spectral measurement, including 

radiance and reflectance, a hyperspectral camera (Corning 

microHSI 410 SHARK), which is a push-broom type sensor with a size of 13.6 

× 8.7 × 7.0 cm and a weight of 680 g, was used. This sensor covers the 400–

1000 nm spectral range with 150 spectral bands and 682 spatial pixels per line. 

This sensor spatially records the light entering through the prism by arranging 

multiple optical sensors linearly (Fowler, 2014). In addition, a point 

spectrometer (SR-2500 by Spectral evolution, USA) was used to measure a 

more precise and comprehensive range of radiance spectrum. This spectrometer 

covers the 350–2,500 nm spectral range in 1 nm increments with 2,151 spectral 

bands.  
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Fig. 3. 3. Experimental setup of Exp. 1; (a) overview, (b) apparatus of rotating 

lateral cylinder, (c) photo of experimental setup. 
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3.2.2 Experimental method 

Input SSCW was controlled by injecting a known amount of sediment 

into a cylinder with a known volume, where SSCW was calculated as sediment 

mass divided by cylinder volume. When the mixing was completed, the 

reflectance spectrum was measured. For the calibration of the hyperspectral 

camera and point spectrometer, the Spectralon multi-step reflection target of 12, 

25, 50, and 99% reflectance and 99% reflection targets were captured for every 

measurement. The empirical line method (ELM) was used to convert radiance 

L to reflectance R based on reference reflectance values from Spectralon, as 

follows: 

 

( ) ( ) ( ) ( )R Gain L Offset   =  +  (3.1) 

 

Before the experiment, the complete mixing was confirmed; the 

hyperspectral spectrum of values at uniformly distributed 9 points were 

spatially averaged (Fig. 3.4 (a)). Using the heaviest sediment particle (QS2), 

the test was conducted at a concentration of 222.22 ppm. The error range of 

spatial averaging was 2 to 7% from the standard deviation of hyperspectral 

spectra (shaded area in Fig. 3.4 (b)). 
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Fig. 3. 4. Spatially averaged hyperspectral spectrum of QS2: (a) points extracted for spatial average; (b) spatially averaged 

hyperspectral spectrum. 
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Fig. 3. 5 (a) shows an example of extracting RGB images of yellow 

loess according to SSCW from a hyperspectral image acquired by a line 

scanning using a hyperspectral camera. The color of suspended sediment 

apparently became vivid with increasing SSCW. Similarly, the reflectance 

values of the hyperspectral spectrum increased in the wavelength range of 400–

1,000 nm in proportion to the SSCW values (Fig. 3.5 (b)). However, at 

wavelengths above 1,000 nm, all the light was absorbed by the water column 

rather than being scattered by the suspended sediment. The bottom reflectance 

was completely removed; therefore, it was confirmed that the reflectance 

converged to almost zero when there was no suspended sediment in the clean 

tap water.  

In this study, using the laboratory rotating cylinder, experimental cases 

were planned according to sediment types, based on the same sediment as the 

two quartz sand types and three yellow loess types above (Table. 3.1). The 

detailed description of each case is summarized in Table 3.3. 
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Fig. 3. 5. (a) RGB images and (b) spectral profiles according to SSCW value 

in Exp. 1. 
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Table 3. 3. Experimental cases and properties of sediment used in each case. 

Case 
Sedimen

t type 

d50 

(μm) 

Volum

e (L) 

SSCW 

range 

(ppm) 

Measured variables 

Case 1-1 YL 1 16.3 

20.25 

0~1333.3 

(18 

points) 

Radiance (L), 

Reflectance (R),  

Temperature (T), 

Concentration 

(SSCW), 

Particle size 

distribution (PSD) 

Case 1-2 YL 2 37.2 

Case 1-3 QS 1 140 

Case 1-4 QS 2 165 
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3.3 Field-scale experiments in River Experiment Center 

3.3.1 Experiments in the straight channel 

(1) Experimental site and channel 

The optical property of the suspended sediment varies with the 

sediment properties (i.e., mineral content, density, PSD) and stream bed 

properties (Z. Chen et al., 1991; Dethier et al., 2020; Qu et al., 2016). Therefore, 

in this study, field-scale experiments were conducted to analyze the optical 

variability owing to sediment characteristics and bottom types of the stream bed, 

which are the confounding factors while evaluating the relation between SSC 

and hyperspectral reflectance; they lead to a large degree of uncertainty in 

remote sensing-based SSC estimation (Kwon et al., 2022b). For this objective, 

tracer tests were conducted with three types of sediment to obtain a dataset 

containing both hyperspectral images and in-situ measured SSCV values, for 

the various sediment characteristics. The sediment tracers used in the 

experiment consisted of quartz sand, yellow loess, and a mixture of quartz sand 

and yellow loess (Table 3.4).  

The experiments were conducted in the River Experimental Center 

(REC) of the Korea Institute of Civil Engineering and Building Technology 

(KICT), located in Andong, South Korea, as shown in Fig. 3.6 (a) (Kwon et al., 

2022b). The Exp. 2-1 were performed in a straight channel with a river-scale 
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trapezoidal section with a length of 500 m, top width of 11 m, depth of 2 m, and 

side slope of 1/2. The channel bed was covered by natural sand, and the side 

bank was covered by concrete blocks. The experimental water used in the 

channel was pumped in from the Nakdong River, located near the REC. Fig. 

3.6 (b) shows the sediment injection point and measurement section in the 

experimental channel. The injection point was located at the center of the 

upstream bridge. At this point, using a mixer, sediment solution diluted with the 

river water was injected in a completely mixed state, as shown in Fig. 3.6 (c). 

It was injected underwater to minimize the effect of the drop in momentum of 

the initial sediment tracer injection.  
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Table 3. 4. Sediment injection condition in Exp. 2-1. 

Case Sediment type 
Bottom 

type 

Weigh

t (kg) 

Volume 

(L) 

Discharge 

(m3/s) 

Width 

(m) 

Mean 

depth 

(m) 

Mean 

velocity 

(m/s) 

Date 

2-1-1 
Quartz sand  

(QS 1) 

Natural 

sand 
40 127 2 5 0.9 0.44 

10/7/ 

2020 
2-1-2 

Yellow loess  

(YL 1) 

2-1-3 
Mixture  

(QS 1 + YL 1) 
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Fig. 3. 6. (a) Experimental set-up in REC channel of which water is supplied 

from nearby Nakdong River; (b) Injection point and measurement section of 

Exp. 2-1 in the experimental channel; (c) picture of sediment injection scene; 

(d) detailed configuration of the observation point of Exp. 2-1. 
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 (2) Measurement technique and devices 

In this experiment, two different measurement techniques were used 

to obtain both hyperspectral images and SSCV values at the measurement 

sections: 1) fixed measurement; 2) moving measurement using UAV, as shown 

in Fig. 3.6 (d). First, using the fixed method, hyperspectral images were 

obtained at two locations, in front of and behind the bridge, via different 

techniques. Hyperspectral images were captured in front of the bridge in order 

to extract the ground-based hyperspectral spectrum of the corresponding pixels 

with the in-situ sensor. To minimize the effect of the atmosphere on the 

hyperspectral images, a push-broom line-scan type hyperspectral camera was 

installed at the center of the bridge, 1.85 m above the water surface, using a DJI 

Ronin 3-axis handheld gimbal. Second, for the images taken behind the bridge, 

spatial information, including the width of the channel, was obtained using a 

UAV (DJI Matrice 600 Pro)-mounted hyperspectral camera. These images were 

used to retrieve the spatio-temporal distribution of suspended sediment. For 

both measurements, the same hyperspectral camera (microHSI 410 SHARK) 

was used in the laboratory experiment study. The hyperspectral images of 

transverse lines over time were acquired by this sensor; therefore, the 

hyperspectral spectrum line was captured continuously as the water flowed 

while the sensor was fixed at the measurement section. Accordingly, the 

dimensions of the hyperspectral images obtained in this experiment were width 

(y) - time (t) - wavelength (λ).  
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For the in-situ SSCV measurement, a LISST-200X, which measures 

particle size using light scattering based on underwater laser diffraction, was 

used to measure the SSCv, PSD, and temperature. The LISST-200X used in this 

study can measure a sufficient range of PSD and SSCV: the PSD range consists 

of 36 bins that are distributed from 1 to 500 μm in logarithmic increments, while 

the range of SSCV is from 0.5 to 700 ppm. This sensor was installed at the iron 

rod connected to the center of the bridge to measure the temporal concentration 

of suspended sediment, as shown in Fig. 3.6 (d). To obtain the concentration 

near the water surface and the bed, two LISST-200X devices were deployed at 

fixed depths of 0.675 and 0.225 m from the bed, which was 0.75 and 0.25 times 

the water depth. The sampling rate of both sensors was set to 0.67 Hz. The 

hydraulic data, including discharge and mean velocity, were obtained using the 

acoustic doppler current profiler (ADCP; River Surveyor S5 by SonTek, USA) 

at the measurement section. A water depth survey was conducted utilizing real-

time kinematic-global positioning system (RTK-GPS; GRX1 by Sokkia, Japan). 

 

(3) In-situ measured sediment characteristics 

During the experimental period of the Exp. 2-1, the background 

turbidity was high enough to neglect the effect of bottom reflectance because 

the water was pumped in from the Nakdong River, which has high turbidity 

after a flood. The background PSD and the particle size of the sediment tracer 
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in each case were under 0.2 mm; therefore, the PSD values ranging from 0.001 

to 0.2 mm were considered. The range of PSD included four classes of sediment 

according to particle size: fine sand (range: 125–200 μm), very fine sand (range: 

62–125 μm), silt (range: 4–62 μm), and clay (1–4 μm) (Merten et al., 2014; 

Wang et al., 2020).  

The PSD at the maximum concentration in each case and the 

background water is illustrated in Fig. 3.7. The proportion of sand increased 

significantly near both the water surface and the river bed after the injection of 

quartz sand (Case 2-1-1) compared to that in the background water in which 

clay and silt were dominant, as shown in Fig. 3.7 (a) and (b). The relative 

frequency of sand was higher near the river bed than that near the water surface 

because quartz sand tends to settle to the bottom of a body of water. In the case 

of yellow loess (Case 2-1-2), the concentration of particles with the size of silt 

and very fine sand increased at the maximum overall particle concentration, as 

shown in Fig. 3.7 (c) and (d),. However, in this case, the variations in 

concentration near the water surface and river bed were similar, which implies 

that the settling velocity was not very high. For the mixture of quartz sand and 

yellow loess (Case 2-1-3), the relative frequency of silt and fine sand increased, 

similar to that in the yellow loess case (Case 2-1-2), as shown in Fig. 3.7 (e) 

and (f). The relative frequency of fine sand increased to a greater extent than 

that in Case 2-1-2 due to the effect of quartz sand. Similarly, the relative 

frequency of fine sand at the sampling depth of 0.25H was greater than the 
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relative frequency of fine sand at the sampling depth of 0.75H owing to the 

settling property of quartz sand. 
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Fig. 3. 7. PSD of the suspended sediment at the maximum SSCV measured in 

Exp. 2-1; (a), (c), and (e) represent PSD sampled near the water surface; (b), 

(d), and (f) represent PSD sampled near the riverbed. 
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Breakthrough curves (BTCs) of SSCV measured at 0.75H and 0.25H of 

the three experimental cases are plotted in Fig. 3. 8 (a)–(c). The SSCV for Case 

2-1-1 was lower than that for Case 2-1-2 even though the same amount of mass 

was discharged at the injection point in all three cases. This could be attributed 

to the high fall velocity; the quartz sand in Case 2-1-1 settled down to the 

channel bed faster than the yellow loess in Case 2-1-2 when it was transported 

downstream of the injection point in the channel. The suspended sediment 

cloud images captured by the RGB camera (Fig. 3.8 (d)) clearly indicated this 

difference: the suspended sediment cloud of quartz sand in Case 2-1-1 is less 

vivid than the cloud of yellow loess in Case 2-1-2. A comparison of two BTCs 

of quartz sand in Case 1, shown in Fig. 3.8 (a), revealed that the concentration 

measured near the bed (0.25 H) was greater than that measured near the water 

surface (0.75 H). The mixture of quartz sand and yellow loess (Case 2-1-3) 

showed intermediate behavior between that in Cases 2-1-1 and 2-1-2.  
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Fig. 3. 8. BTCs of In-situ measured SSCV: (a) quartz sand, (b) yellow less, (c) 

mixture, and (d) their RGB images. 
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BTC features reveal the transport and mixing characteristics of the 

solute; the calculation process and description are elaborated in Appendix A. 

The BTC features of Exp. 2-1 are shown in Table. 3.5. The time ( t ) to the 

centroid of BTC was almost the same in all three cases. Furthermore, the tail 

of the BTC (Stail) was calculated using the power-law slope, which is used as 

a criterion of storage zone effect in rivers (Kwon et al., 2021b; Kim et al., 

2021). In all three cases, the tail slopes were not persistent because the storage 

effects owing to the boundary irregularities in this prismatic straight channel 

were not significant compared to that in natural rivers. However, the quartz 

sand showed relatively high tail slopes and had high skewness compared to 

other sediment types. This result demonstrates that the residence time of 

suspended sediment depends on particle size due to its interaction with 

channel irregularities. 
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Table 3. 5. Description of SSCV curves from Exp. 2-1. 

 Measured 

depth 

Centroid 

t  (s) t  Skewness Kurtosis C   

(ppm) 

pC  

(ppm) 
tailS  

Case 2-1-1 

(quartz sand) 

0.75H 182.4 43.20 1.211 0.855 32.57 59.87 -4.31 

0.25H 186.4 39.07 1.017 1.363 36.06 68.48 -5.12 

Case 2-1-2 

(yellow loess) 

0.75H 171.5 33.30 0.816 0.429 113.2 280.0 -5.95 

0.25H 179.7 35.83 0.789 0.364 108.4 262.8 -5.34 

Case 2-1-3 

(mixture) 

0.75H 174.5 33.19 0.608 0.035 65.02 140.7 -5.82 

0.25H 186.8 36.56 0.851 0.98 65.07 138.1 -6.25 
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3.3.2 Experiments in the meandering channel 

(1) Experimental channel 

The experimental channel of Exp. 2-2 is a field-scale meandering 

channel in the REC, as illustrated in Fig. 3.9 (a). This channel has a trapezoidal 

section of the natural river scale, length 500 m, top width 11 m, depth 2 m, and 

three reaches with varying sinuosities of 1.2, 1.5, and 1.7. In this channel, the 

experiment was performed in the reaches with 1.7 sinuosity and a length of 170 

m, as shown in Fig. 3.9 (a) (Kwon et al., 2022a). The background water was 

relatively clean with low turbidity during the experiment, compared to that in 

Exp. 2-1 (Table 3.2). Therefore, the bottom reflectance contributed 

considerably to the hyperspectral spectrum in this experiment. To analyze this 

bottom effect, experiments were conducted for two bottom types: natural-sand- 

covered with approximately 0.1 m vegetation at the upper reach and a natural 

arid sand bed at the lower reach, as described in Fig. 3.9 (b). The vegetation in 

this channel grew naturally after rain; therefore, it was rooted strongly enough 

to maintain the flow. The sand bed reaches were set up by removing all 

vegetation before the experiments. In the experimental reach, we set up three 

sections (Sections C1–C3) for the measurement of suspended sediments, 

hyperspectral images, flow, and geometry; and four sections (Sections H1–H4) 

for the flow measurements only. The injection point (IP) of sediment particles 

was located at a concrete bridge 80 m upstream from Section C1. At the IP, the 
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sediment particles were mixed using a specially designed mixer, which we 

injected underwater using a rubber hose (Kwon et al., 2022b). 

The injected sediments of Exp. 2-2 consist of quartz sand (QS 1), 

yellow loess (YL 1 and YL 2), and a mixture of QS 1 and YL2. In order to 

analyze the effect of particle size on optical characteristics, two yellow loesses 

with different particle sizes were used in Cases 2-2-2 and 2-2-3, which were 

sieved to 75 μm and 250 μm size fractions, respectively. This enabled 

investigating the particle size effect with or without fine sand (75–250 μm) in 

these cases. All cases were performed under almost the same injection 

conditions except for the injected weight of quartz sand since the density of 

quartz sand is higher than that of yellow loess; 60 kg of quartz sand, which is 

20 kg more than that of yellow loess, was injected (Table 3.6). In addition, the 

effect of bottom type on the hyperspectral spectrum was analyzed to remove 

the vegetation covering 6 m around section 2 after Case 2-2-4 ~ 6 to change the 

bottom type of Section 2 to a sediment bottom.  
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Fig. 3. 9. (a) Bottom types, Injection Point (I.P), and measurement section of concentration and flow in Exp. 2-2; (b) in-situ 

measurements of SSCV and flow in Section 2; (c) in-situ measurements of SSCV in Sections 1 and 3; (d) channel Bottom  

covered by vegetation and (e) natural sediment. 
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Table 3. 6. Sediment injection condition in Exp. 2-2. 

Case 
Bottom 

type 
Date 

Sediment 

type 

Sediment 

density 

(g/cm3) 

Weight  

(kg) 

Volume  

(L) 

Duration 

(s) 

Injection 

rate (m3/s) 

2-2-1 

Vegetation 4/27/2021 

QS 1 2.36 60 128 38 0.554 

2-2-2 YL 1 1.23 

40 

127 34 0.744 

2-2-3 

Mixture 

(QS 1 + 

YL1) 

- 127 33 0.767 

2-2-4 

Natural 

sand 
4/28/2021 

QS 1 2.36 60 127 38 0.666 

2-2-5 YL 1 1.23 

40 

127 35 0.723 

2-2-6 YL 2 1.79 127 32 0.791 

2-2-7 

Mixture 

(QS 1 + 

YL2) 

- 127 34 0.744 
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 (2) Measuring instrument 

Two submersible laser-diffraction analyzers, LISST-200X, were used 

to measure SSCV and PSD at two sections in both experiments. The LISST-

200X was installed at the iron rod connected to the center of the bridge to 

measure the temporal variation of SSCV in Section C2, as shown in Fig. 3.9 (a). 

Likewise, the second LISST-200X was installed at the center of Sections C1 

and C3, connecting with a piled iron rod in the channel bed, as shown in Fig. 

3.9 (b). These sensors should be submerged for at least 10 cm from the water 

surface. Therefore, they were deployed at a fixed depth of 0.75 times the total 

water depth from the river bed because the SSCV near the water surface shows 

a high correlation with the hyperspectral images. The sampling rate of both 

sensors was set to 0.67 Hz. Simultaneously, two UAVs mounting hyperspectral 

cameras hovered to acquire hyperspectral images at 25 m above the water 

surface of all measurement sections with a sampling rate of 120 Hz. 

Hyperspectral images of transverse lines over time were acquired at each 

measurement section. The hydraulic data, including discharge, mean velocity, 

and water depth, were obtained using the ADCP (River Surveyor S5 by SonTek, 

USA) at the measurement section before each experiment. 
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 (3) Hydraulic and sediment data 

The results of hydraulic measurements in all experiments are 

summarized in Table 3.7. The mean water depths measured in each section 

ranged from 0.56–0.67 m, which is relatively shallow compared to the water 

depth range covered in previous studies. Therefore, the bottom effect is the 

crucial point of these experiments, which is a confounding factor that limits the 

retrieval of the SSCV from hyperspectral images. During the experiment, the 

flow and water depth profiles were different in the vegetated and sand bottom 

area despite constant discharge conditions, as shown in Table 3.7. The vegetated 

bottom induced substantial bottom friction; therefore, the mean water depth of 

the vegetated area was deeper than that in the sand area.  

Fig. 3.10 (a) and (b) show the cross-sectional averaged depth and flow 

velocity according to the longitudinal distance. In all cases, the water depth 

tends to decrease at the point where the vegetation section changes to the sand 

section. In addition, this decrease in water depth was clear in cases 2-2-1 ~ 2-

2-3, where the entrance of the 1.7 meandering reaches (Sec. C2) was vegetated. 

The velocity instantaneously decreased at the entry point of the meandering 

section and increased through the meandering reaches. Such a meandering 

effect also can be quantified through secondary current intensity (SCI) in Eq. 

3.2 (Seo et al., 2006).  
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where n = number of the transverse measurement points, nu  is the deviation 

of the spanwise velocity, Uc is the cross-sectional averaged velocity. 

According to calculated SCI along with longitudinal direction (Fig. 3. 

11), the secondary flow generated in the meandering section with 1.5 sinuosity 

was weakened, and then the secondary flow was substantially generated again 

at Sec. C2, which is the meandering entrance of 1.7 sinuosity reach. Particularly, 

the secondary flow was strongly generated when the Sec. C2 was sand bottom 

due to its relatively low bottom friction. Therefore, the hydraulic conditions in 

Sec C1–C3 were different owing to bottom friction and the meandering effect. 

This discrepancy in the hydraulic conditions in each section could induce 

various mixing conditions of the suspended sediment. 
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Table 3. 7. Results of hydraulic measurements in Exp. 2-2. 

Case Section 
Distance 

(m) 

Discharge 

(m3/s) 

Mean 

velocity 

(m/s) 

Width 

(m) 

Mean 

depth 

(m) 

Slope SCI Fr 

2-2-1 

~2-2-3 

Sec. H1 47.75 2.37 0.62 5.8 0.66 0.0024 0.072 0.24 

Sec. C1 78.85 2.43 0.63 5.9 0.66 0.0024 0.067 0.25 

Sec. H2 99.15 2.50 0.67 5.7 0.65 0.0012 0.047 0.27 

Sec. C2 109.4 2.58 0.67 6.1 0.63 0.0016 0.054 0.27 

Sec. H3 128.2 2.22 0.57 6.1 0.64 0.0034 0.052 0.23 

Sec. H4 148.3 2.41 0.61 5.9 0.67 0.0036 0.068 0.24 

Sec. C3 170.0 2.28 0.56 6.0 0.68 0.0006 0.055 0.22 

2-2-4 

~2-2-7 

Sec. H1 47.75 2.33 0.63 5.8 0.63 0.0024 0.067 0.26 

Sec. C1 78.85 2.33 0.61 5.7 0.67 0.0024 0.077 0.24 

Sec. H2 99.15 2.56 0.65 5.7 0.69 0.0012 0.047 0.25 

Sec. C2 109.4 2.24 0.57 6.0 0.66 0.0016 0.083 0.22 

Sec. H3 128.2 2.25 0.57 6.0 0.66 0.0034 0.063 0.22 

Sec. H4 148.3 2.45 0.61 5.9 0.68 0.0036 0.071 0.24 

Sec. C3 170.0 2.57 0.61 6.0 0.70 0.0006 0.061 0.23 
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Fig. 3. 10 Hydraulic conditions in each section: Cross-sectional averaged 

velocity and water depth in (a) Cases 2-2-1 ~ 2-2-3 and (b) Cases 2-2-4 ~ 2-2-

7.  
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Fig. 3. 11. SCI in each section before and after removing vegetation at Sec. 

C2. 
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The BTCs of Exp. 2-2 observed using pulse injection are plotted as in 

Fig. 3.12 and 3.13. The features of each BTC are summarized in Tables 3.8 and 

3.9. The BTC of each sediment type revealed different shapes owing to 

differences in density. The SSCV of the quartz sand was lower than that of the 

yellow loess and mixture, although a larger amount of quartz sand was injected. 

This occurred due to the large density of quartz sand, which induces the 

sediment to settle more rapidly to the streambed. For this reason, the peak 

concentration (CP) and mean concentration (C ) of quartz sand were lower than 

that of other sediments, as shown in Tables 3.8 and 3.9. This phenomenon was 

also shown in the RGB images acquired by drones, which demonstrated that 

the settling effect caused the low visibility of suspended sediment clouds of 

quartz sand, as shown in Fig. 3.14.  

The BTCs required almost the same time to reach peak concentration 

and time to the centroid ( t ) in the same section irrespective of sediment type, 

as shown in Tables 3.8 and 3.9. The BTCs were dispersed in the downstream 

sections, resulting in lower concentrations and longer durations. The standard 

deviation of BTCs linearly increased with the longitudinal distance, irrespective 

of the sediment type (Fig. 3.15). However, the skewness of quartz sand was 

different with yellow loess and mixture. This is because the particles of quartz 

sand were large and heavy, so they were substantially affected by the large 

friction of the vegetated bottom. BTC of quartz sand showed higher skewness 
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than that of the non-vegetated case with strong secondary flow when the Sec. 

C2 was vegetated.  
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Fig. 3. 12. BTCs of in-situ measured SSCV (vegetated bottom): (a) Case 2-2-

1, (b) Case 2-2-2, and (c) Case 2-2-3. 
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Fig. 3. 13. BTCs of in-situ measured SSCV for sand bottom: (a) Case 2-2-4, 

(b) Case 2-2-5, (c) Case 2-2-6, and (d) Case 2-2-7.
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Fig. 3. 14. Cloud images of quartz sand and yellow loess captured using an RGB camera mounted on a drone.
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Table 3. 8 Description of SSCV curves from Exp. 2-2: Case 2-2-1 ~ 2-2-3. 

Case Section 
Centroid 

t  (s) t  Skewness Kurtosis C  

(ppm) 

pC  

(ppm) 
tailS  

Case 2-2-1 

(quartz sand) 

Sec. C1 150.3 21.94 1.251 0.905 19.81 86.99 -7.18 

Sec. C2 193.2 23.93 1.875 -5.858 12.59 49.28 -8.07 

Case 2-2-2 

(yellow loess) 

Sec. C1 137.9 22.49 1.235 0.58 66.93 280.79 -6.11 

Sec. C2 184.8 28.31 1.009 1.062 45.19 156.54 -7.01 

Case 2-2-3 

(mixture) 

Sec. C2 129.8 22.55 1.062 1.604 45.94 192.04 -6.49 

Sec. C2 175 28.13 0.893 1.409 22.17 82.09 -6.86 
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Table 3. 9 Description of SSCV curves from Exp. 2-2: Cases 2-2-4 ~ 2-2-7. 

Case Section 
Centroid 

t  (s) t  Skewness Kurtosis C  

(ppm) 
pC  

(ppm) 
tailS  

Case 2-2-4 

(quartz sand) 

Sec. C2 177.1 27.82 1.23 0.18 8.280 38.15 -6.97 

Sec. C3 272.2 49.52 1.02 2.15 6.200 24.80 -5.91 

Case 2-2-5 

(fine yellow loess) 

Sec. C2 173.4 29.42 0.91 0.86 37.74 146.4 -6.36 

Sec. C3 268.1 44.21 0.95 0.92 25.32 112.94 -6.55 

Case 2-2-6 

(coarse yellow loess) 

Sec. C2 175.7 31.78 1.08 0.71 37.64 127.51 -5.82 

Sec. C3 264.9 44.41 0.98 0.76 25.71 100.53 -6.38 

Case 2-2-7 

(mixture) 

Sec. C2 175.9 30.49 0.89 1.01 22.07 82.31 -6.19 

Sec. C3 268.8 45.84 0.87 1.18 14.82 62.22 -6.33 
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Fig. 3. 15. Standard deviation and skewness of BTCs measured in each case. 
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The PSDs at the maximum SSCV of each experiment and background 

water are illustrated in Fig. 3.16, where the PSDs were determined according 

to sediment type regardless of transport distance and the bottom type. The 

quartz sand (Case 2-2-1 and 2-2-4) has sand-dominant PSD with a right-skewed 

distribution, while the yellow loess (Case 2-2-2, 2-2-3, and 2-2-4) has a 

bimodal distribution with the maximum in the range of silt. The two types of 

yellow loess (2-2-3 and 2-2-4) showed a considerable discrepancy in the 

particle size over 20 microns. Based on this difference in PSD with the same 

mineralogy, the effect of PSD on spectral characteristics can be investigated. In 

the PSD of the mixture (Case 2-2-3 and 2-2-7), the probability of fine sand was 

higher than that for yellow loess due to quartz sand. However, the mixture 

showed a similar tendency with yellow loess. This implied that the quartz sand 

settled faster than yellow loess due to its high density; therefore, the influence 

of the quartz sand disappeared rapidly. 
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Fig. 3. 16. PSDs at the maximum SSCV value at Exp. 2-2-vegetation (a and b) and 

Exp. 2-2-sand (c and d). 
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3.4 Field survey 

3.4.1 Study area and field measurement 

The field surveys were conducted to obtain the real river datasets for 

the evaluation of the applicability of CMR-OV to various field conditions 

(Table 3.10). Two study sites for assessment were selected: Hwang River; the 

confluence of Nakdong River and Hwang River in South Korea. The streambed 

substrates of both rivers are dominantly fine sand, so morphological change and 

sediment transport occurred in various ways. The total watershed area of the 

Nakdong River is 23,817 km2, with a main channel length of 522 km. Hwang 

River is the main tributary of Nakdong River, with a length of 107.6 km and a 

total watershed area of 1,329 km2. The confluence of both rivers is located in 

the lower reaches of the Nakong River, at about 7.5 km downstream of the 

Hapcheon-Changnyung dam (Fig. 3.16). 

In the upstream and downstream reaches of the Hwang River, two 

surveys (Exp. 3-1 and 3-2) were conducted (Fig. 3.17). During Exp. 3-1, the 

SSCV and PSD were measured for 1 minat 10 points in a shallow depth zone 

(H < 1m) using LISST-200X. Particularly, 4 points were measured up to the 

vertical SSCV profiles. The velocity and water depth were measured at the same 

points of SSCV measurements using an acoustic Doppler velocimeter (ADV; 

Flowtracker2 by Sontek, USA). In Exp. 3-2, horizontally dense profiles of 

suspended sediment, water quality, flow, and geometry were simultaneously 
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measured at 49 points using sensors installed in a boat moving laterally across 

the river (Kwak et al., 2020). In specific, the profile of SSCV and PSD near the 

water surface was measured using a LISST-200X and a reel attached to the side 

of a boat. Additional hydraulic data such as water depth and vertical flow 

velocity profile were obtained using the ADCP (River Surveyor M9 by SonTek, 

USA) and GPS device installed on the boat (Kwak et al., 2020; Son et al., 2021). 

