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Abstract 

 

Deep Learning Based Health 
Prognostics of Oil-immersed 

Transformers for Contaminated 
Dissolved Gas Analysis Data 

 

Boseong Seo 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

With the acceleration of the energy market, such as smart grids, energy storage 

systems, and electric vehicles, demand for reliable electrical power systems for safe 

and continuous power supply is increasing. To meet this, many studies on diagnostic 

techniques and preventive maintenance for core facilities of transmission and 

distribution systems have been conducted. Among them, the oil-immersed 

transformer plays a pivotal role in the electrical power system as a device that 

changes the voltage according to the user's purpose. Therefore, various tests have 

been developed for the diagnosis of power transformer, and the dissolved gas 

analysis (DGA) is the most representative method. DGA is a method of measuring 

the gas concentrations generated when the internal insulation is decomposed due to 
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a defect in the transformer. Various international organizations such as IEEE and 

IEC have established DGA-based transformer diagnostic standards through decades 

of research and industrial experience. However, this method has a high misdiagnosis 

rate because it is based on the experience and interpretation of experts. Therefore, 

this study attempted to develop the superior predictive diagnosis of the transformer 

based on date-driven approach by using a large amount of DGA data acquired at an 

actual industrial site. 

To improve the diagnosis performance of the transformer, there are three main 

issues to be addressed: 1) missing data issue in DGA, 2) health feature extraction 

issue for low-dimensional data, and 3) health prognosis issue for irregular sampling 

intervals. In order to solve these issues, this doctoral dissertation proposes the 

following three studies: 

The first study proposes iterative denoising autoencoder (IDAE) for multiple 

missing value imputation. The proposed method can restore the original value of the 

missing value by iteratively performing denoising autoencoder (DAE). DAE which 

minimizes the noise estimates the original value of the missing value by making the 

missing value recognized as noise. The proposed method enables more accurate 

transformer diagnosis by increasing the reliability of DGA. 

The second study proposes a method of extracting health features through semi-

supervised autoencoder (SSAE). The proposed method can extract two characteristic 

features with monotonous degradation behavior by simultaneously performing 

dimension reduction and health status learning of transformers. Since the correlation 

between gas concentrations is modeled by learning a vast amount of industrial data, 
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the performance is more accurate than conventional methods. In addition, the 

degradation trend can be intuitively understood by visualizing the health feature 

space consisting of two health features. 

Finally, the third study proposes a health prognosis of transformers through the 

XGBoost regression method. The proposed method can obtain a robust prognosis 

model on the irregular sampling intervals by learning the irregular time series data 

using tree-based ensemble learning methods. Since the proposed method learns to 

minimize errors of the sequential models, it can prevent overfitting and accurately 

predict the status. It is expected to be of great help in preventive maintenance of 

transformers because it assures excellent performance for up to 5 years. 

It can be used to build a health prognosis framework for transformers by 

performing the three proposed methods in a continuous process. In addition, it is 

significant in that it has developed a universal model that can be directly applied to 

the industry by using a vast amount of data acquired from the real industry. 

 

Keywords:  Health prognostics 

Data imputation 

Oil-immersed transformer 

Deep learning 

Machine learning 

Dissolved gas analysis 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

As market opportunities related to smart grids and sustainable electric networks 

have grown, concerns about the stability of the electric power system have increased. 

Transformers, one of the main components of the electric system, need careful 

management. However, as transformers are used over several decades, they degrade 

and become subject to abrupt accidents that arise for various reasons, such as 

abnormal voltage, careless operation, and insulation degradation. To avoid 

transformer failure, global standard organizations, such as IEEE and IEC, suggest 

maintenance guidelines based on the domain knowledge. 

Much research has been conducted towards the goal of accurately diagnosing 

and maintaining transformers. Among prior methods, dissolved gas analysis (DGA) 

is the most widely used. When the insulator of a transformer is dismantled by thermal 

and electrical stresses, combustible gases are generated and dissolved into the oil 

that is filled inside transformers. The amount and the ratio of these dissolved gases 

depend on the degradation condition of the transformer. Therefore, the condition of 

the transformer can be estimated through gas analysis. There are several global 
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standards on dissolved gas analysis, such as IEEE Std C57.104 [1], IEC 60599 [2], 

Duval Triangle [3], Doernenburg Ratios [4], Rogers Ratios [5], and Basic Gas Ratios 

[2]. These methods have been improved based on decades of study; however, they 

still have low accuracy and a high frequency of false alarms. 

As transformer data has accumulated over long periods, and techniques based 

on big data analysis and artificial intelligence are maturing, much research has been 

conducted with the aim of inferring the status of a transformer using DGA data. In 

the early stages of these methods, algorithms using machine learning, including 

fuzzy logic [6-8], artificial neural networks [9-13], and support vector machine [14-

19], are often applied. Recently, state-of-the-art technologies that incorporate deep 

learning have been adopted to construct diagnosis models for transformers [20-23]. 

