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Abstract

Deep Learning Based Health
Prognostics of Oil-immersed
Transformers for Contaminated
Dissolved Gas Analysis Data

Boseong Seo
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

With the acceleration of the energy market, such as smart grids, energy storage
systems, and electric vehicles, demand for reliable electrical power systems for safe
and continuous power supply is increasing. To meet this, many studies on diagnostic
techniques and preventive maintenance for core facilities of transmission and
distribution systems have been conducted. Among them, the oil-immersed
transformer plays a pivotal role in the electrical power system as a device that
changes the voltage according to the user's purpose. Therefore, various tests have
been developed for the diagnosis of power transformer, and the dissolved gas
analysis (DGA) is the most representative method. DGA is a method of measuring

the gas concentrations generated when the internal insulation is decomposed due to



a defect in the transformer. Various international organizations such as IEEE and
IEC have established DGA-based transformer diagnostic standards through decades
of research and industrial experience. However, this method has a high misdiagnosis
rate because it is based on the experience and interpretation of experts. Therefore,
this study attempted to develop the superior predictive diagnosis of the transformer
based on date-driven approach by using a large amount of DGA data acquired at an

actual industrial site.

To improve the diagnosis performance of the transformer, there are three main
issues to be addressed: 1) missing data issue in DGA, 2) health feature extraction
issue for low-dimensional data, and 3) health prognosis issue for irregular sampling
intervals. In order to solve these issues, this doctoral dissertation proposes the

following three studies:

The first study proposes iterative denoising autoencoder (IDAE) for multiple
missing value imputation. The proposed method can restore the original value of the
missing value by iteratively performing denoising autoencoder (DAE). DAE which
minimizes the noise estimates the original value of the missing value by making the
missing value recognized as noise. The proposed method enables more accurate

transformer diagnosis by increasing the reliability of DGA.

The second study proposes a method of extracting health features through semi-
supervised autoencoder (SSAE). The proposed method can extract two characteristic
features with monotonous degradation behavior by simultaneously performing
dimension reduction and health status learning of transformers. Since the correlation

between gas concentrations is modeled by learning a vast amount of industrial data,

il



the performance is more accurate than conventional methods. In addition, the
degradation trend can be intuitively understood by visualizing the health feature

space consisting of two health features.

Finally, the third study proposes a health prognosis of transformers through the
XGBoost regression method. The proposed method can obtain a robust prognosis
model on the irregular sampling intervals by learning the irregular time series data
using tree-based ensemble learning methods. Since the proposed method learns to
minimize errors of the sequential models, it can prevent overfitting and accurately
predict the status. It is expected to be of great help in preventive maintenance of

transformers because it assures excellent performance for up to 5 years.

It can be used to build a health prognosis framework for transformers by
performing the three proposed methods in a continuous process. In addition, it is
significant in that it has developed a universal model that can be directly applied to

the industry by using a vast amount of data acquired from the real industry.

Keywords: Health prognostics
Data imputation
Oil-immersed transformer
Deep learning
Machine learning

Dissolved gas analysis

Student Number: 2013-20680
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Chapter 1

Introduction

1.1 Motivation

As market opportunities related to smart grids and sustainable electric networks
have grown, concerns about the stability of the electric power system have increased.
Transformers, one of the main components of the electric system, need careful
management. However, as transformers are used over several decades, they degrade
and become subject to abrupt accidents that arise for various reasons, such as
abnormal voltage, careless operation, and insulation degradation. To avoid
transformer failure, global standard organizations, such as IEEE and IEC, suggest

maintenance guidelines based on the domain knowledge.

Much research has been conducted towards the goal of accurately diagnosing
and maintaining transformers. Among prior methods, dissolved gas analysis (DGA)
is the most widely used. When the insulator of a transformer is dismantled by thermal
and electrical stresses, combustible gases are generated and dissolved into the oil
that is filled inside transformers. The amount and the ratio of these dissolved gases
depend on the degradation condition of the transformer. Therefore, the condition of

the transformer can be estimated through gas analysis. There are several global



standards on dissolved gas analysis, such as IEEE Std C57.104 [1], IEC 60599 [2],
Duval Triangle [3], Doernenburg Ratios [4], Rogers Ratios [5], and Basic Gas Ratios
[2]. These methods have been improved based on decades of study; however, they

still have low accuracy and a high frequency of false alarms.

As transformer data has accumulated over long periods, and techniques based
on big data analysis and artificial intelligence are maturing, much research has been
conducted with the aim of inferring the status of a transformer using DGA data. In
the early stages of these methods, algorithms using machine learning, including
fuzzy logic [6-8], artificial neural networks [9-13], and support vector machine [14-
19], are often applied. Recently, state-of-the-art technologies that incorporate deep
learning have been adopted to construct diagnosis models for transformers [20-23].
For example, L. Luo et al. [22] proposed a DGA online fault diagnosis method that
combines a convolutional neural network and a bidirectional Long Short-Term
Memory (LSTM) network. In other work, D. Yang et al. [23] developed a double-

stacked autoencoder for fast and accurate judgement of transformer health condition.

Although artificial intelligence methods can greatly enhance the accuracy of
diagnosis, and verify various failures of a transformer, they require a large amount
of and high-quality data to construct a robust model. Unfortunately, in the case of
transformers, obtaining such data is difficult. Transformer data is rarely measured,
usually only once or twice a year. Therefore, it is fundamentally difficult to obtain
sufficient data to be used to train the diagnostic model. And as the amount of data is
small, the imbalance between normal and fault data increases, and even the collected

data has a limitation that some of them are unlabeled.



Further, the data may be corrupted for a variety of reasons. The quality of DGA
data greatly depends both on the techniques used to extract gas from the insulating
oil and the skill of the personnel gathering the data. According to research by Cho et
al. [24], the error rate of the round-robin test for each laboratory is 15-30%, on
average. In addition, Dukarm reported common issues arising from DGA data, such
as low measurement precision, contradictory data, and intermittent gas losses, all of

which require special attention when measuring DGA gases [25].

Recently, the world has focused on predictive maintenance (PdM) to prevent
safety accidents of facilities and increase the maintenance efficiency. And research
and demonstration projects related to remaining useful life (RUL) prediction are
already being conducted for many industrial facilities [26-30]. On the other hand,
studies of PdM for transformers were relatively slow, and only two studies were
found [31, 32]. Study [31] predicted the RUL of transformers from DGA data using
General Regression Neural Network (GRNN)-based ensemble learning, and study
[32] predicted the concentrations of seven gas types and future status of transformer
using Adaptive Network-based Fuzzy Inference System (ANFIS) and rule-based
fuzzy logic. However, these studies have limitations in performance in the field due

to limited data and low accuracy.

Therefore, in this dissertation, the new deep learning-based framework of fault
diagnosis and prognosis for power transformers is proposed to overcome the

limitations mentioned above. This dissertation can achieve the following three things:

1) Data reliability and robustness are improved by restoring the original value

of contaminated DGA data.



2) By deriving the health features representing the status of transformer, it is

possible to grasp the deterioration trend of transformer which changes monotonically.

3) It is possible to predict the status of transformer and the time at which defects

occur from the deterioration trend of transformer.

1.2 Research Scope and Overview

The goal of this doctoral dissertation research is to develop the prognostic
methods that predicts the status of oil-immersed transformers using deep-learning
technologies for incomplete dissolved gas analysis data. The research is composed
of three thrusts. First thrust is a data imputation method to recover the multiple
missing DGA value using iterative denoising autoencoder (IDAE). Second thrust is
a extraction of health features which has a monotonically decreasing degradation
pattern. Health features are derived from semi-supervised autoencoder (SSAE). Last
thrust is a health prognosis of power transformers based on XGBoost regression.

These three thrusts are briefly described below.

Research Thrust 1: Iterative denoising autoencoder (IDAE) for missing data

imputation of DGA

In research thrust 1, we propose iterative denoising autoencoder (IDAE), an
imputation method to restore the multiple missing values in offline DGA. During the

process of extracting and transporting insulating oil, some gas concentrations are



missing as the gas volatilizes into the air. This can lead to a fatal error in not detecting
defects of the transformer. Therefore, the industry is presenting various guidelines

to pay special attention to DGA, but it is not actually well followed.

Therefore, in this thrust, we seek to restore the original value of DGA data
through the data driven approach. This approach is based on autoencoder and
designed to overcome the limitations of existing methods. The proposed method
consists of three steps: 1) defining the inputs and data normalization, 2) DAE model
learning for a single missing value, and 3) IDAE for multiple missing values. The
main idea of this study is to enable DAE imputation model for estimation of the
original data to replace the incomplete data with multiple missing values by

repeating the imputation process until the missing values converge.

The proposed method is verified in this research through three comparative
studies that examine field data provided by an electric power corporation. Specific
studies provide: 1) a comparison with conventional methods on imputation
performance for a single gas, 2) examination of imputation performance between
multiple missing values, and 3) documentation of diagnosis accuracy before and
after imputation. The results of the case studies show that the proposed method is
effective for imputation of the missing DGA data. IDAE can help diagnose the health

status of transformers accurately by estimating the missing values of DGA data.

Research Thrust 2: Semi-supervised autoencoder (SSAE) for health feature

extraction of power transformers



In research thrust 2, we propose semi-supervised autoencoder (SSAE) based
health diagnosis to evaluate the condition of transformer and to identify the
degradation trend. Conventional DGA-based diagnostic methods determine the
status of transformer by dividing it into three or four grades, so there is a limit to
further subdividing and grasping the status of transformer. Therefore, in the real

industry, there is a demand to quantitatively judge the status by quantifying it.

Therefore, in this thrust, we try to extract the health features which visually
express the degradation condition of transformer. To realize this, it went through a
two-step process: 1) defining the inputs and data normalization, and 2) SSAE model
learning for extracting health features. Through the SSAE model, monotonically

decreasing health features can be extracted.

We evaluate the diagnostic accuracy of proposed model compared to that of
conventional methods such as IEEE and IEC. The performance of proposed method
is more accurate than others. In particular, the proposed method was able to
significantly reduce the false alarm rate because the composition ratio of the total

gas was also used as a diagnosis factor.

Research Thrust 3: XGBoost regression for health prognostics of power

transformers

In research thrust 3, we propose XGBoost regression model to predict the status
or remaining useful life (RUL) of power transformers. The biggest challenge in

predicting the transformer status is that the data acquisition interval is not constant.



In the case of DGA data, the measurement period, from 1 month to 2 years, is
different depending on the transformer condition according to international
guidelines. Most of the methods commonly used for prediction problems are difficult

to apply to this case because the data sampling rates must be constant.

Therefore, in this thrust, we try to develop an health prognosis model of power
transformer applicable for data with irregular sampling rates. To realize this, it went
through a two-step process: 1) orthogonal projection of health features for obtaining
health index, and 2) XGBoost regression model learning for health prognosis. Health
features can be converted into a one-dimensional health index by projecting them to
the orthogonal plane. And by using the sampling interval as an input for the XGBoost
learning model, it is designed to obtain the prediction results robust to the

measurement cycle.

To evaluate the prognostic performance of the proposed model, two case studies
were conducted: 1) a comparison with other machine learning (ML) algorithms on
prognosis accuracy and 2) prognosis accuracy degradation due to long prediction
period. As a result of studies, XGBoost model has the highest accuracy among the
ML models. And even if the prediction period is extended, it maintains an average

accuracy of 80%, and has the minor decline.