Three surveys (Exps. 4-1~4-3) were conducted at a near-field of river 

confluence, where dynamic mixing occurs owing to the varying confluent flows 

from both rivers, which converge on the right bank. All surveys were conducted 

during low flow conditions (Fig. 3.18). During these surveys, the suspended 

sediment and flow measurements were conducted using the same methods in 

Exp. 3-2. In addition, in Exps. 4-1 and 4-3, the vertical SSCv and PSD profiles 

were measured at 4 to 5 points in the downstream section of about 350 m after 

confluence. In Exp. 4-2, the overall water depth was very shallow; therefore, it 

was measured at about 0.3 m below the water surface. YSI 6600 EDS was 

utilized to measure water temperature and water quality data such as Qhl-a, 

turbidity, pH, and dissolved oxygen (DO). After all surveys, sampled suspended 

sediment at the measurement points was used to validate the SSCv measured 

by LISST-200X with SSCw. These samples were analyzed in the laboratory 

using the procedure to estimate density, as represented in Fig. 3.1.  

In all field surveys, the HSIs were simultaneously acquired using the 
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UAV-mounted hyperspectral camera platform, as described in Chapter 3. The 

UAV platform was manipulated to scan in the river width direction to cover the 

entire target area in the surveys, while the hyperspectral images were acquired 

by hovering the drone in field-scale experiments. Several flight strips were 

designed, and the independently acquired strips of hyperspectral images were 

co-registered to obtain the hyperspectral images covering a large area. In this 

procedure, the geo-referenced points and RGB images were used to align HSIs 

strips accurately so that corresponding pixels of overlapped locations were 

geometrically integrated. The final co-registered images were pre-processed to 

be equitably utilized, as described in Chapter 2.2. 
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Fig. 3. 17. Location of survey areas at the Nakdong and Hwang Rivers. 
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Table 3. 10. Summary of field surveys. 

Type 
Experimen

t 
Location 

Survey 

date 

SSC 

range 

(μL/L) 

d50 

(μm) 

Bottom 

type 

Water 

depth 

(m) 

Descriptions 

Field 

(straight and 

meandering 

rivers) 

Exp. 3-1 
Hwang river 

(upstream) 
03/29/2021 

24.08 

~52.96 
92.90 Sand 0.15~1.1 

Shallow water depth; 

vertical SSC profiles were 

measured 

Exp. 3-2 
Hwang river 

(downstream) 
03/30/2021 

22.52 

~30.32 
81.52 Sand 0.6~2.6 

Shallow water depth; 

horizontally dense surface 

SSC profiles were measured 

Field 

(river 

confluences) 

Exp. 4-1 

Confluence 

of Nakdong 

and Hwang 

Rivers 

03/30/2021 
22.25 

~40.01 

81.52, 

167.47 
Sand 0.6~3.7 

Various water depth and 

sediment conditions; 

horizontally dense surface 

SSC profiles were measured; 

vertical SSC profiles were 

measured at the near-field of a 

confluence 

Exp. 4-2 10/07/2021 
7.73 

~13.74 

24.66, 

26.67 
Sand 0.5~2.5 

Shallow water depth; 

horizontally dense surface 

SSC profiles were measured; 

vertical SSC profiles were 

measured at the near-field of a 

confluence 

Exp. 4-3 04/21/2022 
5.99 

~24.04 

50.36, 

39.16 
Sand 0.3~5.0 

Vertical SSC profiles were 

measured at the near-field of a 

confluence 
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Fig. 3. 18. Flow discharge at Hapcheon-Changnyung dam and Hwang River 

bridge stations, and date of field surveys. 
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3.4.2 Hydraulic and sediment data in rivers with simple geometry 

 Fig. 3.19 shows the RGB images acquired using a drone and the in-

situ measured points in Exp. 3-1 and 3-2. The survey area in Exp. 3-1 was 

located near the left bank. The water depth of in-situ measured points ranged 

between 0.15~0.6 m, as shown in Fig. 3.20 (a). Owing to the shallow depth, the 

dune at the riverbed can be seen in the RGB image. Fig. 3.20 (b) shows the 

SSCV collected at each in-situ measurement point. The SSCV was uniformly 

distributed; however, the SSCV values at points 5 and 6 were relatively high 

with high standard deviations. It is inferred that the suspended sediment was 

resuspended temporarily at the riverbed near these points, not from the 

upstream. Fig. 3.20 (c) shows the vertical SSCV profiles at points 1, 3, 7, and 

10. The concentration tends to be higher toward the riverbed, except for point 

10, as in the Rouse equation (Eq. 2.10).  
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Fig. 3. 19. RGB images of the field campaign area of (a) Exp. 3-1 and (b) 3-2 

in Hwang River captured by drone. 
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Fig. 3. 20. Measured datasets in Exp 3-1: (a) depth-averaged water depth and 

velocity; (b) surface SSCV; (c) vertical SSCV profile. 
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The water depth of the Exp. 3-2 ranged from 0.6 ~ 2.6 m (Fig. 3.21 

(a)); however, most of the area was deeper than that in the field-scale 

experiment. The SSCV was uniformly distributed at around 25 ppm (Fig. 3.21 

(b)). Nevertheless, it was difficult to accurately predict SSCV using 

hyperspectral images in this area because the water depth of the measurement 

points varied considerably. This difference in water depth caused a discrepancy 

in the effect of the bottom reflectance. This depth variation might cause 

significant uncertainty in remote sensing-based SSC prediction. 

 

 

Fig. 3. 21. The measured distribution of (a) H and (b) SSCV in Exp. 3-2. 
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3.4.3 Hydraulic and sediment data in river confluences 

The Hapcheon-Changnyung dam was operated during Exp. 4-2, not 

during Exps. 4-1 and 4-3. Therefore, the velocity ratio (UR) and momentum 

ratio (MR) showed considerable discrepancies, while the discharge ratio (QR) 

of the three surveys was similar in a range between 0.1 to 0.198. This difference 

induced disparate hydrodynamic conditions in each survey, detailed in Table 

3.11. Moreover, according to the flow classification at the river confluences 

covered in Section 2.2.2.1, Exp. 4-1 was inferred as a wake mode because the 

UR was close to unity. The sandbar at the stagnation zone separated the flow 

and induced the wake flow. Therefore, an irregular mixing layer can be seen in 

the case of Exp. 4-1 (Fig. 3.22 (a)). UR of Exp. 4-3 was 0.954; therefore, it was 

also classified as wake mode. However, the mixing layer was less irregular than 

that in Exp. 4-1 because the sandbar at the stagnation zone was submerged with 

deep water depth, and the mean velocities of both rivers were low at 0.133 and 

0.127. Exp. 3-2 can be classified as KH mode owing to a low UR value of 0.36. 

The mixing layer was not seen in the photograph because of the low watercolor 

contrast in this survey (Fig. 3.22 (b)). 

In terms of river scale, width over depth (W/H) ranged around 151, 90, 

and 167 in each survey. When the suspended sediment properties were 

compared among all surveys, the SSCV contrast was strong in Exps. 4-1 and 4-

3, which can be seen in the color of both rivers in the RGB image captured by 
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the drone (DJI Mavic Pro2) (Fig. 3.22). There was an apparent contrast in the 

particle size of suspended sediment between Nakdong and Hwang Rivers. In 

Exp. 4-1, relatively large particles (d50 = 167.47 µm) were transported from the 

upstream Nakdong River; however, the particle size of Hwang River was 

relatively fine (d50 = 81.52 µm). The d50 of both rivers in Exp. 4-3 were different 

at 50.36 µm and 39.16 µm, respectively. However, in Exp. 4-2, the SSCv and 

d50 were relatively low compared to that in the other surveys. The mean SSCv 

values of Nakdong and Hwang Rivers were similar in Exp. 4-2; therefore, the 

color contrast was not captured in Exp. 4-2 (Fig. 3.22 (b)). The particle size was 

also similar at 24.66 and 26.67 µm in both the rivers.   
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Table 3. 11 Characteristic parameters of Nakdong and Hwang Rivers during 

Exps. 4-1 ~ 4-3. 

 
Exp. 4-1 

(03/30/2021) 

Exp. 4-2 

(10/06/2021) 

Exp. 4-3 

(04/21/2022) 

Characteristic 

parameters 

Nakdong 

River 

Hwang  

River 

Nakdong 

River 

Hwang  

River 

Nakdong 

River 

Hwang  

River 

Discharge,  

Q (m3/s) 
141.1 23.23 142.8 13.54 102.5 20.32 

Mean velocity, 

U (m/s) 
0.219 0.189 0.620 0.22 0.133 0.127 

Width, W (m) 324 64.7 144 82.0 358 80.0 

Mean depth,  

H (m) 
2.13 1.9 1.6 0.75 2.2 2.0 

W/H 151.88 34.05 90 109.33 166.65 40 

Water 

temperature (℃) 
14.9 13 24.17 22 16.71 16.73 

Density,  

ρ (kg/m3) 
999.21 999.48 997.31 997.78 998.92 998.91 

SSCV (ppm) 37.36 26.34 9.14 9.07 20.69 15.3 

d50 (µm) 167.47 81.52 24.66 26.67 50.36 39.16 

Densiometric 

Froude number, 

Frd 

6.67 - 13.37 - 31.66 - 

Turbidity (NTU) 15.5 15.75 2.8 5.2 4.98 3.96 

Chl-a (RFU) 2.49 1.12 2.44 4.18 1.60 1.54 

Cyanobacteria 

cell count 

(cells/mL) 

0 - 653 - 0 - 

pH 8.30 7.44 7.3 8.0 8.81 8.80 

Relative 

density 

difference, 

Δρ* 

0.0002632 0.00047 0.0000068 

Confluence 

angle (°) 
44.1 47 44.3 

Discharge 

ratio, QR 
0.164 0.10 0.198 

Mean flow 

velocity ratio, 

UR 

0.864 0.36 0.954 

Flow 

momentum 

ratio, MR 

0.142 0.03 0.189 
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Fig. 3. 22 RGB images of the near-field of confluence between Nakdong and Hwang Rivers captured by drone  

in Exp. 4-1~4-3. 
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The density difference between the two rivers in the river confluence 

could be a critical factor for hydrodynamic conditions and mixing states 

because it can distort the interface between waters from the main river and 

tributary river (Gualtieri et al., 2019; Horna-Munoz et al., 2020; van Rooijen et 

al., 2020). In this study, water density was calculated from the measured water 

temperature and SSC. Eq. 3.3, proposed by Ford and Johnson (1983), was used 

to account for the effect of suspended sediment on water density.  

 

 31
1 10ssc SSC

SG
 − 

 = − 
 

 (3.3) 

 

where SG is the specific gravity of suspended sediment, and it was assumed as 

the standard value of quartz sand, which is 2.65. Based on the calculated water 

density, the relative density difference (Δρ*) was calculated by dividing the 

density difference between Nakdong and Hwang Rivers by the density of 

Nakdong River. The densiometric Froude number (Frd) was calculated using 

the relative density difference to investigate the contribution of inertial and 

buoyancy forces as follows: 
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 * 1/2/ ( )dFr U gH=   (3.4) 

 

where g denotes gravitational acceleration. Δρ* is seasonally varied, ranging 

from O(10-5) in winter to O(10-3) in summer (Gualtieri et al., 2019, 2018). The 

densiometric Froude number represents that the inertial forces dominate when 

it is over-unity ( 1dFr ) (Gualtieri et al., 2019; Horna-Munoz et al., 2020). 

Therefore, according to these criteria, the density contrast was relatively weak 

in all surveys.  

The complex hydrodynamic conditions, including high turbulence levels 

and large-scale coherent structures from confluent flows (i.e., wake or Kelvin 

Helmholtz instability), substantially contribute to the transverse mixing in a 

river confluence (Biron et al., 2019; Constantinescu et al., 2016). Therefore, the 

flow characteristics were investigated using measured velocity profiles, along 

with the results of mixing analysis from CMR-OV, to understand the mixing 

pattern.  

During all the surveys, the velocity fields and bathymetry profiles 

were measured at cross-sections using ADCP with the moving boat method, as 

detailed in Kwak et al. (2020). The VMT software was used to analyze and 

visualize this ADCP data (Parsons et al., 2013). The secondary flow vectors 

were calculated using the Rozovskii decomposition, which rotates individual 
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verticals rather than the whole section (Rozovskii, 1957). From this 

decomposition, the primary velocity direction for each point can be precisely 

obtained as the depth-integrated flow vector. Accordingly, the secondary flows 

were efficiently calculated using the differences in depth-averaged vectors 

(Szupiany et al., 2009). The cross-sectional component of secondary flow was 

calculated in detail based on the divergence of the primary velocity vectors 

without distorting.  

The Exps. 4-1 and 4-3 showed strong contrast of SSC and particle size 

of suspended sediment with different hydrodynamic conditions and mixing 

layer distribution. The vertical distribution of suspended sediment and flow 

fields in the near-field of the confluence were analyzed in detail. In Exp. 4-1, 

velocity fields and bathymetry profiles were measured and analyzed at eleven 

cross-sections (Fig. 3.23). Before confluence, the bathymetry was considerably 

distorted due to the sandbar near the stagnation zone in NR1 and 2. Accordingly, 

the main flow velocity developed near the left bank. In NR3, the two strong 

flows from Nakdong and Hwang Rivers merged behind the stagnation zone 

(sandbar), resulting in a velocity deficit owing to the wake effect. Therefore, 

the low-velocity zone was developed by merging both boundary layers of both 

flows. In NR4, a mixing interface was apparently formed between the two flows; 

this resulted in the development of two relatively strong helical motions in 

opposite directions between this interface. Afterward, the two streams 

combined strongly to form a dynamic mixing interface in NR 5 and 6. In NR 7, 
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these secondary currents were dissipated gradually. The discordance in the right 

bank, where the flow injected from tributary eroded owing to the helical motion 

developed upstream. The flow tends to recover further downstream in NR 8 and 

NR 9.  
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Fig. 3. 23. Flow measurement results at nine cross-sections upstream and 

downstream of the confluence of Nakdong and Hwnag Rivers in Exp. 4-1 (left 

bank on the right hand). 
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NR5 was the section where the flow and transverse mixing changed 

most abruptly. However, the vertical mixing in this section was weak compared 

to the transverse mixing, as shown in the vertical profiles of SSC along with 

the cross-section (Fig. 3.24). The vertical distribution of SSCV was generally 

uniform except for the concentration near the river bed, which can be inferred 

as bed load. In addition, the fraction of fine clay (d < 2 µm) was highest near 

the right bank, which originated from the Hwang River. This clay was 

distributed throughout the water depth of the Hwang River with silt (d >20 µm); 

it was entrained into the Nakdong River after confluence. The waterbody near 

NR5 from the Nakdong River and Hwanggang River had completely different 

PSD near the mixing layer as a boundary after confluence. The suspended 

sediment was poorly mixed in this section; the heterogeneous PSDs near the 

mixing layer increased the spectral variability. 
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Fig. 3. 24. Vertical (a) SSCV and (b) PSD profiles measured using LISST at 

NR5 in Exp. 4-1; y denotes the distance from the left bank. 
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In Exp. 4-3, the discharge was similar to that in Exp. 4-3; however, the 

velocity was slow, and the secondary flow was weaker (Fig. 3.25). Before 

confluence, the bathymetry was less distorted due to the sandbar near the 

stagnation zone in NR1 and 2. The sand bar area at the stagnation zone, which 

was very shallow in Exp. 4-1, was completely submerged in Exp. 4-3. The 

water depth of this area was approximately 2 m, as shown in the cross-sectional 

velocity distribution in NR 1 (Fig. 3.25). Afterward, the velocity deficit was 

generated when the two flows with similar velocity magnitude merged after the 

confluence (see NR 2 in Fig. 3.25). Nevertheless, the velocity deficit rapidly 

recovered at NR 3 (270 m downstream from the confluence point) due to the 

submerged sandbar and low velocity magnitude. The mixing interface was 

developed as shown in the cross-sectional velocity field of NR 3, but it was 

dissipated at NR 4 (downstream 450 m from the confluence point). Therefore, 

the wake in Exp. 4-3 developed weakly and then dissipated rapidly compared 

to that in Exp. 4-1; the two water bodies of different colors mixed rapidly, as 

shown in the photograph of Exp. 4-3 (Fig. 3.22 (c)). 
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Fig. 3. 25. Flow measurement results at nine cross-sections upstream and downstream of the confluence of Nakdong and 

Hwnag Rivers in Exp. 4-3 (left bank on the right hand).
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NR 3 in Exp. 4-3 was in the same location as NR 5 in Exp. 4-1. The 

mixing interface and secondary current developed in this section. Therefore, 

the vertical SSCV distributions near the mixing layer showed irregular profiles 

(Fig. 3.26 (a)). At the point where the mixing layer was less affected, it appeared 

close to the Rouse profiles, in which the concentration increased relatively near 

the river bed. Especially, the point near the right bank, which was entrained 

from the Hwang River, showed a substantial concentration difference between 

the water surface and the riverbed. It was induced by the discrepancy of PSD 

near the surface and riverbed (Fig. 3.26 (b)). The suspended fine matter (d < 2 

µm) was distributed near the surface only near the left bank. This fine matter 

originated from the Hwang River. It is inferred that these particles floated on 

the surface, imparting the green color to the water body in the RGB image (Fig. 

3.22 (c)) despite the low Chl-a and the Cyanobacteria cell count. This 

variability in suspended matters with sediment and various vertical SSCV 

profiles substantially increased the spectral variability. 
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Fig. 3. 26. Vertical (a) SSCV and (b) PSD profiles measured using LISST at 

NR5 in Exp. 4-3; y denotes the distance from the left bank. 
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3.5 Analysis of hyperspectral data of suspended sediment 

 In this subchapter, hyperspectral datasets of suspended sediment from 

lab-scale (Exp. 1) and field-scale (Exps. 2-1 and 2-2) experiments were used to 

investigate the confounding factors of spectral variability. As summarized in 

Table 3.12, the hyperspectral data and corresponding SSC data were collected 

under the various bottom, sediment, and stream conditions. These datasets were 

compared according to each experimental condition in the following 

subchapters. Additionally, the datasets from Exps. 2-1 and 2-2 were used for 

model development in Chapter 4.  

 

Table 3. 12. Summary of hyperspectral datasets of suspended sediment 

collected in lab-scale and field-scale experiments. 

Type Exp. 
Experimental 

condition 

Case  

(sediment 

type) 

No. of 

data 

Lab-

scale 
Exp. 1 

Non-bottom reflection; 

completely mixed state  

1-1 (QS1) 

1-2 (QS2) 

1-3 (YL1) 

1-4 (YL2) 

18 

18 

18 

18 

Field-

scale 

Exp. 2-1 

Constant bottom 

reflection (sand); 

straight channel 

2-1-1 (QS1) 

2-1-2 (YL1) 

2-1-3 (Mix.) 

234 

228 

188 

Exp. 2-2 

Different bottom 

reflections (vegetation 

and sand); 

meandering channel 

2-2-1 (QS1) 

2-2-2 (YL1) 

2-2-3 (Mix.) 

2-2-4 (QS1) 

2-2-5 (YL1) 

2-2-6 (YL2) 

2-2-7 (Mix.) 

356 

309 

278 

228 

437 

397 

420 
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3.5.1 Hyperspectral data of laboratory experiment 

According to increased SSCW, the intrinsic optical properties were 

measured under completely mixed and non-bottom reflection conditions in the 

laboratory experiment (Exp. 1). Scattered signals from the suspended sediment 

showed different reflectance spectra according to sediment type, and the 

reflectance values were much lower than that of yellow loess at 400 to 1,000 

nm at the same SSCW range (Fig. 3.27). In addition, when the particle size was 

fine, both quartz sand and yellow loess showed high reflectance values while 

maintaining the spectral shape. This result implies that reflectance at the same 

SSC can differ according to the PSD. In general, the intensity of the back-

scattering signal increased depending on the increased size of a single particle, 

as reported in Koestner et al. (2020). However, the increased number of fine 

sediment particles at the same concentration reduced the effective volume 

through which light can transmit in terms of decreased voids between sediment 

particles.  
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Fig. 3. 27. Hyperspectral spectrum according to SSCW under non-bottom 

reflectance condition (Exp. 1): (a) QS 1, (b)QS 2, (c) YL 1, and (d) YL 2. 
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To estimate the effective wavelength of each sediment, linear OBRA 

was employed (Fig. 3.28). The range over 0.5 of R2 differed according to 

sediment type irrespective of particle size. The effective wavelength of quartz 

sand was included in NIR (770–1,000 nm); the yellow loess was highly 

proportional to red-edge (600–700 nm). This result is in accordance with the 

difference in visibility between quartz sand and yellow loess. In addition, each 

sediment had strong linearity resulting in 0.88 and 0.98 R2 with a single band 

ratio. This result demonstrates that if there is no bottom reflection and the 

suspended sediment is well mixed, the effective wavelengths of each sediment 

were precisely extracted. However, in rivers, the various sediments are mixed. 

The bottom reflectance critically affects the hyperspectral spectrum when the 

water depth is less than 2 m, as described in Chapter 2.1. Therefore, spectral 

variability occurs from sediment mixing and bottom type difference. The 

confounding factors of spectral variability were investigated in detail by 

comparing results from the laboratory experiment (Exp. 1) and field-scale 

experiments (Exps. 2-1 and 2-2). 
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Fig. 3. 28. R2 distribution of OBRA with a single-band ratio under non-bottom 

reflectance condition: (a) QS 1, (b)QS 2, (c) YL 1, and (d) YL 2. 
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3.5.2 Hyperspectral data of field-scale experiments 

3.5.2.1 Effect of bottom reflectance 

The effect of bottom reflectance was investigated using the results of 

field-scale experiments (Exp. 2-1 and 2-2). Fig. 3.29 shows the spectral 

reflectance under the constant bottom condition along with the entire measured 

wavelength range (400–1,000 nm) according to SSCV variation for each case in 

Exp. 2-1. In the spectral profiles of all sediment types, the highest reflectance 

values appeared near red wavelengths (~650 nm). In addition, apparent 

variation due to an increase in SSCV was observed near the red (650 nm) and 

NIR (750 nm) wavelengths; these were in line with the results from the 

laboratory experiment and these wavelengths were identified as sensitive 

ranges in earlier studies (Doxaran et al., 2003; Gebreslassie et al., 2020; Kabir 

and Ahmari, 2020). The difference in reflectance values occurred over 550 nm 

according to sediment type. However, contrary to the laboratory experiment 

(Exp. 1) result, the hyperspectral spectrum of all sediment types had similar 

tendencies under a constant bottom reflectance in Exp. 2-1. This result implied 

that the bottom reflectance makes the overall shape similar in the shallow 

waters even when the concentration is high. In particular, the reflectance values 

were substantially increased from bottom reflectance in the case of quartz sand 

compared to that in yellow loess. It can be explained by the particle size of 

quartz sand, which was 4 to 10 times larger than that of loess; therefore, the 
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transmission of light was higher in quartz sand. 

The result of OBRA in Exp. 2-1 shows the critical effect of bottom 

reflectance on the signals of suspended sediment. Fig. 3.30 (a) shows that the 

wavelengths of the selected optimal bands for quartz sand were near the red 

wavelength range (582.93 and 663.02 nm). The yellow loess was regressed by 

the red-edge and NIR bands (703.06 and 883.25 nm) with the highest value of 

R2, as shown in Fig. 3.30 (b). Fig. 3.30 (c) shows that the wavelengths of the 

selected optimal bands for the mixture ranged between red and red-edge 

(747.11 and 703.06 nm). These selected spectral bands were one of the sensitive 

bands for SSC under non-bottom reflectance (Fig. 3.28); however, the 

wavelengths of optimal bands changed under the constant bottom condition.  

In terms of accuracy, OBRA showed an R2 of over 0.80 for yellow 

loess and mixture; however, it showed relatively poor performance for quartz 

sand, with an R2 of 0.57 (Fig. 3.30). These results indicate that the linear OBRA 

is limited in its ability to retrieve the characteristics of suspended sediment with 

a high settling property and low visibility, like quartz sand (Fig. 3.8 (d)) (Kwon 

et al., 2022b). The correlation between the hyperspectral reflectance and the 

SSC is substantially reduced when the sediment and bottom properties are 

complicated. 
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Fig. 3. 29. Acquired hyperspectral spectrum at the corresponding point of 

SSCV in-situ measurement: (a) Quartz sand, (b) Yellow loess, (c) Mixture. 
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Fig. 3. 30. Results of OBRA with a single-band ratio under a constant bottom 

reflectance condition: (a) QS 1, (b) YL 1, and (c) mixture. 
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In this study, to investigate the dominance between the suspended 

sediment signal and the bottom reflectance to the spectral variability, 

experiments were conducted under the background water without sediment 

injection. Fig. 3.31 presents the hyperspectral spectrum of Exp. 2-2 under 

background water without sediment injection for different bottom conditions in 

each section. The effect of velocity (secondary currents) and bottom type on the 

hyperspectral spectrum is shown in this figure. All hyperspectral spectra had 

large reflectance values within the NIR range (800–1,000 nm), while deep 

water conditions generally showed low reflectance values within this range 

(Doxaran et al., 2009; Vanhellemont and Ruddick, 2015). Therefore, the bottom 

reflectance highly influenced the hyperspectral spectrum due to shallow depth. 

Furthermore, compared to that in the sand bottom, the noises and variation in 

the NIR range were substantially high when the bottom was covered by 

vegetation (Fig. 3.31 (a)). This high variation in the NIR range was due to the 

spectral characteristics of green grass, which has the first peak near the green 

band (500 nm) and high reflectance over NIR (800 nm) (Adjorlolo et al., 2012; 

He and Mui, 2010). The vegetated bottom showed a higher bottom reflectance 

than the sand bottom, in line with Albert and Mobley (2003). Accordingly, the 

bright bottom condition induced a high variation of the hyperspectral spectrum 

because the high bottom albedo increases Lb, and the noises were generated by 

the movement of vegetation with the flow. These spectral characteristics of the 

vegetation bottom in shallow water induced the optically complex condition.  
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The effect of secondary currents on the hyperspectral spectrum was 

insignificant compared with the bottom effect. As shown in Figs. 3.31 (a) and 

(b), in the other sections with the same bottom type, the intensity of the 

secondary flow was different; however, there was no significant changes in the 

hyperspectral spectrum. The NIR region is sensitive to the vegetation moving 

with the flow (Fig. 3.31 (a)). Therefore, the flow indirectly affects the spectral 

characteristics if there is no wake on the surface, which induces the surface 

reflection. 

Fig. 3.32 presents the hyperspectral spectrum of Exp. 2-2 under the 

different bottom conditions at Sec. C2 according to SSCv values. The 

hyperspectral spectrum showed different profiles according to the bottom type 

and mineral content of the sediment. In terms of bottom type, Figs. 3.32 (a, c, 

and e) were hyperspectral spectrums of Sec. C2 with the arid sand bottom in 

Exp. 2-2-1~2-2-3, while Figs. 3.32 (b, d, and f) showed the hyperspectral 

spectrums of Section 2 with covered vegetation in Case. 2-2-4~2-2-7. 

Compared to that in the background water without sediment injection, all 

spectra increased according to SSCv values irrespective of bottom type. The 

overall value of the spectrum tended to increase as the SSCv increased. 

However, the noises and variation in the NIR range were still significantly high 

when the SSCv increased in Sec. C2 with the vegetated bottom. Therefore, the 

bottom reflectance influenced the hyperspectral spectrum when the bottom was 

vegetated despite high SSCv. 
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Fig. 3. 31. Hyperspectral spectrum collected in background water without 

sediment injection at each section of Exp. 2-2: (a) vegetation bottom, (b) sand 

bottom. (c) comparison by bottom type in Sec. C2; shaded area indicates the 

standard deviation of the time-averaged spectrum. 
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Fig. 3. 32. Hyperspectral spectrum according to SSCv at Sec. C2 of Exp. 2-2 

with natural sand (a, c, and e) and vegetated bottom (b, d, and f). 
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In all sediment types, reflectance increased with increasing SSCV 

values, especially in the range of 600–750 nm. Based on sediment type, the 

reflectance values showed a discrepancy over 550 nm. The quartz sand showed 

a negligible effect of increasing SSCV on spectrum variation than the yellow 

loess, due to its mineral characteristics and high transmissivity from large 

particle size. For the same reason, the quartz sand was more affected by the 

bottom reflectance than the yellow loess as the bottom irradiance reflectance 

was more transmitted when the quartz sand was suspended in the water column. 

 

3.5.2.2 Principal component analysis of the effect of suspended 

sediment properties 

In order to evaluate the effect of certain properties (sediment type, 

PSD, sampling depth, and temperature) of suspended sediment on the 

hyperspectral spectrum, principal component analysis (PCA) was applied to the 

acquired hyperspectral images. PCA reduced the hyperspectral images with 150 

spectral bands into a few orthogonally transformed variables, which retained 

the maximum variation of the original data. This dimensional reduction 

technique has been widely used for feature extraction of hyperspectral images 

in various fields (Kim et al., 2020; Qin et al., 2013; Sváb et al., 2005; Whetton 

et al., 2017). In this study, the condensed spectral characteristics of 

hyperspectral images acquired by PCA and the properties of suspended 
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sediment were compared to identify the dominant properties. Each point in Fig. 

3.33 represents a hyperspectral spectrum corresponding to the in-situ measured 

SSCV, projected into the principal component (PC) 1 and PC 2. Defined by the 

eigenvectors of the covariance matrix, these two components showed that 80% 

of PC 1 and 16% of PC 2 of variance were retained. In the space defined by PC 

1 and PC 2, there was little difference in the reflectance characteristics of each 

case in background water. However, as PC 1 increased, each case changed in a 

different direction, and the cases were clearly distinguished from each other. 

PC 1 showed a strong correlation with SSCV, as noted in Table 3.12, which 

indicates that the spectral characteristics of the three types of sediments differed. 

Moreover, the lower the settling velocity and visibility, the more parallel the 

spectrum data was with the PC 1 axis. Therefore, if PC 2 is less affected, the 

spectral characteristics are more related to SSCV.  