For example, L. Luo et al. [22] proposed a DGA online fault diagnosis method that 

combines a convolutional neural network and a bidirectional Long Short-Term 

Memory (LSTM) network. In other work, D. Yang et al. [23] developed a double-

stacked autoencoder for fast and accurate judgement of transformer health condition. 

Although artificial intelligence methods can greatly enhance the accuracy of 

diagnosis, and verify various failures of a transformer, they require a large amount 

of and high-quality data to construct a robust model. Unfortunately, in the case of 

transformers, obtaining such data is difficult. Transformer data is rarely measured, 

usually only once or twice a year. Therefore, it is fundamentally difficult to obtain 

sufficient data to be used to train the diagnostic model. And as the amount of data is 

small, the imbalance between normal and fault data increases, and even the collected 

data has a limitation that some of them are unlabeled. 
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Further, the data may be corrupted for a variety of reasons. The quality of DGA 

data greatly depends both on the techniques used to extract gas from the insulating 

oil and the skill of the personnel gathering the data. According to research by Cho et 

al. [24], the error rate of the round-robin test for each laboratory is 15-30%, on 

average. In addition, Dukarm reported common issues arising from DGA data, such 

as low measurement precision, contradictory data, and intermittent gas losses, all of 

which require special attention when measuring DGA gases [25]. 

Recently, the world has focused on predictive maintenance (PdM) to prevent 

safety accidents of facilities and increase the maintenance efficiency. And research 

and demonstration projects related to remaining useful life (RUL) prediction are 

already being conducted for many industrial facilities [26-30]. On the other hand, 

studies of PdM for transformers were relatively slow, and only two studies were 

found [31, 32]. Study [31] predicted the RUL of transformers from DGA data using 

General Regression Neural Network (GRNN)-based ensemble learning, and study 

[32] predicted the concentrations of seven gas types and future status of transformer 

using Adaptive Network-based Fuzzy Inference System (ANFIS) and rule-based 

fuzzy logic. However, these studies have limitations in performance in the field due 

to limited data and low accuracy. 

Therefore, in this dissertation, the new deep learning-based framework of fault 

diagnosis and prognosis for power transformers is proposed to overcome the 

limitations mentioned above. This dissertation can achieve the following three things: 

1) Data reliability and robustness are improved by restoring the original value 

of contaminated DGA data. 
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2) By deriving the health features representing the status of transformer, it is 

possible to grasp the deterioration trend of transformer which changes monotonically. 

3) It is possible to predict the status of transformer and the time at which defects 

occur from the deterioration trend of transformer. 

 

1.2 Research Scope and Overview 

The goal of this doctoral dissertation research is to develop the prognostic 

methods that predicts the status of oil-immersed transformers using deep-learning 

technologies for incomplete dissolved gas analysis data. The research is composed 

of three thrusts. First thrust is a data imputation method to recover the multiple 

missing DGA value using iterative denoising autoencoder (IDAE). Second thrust is 

a extraction of health features which has a monotonically decreasing degradation 

pattern. Health features are derived from semi-supervised autoencoder (SSAE). Last 

thrust is a health prognosis of power transformers based on XGBoost regression. 

These three thrusts are briefly described below. 

 

Research Thrust 1:  Iterative denoising autoencoder (IDAE) for missing data 

imputation of DGA 

In research thrust 1, we propose iterative denoising autoencoder (IDAE), an 

imputation method to restore the multiple missing values in offline DGA. During the 

process of extracting and transporting insulating oil, some gas concentrations are 
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missing as the gas volatilizes into the air. This can lead to a fatal error in not detecting 

defects of the transformer. Therefore, the industry is presenting various guidelines 

to pay special attention to DGA, but it is not actually well followed. 

Therefore, in this thrust, we seek to restore the original value of DGA data 

through the data driven approach. This approach is based on autoencoder and 

designed to overcome the limitations of existing methods. The proposed method 

consists of three steps: 1) defining the inputs and data normalization, 2) DAE model 

learning for a single missing value, and 3) IDAE for multiple missing values. The 

main idea of this study is to enable DAE imputation model for estimation of the 

original data to replace the incomplete data with multiple missing values by 

repeating the imputation process until the missing values converge. 

The proposed method is verified in this research through three comparative 

studies that examine field data provided by an electric power corporation. Specific 

studies provide: 1) a comparison with conventional methods on imputation 

performance for a single gas, 2) examination of imputation performance between 

multiple missing values, and 3) documentation of diagnosis accuracy before and 

after imputation. The results of the case studies show that the proposed method is 

effective for imputation of the missing DGA data. IDAE can help diagnose the health 

status of transformers accurately by estimating the missing values of DGA data. 