1.3 Dissertation Layout

The remaining chapters of this dissertation is organized as follows. Chapter 2

provides a literature review including the fault modes of power transformers,



backgrounds of dissolved gas analysis for basic understanding, and conventional
fault diagnosis of power transformers. Chapter 3 describes the missing data
imputation via iterative denoising autoencoder (IDAE). Chapter 4 suggests the health
feature extraction via semi-supervised autoencoder (SSAE). Chapter 5 proposes the
health prognosis model of power transformers via XGBoost regression. At the
conclusion, Chapter 6 summarizes the result of this research and suggestions for the

future research.



Chapter 2

Literature review

In this chapter, to help reader’s understanding, we will cover the fault modes of
the power transformer and the methods for diagnosing it in general. Subchapter 2.1
provides the failure modes and effects analysis (FMEA) for power transformers.
FMEA is process of identifying potential failure modes of components in a system
and their causes and effect. Subchapter 2.2 describes the definition and process of
dissolved gas analysis (DGA). Lastly, Subchapter 2.3 summarizes the conventional

rule-based fault diagnostic methods of power transformers.

2.1 Failure Modes and Effects Analysis (FMEA) for Power

Transformers

Transformers are one of the most important components in the electric power
system. Transformers connect power systems with different voltage levels. As a
transformer experiences enormous electrical and mechanical stresses as it operates
under high-voltage conditions, internal components (e.g., insulating paper and
windings) undergo degradation. This degradation ultimately results in the abrupt

failure of the transformer, which interrupts the power grid that is connected to the



transformer.

A transformer can fail by electrical, thermal, and/or mechanical defects.
Electrical defects result from transient over-voltage or winding resonance. Thermal
defects may arise from an overload current, local overheating, leakage fluxes and/or
failure of the cooling system. Mechanical stress between the conducting material and

the winding occurs because of a short circuit of the winding and inrush current.

Such defects in a transformer are caused by a decrease in the mechanical and
dielectric strength of the transformer as the internal insulator ages. In general, aged
conductor insulation is weakened to the point where it can’t withstand the
mechanical stresses of a fault. Indeed, the insulation becomes so brittle that even
normal operating conditions may cause severe damage. Then, dielectric failure of
the turn-to-turn insulation or loosening of the winding clamping pressure occur,

which reduces the transformer’s resistance to short-circuit forces [33].

According to the case study about failure statistics for large-capacity
transformers that are operating for about 1 year and 6 months to 2 years and 6 months,
the main failure modes of transformers are shown in Figure 2-1 [34]. As you can see
in Figure 2-1, most fault modes are due to insulation defects. Typical major
insulation defects occurring in the transformer are as follows: moisture in the
cellulose insulation, contamination of oil with water or particles, insulation surface
contamination (which occurs mainly due to the adsorption of polar aging products
on a cellulose surface or due to deposition of conducting particles and insoluble
aging products), and partial discharges in weaker parts of the insulation. Table 2-1

summarizes general insulation faults of transformers based on FMEA [35].
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Contamination of insulation
Winding deformation
due to short circuit forces
Misconnection

Core insulation failure

Insulation aging

Type of failures

Failure rates (%)

Overvoltage

Figure 2-1 Failure rates by major failure modes

Table 2-1 General insulation faults in transformer through FMEA

Root causes of faults Fault modes Fault effects
t(éinlt;:;il tlcl;):tamlnatlon (H:0) of oil & Rapid change of PD appearance at rated voltage Breakdown
Surface contamination & Rapid change of temperature PD appearance Flashover
Particle’s contamination & Switching surge Critical PD Breakdown
Water & Particles contamination Critical PD (Creeping discharge) Breakdown
Surface contamination & Lightning impulse Surface discharge Flashover
Distortion of winding geometry PD appearance (Creeping discharge) Breakdown
Distortion of winding geometry & Switching surge Flashover between coils Gas evolution
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2.2 Dissolved Gas Analysis (DGA) in Power Transformers

As previously described, there are various failure modes of transformers; thus,
developing a diagnosis model for each failure would be costly and ineffective.
However, most failures are the reason of the generation of dissolved gas in the oil
filled inside a transformer. Thus, by analyzing the dissolved gas, the overall status
of the transformer can be monitored, and the failure can be predicted in advance and
thus prevented. The examination of dissolved gas is commonly called dissolved gas

analysis (DGA).

A high-voltage transformer is usually insulated with insulation paper and oil to
safely handle the high voltage. Two levels of insulation are used. First insulation
paper is wrapped around the coils and iron core of the transformer. Next, the inside
of the transformer where the coils and iron core are located is filled with oil for
further insulation. When there is local heating, arc, or thermal or electrical stress, the
insulation material is decomposed and combustible gases (e.g., H>, CoH», CoHa, CoHe,
CHa4, CO, CO,, N2, O, and CsHg) are generated as shown in Figure 2-2. The ratio of
these gases varies according to the cause of the decomposition. Therefore, DGA is

usually utilized to analyze the gas ratio and to infer the status of the transformer.

From a thermodynamic point of view, the severity of transformer fault is very
related to enthalpy that changes during the gas decomposition [36]. The gas
decomposition that has larger enthalpy change occurs faster by more severe faults.
Table 2-2 summarizes the chemical reaction formula for each major gas and the
enthalpy change (AH®) generated when n-octane (CsHjs), the main component of

insulating oil, is pyrolyzed. For example, comparing CoH, with CHs, since the
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enthalpy change in C;H, is 278.3 kJ/mol and the enthalpy change in CHy is 77.7
kJ/mol, it can be assumed that more severe faults occurred when C,H: is produced.

Accordingly, methods for diagnosing a transformer based on the correlation between

the transformer fault and the gas concentration have been developed and widely used.

There are two main ways of DGA: offline and online. The offline is a method
in which an operator directly collects insulating oil and measures the gas
concentration using gas chromatography equipment in the laboratory. The online
method is to measure gas concentration in real time by an online sensor installed on
a transformer. The offline method has a disadvantage in that data errors may occur
depending on the skill of the operator, and data sampling interval is too long, from 1
months to 2 years. So, in recent years, there is a trend of switching to an online
method. However, verification of sensor performance is still weak, and equipment
that can measure the concentration of six or more major gases is very expensive. So,
the penetration rate in the industrial sites is very low. Therefore, in this study, we
conducted on more practical offline data in consideration of the current state of

industrial sites.
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Combustible Gases

Figure 2-2 Generation of combustible gases by thermal and electrical stress

Table 2-2 Chemical reaction and enthalpy change of major gases

Gas Reaction Formula AH® (kJ/mol)
CHa(g) CgHig(1) = CH4(g) + C7H14 (D 1.7
C:He(g) CgHyg(1) = C;He(g) + CeHy2 (D) 93.5
C:Ha(g) CgHig(1) = C2Hy(g) + CeHya(D) 104.1

Ha(g) CgHyg() = Hz(g) + CgHie(D 128.5
CoHa(g) CgHyg() = C3Hz(g) + CeHys (D) + Ha () 278.3

2.3 Conventional Fault Diagnosis of Power Transformers

There are various rule-based diagnostic methods with DGA. These methods
have been mainly established from empirical hypotheses or know-how of field
experts for a long time. Nevertheless, a fault that is still difficult to identify occurs,

and different results may be derived depending on the interpretation method.

14



Therefore, they are not acceptable for reliable diagnosis methods yet. There are a

method of determining the severity based on the gas concentration and a method of

determining the failure mode based on the gas composition ratio. The six most

commonly used methods are presented below:

(1

)

3)

IEEE Standard C57.104 [1]: A four-level criterion of ‘IEEE Std C57.104™-
2008 - IEEE Guide for the Interpretation of Gases Generated in Oil-
Immersed Transformers’ is provided to classify risks to transformers. The
content includes threshold of the dissolved gas concentrations for the
individual gases and TDCG from Condition 1 to Condition 4. The condition
for a target transformer is determined by finding the highest level for

individual gases or the TDCG in Table 2-3.

IEC 60599 [2]: IEC 60599 is a DGA interpretation guide provided in ‘IEC
60599 — Mineral oil-filed electrical equipment in service — Guidance on the
interpretation of dissolved and free gases analysis.” It is similar to IEEE
C57.104, but it classifies the status in three grades (Normal, Caution I,
Caution II) and excludes TDCG. Table 2-4 summarizes the specific

threshold by the condition.

Dornenburg ratio method [4]: Doernenburg ratios is an evaluation of
possible fault type method provided in IEEE Std C57.104™ for diagnosis
of fault mode. As shown in Table 2-5, R1 (Ratiol, CH4+/H>), R2 (Ratio2,
C,H»/C>Ha4), R3 (Ratio3, C;H,/CH,4), R4 (Ratio4, C,He/C,H>) are compared

to limiting values, suggests corresponding fault mode.
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4

)

(6)

Rogers ratio method [5]: The Roger ratios method follows the same general
procedures as the Doernenburg method, except only three ratios (R1
=C,H,/C,H4, R2=CH4/H,, R5=C,H4/C,Hs). But, as with the Doernenburg
method, the Rogers ratios can give ratios that do not fit into the diagnostic
codes. Table 2-6 gives the values for the three key gas ratios corresponding

to suggested diagnosis.

Basic gas ratio method [2]: Except Rogers Ratios methods provided in [IEEE
Std C57.104™-2008, TEC 60599 also guides fault identification method
using different three gas ratios (R1=C,H./C,Hs, R2=CH4/H,, R3=C,H4/
C:He). Each of six board classes of faults leads to characteristic pattern of

hydrocarbon gas composition, which is described in Table 2-7.

Duval triangle method [3]: Duval triangle is a fault identification method
provided in IEC 60599. As shown in Figure 2-3, the triangle is divided by
six faults mode zones and depending on the three gas ratios values
(R1=C;H,/C,H,+CoH4+CH4,  R2=C,H4/CoH>+CoHs+CHs,  R3=CHa/

C,H>+C,H4+CH,), it indicates the corresponding fault mode.
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Table 2-3 IEEE Standard C57.104

Dissolved key gas concentration limits [ppm]

Status
H, CH, CH» C:H,4 C>Hs CcO CO> TDCG
Condition 1 100 120 1 50 65 350 2500 720
Condition 2 101-700 121-400 2-9 51-100 65-100 351-570 2501-4000 721-1920
Condition3  701-1800  401-1000  10-35  101-200 101-150  571-1400  4001-10000 1921-4630
Condition 4 > 1800 > 1000 >35 >200 > 150 > 1400 > 10000 > 4630
17



Table 2-4 IEC 60599

Dissolved key gas concentration limits [ppm]

Status
H, CH4 CH, C,Hy C2He CcoO CO,
Normal 50 30 2 60 20 4000 3800
Caution I 51-100 31-130 3-20 61-280 21-90 401-600 3801-14000
Caution II > 100 >130 >20 > 280 >90 > 600 > 14000
18
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Table 2-5 Doernenburg ratio method

Suggested fault diagnosis R1 (CH4/H) R2 (C,H»/C,H4) R3 (C,H»/CH.) R4 (C,He/C,H>)
1) Thermal decomposition >1.0 <0.75 <0.3 >04
2) Partial discharge
<0.1 Not significant <0.3 >0.4
(low-intensity PD)
3) Arcing (high-intensity PD) >0.1t0<1.0 >0.75 >0.3 <04

19

S e ik



Table 2-6 Rogers ratio method

Cases R2 (C,H»/C,H4) R1 (CH4/H») R5 (C,H4/C,Hs) Suggested fault diagnosis
0 <0.1 >0.1t0<1.0 <1.0 Unit normal
1 <0.1 <0.1 <1.0 Low-energy density arcing
2 0.1t03.0 0.1t0 1.0 >3.0 Arcing: High-energy discharge
3 <0.1 >0.1t0<1.0 1.0t0 3.0 Low temperature thermal
4 <0.1 >1.0 1.0 to 3.0 Thermal < 700°C
5 <0.1 >1.0 >3.0 Thermal > 700°C
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Table 2-7 Basic gas ratio method