PCA was applied to spatial hyperspectral images acquired by the 

drone. Fig. 3.31 shows the original RGB, PC 1, and PC 2 images. PC 1 

successfully captured the distribution of suspended sediment in all cases; both 

the yellow loess and mixture, which had high visibility even in the RGB image 

and quartz sand, which had low visibility. The correlation between PC 1, which 

condenses the optical characteristics of the hyperspectral spectrum, and the 

properties of the suspended sediment was calculated to elucidate the 

relationship between the physical and spectral properties. SSCV showed a high 

correlation with PC 1 (Table 3.13). The fine sand and d50 showed a positive 
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correlation with PC 1 in the aspect of PSD. These correlations indicate that the 

concentration and particle size of suspended sediment affected the Lc reaching 

the hyperspectral sensor. Therefore, reflectance at the same SSCV can differ 

according to the PSD. Moreover, the reflectance values of quartz were lower 

than that of yellow loess, due to its high settling velocity and the invisibility of 

the mineral. 
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Fig. 3. 33. Hyperspectral spectrum under constant bottom condition (Exp. 2-

1) in the space of the principal component (PC) 1 and 2. 
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Table 3. 13. Correlation between principal component 1 (PC 1) and sediment 

properties for Exp. 2-1 

Sediment  

type 

Sampling 

depth 

Correlation coefficient 

SSCV Clay Silt 
Fine 

sand 
d50 Temp. 

Quartz 

sand 

(Case 2-1-

1) 

0.75H 0.796 -0.445 -0.441 0.445 0.441 0.298 

0.25H 0.678 -0.329 -0.352 0.351 0.365 -0.602 

Yellow 

loess 

(Case 2-1-

2) 

0.75H 0.844 -0.359 -0.221 0.361 0.365 -0.395 

0.25H 0.755 -0.214 0.019 0.277 0.255 -0.171 

Mixture 

(Case 2-1-

3) 

0.75H 0.784 -0.321 -0.382 0.375 0.349 -0.040 

0.25H 0.698 -0.109 -0.407 0.291 0.194 -0.044 
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Fig. 3. 34. The comparison of RGB image, PC 1, and PC 2: (a) Case 2-1-1 (Quartz sand), (b) Case 2-1-2 (Yellow loess), (c) 

Case 2-1-3 (Quartz sand+ Yellow loess). 
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The PCA results of Exp. 2-2 demonstrated that PC 1 with eigenvalues 

accounted for 85% of the total variance in the whole dataset, implying that 

one loading can retain almost all portions of the spectral variance. Each point 

in Fig. 3.35 describes condensed hyperspectral band values corresponding to 

the SSCV of each sediment type, projected into dimensions of PC 1 and PC 2. 

The result of Exp. 2-1 was different from that of Exp. 2-1 owing to different 

conditions of bottom and background water. In Exp. 2-2, quartz sand was 

linearly depicted, while yellow loess and mixture showed a non-linear 

behavior. The quartz sand and yellow loess had different spectral 

characteristics, and the mixture was significantly affected by the yellow loess 

in terms of shape, although all data were variated to the direction of PC1 

irrespective of sediment type. Regarding the variability from the bottom type, 

the discrepancy in the optical characteristics of the bottom resulted in different 

spectral profiles. The trend was similar to when the bottom type is vegetation 

irrespective of sediment type; however, the data were highly scattered in 

general. This result was attributed to the noisy hyperspectral spectrum, which 

was induced by the bright bottom albedo of vegetation and the movement of 

submerged vegetation driven by the flow, as illustrated in Fig. 3.32 (b, d, and 

f). In addition, the effect of PSD difference was observed in PCA results. The 

fine yellow loess and coarse yellow loess had different shapes in the space of 

PCs 1 and 2 (Fig. 3.35 (b)). However, the difference was not as apparent as 

the sediment type difference and the bottom type difference. 
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Fig. 3. 35. Hyperspectral spectrum in the space of the PCs 1 and 2 for Exp. 2-

2: (a) quartz sand, (b) yellow loess, and (c) mixture. 
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The relationship between PCs of combined Exp. 2-2 datasets and 

physical factors appropriately explains the contribution of physical factors to 

spectral variation. To estimate the correlation of sediment type and bottom type 

with PCs, sediment types were indexed as 1, 2, and 3, indicating quartz sand, 

yellow loess, and mixture, respectively, while the presence and absence of 

vegetation at the bottom were indexed as 0 and 1. Table 3.14 describes the 

estimated correlation between each PC and physical factors, where the most 

significant variation condensed in PC1, accounting for 85% variance, is 

positively correlated with SSCV and fractions of sand and clay. Among them, 

the clay fraction showed the highest correlation value at 0.997. Yellow loess 

with a relatively large proportion of clay and a large variation in SSCV was 

closely related to PC1. However, d50 showed a fairly high correlation with PC2, 

explaining the 5% variation, and sediment type represented a considerably 

negative correlation with PC2. The quartz sand with a relatively large particle 

size was more affected by PC2 than yellow loess, as indicated in Fig. 3.33 (a). 

While the sediment properties were explained by PC1 and PC2 with a variance 

of over 90%, the bottom type is not related to large variance of PCs. The bottom 

type showed correlations of over 0.5 with PC 4, which accounted for 2% of the 

variance. Therefore, the spectral variance was mainly affected by the sediment 

properties, such as SSCV, d50, particle size distribution, and sediment type. 
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Table 3. 14. Correlation between PCs and physical variables for Exp. 2-2; the 

highlighted panels indicate an absolute value of correlation over 0.5. 

 

Sediment Property 

Temp. 
Bottom 

type SSCV d50 
Grain Size Sediment 

type Clay Silt Sand 

PC 1 

(85%) 
0.621 -0.572 0.977 0.324 0.695 0.077 0.141 -0.075 

PC 2 

(5.3%) 
-0.189 0.538 -0.059 -0.453 -0.059 -0.652 -0.399 0.146 

PC 3 

(2.3%) 
0.148 0.086 0.018 -0.079 0.176 -0.059 -0.323 0.026 

PC 4 

(2.0%) 
0.274 -0.066 0.005 -0.039 0.240 -0.003 -0.259 0.572 

PC 5 

(1.4 %) 
0.150 0.135 0.017 -0.220 0.122 -0.102 0.097 0.194 
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4. Development of suspended sediment concentration 

estimator using UAV-based hyperspectral imagery 

 

4.1 Outline of Cluster-based Machine learning Regression with 

Optical Variability (CMR-OV) 

In this chapter, a clustered machine learning regression for optical 

variability (CMR-OV) combining hyperspectral clustering and machine 

learning regression (MLR) was constructed to build a robust model for 

estimating SSC from hyperspectral images in rivers. The concept of this 

framework is based on multiple estimators for heterogeneous fields, which 

were proposed earlier on bathymetry and biophysical parameters (Bi et al., 

2021; Bruzzone and Melgani, 2005; Niroumand-Jadidi et al., 2020). However, 

this study aimed to estimate the suspended sediment in rivers, focusing on 

resolving the complex optical variability caused by sediment types and bottom 

reflectance using hyperspectral clustering. In this section, the proposed 

framework for the estimation of SSC from hyperspectral images is outlined 

briefly, and the details of the algorithms developed for the framework are 

described in the subsequent sections. 

The proposed framework consists of two main modules: real-time 

updating and application (Fig. 4.1). The real-time updating module includes a 
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function to develop the model by learning the relationship between the SSC and 

the corresponding hyperspectral spectrum. Additionally, this module includes a 

function to upgrade the model through real-time learning of new data when 

applied to the untrained field later. This module consists of three main 

algorithms: Gaussian Mixture Model (GMM) clustering, Recursive Feature 

Elimination (RFE), and Machine Learning Regressor (MLR). These algorithms 

were sequentially operated to build the multiple estimators according to spectral 

similarity. Based on these algorithms, the CMR-OV process is as follows (Fig. 

4.2): (a) spatiotemporally matching the hyperspectral images acquired using 

UAVs with in-situ measured SSC data; (b) dividing the matched dataset into 

training and validation data group; (c) hyperspectral clustering of the training 

data using GMM; (d) selecting the relevant spectral bands of the clustered 

training data for each cluster through RFE using the MLR for each cluster; (e) 

verifying the trained MLR by repeating Step (d) to minimize the total error 

score evaluated by the test dataset; (f) selecting trained clustered MLR models 

whose total error scores were minimally verified in Step (e) as a final estimator. 
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Fig. 4. 1. Flowchart of CMR-OV with two modules: real-time updating and 

application. 
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Fig. 4. 2. Flowchart of the process of developing multiple estimators based on 

three main algorithms: RFE, MLR, and GMM. 
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The application module aims to convert the hyperspectral images into 

the SSC distribution using the trained multiple estimators of CMR-OV (Fig. 

4.1). After preprocessing hyperspectral images (radiometric correction and 

noise filtering), the estimators can be applied to the waterbody region extracted 

from the hyperspectral image. CMR-OV provides the SSC map and the 

clustered index with the probability of belonging to each cluster as the output 

data. Notably, the probability of belonging to each cluster can be seen as the 

reliability of trained estimators when applied to the untrained region.  

From the final hyperspectral clusters determined from CMR-OV, the 

critical physical factors of optical similarity were analyzed using the Mann–

Whitney U test, which is used to compare the means of independent samples 

based on a nonparametric test with ranked sums (Helsel, 1987; Kim et al., 2014). 

This test verified the discrepancy in physical factors according to the cluster 

types.  

 

4.2 Pre-processing of hyperspectral images  

In this study, the digital number (DN), recorded integer values of the 

radiance, were first converted to radiance (L) units using the nonuniformity 

corrections (NUC) (Leathers et al., 2005). The NUC is a scene-based correction 

for both radiance conversion and inhomogeneity of individual pixels in the 

hyperspectral image. Using scene-based correction, NUC can convert DN to 
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radiance directly from a scene. Due to these advantages, this method is broadly 

used in the push-broom type hyperspectral approach (Hu et al., 2017; Leathers 

et al., 2005; Li et al., 2009; Rakwatin et al., 2007). In this study, the median-

spatial ratio-based NUC method is used. This method assumes that the median 

value over the ratio of the radiance of neighboring pixels is approximately unity 

as follows: 

 

 1, ,( / ) 1n b n bmedian L L+ =  (4.1) 

 

where 
1, 1, 1, 1,( )n b n b n b n bL Gain DN Offset+ + + +=  −   and 

, , , ,( )n b n b n b n bL Gain DN Offset=  −  , 

which assumes the DN and L have a linear relation, can be used to solve Eq. 

4.1; n+1 and n are the indexes of the pixel in cross line; b is the index of the 

spectral band. Therefore, the Gain and offset can be solved by optimization of 

minimizing the following loss function (losss,b) (Hu et al., 2017): 

 

 
1, 1, 1,

,

, , ,

( )
1

( )

n b n b n b

n b

n b n b n b

Gain DN Offset
loss

Gain DN Offset

+ + + −
= −

 −
 (4.2) 
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After conversion of DN to radiance using NUC, calibration tarps 

offering Lambertian reflectance of 0.84, 0.56, 0.24, and 0.03 were used to 

convert the radiance to normalized reflectance. The reference reflectance values 

were obtained before each experiment by placing the tarp on a flat plate. From 

the reference values, the radiance was normalized to relative reflectance using 

Eq. (4.3): 

 

 ( ) ( )R Gain L offset =  +  (4.3) 

 

where R(λ) is relative reflectance. 

For noise filtering, the pixel-based spectral de-noising was 

implemented using SAVGOL filter by a 5-point window with quadratic 

polynomial filter, as described earlier (Cimoli et al., 2020; de Almeida et al., 

2019; Kwon et al., 2020; Mishra et al., 2019; Pyo et al., 2020b, 2019). By 

applying this filter to a hyperspectral spectrum where a bubble passed on the 

water surface, the high noise value was attenuated, and the spectrum was 

smoothed overall. Fig. 4.3 shows the results of hyperspectral image 
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preprocessing using time series data of the radiance measured in Section 2 of 

Exp. 2-2. Values without radiometric correction and spectral de-noising 

included a few noises (Fig. 4.3 (a)). In addition, they was a difference in the 

value in the background water before the suspended sediment arrived due to the 

differences in the radiation conditions in each experiment. However, the 

normalized reflectance values had almost the same values as that in the 

background water after radiometric correction (Fig. 4.3 (b)). In addition, 

SAVGOL filtering with a second-order polynomial and a window size of 5 

considerably removed the noises in the spectra (Fig. 4.3 (c)). 
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Fig. 4. 3. Times series data of (a) radiance, (b) normalized reflectance, and (c) filtered reflectance in the 650 nm wavelength 
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Subsequently, the pixels corresponding to the SSCv measurement 

points of each case were extracted from the corrected hyperspectral images. 

The spatial resolution of acquired hyperspectral images was 1.8 cm due to the 

25 m flight of the drone with 29.5 degrees FOV of the hyperspectral camera. 

The hyperspectral spectrum corresponding to the measurement point of LISST-

200X was obtained by spatially averaging 5 pixels near the measurement point. 

The extracted hyperspectral spectrum was temporally averaged at a 1.5-s 

interval, which is an equal measurement interval of LISST-200X; it was 

matched with the SSC dataset. The matched datasets were extracted for the 

effective range, a range over 1 % of maximum SSC, to extract the points where 

the SSCv changes from the background SSC.  

 

4.3 Regression models and clustering technique 

4.3.1 Index-based regression models 

In order to retrieve the SSC using the regression approach with 

hyperspectral images, this study employed optimal band ratio analysis 

(OBRA)-based linear regression (LR) and symbolic regression (SR) as explicit 

regression approaches. OBRA, the most popular algorithm for retrieval of water 

depth and water quality parameters, uses the ratio of spectral bands to isolate 

the ( )cL    back-scattered by the suspended sediment in water bodies 
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(Legleiter et al., 2019, 2004; Legleiter and Harrison, 2019; Niroumand-Jadidi 

et al., 2020, 2019a, 2018). The optimal band ratio in OBRA was determined by 

calculating the band ratio according to all pairs of bands (λ1, λ2); it yields the 

highest accuracy of regression of SSC on band ratio. In this study, the log-

transformed single band ratio (Eq. 4.4) and normalized difference ratio (Eq. 4.5) 

were used as the LR and SR input variables, respectively.  
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The relationship between hyperspectral radiance and SSC in the open 

channel flows is complicated because the radiance of SSC is influenced by 

many factors, such as the existence of various types of substrate in the water, 

varying water depth according to discharge, and surface scattering effect of 

glinting sunlight. Therefore, in this study, nonlinear regression was additionally 

employed to represent the optical complexity in shallow open channel waters 

(Baek et al., 2019a; Binding et al., 2005; Fraser, 1998; Legleiter and Harrison, 
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2019; Schiebe et al., 1992). SR was chosen from various nonlinear regression 

approaches. SR does not require the fixed functional form as prior knowledge 

since it aims to identify the optimal functional form using an evolutionary 

optimization algorithm, the genetic algorithm (GA) (Hristov et al., 2020; 

Searson et al., 2010; Weng et al., 2019). In the SR optimization process, the 

functional form evolved continuously through the operators in GA, such as 

mutation, recombination, and selection, until the mean squared error (MSE) 

reached the termination criteria. The input variable was selected in the same 

manner as the LR; these are the two types of optimal band ratio with the forms 

shown in Eqs. (4-4 and 4-5). In this study, only simple operators, +, −, ×, ÷, 

X−  , X  , ln( )X   were selected to avoid overcomplicating the functional 

form and overfitting. The SR was implemented using the gplearn library in 

Python 3.7. 

 

4.3.2 Machine learning regression models 

In this study, among the various ML-based regression models, random 

forest (RF) and support vector regression (SVR) were employed and compared 

to the band ratio-based explicit regression models. These two ML models, 

which are the most popular ML-based regression models, show superior 

performance when the given dataset is highly nonlinear and complicated due to 
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high dimensionality (Choi and Seo, 2018; Kwon et al., 2021a). Therefore, 

unlike explicit regression, which makes the equation more complex and causes 

overfitting in the presence of many variables, the ML models have an advantage 

in analyzing high-dimensional data like hyperspectral images. In this study, RF 

and SVR models were developed to predict the SSC based on the reflectance 

values of several bands. 

RF is an advanced decision tree model that minimizes the variance of 

predictions (Breiman, 2001). This model has the following advantages as a 

regression model in CMR-OV: (a) insensitivity to the hyperparameter and a 

short time requirement for model development in iterative training (Li et al., 

2017; Probst et al., 2019; Sun et al., 2008); (b) insensitivity to the noisy data 

acquired by the experiment (Kwon et al., 2021a). With respect to the structure 

of RF, each decision tree in RF divides the space of the input variable into 

multiple hierarchies according to the value of the output variable based on the 

tree structure. Specifically, this model selects samples and variables randomly, 

then divides the input variable into each node of decision trees according to the 

value of the output variable. In the training process of this model, the split for 

each node is determined by maximizing the reduction in the overall impurity in 

nodes. The impurity can be estimated by mean square error (MSE) when the 

decision tree is used for regression, as given in Eq. 4.6. 
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 MSE =  
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2

𝑖
 (4.6) 

 

where n is a number of the dataset; 𝑦𝑖  is the in-situ measured SSC;  𝑦�̂�  is 

predicted SSC. Based on these criteria, the example of a single decision tree 

with three depth and two sample splits is illustrated in Fig. 4.4. The overall 

process can be known through the constructed model structure, unlike black-

box machine learning models such as Artificial Neural Network (ANN) and 

kernel-based models. In addition, the importance of a variable, which is used 

as a criteria for relevant spectral band selection in RFE, can be estimated by the 

normalized total reduction of MSE by each variable. For each spectral band (i) 

in the spectrum, the band importance (I) averaged number of trees (NT) of 

decision trees in RF is calculated as: 

 

 𝐼𝑖 =  ∑ Δ𝑀𝑆𝐸𝑖(𝑁𝑇)
𝑁𝑇

 (4.7) 

 

  



 

178 

 

 

 

 

 

 

Fig. 4. 4. Structure of single decision tree for HSI-based SSC estimation. 
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In RF, a large number of decision tree models were combined by 

averaging in a process called ensemble learning (Fig. 4.5). Each decision tree 

in RF was developed from a random selection of samples and variables based 

on the bagging method proposed by Breiman (1996). The sample was generated 

by bootstrap sampling with random replacement in the bagging process. Due to 

this randomization, the bagging process reduces the variance and the 

correlation between decision trees. The final prediction result is calculated by 

aggregating predicted SSC in each decision tree model. In this stage, the final 

SSC values and uncertainty can be obtained by the average and the standard 

deviation of predicted SSC values. 

When applying CMR-OV, RF models were tuned by estimating the 

optimal features randomly sampled at each split, which is the most sensitive 

hyperparameter in RF (Li et al., 2017; Probst et al., 2019). The RF was less 

sensitive to hyperparameters than other models as it is based on ensemble 

learning; it showed good performance with default values in Scikit-learns 

packages (Díaz-Uriarte and Alvarez de Andrés, 2006). Therefore, the optimal 

number of features randomly sampled at each split was determined by the grid-

search, and the other hyperparameters were set to default values in Scikit-learns 

(Pedregosa et al., 2011). To prevent overfitting and to determine robust 

parameters in grid-search, 5-folds cross-validation was employed in 

hyperparameter tuning, which randomly resplit the whole dataset into 80% 

training dataset and 20% test dataset five times as different partitions. 
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Fig. 4. 5. Training and prediction processes in RF. 
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SVR was proposed by Vapnik et al. (1997) and extended to a 

regression problem through the application of a support vector machine (SVM), 

which is a machine learning algorithm that is widely used for classification 

problems. SVR has the advantage of finding a globally optimal solution 

because it uses convex optimization to generate a function for the relationship 

between data inputs and outputs. This yields more accurate prediction results 

than other ML algorithms when the amount of available data is insufficient (Chi 

et al., 2008; Pal and Foody, 2010). In this study, the relationship between SSC 

and the reflectance value, which is defined by Eq. 4.8, was derived by solving 

the optimization problem with Eq. 4.9 as the objective function and Eq. 4.10 as 

the constraint to solve for the ( )ijf x  that is distributed within one deviation 

ε. Eq. 4.8 was derived as the flattest regression function that was less than one 

deviation ε from the actual SSC values (yi) for all reflectance values of each 

band (xij). 
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(4.10) 

 

where ( )ijf x is the convex function; j is the number of data; n is the number 

of spectral bands; ωi are weight coefficients; bi is the bias; ( )ijg x  is the kernel 

function for nonlinear transformation; Γ is the penalty factor; and i  and *

i  

are slack variables that determine the degree of penalty if the error exceeds ε. 

Among these parameters, Γ and ε are important to determine overfitting, 

underfitting, and the accuracy of models. A grid-search algorithm was used to 

search the optimal parameter values among all parameter combinations in the 

hyper-parameter range according to the best cross-validation score. The range 

of grid-search from an earlier study was adopted (Akhtar et al., 2019). The ith 

band importance (Ii) can be estimated using the wi, which indicates the effect 

of the reflectance value of the ith band on the prediction by the finally trained 

SVR of Eq. 4.8.  
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4.3.3 Relevant band selection 

In this study, to build the ML models with the relevant spectral bands 

for SSC, recursive feature elimination (RFE), a thorough feature selection 

method based on model performance, was employed (Guyon et al., 2002). RFE 

eliminates the least important band based on the particular feature importance 

criteria of each model (Fig. 4.6). This algorithm first trains the model using all 

of the spectral bands in the hyperspectral image. It then repeatedly removes any 

redundant bands until the performance of the continuously trained model is 

reduced. The remaining bands are finally selected as the relevant spectral bands 

for SSC. The root mean square error (RMSE) (Eq. 4.11) was adopted as the 

performance criteria, with 5-fold cross-validation at each step to reduce bias. 

 

 21
( )i ii

RMSE y y
n

= −
 

(4.11) 

 

where iy  is the in-situ measured SSC, and 
iy  is the remotely sensed SSC. 

Using the band importance (I) of the RF and SVR models, the optimal band 

subsets selected by RFE served as the input variables for each model. To be 

more robust in the selection, RFECV improves RFE with N-fold cross-

validation to decrease the bias of selection. 
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Fig. 4. 6. Flowchart of selecting relevant spectral bands using RFE 

  



 

185 

 

4.3.4 Gaussian mixture model for clustering 

To maximize the performance of each RF model in CMR-OV, GMM 

clustering was applied to group a number of spectra recorded as pixel values 

from the HSI into various optically homogeneous clusters (Löffler et al., 2019; 

Zhou et al., 2018). In addition, the optically clustered dataset was used to 

investigate the dominant physical factors affecting the optical similarities 

between sediment properties and bottom properties. 

GMM is a probability-based clustering method that statistically splits 

clusters based on a Gaussian distribution (Bouveyron and Brunet-Saumard, 

2014; Herms et al., 2021; Kim et al., 2014). Compared to heuristic-based 

clustering, such as k-means and hierarchical clustering, GMM has several 

advantages. First, unlike heuristic-based clustering, GMM accounts for 

variance; therefore, the stretched structure dataset can be clustered. Second, the 

probability of belonging to each cluster is obtained from the fitted probability 

density function (PDF). Therefore, the multivariate dataset is fit using a 

weighted combination of heterogeneous Gaussian distributions in GMM. The 

fitted mixture of Gaussian distributions represents the PDF of the entire dataset 

as a non-Gaussian distribution. From this PDF, the clusters can be split using a 

decomposed single Gaussian distribution, ensuring the statistical homogeneity 

of each cluster. In this study, n independent dataset of the hyperspectral 

spectrum (𝑥𝑖) was clustered using GMM. The Gaussian mixture PDF (Nmix) of 
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the given spectrum (𝑥𝑖) can be written as: 

 

 𝑁𝑚𝑖𝑥(𝑥𝑖) = ∑𝜋𝑗𝛮𝑗(𝑥|𝜇𝑗, 𝛴𝑗)

𝐽

𝑗=1

 (4.12) 

 

where J is the number of clusters, 𝜋𝑘  denotes mixture coefficient, ranging 

from 0 to 1 and ∑ 𝜋𝑗
𝐽
1 = 1, 𝑁𝑘 is single Gaussian distribution of jth cluster 

with a mean (𝜇𝑗) and covariance matrix (𝛴𝑘). Each single multivariate Gaussian 

distribution of jth cluster is defined as: 

 

 𝑁𝑗(𝑥𝑖|𝜇𝑗, 𝛴𝑘) =
1

(2𝜋)
𝑑
2|Σ|1/2 

exp (−
1

2
(𝑥𝑗 − 𝜇)

𝑇
Σ−1(𝑥𝑗 − 𝜇)) (4.13) 

 

where i is index of data, d is the dimension of the matrix, T denotes the 

transpose of the matrix, and |Σ| is the determinant of Σ. The parameters to 

estimate in GMM are defined as 𝜃 = {𝜋, 𝜇, 𝛴} ; 𝜋 ≡ {𝜋1, ⋯ , 𝜋𝑘}, 𝜇 ≡

{𝜇1, ⋯ , 𝜇𝑘}, 𝛴 ≡ { 𝛴1, ⋯ ,  𝛴𝑘}. The log-likelihood of the parameters (𝜃) can be 
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expressed as:  

 𝑙(𝜃|𝑥𝑖) = ∑ 𝑙𝑛 {∑𝜋𝑗𝑁𝑗(𝑥𝑖|𝜇𝑗, 𝛴𝑗)

𝐽

𝑘=1

}

𝑛

𝑖=1

 (4.14) 

 

In this study, to estimate  𝜃 , the expectation-maximization (EM) 

algorithm was applied to maximize the log-likelihood in Eq. (3.14). First, the 

EM algorithm initialized each parameter and evaluated the log-likelihood (Eq. 

(3.14)). Then, as the expectation (E) step, the probability of each data point 

belonging to the kth cluster was estimated from the responsibility (γ) with the 

current 𝜃 value (Eq. 4.15).  

 

 𝛾𝑗(𝑥𝑖) =
𝜋𝑗𝑁(𝑥𝑖|𝜇𝑗, 𝛴𝑗)

∑ 𝜋𝑚𝑁(𝑥𝑖|𝜇𝑚, 𝛴𝑚) 𝐽
𝑚=1

 (4.15) 

 

Subsequently, the 𝜃  values were updated by the maximization (M) 

step, which re-estimates the 𝜃  values based on current responsibility. The 

updated 𝜃  values were evaluated by the log-likelihood, and E and M steps 

were iterated until the 𝜃 values converged at the maximum likelihood (Bishop, 

2006). 
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4.3.5 Performance criteria 

To evaluate the clustered regression models, R2 (coefficient of 

determination), root mean square error percentage (RMSEP), and mean 

absolute percentage error (MAPE) were used. These metrics were adopted since 

they give normalized values. The formulae of these error metrics are listed in 

Eqs. (4.16)–(4.18): 

 

𝑅2 = 1 − ∑
(𝑦𝑖 − 𝑦�̂�)

2

(𝑦𝑖 − �̅�)2
𝑖

 (4.16) 

𝑅𝑀𝑆𝐸𝑃 =  
√∑

(𝑦𝑖 − 𝑦�̂�)2

𝑛𝑖

�̅�
 

(4.17) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖
|

𝑖
 (4.18) 

 

where �̅� is the mean of the y values. The total error score (TSE) is calculated 

by averaging three error metrics to adopt the best trained clustered RF. In this 

process, R2 is averaged as 1- R2 to represent an error like other metrics. 
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4.4 Model development and evaluation 

4.4.1 Comparison of regression models 

4.4.1.1 OBRA-based explicit models 

The explicit regression models, OBRA-based LR and SR were applied 

to the entire dataset that combined all three cases in a field-scale experiment 

(Exp. 2-1). In Chapter 3.5, spectral variability analysis shows that the 

relationship between the hyperspectral reflectance and the SSC can be complex 

owing to the variability in the sediment and bottom properties. In such optically 

complex conditions, the linear OBRA with a single band ratio showed low 

accuracy and high locality (Fig. 3.29).  

To overcome this limitation, this study implemented two other 

approaches: the OBRA-based LR approach with a normalized difference ratio, 

and SR, as described in Section 4.3.1. These two approaches were applied only 

to the combined dataset (Case 2-1-1~2-1-3), which was split into training data 

(80%) and testing data (20%) (Table 4.1). The ‘train_test_split’ function in the 

Scikit-learn package in Python was utilized to split the datasets randomly, and 

the statistical properties of training and test data are given in Table 4.1. 

Validation of the trained regression models was carried out using the test dataset. 

To measure the quantitative error of each model, R2, RMSE, and mean absolute 

percentage error (MAPE) were utilized. 
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Table 4. 1. Statistical properties of the training and test datasets. 

 SSCv (ppm) 

No. of 

data 
Mean SD Min Max 

Training 

dataset 
520 55.76 54.55 23.10 270.9 

Test 

dataset 
130 55.66 55.79 23.45 266.2 
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The OBRA model selected the optimal bands for the normalized 

difference ratio, Eq. (4.3 and 4.4). The wavelengths of the spectral bands 

selected by OBRA and the relevant formulas are listed in Table 4.2. SR was 

employed with both the single band ratio and normalized difference ratio. The 

same bands selected by OBRA were used as the optimal bands for SR. The 

formulas derived using the training dataset was used to validate the four models 

using the test dataset, and the results are plotted in Fig. 4.7. LR and SR based 

on the single band ratio yielded similar results (Fig. 4.7 (a)). The LR 1 model 

underestimated the values at high concentrations, while the SR 1 model 

provided slightly better predictions for high concentrations and showed a lower 

MAPE than LR 1. Fig. 4.7 (b) shows that the SR 2 model produced the best 

performance for the prediction of high concentrations among the OBRA-based 

models. The LR 2 model underestimated the results at high concentrations, 

similar to the LR 1 model. This tendency of linear models to underestimate the 

results at high concentrations was also reported in earlier studies that obtained 

the concentration of fluorescent tracer and water depth based on remote sensing 

in shallow water (Baek et al., 2019, Legleiter and Harrison, 2019). Therefore, 

the nonlinear models can retrieve the SSC more accurately using the spectral 

characteristics of suspended sediment compared to the linear models. In 

addition, the normalized difference ratio was more appropriate for the 

independent variable of nonlinear models than the single band ratio. 
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Fig. 4. 7. Comparison of in-situ measure SSCv and remote sensed SSCv from linear regression (LR) and symbolic regression 

(SR); The independent variables are (a) single band ratio and (b) normalized difference ratio. 
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Table 4. 2. Equations of index-based explicit regression models and their independent variable with optimal wavelength. 