Cases Suggested fault diagnosis R1 (C,H»/C,H4) R2 (CH4/H) R3 (C2H4/C,He)
PD Partial discharges Not significant <0.1 <0.2
D1 Discharges of low energy >1 0.1-0.5 >1
D2 Discharges of high energy 0.6-2.5 0.1-1 >2
Tl Thermal fault t < 300°C Not significant > 1 but not significant <1
T2 Thermal fault 300°C <t < 700°C <0.1 >1 1-4
T3 Thermal fault t > 700°C <0.2 >1 >4
21
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PD = PARTIAL DISCHARGE
T1=THERMAL FAULT LESS THAN 300°C
T2 = THERMAL FAULT BETWEEN
300°C AND 700°C
T3 = THERMAL FAULT GREATER THAN 700°C
D1 = LOW ENERGY DISCHARGE (SPARKING)
D2 = HIGH ENERGY DISCHARGE (ARCHING) 80
DT = MIX OF THERMAL AND
ELECTRICAL FAULTS

60 Y 4
% CH4/ _ \% C,H,

N\ AN
80 60 40 20
+—— % C,H,

Figure 2-3 Duval triangle method
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Chapter 3

Missing Data Imputation via

Iterative Denoising Autoencoder
(IDAE)

In this chapter, iterative denoising autoencoder (IDAE) is proposed to impute
the multiple missing DGA. DGA is missing for various reasons. Therefore, it is
important to restore DGA for reliable fault diagnosis. Subchapter 3.1 deals with the
data issues arising from DGA. Subchapter 3.2 describes the theoretical background
of denoising autoencoder (DAE), which is the basis of this study. Subchapter 3.3
proposes the new imputation methodology consisting of three processes: 1) data
preprocessing, 2) construction of DAE model for a single missing value, and 3)
construction of IDAE model for multiple missing values. Subchapter 3.4 considers
the results of three case studies: 1) a comparison with conventional methods on
imputation performance for a single gas, 2) examination of imputation performance
between multiple missing values, and 3) documentation of diagnosis accuracy before
and after imputation. At the conclusion, Subchapter 3.5 provides the summary and

discussions of this study.
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3.1 Data Issues in DGA

Although DGA is widely used due to its simplicity and generality in inferring
the various failures of a transformer, a problem arises when this method is applied
in practice; specifically, it has difficulty gathering reliable data. Dissolved gas data
is subject to corruption for various reasons. This is described in reference [25], which
notes the importance of careful data analysis. Some cases of unreliable data are as
follows. First, the gas ratio can be significantly different between samples. The
samples obtained at similar times should have similar quantities; if not, the samples
should be considered to be error. A low concentration of H, or CO; also indicates
possible error. Because the solubility of these gases is very low, the oil rapidly loses
these gases when exposed to the air. Therefore, a low ratio of H, or CO, means that
the sample is corrupted by exposure to the air. Similarly, an increase in O, and N»
occurs during the exposure, because these gases are abundant in the air and readily

dissolved in the oil.

The causes of unreliable data vary. Most of these causes stem from careless
handling of samples. In many cases, the samples are manually gathered by workers.
While taking the samples, it is easy for the samples to be exposed to the air if they
are not completely sealed. Also, the gases can be lost when the transformer has a
small crack or rupture in the transformer housing. Some minor cases of unreliable
data include mis-labeling, data transcription error, and incorrect analysis. Unreliable
data should be excluded from the analysis. However, transformer data is not
frequently obtained; it is typically measured only once or twice a year. Therefore,
every data sample is valuable and should be fully exploited if possible, rather than

being excluded due to reliability concerns. To this end, the proposed method is
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developed to enhance the useability of unreliable or incomplete data.

3.2 Backgrounds of Denoising Autoencoder (DAE)

To estimate the missing values in a transformer’s DGA data, a denoising
autoencoder (DAE), first proposed by P. Vincent and Y. Bengio, is adopted [37].
DAE is the expanded version of an autoencoder, which is used to recover the original
data from noise-corrupted data. DAE is based on the fact that the data maintains its
essential characteristics, even when partially destroyed. Therefore, the DAE model
can recover the original data from the noise-added input. DAE is widely used for
image/voice recovery, typo correction, and noise filtering, among other applications

[38-43].

The structure of the DAE model is shown in Figure 3-1. It consists of two parts.
The first part is the autoencoder, which itself can be decomposed into encoder and
the decoder parts. The role of the encoder is so-called manifolding learning, which
sequentially reduces the dimension of the input data. As a result, the essence of the
original data, called the latent values, which contains enough information about the
original data, is obtained. For given data x € RP, the encoder function, f, is expressed

as shown in Eq. (1).
fo(x) = h =s(Wx+Db) (1)

where W is the dXD dimensional weight matrix, b is the d dimensional bias vector,

h is the d dimensional latent value, and s(*) is the activation function.
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The decoder is the reverse process of the encoder, which is called generative
model learning. The decoder uses sequentially increasing layers, and recovers the
original data from the output of the encoder. The equation for the decoder, gg’ is

as follows.

gor(h) =X =s(Wh+Db’) ()

where X € RP is the recovered data from the input of the decoder or, equivalently,
the encoder of output, h, and weight parameter 8 = {W, b} and 0’ = {W’, b}

are estimated through the learning process.

The autoencoder learns the weight parameter ® and @' by minimizing the
loss function L(0,0"), which measures the similarity between x and X. In this study,
the mean-square error function of Eq. (3) is adopted as a loss function to estimate
the missing values. Given the training dataset {x!, ..., x"'}, the loss function is
minimized by updating ® and 0’ through a backpropagation method that is based

on the gradient descent algorithm [44].

L(6,0") = = S lIx* — £¥11% = S 3N % — gor (fo NI (3)

The other part of DAE is the addition of noise to the raw data. The noisy data
after this step is designated as X in Figure 3-1. The noisy data is generated using the
stochastic corruption procedure X ~ qp(X|x) [45]. Through this process, about half
of the input data is randomly substituted with zero. Noisy data is then provided to
the autoencoder model, which generates X. Since the loss function is defined as the

error between the original data x and the reconstructed data X, as the training goes
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on, the model takes noisy input X and gives an output similar to original data x. In

other words, the model now acts like a noise filter.

Denoising Autoencoder

Autoencoder

Figure 3-1 The structure of the DAE model

3.3 DAE-based Iterative Imputation for Multi-Missing DGA

The overall process of the proposed method is shown in Figure 3-2. It consists
of three main steps; data preprocessing, DAE training, and IDAE. In the data
preprocessing step, the input dimension is defined and normalization is performed.
In the DAE training step, a DAE model to recover a single missing value is
constructed. Then, IDAE, an imputation model for the multiple missing value
situation, follows. The initial values for the multiple missing values are first assigned
by KNN, and the IDAE updates the initial guesses to robust values. In the following

subsections, each step is described in detail.
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DGA Data Imputation

Data Preprocessing

Iterative imputation for multiple missing values

KNN Training for initial value
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[ Data corruption for missing gas
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/ 6 DAE models
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Figure 3-2 Overall process for missing data imputation in DGA
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3.3.1 Data Preprocessing

First, to apply the DAE model to the transformer data, the input needs to be
defined for accurate reconstruction of the missing data. One way of doing this is to
use the time-trend of the DGA data. As the gases are accumulated over time, the
amount of each gas monotonically increases. Hence, the missing data may have a
value in between the values before and after the missing data. However, DGA data
is generally not measured often (i.e., once or twice a year); thus, a gradual change
sometimes is not clearly seen because of interruptions by other electrical events. For
example, sudden partial discharge could rapidly increase the amount of gases.
Therefore, when we estimate the missing gas concentration only using time-series
trend information, it will not be able to interpret the case where the gas has abrupt

change.

Thus, in this study, in addition to the time-trend data, the gas concentrations are
also used to facilitate the determination of the missing value at a certain time. The
amount of a gas can be estimated using the other gases, when the failure mode is
verified. As a result, the input of the DAE model is designed to include both the
time-series data of a gas and the amounts of other gases at a specific time, t. The
input is defined as follows.

— i i i i i+l i+2 . i+3 ,.i+4 ..i+5
X = [X¢_g, X Xe_1, Xe, Xg o, XE S XE T, XE X ] 4)

where the superscript and subscript of x are gas type and measurement time,
respectively. In Eq.(4), x} represents the missing value and will be estimated using
both the time-series data, [x{_s,x!_,,x!_;], and gas concentration at time t,

[x}, xEtL, xi+2 xE+3, x4, x[T°]. The six gases include Ha, C.H,, CoHa, CoHg, CHa,
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and CO. The missing value x} is set to be -0.1, which is physically impossible to

obtain, so the learning algorithm can recognize it.

Another preprocessing step is normalization. The scales of the dissolved gases
are different. Some gases are more easily generated and dissolved in the oil than
other gases because of their low enthalpy. In contrast, some gases such as C,H,
require high enthalpy to be formed. In this case, the gas is generated only when there
is a fault that releases high energy such as arc or corona. Because this high-energy
condition is not readily met, C;H, shows rather low concentrations in the oil.
However, a fault with high energy indicates a possible severe fault; thus, it is an
important indicator regardless of low concentrations in the oil. Thus, to reduce the
scale difference, min-max normalization is adopted, which transforms the data to

have a value between 0 and 1.

3.3.2 DAE Model for a Single Missing Value

Using the input defined previously, the model is trained. Before dealing with
multiple missing values, a model for a single missing value is first trained for each
gas, based on DAE. As a result, a total of six models are obtained. The structure of
the DAE model is shown in Fig. 3. In the input layer, the data marked ‘%’ represents
the missing data. Each input consists of nine elements, including the time trends and
gas concentrations, as mentioned earlier. The corrupted inputs are reconstructed
through the encoder and decoder layers. The encoder and decoder layers consist of
five hidden layers. Since the encoder and decoder have low input dimension and all

input elements are meaningful, the layers are designed to have a fully connected
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layer denoted as ‘fc’, as shown in Figure 3-3. The number of nodes of each hidden
layer are set to 40, 20, 10, 20, and 40, respectively. Every layer except the last uses
the exponential linear unit (ELU) function as its activation function, as shown in Eq.
(5). The last layer uses the hyper-tangent function described in Eq. (6) to let the input
data fall between 0 and 1. The output through the auto-encoder has recovered value,
which is denoted as ‘0’ in the figure. The mean square error of Eq. (3) is adopted for
the loss function, and training is conducted to minimize the loss function. This
trained model is only applicable for data with one missing value. However, many
DGA data include multiple missing values. Thus, an iterative method for multiple

missing values is proposed in the following section.

X x>0
R(x) = {a(e" -1) x<0 ®)
tanh = 1;:: (6)

..........................................

elu elu elu elu

0, | [ 65| [0 03

999 ! i 9909 999

10 ! Output: Reconstructed
H DGA

Encoder & Decoder

Figure 3-3 Example of the DAE model structure for one gas
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3.3.3 IDAE Model for Multiple Missing Values

The previous DAE model works only for a single missing value. To expand the
previous DAE model to data with multiple missing values, the missing values are
initially estimated and iteratively updated until they converge. For initial estimation,
the k-nearest neighborhood (KNN) method is adopted, because it shows quite high
accuracy when there is enough data whose dimension is small. In addition, the

learning method is simple and requires little effort to estimate parameters.

The KNN method estimates the target value by finding samples that are similar
to the target data. If the target data is xé_o, which is the ith gas at time ¢, the input to

the KNN model is three time-series data before xé,o, which is represented as z} =

[x£_3,0,x£_2,0,x£_1,0]. Then, the distances between z) and the jth sample z}

i i i
[X¢_3j, Xt—z,j» X{—1,j] are measured as follows.