Model Formula 
Independent 

variable (X) 

Optimal 

wavelength 

LR 1 6021.12 1476.06VSSC X= +  
1

2

( )
ln

( )

R

R





 
 
 

 
855.22 nm 

791.15 nm 

LR 2 122.99 633.47VSSC X= +  
1 2

1 2

( ) ( )
ln

( ) ( )

R R

R R

 

 

 −
 

+ 

 
651 nm 

590.94 nm 

SR 1 

3

3 3 6 3 0.34 0.47
ln( 0.32) ln( 0.924ln(18402.35 ) 1.57VSSC X X X

X X

 
= − − + − + − − 

 
 1

2

( )
ln

( )

R

R





 
 
 

 
855.22 nm 

791.15 nm 

SR 2 

2

2 0.079
277.78 0.009 ( 10.57) 0.14V

X
SSC X X X

X

+ 
= − + + − − 

 
 

1 2

1 2

( ) ( )
ln

( ) ( )

R R

R R

 

 

 −
 

+ 

 
651 nm 

590.94 nm 
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4.4.1.2 Machine learning-based implicit models 

In this study, the RF and SVR models were developed to estimate the 

SSCV using the optimal bands selected by RFE. Fig. 4.8 (a) shows the number 

of bands selected by RFE for each model. RF selected 62 bands with the lowest 

RMSE, while SVR selected 120 bands out of 150 bands. In terms of the 

wavelength of the selected bands, the wavelength frequency selected by each 

model is presented in Fig. 4.8 (b) and (c). The RF model identified particularly 

important wavelength ranges, violet (400–440 nm), red (640–680 nm), and NIR 

(920–960 nm). Among these ranges, the red band was the only one that 

overlapped with the spectral bands, indicating a high correlation with OBRA-

based LR. RF additionally selected spectral bands with low variability 

according to the sediment type. However, in SVR, the wavelength of the 

selected band was evenly distributed throughout the spectrum, except violet 

(400–420 nm). Therefore, the SVR model is powerful in that high-dimensional 

input data becomes simpler in the feature space, as demonstrated in the earlier 

studies on SVR (Kwon et al., 2021a; Raghavendra and Deka, 2014; Yao et al., 

2008). For SVR, the highest accuracy was obtained when 120 out of the 150 

spectral bands were used, as shown in Fig. 4.8 (a).   
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Fig. 4. 8. (a) Results of RFE and optimal point of RF and SVR; Frequency of 

a selected band from RFE according to wavelength: (b) RF, (c) SVR. 

  



 

196 

 

The RF and SVR models were trained and validated using the training 

and test datasets that were LR and SR. The validation results are plotted in Fig. 

4.9, which shows that the implicit regression models (RF and SVR) yielded 

higher accuracy than the explicit regression models (LR and SR), especially in 

terms of MAPE. Among the two implicit regression models, SVR showed 

better performance, with an R2 of 0.90, RMSE of 17.07 ppm, and MAPE of 

14.18%, while RF showed an R2 of 0.79 and RMSE of 25.37 ppm. Therefore, 

SVR was the most accurate model for the retrieval of SSCV using hyperspectral 

images due to its outstanding performance in simplification of high-

dimensional data.  

  In addition, to evaluate the sensitivity to spectral variability due to 

sediment types, both models were separately trained and validated according 

for each sediment type. The accuracy of validation using 20% of each dataset 

was increased significantly by both models (Table 4.3). In particular, the 

performance of RF was worse than that of SVR when a combined dataset was 

used, but RF showed a noticeable increase when it was separately trained 

according to each sediment type. RF used spectral bands smaller than SVR, as 

shown in Fig. 4.9; therefore, it was more efficient when a separate estimator is 

developed after dividing the dataset based on the optical characteristics as in 

this assessment. Therefore, there is a necessity of hyperspectral clustering 

because it is hard to classify the dataset according to optical similarities, such 

as sediment types, bottom types, and mixing state of sediment, in natural rivers. 
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RF was adopted as a final regressor in CMR-OV, and the improvement with 

hyperspectral clustering was evaluated in the following section. 
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Fig. 4. 9. Comparison of in-situ measured SSC and remote sensed SSC from 

RF and SVR. 
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Table 4. 3. Validation results of separately trained models according to 

sediment type of Exp. 2-1. 

 

RF SVR 

Quartz 

sand 

Yellow 

loess 
Mixture 

Quartz 

sand 

Yellow 

loess 
Mixture 

R2 0.81 0.93 0.93 0.83 0.97 0.91 

RMSE 4.07 10.20 9.86 4.29 12.85 8.60 

MAPE 7.36 9.26 9.25 7.21 8.68 16.89 
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4.4.2 Assessment of hyperspectral clustering  

To evaluate the hyperspectral clustering for improving the model 

performance, the CMR-OV was trained and validated using the 

spatiotemporally matched dataset using the hyperspectral images and SSC data 

measured in Exps. 2-1 and 2-2, respectively. Exp. 2-1 was conducted under the 

constant bottom condition with various sediment injections, whereas Exp. 2-2 

was conducted under different bottom conditions. Therefore, the effect of 

sediment and bottom property can be investigated for different experimental 

conditions. 

Table 4.4 shows the evaluation results of the RF model with the dataset 

collected in Exp. 2-1 according to the number of clusters. In this process, the 

optimal spectral bands in each model were selected by RFECV with five-fold 

cross-validation. The RF model exhibited the most accurate performance when 

the dataset was split into two clusters. The clustered RF showed an 

improvement of up to 8.78% in R2, 11.35% in RMSEP, 7.79% in MAPE, and 

9.30 % in TES compared to that in the non-clustering case. The wavelengths of 

the selected bands and the number of selected spectral bands from non-

clustered and clustered models are summarized in Table 4.5. The numbers of 

selected bands for each cluster were 4 and 7, which were reduced by six folds 

from hyperspectral clustering compared to the single RF model (62 bands) (Fig. 

4.8). The relative importance of spectral bands from RFE can be seen in Fig. 
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4.10. Both hyperspectral clusters were spectrally distinct as two wavelength 

ranges: UV-Blue (410 ~ 500 nm) and near red-edge (685 ~ 810 nm). The red-

edge was sensitive to SSC in the laboratory experiment (Chapter 3) and in 

earlier studies using satellite-based multispectral imagery (Doxaran et al., 2003; 

Kwon et al., 2021b; Pereira et al., 2019; Pham et al., 2018). The hyperspectral 

clusters were separated according to SSCv values; the clustered datasets were 

compared with the original dataset in the PC domain (Fig. 3.33), as shown in 

Fig. 4.11. At high concentration, the intrinsic spectral characteristics of 

suspended sediment were dominant; therefore, the 685 ~ 810 nm, near Red-

edge, was important. In contrast, at low concentrations, the spectral bands 

within the low wavelength range were significant because of the strong effect 

of bottom reflectance. Therefore, quartz sand was included in group 1 due to 

the low concentration and high transmittance. Only hyperspectral clustering 

could determine the approximate suspended sediment characteristics when the 

bottom characteristics are constant.  
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Table 4. 4. Evaluation of RF according to number of clusters in Exp. 2-1; the 

values with highest accuracy are indicated in bold. 

Number of 

clusters 
R2 (%) RMSEP (%) MAPE (%) TES (%) 

1 79.02 44.89 21.23 29.04 

2 87.78 33.54 13.44 19.73 

3 68.77 52.18 19.18 34.20 

4 63.38 56.94 23.64 39.07 

 

Table 4. 5. Wavelength of selected bands in each cluster. 

Cluster 
No. of data 
(training; test) 

No. of 

selected 

bands 

Wavelength of selected bands 

(nm) 

Cluster 1 
411;  

103 
4 696, 700, 760, 796 

Cluster 2 
69; 

18 
7 404, 420, 452, 472, 476, 480, 988 
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Fig. 4. 10. Relative band importance calculated using RFE according to cluster type in Exp. 2-1 (constant bottom condition).
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Fig. 4. 11. Result of the clustered dataset (Exp. 2-1) in the PCs domain. 

  



 

205 

 

The results of hyperspectral clustering for various suspended sediment 

characteristics were analyzed using the dataset of Exp. 2-1 when the bottom 

characteristics were constant. In addition to this variability of suspended 

sediment, the bottom effect can be investigated in detail through the dataset of 

Exp. 2-2, which was conducted in both vegetated and sand bottoms.  

Table 4.6 summarizes the evaluation results of the RF model based on 

the number of clusters using the dataset collected in Exp. 2-2. The RF model 

showed the most accurate performance when the dataset was split into two 

clusters, as indicated by an evaluation using a dataset from Exp. 2-1. The 

clustered RF showed an improvement of up to 10.82% in R2, 18.57% in RMSEP, 

3.03% in MAPE, and 10.81 in TES compared to that in the non-clustering case. 

Fig. 4.12 compares the predicted SSC from the RF model before and after 

clustering and the non-clustered RF using selected spectral bands from the 

clustered RF, in comparison to the in situ measured SSCV. Hyperspectral 

clustering improved the prediction performance in the overall SSCV range. In 

addition, the non-clustered model had a limitation: accounting for various 

spectral bands selected by combining the spectral bands of clustered RF 

(Clusters 1 and 2). 
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Table 4. 6. Evaluation of RF according to number of clusters in Exp. 2-2; the 

values with the highest accuracy are indicated in bold. 

Number of 

clusters 
R2 (%) RMSEP (%) MAPE (%) TES (%) 

1 82.62 45.87 18.07 27.11 

2 93.44 27.30 15.04 16.30 

3 90.10 37.42 18.15 21.82 

4 89.68 39.34 15.16 21.61 

5 87.35 44.64 15.68 24.32 
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Fig. 4. 12. Comparison of in-situ measured SSCV and predicted SSCV (a) 

before and (b) after clustering. 
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However, the wavelength ranges of the selected bands and the number 

of selected spectral bands differed with Exp. 2-1, as shown in Table 4.7. In 

terms of the relevant bands in each cluster, Fig. 4.13 presents the relative band 

importance of each cluster from RFECV; the grey bar indicates the relative 

band importance without clustering. GMM split the dataset into two clusters 

with apparently different optical properties. Each cluster identified particularly 

important wavelength ranges: red-edge (650–700 nm) and NIR (780–1000 nm). 

Similarly, as shown in the measured hyperspectral spectrum according to the 

SSCV in Fig. 3.32, the increased SSCV induced a high reflectance variation 

within the red-edge range in all cases. Cluster 1, which relied on the red-edge 

range, was strongly associated with the spectral characteristics of suspended 

sediment. In contrast, the reflectance within the NIR range was dominant in 

Cluster 2. Therefore, factors other than the intrinsic optical properties of 

suspended sediment, such as bottom reflectance from submerged vegetation, 

substantially contribute to Cluster 2. The effect of the bottom reflectance varies 

depending on the bottom type, even for the same sediment type, as shown in 

the complex spectral variation in a vegetation area within the NIR range (Fig. 

3.32 (b), (d), and (f)).



 

209 

 

 

 

Table 4. 7. Wavelength of selected bands in each cluster and the non-clustered dataset. 

Cluster 
No. of data 
(training; test) 

No. of selected 

bands 
Wavelength of selected bands (nm) 

Cluster 1 1,040; 260 10 451, 483, 635, 651, 659, 675, 679, 683, 687, 691 

Cluster 2 645; 161 15 
407, 411, 415, 419, 783, 787, 791, 795, 891, 903, 939, 

967, 979, 983, 1,000 

Non- 

clustered 
1,685; 421 15 

411, 487, 499, 643, 647, 683, 687, 691, 699, 707, 783, 

927, 939, 979, 1,000 
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Fig. 4. 13. Relative band importance calculated by RFE according to the cluster type in Exp. 2-2.
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The selected range of wavelengths without clustering covered the same 

range as Clusters 1 and 2. However, it is challenging to accurately predict the 

optically complex conditions with a non-clustered model, even though spectral 

bands with a wide range of wavelengths can be considered in the non-clustered 

model with a machine learning approach. Each clustered RF of the CMR-OV 

can be trained accurately from the clustered dataset because of the de-

concentration of the spectral variability.  

In terms of spectral similarity, Fig. 4.14 (a) and (b) depict the mean and 

standard deviation of the hyperspectral spectrum according to the cluster type. 

The std was larger in Cluster 2 than in Cluster 1, particularly in the NIR range 

(850–1000 nm), where variations were more prominent when the bottom was 

vegetated. Box plots of the physical factors according to the cluster type are 

shown in Fig. 4.14 (c); all physical factors except for the bottom type slightly 

differed between the two clusters. Additionally, this difference in physical 

factors with cluster types was evaluated statistically using the Mann-Whitney 

U test (Helsel, 1987), which is a nonparametric test of a null hypothesis based 

on a ranked sum, verifying the statistical difference of the significant variables 

in the clustered dataset (Kim et al., 2014; Rosner and Grove, 1999). The mean, 

SD, and U-test p-value of all physical factors in each cluster are listed in Table 

4.6. For the bottom type and temperature, the hypothesis of statistical similarity 

(p-value = 0) was entirely rejected. The bottom type was the most important 



 

212 

 

factor affecting spectral similarity, whereas the temperature difference was 

affected by the dates of Exps. 2-2-1~2-2-3 and 2-2-4~2-2-7. The sediment type 

had a slight effect on the optical similarity because the average sediment type 

index of both clusters was approximately 2 with a SD of 0.7~0.8, which 

indicated an even distribution of sediment type. In addition, the silt fraction, 

which was the dominant fraction in the yellow loess and mixture, had the 

highest p-value in the U test. Therefore, the sediment properties, such as 

sediment type, particle size, and fraction, strongly influenced the optical 

variation, as described in the PCA results (Chapter 3.5). However, the spectral 

similarity, which determined the cluster type, was principally affected by the 

bottom type. 
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Table 4. 8. Physical variables of each cluster and differences in each variable 

as measured using the Mann-Whitney U test; sand and vegetated bottom were 

indexed as 0 and 1, respectively. 

Variables 
Cluster 1 Cluster 2 p-value 

Mean SD Mean SD 

Sediment 

type 
1.987 0.729 1.929 0.784 0.022 

Bottom type 0.008 0.089 0.924 0.266 0.000 

d50 (µm) 18.00 2.963 17.88 3.590 0.026 

Clay fraction 0.020 0.025 0.030 0.041 0.002 

Silt fraction 0.809 0.116 0.792 0.147 0.165 

Sand fraction 0.171 0.127 0.179 0.163 0.022 

Temperature 

(°C) 
18.53 2.255 17.22 1.652 0.000 
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Fig. 4. 14. Hyperspectral spectrum of (a) Cluster 1 and (b) Cluster 2, with the 

mean of the spectrum indicated as a bold line and the standard deviation as 

shade; (c) boxplot of physical factors according to the cluster type: sediment 

type, bottom type, d50, the fraction of clay, silt and sand, and temperature. 
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4.4.3 Spatio-temporal SSCV mapping using CMR-OV 

Using the CMR-OV developed in this study, the spatio-temporal SSCV 

distributions of Exp. 2-1 in the straight channel were retrieved. In order to map 

the SSCV distribution in the water area, the water body of the acquired 

hyperspectral images was extracted using the HDWI (Xie et al., 2014). Fig. 

4.15 shows the spatial SSCV variation in each case in the transverse direction 

over time. The range of mapped SSCV distribution over time was similar to the 

in-situ measured SSCV in all cases. The mapped results of the CMR-OV clearly 

delineate the transverse distribution of SSCV over time for all cases, even 

though the cloud of quartz sand was invisible in the RGB image due to the high 

settling velocity and invisibility of the mineral (Fig. 3.34 (a)). In addition, a 

comparison of this result with the PCA result (Fig. 3.34) reveals that the 

transverse distribution of SSCV over time according to the CMR-OV was quite 

similar to the distribution of PC 1 in all three cases. Fig. 4.15 (b) shows that the 

transverse distribution of SSCV for yellow loess swung from the right bank to 

the left over time, while the cloud of SSCV for quartz sand did not migrate 

transversely over time. Regarding the tails of the BTCs, Fig. 4.15 shows that 

the suspended sediment was completely mixed in the transverse direction near 

the peak of the BTC, the SSCV gradually decreased after the peak, and a tail 

appeared. The proportion of the tail in the overall SSC distribution was larger 

in Cases 2-1-1 (quartz sand) and 2-1-3 (mixture), in which the tailing effect was 

caused by the friction at the channel bed. The quartz sand has a high propensity 
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to settle and the concentration of quartz was greater near the channel bed than 

the water surface; therefore, the bottom friction forced quartz sand particles to 

be retained longer inside channel irregularities, which induced the longer tail in 

the BTCs.  
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Fig. 4. 15. Spatiotemporal SSCv distribution retrieved from CMR-OV in Exp. 

2-1: (a) quartz sand, (b) yellow loess, and (c) mixture. 

 

  



 

218 

 

Fig. 4.16 depicts a comparison of the retrieved BTCs of SSCv using 

CMR-OV with the in-situ measured BTCs. The estimated SSCV from both the 

training and test datasets yielded good agreement with the in-situ measured 

SSCV. Different segments of the retrieved BTCs were assessed: rising limb, 

falling limb, and tail (Choi et al., 2020; Kwon et al., 2021a). Using these 

segmented BTCs, the influence of the concentration gradient on SSC error was 

assessed. The results are summarized in Table 4.7; the MAPE of the rising limb 

was the largest in all cases. In particular, Exp. 2-1-3 (mixture) showed the 

poorest performance for a rising limb, with a MAPE of 7.76% and 27.76% for 

the training and test dataset, respectively. Therefore, the spectral reflectance is 

unstable when the SSCV changes rapidly. In terms of sediment type, the lowest 

MAPE (1.11% and 7.01% for the training and test dataset) were obtained for 

quartz sand (Exp. 2-1-1) even though the OBRA with quartz sand showed the 

lowest accuracy (Fig. 3.30).  
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Table 4. 9. Evaluation of estimated BTC from CMR-OV according to parts of 

BTC. 

Case 

MAPE (%) 

Rising limb Falling limb Tail 

Training Test Training Test Training Test 

Case 2-1-

1 

(quartz 

sand) 

1.11 7.01 0.87 2.32 0.88 6.80 

Case 2-1-

2 

(yellow 

loess) 

3.02 18.89 1.29 15.31 1.27 8.94 

Case 2-1-

3 

(mixture) 

7.76 27.76 2.18 9.62 1.59 11.11 
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Fig. 4. 16. Comparison of in-situ measured BTC of SSCV and retrieved BTC 

of SSCV using CMR-OV with training data set and test data set: (a) quartz 

sand, (b) yellow loess, (c) mixture. 
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The spatiotemporal SSCV distribution of Exp 2-2, conducted in a 

meandering channel, was mapped from the hyperspectral images of Exp. 2-2-

3~2-2-7. Figs. 4.17 and 4.18 show the retrieved spatiotemporal SSCV 

distributions that show the SSCV variation in the transverse direction over time 

in water Sections 2 and 3 for each injected sediment type, along with the RGB 

images. These SSCV distributions had cloud shapes, similar to those in the RGB 

images in all cases. However, for the quartz sand, the cloud shapes had 

abnormal visibility in the RGB images with a low SSCV range. Even in this 

challenging case, the correct concentration field could be extracted using the 

CMR-OV. The concentration range of the entire field was estimated to be 

similar to the in-situ measurements. The SSCV cloud showed significantly 

different behavior in each section according to the sediment type (Figs. 4.17 

and 4.18). The higher the density of each sediment, the higher the sedimentation 

rate, which induces lower SSCV and movement of suspended sediment against 

the flow. The proportion of trapped sediment near the side of the channel, 

induced by the wall friction that traps the sediment particles, was larger in 

quartz sand and mixture than that in yellow loess. Using the conventional in-

situ measurements, such SSCV distribution near the wall was hard to be 

measured accurately, and this unmeasured SSCV would cause the 

underestimation of sediment load. Yellow loess showed more conservative 

behavior than the quartz sand; the discrepancy in SSCV distribution varied with 

the particle size and sediment density. The tail of the SSCV distribution of 
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yellow loess was predominantly generated in the mainstream, implying that the 

fine and light sediments were more affected by the secondary flow induced by 

channel meandering through Sections 2 to 3. In the case of quartz sand and 

mixture, despite the sophisticated retrievals of SSCV by CMR-OV, considerable 

noises were noticed at the tail of the SSCV distribution. This is because the 

suspended sediment behaved irregularly due to turbulent diffusion, and the 

bottom reflection was more dominant in the low than that in the high SSCV 

range. 
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Fig. 4. 17. Spatiotemporal SSCV distribution retrieved from CMR-OV in Exp. 2-2: (a and b) quartz sand, (c and d) fine yellow 

loess. 
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Fig. 4. 18. Spatiotemporal SSCV distribution retrieved from CMR-OV in Exp. 2-2: (a and b) coarse yellow loess, (c and b) 

mixture. 
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5. Evaluation of field applicability of CMR-OV  

 

5.1 Outline of field applicability test 

 In this chapter, the field applicability of CMR-OV was evaluated using 

experimental datasets, detailed in Chapter 3. The evaluation was performed in 

four respects: (1) Cross-applicability; (2) Uncalibrated dataset applicability; (3) 

Classification of river regions using hyperspectral clustering; (4) 

Reproducibility of mapping SSC distribution by CMR-OV. Field-scale 

experiments (Exps. 2-1 and 2-2) were used for model training (Table 5.1). The 

datasets from field surveys were used to evaluate cross-applicability and 

uncalibrated dataset applicability. All HSIs acquired from each field were 

retrieved as SSC maps using CMR-OV. All processes are detailed in the 

following subchapters. 
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Table 5. 1. Summary of datasets for field applicability test. 

Test type 
Experiment 

Type 

Experi 

-ment 

Stream  

type 

SSCV 

range 

(ppm) 

No. of 

data 

Training Field-scale 

Exp.  

2-1 

Straight 

channel 

24.08 

~52.96 
650 

Exp.  

2-2 

Meandering 

channel 

22.52 

~30.32 
2,106 

Uncalibrated 

dataset 

applicability 

test 

Field 

(straight and 

meandering 

rivers) 

Exp.  

3-1 

Hwang river 

(upstream) 

24.08 

~52.96 

10; 

4 

(vertical) 

Exp.  

3-2 

Hwang river 

(downstream

) 

22.52 

~30.32 
49 

Cross-

applicability 

and merged 

learning 
Field 

(river 

confluence) 

Exp. 

4-1 

Confluence 

of Nakdong 

and Hwang 

Rivers 

22.25 

~40.01 

2,369; 

5 

(vertical) 

Exp.  

4-2 

7.73 

~13.74 
1,283 

Uncalibrated 

dataset 

applicability 

test 

Exp.  

4-3 

5.99 

~24.04 

4 

(vertical) 
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5.2 Cross-applicability validation of CMR-OV 

The cross-applicability of the remote sensing-based estimator was a 

critical limitation; this is attributed to the locality of the estimator (Baek et al., 

2019; Dethier et al., 2020; Kwon et al., 2022b). This reduces the field 

applicability of the remote sensing estimator because a single estimator cannot 

accurately learn various datasets, and it must re-learn in the uncalibrated area. 

Therefore, local learning, which independently trained the CMR-OV using 

each survey data, and merged learning, using the combined dataset of field-

scale experiments and field surveys, were compared to evaluate the field 

applicability of CMR-OV. To assess the cross-applicability of CMR-OV, the 5-

folds cross-validation was conducted using a merged dataset. All independent 

datasets in this study had high locality because each measurement was 

independently implemented and included crucial factors of spectral variability, 

as detailed in Chapter 2. Therefore, these tests can evaluate whether CMR-OV 

can be extended to various fields. 

The field-scale experiments (Exps. 2-1 and 2-2) and field surveys 

(Exps. 4-1 and 4-2) were used to evaluate the cross-applicability of CMR-OV 

in this chapter. These datasets were independently collected under various 

sediment and stream conditions; therefore, they are suitable for verifying cross-

applicability. Other datasets from field surveys (Exps. 3-1, 3-2, and 4-3) were 

used to verify the applicability of CMR-OV using uncalibrated datasets, and 
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this issue is elaborated in Chapters 5.2 and 5.3. 

To compare local and merged learnings, this study trained each model 

by randomly sampling 80% of its dataset and evaluated it using the residual 

data in each training. CMR-OV could accurately learn all the data acquired 

from the confluence in local learning, even the bimodal distributed dataset of 

Exp. 4-1 (Fig. 5.1). When CMR-OV was trained by combining all experimental 

and field survey data under various conditions, both training and test accuracy 

improved substantially. Although CMR-OV learned various datasets, the 

effective wavelength ranges were similar in the case of field-scale experiment 

results. UV, red, red-edge, and NIR indicated high relative band importance 

(Fig. 5.2). NIR and UV controlled the spectral variability of other physical 

properties (i.e., bottom, water depth, suspended matter), along with Red and 

Red-edge, which are closely related to the intrinsic spectral properties of the 

suspended sediment. Therefore, the CMR-OV can complement the locality 

using various wavelength ranges, which was the most critical limitation in 

earlier studies (Dethier et al., 2020; Kwon et al., 2022a). Therefore, CMR-OV 

could be a robust model as it learns more datasets under various conditions. 
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Fig. 5. 1. Comparison between in-situ measurement and prediction of local 

learning and merged learning. 
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Fig. 5. 2. Relative band importance from CMR-OV by merged learning. 
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Cross-validation is a resampling procedure used to evaluate cross-

applicability (Probst et al., 2019). To evaluate cross-applicability of CMR-OV, 

5-folds cross-validation was implemented to split the test and training dataset 

in the ratio of 80 % and 20 %, respectively. Evaluation using the dataset under 

various conditions indicated how the estimator should perform in general when 

applied to predict under independent conditions with the training of the 

estimator. The dataset in this validation was randomly shuffled, then split into 

five unique groups. Each group was taken as a test dataset, and the remaining 

groups were used for the training dataset. Fig. 5.3 shows the randomly shuffled 

test and train dataset of 5-folds, which indicates the training and test dataset in 

white and black. Using these datasets, the training and test scores of R2, and 

their standard deviation were estimated according to the number of clusters, as 

shown in Fig. 5.4 (a). Both the training and test performance were best with 

two clusters with 1 % of the standard deviation of cross-applicability. The 

evaluation using RMSE showed a similar result; the test score was best with 2 

~ 4 clusters, and the averaged RMSE was 12 ppm with 2 ppm of standard 

deviation (Fig. 5.4 (b)). In addition, the learning rate of CMR-OV was more 

rapid with increased clusters (Fig. 5.4 (c)). Therefore, the number of training 

data for each model is dominant in the learning rate rather than in the number 

of clusters. Consequently, CMR-OV showed competent performance in the 

cross-applicability test. However, the dataset in this study was insufficient in 

the range of SSCV over 300 ppm. To improve CMR-OV as a more robust 
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estimator, this range of SSCV should be added with the additional survey in 

future studies. 

 

 

 

Fig. 5. 3. Shuffled dataset of 5 folds cross-validation; training dataset is in 

black, and test dataset is in white. 
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Fig. 5. 4. Cross-validation results according to the number of clusters: (a) training score and a test score of R2, (b) test score of 

RMSE, and (c) learning rate. 
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5.3 Assessment of field applicability in rivers with simple geometry  

In order to assess the field applicability of CMR-OV in uncalibrated 

datasets, it was validated using datasets collected from a straight reach upstream 

of the Hwang River (Exp. 3-1) and a weak meandering reach downstream of 

the Hwang River (Exp. 3-2). Ten points of hyperspectral spectrum and 

corresponding in-situ measured SSCV were used to validate CMR-OV. The 

SSCV was measured for 1 min at each point as described in Chapter 3.4.1. The 

time-averaged SSCV and its SD were plotted in Fig. 5.5. The concentration 

values at the measured points were generally similar; however, the 

concentrations were relatively high in Points 5 and 6, and the standard deviation 

was also high owing to the temporary movement of bedload. In these two points, 

CMR-OV underestimated the SSCv because it is difficult to reflect unsteady 

concentration changes from instantaneous images acquired by UAVs. 

Nevertheless, CMR-OV gave an accurate estimation with an RMSE of 8.69 

ppm and a MAPE of 18.43%, while the explicit model highly overestimated in 

the uncalibrated area, resulting in an RMSE of 304.77 ppm and a MAPE of 

84.29% (Fig. 5.5). Fig. 5.6 shows the spatial SSCv distributions retrieved by 

both models. CMR-OV reproduced the concentration distribution clearly, but 

the explicit model overestimated the concentration by ten times except for some 

areas and the noise could not be controlled either. Therefore, CMR-OV could 

successfully account for the different bottom and sediment properties from the 

training dataset, and it was more globally applicable than the explicit model.  
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Fig. 5. 5. Comparison of in-situ measured time-averaged SSCv and SSCv 

estimated using (a) CMR-OV and (b) explicit model (SR 2) in Exp. 4-1.



 

236 

 

 

 

Fig. 5. 6. Spatial SSCv distributions in Exp. 3-1 retrieved using (a) CMR and (b) explicit model (SR 2). 
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Forty-nine points of hyperspectral spectrum and corresponding in situ 

measured SSCV were collected at a downstream reach of Hwang River during 

Exp. 3-2, as described in Chapter 3.4.2. The validation results using a dataset 

of Exp. 3-2 are shown in Fig. 5.7, which compares the in situ measured SSCV 

and the estimated SSCV from each model at sampling points shown in Fig. 3.18 

(b). The in-situ measurement showed that the SSCv around 25 ppm was 

uniformly distributed at all points. Nevertheless, it was difficult to accurately 

predict SSCV in this area since the water depth of the measurement points varied 

considerably. This difference in water depth caused a discrepancy in the effect 

of the bottom reflectance. This depth variation might cause significant 

uncertainty in remote sensing-based SSC prediction (Baek et al., 2019; Ma et 

al., 2011; Tolk et al., 2000; Volpe et al., 2011). Therefore, the explicit model 

yielded highly overestimated results except for two shallow points, as shown in 

Fig. 5.7 (a); CMR-OV agreed with the in situ measured SSCV. The CMR-OV 

exhibited an accurate performance with an RMSE of 1.06 ppm and a MAPE of 

3.67%. Therefore, CMR-OV could successfully account for water depth 

differences and was more globally applicable than the explicit regression model. 

The reason for this is that the ML regression models learned spectral bands in 

wider wavelength ranges, which represented the effects of variability of 

suspended sediment and bottom properties with water depth difference. Fig. 5.8 

shows the SSCv distribution map retrieved by each model. The SSCv spatial 

distribution map estimated from the CMR-OV was reproduced clearly 
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compared to the results of the explicit model, similar to the validation results 

using a dataset from Exp. 3-1. The CMR-OV generated less noises than the 

explicit model, as shown in the retrieved map.  

  



 

239 

 

 

 

Fig. 5. 7. Comparison of in-situ measured time-averaged SSCv and SSCv 

estimated using (a) CMR-OV and (b) explicit model (SR 2) in Exp. 3-1. 
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Fig. 5. 8. Spatial SSCv distributions in Exp. 3-2 retrieved using (a) CMR and (b) explicit model (SR 2).
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5.4 Assessment of field applicability in river confluences 

5.4.1 Classification of river regions using hyperspectral clustering 

 Using the HSI in three surveys (Exp. 4-1 ~ 4-3), the hyperspectral 

clustering in CMR-OV was assessed for classifying the two water bodies in a 

river confluence. HSI acquired in Exp. 4-1 was separated into two clusters (Fig. 

5.9 (a)). These clusters were precisely classified as the water body of Nakdong 

and Hwang Rivers, with a mixing layer in between. However, the sandbar area 

located at the stagnation zone near the confluence junction was included in 

Cluster 2. It can be inferred that the optical characteristic of this area was similar 

to that of the Hwang River since the reflectance of the sand bottom was 

dominant, and the water column effect was negligible by shallow water depth 

(H < 1 m). In addition, the result of apparent classification demonstrated that 

both rivers have distinct optical characteristics, and confluent flows from both 

rivers at near-field confluence did not mix well. The averaged hyperspectral 

spectrum of each cluster also had different profiles, as shown in Fig. 5.9 (b) and 

(c). Although the SSCV of Nakdong River was higher than that of the Hwang 

River, the reflectance was the opposite, owing to the high contribution of 

scattering effect from fine sediment particles and bottom reflectance by shallow 

water depth (Table 5.1). This result is contrary to the notion that the SSC and 

reflectance have a positive correlation (Binding et al., 2005; Montanher et al., 

2014; Pereira et al., 2019; Qu et al., 2016; Umar et al., 2018). The optical 
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variability from sediment particle size and bottom reflectance is critical in river 

confluences, as discussed in Chapter 3.5. Fig. 5. 10 (a) is the hyperspectral 

spectrum of both clusters in PC 1 and PC 2 domains. PC 1 occupied 93% of the 

variance ratio, and Cluster 2 is widely spread compared to Cluster 1, which is 

mainly concentrated at low values in this domain. In addition, as represented in 

the distribution of PC 1 (Fig. 5. 10 (b)), both rivers have apparently different 

optical characteristics. Overlapping bins of this histogram were mainly 

distributed around zero value, and the frequency was slightly low. This 

indicates poor effect of mixing after confluence. 
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Fig. 5. 9. (a) Cluster mapping result of HSI acquired in Exp. 4-1 and averaged 

hyperspectral spectrum of (b) Cluster 1 and (c) Cluster 2.
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Fig. 5. 10. PCA results of Survey 1: (a) Hyperspectral spectrum in PC 1 - PC 2 domain and (b) histogram of PC 1. 
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Fig. 5.11 shows the values of SSCV, d50, and water quality parameters 

(turbidity, water temperature, pH, and electronic conductivity (EC)) from 

hyperspectral clusters. Both clusters showed apparently different characteristics, 

and these values were almost similar to the in-situ measured values, (Table 4.1). 

In addition, the hyperspectral clustering result was compared to the clustering 

using in-situ measured suspended sediment and water quality parameters. 

When the in-situ measured data was divided into two clusters (Fig. 5.12 (b)), 

the patterns of the two clusters were almost identical with the hyperspectral 

clustering results except for the sand bar area (Fig. 5.12 (a)). Even when these 

clusters were divided into three and four, the result was more finely divided 

within the two hyperspectral clusters, as indicated in Figs. 5.12 (c) and (d). This 

result demonstrates that the hyperspectral clustering can classify differences in 

water characteristics without water quality information; it can simplify the 

variability of optical and sediment-water characteristics of river confluences 

using hyperspectral imagery.
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Fig. 5. 11. Sediment-water quality parameters of hyperspectral clusters in Exp. 4-1. 
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Fig. 5. 12. Comparison between hyperspectral clustering and in-situ measured 

clustering. 
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 In Exp. 4-2, the SSCV and its contrast between both rivers were very 

low (Chapter 3.4). Although this condition is challenging in classifying the 

water body of both rivers, the hyperspectral clustering assigned three clusters: 

the Nakdong River, upstream and downstream of the confluence, and the 

Hwang River (Fig. 5.13 (a)). In this case, the bottom reflectance mainly 

contributed to the classification result since both rivers had clear water and 

shallow depth (H < 2 m). The contribution of bottom reflectance is vastly 

increased under 2 m of water depth (Chapter 2.1.2.3). Therefore, the reflectance 

values of the three clusters had similar magnitudes with that of Exp. 4-1, despite 

low SSCV. Accordingly, due to the effect of these bottom reflections, the 

classification of the Nakdong River into upstream and downstream was induced 

by the dynamic change in geometry from the confluent flows. 
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Fig. 5. 13. (a) Cluster mapping result of HSI acquired in Exp. 4-2 and 

averaged hyperspectral spectrum of (b) Cluster 1, (c) Cluster 2, and (c) 

Cluster 3. 
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The PCA result of Exp. 4-2 was also different from that of Exp. 4-1. 

The variation ratio of PC 1 of Exp. 4-2 was relatively lower than that of PC 1 

of Exp. 4-1, at 76 %. The Nakdong River in Exp. 4-1 had a high SSCV owing 

to the relatively deep water. PC 1 was less affected by bottom reflection. 

However, the low SSCV and water depth caused the scattering of PC 1. The 

upstream showed a bimodal distribution, and the downstream appeared close to 

a Gaussian distribution; Fig. 5.13 (b) shows that the upstream and downstream 

distributions are apparently different. In addition, the Hwang River showed 

values close to the downstream of the Nakdong River, indicating that the 

waterbody and bottom characteristics after confluence were dominated by the 

Hwang River. Unlike in Exp. 4-1, the sediment-water quality values of each 

hyperspectral cluster were estimated with slight differences. This result is also 

similar to the in-situ measured values (Table 3.10). The distinct optical 

characteristics of each hyperspectral cluster in Exp. 4-2 were not induced by 

the sediment-water quality characteristics; instead, it can be attributed to the 

bottom reflectance. 
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Fig. 5. 14. PCA results of Exp.4.2: (a) Hyperspectral spectrum in PC 1 - PC 2 domain and (b) histogram of PC 1.  
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Fig. 5. 15. Sediment-water quality parameters of hyperspectral clusters in Exp. 4-2. 
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In Exp. 4-3, the contrast in the SSCv and turbidity between the two 

rivers was 5.39 ppm and 1.02 NTU (Table. 3.10); there was an apparent color 

difference between both rivers (Fig. 3. 21 (c)). Owing to these differences, 

hyperspectral clustering apparently divided the HSI of river confluence into two 

water bodies corresponding to the two rivers as two clusters (Fig. 5.16 (a)). 

Likewise, the averaged wavelength of the divided clusters had significantly 

different values. However, the wavelength in the red-edge region (700–800 nm), 

which is highly correlated with the intrinsic spectral characteristics of the 

sediment, showed similar reflectance for both rivers. Spectral bands in other 

wavelength regions showed rather high values in the Hwang River with low 

SSCV. These results were identical to those of Exp. 4-1. The downstream part 

of the confluence in Exp. 4-1 was divided based on the mixing layer; however, 

the area of the Hwang River after the confluence point in Exp. 4-3 was more 

minor than that in Exp. 4-1. The two clusters were divided without such a clear 

mixing layer as in Exp. 4-1 because mixing occurred actively after confluence, 

and the tributary inflow did not majorly affect the spectral characteristics of the 

mainstream. This tendency is indicated in Fig. 5.17, which shows the 

hyperspectral spectrum of both clusters in PC 1 and PC 2 domains (Fig. 5.17). 

Therefore, the spectral characteristics were more clearly divided than in other 

cases, indicating the degree of mixing of the confluence to some extent. Fig. 

5.18 presents the values of water quality parameters from both hyperspectral 

clusters. The differences in water quality can be well classified from the 
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hyperspectral clusters, as corroborated by the analysis results of Exp. 4-1 and 

4-2. Therefore, hyperspectral clustering was a competent method to classify the 

river confluence, irrespective of the information on sediment-water quality 

characteristics. Therefore, it can be a practical process to resolve the spectral 

variability of the river confluence. 
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Fig. 5. 16. (a) Cluster mapping result of HSI acquired in Exp. 4-3 and 

averaged hyperspectral spectrum of (b) Cluster 1 and (c) Cluster 2. 
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Fig. 5. 17. PCA results of Exp.4-2: (a) Hyperspectral spectrum in PC 1 - PC 2 domain and (b) histogram of PC 1.  
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Fig. 5. 18. Sediment-water quality parameters of hyperspectral clusters in Exp. 4-3. 
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5.4.2 Retrievals of SSCV map 

(1) Exp. 4-1 

The trained CMR-OV was applied to retrieve the SSCV distribution of 

the confluence of the Hwang and Nakdong Rivers under three different 

conditions (Exp. 4-1 ~ 4-3). Fig.5.19 presents the mapping result for Exp. 4-1. 

CMR-OV produced more accurate mapping results than single RF. A 

concentration reversal with a high concentration occurred in the Nakdong River, 

unlike the tendency of the tributary to look more turbid in the actual RGB image 

(Fig. 5.20 (a)). Therefore, this phenomenon caused low reflectance of the 

hyperspectral spectrum in the Nakdong River with high SSCV and high 

reflectivity in the tributary with low SSCV owing to spectral variability. 

Therefore, the RF model without clustering overestimated the SSCV of the 

tributary, while the CMR-OV precisely reproduced the concentration reversal 

in Survey 1. The single RF generated a SSCV map with more noise than CMR-

OV. In addition, there was a discrepancy between the results from CMR-OV 

and single RF in the sandbar area at the stagnation zone near the confluence 

point. Although this area is located in the Nakdong River, its water depth was 

under 1 m, which induced a large contribution of bottom reflectance. Despite 

this bottom effect, CMR-OV could control the effects by delineating this area 

from hyperspectral clustering, as detailed in Chapter 5.3.1. 
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Fig. 5. 19. Comparison of SSCV mapping results of Survey 1: (a) CMR-OV and (b) single RF. 
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Fig. 5. 20. In-situ measurement-based mapping results of Exp. 4-1: (a) raw SSCV data, (b) interpolated SSCV data, and (c) 

interpolated turbidity data. 
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In terms of the mixing layer retrievals, unstable interfacial billows 

were generated at the mixing layer in Exp. 4-1 owing to the complex flow 

condition at the near-field of confluence. Compared to the RGB image, the 

CMR-OV reproduced the mixing layer more clearly than the moving boat 

method using in-situ SSCv and turbidity measurement techniques (Fig. 5.20). 

The detailed measured data from CMR-OV at the mixing layer could enhance 

the analysis of the confluence dynamics. 

The remote sensing technique generally retrieves the surface 

concentration based on the strong absorbance of light in the water column, as 

detailed in Chapter 2.1.2. However, as elaborated in the theoretical research 

(Chapter 2.1.2), a value close to the average concentration could be obtained in 

shallow water. The signals of suspended sediment can be received up to the 

riverbed at depths of 2 m or less, if the bottom signal is well controlled. The 

SSCv retrieved from CMR-OV showed good agreement with the depth-

averaged SSCv profile from in-situ measurements in the NR 5 section (Fig. 5. 

21). The estimated transverse profile of SSCv revealed a large concentration 

gradient within the mixing layer. During the general mixing phenomenon at the 

confluence, the concentration gradient within the mixing tends to decrease 

owing to the shear effect (Jung et al., 2019; Lewis and Rhoads, 2015; 

Pouchoulin et al., 2020). However, in this case, a poor mixing pattern was 

observed in the SSCv map (Fig. 5.19 (a)) due to the wake effect described in 

Chapter 3.4.3. 
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Fig. 5. 21. Comparison of depth-averaged SSCv and estimated SSCv along 

with the transverse distance from the left bank at NR5 section in Exp. 4-1. 
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(2) Exp. 4-2 

The SSCv was uniformly distributed in both rivers under shallow 

water depth in Exp. 4-2, as described in the hyperspectral clustering result. 

Therefore, the transverse distribution of in-situ measured SSCv at the NR 5 

section was more uniform than that in Exps. 4-1 and 4-3 (Fig.5.22). In this case, 

it is challenging to reproduce a uniform SSCv distribution because the 

geometry and water depth conditions are complicated after confluence. Despite 

this challenging condition, CMR-OV yielded an accurate result with a MAPE 

of 1.15 and an RMSE of 0.12 ppm compared with in-situ measured SSCv in the 

NR 5 section (Fig. 5.22). In addition, the CMR-OV improved the SSCv 

mapping performance compared to that of single RF. During Exp. 4-2, the 

overall water depth was less than 2 m with low SSCV (SSCV < 10 ppm) in both 

Nakdong and Hwang Rivers. Therefore, the bottom effect in this survey was 

more critical than that in other surveys. CMR-OV reproduced the clear 

concentration field (Fig. 5.23 (a)). However, the results were substantially 

overestimated in a single RF in the shallow areas (Fig. 5. 23 (b)). This 

discrepancy between the models demonstrates that the spectral variability 

owing to the differences in bottom reflectance can be well controlled in CMR-

OV. 
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Fig. 5. 22. Comparison of in-situ measured SSCv and estimated SSCv along 

with the transverse distance from the left bank in the NR5 section in Exp. 4-2. 
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Fig. 5. 23. Comparison of SSCv mapping results of Exp. 4-2: (a) CMR-OV and (b) single RF 
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(3) Exp. 4-3 

The site-specific problem of remote sensing in the water environment 

is the most critical problem (Dethier et al., 2020; Kabir and Ahmari, 2020; Liu 

et al., 2003; Montanher et al., 2014; Pyo et al., 2019). The dataset collected at 

Exp. 4-3 was not used as the training dataset. Therefore, the performance of 

CMR-OV in the uncalibrated case was evaluated using this dataset, as 

performed in Chapter 5.2. Fig. 5.24 presents the comparison between depth-

averaged in-situ-measured SSCv and estimated SSCv. CMR-OV correctly 

reproduced the similar transverse distribution of depth-averaged SSCv in the 

NR 3 section in Exp. 4-3. Fine suspended matter was distributed in the water 

from Hwang River (tributary) on the surface (Fig. 3.26 (b)); however, it 

detected the suspended sediment below the surface and the result was close to 

the depth-averaged SSCV.  

The spatial distribution of SSCv retrieved by CMR-OV shows the 

mixing pattern of suspended sediment with SSCv contrast (Fig. 5. 25). The 

contrast of SSCv between the two rivers before confluence was apparently seen 

in the retrieved map; however, the mixing layer became unclear after 

confluence. The mixing layer disappeared rapidly. This phenomenon is the 

opposite of that in Exp. 4-1, in which mixing was suppressed because the wake 

effect and SSCv contrast were low.  

It was challenging to observe this mixing pattern in the interpolation 
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result of point data from a turbidity sensor based on the moving boat method 

(Fig. 5.26). CMR-OV substantially improved the reproducibility of mapping 

compared to that in the moving boat method. However, the hyperspectral 

camera used in this study is a line scanning type; therefore, there is a limit to 

measuring phenomena that occur in an unsteady state while the drone is flying. 

Despite this limitation, the CMR-OV with hyperspectral imagery improved 

reproducibility compared to that in existing measurement methods. In future 

studies, this could be extended to acquire more comprehensive spatiotemporal 

data using the snapshot hyperspectral camera, which can acquire an image of a 

wide area.  
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Fig. 5. 24. Comparison of depth-averaged in-situ measured SSCv and 

estimated SSCv along with the transverse distance from the left bank at NR3 

section in Exp. 4-3. 
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Fig. 5. 25. SSCv mapping results from CMR-OV in Exp. 4-3. 
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Fig. 5. 26. In-situ measurement-based mapping results of Exp. 4-3: (a) raw 

turbidity data and (b) interpolated turbidity data. 
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5.4.3 Mixing pattern extraction from SSCv map 

Using mixing metric (σmixing) with SSCv map from CMR-OV, detailed 

mixing patterns at the river confluence can be evaluated. σmixing represents the 

degree of transverse mixing of each cross-section using a standard deviation of 

SSC for the downstream cross-sections (Lewis et al., 2020; Lewis and Rhoads, 

2015). To quantify mixing metric at downstream cross-sections of confluence, 

the standard deviation of both upstream cross-sections of the main river and 

tributary was used to normalize the downstream standard deviation (σyx), as 

follows:  

 

 1 /mixing yx upstream  = −  (5.1) 

 

σupstream is calculated using randomly sampled SSC data of both upstream 

Nakdong and Hwang River sections, which apportioned the samples according 

to the discharge ratio. Therefore, σmixing is 1 if the mixing is completely done 

and 0 when mixing does not occur (Lewis et al., 2020).  

 Owing to the high-resolution SSCv map from CMR-OV, the detailed 

mixing pattern can be evaluated by the continuous mixing metric distribution. 

Fig. 5.27 reveals the mixing metric distribution along with the longitudinal 
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distance in Exps. 4-1 and 4-3, in which there were SSCv contrasts between the 

tributary and main river. In both surveys, the mixing metric increased with 

longitudinal distance. However, irregular billows in the mixing layer of Exp. 4-

1, as shown in Fig. 5. 20 (a), resulted in the oscillated mixing metric profile in 

the longitudinal direction (Fig. 5.27). In addition, the mixing metric in Exp. 4-

1 had negative values, indicating limited mixing owing to the strong wake effect. 

In contrast, the mixing metric distribution in Exp. 4-3 gradually increased in 

the positive range; the suspended sediment was almost completely mixed 

within the near-field.  

 Consequently, CMR-OV substantially improved the accuracy of SSC 

estimation and retrieved the SSC mixing pattern of river confluence in greater 

detail than the conventional measurement method. Due to the difficulty in 

measuring detailed SSC distribution, CMR-OV with hyperspectral imagery 

may benefit in determining the patterns of sediment mixing, at least in shallow 

waters or near the surface, as revealed in this chapter. However, measurements 

of three‐dimensional distribution can improve the prediction and understanding 

of suspended sediment dynamics. This limitation could be substantially 

overcome by integrating the use of vertical measurement sensors. 
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Fig. 5. 27. Mixing metric distribution along with longitudinal distance 

normalized by upstream width (XL/W0): (a) Exp. 4-1 and (b) Exp. 4-3. 
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6. Conclusions and future study 

6.1 Conclusions 

This study developed a robust method to estimate the suspended sediment 

concentration using UAV-based hyperspectral imagery. To apply such a method 

to various river conditions., this study focused on the spectral variability arising 

from the heterogeneity of sediment and streambed properties in rivers. Various 

experiments were conducted in the laboratory, field-scale channels, and field to 

figure out confounding factors of spectral variability. Based on the datasets for 

spectral variability collected from experimental studies, a CMR-OV was 

developed combining machine learning regression using RF and hyperspectral 

clustering using GMM. Finally, the CMR-OV successfully retrieved high-

resolution spatial distributions of suspended sediment in various fields in the 

riverine system. The detailed achievements in this study are summarized below: 

1. The result of the laboratory experiments showed that the suspended 

sediment has its own spectral characteristics that varies with the mineral 

contents. The effective spectral bands of each sediment had strong linearity 

with SSC, even though the variation of the hyperspectral spectrum 

increased when the particle size of suspended sediment decreased. 

However, in field-scale experiments, the hyperspectral spectrum and SSC 

were only weakly associated due to bottom reflectance. The shape of the 
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hyperspectral spectrum, related to spectral similarity, was dominated by 

the streambed type under shallow water depth (H<1m), irrespective of 

sediment properties. In particular, when the channel bottom was vegetated, 

the variance and the noise of the hyperspectral spectrum in the NIR region 

increased considerably. Specifically, the reflectance in the NIR region 

changed dynamically owing to the vegetation movement from the flow. 

However, the results of PCA showed that the dimension-reduced 

hyperspectral image revealed substantial heterogeneity based on the 

sediment type. The SSC and d50 showed a strong correlation with the first 

or second principal components of the hyperspectral spectrum. This result 

implied that the concentration and size of suspended sediment complexly 

induced back-scattering in the water column. Spectral variability depends 

on the bottom and sediment properties; however, it is challenging to 

classify these characteristics in natural rivers deterministically. Therefore, 

it is necessary to deal with the optically complex dataset of suspended 

sediment by classifying them into spectrally similar groups through 

hyperspectral clustering. 

2. In CMR-OV, the hyperspectral clustering separated the complex dataset 

into several homogeneous datasets based on spectral characteristics. The 

separated RF models corresponding to the clusters were built to construct 

the relationship between the spectrum in hyperspectral imagery and SSC. 

Hyperspectral clustering, through GMM in CMR-OV, clustered two 
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spectrally distinct clusters under constant and different bottom conditions 

with various suspended sediment properties. The red-edge (650–700 nm), 

related to the intrinsic characteristics of the sediment, was the most 

significant wavelength range in all cases. In addition to this, the wavelength 

range of UV (400–450 nm) and NIR (780–1,000 nm) controlled the other 

effects, including the bottom effect. Therefore, hyperspectral clustering 

could classify spectral characteristics, even without prior information on 

sediment properties and bottom type. Finally, CMR-OV outperformed the 

other regression models (explicit and implicit models) in terms of accuracy 

of SSC estimation. Moreover, CMR-OV yielded robust estimation results 

in the uncalibrated region, including a straight river, a meandering river, 

and a river confluence.  

3. CMR-OV could retrieve the spatiotemporal SSC distribution of the open 

channel flow in detail, irrespective of the sediment type. A distinct feature 

of the mapped suspended sediment distribution is that CMR-OV could 

estimate up to invisibly suspended sediment and the tail part of the 

suspended sediment cloud. This part is difficult to obtain when using 

conventional point measurement because it mainly occurs at low 

concentrations near the sidewall of a stream. Therefore, CMR-OV could 

retrieve a different spatial pattern of suspended sediment according to the 

sediment particle size. In the straight and meandering channel (Exps. 2-1 

and 2-2), yellow loess (d50=16.3 μm) presented more conservative behavior 
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than the quartz sand (d50= 140 μm). Therefore, quartz sand was retained 

longer inside channel irregularities; the tail of the sediment cloud was 

longer than that in yellow loess. However, in the meandering channel, the 

tail of yellow loess distribution was generated predominantly compared to 

that of quartz sand, implying that the fine and light sediments were more 

influenced by the secondary flow induced by channel meandering. 

4. Through CMR-OV, the spatial distributions of SSCv for both rapid and 

inhibited mixing cases at the confluence of the Hwang and Nakdong Rivers 

were accurately reproduced. In addition, CMR-OV could retrieve the 

highly optically complex phenomenon in which turbidity and SSC were 

inversely proportional because a high turbid flow with fine matters and a 

sediment-laden flow with large sand particles merged at the confluence. 

Therefore, the complex spatial distribution of SSC can be estimated in 

greater detail; this is difficult to be reproduced by conventional 

measurements.  
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6.2 Future directions 

In this study, the spectral variability from sediment and river bed 

properties was intensively investigated in a laboratory experiment, several 

field-scale experiments, and field surveys. Nevertheless, in future studies, 

researchers should consider additional spectral variability-related factors in 

rivers.  

First, other constituents within the water column, such as colored 

organic matter (CDOM), algal blooms, and pollutants, should be investigated 

in conjunction with suspended sediment and bottom type. These constituents 

have been investigated in several previous studies (Baek et al., 2019; 

Niroumand-Jadidi et al., 2019a; Olmanson et al., 2013; Zeng et al., 2017). 

Although these constituents coexist in most rivers, their combined effects have 

not been investigated. Retrieving each constituent is easy because of their 

distinct optical characteristics, but measuring the exact contribution of each 

component is a challenging task owing to the nature of the coexistence 

characteristics. Therefore, CMR-OV can be extended to solve this problem 

using hyperspectral clustering. 

Second, a more comprehensive range of SSC than those applied in this 

study should be considered. When a flood induces a highly turbid flow, or 

debris flow is injected into deep rivers, a high concentration of suspended sand 

is distributed. This substantially affects the morphology, ecosystem, and water 
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quality of rivers. In this case of large SSC with deep water depth, the bottom 

reflectance is negligible owing to the high scattering effect from the suspended 

sediment. Therefore, hyperspectral clustering results in the division of clusters 

based on sediment properties. The result of Exp. 2-1 exhibited this tendency 

due to its high turbid background water and constant bottom condition. 

Compared to other conditions, the reflectance within the NIR range had 

relatively low values in Exp 2-1 because the bottom reflectance was relatively 

insignificant compared to that in Exp. 2-2. Accordingly, classifying the dataset 

into sediment properties and learning it increased the accuracy of model 

substantially. However, investigation in field surveys under such sediment 

dominant conditions in deep waters is necessary because the sediment and river 

characteristics can be more complex in natural rivers.  

To develop a global estimator, various factors that were presented above 

need to be investigated. However, CMR-OV would possibly clarify the 

contribution of these various factors to SSC estimation and could be used to 

determine spectral variability. In terms of application in river management, the 

CMR-OV can be used in many problems requiring high-resolution SSC data, 

at least in shallow waters or waters near the surface. It could substantially 

contribute to river management tasks as it enables extensive and accurate river 

monitoring. 
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Appendix 

 

Appendix A. Breakthrough curve (BTC) analysis 

The BTC features can be calculated from the temporal moment (Kwon 

et al., 2021a; Luo et al., 2006). The kth degree temporal moment (mk) at location 

(x) was calculated from Eq. B.1. Based on this equation, the first moment is 

related to the advection of the contaminant as a time to the centroid ( t  ), 

representing the mean travel time of the entire contaminant cloud (Eq. B.2). 

The second-moment temporal variance (σ) of the BTC indicates the degree of 

diffusion (Eq. B3). The third and fourth temporal moments are related to 

skewness (SKNS) and kurtosis (KURT), which represent the asymmetry and 

peak of the BTC (Eqs. B.4 and B.5).  
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where t is time, C is the concentration of the BTC.  