() = [t~ ). G0 ¢

Finally, K samples of z,i( (k=1,...,K) with the smallest distances from z} are
selected and their corresponding data at time ¢, x,‘;’t is used for estimation of x(i,’t,
as shown in Eq. (8). In this study, we set the number of nearest neighbors as 14

0, k 1 i /Zk 1 L ( )
d d

Once the missing values are replaced with the output of KNN, the DAE model
becomes applicable. The output of the DAE model, X = g4/ (fg(X)), is expected to

be more accurate than the output of the KNN; however, it is different from the target

32



value because it is trained based on the outputs of KNN, which are roughly estimated
initial values. The outputs of the DAE models then replace the outputs of the KNN.
This updating process goes on until the difference between the updated value and the
previous value is minimized. When there are M missing values, the difference is
measured by the following equation, where / is the index of the gas that has been
missed.

A= Zl_lAl _ _ZM |xnew x01d| 9

xnew

The pseudo-code for the algorithm is shown in Table 1. X is the missed input

data and N is the number of data samples.

Table 3-1 Pseudo-code for the IDAE algorithm

Algorithm Impute missing values with IDAE.

Requirements: Input dataset X = {X4, ...,Xy} with missing values.
1. [Initialize:

1={l,, ..., Iy}; Define 1 where I, is missing value index for nth data.
X = @; Dataset of imputed input.
for n in N do
Make initial guess X, o1 for missing values using KNN.
while Ajew< Aglqa do
for /,inldo
Predict X, new correspondingto X, using DAE model;

W XN kWD

end for
10. Calculate Apews;
end while

—
—

=

12. Append Xy, pew t0 X;
13. end for

14. return imputed matrix X
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3.4 Performance Evaluation of IDAE

The proposed method was verified by examining actual industrial data. Three
comparative studies were conducted. The first and second case studies were explored
for verification of the imputation model for single and multiple missing values,
respectively. The last case study compared the diagnostic performance with and

without imputation.

3.4.1 Description of DGA Dataset

The DGA data used for the case studies in this research was provided by the
Korea Electric Power Corporation (KEPCO). The data was gathered from more than
8,000 transformers over 10 years. This data reflects the intact characteristics of the
operating conditions and data gathering conditions. The first rated voltage of the
transformers in the data set varies from 22.9kV to 765kV; the transformers were

manufactured by 49 different companies.

Based on the experts from KEPCO and the literature reports on DGA methods,
six primary gases, Ha, Co:Ha, CoHa, C:Hs, CHa, and CO, were selected for analysis.
Other gases, such as O, N,, and CO,, were excluded from the analysis because these
gases can be generated from reasons other than degradation. Erroneous data, data
with an obviously incorrect value, and data corrupted by oil filtering, were excluded.
The total number of data samples in the final study set is 17,850. About 90% of these

were used for training, and the remaining 10% was used for testing.
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3.4.2 Performance of Estimation Model for a Single Missing Value

For the first comparative study, the accuracy of single missing value estimation
will be compared using the proposed method and other previous methods. The
comparison algorithms used alongside the proposed method are k-nearest neighbor
(KNN) [46], XGBoost (XGB) [47], light GBM (LGB) [48], and random forest (RF)
[49].

The accuracy of each algorithm is measured using two metrics. First is the
normalized root mean square error (NRMSE), which is the root mean square error

divided by the mean of the square of the original value. It is defined in Eq. (10).

NRMSE = (10)

NRMSE alleviates the scale difference of gases, so it allows a fair comparison
between gases. However, since NRMSE is vulnerable to outliers, it can give biased
results, despite generally good performance. Hence, another metric, correlation
coefficient, is adopted to supplement the NRMSE, as shown in Eq. (11). The
correlation coefficient measures the linearity between the target values and the

estimated values, a higher value indicates better estimation.

Y1 (xk—x)(®*- (%)
r= 2 —\2
(5 (=2 [, (=)

(11)

where X indicates the mean value.

Using these metrics, the estimation results are shown in Table 3-2. Both

NRMSE and correlation coefficient results show that the proposed DAE method is
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superior to the other methods in estimating the gases, including C,Hg, CH4, and CO.
In the case of C;H,, DAE shows the lowest NRMSE, and the correlation coefficient
is the second highest. H, and C,H4 gases are concentrated at O ppm,; thus, it seems
that overfitting has occurred due to data imbalance. Although its performance is

somewhat poor for H and C,Hg, it has the best overall performance.

KNN has the lowest performance for more than three gases; it also takes ranks
lower for the other gases. This is because KNN is dependent on the nearest data.
Therefore, when there is an abrupt increase or decrease around the missing value,
which is common in DGA data due to the long intervals between samplings, KNN
shows low accuracy. This phenomenon is dominant, especially for gases that are
rarely generated, such as H», and C;H,. These gases require high enthalpy to be
generated; thus, in most cases they are absent. However, when the requirements are
met, they are generated, which is regarded as an abrupt appearance in the KNN

model.

XGBoost, light GBM, and random forest are based on the decision tree. Tree-
based methods learn criterion that separate the data into groups with similar
properties. The criterion is represented as the branch of the tree, and the more the
branch is subdivided, the more elaborate the model obtained. However, with DGA
data, the decision tree methods have difficulty subdividing the criterion, because
most of the DGA data is close to 0 ppm. However, these tree-based algorithms show
generally better results than KNN, because the finely divided models are merged by
ensemble learning and avoid the overfitting. The tree-based ensemble models
performed generally better than DAE for H, and C,Hs because of these overfitting

prevention characteristics. In particular, RF is not overfitted more than the other
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algorithms, because it uses a bagging method. However, when the distribution is
relatively evenly spread, the performance of DAE is better; this is confirmed for the

rest of the four gases.
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Table 3-2 Imputation performance comparison for a single missing value

Metric Methods H» C:H» C2H,4 CsHs CH.4 CO
DAE 0.532 0.39 0.302 0.165 0.187 0.213
XGB 0.506 0.525 0.313 0.270 0.372 0.317
NRMSE LGB 0.479 0.425 0.262 0.202 0.272 0.222
RF 0.459 0.425 0.241 0.202 0.204 0.255
KNN 0.591 0.579 0.275 0.279 0.330 0.226
DAE 0.807 0.904 0.934 0.981 0.974 0.907
XGB 0.818 0.855 0.944 0.952 0.913 0.820
Sgggjfg? LGB 0.824 0.881 0.957 0.974 0.947 0.900
RF 0.834 0.907 0.961 0.974 0.969 0.883
KNN 0.730 0.770 0.945 0.951 0.927 0.899
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3.4.3 Performance of Imputation for Multiple Missing Values

Here, the performance results of IDAE are compared as the number of missing
values increases from one to four. 80 samples are generated for each possible
combination. For example, there are 12 possible combinations for two missing
values, so 960 samples are generated. In this way, a total of 2,480 samples are

prepared.

All missing samples were imputed by applying the proposed IDAE. In Table 3-
3, the NRMSE and correlation coefficient between the imputed value and the actual
value are summarized. As the number of missing values increases, the performance
gradually decreases. This is a natural result, because errors in the single gas

imputation model accumulate as the missing values increase.

Comparing the performance decline levels when there is one missing value and
four missing values, the NRMSE increased by 0.096 and the correlation coefficient
decreased by 0.04. As the number of missing values increases, the NRMSE increases
by 0.032 and the correlation coefficient decreased by 0.013, on average. This means
that as missing values are added one by one, the performance declines about 3.2%
for NRMSE and 1.3% for the correlation coefficient approach. This seems to be very
stable because the performance reduction rate according to the number of missing

values is very small.
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Table 3-3 Imputation performance of IDAE according to the number of missed

DGA values
Number of missing values 1 2 3 4
NRMSE 0.289 0.313 0.330 0.385
Correlation coefficient 0.919 0.904 0.894 0.879

3.4.4 Performance of Diagnostic Model with Recovered Data

Original and recovered data are used to construct the diagnosis models, and the
diagnostic performances are compared. For diagnostic models, two models, IEEE
Std. C57.104-2008 and semi-supervised autoencoder (SSAE) model which will be
introduced in Chapter 4, are used. IEEE Std. C57.104-2008 is the standard rule-based
diagnostic method and is widely used. The model accepts H», CoH,, C:Ha, C2Hs, CHa,
CO, CO,, and TDCG gases as input and gives the health status of the transformer

with four severity levels.

For quantitative analysis of the diagnostic performance, the recall metric is used.
The recall metric is defined as the ratio of the true positive to the sum of the true

positive and false negatives, as shown in Eq. (12).

TP
TP+FN (12)

Recall =

where TP and FN stand for the true positive and the false negative, which
indicate correct and incorrect estimation on the faulty state, respectively. A value
close to 1 indicates better performance in recall. Although there are other metrics,
recall is considered a suitable metric for a diagnosis model because in diagnosis,
knowing the faulty state correctly is more important, even at the expense of false

alarm.
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Table 3-4 shows the recall scores of the IEEE and SSAE models. The same
dataset as in the previous section is used. In both the IEEE and SSAE models, the
performance is improved after data imputation. In particular, the results of the SSAE
model are significantly improved after imputation. The SSAE model examines the
concentration and composition ratio of all gases together. On the other hand, in the
IEEE model, a limit is set for each gas to evaluate the health grade. This limit is
judged as the most serious result among them. Therefore, as the number of missing
values increases, the SSAE model is more likely than the IEEE model to determine

the condition to be normal.

Figure 3-4 shows the true data, missing data, and imputed data in the feature
space of SSAE. The imputed data is located near the true data around the faulty area;
however, the data with missing values departs from it. Also, as the number of missing
values increases, the imputed data maintains the data in the faulty area with a slight
drift from the true data, but the missed data is greatly affected. As a result, the

imputed data is robust to false alarms.

Table 3-4 Recalls of the IEEE and SSAE models before and after imputation

Model  Imputation N=1 N=2 N=3 N=4
No 0.852 0.770 0.714 0.671
IEEE ————
Yes 0.985 0.927 0.937 0.893
No 0.359 0.130 0.018 0
SSAE ——
Yes 0.829 0.794 0.828 0.692
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3.5 Summary and Discussion

In this study, we proposed a new methodology that imputes multiple missing
values of DGA through DAE-based iterative imputation. The proposed methodology
proceeds via three main steps: 1) preprocessing DGA data, 2) learning the DAE
imputation model for a single missing value, and 3) iterative imputation of multiple
missing values using the DAE model. The model is validated through three case

studies that examined a vast amount of real industrial data.

The first study compares the imputation performance for six types of single
gases, using conventional algorithms. The DAE model had the best imputation
performance for overall gases, so it was adopted as a core imputer in the iterative
imputation process. The second study tested the performance of the proposed
methodology for imputing multiple missing values. The number of missing values
was increased from one to four, and we tested the imputation performance according
to the number of missing values. The performance gradually decreased as the number
of missing values increased. This is an expected result because the number of
unknown variables to be estimated increases. The third study confirmed the
difference in diagnostic performance before and after imputation based on existing
diagnosis methods for power transformers. The diagnostic methods used in the study
are rule-based IEEE Std. C57.104-2008 and an artificial intelligence-based SSAE

model. Both methods significantly improved diagnostic accuracy after correction.

Most oil-immersed transformers are managed through DGA. Much research has
been conducted to develop accurate diagnosis models; however, prior work has not

thoroughly examined the importance of the integrity of the data used in the diagnosis.
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In particular, DGA data has a long measurement cycle and a small number of data;
thus, each data point is meaningful. Therefore, the methodology proposed in this
study is expected to further improve the performance of the diagnosis model and
greatly reduce post-mortem maintenance that is required when a wrong diagnosis is

provided due to missing data.

In addition, the proposed method has the advantage of being applicable
regardless of the data domain to the missing data problem. Traditional imputation
algorithms are specialized in single missing problems occurring from time series or
sequence-based data or multi missing problems occurring from the data consisting
of various variables. However, the method developed in this study can solve both
problems at the same time. Various missing values can be imputed for time series
data composed of various variables, and it has originality in that it is a method that

has not been attempted before.

Due to the limitations of the offline DGA method, attempts have recently been
made in industry to gradually convert to an online DGA method. Online methods
have the advantage of higher sampling frequency and lower probability of missing
data. However, due to the physical limitations of the measurement method, the data
accuracy is lower than that of the offline gas chromatography method. In future

studies, research for increasing the accuracy of online DGA data will be conducted.

Sections of this chapter have been submitted as the following journal articles:

1) Boseong Seo, Jackyung Shin, Taejin Kim, and Byeng D. Youn, “Missing Data
Imputation Using an Iterative Denoising Autoencoder (IDAE) for Dissolved Gas
Analysis,” Electric Power Systems Research, Submitted, 2022.
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Chapter 4

Health Feature Extraction via

Semi-Supervised Autoencoder
(SSAE)

In this chapter, the new health features are developed for diagnosis of power
transformers using semi-supervised autoencoder (SSAE). The limitation of the
existing standard rules is that the false alarm rate is high because it does not consider
the composition cost or combination between gases, but simply considers the gas
concentration level. Further detailed diagnosis is difficult because the condition of
the transformer is classified into several severities. Because the decomposition
reaction of insulation is very complex, it is difficult to build a physical model. Thus,
we would like to extract a monotonic health index that enables more accurate and
detailed diagnosis based on deep learning. Subchapter 4.1 explains the theoretical
background of autoencoder and softmax classifier, which compose the SSAE model.
Subchapter 4.2 proposes the new diagnosis methodology consisting of two steps: 1)
data preprocessing, and 2) construction of health feature space (HFS) through SSAE.
Subchapter 4.3 evaluates the diagnostic performance of the proposed method
comparing with conventional diagnostic methods. At the conclusion, Subchapter 4.4

provides the summary and discussions of this study.
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4.1 Backgrounds of SSAE

The main purpose of this study is to extract key features representing the health
status of the transformers from DGA data. Semi-supervised autoencoder (SSAE) has
excellent performance in learning features that are highly correlated with both input
data and labeled data. We use the SSAE method because it is the most suitable
method for the research purpose. The SSAE proposed in this study consists of a
combination of autoencoder (AE), one of the unsupervised learning techniques for
extracting important features by reducing the dimension of data, and softmax
classifier (SC), one of the supervised learning techniques for classifying the labeled
data. Therefore, the corresponding subchapter briefly introduces the theory of

autoencoder and softmax classifier that make up the SSAE model.

4.1.1 Autoencoder: Unsupervised Learning for Feature Extraction

AE is the most representative method of unsupervised learning and has
excellent performance in dimension reduction and feature extraction of high-
dimensional data [50]. The structure of the autoencoder is divided into an encoder
part and a decoder part consisting of a hidden layer as shown in Figure 4-1. Encoder
acts as a manifolding learning that performs dimension reduction, and decoder acts

as a generative model learning that performs data restoration [51].

For a given learning data x = {x1,x2,..,x5} (Xk € Rd), the encoder function
fo reduces the dimension to R% — R (d > d") through the model parameter
0 = {W,b} (W:d X d' dimensional weight matrix and b:d’' dimensional bias

vector) and the activation function s, as shown in Eq. (1). There are many types of
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activation functions, and commonly used functions include sigmoid, modified linear
unit (ReLU), and exponent linear unit (ELU), as shown in Table 4-1. Conversely,
the decoder function g, reconstructs the dimensionally reduced feature h =
{h!, ..,h*} (h* € R?) to & ={&},%2,...,%"} (ﬁk € Rd) through Eq. (2). The
feature h extracted through the optimization process of 0 is called the latent value,

and this feature implicitly represents the main characteristics of the input data.

fo(x¥) = b = s(TL, Wyx[ + b)) (13)
gor (W) = 2 = (X9, Wi, k¥ + b)) (14)

AE learns O to minimize loss function L(X,X). Loss function L(X,X) is
represented by a mean square error (MSE) of the input (original data) and output
(reconstructed data), as shown in Eq. (15), and updates @ through a gradient
descent-based back-propagation method [44]. Update equation of 0 is described in
Eq. (16), and 1 means the learning rate, the hyperparameter that optimizes the step

size at each iteration.

. 2 . .
LxR) = 2 [lxi =& =230 X - go o xDI”  (15)
001 =6,—1 6L;z'§) (16)
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°, Encoder Decoder Q
Input: ° ° Output:
Original Reconstructed
data data
° Latent value °
Figure 4-1 The structure of autoencoder
Table 4-1 The typical activation functions of autoencoder
Type Sigmoid ReLU ELU
. 1 x x=0
Equation 1T o= max (0, x) {a(e" —1) x<0

4.1.2 Softmax Classifier: Supervised Learning for Classification

SC is one of the widely used methods for multinomial classification problems.
The softmax function is an activation function originally used to predict the
probability distribution for discrete variable with # possible values. Therefore, when
the softmax function is used as the output unit of the neural network, the output of
the neural network is the probability classified into a specific class. The standard
softmax function o: R™ — (0,1)™ (n > 1) is defined by Eq. (17). It normalizes the
exponential of each input element z; by dividing by the sum of all these
exponentials. Through the normalization, the sum of all components of the output

vector g(z) is 1.

_ _exp(z)
0@ = g (7
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Assuming that there are input data x = {x*,x?,...,x*} (x* € R?) and output
data 'y = (y4,¥5,...,V,) consisting of n discrete labels, let’s calculate the
probability )7} that the given input x’ belongs to a particular output yj using the
softmax function in Eq. (17). 37} can be calculated as Eq. (18).

i , . , zH
9 =Py =ylx") = o(z'), = %

(18)

When the softmax function is used as the output unit of the natural network, z*

is defined as follows:
z! = WELh! + bi, (19)

where, W{. is the weight matrix of SC and b is the bias vector of SC, and h'

is the output vector of the preliminary hidden layer.

If the loss function of the SC model is applied in the same way as the loss
function of the linear model, the MSE function, it is expressed in a bumpy form,
since the softmax function has the normalized form of the exponential function.
Therefore, it is difficult to find the minimum value of loss function by the gradient-
descent method. To solve this problem, the log function is used as a loss function of
the SC model, and a representative method is the cross-entropy (CE) method. The
loss function with CE is presented as Eq. (20), and the exponential function is
linearized by taking log to the predicted value of SC. Mathematically, CE means the
uncertainty of the difference in similarity between the two probability distributions

(in this case, the distribution of actual labeled data y' and predicted data §?).

Lee(yh9') = — XL yilog (99 = — X, y'log (a(z})) (20)
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4.2 SSAE-based Health Feature Extraction

This subchapter describes the process of extracting the health feature for
diagnosing and predicting the status of transformers. The process of health feature
extraction consists of 2 steps: 1) data preprocessing for SSAE model training, and 2)
construction of health feature space using SSAE. In the data processing step, DGA
data is normalized to log scale. Then, SSAE model is trained for health feature
extraction. The SSAE model has a structure in which the softmax function is

implanted into the output layer inside the autoencoder.

4.2.1 Data Preprocessing

In this study, we use the concentration and the composition ratio of the main
six gases, Ha, C;H», CoHa, CoHg, CHa, and CO, as the input of SSAE model. The
enthalpy in which the gas is decomposed varies from gas to gas. Therefore, the
amount of gas produced varies greatly depending on the gas as shown in Figure 4-2.
Figure 4-2 is an excerpt from the study of S. Bustamante et al. [52], and shows the
histogram distribution of DGA data and the positions of 90th and 95th percentiles.
For example, CO occurs in thousands to tens of thousands of ppm, while C,H, is
only a few ppm. If the difference in the scale of the gas concentration is hundreds
of times or more, it is highly likely that the model will be trained to overfit to a gas
with high concentration. Therefore, it is necessary to uniformly normalize each gas
concentration from 0 to 1. In this study, DGA data is normalized to a logarithmic
scale by Eq. (21). The log-scale DGA data might help to avoid the overfitting on the

numerical operations.
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Xma

" log(Xmax)-10g (Xmin)  log (21aX)
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(21)

where, x is the original DGA data and x is the log-scale normalized DGA data.
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Figure 4-2 Distribution of gas concentrations and positions of 90th and 95th
percentiles

4.2.2 Construction of Health Feature Space (HFS) via SSAE

The purpose of this study is to extract features that are highly correlated with

the degradation of the transformer from the DGA data. In machine learning, feature

extraction refers to a process that analyzes the main components of high-dimensional

data and converts them into low-dimensional data. The process of extracting major

features from data is to select the most influential features among the various features

of the data. Therefore, if a feature is extracted by general methods, there is a

possibility that the feature does not include information on the health status of the
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transformer. In this study, we developed SSAE method to solve this problem. As
illustrated in Figure 4-3, the proposed SSAE has a neural network structure that
combine the unsupervised learning, AE, and the supervised classification algorithm,
SC, sharing the hidden layers. By sharing hidden layers, it has the advantage of being

able to perform feature extraction and health status learning at the same time.

If a feature is extracted by using only the autoencoder, there is a possibility that
the feature does not include information on the health status of the transformer.
Therefore, in this study, we tried to extract features including health information by
applying SSAE to simultaneously train the labeled data for normal and failure. As
illustrated in Figure 4-3, the SSAE used in this study has a structure in which the
unsupervised learning, AE, and the supervised classification algorithm, SC, share

the encoder layer.

For the given training data (x,y) = {(x},y}), (x%,y?),.., (x*,y*)} (x*:
dissolved gas concentration and ratio data, y*: status labeled data, x¥,y* € R%),
the loss function of the proposed SSAE model is described in Eq. (22). It is a
combination of the loss function of AE (Eq. (15)) and SC (Eq. (20)) which are
introduced in Subchapter 4.1.

Lssap(8°",09,0°) = aLap(6°",89°) + (1 — a)Lsc(8°", 8%°)

1

i F 02 . .
= ~SE X = x| == 2k, y'log(y") (22)

= 21X = ggae (Foen (x| = 2, yilog(agsc (foen (x7))

where «a is the hyperparameter to control the weight between Lpg and Lgc. SSAE
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optimizes the encoder layer parameters 0", decoder parameter 09€, and softmax
parameter 0°¢ so that softmax can extract a latent value that can distinguish

between normal and failure of a transformer.

As can be seen in Table 4-2, the SSAE used in this study consists of one input
layer, three hidden encoder layers, two hidden decoder layers, one autoencoder
output layer, and one softmax output layer. ELU is used for unsupervised learning
as an activation function, and softmax is used for supervised learning. It is expected
that the implicit health features are extracted from shared hidden layers. It is intended
to visualize the degradation behavior of the transformer in a 2D space so that it could
be intuitively well understood. Therefore, we set the end of the shared hidden layer

to have two nodes.