The slope features were applied to the segments of BTC of rising limb, 

falling limb, and tail (Kwon et al., 2021a). The slope of the rising and falling 

limb can be calculated by dividing the maximum concentration by the time 

variation of each part. These features indicate how quickly the contaminant 

increases and decreases. Thus, if advection is more dominant than dispersion, 

the peak concentration is increased with high kurtosis, and the retention time is 

decreased, which is equivalent to the slope being increased. In particular, the 

magnitude of the storage zone effect from the contaminant retention is featured 

as the power-law shape (Aquino et al., 2015; Haggerty et al., 2002). The tail 

slope indicates how the concentration decrease from the storage zone effect, 

and it can be calculated by the power of the equation from the power-law 

regression. 
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Appendix B. Experimental data 

Appendix B. 1. BTCs of in-situ measured SSC from field-scale 

experiments 

a) Field-scale experiment in a straight channel (Exp. 2-1) 

 

SSCv (ppm) 

Case2-1-1 (quart sand) Case2-1-2 (yellow loess) 
Case2-1-3 

(mixture) 

h/H    

 

Time(s) 

0.75 0.25 0.75 0.25 0.75 0.25 

0 23.53 24.01 23.09 23.42 23.26 23.35 

1.5 23.58 24.03 23.08 23.51 23.24 23.40 

3 23.56 24.05 23.09 23.49 23.15 23.38 

4.5 23.55 24.00 23.09 23.50 23.18 23.39 

6 23.60 24.05 23.07 23.47 23.14 23.32 

7.5 23.61 24.04 23.05 23.50 23.11 23.34 

9 23.65 24.04 23.09 23.52 23.11 23.31 

10.5 23.66 24.03 23.09 23.49 23.06 23.28 

12 23.71 24.08 23.17 23.49 23.10 23.26 

13.5 23.65 24.05 23.29 23.49 23.08 23.28 

15 23.63 24.02 23.32 23.50 23.10 23.29 

16.5 23.67 24.03 23.34 23.48 23.05 23.24 

18 23.68 23.99 23.33 23.47 23.08 23.24 

19.5 23.72 23.97 23.29 23.47 23.11 23.28 

21 23.74 23.97 23.37 23.46 23.07 23.24 

22.5 23.70 23.99 23.42 23.43 23.08 23.25 

24 23.75 23.99 23.45 23.39 23.08 23.28 

25.5 23.75 23.95 23.48 23.43 23.16 23.26 

27 23.74 23.98 23.52 23.41 23.24 23.26 

28.5 23.74 24.01 23.57 23.35 23.19 23.26 

30 23.75 23.91 23.56 23.37 23.20 23.28 

31.5 23.69 23.87 23.53 23.29 23.23 23.27 

33 23.72 23.87 23.46 23.36 23.31 23.26 

34.5 23.69 23.87 23.47 23.33 23.30 23.28 

36 23.69 23.82 23.51 23.33 23.31 23.27 

37.5 23.75 23.80 23.53 23.36 23.33 23.24 

39 23.69 23.80 23.54 23.36 23.29 23.25 

40.5 23.66 23.78 23.55 23.37 23.29 23.21 

42 23.58 23.74 23.50 23.36 23.26 23.24 

43.5 23.64 23.71 23.44 23.39 23.24 23.17 

45 23.63 23.73 23.46 23.44 23.24 23.21 

46.5 23.66 23.73 23.52 23.44 23.24 23.19 

48 23.67 23.75 23.56 23.42 23.22 23.18 

49.5 23.70 23.76 23.62 23.40 23.19 23.15 

51 23.70 23.72 23.56 23.48 23.17 23.18 

52.5 23.68 23.65 23.51 23.46 23.14 23.12 

54 23.68 23.66 23.49 23.47 23.18 23.06 

55.5 23.66 23.68 23.48 23.45 23.12 23.11 
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57 23.71 23.61 23.47 23.46 23.10 23.13 

58.5 23.70 23.61 23.43 23.50 23.13 23.22 

60 23.61 23.68 23.43 23.50 23.11 23.21 

61.5 23.65 23.68 23.42 23.49 23.09 23.20 

63 23.63 23.72 23.45 23.52 23.01 23.17 

64.5 23.69 23.76 23.45 23.57 23.03 23.15 

66 23.67 23.80 23.44 23.52 23.12 23.19 

67.5 23.68 23.82 23.42 23.76 23.07 23.19 

69 23.71 23.75 23.39 23.75 23.22 23.21 

70.5 23.70 23.78 23.36 23.73 23.25 23.22 

72 23.79 23.77 23.31 23.76 23.29 23.21 

73.5 23.78 23.80 23.30 23.78 23.24 23.27 

75 23.77 23.76 23.29 23.73 23.24 23.30 

76.5 23.73 23.78 23.25 23.75 23.27 23.33 

78 23.70 23.75 23.24 23.80 23.23 23.34 

79.5 23.66 23.78 23.28 23.83 23.28 23.40 

81 23.63 23.80 23.31 23.87 23.26 23.39 

82.5 23.59 23.82 23.33 23.85 23.29 23.41 

84 23.59 23.86 23.39 23.85 23.25 23.43 

85.5 23.67 23.82 23.42 23.84 23.22 23.33 

87 23.63 23.85 23.37 23.82 23.21 23.27 

88.5 23.62 23.80 23.32 23.84 23.21 23.21 

90 23.69 23.79 23.29 23.79 23.26 23.21 

91.5 23.68 23.81 23.30 23.82 23.32 23.20 

93 23.61 23.80 23.27 23.77 23.33 23.25 

94.5 23.54 23.80 23.22 23.76 23.28 23.25 

96 23.53 23.81 23.18 23.81 23.23 23.24 

97.5 23.48 23.89 23.17 23.56 23.26 23.25 

99 23.46 23.94 23.20 23.58 23.16 23.24 

100.5 23.52 23.98 23.24 23.58 23.15 23.24 

102 23.53 24.02 23.34 23.53 23.12 23.23 

103.5 23.54 24.00 23.43 23.50 23.11 23.23 

105 23.58 24.00 23.98 23.49 23.08 23.18 

106.5 23.58 23.96 24.24 23.50 23.01 23.18 

108 23.58 24.02 24.33 23.56 23.43 23.22 

109.5 23.69 23.97 25.58 24.90 23.72 23.19 

111 23.70 23.98 27.21 25.81 24.23 23.20 

112.5 23.76 24.01 32.57 26.49 27.46 23.28 

114 23.86 24.00 40.54 27.50 31.17 23.56 

115.5 24.04 24.10 51.89 30.89 34.99 24.49 

117 24.34 24.13 68.89 33.49 38.40 25.77 

118.5 24.67 24.20 81.28 39.96 43.44 26.98 

120 24.96 24.28 92.60 45.11 47.61 28.69 

121.5 25.28 24.38 91.45 52.08 52.62 30.54 

123 26.50 25.07 99.50 61.14 56.31 33.77 

124.5 28.43 25.69 110.20 76.27 61.28 36.21 

126 30.23 27.36 121.14 88.07 66.21 40.61 

127.5 32.42 29.33 135.60 101.79 71.87 46.11 

129 34.76 30.92 147.34 113.87 76.67 48.03 

130.5 36.67 33.18 161.83 124.11 83.18 52.57 

132 38.09 35.42 174.02 135.73 89.38 56.21 

133.5 39.46 37.05 186.07 149.85 94.44 61.71 

135 41.37 38.89 198.54 160.41 101.11 66.48 

136.5 44.06 41.12 214.13 169.74 107.68 71.55 

138 46.20 42.82 212.88 179.89 114.28 77.50 

139.5 47.99 45.04 229.00 189.62 121.62 81.87 

141 49.83 47.31 244.83 199.59 127.40 86.90 
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142.5 51.66 49.94 256.75 210.48 129.65 93.36 

144 52.56 52.23 257.68 223.41 132.04 99.76 

145.5 53.12 54.48 258.07 234.27 133.83 104.18 

147 54.36 56.81 252.12 242.41 136.33 108.38 

148.5 55.43 59.36 253.44 247.64 138.58 112.61 

150 56.73 61.54 256.56 254.48 138.39 116.51 

151.5 58.75 63.97 272.45 260.02 140.02 119.48 

153 59.90 65.53 278.54 263.31 139.66 122.11 

154.5 60.43 67.32 280.41 259.60 140.91 125.57 

156 60.54 67.53 275.98 261.23 140.32 126.95 

157.5 60.11 67.79 269.17 260.54 138.93 127.68 

159 59.67 68.42 266.13 259.43 138.33 132.59 

160.5 58.75 69.34 261.82 260.92 135.84 134.03 

162 58.63 69.23 257.86 260.02 134.39 134.71 

163.5 58.15 69.31 253.08 255.80 132.77 134.74 

165 56.99 68.84 247.99 257.50 132.24 135.80 

166.5 55.03 68.37 238.84 256.50 130.26 137.22 

168 53.47 68.25 249.35 258.01 129.78 136.74 

169.5 52.77 67.92 240.77 257.55 126.75 138.07 

171 51.74 67.15 230.22 255.96 124.30 138.35 

172.5 50.39 66.64 221.30 253.24 122.35 137.81 

174 50.01 66.31 221.12 247.60 119.15 136.81 

175.5 50.23 65.86 218.45 240.95 117.44 136.38 

177 49.88 64.85 215.23 236.94 116.18 136.26 

178.5 49.42 64.21 210.20 231.83 113.31 136.76 

180 48.44 63.97 201.22 227.88 113.92 136.20 

181.5 46.68 63.38 192.29 223.02 111.48 137.64 

183 44.78 62.12 184.48 219.41 112.63 137.47 

184.5 42.80 61.20 176.87 212.70 109.88 137.53 

186 41.28 60.08 176.30 207.29 108.02 135.37 

187.5 40.08 58.43 174.09 202.03 106.66 134.22 

189 38.67 56.96 169.79 196.60 106.20 132.17 

190.5 38.23 55.02 164.49 189.54 105.11 130.13 

192 37.45 54.02 159.77 184.44 103.15 129.81 

193.5 37.14 53.53 158.06 179.91 102.50 128.26 

195 37.05 53.48 154.38 174.09 100.21 125.92 

196.5 36.74 52.69 152.00 172.72 97.27 122.33 

198 36.73 52.02 145.11 167.58 92.52 120.18 

199.5 35.88 51.23 138.88 161.05 89.66 117.37 

201 35.46 50.52 134.90 155.16 88.30 115.04 

202.5 35.38 48.96 129.34 149.49 87.26 112.39 

204 35.17 47.65 122.69 145.83 86.38 108.56 

205.5 34.56 46.50 116.57 141.74 85.03 105.97 

207 33.62 45.68 110.78 138.86 83.04 102.78 

208.5 33.07 44.30 104.66 135.34 79.89 99.47 

210 32.98 42.96 101.94 130.35 76.71 97.01 

211.5 32.78 41.40 98.82 125.34 73.77 91.80 

213 32.65 40.73 95.24 119.13 70.68 87.60 

214.5 32.41 39.82 93.31 117.18 68.45 83.77 

216 32.27 39.71 89.28 111.60 67.08 81.67 

217.5 31.93 39.66 85.41 106.87 64.97 78.62 

219 31.82 39.44 82.36 104.04 62.18 75.33 

220.5 31.55 38.71 79.27 101.44 59.95 72.48 

222 31.29 37.92 77.36 98.16 57.95 69.34 

223.5 30.90 37.12 72.83 94.48 56.31 66.57 

225 30.50 36.30 69.58 90.44 53.52 63.94 

226.5 30.55 35.70 66.40 85.60 52.24 62.24 
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228 30.11 35.39 64.49 81.08 50.95 60.44 

229.5 30.08 34.53 62.84 79.33 49.77 58.39 

231 29.91 34.09 61.17 77.60 48.01 56.07 

232.5 29.69 33.73 60.00 76.34 46.01 53.29 

234 29.41 33.42 59.45 74.02 44.52 52.14 

235.5 29.27 33.09 57.78 72.53 42.61 50.43 

237 29.24 32.87 56.82 70.60 40.55 48.89 

238.5 28.98 32.46 55.49 69.49 39.85 46.74 

240 28.66 32.06 54.54 68.78 38.96 44.78 

241.5 28.45 31.87 53.27 68.33 38.00 44.43 

243 28.37 31.84 51.25 67.13 37.25 43.54 

244.5 28.31 31.44 48.98 66.01 36.43 41.70 

246 28.22 30.91 47.90 64.94 35.69 41.04 

247.5 28.21 30.52 47.43 63.53 35.21 39.44 

249 27.97 30.36 46.95 61.67 34.62 39.10 

250.5 27.90 30.11 45.74 60.68 34.33 39.34 

252 27.77 29.92 44.74 59.33 34.07 39.02 

253.5 27.76 29.64 44.21 58.75 33.89 38.67 

255 27.68 29.31 43.63 57.48 33.69 38.30 

256.5 27.36 29.24 43.08 56.38 33.77 37.65 

258 27.41 28.83 42.93 55.24 33.57 36.98 

259.5 27.34 28.77 42.76 53.40 33.38 36.94 

261 27.41 28.66 42.07 52.20 32.84 36.90 

262.5 27.51 28.68 40.87 50.87 32.44 37.13 

264 27.48 28.52 39.90 49.15 31.99 36.83 

265.5 27.48 28.32 39.84 47.90 31.34 37.06 

267 27.49 28.22 39.62 46.60 30.81 36.68 

268.5 27.53 28.15 38.89 45.44 30.38 36.64 

270 27.50 28.20 37.50 44.55 29.98 36.17 

271.5 27.81 28.23 36.28 43.25 29.77 35.76 

273 27.80 28.15 35.72 42.99 29.34 35.42 

274.5 27.81 28.03 35.17 42.03 29.13 35.27 

276 28.03 28.10 34.60 41.01 28.88 34.65 

277.5 28.12 27.99 33.83 39.76 28.72 34.39 

279 28.08 27.74 33.24 39.26 28.54 33.38 

280.5 28.04 27.59 32.96 38.53 28.30 32.29 

282 28.06 27.82 32.52 37.99 28.04 31.93 

283.5 27.99 27.91 32.25 37.28 27.21 31.36 

285 27.92 27.93 32.16 36.38 26.40 31.10 

286.5 27.90 27.73 31.70 35.55 26.08 30.95 

288 27.81 27.66 31.48 34.82 25.83 30.56 

289.5 27.66 27.64 30.90 34.99 25.56 30.14 

291 27.40 27.51 30.59 34.94 25.55 29.69 

292.5 27.13 27.46 30.34 34.55 25.52 29.05 

294 27.19 27.27 30.03 34.31 25.60 28.90 

295.5 26.90 27.31 28.95 33.78 25.70 28.46 

297 26.78 27.18 28.27 33.35 25.66 28.55 

298.5 26.63 27.22 28.00 32.67 25.67 28.47 

300 26.53 26.95 27.67 31.45 25.62 28.61 

301.5 26.16 26.71 27.69 30.72 25.50 28.40 

303 26.18 26.52 27.61 29.80 25.46 28.31 

304.5 26.17 26.58 27.58 29.26 25.34 28.32 

306 25.92 26.41 27.42 29.07 25.26 28.44 

307.5 25.64 26.34 27.19 28.87 25.18 28.36 

309 25.62 26.28 27.02 28.65 25.04 28.38 

310.5 25.46 26.34 26.94 28.47 24.93 28.24 

312 25.29 26.07 27.03 28.19 24.82 28.15 
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313.5 25.22 25.93 26.91 28.02 24.84 27.90 

315 25.14 25.82 26.57 27.95 24.93 27.75 

316.5 25.08 25.82 26.52 27.98 25.06 27.46 

318 25.01 25.68 26.36 28.10 25.04 27.01 

319.5 24.95 25.66 26.21 27.59 24.99 26.81 

321 24.92 25.58 26.34 27.37 24.97 26.77 

322.5 24.96 25.40 26.26 27.45 24.97 26.78 

324 24.86 25.45 26.23 27.25 24.87 26.68 

325.5 24.89 25.26 26.17 27.23 24.82 26.46 

327 24.81 25.19 26.12 27.32 24.81 26.22 

328.5 24.86 25.07 25.94 27.35 24.73 25.99 

330 24.75 25.04 25.95 27.25 24.66 25.80 

331.5 24.68 25.09 25.73 27.22 24.65 25.78 

333 24.53 25.11 25.81 27.21 24.60 25.64 

334.5 24.40 25.04 25.76 27.25 24.63 25.52 

336 24.35 25.01 25.71 27.11 24.64 25.21 

337.5 24.37 25.00 25.69 27.04 24.65 25.29 

339 24.31 24.95 25.74 26.95 24.59 25.21 

340.5 24.30 24.79 25.52 26.88 24.65 25.18 

342 24.33 24.63 25.25 26.81 24.52 25.13 

343.5 24.27 24.57 25.12 26.64 24.49 25.18 

345 24.27 24.49 25.17 26.52 24.41 25.15 

346.5 24.28 24.40 25.17 26.30 24.19 25.10 

348 24.26 24.34 25.19 26.06 24.23 25.07 

349.5 24.31 24.22 25.20 25.94 24.16 24.93 

351   24.86 25.75 24.06 24.93 

352.5   24.82 25.53 24.13 24.78 

354   24.57 25.50 24.13 24.70 

355.5   24.50 25.42 24.15 24.69 

357   24.45 25.36 24.15 24.72 

358.5   24.42 25.20 24.15 24.67 

360   24.39 25.18 24.13 24.65 

361.5   24.48 25.16 24.19 24.70 

363   24.36 25.22 24.15 24.74 

364.5   24.45 25.17 24.07 24.79 

366   24.46 25.20 24.04 24.80 

367.5   24.45 25.16 24.00 24.69 

369   24.27 25.18 24.04 24.64 

370.5   24.28 25.33   

372   24.26 25.41   

373.5   24.26 25.38   

375   24.33 25.44   

376.5   24.27 25.49   

378   24.25 25.49   

379.5   24.14 25.60   

381   24.07 25.69   

382.5   23.97 25.78   

384   24.04 25.71   

385.5   24.08 25.74   

387   24.09 25.60   

388.5   24.10 25.74   

390   24.14 25.67   

391.5   24.18 25.66   

393   24.15 25.46   

394.5   24.00 25.41   

396   23.98 25.34   

397.5   24.05 25.31   
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399   24.18 25.33   

400.5   24.19 25.15   

402   24.22 25.11   

403.5   24.24 25.16   

405   24.14 25.15   

406.5   24.17 25.16   

408   24.18 25.10   

409.5   24.20 24.97   

411   24.25 24.91   

412.5   24.32 24.82   

414   24.30 24.79   

415.5   24.28 24.68   

417   24.28 24.62   

418.5   24.30 24.55   

420   24.26 24.54   

421.5   24.14 24.43   

423   24.14 24.39   

424.5   24.15 24.41   

426   24.16 24.41   

427.5   24.10 24.45   

429   24.00 24.36   

430.5   23.92 24.30   

432   23.88 24.19   

433.5   23.86 24.21   

435   23.87 24.19   

436.5   23.85 24.15   

438   23.83 24.17   

 

 

b) Field-scale experiment in a meandering channel (Exp. 2-2; Case 2-2-1~2-

2-3) 

 SSCv (ppm) 

Case2-2-1 (quart sand) Case2-2-2 (yellow loess) Case2-2-3 (mixture) 

Section 

 

Time (s) 
Sec. C1 Sec. C2 Sec. C1 Sec. C2 Sec. C1 Sec. C2 

1 10.29 9.81 10.53 10.93 11.93 11.42 

2 10.29 9.81 10.53 11.04 11.93 11.42 

3 10.29 9.81 10.66 11.04 11.93 11.42 

4 10.29 9.83 10.66 11.04 11.79 11.42 

5 10.29 9.83 10.71 11.04 11.79 11.83 

6 10.29 9.83 11.40 11.04 11.77 11.83 

7 10.29 10.10 11.44 11.09 11.77 11.42 

8 10.29 10.10 11.56 11.09 11.77 11.69 

9 10.29 10.24 11.44 10.93 11.68 11.83 

10 10.15 10.10 11.44 11.01 11.65 11.95 

11 10.15 10.45 11.40 11.09 11.65 12.12 

12 10.06 10.60 11.30 11.09 11.68 12.12 

13 10.06 10.60 11.30 11.09 11.68 12.12 

14 10.15 10.60 11.25 11.23 11.65 11.95 

15 10.15 10.65 11.30 11.23 11.65 11.69 

16 10.06 10.65 11.25 11.23 11.76 11.69 

17 10.61 10.65 11.00 11.19 11.65 11.88 
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18 9.93 10.45 11.00 11.23 11.76 11.88 

19 10.61 10.45 11.00 11.23 11.76 11.66 

20 10.61 10.59 11.00 11.23 11.76 11.66 

21 10.43 10.65 11.00 11.23 11.47 11.66 

22 10.66 10.59 11.63 11.19 11.47 11.66 

23 10.66 10.59 11.66 11.18 11.45 11.61 

24 10.59 10.50 11.66 11.18 11.45 11.68 

25 10.52 10.44 11.63 11.19 11.47 11.71 

26 10.52 10.44 11.66 11.18 11.47 11.68 

27 10.43 10.43 11.77 11.18 11.83 11.61 

28 10.43 10.50 11.77 10.79 11.83 11.61 

29 10.43 10.43 11.63 10.79 11.83 11.61 

30 10.52 10.43 11.53 10.79 11.87 11.61 

31 10.52 10.43 11.53 10.79 11.87 11.61 

32 10.42 10.43 11.36 10.94 11.87 11.71 

33 10.16 10.43 11.36 11.03 11.88 11.71 

34 10.16 10.43 11.53 11.03 11.88 11.46 

35 10.16 10.51 11.56 10.94 11.87 11.35 

36 10.16 10.51 11.53 10.94 11.26 11.46 

37 10.16 10.53 11.36 11.03 11.26 11.46 

38 10.39 10.53 11.53 11.03 11.18 11.46 

39 10.39 10.53 11.56 11.04 11.26 11.35 

40 10.39 10.68 11.68 11.04 11.18 11.35 

41 10.39 10.68 11.68 11.23 11.18 11.35 

42 10.39 10.82 12.04 11.04 11.44 11.34 

43 10.39 10.95 12.04 10.96 11.20 11.34 

44 10.39 10.95 12.04 10.96 11.40 11.34 

45 10.46 10.68 11.68 10.99 11.40 11.80 

46 10.46 10.68 11.71 10.99 11.40 11.17 

47 10.46 11.00 11.71 10.96 11.40 11.63 

48 10.50 10.68 11.68 10.96 11.41 11.80 

49 10.46 10.68 11.45 10.96 11.41 11.80 

50 10.45 10.52 11.01 10.99 11.44 11.63 

51 10.45 10.31 10.96 10.99 11.44 11.63 

52 10.45 10.27 10.74 10.99 11.47 11.67 

53 10.45 10.27 10.87 10.99 11.52 12.05 

54 10.45 10.18 10.87 11.12 11.76 11.67 

55 10.21 10.18 10.87 11.12 11.81 11.63 

56 10.21 10.18 10.87 11.12 11.81 11.63 

57 10.14 10.18 10.74 11.12 11.92 11.60 

58 10.14 10.27 10.87 11.15 11.92 11.52 

59 10.14 10.27 10.87 11.12 11.81 11.52 

60 10.21 10.39 10.87 10.74 11.81 11.52 

61 10.21 10.39 10.87 10.65 11.92 11.40 

62 10.21 10.45 10.87 10.58 11.92 11.38 

63 10.24 10.39 10.94 10.65 11.81 11.38 

64 10.24 10.53 10.94 10.65 11.67 11.38 

65 10.24 10.53 10.94 10.65 11.37 11.40 

66 10.24 10.60 10.94 10.80 11.67 11.38 

67 10.24 10.60 11.53 10.80 11.67 11.40 

68 10.24 10.53 11.62 10.58 11.47 11.40 

69 10.24 10.53 11.62 10.80 11.53 11.52 

70 10.29 10.31 11.62 10.80 11.67 11.52 

71 10.15 10.31 11.62 11.23 11.67 11.52 

72 10.13 10.31 11.62 11.23 11.83 11.52 

73 10.13 10.60 11.53 11.18 11.83 11.45 

74 10.31 10.61 11.53 11.18 11.83 11.42 
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75 10.20 10.66 11.53 11.11 11.83 11.39 

76 10.31 10.61 11.40 10.90 11.53 11.42 

77 10.38 10.31 11.32 11.02 11.53 11.42 

78 10.41 10.31 11.15 11.11 11.83 11.45 

79 10.43 10.31 11.15 11.02 11.83 11.45 

80 10.43 10.31 11.15 11.02 11.71 11.80 

81 10.75 10.11 11.32 11.02 11.71 12.04 

82 10.75 10.10 11.32 11.11 11.71 12.04 

83 10.54 10.10 11.39 11.11 11.71 12.59 

84 10.75 10.08 11.32 11.32 11.75 13.55 

85 10.75 10.08 11.32 11.54 11.75 15.86 

86 10.75 10.05 11.39 11.66 11.80 17.68 

87 10.54 10.08 11.39 12.40 11.80 17.87 

88 10.33 10.05 11.39 12.69 11.80 19.39 

89 10.33 10.08 11.39 12.83 12.57 20.80 

90 10.27 10.08 11.39 14.71 12.58 22.61 

91 10.02 10.17 11.32 15.35 13.62 28.39 

92 9.99 10.22 11.32 16.74 17.41 29.11 

93 9.99 10.44 11.32 17.39 24.21 32.95 

94 9.88 10.46 11.62 18.71 27.36 52.10 

95 9.99 10.46 11.64 35.65 28.22 60.59 

96 9.99 10.61 11.64 37.90 34.31 62.02 

97 9.88 10.68 12.09 46.10 40.77 62.23 

98 10.02 11.49 12.65 50.70 44.16 68.23 

99 9.88 13.06 13.40 58.57 46.68 69.72 

100 9.88 14.26 13.42 61.09 50.16 72.39 

101 9.88 15.25 14.95 63.57 65.25 76.65 

102 10.02 15.56 15.11 88.24 83.05 77.39 

103 10.05 19.24 15.15 98.66 94.27 77.39 

104 10.10 20.54 17.10 124.85 96.02 84.32 

105 10.31 22.24 23.78 142.93 99.90 89.18 

106 11.29 22.31 43.03 152.57 119.10 93.72 

107 11.29 28.20 51.75 156.88 123.06 93.72 

108 11.59 30.26 63.51 156.88 127.76 93.72 

109 11.76 32.50 70.66 162.48 162.25 84.25 

110 11.76 39.54 71.92 162.93 169.13 84.25 

111 11.84 40.24 72.50 165.33 175.83 84.25 

112 13.31 43.02 108.94 165.49 175.83 79.89 

113 14.00 44.85 122.54 165.49 183.22 79.89 

114 14.03 46.63 139.54 167.59 184.97 79.19 

115 17.40 49.89 145.96 167.59 195.83 72.17 

116 19.78 51.92 192.86 166.03 197.36 72.06 

117 19.83 55.38 240.81 166.03 203.65 70.97 

118 20.51 59.19 256.80 166.03 203.65 69.12 

119 22.50 59.74 270.57 166.03 203.65 68.75 

120 23.08 59.74 281.45 165.49 203.65 67.91 

121 27.08 59.74 284.31 152.02 197.36 65.54 

122 33.25 59.74 284.31 141.54 197.36 64.17 

123 36.16 57.72 284.31 136.08 193.69 63.72 

124 36.19 57.72 292.19 129.93 189.93 58.02 

125 37.94 56.96 292.19 125.71 183.34 54.84 

126 47.50 56.96 284.31 124.37 177.99 54.09 

127 47.91 53.30 281.45 123.53 174.39 53.99 

128 49.27 51.62 272.39 121.56 173.72 47.26 

129 57.34 50.93 243.24 116.82 170.65 45.88 

130 63.66 50.67 241.41 105.93 166.13 45.58 

131 76.11 47.68 217.88 94.74 158.44 43.54 
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132 76.52 45.81 213.78 92.63 152.48 41.24 

133 80.03 44.99 213.78 90.64 142.97 40.81 

134 81.51 41.05 204.80 80.43 132.92 40.09 

135 86.43 39.59 201.00 80.22 128.12 36.23 

136 91.10 39.59 200.89 77.20 128.04 36.13 

137 97.07 38.10 188.16 76.62 125.12 36.13 

138 97.07 36.67 184.24 72.38 124.69 35.16 

139 97.34 34.86 164.40 69.83 123.72 34.61 

140 97.34 33.59 156.93 63.90 107.38 34.05 

141 97.34 32.61 156.70 61.09 96.75 33.21 

142 97.34 31.79 156.48 57.56 96.57 31.73 

143 91.10 29.94 141.83 57.26 96.57 29.47 

144 91.05 29.57 130.59 54.68 93.40 27.99 

145 91.01 26.58 129.35 52.96 93.01 26.71 

146 74.15 26.58 127.20 50.41 93.01 25.55 

147 74.15 26.58 126.31 50.41 88.56 24.59 

148 72.56 24.40 113.34 48.47 81.06 23.87 

149 69.79 23.02 108.98 45.85 75.36 23.27 

150 69.65 23.01 107.92 45.75 71.18 23.26 

151 61.56 22.33 104.44 45.04 70.75 22.09 

152 64.66 22.11 104.11 42.89 69.72 22.09 

153 64.66 21.40 103.96 36.58 65.31 22.08 

154 64.66 21.40 95.14 36.56 63.59 22.08 

155 56.36 20.87 93.06 34.72 63.59 21.72 

156 55.12 20.08 86.41 34.26 63.01 20.38 

157 53.76 19.30 83.94 33.78 61.15 18.95 

158 53.76 19.30 82.62 32.33 54.18 18.63 

159 53.76 18.81 80.15 30.82 52.37 18.60 

160 50.77 18.81 77.00 30.39 52.37 17.45 

161 49.71 16.09 75.57 29.40 46.31 17.45 

162 48.97 15.70 74.42 29.38 46.02 17.38 

163 47.85 15.49 72.27 28.07 44.91 17.21 

164 47.20 15.34 71.75 27.91 44.41 17.21 

165 46.67 14.72 65.00 26.22 41.39 17.00 

166 46.20 14.72 62.75 26.05 40.68 16.55 

167 42.82 14.72 61.87 25.99 39.94 15.89 

168 38.14 14.38 61.33 24.40 39.25 15.13 

169 35.74 14.35 61.33 24.40 38.72 15.13 

170 35.61 14.00 60.80 24.01 38.55 15.13 

171 35.37 13.74 54.80 23.88 37.00 14.88 

172 31.31 13.74 53.64 23.88 36.65 14.87 

173 29.03 13.66 52.93 23.75 34.62 14.87 

174 26.64 13.66 52.91 23.75 34.50 14.88 

175 26.40 13.66 52.93 22.92 33.95 14.88 

176 26.40 13.34 52.10 22.62 32.06 14.88 

177 25.50 13.16 50.06 20.80 31.75 15.54 

178 24.63 13.16 49.54 20.54 28.18 15.54 

179 24.47 13.12 48.48 20.52 27.98 15.46 

180 24.20 12.75 45.29 19.83 26.96 14.52 

181 24.47 13.12 44.82 19.35 26.69 14.52 

182 24.47 12.75 42.19 19.02 24.85 14.52 

183 24.28 12.73 38.79 18.61 24.71 14.52 

184 24.28 12.53 38.66 18.57 24.53 14.32 

185 24.28 12.39 37.46 17.87 23.69 14.52 

186 22.18 12.39 36.75 17.45 23.07 14.52 

187 22.18 12.39 36.64 16.90 23.07 14.17 

188 22.18 12.39 36.15 16.70 23.07 14.09 
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189 20.97 12.34 35.75 16.34 23.07 14.09 

190 20.97 12.31 33.79 16.21 22.15 14.01 

191 20.97 11.93 32.66 16.21 22.10 13.89 

192 19.04 11.93 32.03 16.09 21.90 13.71 

193 18.34 11.93 31.35 15.93 20.81 13.62 

194 17.85 11.93 31.00 15.21 20.81 13.62 

195 17.85 11.54 30.41 15.21 20.81 13.15 

196 17.52 11.93 30.38 15.13 20.81 13.13 

197 17.85 11.54 30.25 14.99 20.54 13.02 

198 17.52 11.54 29.89 14.90 20.24 13.13 

199 17.34 11.54 29.24 14.82 20.24 12.89 

200 16.86 11.49 29.09 14.67 20.15 12.89 

201 17.34 11.33 26.69 14.73 19.65 13.02 

202 16.86 11.49 26.53 14.73 19.27 13.02 

203 16.86 11.33 25.84 14.67 18.17 12.89 

204 16.44 11.59 25.79 14.48 18.12 13.02 

205 16.51 11.59 25.58 14.22 17.82 13.02 

206 15.47 11.52 25.79 14.22 17.82 13.02 

207 15.23 11.52 25.58 14.22 17.82 13.02 

208 15.03 11.50 24.04 14.09 17.82 12.88 

209 15.03 11.31 24.04 13.89 17.82 12.87 

210 15.23 11.31 23.86 13.87 17.83 12.31 

211 15.03 11.35 23.61 13.74 17.83 12.30 

212 15.06 11.35 22.72 13.41 17.68 12.30 

213 15.10 11.35 22.11 13.41 17.83 12.31 

214 15.06 11.33 21.90 13.41 17.83 12.30 

215 15.03 11.31 21.70 13.18 17.83 12.18 

216 15.03 10.83 21.09 13.18 17.83 12.18 

217 15.03 10.83 20.51 13.18 17.83 12.18 

218 14.80 11.31 20.42 13.74 17.38 12.18 

219 14.52 11.10 20.42 13.18 17.28 12.50 

220 14.17 11.10 19.64 13.18 16.95 12.99 

221 14.10 11.10 19.58 13.16 16.72 12.99 

222 13.60 11.10 19.58 13.16 16.10 12.99 

223 13.50 11.10 19.55 13.38 15.85 12.96 

224 13.60 10.95 19.30 13.38 15.85 12.96 

225 13.60 10.95 19.30 13.38 15.73 12.96 

226 13.40 11.10 19.30 13.37 15.63 12.96 

227 13.33 11.20 18.87 12.83 15.63 12.73 

228 13.33 11.10 18.83 12.78 15.63 12.23 

229 13.33 11.06 18.76 12.76 15.61 12.03 

230 13.12 11.06 18.76 12.70 15.37 12.03 

231 13.12 11.06 18.76 12.70 15.37 12.03 

232 13.14 10.95 18.55 12.70 15.37 12.03 

233 13.12 10.95 17.76 12.70 15.28 12.06 

234 13.12 11.06 17.76 12.70 15.02 12.06 

235 12.78 11.15 17.41 12.97 14.71 12.00 

236 12.78 11.15 16.91 12.70 14.71 12.06 

237 12.78 11.06 16.89 12.97 14.56 12.06 

238 12.40 11.06 16.59 12.97 14.56 12.06 

239 12.34 10.95 16.26 12.97 14.56 12.06 

240 12.40 11.15 15.94 12.97 14.30 11.96 

241 12.40 10.69 15.81 12.97 14.25 11.84 

242 12.34 10.99 15.77 12.97 14.25 11.84 

243 12.34 10.99 15.77 12.97 14.18 11.84 

244 11.84 10.78 15.77 12.30 14.17 11.84 

245 11.84 10.78 15.77 12.30 14.17 11.96 
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246 11.84 10.78 15.77 13.03 14.17 11.96 