Figure 4-4 shows the health feature space (HFS) reflecting the characteristics
of the health feature that deteriorates monotonically. The blue dot and the red dot
mean normal and fault respectively, and the decision boundary between normal and
fault can be obtained through clustering techniques. HFS can be interpreted that as

the degradation of the transformer progresses, the feature moves to the lower right.
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Table 4-2 Parameters in the proposed SSAE

Layer [}?;[111\23)? Number of Nodes E;?rﬁgeﬁ
Input - 12 -
Encoder 1 ELU 8 104
Encoder 2 ELU 4 36
Encoder 3 ELU 2 10
Decoder 1 ELU 4 12
Decoder 2 ELU 8 40
Output 1 ELU 12 108
Output 2 Softmax 2 6
DGA

@ Normal

O Fault

HF2

HF1

HF2

HF2

DDDD
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D

®

Figure 4-4 Visualization of the health feature behavior in HFS

4.3 Performance Evaluation of SSAE

The SSAE is the Al-based diagnostic model that can classify the normal and
fault states of a power transformer by extracting health features that represent the

deterioration of the insulation. The SSAE model can visualize the degree of the
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degradation, so the effectiveness of the recovered data can be inspected visually. The
transformer data in the feature space of the SSAE model is shown in Figure 4-5. It
shows the decision boundary between the normal (sky blue) and the fault area (red).
When the transformer degrades, the data in the feature space moves toward the red
areca. The sample degradation data over time is summarized in Table 4-3 and

designated in Figure 4-5.

To evaluate the performance of the proposed SSAE model, we compared the
diagnosis accuracy of SSAE with that of conventional methods, IEEE and IEC. In
Section 4.3.1, dataset used for test is described. And evaluation metrics and

experimental results are covered in Section 4.3.2.
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Figure 4-5 Degradation of DGA data in HFS
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Table 4-3 Sample DGA data reflecting degradation over time

No.  Acquisition date H; CH, GCHs  CHs CH4 CO

1 20071214 0 0 0 0 4 224
2 20081202 2.8 0 12.3 1.2 6.1 1024
3 20101201 6 0 20 1 7 1416
4 20111121 10 0 17 2 10 1302
5 20121115 7 0 16 4 13 1108
6 20131127 0 19 7 21 1453

4.3.1 Description of Dataset
We had a total of 141,690 data including 141,573 data provided from KEPCO

and 117 IEC TC data, which are public data. Of these, a total of 131,503 data are
used for the test after removing all missing data or duplicated data. However, there
are several difficulties in using these data as it is. First, there are more than 20,000
unlabeled data, accounting for more than 17% of the total data. Second, the data
imbalance problem between normal and failure data is severe. In fact, among the
KEPCO data, 121 cases of data marked as failure are very small, but when we
checked even this, there were cases where the gas concentration is as low as normal,
so the reliability of the handwritten data is low. Finally, the criteria for failure are
not clear. Since there is no data recording maintenance action after the failure
determination, it is difficult to determine the severity of failure. For example, after
determining the failure, it is possible to replace the insulating oil or the internal parts,
or entire transformer, but there is no such information. Therefore, we newly
established failure criteria and reorganized datasets based on maintenance reports

and domain knowledge of substation diagnosis experts.
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The criteria for newly defined failure data are as follows:

1) Failure data determined by the detailed inspection in the maintenance report

2) Data with higher numerical values than concentrations of all five gases (Ho,

C>H,, C;Hy4, CoHs, and CHy) of failure data in the maintenance report

3) Data with C,H> concentration higher than 1 ppm

4) Data with top 50 concentrations of four gases (Hz, CoHs, C:Hs, CHs) and
total combustible gases (TCG)

The number of normal and failure data newly reorganized is 126,664 and 4,839,
respectively. By establishing a new failure criterion, it is possible to solve the data
imbalance problem to some extent by retaining more failure data and assign the
labeling information to non-labeled data. Table 4-4 is an example of DGA data
actually used for the test, and as you can see, the concentration and ratio of six gases
are used as input of the model, and normal and fault label information is used as

output.

Table 4-4 Example of DGA data samples for experiment

Input Output
Sample
H, CoH; CoH4 C>Hs CH,4 CO Status
1 22 0 99 136 122 200 Normal
2 181 0 23 27 67 83 Normal
3 58 3 54 51 54 927 Fault
4 3 0 29 193 121 311 Normal
5 76 7 25 42 31 43 Fault
6 113 13 603 144 237 249 Fault
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4.3.2 Diagnosis Accuracy of SSAE for Power Transformers

To evaluate the diagnostic accuracy of the proposed SSAE model, two
conventional diagnostic models, IEEE Std. C57.104 and IEC 60599, are used for
comparative study. And the following four evaluation metrics are used for
quantitative performance evaluation: positive predictive rate (PPV), true positive
rate (TPR), true negative rate (TNR), and F1 score. These are mainly used to verify
the performance of the classification model. In particular, it is possible to objectively
evaluate the model performance for the imbalanced data. PPV refers to the actual
positive rate to predicted positive by the model, TPR refers to the predicted positive
rate to the actual positive, TNR refers to the predicted negative rate to the actual
negative, and F1 score is the weighted average of PPV and TPR. It is closer to 1 as
the model performs better. These evaluation metrics are obtained from confusion
matrix. Table 4-5 is the confusion matrix of the model, and the evaluation metrics

can be mathematically expressed as follows:

TP

PPV = TP+FP (21)
TPR = TP’I;-PFN (22)
TNR = TI\’IT-II-\IFP (23)
pi = g @
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Table 4-5 Confusion matrix for model evaluation

Actual value
Normal Fault
Predicted Normal N FN
value Fault FP TP

Figure 4-6 represents the confusion matrices of the SSAE, IEEE and IEC
models. And four evaluation metrics, PPV, TPR, TNR, and F1, are summarized in
Table 4-6. The noticeable difference between SSAE and other models is that PPV is
about three to six times higher than other models. That is, the SSAE model has the
lowest false alarm rate. In addition, SSAE also shows the best results in TNR and F1

SCOres.

In the training process, the SSAE model calculates the weight for each gas,
representing the correlation between the gas and the status. Then, SSAE
comprehensively diagnoses the transformer status based on the gas concentration,
gas composition ratio, and gas weight. However, conventional diagnostic methods
determine the worst grade based on the thresholds of each gas. So, it is difficult to
consider the overall composition ratio and weight. Consequentially, the diagnosis
accuracy is highest, and the false alarm rate is lowest in SSAE. In the case of TPR,
IEC was 0.035 higher than SSAE because IEC has a greater tendency to determine
as failure. Therefore, it is important to evaluate the diagnostic performance using

various metrics together, not just TPR.
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Figure 4-6 Confusion matrices of SSAE and conventional methods, IEEE and IEC

Table 4-6 Health diagnosis performance of SSAE and conventional methods, IEEE

and IEC
Model PPV TPR TNR F1
SSAE 0.3800 0.5195 0.9676 0.4389
IEEE 0.1073 0.4085 0.8702 0.1700
1EC 0.0606 0.5542 0.6717 0.1092

4.4 Summary and Discussion

In this study, we proposed a new methodology that extracts the health features
for power transformers using DGA data. The proposed methodology proceeds via
two main steps: 1) data normalization to log-scale, 2) learning the semi-supervised
autoencoder (SSAE) model for health feature extraction. SSAE can construct the
health feature space that visualizes the monotonic behavior of health degradation.
Thanks to the monotonous behavior of the health feature, workers can understand

the health status of the transformer intuitively.

The model is validated through a comparative study that compared the
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diagnostic performance of SSAE with conventional methods. Confusion matrix
(PPV, TPR, and TNR) and F1 score are used as the performance evaluation index.
The performance of the SSAE model is superior in most evaluation indices.
Especially, the SSAE model can reduce the false alarm rate compared to other
methods. In real industrial sites, frequent false alarms increase worker’s fatigue and
lose the confidence in the solution. The proposed SSAE helps workers perform

active maintenance by accurately diagnosing the status of the power transformers.

The existing semi-supervised learning method solves the problem by
additionally performing supervised learning to a pre-trained model through
unsupervised learning. However, the method had a limitation that the pre-trained
unsupervised model cannot extract the degradation features of the transformer. This
is because the dissolved gasses are generated by various reasons including
degradation of the transformer. Therefore, the model structure of proposed method
was changed in such a way that unsupervised and supervised learning are not
sequentially learned but simultaneously learned. In this way, the health features can
be extracted effectively. An originality of the proposed methodology is that it can be

applied to feature extraction with specific purposes regardless of the data domain.

Dissolved gases in insulating oil may be generated due to various causes, SO
there is a limitation in diagnosis accuracy of transformer using only DGA data. A
further study is needed under the theme of developing a physical model for
estimating the amount of dissolved gas generated by thermal decomposition of
insulation. It is possible to develop a physical model for reaction enthalpy of
insulation thermolysis and thermal and electrical energy required for thermolysis by

using DGA, temperature and partial discharge data. If the estimated gas
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concentrations and energy obtained from the physical model are additionally used as
features of the training model, it will be able to construct a more accurate diagnostic

model.
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Chapter 5

Health Prognosis Model via
XGBoost Regression

In this chapter, XGBoost regression-based health prognostic method is
proposed to predict the health status and remaining useful life of power transformers.
DGA-based diagnosis or detailed inspection of transformers are not frequently
performed. Thus, safety accidents caused by faulty transformers often occur
unexpectedly. To prevent this, interest in preventive maintenance of transformers
has recently emerged. Subchapter 5.1 introduces the theoretical background of
XGBoost, the basis of this study. Subchapter 5.2 proposes the new prognosis
methodology consisting of two steps: 1) calculation of health index, and 2)
construction of XGBoost model for health prognosis. Subchapter 5.3 describes the
results of two case studies: 1) a comparison with other machine learning algorithms
on prognostic performance, and 2) examination of prognostic performance according
to the prediction period. At the conclusion, Subchapter 5.4 provides the summary

and discussions of this study.
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5.1 Backgrounds of XGBoost

T.Chen and C.Guestrin introduced XGBoost in 2016 for the first time, which is
a scalable machine learning method for tree boosting system [47]. XGBoost is one
of the ensemble techniques that uses a combination of weak decision trees, which
weights the errors of weak prediction models and sequentially reflects them in the
next learning model to create a strong prediction model. We will explain

mathematically below how XGBoost learns data.

For a given data set with n X m (n samples, m features) dimensions, D =
{x;,y)} (D] =n,x; € R™,y; € R), a tree ensemble model using K additive

functions is expressed as Eq. (23)
Vi=dx) =Yk-1fix), fu €F (23)

where, F = {f(X) = wgx} (¢:R" > T,w € RT) is the space of regression trees.
q is a function that maps a sample to the corresponding leaf index, and w is a leaf
weight. T is the number of leaves. XGBoost uses a regularized loss function, Eq.

(24), to train the trees.

L($) = TilGuy) + 2 Qfi), Qfi) =T +5AlIwI2 - (24)

where, [ is a differentiable convex function which calculates the difference between
prediction ¥; andtrue y;. And there is a regularization term (). This serves to learn
that the structure of the model is simple and prevents overfitting. In order to find the
best tree from the tree model and loss function, XGBoost adopts an additive manner
that increases one branch in the tree for each iteration. The equation below is the loss

function in the #-th iteration.
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LO =371 (Yi'yi(t_l) + ff(xi)) +Q(f) +C (25)

Gradient boosting is a method of weighting the parts that were not well learned
in the previous iteration in the procedure of ensemble learning. Intuitively
interpreting the Eq. (25), the loss function is minimized by adding the current
prediction f;(x;) to the previous prediction )7i(t_1). So, this explains that XGBoost
is the one of Gradient Boosting methods and why is the name extreme gradient

boosting (XGBoost).

To optimize the loss function, Eq. (25) can be approximated to Eq. (26) by

second-order approximation with Taylor expansion.
All— ! 1 124
LO =3 1 9870) + UL + LRI+ Q) (26)

r_ 0 ~(t-1) "no_ 0 ~(t—1) .
where, [; = W i3, ) and [; = W (i3 ), which are first and
second order gradient of the loss function. Removing constant term, Eq. (27)
becomes the final objective function in #-th iteration. As a result, since the objective
function depends on I; and [, we can optimize XGBoost by entering the first and

second derivatives of loss function /.
T 14 1 n
IO = FL [ Lfe(x) + U fExD] + Q) (27)

The goal of XGBoost is to find split points that allow the loss function to be
reduced as much as possible. XGBoost can find the split points quickly by using

approximate algorithm.

As a result, the advantages of XGBoost over other tree boosting algorithms are

as follows: 1) fast execution time through parallelism, 2) overfitting regularization,
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and 3) excellent predictive performance in classification and regression problems.
Therefore, we want to build a health prediction model for power transformers using

XGBoost.

5.2 XGBoost Regression Model for Health Prognosis

This Subchapter introduces the process of constructing a health prediction
model for power transformers based on XGBoost regression. A regression model is
created by learning the trend of the health index calculated from the HFS in Chapter
4. If the health indices at the past four points are given, it is possible to predict the
health index at any future time with this regression model. The process of building a
model consists of two main components: 1) health index calculation via orthogonal
projection in HFS and 2) XGBoost training. Sections 5.2.1 and 5.2.2 will cover each

process in detail.

5.2.1 Health Index Calculation via Orthogonal Projection (OP)

The health index has two significances: 1) quantification of the health status of
the transformer and 2) application as a prognosis feature. Since the existing IEEE or
IEC diagnostic methods determined the health status of the transformer by dividing
it into several grades, it is difficult to distinguish the status if it is determined to be
the same grade, even though the degree of degradation is different. Therefore,
intuitive and detailed diagnosis is possible by numerically expressing the state of the
transformer. In addition, the digitized health index can be utilized as input to the

health prediction model of the transformer. If the health index has monotonous
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behavior, the future status can be predicted by learning the historical trend of the
health index. Therefore, we attempted to calculate the index from the health feature
having the monotonous behavior. We suggest applying the concept of orthogonal

projection (OP) to calculate the health index.

The proposed process of deriving a health index is described in Figure 5-1. It
consists of three steps: 1) finding a linear decision boundary to distinguish between
normal and failure using support vector machine (SVM), 2) finding a straight line
perpendicular to the decision boundary, and 3) using the x-coordinate value of the
axis-rotated coordinate system as the health index. In the process of obtaining the
decision boundary, the decision boundary is assumed to be linear because it is
actually nonlinear but almost linear. And during axis rotation, the rotation angle 6

is the angle between the orthogonal line and the x-axis.

Although there are many different ways dimension reduction, the OP is
proposed because it is the most effective way to prevent the reversal of the health
index near the boundary between normal and failure. Here, the reversal of the health
index means that the health index of a transformer in a relatively poor status is

calculated as if it is in a better status.
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Figure 5-1 Process of deriving a health index in HFS: (a) finding a linear decision boundary using SVM, (b) finding a
orthogonal line to the boundary, and (c) health index calculation through axis rotation by 6
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5.2.2 Model Training based on XGBoost Regression
(1) Health Index Mapping

Prior to the point, note that this study aims to develop technologies that can be
applied in real industrial sites. Therefore, we tried to express the health index in the
range [0, 1] for an intuitive understanding. The health index developed in Subchapter
4 has a range of [-o0, ], where (-15, 0) is the degradation area. The degradation area
is a status in which the transformer can be operated normally, and when the health
index exceeds 0, a defect occurs, and repair or replacement is required. An area
below -15 means an absolutely normal status. Therefore, the health index is
proportionally mapped as shown in the Figure 5-2. The health index is designed to

decrease from 1 to 0 as degradation progresses.
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Figure 5-2 Health index mapping for intuitive understanding of degradation
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(2) Definition of Input and Output Data

Based on the IEEE recommendations in Figure 5-3, it is recommended that the
DGA sampling interval be taken differently depending on the condition of the
transformer. Typically, DGA is measured on a daily interval for short and on a yearly
interval for long. This irregularity in the data acquisition interval makes it difficult
to predict the status of the transformer. Therefore, the goal of this study is to create
a predictive model, robust to data sampling interval. To achieve the goal, we tried to
define the proper input and output to learn the health trend of transformers. We
defined the input and output as shown in Figure 5-4. The health index (HIo, HI;, HI,
HIs) at the past four times, the measurement interval (T;-To, T>-Ti, T3-T2), and the
prediction interval (T,-T3) are set as inputs, and the health index (HI,) at the
prediction time is set as output. By defining in this way, the health of the transformer
and time series information can be learned together. If the historical data and the
prediction period are inputted, a future health index may be obtained. Four
measurement data are used in consideration of the DGA data acquisition
environment in real industrial sites. In order to adjust the scale of input data, the
measurement interval and the prediction interval are also normalized by total four

measurement periods.
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Figure 5-3 Definition of input and output for XGBoost learning
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(3) XGBoost Design for Health Index Prediction

As shown in Figure 5-5, the XGBoost used in this study predicts the output as
the sum of the results of all tree models for a given input data Xx; =
{Xi1, Xi2, Xi3, Xia, Xi5, Xi6, Xi7, Xig} and output data y;. In this case, the model is
learned to minimize the residual of the previous tree, and if the residual is no longer
reduced, the tree is not generated. As explained in Subchapter 5.1, the structure of
the tree is determined by pruning until the loss function is minimized. In other words,
branches are created until the loss of the child branch exceeds the loss of the parent

branch.

In this study, the XGBoost library provided by Python was used, and it was
applied for regression analysis to solve the problem of predicting future health index.
There are various hyperparameters in XGBoost: 1) general parameters for adjusting
booster structure and computing power, 2) booster parameters for tree optimization
and regularization, and 3) task parameters for setting objective functions and
evaluation metrics. In this study, the main parameters were set as described in Table
5-1. The booster structure was set to 'gbtree' for tree-based learning, and the objective
function and evaluation metric were set to 'reg:squarederror' and 'rmse', respectively,
according to the purpose of regression analysis. XGBoost also has several tricks to
prevent model overfitting, such as learning rate 7 that can control the influence of
each tree model and regularization term y and A in Eq. (24). The optimal value of
n was derived through parameter study. For y and A, since the scale of the input
data is normalized between 0 and 1, the default of 1 was used as it is. Finally, you
can limit the maximum number of trees. Even if the maximum number is not reached,

learning is interrupted if the error is no longer improved. Since the number of trees
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is correlated with 71, the optimal combination was found through parameter study.

Table 5-1 Parameters in the proposed XGBoost

Parameter Value
Booster Gbtree
Objective function Linear regressor (reg:squarederror)
Evaluation metric Root mean squared error (rmse)
Learning rate (n) 0.1
Regularization 1 (y) 1
Regularization 2 (1) 1
# of estimators 10000
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5.3 Performance Evaluation of XGBoost Regression

The proposed XGBoost-based prognosis model was verified by testing the
actual industrial data provided by KEPCO. Two comparative studies were conducted.
The first study compared the performance with the proposed algorithm and other tree
structure algorithms, light GBM and random forest, and DNN which is based on the
neural network. In this study, a parameter study was also performed simultaneously,
and performance was evaluated on the optimal parameters. The second study
compared the prognostic accuracy according to the prediction period. It was
confirmed how much the prediction performance declined for a total period of 5

years on a yearly basis.

5.3.1 Description of Dataset
This study was conducted using DGA data provided by KEPCO. These data

have been accumulated by operating more than 8,000 transformers in South Korea
for more than 30 years. The amount of historical DGA data is enough to make a
prediction model. A total of five historical data are required to learn the proposed
XGBoost model, so transformer data less than five times are excluded. For given
DGA data X = {xgn),xgn), ...,xgn)} of the n-th transformer, the dataset was
reconstructed as shown in Figure 5-6, to get as much data as possible. The total
number of reconstructed datasets is 495,196, of which 85% 1s used for model
learning and the remaining 15% is used for model validation. Then, features of input
and output as defined in Section 5.2.1 are calculated from DGA data, and are used

for model construction.
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Figure 5-6 Dataset configuration for XGBoost regression

5.3.2 Prognosis Accuracy of XGBoost for Power Transformers

In general, the maintenance work is planned differently according to the health

status of the transformer at the industrial site. Therefore, it is important to predict the

health status of the transformer several months in advance. In this work, we evaluate

the performance by focusing on how well the proposed XGBoost regression model

predicts the actual health status. Here, the health status is classified into four levels

based on the health index as shown in Table 5-2. The thresholds of health index by

levels are derived based on the cluster of data in HFS obtained in Chapter 4. Back to

the point, the accuracy calculation metric is defined as a ratio of the number of

correctly predicted samples and the total number of samples, as shown in Eq. (28).

The average accuracy is calculated through cross validation of seven folds.
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The number of correct prediction

Accuarcy = (28)

The total number of samples

Table 5-2 Range of health index according to health status

Health status Range of HI
Normal 0.5<HI <1
Warning 0.2<HI < 0.5
Critical O<HI < 0.2

Fault HI=0

(1) Case Study 1: Comparison of Prognosis Accuracy with Other Algorithms

This case study compares the prognosis accuracy of the proposed XGBoost with
other algorithms such as light GBM, random forest, and DNN. Light GBM and
random forest are ensemble learning methods based on decision tree structure, like
XGBoost. A typical gradient boosting method adopts a level-wise method that binary
division is performed for pruning to achieve balance. On the other hand, light GBM
adopts the leaf-wise method that pruning is carried out around less trained branches.
This saves both time and memory for learning compared to XGBoost. Unlike
XGBoost, random forest learns the model by adopting a bagging method. In the
Boosting method, the next tree is learned to minimize the error of the previous tree,
whereas in the bagging method, each tree is independent and has the same weight.
The performance is generally lower than that of XGBoost, but the learning process
is relatively simple. So, it is one of the most used algorithms. DNN is a neural
network-based learning method that consists of several hidden layers between input
and output layers. This is effective in modeling the nonlinear relationship between
features based on various activation functions. However, due to the chronic problem

of overfitting and high time complexity, care must be taken to find optimal activation
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functions and learning parameters.

The highest accuracy for each algorithm is compared through a parameter study,
and the results are summarized in Table 5-3. As can be seen in Table 5-3, the
accuracy of XGBoost is the highest at about 87.1%. The degradation pattern varies
greatly depending on the manufacturer, operating conditions, manufacturing year,
and data sampling interval of a transformer, so I think that the performance of

XGBoost, which is strong against overfitting problem, is the best.

Table 5-3 Comparison of prognosis accuracy (%) by training model and parameters

Model Learning The number of estimators (trees)
rate M) | 1000 2000 3000 5000 10000
0.05 81.957 83.118 83.912 84.999 86.406
0.1 83.068 84.502 85.384 86.283 87.090
XGBoost
0.2 84.420 85.815 86.449 86.944 87.088
0.3 84.967 86.122 86.534 86.853 86.854
0.05 81.207 82.304 83.130 84.272 85.799
Light 0.1 82.247 83.747 84.634 85.709 86.767
GBM 0.2 83.616 85015 85721 86491  86.991
0.3 84.149 85.473 86.047 86.589 86.880
Random
- 77.708 77.745 77.748 77.759 77.752
forest
77.328
DNN (Nlayers: input layer (1), hidden layers (3), output layer (1)
Layer depth: input layer (8), hidden layers (8), output layer (1)
Activation function: elu)
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Light GBM is ranked second by a slight difference. To compare the
performance of XGBoost and light GBM, case studies were additionally performed
by varying the number of datasets. Table 5-4 summarizes the results of comparing
the performance of XGBoost and light GBM according to the number of datasets.
The number of estimator and learning rate were set to 10000 and 0.1, respectively.
Table 5-4 shows that the smaller the number of datasets, the better the performance
of XGBoost than light GBM. This is because the leaf-wise tree growth learning
method of light GBM increases the likelihood of overfitting as the tree depth
increases when the number of data is small. As expected, random forest is much less
accurate than XGBoost. This is due to the limitations of the bagging method which
is relatively weak for model optimization. DNN also has a low performance due to
an overfitting problem. But also, it may be because the structure of DNN is simple

in this study.