247 11.84 10.78 15.66 13.03 14.07 12.62 

248 11.84 10.99 15.61 13.03 14.07 12.62 

249 11.98 11.08 15.66 13.03 13.68 12.62 

250 11.88 10.99 15.71 13.03 13.68 12.62 

251 11.88 10.99 15.71 13.03 13.68 12.62 

252 11.98 11.04 15.71 12.61 13.61 12.46 

253 12.09 11.04 15.71 12.61 13.61 12.15 

254 12.16 11.08 15.57 12.61 13.46 12.15 

255 12.16 11.08 14.85 12.50 13.19 12.08 

256 12.09 11.04 14.57 12.43 13.19 12.05 

257 12.09 11.04 14.57 12.43 13.46 11.94 

258 12.16 11.04 14.85 12.43 13.19 12.05 

259 12.24 11.04 14.48 12.43 13.46 12.05 

260 12.36 11.04 14.13 12.43 13.58 11.95 

261 12.24 11.21 14.13 12.26 13.72 11.95 

262 12.24 11.21 14.13 12.18 13.73 11.95 

263 12.46 11.21 14.05 12.13 13.73 11.94 

264 12.46 11.08 14.05 12.13 13.73 11.95 

265 12.46 10.70 14.07 12.09 14.04 12.08 

266 12.46 10.99 14.13 12.05 13.73 12.25 

267 12.46 10.99 14.13 11.87 13.72 12.35 

268 12.46 10.99 14.13 11.87 13.72 12.25 

269 12.46 10.70 14.45 11.87 13.73 12.25 

270 12.45 10.70 14.80 11.84 13.73 12.25 

271 12.45 10.70 14.56 11.84 13.53 12.29 

272 12.02 10.91 14.80 11.84 13.46 12.29 

273 11.81 10.74 14.91 11.87 13.13 12.29 

274 11.58 10.91 15.41 11.87 13.13 12.29 

275 11.53 10.91 15.57 11.87 13.06 12.29 

276 11.58 10.74 15.57 11.84 13.12 11.98 

277 11.53 10.74 15.41 11.65 13.13 11.98 

278 11.54 10.74 15.57 11.55 13.13 12.29 

279 11.54 10.91 15.57 11.27 13.13 11.98 

280 11.54 10.91 15.71 11.55 13.12 11.98 

281 11.54 10.86 15.71 11.27 13.12 11.98 

282 11.58 10.86 15.66 11.24 13.12 
 

283 11.67 10.92 15.57 11.14 13.12 
 

284 11.67 10.86 15.56 11.14 13.12 
 

285 11.67 10.86 15.21 11.11 13.12 
 

286 11.67 10.92 15.56 11.14 13.12 
 

287 11.73 
 

15.56 11.16 13.12 
 

288 11.82 
 

15.56 11.24 12.58 
 

289 11.73 
 

15.66 11.48 12.58 
 

290 11.73 
 

15.56 11.37 12.82 
 

291 11.73 
 

14.99 11.48 12.58 
 

292 11.64 
 

14.99 11.48 12.82 
 

293 11.64 
 

14.80 11.48 12.82 
 

294 11.57 
 

14.46 11.48 13.19 
 

295 11.57 
 

14.46 11.48 12.82 
 

296 10.81 
 

14.22 11.48 12.82 
 

297 10.81 
 

13.94 11.48 12.82 
 

298 10.78 
 

13.94 11.39 12.99 
 

299 10.81 
 

13.94 11.37 12.99 
 

300 10.81 
 

13.94 11.35 12.99 
 

301 10.81 
 

13.82 11.35 13.18 
 

302 11.02 
 

13.94 11.35 12.99 
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303 11.02 
 

13.82 11.35 13.18 
 

304 11.02 
 

13.82 11.39 12.99 
 

305 11.02 
 

13.82 11.43 13.18 
 

306 11.02 
 

13.82 11.43 13.62 
 

307 11.02 
 

13.69 11.43 13.62 
 

308 11.02 
 

13.58 11.43 13.62 
 

309 10.84 
 

13.31 
 

13.62 
 

310 10.71 
 

13.27 
 

13.62 
 

311 10.75 
 

13.01 
 

12.82 
 

312 10.71 
 

12.81 
 

12.82 
 

313 10.71 
 

12.71 
 

12.82 
 

314 10.71 
 

12.68 
 

12.99 
 

315 10.71 
 

12.68 
 

12.72 
 

316 10.71 
 

12.68 
 

12.72 
 

317 10.71 
 

12.48 
 

12.99 
 

318 10.75 
 

12.48 
 

12.99 
 

319 10.78 
 

12.68 
 

12.99 
 

320 10.86 
 

12.68 
 

12.99 
 

321 10.86 
 

12.76 
 

12.99 
 

322 11.25 
 

12.76 
 

13.13 
 

323 11.25 
 

13.02 
 

13.13 
 

324 10.78 
 

13.02 
 

13.04 
 

325 11.23 
 

12.78 
 

13.04 
 

326 11.30 
 

12.78 
 

13.00 
 

327 11.23 
 

12.78 
 

12.90 
 

328 10.80 
 

12.76 
 

12.80 
 

329 10.80 
 

12.57 
 

12.56 
 

330 10.80 
 

12.63 
 

12.80 
 

331 11.01 
 

12.57 
 

12.80 
 

332 10.80 
 

12.63 
 

12.80 
 

333 10.80 
 

12.57 
 

12.89 
 

334 10.80 
 

12.53 
 

12.87 
 

335 10.80 
 

12.57 
 

12.89 
 

336 10.80 
 

12.57 
 

12.87 
 

337 10.92 
 

12.53 
 

12.87 
 

 
 

c) Field-scale experiment in a meandering channel (Exp. 2-2; Case 2-2-4~2-

2-7) 

 

SSCv (ppm) 

Case2-2-4 (quart 

sand) 

Case2-2-5  

(yellow loess) 

Case2-2-6  

(coarse yellow 

loess) 

Case2-2-7 

(mixture) 

Section 

 

Time (s) 

Sec. C2 Sec. C3 Sec. C2 Sec. C3 Sec. C2 Sec. C3 Sec. C2 Sec. C3 

1 7.86 8.86 9.81 9.43 10.59 10.28 10.17 10.89 

2 7.86 8.86 9.81 9.48 10.59 10.41 10.17 10.89 

3 7.86 7.97 9.81 9.43 10.59 10.41 10.18 10.89 

4 7.86 7.97 9.74 9.43 10.59 10.41 10.17 10.89 

5 7.9 7.97 9.72 9.48 10.59 10.41 10.17 10.73 

6 8.02 7.97 9.74 9.48 10.64 10.54 10.18 10.52 

7 8.02 7.96 9.74 9.73 10.64 10.59 10.18 10.28 

8 8.72 8.45 9.72 9.73 10.59 10.54 10.17 9.91 

9 8.06 8.45 9.61 9.48 10.64 10.54 10.16 10.28 
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10 8.64 8.24 9.57 9.72 10.64 10.54 10.16 9.96 

11 8.43 8.15 9.57 9.73 10.32 10.54 10.27 9.91 

12 8.43 8.24 9.61 9.73 10.32 10.54 10.27 9.78 

13 8.52 8.45 9.72 10.14 10.32 10.59 10.21 9.78 

14 8.52 8.24 9.61 9.73 10.64 10.59 10.21 9.81 

15 8.43 8.24 9.9 9.73 10.62 10.75 10.21 9.81 

16 8.5 8.46 9.61 9.86 10.32 10.52 10.21 9.92 

17 8.5 8.46 9.9 10.15 10.36 10.52 10.22 9.92 

18 8.5 8.24 9.9 10.16 10.62 10.41 10.27 9.96 

19 8.52 8.24 9.9 10.16 10.36 10.62 10.27 9.96 

20 8.5 8.24 9.9 10.16 10.36 10.62 10.27 10.01 

21 8.5 8.24 9.4 10.16 10.62 10.75 10.22 10.25 

22 8.5 8.24 9.4 10.16 10.36 10.62 10.22 10.27 

23 8.5 7.99 9.4 10.16 10.36 10.41 10.27 10.27 

24 8.49 7.99 9.69 10.16 10.36 10.43 10.27 10.27 

25 8.5 7.99 9.69 10.16 10.28 10.43 10.27 10.36 

26 8.5 7.99 9.97 10.16 10.36 10.43 9.88 10.27 

27 8.5 7.99 9.69 9.77 10.66 10.43 9.73 10.27 

28 8.49 7.99 9.69 9.77 10.73 10.43 9.73 10.25 

29 8.36 7.99 9.69 9.56 10.78 10.43 9.73 10.25 

30 8.36 8.33 9.7 9.77 10.95 10.48 9.88 10.25 

31 8.36 8.33 9.7 9.86 10.95 10.48 9.88 10.12 

32 8.36 7.99 9.7 9.86 11.07 10.78 9.95 10.12 

33 8.36 8.3 9.7 9.86 11.19 10.78 9.88 10.12 

34 8.58 8.33 9.66 9.86 11.15 10.78 9.88 10.12 

35 8.58 8.36 9.66 9.86 11.15 10.9 9.83 10.12 

36 8.58 8.36 9.49 10.34 11.15 10.9 9.95 10.19 

37 8.58 8.36 9.56 10.34 11.15 10.92 10.03 10.39 

38 8.58 8.3 9.66 10.34 11.15 10.92 9.95 10.39 

39 8.6 8.26 9.66 10.41 11.15 10.9 9.95 10.41 

40 8.6 7.92 9.64 10.34 11.15 10.9 9.83 10.41 

41 8.6 8.26 9.66 10.34 10.73 10.76 10.17 10.41 

42 8.58 8.26 9.64 10.27 10.44 10.42 9.83 10.39 

43 8.31 8.08 9.64 10.34 10.44 10.42 10.17 10.39 

44 8.26 8.08 9.56 10.27 10.44 10.42 10.17 10.33 

45 8.26 7.92 9.5 10.27 10.41 10.42 10.17 10.33 

46 8.23 8.08 9.5 10.19 10.48 10.44 9.97 10.55 

47 8.1 8.08 9.5 10.27 10.55 10.44 9.83 10.37 

48 8.1 7.84 9.45 10.05 10.55 10.44 9.97 10.55 

49 8.07 8.08 9.37 9.99 10.55 10.44 9.97 10.37 

50 8.1 8.14 9.45 9.99 10.48 10.44 10.13 10.37 

51 8.23 8.14 9.37 10.05 10.55 10.44 10 10.37 

52 8.23 8.16 9.36 9.99 10.55 10.44 10 10.37 

53 8.2 8.16 9.25 9.99 10.48 10.05 9.97 10.37 

54 8.2 8.16 9.36 10.35 10.25 10.05 9.73 10.74 

55 8.2 8.16 9.36 10.35 10.25 10.05 9.73 10.37 

56 8.2 8.14 9.93 10.35 10.25 10 9.73 10.21 

57 8.21 8.16 9.93 10.11 10.25 10 10 10.21 

58 8.45 8.16 9.93 10.11 10.25 10.05 10 10.21 

59 8.47 8.21 9.93 10.35 10.17 10.25 9.72 10.21 

60 8.63 8.21 9.96 10.11 10.25 10.25 9.72 10.21 

61 8.47 8.21 9.96 10.11 10.25 10.53 9.72 10.38 

62 8.47 8.17 9.96 10.11 10.28 10.6 9.72 10.38 

63 8.47 8.17 9.96 10.11 10.28 10.6 9.72 10.38 

64 8.46 8.17 9.96 10.11 10.28 10.6 9.83 10.35 
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65 8.47 8.17 9.96 10.11 10.42 10.6 10.1 10.35 

66 8.47 8.17 9.88 10.11 10.42 10.62 10.21 10.35 

67 8.46 8.17 9.79 10.11 10.47 10.6 10.1 10.35 

68 8.45 8.17 9.88 10.66 10.47 10.62 9.99 10.35 

69 8.45 8.17 9.96 10.11 10.47 10.68 9.99 10.36 

70 8.45 8.17 9.88 10.05 10.47 10.62 9.83 10.35 

71 8.45 8.2 9.96 10.05 10.86 10.97 9.74 10.35 

72 8.41 8.22 10.08 10.05 10.86 10.62 9.99 10.36 

73 8.41 8.94 10.08 9.84 10.93 10.61 10.03 10.36 

74 8.45 8.38 9.96 9.84 10.99 10.62 10.03 10.36 

75 8.45 8.38 10.08 9.84 11.01 10.79 10.03 10.4 

76 8.45 8.38 10.08 9.75 11.01 10.79 10.03 10.4 

77 8.45 8.42 10.14 9.48 11.28 10.97 10.03 10.4 

78 8.51 8.77 10.14 9.48 12.83 10.91 10.28 10.4 

79 8.56 8.92 10.62 9.92 13.1 10.91 10.89 10.21 

80 8.56 8.77 10.74 9.48 13.27 10.91 11.14 10.4 

81 8.56 8.68 11.51 9.59 13.85 10.89 11.71 10.4 

82 8.56 8.68 13.22 9.5 14.32 10.89 12.43 10.41 

83 8.59 8.42 15.11 9.59 14.39 10.89 13.84 10.41 

84 9.02 8.68 20.05 9.59 20.75 10.89 13.85 10.53 

85 9.04 8.68 21.14 9.59 22.06 10.89 14.42 10.58 

86 9.21 8.68 25 9.63 23.31 10.89 15.78 10.58 

87 9.76 8.68 25.65 9.91 27.1 10.89 20.05 10.58 

88 9.77 8.14 39.68 9.63 31.85 10.83 24.94 10.41 

89 10.85 8.14 46.85 9.63 52.35 10.83 30.26 10.41 

90 12.22 8.11 51.11 9.91 56.61 10.83 31.96 10.33 

91 13.07 8.06 52.8 10.26 58.4 10.83 33.88 10.33 

92 13.51 8.06 64.87 10.26 59.88 10.83 38.29 10.3 

93 14.65 8.06 71.11 9.91 78.64 10.37 47.87 10.3 

94 20.22 8.04 75.32 10.26 80.02 10.37 62.55 10.3 

95 23.16 8.06 81.42 10.26 90.72 10.34 62.55 10.3 

96 25.51 8.11 86.12 10.26 103.58 10.47 62.93 10.3 

97 25.51 8.11 118.86 9.85 109.43 10.34 65.45 10.3 

98 30.87 8.11 136.97 9.85 122.32 10.47 67.73 10.51 

99 31.13 8.04 138.19 9.76 122.32 10.34 68.19 10.51 

100 31.33 8.11 154.62 9.76 125.99 10.33 75.15 10.81 

101 34.29 8.39 155.7 9.76 136.85 10.32 76.41 10.81 

102 36.28 8.39 155.7 9.76 136.85 10.32 76.77 10.81 

103 40.46 8.39 155.7 9.76 136.85 10.26 88.5 10.81 

104 41.95 8.39 155.7 9.76 138.15 10.26 90.28 10.62 

105 42.14 8.39 156.08 9.85 138.15 10.26 92.38 10.62 

106 45.72 8.39 156.08 9.76 138.15 10.26 92.38 10.52 

107 45.72 8.48 154.62 10.07 133.81 10.32 92.38 10.62 

108 45.72 8.76 151.95 10.43 133.81 10.32 90.28 10.52 

109 43.9 8.76 147.85 10.43 133.81 10.32 88.5 10.62 

110 43.9 8.55 146.55 10.43 132.06 10.52 87.92 10.52 

111 46.51 8.55 137.36 10.09 123.31 10.68 81.77 10.43 

112 46.51 8.72 124.11 10.09 118.64 10.68 81.77 10.52 

113 43.9 8.72 122.51 10.43 117.91 10.68 79.98 10.43 

114 43.9 8.72 122.37 10.66 117 10.68 76.35 10.73 

115 42.26 8.69 119.29 10.66 113.73 10.68 75.56 10.26 

116 41.3 8.58 115.64 10.72 113.39 10.68 74.67 10.47 

117 39.16 8.55 114.44 10.66 113.39 10.68 74.38 10.26 

118 38.14 8.51 110.24 10.09 110.47 10.7 73.04 10.47 

119 38.13 8.36 108.22 10.72 110.24 10.7 69.49 10.47 



 

324 

 

120 37.73 8.36 99.55 10.06 105.46 10.68 64.53 10.47 

121 33.08 8.36 91.46 10.56 97.92 10.66 62.05 10.47 

122 32.4 8.15 91.33 10.72 91.71 10.7 61.71 10.47 

123 31.86 8.15 87.09 10.56 83.39 10.81 61.52 10.7 

124 31.57 8.15 79.68 10.2 83.34 10.81 59.26 10.7 

125 31.57 8.15 78.03 10.2 77.64 10.92 55.09 10.7 

126 29.52 8.15 76.58 10.06 77.64 10.81 51.72 10.7 

127 27.26 7.99 72.26 10.2 77.2 10.81 50.21 10.7 

128 27.15 7.9 72.07 10.48 77.2 10.81 49.89 10.22 

129 26.86 7.9 70.5 10.2 73.13 10.92 49.69 9.96 

130 25.3 7.9 68.25 10.26 66.02 10.92 45.71 10.22 

131 23.34 7.88 60.61 10.26 66.02 11.01 45.07 10.22 

132 22.72 7.88 60.46 10.2 63.83 11.01 43.53 10.19 

133 22.4 7.88 60 10.2 52.29 11.01 41.2 10.19 

134 22.31 7.88 59.67 10.26 51.46 11.01 37.99 10.19 

135 21.35 7.88 57.11 10.36 51.46 11.01 37.26 10.19 

136 21.29 7.88 53.4 10.36 51.31 11.01 37.2 10.19 

137 19.2 7.88 50.39 10.26 50.4 11.13 36.92 10.07 

138 17.34 8 49.33 10.15 49.16 11.13 34.45 10.19 

139 17.18 8.27 45.31 10.26 48.72 11.01 33.59 10.32 

140 16.88 8.27 42.98 10.36 44.84 10.97 31.08 10.19 

141 15.75 8.49 42.79 10.37 44.84 10.97 30.47 10.32 

142 15.25 8.27 42.69 10.37 43.75 10.97 30.47 10.36 

143 15.25 8.27 41.16 10.96 40.36 10.85 30.28 10.36 

144 15.15 8.18 40.64 10.37 40.04 10.38 29.67 10.18 

145 14.79 8.07 40.26 10.37 38.33 10.85 29.53 10.36 

146 14.74 8.07 39.04 10.96 36.49 10.85 28.53 10.36 

147 14.47 8.18 36.56 10.96 36.28 10.21 28.53 10.36 

148 14.05 8.18 35.06 11.2 35.62 10.85 25.59 10.47 

149 14.05 8.18 34.34 11.2 35.17 10.21 25.37 10.47 

150 14.05 8.19 33.57 10.96 35.16 10.21 25.12 10.47 

151 14.05 8.18 33.15 10.52 35.16 10.75 24.73 10.47 

152 13.65 8.18 30.5 10.52 31.6 10.75 23.98 10.22 

153 13.64 8.19 28.66 10.36 30.47 10.75 23.98 10.22 

154 13.37 8.19 27.72 10.36 30.32 10.75 22.95 10.45 

155 13.37 8.19 27.43 10.23 29.74 10.44 21.81 10.45 

156 12.9 8.19 26.54 10.11 27.72 10.44 21.76 10.45 

157 12.78 8.14 26.06 10.23 26.97 10.44 21.56 10.45 

158 12.08 8.14 25.53 10.23 26.52 10.34 21.55 10.28 

159 12.08 8.01 25.17 10.23 26.44 10.34 20.69 10.22 

160 11.41 7.85 24.4 10.36 25.25 10.09 19.94 10.15 

161 11.33 7.91 23.33 10.36 24.94 10.09 19.49 10.15 

162 10.87 8.01 23.24 10.11 23.08 10.09 17.47 10.15 

163 10.8 8.01 23.07 10.48 23.08 10.07 17.21 10.11 

164 10.8 8.01 22.81 10.48 22.97 10.07 16.68 10.11 

165 10.78 8.01 21.37 10.57 22.47 10.07 16.62 10.11 

166 10.78 8.01 19.19 10.57 22.97 10.58 16.13 10.24 

167 10.74 8.11 18.94 10.62 22.97 10.93 16.13 10.11 

168 10.3 8.11 18.94 10.57 22.97 11.39 15.95 10.24 

169 10.29 8.18 18.1 10.57 22.62 11.54 15.95 10.81 

170 10.3 8.26 18.1 10.57 22.47 11.54 15.22 10.81 

171 10.29 8.26 17.87 10.57 21.49 11.54 15.22 10.81 

172 10.29 8.18 17.67 10.57 21.49 11.39 15.22 10.81 

173 10.29 8.18 17.67 10.3 20.51 11.39 15.08 10.81 

174 10.37 8.26 17.62 10.3 20.17 11.54 15.08 10.5 
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175 10.37 8.4 16.39 10.16 19.5 11.54 14.72 10.5 

176 10.29 8.4 15.87 10.14 19 11.39 14.69 10.4 

177 10.12 8.26 15.83 10.14 18.75 11.36 14.59 10.5 

178 10.12 8.4 15.8 10.16 18.24 10.85 14.56 10.4 

179 9.91 8.4 15.8 10.14 17.89 10.85 14.36 10.4 

180 9.91 8.4 15.8 10.02 17.89 10.95 14.36 10.4 

181 9.91 8.4 15.36 10.14 17.38 10.95 14.16 10.37 

182 9.82 8.4 15.1 10.14 17.01 11.13 14.16 10.37 

183 9.91 8.4 15.1 10.15 16.81 11.36 14.08 10.67 

184 9.91 8.45 14.73 10.67 16.73 11.36 13.51 11.2 

185 9.82 8.34 14.1 10.7 16.56 11.36 13.29 11.2 

186 9.82 8.39 14.08 10.73 16.54 11.37 13.04 11.32 

187 9.82 8.73 14.02 10.73 16.45 12.74 12.98 11.32 

188 9.59 8.42 14.08 10.98 16.36 12.89 12.74 11.37 

189 9.53 8.42 14.08 11.88 16.45 13.61 12.56 11.4 

190 9.28 8.42 14.02 12.48 16.36 13.77 12.56 11.57 

191 9.23 8.52 14.02 12.81 14.78 13.88 12.28 11.57 

192   8.52 14 13.04 14.78 13.97 12.19 11.57 

193   8.52 13.77 13.45 14.78 14.75 12.17 11.81 

194   8.52 13.61 14.25 14.78 16.38 12.14 11.99 

195   8.73 13.61 14.36 14.27 17.73 12.14 12.78 

196   9 13.18 14.71 14.17 19.96 12.14 13.78 

197   9.58 12.58 17.43 14.13 20.07 12.13 13.93 

198   9.72 12.57 18.8 14.13 22.64 11.81 14.61 

199   9.72 12.36 19.17 13.85 26.41 11.61 14.87 

200   10.01 12.36 19.7 13.78 27.98 11.61 16.68 

201   10.05 12.28 20.77 13.78 30.4 11.52 18.63 

202   10.44 12.28 20.93 13.59 30.97 11.61 19.75 

203   10.67 12.04 24.99 13.56 32.71 11.61 20.48 

204   10.67 12.02 30.92 13.17 34.84 11.81 22.35 

205   11.32 11.98 31.9 12.97 38.11 12.12 23.55 

206   11.53 11.87 33.05 12.86 42.64 12.12 23.98 

207   11.85 11.87 34.17 12.74 42.74 12.12 27.19 

208   12.28 11.76 36.23 12.69 46.06 12.12 27.24 

209   14.08 11.76 37.91 12.66 46.07 12.12 27.36 

210   14.08 11.56 42.28 12.47 48.26 11.92 27.51 

211   14.29 11.41 43.53 12.47 54.06 12.3 28.78 

212   15.36 11.41 44.5 12.47 57.69 11.93 30.69 

213   15.66 11.56 49.68 12.47 66.22 11.92 31.91 

214   16.37 11.76 53.98 12.25 68.97 11.83 32.24 

215   16.44 11.76 57.55 12.21 71.69 11.76 34.53 

216   17.56 11.82 58.23 12.21 74.24 11.76 40.95 

217   17.78 11.46 59.17 12.21 78.7 11.17 43.53 

218   18.49 11.46 64.36 12.18 80.4 11.03 44.93 

219   19.94 11.46 67.22 12.05 85.42 11.03 45.22 

220   20.75 11.46 70.29 11.93 87.61 11.07 45.32 

221   21.36 11.46 73.6 11.92 88.13 11.03 50.4 

222   23.54 11.34 74.16 11.92 88.52 10.77 50.66 

223   23.93 11.26 80.08 11.92 89.87 10.83 54.43 

224   25.96 11.23 82.15 11.92 90.21 11.03 54.43 

225   26.77 11.26 84.38 11.9 92.02 11.03 55.51 

226   27.14 11.23 90.29 11.8 92.48 11.03 56.01 

227   27.48 11.19 92.28 11.71 93.72 11.07 56.83 

228   28 11.19 94.49 11.8 102.86 11.12 57.98 

229   28.23 11.23 95.92 11.8 103.79 11.07 62.86 
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230   28.76 11.23 99.71 11.9 106.83 11.04 65.4 

231   30.11 11.19 101.46 12.2 106.94 11.27 66.59 

232   30.47 11.07 107.52 12.38 107.9 11.27 66.79 

233   30.95 10.81 114.08 12.2 109.56 11.27 67.63 

234   30.95 10.81 118.01 12.51 110.47 11.04 68.52 

235   31.47 10.81 118.13 12.51 110.47 10.66 68.53 

236   31.47 10.82 119.39 12.51 110.47 10.66 71.35 

237   31.67 10.82 120.18 12.51 111.1 10.66 71.35 

238   31.67 10.82 121.24 12.2 111.1 10.5 71.35 

239   31.67 10.81 121.24 11.71 110.47 10.24 71.98 

240   31.57 10.82 121.24 11.42 110.47 10.24 72.07 

241   32.64 10.82 122.55 11.4 110.4 10.24 72.32 

242   31.57 10.85 122.89 11.4 110.26 10.43 72.49 

243   31.57 10.85 122.89 11.33 107.17 10.5 72.32 

244   32.64 10.85 122.89 11.33 107.17 10.5 72.32 

245   32.64 10.82 122.89 11.21 107.17 10.5 71.35 

246   31.86 10.79 122.89 11.33 107.1 10.5 70.8 

247   31.86 10.7 122.89 11.33 106.89 10.5 70.8 

248   32.17 10.7 121.78 11.77 106.5 10.43 70.8 

249   32.17 10.7 121.78 11.77 101.74 10.67 70.01 

250   32.99 10.5 121.78 11.77 101.6 10.67 69.68 

251   32.3 10.5 116.92 11.77 98.94 10.67 67.2 

252   32.3 10.5 113.99 11.52 98.94 10.67 67.13 

253   32.99 10.67 111.33 11.52 98.82 10.67 66.29 

254   32.99 10.38 111.33 11.16 98.82 10.76 67.13 

255   32.3 10.38 111.23 11.14 98.69 10.76 67.1 

256   32.37 10.33 111.07 11.01 97.72 10.76 65.85 

257   32.3 10.33 111.07 10.93 96.86 10.78 65.59 

258   32.3 10.33 111.07 10.88 96.79 10.78 65.59 

259   32.3 10.38 108.71 10.88 95.96 10.76 65.38 

260   32.29 10.33 108.23 10.88 95.1 10.78 64.92 

261   32.29 10.33 107.22 10.93 94.26 10.78 64.1 

262   32.29 10.33 107.19 10.93 91.58 10.73 62.63 

263   30.88 10.33 105.03 10.93 90.81 10.67 61.5 

264   30.88 10.46 102.88 10.93 90.26 10.54 60.18 

265   30.57 10.46 98.32 10.93 88.23 10.67 59.57 

266   29.39 10.46 97.14 10.93 87.27 10.54 58.78 

267   29.39 10.73 94.55 10.78 87.09 10.45 57.66 

268   29 10.46 94.3 10.88 85.33 10.33 57.56 

269   29 10.22 89.59 10.78 83.57 9.97 57.22 

270   29 10.46 88.98 10.7 82.03 9.97 55.23 

271   28.1 10.73 88.97 10.7 80.23 10.23 54.23 

272   28.1 10.71 88.31 10.7 79.06 10.28 53.46 

273   26.76 10.71 85.39 10.65 76.48 10.28 52.42 

274   26.25 10.28 85.17 10.7 73.18 10.23 51.91 

275   24.58 10.69 82.77 10.87 71.56 10.19 51.33 

276   26.25 10.69 80.5 10.88 71.09 10.23 51.26 

277   26.25 10.57 77.32 10.88 70.38 10.23 50.66 

278   24.58 10.57 76.38 10.87 67.91 10.28 49.31 

279   24.58 10.57 76.32 10.87 67.66 10.28 48.17 

280   23.99 10.42 76.31 11.09 67.43 10.75 48.17 

281   23.99 10.42 76.12 10.87 67.43 10.75 47.93 

282   23.78 10.28 75.03 10.85 67.04 10.75 47.11 

283   23.31 10.19 73.49 10.87 65.41 10.75 46.3 

284   23.64 10.19 72.58 11.09 65.41 10.8 46.3 
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285   23.31 10.19 72.35 11.16 65.35 10.8 45.71 

286   22.62 9.84 71.62 10.85 62.07 10.8 45.33 

287   22.55 10.19 68.08 10.85 60.91 10.76 42.47 

288   22.37 10.19 65.5 11.16 60.64 10.55 42.36 

289   22.37 10.15 64.99 11.19 58.91 10.76 41.66 

290   21.72 10.15 64.65 11.19 58.53 10.55 41.52 

291   20.17 9.99 63.69 11.19 56.51 10.38 41.36 

292   20.17 9.99 63.34 11.23 53.29 10.38 41.33 

293   19.47 10.15 63.17 11.44 52.69 10.38 39.85 

294   18.88 10.45 62.23 11.44 52.54 10.3 39.85 

295   18.48 10.15 61.55   51.95 10.14 39.55 

296   18.76 10.2 60.73   51.43 10.1 38.66 

297   18.48 10.19 58.96   51.04 10.14 38.17 

298   17.97 10.19 55.81   48.84 10.3 38.17 

299   17.97 10.19 55.65   48.38 10.3 38.17 

300   17.97 10.19 55.32   47.98 10.16 37.79 

301   17.97 10.2 53.79   46.99 10.16 36.54 

302   17.97 10.2 53.44   44.6 10.14 35.31 

303   17.2 10.2 52.23   44.6 10.16 34.15 

304   17.2 10.2 50.18   44.6 10.45 34.14 

305   17.14 10.2 49.94   44.6 10.45 33.64 

306   16.99 10.19 48.34   44.42 10.45 33.64 

307   16.43 10.3 47.14   44.29 10.44 33.33 

308   16.42 10.11 47.07   43.93 10.16 31.42 

309   16.05 9.99 46.56   43.01 10.13 30.73 

310   15.94 10.3 45.82   42.8 10.01 30.21 

311   15.47 9.79 44.64   42.44 10.13 30.11 

312   15.2 9.79 43.85   42.19 10.13 29.93 

313   14.99   42.55   39.54 10.01 29.93 

314   14.99   41.63   39.54 10.01 28.73 

315   14.99   41.46   39.54 10 28.33 

316   14.99   40.88   39.23 10 28.07 

317   14.95   40.66   39.23 10 27.87 

318   14.95   40.34   36.78 9.92 26.37 

319   14.23   38.73   36.21 10 25.83 

320   14.83   37.63   35.97 10.05 25.83 

321   14.83   37.54   35.07 10.05 25.34 

322   14.83   37.22   35.07 10.29 25.19 

323   14.83   37.22   34 10.29 25.15 

324   14.23   36.41   33.5 10.05 25.12 

325   13.92   36.24   32.57 10.05 25.12 

326   13.34   33.63   31.8 9.97 25.12 

327   13.24   33.37   31.73 9.97 25.12 

328   13.24   32.62   31.59 9.97 24.95 

329   13.34   32.49   31.59 9.97 24.3 

330   13.31   32.49   31.19 9.97 23.29 

331   13.31   31.73   30.86 9.97 23.16 

332   12.87   31.4   30.86 9.97 23.09 

333   12.86   30.34   29.3 9.93 22.89 

334   12.86   29.86   28.75 10.1 22.69 

335   12.53   28.46   28.53 10.1 21.98 

336   12.5   28.24   27.83 10.1 21.98 

337   12.5   27.71   27.83 10.1 21.41 

338   12.47   27.71   26.92 10.39 21.41 

339   12.47   26.73   26.33 10.39 20.98 
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340   12.39   26.73   26.09 10.59 20.92 

341   12.39   26.47   25.67 10.51 20.86 

342   12.39   26.39   25.67 10.05 20.14 

343   11.97   26.47   25.54 10.42 19.83 

344   12.39   26.47   25.04 10.42 19.68 

345   11.97   26.47   24.91 10.42 19.68 

346   11.92   26.47   24.69 10.42 19.52 

347   11.45   26.25   24.63 10.42 19.05 

348   11.92   25.03   24.63 10.42 18.75 

349   11.45   24.81   24.27 10.42 18.97 

350   11.45   24.39   24.27 10.2 18.75 

351   11.39   24.39   23.69 10.2 18.47 

352   11.45   24.33   22.97 10.2 18.47 

353   11.45   23.84   22.78 10.02 18.47 

354   11.39   23.43   22.78 9.93 18.46 

355   11.26   23.29   22.78 10.02 18.21 

356   11.1   23.01   22.46 9.93 18.21 

357   10.97   22.51   21.9 9.93 18.07 

358   10.85   22.48   21.9 9.93 17.51 

359   10.97   22.25   21.9 9.82 17.51 

360   10.85   22.25   21.9 9.88 17.51 

361   10.69   22.06   21.16 9.88 17.18 

362   10.58   22.06   20.7 9.97 16.95 

363   10.69   22.05   20.46 9.97 17.6 

364   10.58   21.38   20.46 10.16 17.6 

365   10.58   21.01   20.46 10.16 16.47 

366   10.58   21.01   20.46 10.16 16.47 

367   10.55   21.01   20.46 10.16 16.47 

368   10.55   20.77   20.46 10.18 16.47 

369   10.55   19.82   19.78 10.18 16.45 

370   10.58   19.62   19.73 10.18 16.45 

371   10.62   19.44   18.98 10.18 15.46 

372   10.62   19.16   18.97 10.18 16.42 

373   10.55   18.87   18.97 10.18 15.65 

374   10.55   18.71   18.91 10.07 15.65 

375   10.26   18.59   18.76 9.99 15.46 

376   10.24   18.27   18.5 10.07 14.97 

377   10.24   18.15   18.5 10.07 14.92 

378   10.24   18.15   18.44 10.07 14.84 

379   10.21   18.1   18.44 10.07 14.92 

380   10.09   17.98   18.09 10.07 14.92 

381   10.01   17.98   18.09 10.19 15.06 

382   10.09   17.98   18.06 10.07 14.92 

383   9.91   17.98   18.09 10.07 14.78 

384   9.91   17.95   18.06 10.07 14.78 

385   10.09   17.31   16.99 10.07 14.78 

386   10.39   16.81   16.99 9.98 14.78 

387   9.88   16.81   16.79 9.98 14.86 

388   9.88   16.81   16.6 9.98 14.86 

389   9.88   16.22   16.6 9.98 14.79 

390   9.88   16.22   16.6 9.98 14.78 

391   9.88   16.01   15.98 9.75 14.76 

392   9.75   16.01   15.98 9.75 14.76 

393   9.69   16.03   15.18 9.89 14.73 

394   9.61   16.01   15.18 9.89 14.53 
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395   9.18   15.99   15.32 9.89 13.86 

396   9.15   15.99   15.18 9.89 13.7 

397   9.15   15.99   15.09 10.07 13.5 

398   9.2   15.94   15.09 9.89 13.7 

399   9.2   15.94   15.09 9.89 13.5 

400   9.2   15.8   15.32 9.86 13.5 

401   9.2   15.79   15.32 9.86 13.5 

402   9.2   15.79   14.96 9.63 13.5 

403   9.5   15.62   14.87 9.55 13.5 

404   9.77   15.47   14.58 9.63 13.5 

405   10.02   15.3   14.58 9.63 13.38 

406   10.02   15   14.48 9.83 13.26 

407   10.02   15.3   14.58 9.83 13.26 

408   9.77   14.89   14.58 9.83 13.26 

409   9.64   14.38   14.58 9.83 13.26 

410   9.64   14.38   14.58 10.02 13.38 

411   9.63   14.38   14.78 10.02 13.38 

412   9.63   14.38   14.79 10.05 13.25 

413   9.56   14.38   14.79 10.05 13.38 

414   9.56   14.65   14.79 10.02 13.25 

415   9.45   14.65   14.78 10.02 13.43 

416   9.45   14.65   14.78 10.16 13.43 

417   9.38   14.65   14.65 10.02 13.43 

418   9.32   14.65   14.65 10.02 13.11 

419   9.38   14.65   14.65 10.06 12.84 

420   9.32   14.65   14.41 10.06 12.84 

421   9.38   14.35   13.99 10.06 12.76 

422   9.38   13.79   13.91 9.57 12.71 

423   9.42   13.5   13.7 9.57 12.71 

424   9.42   13.5   13.7 9.61 12.71 

425   9.52   13.5   13.56 9.57 12.71 

426   9.42   13.66   13.56 9.57 12.71 

427   9.42   13.66   13.77 9.61 12.45 

428   9.52   12.97   13.71 10.06 12.45 

429   9.42   13.66   13.56 9.61 12.3 

430   9.54   13.72   13.71 9.57 12.2 

431   9.76   13.73   13.56 9.61 12.16 

432   10.33   13.72   13.71 9.61 12.04 

433   10.33   13.72   13.71 9.95 12.04 

434   10.33   13.72   13.71 10.23 12.04 

435   10.03   13.72   14.03 10.28 12.01 

436   10.33   13.73   14.03 10.28 11.65 

437   10.33   13.77   13.71 10.44 11.65 

438   10.03   13.77   13.59 10.41 11.66 

439   10.03   13.77   13.59 10.51 11.66 

440   9.66   13.23   13.59 10.51 11.65 

441   9.56   13.23   14.03 10.51 11.58 

442   9.56   13.23     10.51 11.66 

443   9.56   13.23     10.41 11.66 

444   9.56   12.98     10.41 11.66 

445   9.56   12.98     10.18 12.19 

446   9.52   12.88     10.07 12.19 

447   9.52   12.44     9.99 12.2 

448   9.24   12.88     9.99 12.2 

449   8.98   12.88     9.99 12.2 
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Appendix B. 2. Dataset of spectra from hyperspectral images and 

corresponding SSC in rivers 

 From experimental studies in Chapter 3, 5,896 data of spectra from 

hyperspectral images and corresponding SSC were collected. This dataset can 

be obtained through the link below:  

https://github.com/ksy92/Hyperspectral-dataset-Kwon-2022-  

  

https://github.com/ksy92/Hyperspectral-dataset-Kwon-2022-
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Appendix C. CMR-OV code 

This code includes calculating the optimal number of hyperspectral 

clusters, selecting the optimal spectral band combination for each cluster, 

learning the final model with hyperspectral cluster, and mapping SSC as a TIFF 

file that can be visualized in the GIS program. To run this code, the dataset with 

the same format as the spectra-SSC dataset in Appendix B is nessecarily 

required as an input file. 

# -*- coding: utf-8 -*- 
""" 
Created on Fri May 27 2022 
 
@author: Siyoon Kwon 
""" 
 
import pandas as pd 
import spectral.io.envi as envi  
import numpy as np 
from osgeo import gdal, osr 
 
total_df= pd.read_csv('Spectra-SSC Dataset.csv') 
 
#%%Data setting 
from sklearn.model_selection import train_test_split 
import sklearn.metrics as metrics 
from sklearn import preprocessing 
 
def regression_results(y_true, y_pred): 
 

errors = abs(np.array(y_true).reshape(-1) - np.array(y_pred).reshape(-1)) 
    explained_variance=metrics.explained_variance_score(y_true, y_pred) 
    mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred)  
    mean_absolute_error=np.mean(errors**2) 
    mse=metrics.mean_squared_error(y_true, y_pred)  
    mean_squared_log_error=metrics.mean_squared_log_error(y_true, y_pred) 
    mean_absolute_error=metrics.mean_absolute_error(y_true, y_pred) 
    r2=metrics.r2_score(y_true, y_pred) 
    mape = 100 * (errors / np.array(y_true).reshape(-1)) 
    mape = np.mean(mape) 
     
    return round(explained_variance,4),  round(r2,4), 

round( mean_absolute_error,4),round(np.sqrt(mse),4),  round(mape,4) 
 
con = total_df['SSC'] 
spectrum = total_df.iloc[:,34:184] 
spectrum= spectrum.dropna() 
con=con[spectrum.index] 
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X1 = spectrum.values 
Y = con.values 
 
#%% Clustering 
from sklearn.feature_selection import RFECV 
from sklearn.mixture import GaussianMixture 
from sklearn.ensemble import RandomForestRegressor 
 
n_clusters = 10 
cluster=GaussianMixture(n_components=n_clusters,random_state=1000, 
covariance_type='full').fit(X1) 
C_INDEX = cluster.fit_predict(X1) 
 
total_df2 = total_df.iloc[spectrum.index, :] 
total_df2['Cluster'] = C_INDEX 
 
case_for_cl = total_df2.copy() 
model = RandomForestRegressor(n_estimators = 100, n_jobs=4, random_state=20) 
 
#%%Learning curve 
from sklearn.model_selection import ShuffleSplit 
from sklearn.model_selection import learning_curve 
 
total_len = len(case_for_cl) 
for z in np.arange(n_clusters): 
    X1 = spectrum[case_for_cl['Cluster']==z] 
    globals()['por_x_{}'.format(z)]= len(X1)/total_len 
 
for z in np.arange(n_clusters): 
    X1 = spectrum[case_for_cl['Cluster']==z] #spectrum# 
    Sc = preprocessing.StandardScaler().fit(X1) 

X= Sc.transform(X1) 
X = pd.DataFrame(X).dropna(axis=0) 

    Y = con[case_for_cl['Cluster']==z] 
    globals()['estimator_{}'.format(z)] =  model 
     
    cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0) 
    train_sizes, train_scores, test_scores, fit_times, _ = learning_curve( 
            globals()['estimator_{}'.format(z)], 
            X, 
            Y, 
            cv=cv, 
            n_jobs=-1, 
            train_sizes=np.linspace(0.1, 1.0, 5), 
            return_times=True, 
        ) 
    globals()['CV_train_mean_{}'.format(z)] = np.mean(train_scores, axis=1) 
    globals()['CV_train_std_{}'.format(z)] = np.std(train_scores, axis=1) 
    globals()['CV_test_mean_{}'.format(z)] = np.mean(test_scores, axis=1) 
    globals()['CV_test_std_{}'.format(z)] = np.std(test_scores, axis=1) 
    globals()['CV_fit_times_mean_{}'.format(z)] = np.mean(fit_times, axis=1) 
    globals()['CV_fit_times_std_{}'.format(z)] = np.std(fit_times, axis=1) 
 
fin_train_mean= 0 
fin_train_std = 0 
fin_test_mean= 0 
fin_test_std = 0 
fin_time_mean= 0 
fin_time_std = 0 
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for z in np.arange(n_clusters): 
    fin_train_mean += globals()['CV_train_mean_{}'.format(z)][-
1]*globals()['por_x_{}'.format(z)] 
    fin_train_std += globals()['CV_train_std_{}'.format(z)][-1]*globals()['por_x_{}'.format(z)] 
    fin_test_mean += globals()['CV_test_mean_{}'.format(z)][-1]*globals()['por_x_{}'.format(z)] 
    fin_test_std += globals()['CV_test_std_{}'.format(z)][-1]*globals()['por_x_{}'.format(z)] 
    fin_time_mean += globals()['CV_fit_times_mean_{}'.format(z)][-1] 
    fin_time_std += globals()['CV_fit_times_std_{}'.format(z)][-1]*globals()['por_x_{}'.format(z)] 
 
#%%Cross-validation! 
from sklearn.model_selection import cross_val_score 
from sklearn.model_selection import ShuffleSplit 
 
case_for_cl = total_df2.copy() 
total_len = len(case_for_cl) 
for z in np.arange(n_clusters): 
    X1 = spectrum[case_for_cl['Cluster']==z] 
    globals()['por_x_{}'.format(z)]= len(X1)/total_len 
 
for z in np.arange(n_clusters): 
    X1 = spectrum[case_for_cl['Cluster']==z] #spectrum# 
    Sc = preprocessing.StandardScaler().fit(X1) 
    #Sc = preprocessing.MinMaxScaler().fit(X1) 
    X= Sc.transform(X1) 
    #X = pd.DataFrame(X) 
    X = pd.DataFrame(X).dropna(axis=0) 
    Y = con[case_for_cl['Cluster']==z]#con# 
    globals()['estimator_{}'.format(z)] =  model 
    #globals()['X_train_{}'.format(z)], globals()['X_test_{}'.format(z)], 
globals()['y_train_{}'.format(z)], globals()['y_test_{}'.format(z)] = train_test_split(X, Y, 
test_size=test_size,  random_state=100) 
 
    # globals()['estimator_{}'.format(z)].fit(X,Y) 
    cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0) 
    globals()['CV_score_{}'.format(z)] = cross_val_score(globals()['estimator_{}'.format(z)], X, 
Y,scoring='neg_mean_squared_error', cv=cv) 
    globals()['CV_mean_{}'.format(z)] = np.mean(np.sqrt(-globals()['CV_score_{}'.format(z)])) 
    globals()['CV_std_{}'.format(z)] = np.std(np.sqrt(-globals()['CV_score_{}'.format(z)])) 
 
fin_mean= 0 
fin_std = 0 
for z in np.arange(n_clusters): 
    fin_mean += globals()['CV_mean_{}'.format(z)]*globals()['por_x_{}'.format(z)] 
    fin_std += globals()['CV_std_{}'.format(z)]*globals()['por_x_{}'.format(z)] 
     
#%%Final training 
start_t= time.time() 
test_size = 0.2 
y_test = pd.DataFrame([]) 
y_train = pd.DataFrame([]) 
y_pred = pd.DataFrame([]) 
y_pred2 = pd.DataFrame([]) 
 
for z in np.arange(n_clusters): 
    X1 = spectrum[case_for_cl['Cluster']==z]  
    Sc = preprocessing.StandardScaler().fit(X1) 
    X = pd.DataFrame(X1).dropna(axis=0) 
    Y = con[case_for_cl['Cluster']==z] 
    globals()['estimator_{}'.format(z)] =  model 
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    globals()['X_train_{}'.format(z)], globals()['X_test_{}'.format(z)], 
globals()['y_train_{}'.format(z)], globals()['y_test_{}'.format(z)] = train_test_split(X, Y, 
test_size=test_size,  random_state=50) 
    globals()['estimator_{}'.format(z)].fit(globals()['X_train_{}'.format(z)], 
globals()['y_train_{}'.format(z)]) 
      
    globals()['dset_{}'.format(z)] = pd.DataFrame() 
    globals()['dset_{}'.format(z)]['importance'] = 
globals()['estimator_{}'.format(z)].feature_importances_ 
 
    rfecv = RFECV(estimator=model, step=2, cv=5, n_jobs = -1, 
scoring="neg_mean_squared_error") 
    rfecv.fit(X, Y) 
     
    globals()['rfescore_{}'.format(z)] = rfecv.grid_scores_ 
    globals()['dset_{}'.format(z)]['attr'] = X.columns 
     
    globals()['dset_{}'.format(z)]['selection'] = rfecv.support_ 
    X.drop(X.columns[np.where(rfecv.support_ == False)[0]], axis=1, inplace=True) 
    globals()['rfeindex_{}'.format(z)] = np.where(rfecv.support_ == True)[0] 
    globals()['X_train_{}'.format(z)], globals()['X_test_{}'.format(z)], 
globals()['y_train_{}'.format(z)], globals()['y_test_{}'.format(z)] = train_test_split(X, Y, 
test_size=test_size,  random_state=100) 
 
 
    minmax_scale = preprocessing.StandardScaler().fit(globals()['X_train_{}'.format(z)]) 
    X_train = minmax_scale.transform(globals()['X_train_{}'.format(z)]) 
    X_test = minmax_scale.transform(globals()['X_test_{}'.format(z)]) 
 
    globals()['estimator_{}'.format(z)] =  model 
    globals()['estimator_{}'.format(z)].fit(globals()['X_train_{}'.format(z)], 
globals()['y_train_{}'.format(z)]) 
    globals()['y_pred_{}'.format(z)] = 
pd.DataFrame(globals()['estimator_{}'.format(z)].predict(globals()['X_test_{}'.format(z)]))  
    globals()['res_{}'.format(z)] = regression_results(globals()['y_test_{}'.format(z)], 
globals()['y_pred_{}'.format(z)])    
    globals()['y_pred2_{}'.format(z)] = 
pd.DataFrame(globals()['estimator_{}'.format(z)].predict(globals()['X_train_{}'.format(z)]))  
     
    y_test = pd.concat([y_test, globals()['y_test_{}'.format(z)]]) 
    y_pred = pd.concat([y_pred, globals()['y_pred_{}'.format(z)]]) 
    y_train = pd.concat([y_train, globals()['y_train_{}'.format(z)]]) 
    y_pred2 = pd.concat([y_pred2, globals()['y_pred2_{}'.format(z)]]) 
 
    globals()['res_fin_c1{}'.format(z)] = regression_results(globals()['y_test_{}'.format(z)], 
globals()['y_pred_{}'.format(z)]) 
    globals()['res_fin_c2{}'.format(z)] = regression_results(globals()['y_train_{}'.format(z)], 
globals()['y_pred2_{}'.format(z)]) 
     
Train_result = regression_results(y_train, y_pred2) 
Test_result = regression_results(y_test, y_pred) 
 
elapsed = time.time() - start_t 
 
#%%Read HSI file 
file = 'HSI.hdr' 
file2 ='hsi' 
 
test=envi.open(file, file2) 
dataset = gdal.Open(file2, gdal.GA_Update) 
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gt = dataset.GetGeoTransform() 
rows = dataset.RasterYSize 
cols = dataset.RasterXSize 
 
all_b = test.open_memmap(writeable=True) 
 
MNDWI =  (all_b[:,:,31]-all_b[:,:,103])/(all_b[:,:,31]+all_b[:,:,103]) 
 
 
#%%Radiometric correction & filtering 
from sklearn.linear_model import LinearRegression 
from scipy import ndimage, misc 
 
ref_db = pd.read_csv('Calibration tarps.csv') 
 
# 1 point correction 
rad2 = rad_84 = ref_db['84'] 
all_b_r = np.zeros([len(all_b[:,0,0]),len(all_b[0,:,0]),len(all_b[0,0,:])]) 
for zzz in np.arange(len(rad2)): 
    all_b_r[:,:,zzz] = ((0.84)/rad2.iloc[zzz])*(all_b[:,:,zzz]) 
 
 
# 4 points correction 
rf_ref = np.array([0.84,0.56,0.24,0.03]) 
rad_reg = LinearRegression() 
 
all_b_r = np.zeros([len(all_b[:,0,0]),len(all_b[0,:,0]),len(all_b[0,0,:])]) 
for z in np.arange(len(all_b_r[:,0,0])): 
    for i in np.arange(150): 
                 
        rad_reg.fit(ref_db.iloc[i,:].values.reshape(-1,1), rf_ref) 
        all_b_r[:,z,i] = rad_reg.predict(all_b[:,z,i].reshape(-1,1)) 
         
all_b_r_fil = ndimage.median_filter(all_b_r, size=(3,3,10)) 
 
#%% Prediction 
def extract_pixels(X): 
  q = X.reshape(-1, X.shape[2]) 
  df = pd.DataFrame(data = q) 
  df.columns= [f'band{i}' for i in range(1, 1+X.shape[2])] 
  return df 
 
df = extract_pixels(all_b_r_fil) 
n = np.linspace(0,2,num=10) 
 
C_INDEX2 = cluster.fit_predict(df) 
clu_map = C_INDEX2.reshape(len(all_b_r_fil),len(all_b_r_fil[0,:,0])) 
 
c1_ind = np.where(C_INDEX2==0) 
c2_ind = np.where(C_INDEX2==1) 
 
X1 = spectrum[case_for_cl['Cluster']==0] 
Sc1 = preprocessing.StandardScaler().fit(X1) 
X2 = spectrum[case_for_cl['Cluster']==1] 
Sc2 = preprocessing.StandardScaler().fit(X2) 
 
df3_1 = Sc1.transform(df.iloc[:,:]) 
df3_2 = Sc2.transform(df.iloc[:,:]) 
 
mapp_pred_c1 = estimator_0.predict(df3_1[c1_ind,:][0]) 



 

336 

 

mapp_pred_c2 = estimator_1.predict(df3_2[c2_ind,:][0]) 
mapp_pred_l = df.iloc[:,0].copy() 
mapp_pred_l.iloc[c1_ind] = mapp_pred_c1 
mapp_pred_l.iloc[c2_ind] = mapp_pred_c2 
mapp_pred_l = np.array(mapp_pred_l) 
 
#%% Mapping 
mapp_pred_fin = mapp_pred_l.reshape(len(all_b_r_fil),len(all_b_r_fil[0,:,0])) 
mapp_pred_mask = np.ma.masked_where((MNDWI<0), mapp_pred_fin ) 
 
ds = gdal.Open(file2) 
cols = ds.RasterXSize 
rows = ds.RasterYSize 
myarray = mapp_pred_mask 
geotransform = ds.GetGeoTransform() 
wkt = ds.GetProjection() 
driver = gdal.GetDriverByName("GTiff") 
output_file = "SSC_map from CMR_OV.tif" 
dst_ds = driver.Create(output_file, 
                       cols, 
                       rows, 
                       1, 
                       gdal.GDT_Float32) 
 
new_array = mapp_pred_mask 
where_are_NaNs = np.isnan(new_array) 
new_array[where_are_NaNs] = 0 
dst_ds.GetRasterBand(1).WriteArray( new_array ) 
dst_ds.GetRasterBand(1).SetNoDataValue(0) 
dst_ds.SetGeoTransform(geotransform) 
srs = osr.SpatialReference() 
srs.ImportFromWkt(wkt) 
dst_ds.SetProjection( srs.ExportToWkt() ) 
ds = None 
dst_ds = None 
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국문초록 

 

고해상도 초분광영상을 활용한  

하천 부유사농도 계측기법 개발 

 

 

서울대학교 대학원 

건설환경공학부 

권   시   윤 

 

 

 기존의 하천 부유사 농도 계측은 샘플링 기반 직접계측 

방식에 의존하여 시공간적 고해상도 자료 취득이 어려운 실정이다. 

이러한 한계점을 극복하기 위해 최근 위성과 드론을 활용하여 

촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사농도 

시공간분포를 계측하는 기법에 대한 연구가 활발히 진행되고 있다. 

하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 

따라 부유사가 다양하게 분포하고 다른 부유물질 혹은 하상에 의한 

바닥 반사의 영향 때문에 분광 자료를 통해 정확한 부유사농도 

분포를 재현하기 어려운 실정이다. 특히, 부유사 분광 특성에 

영향을 미치는 입도분포, 광물특성, 침강성 등이 하천에 따라 강한 
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지역성을 나타내기에 이러한 요인에서 야기되는 분광다양성으로 

인해 특정 시기와 지역에만 적합한 원격탐사 기반 계측 모형들이 

개발되어 왔다.  

본 연구에서는 이러한 분광다양성을 반영하여 다양한 하천 

및 유사 조건에서 적용 가능한 고해상도 초분광영상을 활용한 하천 

부유사농도 계측방법을 개발하기 위해 초분광 군집화 기법과 

다양한 파장대의 분광 밴드를 학습할 수 있는 기계학습 회귀 

모형을 결합하여 CMR-OV라는 방법론을 제시하였다.  

CMR-OV 개발 및 검증은 1) 실험적 연구를 통한 하천 

부유사 분광 특성의 주요 교란 요인 분석, 2) 최적 회귀모형 선정 및 

초분광 클러스터링과의 결합, 3) 현장적용성 평가의 과정을 거쳐 

수행되었다. 실험적 연구에서는 우선 실내 실험실에서 횡방향 

혼합기를 활용하여 바닥 반사를 제거하고 완전 혼합된 상태에서 

부유사의 고유 초분광 스펙트럼 자료를 수집하였다. 이를 바탕으로 

실제 하천과 유사한 조건의 실규모 옥외 수로 실험에서 다양한 

유사 특성(입도 및 광물)과 하상 특성(식생 및 모래)에 대한 초분광 

자료를 수집하여 고유 초분광 스펙트럼과 비교하였다. 그 결과, 

부유사의 분광 특성은 유사의 종류 및 입도에 따라 농도 증가에 

따른 초분광 스펙트럼의 반사율 변화가 상이하게 나타났다. 또한, 1 

m 이하의 얕은 수심 조건에서는 바닥 반사의 영향으로 하상 종류에 

따라 초분광 스펙트럼의 개형이 크게 변화하였으며, 고농도의 

부유사가 분포할 때도 바닥 반사가 크게 영향을 미치는 것을 
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확인하였다. 

이러한 분광다양성이 반영된 부유사농도와 초분광 자료의 

관계를 구축하기 위하여 기계학습 기반 랜덤포레스트 회귀 모형과 

가우시안 혼합 모형 기반 초분광 군집 기법을 결합한 CMR-OV를 

적용한 결과, 기존 연구들에서 주로 활용된 밴드비 기반의 모형과 

단일 기계학습모형에 비해 정확도가 크게 향상하였다. 특히, 기존 

최적 밴드비 분석 (OBRA) 방법은 비선형성을 고려해도 좁은 

영역의 파장대만을 고려하는 한계점으로 인해 분광다양성을 

반영하지 못하는 것으로 밝혀졌다. 하지만, CMR-OV는 폭 넓은 

파장대 영역을 고려함과 동시에 높은 정확도를 산출하였다.  

최종적으로 CMR-OV를 황강의 직선구간 및 사행구간과 

낙동강과 황강의 합류부에 적용하여 현장검증을 수행한 결과, 기존 

모형 대비 정확도와 부유사 농도 맵핑의 정밀성에서 큰 개선이 

있었으며, 비학습지역에서도 높은 정확도를 산출하였다. 특히, 하천 

합류부에서는 초분광 군집을 통해 두 하천 흐름의 경계층을 명확히 

구별하였으며, 이를 바탕으로 지류와 본류에 대해 각각 분리된 

회귀모형을 구축하여 복잡한 합류부 근역 경계층에서의 부유사 

분포를 보다 정확하게 재현하였다. 또한, 나아가서 재현된 

고해상도의 부유사 공간분포를 바탕으로 혼합도를 산정한 결과, 

기존 점계측 대비 상세하게 부유사 혼합에 대한 정량적 평가가 

가능한 것으로 나타났다. 따라서, 본 연구에서 개발한 초분광영상 

기반 부유사 계측 기술을 통해 추후 하천 조사 및 관리 실무의 
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정확성 및 효율성을 크게 증진할 수 있을 것으로 기대된다. 

 

주요어: 하천부유사 계측, 원격탐사, 초분광영상, 분광 다양성, 

기계학습모형, 공간분포 맵핑 
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