Table 5-4 Comparison of prognosis accuracy between XGBoost and light GBM
according to the number of datasets

The number of datasets
100 200 300 400 500
Prognosis XGBoost | 70.00 7250 7400 7625  80.20
accuracy (%) | Light GBM | 53.00  63.50 7030 7525  79.60

(2) Case Study 2: Performance Comparison According to Prediction Period

According to KEPCO's transformer maintenance manual, a normal inspection
is conducted every three years and a detailed inspection is conducted every six years.
It is important to predict and prevent failures that occur during the inspection period
in advance. Therefore, the prognosis accuracies of XGBoost are compared as the

prediction period increases from one to five. The number of datasets used for each
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period is as follows: 1) 0~1 year: 3,855 sets, 2) 1~2 years: 4,694 sets, 3) 2~3 years:
4,024 sets, 4) 3~4 years: 3,398 sets, 5) 4~5 years: 3,015 sets.

The prognostic performances are described in Table 5-5. Prediction accuracy,
precision, and recall values are summarized for each prediction period, and the
overall average accuracy is emphasized in bold. As the predict period increases, the
performance gradually decreases. Comparing the performance between 0~1 year and
4~5 years, a performance decrease about 4.5%. This is a logical result, because the
longer the prediction period, the greater the uncertainty that affects the status of the
transformer. In addition, 80% of accuracy of 4~5 years is considered sufficient for

planning maintenance work in real industrial field.

In more detail, comparing the prognosis accuracy according to the health status,
the accuracy of the normal grade is the highest and the warning and critical grades
are relatively low. The range of health index in normal is the largest, and the range
of health index in the other grades become gradually smaller. Therefore, the
performance decreases further because the amount of learning data for warning or

critical grades is smaller.
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Table 5-5 Prognosis accuracy according to prediction period

Period lle)na;tah Performances
Normal / accuracy: 96.8131 / precision: 0.9681 / recall: 0.9644
0~1 Warning / accuracy: 82.1429 / precision: 0.8214 / recall: 0.7965
3,855 Critical / accuracy: 77.4141 / precision: 0.7741 / recall: 0.7870
year Fault / accuracy: 82.4351 / precision: 0.8244 / recall: 0.8568
total accuracy: 84.7013
Normal / accuracy: 96.9590 / precision: 0.9696 / recall: 0.9536
12 Warning / accuracy: 77.1505 / precision: 0.7715 / recall: 0.7746
4,024 Critical / accuracy: 76.6212 / precision: 0.7662 / recall: 0.7728
years Fault / accuracy: 84.0000 / precision: 0.8400 / recall: 0.9038
total accuracy: 83.0249
Normal / accuracy: 96.5031 / precision: 0.9650 / recall: 0.9448
23 Warning / accuracy: 76.7188 / precision: 0.7672 / recall: 0.7496
3,398 Critical / accuracy: 69.7674 / precision: 0.6977 / recall: 0.7544
years Fault / accuracy: 81.9249 / precision: 0.8192 / recall: 0.8410
total accuracy: 83.6827
Normal / accuracy: 95.0863 / precision: 0.9509 / recall: 0.9366
34 Warning / accuracy: 72.9021 / precision: 0.7290 / recall: 0.7303
3,015 Critical / accuracy: 72.6562 / precision: 0.7266 / recall: 0.7223
years Fault / accuracy: 80.2353 / precision: 0.8024 / recall: 0.8525
total accuracy: 81.2285
Normal / accuracy: 96.2420 / precision: 0.9624 / recall: 0.9595
425 Warning / accuracy: 78.0000 / precision: 0.7800 / recall: 0.7577
years 4,694 Critical / accuracy: 74.9216 / precision: 0.7492 / recall: 0.7399

Fault / accuracy: 82.9358 / precision: 0.8294 / recall: 0.8968
total accuracy: 80.2200

5.4 Summary and Discussion

Many studies have been conducted to diagnose the state of the transformer, but

few studies have been conducted for prediction. Therefore, we proposed a new

methodology that prognoses the health status of power transformers using DGA data

in this study. The proposed methodology proceeds via two main steps: 1) calculation
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of health index through orthogonal projection in the health feature space, and 2)
learning the XGBoost regression model using time series health index trend. The
model is validated through two case studies that examined a large amount of real

industrial data.

The first study compares the prognostic performance with other machine
learning algorithms, light GBM, random forest, and DNN. The predicted accuracy
of the proposed XGBoost was the best at about 87.1%. It is considered that the
proposed method is powerful for data overfitting compared to other algorithms. The
second study examines the performance variations over prediction period. The
performance gradually decreases as the prediction period increases. It is a reasonable
result because the longer the prediction period, the more factors affecting the status

of the transformer increase.

The proposed XGBoost-based prediction model has distinctive advantages as
follows: 1) It is robust to irregular sampling intervals, and 2) it can avoid data
overfitting by searching the optimal ensemble model from several random tree
models. The prognosis model guarantees at least 80% accuracy over a period of up
to 5 years. Therefore, we assured that the sudden safety accidents of transformers

can be prevented, and it helps the workers plan the maintenance work substantially.

This study has an originality in that it is the first study to succeed in prognosing
the status and RUL of the transformer by using a machine learning technique. Two
previous studies have been attempted, but the performance was very low with an
accuracy of 50% or less. However, the method developed in this study can predict

the status of the transformer with a high accuracy of 85% or more. The machine
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learning technique used in this study is XGBoost, which is generally used mainly for
classification or regression problems. Given the excellent performance of the
regression model of XGBoost, it was applied for the first time to prognose the
transformer status. There is also a contribution that can be universally applied to

prediction problems for time series data with irregular sampling rate.

However, there are limitations to further improvement of prognosis accuracy
due to outliers such as sudden increase in gas concentration. This can be explained
as two limitations of the data used in this study. One is a very low sampling rate, and
the other is a very high variance. To overcome these limitations, further research is

proposed as below.

A low sampling rate causes information losses about gradual degradation.
Therefore, it is necessary to increase the sampling rate through online data
acquisition rather than offline data acquisition. The sampling interval of offline data
acquisition is about 3 months to 1 year, while the online data acquisition method has
a much shorter sampling interval of 6 hours on average. However, the online method
has a different data value from the offline method. This is because the online method
has different gas concentration measurement mechanisms and requires additional
calibration. Therefore, more research on the correlation analysis between online and

offline measurements or online DGA-based transformer diagnosis is required.

If the variance of the data is high, the training model is likely to be overfit.
Therefore, in this study, the XGBoost, the most appropriate technique for overfitting,
was used, and the optimal hyperparameters were obtained through parameter studies.

However, the fundamental solution is to reduce the variance of the data. The sudden

85



increase in gas concentration is closely related to the partial discharge of the
transformer. In the gradual degradation process, the gas concentration gradually
increases, but when a sudden event such as a partial discharge occurs, the gas
concentration suddenly increases due to high electric energy. Therefore, Therefore,
a study on the health prognosis of the transformer using the partial discharge signal
will be conducted in future research. By adding a feature about the partial discharge
to model training, it is possible to reduce the variance of the training data. This is
because the cases in which gas concentration increases rapidly can be trained

separately.
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Chapter 6

Conclusion

6.1 Contributions and Significance

This doctoral dissertation provides a series of schemes for diagnosing and
prognosing the health status of industrial power transformers based on deep learning
techniques. Three major researches have been conducted to devise the new
framework for preventive diagnosis of power transformers using dissolved gas
analysis data: (1) iterative denoising autoencoder (IDAE) for data imputation, (2)
semi-supervised autoencoder (SSAE) for health feature extraction, and (3) XGBoost
regression for health prognosis of transformer. It is expected that the proposed

research offers the following potential contributions.

Contribution 1: Improvement of data reliability through the restoration of

DGA data

The gas concentration is often missing in the process of DGA due to worker’s
inexperience, which negatively affects transformer diagnostic accuracy. The first

research proposes a iterative denoising autoencoder (IDAE) to impute the missing
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values of dissolved gas analysis (DGA) data. Through the comparative studies, it
was confirmed that the proposed IDEA could effectively estimate the original value
for randomly generated missing gas concentrations. By recovering the DGA data
through IDAE, the reliability of the data can be secured, which enables more accurate

transformer diagnosis.

Contribution 2: Accurate and intuitive diagnosis of power transformer by

health features with monotonous behavior

The second research proposes a semi-supervised autoencoder (SSAE) to extract
representative health features for fault diagnosis of power transformers. A large
amount of DGA data measured in real industrial site was used for this study. The
proposed SSAE extracts two characteristic health features which have a highly linear
correlation with the health status of power transformer. Through a comparative study,
it was confirmed that the proposed SSAE could diagnose the transformers more
accurate than conventional diagnostic methods. In addition, it is possible to construct
the health feature space for intuitive diagnosis. Due to these advantages, the
proposed SSAE is expected to be very useful for maintenance of the transformer in

real industrial sites.

Contribution 3: Health prognosis of power transformer robust to irregular

data sampling interval
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Since DGA data is acquired based on the health status of the transformer, the
sampling interval is irregular. Therefore, it is difficult to prognose the health status
of the transformer with the existing prediction model based on sequential data. In
order to overcome this, the third research proposes an XGBoost-based prediction
model that can learn the measurement intervals and health indices simultaneously.
Through the comparative studies, it was confirmed that the proposed method could
accurately prognose the health status regardless of the sampling interval. The
performance of the proposed method is also assured up to a prediction period of 5
years. This research is the first attempt for fault prognosis of transformer using a vast
amount of industrial data, and it is meaningful in that it can be applied directly to the

real industries.

6.2 Suggestions for Future Research

Although this doctoral dissertation achieves various technical advances in fault
diagnosis and prognosis of power transformers, there are still several research topics

for improvement. Specific suggestions for future research are described as follows:

Suggestion 1: Predictive diagnosis of power transformers using real-time

online DGA sensors

In this study, the fault diagnosis and prognosis techniques of power transformer

are proposed based on offline DGA data. Offline DGA data has some limitations for
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fault diagnosis, such as missing data and irregular sampling intervals. In recently, to
overcome these problems, online DGA sensors are being introduced at industrial
sites. Although the measurement accuracy of online sensor is lower than the gas
chromatography sensor in the laboratory, it is gradually improving. Therefore, it is
necessary to prepare an online DGA-based transformer diagnosis study in advance,
while leading to a study on the correlation analysis between online and offline DGA

data.

Suggestion 2: Comprehensive fault diagnosis by multi-sensor fusion system

This study was conducted to diagnose transformers using only DGA data.
However, DGA data only contains indirect information on health conditions, such
as blood tests, in human terms. In fact, in the industrial field, data are acquired
through various types of tests such as doble test, furan test, partial discharge test, and
thermal image test as well as DGA. Therefore, for a more accurate and detailed
diagnosis of the power transformer, it is necessary to utilize the various types of test
data to identify the correlation between the data and comprehensively analyze the
results. However, in the real industry, it is difficult to obtain these data because a
sensor fusion system that can integrate the sensory data is not currently installed.
Recently, as research on sensor fusion with digital transformation has become active,
it is expected that sensor fusion technology will be introduced to substations and that
the comprehensive diagnosis research on transformers using all sensor information

will be activated.
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