 

Research Thrust 2:  Semi-supervised autoencoder (SSAE) for health feature 

extraction of power transformers 



6 
 

In research thrust 2, we propose semi-supervised autoencoder (SSAE) based 

health diagnosis to evaluate the condition of transformer and to identify the 

degradation trend. Conventional DGA-based diagnostic methods determine the 

status of transformer by dividing it into three or four grades, so there is a limit to 

further subdividing and grasping the status of transformer. Therefore, in the real 

industry, there is a demand to quantitatively judge the status by quantifying it. 

Therefore, in this thrust, we try to extract the health features which visually 

express the degradation condition of transformer. To realize this, it went through a 

two-step process: 1) defining the inputs and data normalization, and 2) SSAE model 

learning for extracting health features. Through the SSAE model, monotonically 

decreasing health features can be extracted. 

We evaluate the diagnostic accuracy of proposed model compared to that of 

conventional methods such as IEEE and IEC. The performance of proposed method 

is more accurate than others. In particular, the proposed method was able to 

significantly reduce the false alarm rate because the composition ratio of the total 

gas was also used as a diagnosis factor. 

 

Research Thrust 3:  XGBoost regression for health prognostics of power 

transformers 

In research thrust 3, we propose XGBoost regression model to predict the status 

or remaining useful life (RUL) of power transformers. The biggest challenge in 

predicting the transformer status is that the data acquisition interval is not constant. 
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In the case of DGA data, the measurement period, from 1 month to 2 years, is 

different depending on the transformer condition according to international 

guidelines. Most of the methods commonly used for prediction problems are difficult 

to apply to this case because the data sampling rates must be constant. 

Therefore, in this thrust, we try to develop an health prognosis model of power 

transformer applicable for data with irregular sampling rates. To realize this, it went 

through a two-step process: 1) orthogonal projection of health features for obtaining 

health index, and 2) XGBoost regression model learning for health prognosis. Health 

features can be converted into a one-dimensional health index by projecting them to 

the orthogonal plane. And by using the sampling interval as an input for the XGBoost 

learning model, it is designed to obtain the prediction results robust to the 

measurement cycle. 

To evaluate the prognostic performance of the proposed model, two case studies 

were conducted: 1) a comparison with other machine learning (ML) algorithms on 

prognosis accuracy and 2) prognosis accuracy degradation due to long prediction 

period. As a result of studies, XGBoost model has the highest accuracy among the 

ML models. And even if the prediction period is extended, it maintains an average 

accuracy of 80%, and has the minor decline. 

 

1.3 Dissertation Layout 

The remaining chapters of this dissertation is organized as follows. Chapter 2 

provides a literature review including the fault modes of power transformers, 
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backgrounds of dissolved gas analysis for basic understanding, and conventional 

fault diagnosis of power transformers. Chapter 3 describes the missing data 

imputation via iterative denoising autoencoder (IDAE). Chapter 4 suggests the health 

feature extraction via semi-supervised autoencoder (SSAE). Chapter 5 proposes the  

health prognosis model of power transformers via XGBoost regression. At the 

conclusion, Chapter 6 summarizes the result of this research and suggestions for the 

future research. 
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Chapter 2 Literature Review 

Equation Chapter 2 Section 1 

Literature review 

 

In this chapter, to help reader’s understanding, we will cover the fault modes of 

the power transformer and the methods for diagnosing it in general. Subchapter 2.1 

provides the failure modes and effects analysis (FMEA) for power transformers. 

FMEA is process of identifying potential failure modes of components in a system 

and their causes and effect. Subchapter 2.2 describes the definition and process of 

dissolved gas analysis (DGA). Lastly, Subchapter 2.3 summarizes the conventional 

rule-based fault diagnostic methods of power transformers. 

 

2.1 Failure Modes and Effects Analysis (FMEA) for Power 

Transformers 

Transformers are one of the most important components in the electric power 

system. Transformers connect power systems with different voltage levels. As a 

transformer experiences enormous electrical and mechanical stresses as it operates 

under high-voltage conditions, internal components (e.g., insulating paper and 

windings) undergo degradation. This degradation ultimately results in the abrupt 

failure of the transformer, which interrupts the power grid that is connected to the 
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transformer. 

A transformer can fail by electrical, thermal, and/or mechanical defects. 

Electrical defects result from transient over-voltage or winding resonance. Thermal 

defects may arise from an overload current, local overheating, leakage fluxes and/or 

failure of the cooling system. Mechanical stress between the conducting material and 

the winding occurs because of a short circuit of the winding and inrush current. 

Such defects in a transformer are caused by a decrease in the mechanical and 

dielectric strength of the transformer as the internal insulator ages. In general, aged 

conductor insulation is weakened to the point where it can’t withstand the 

mechanical stresses of a fault. Indeed, the insulation becomes so brittle that even 

normal operating conditions may cause severe damage. Then, dielectric failure of 

the turn-to-turn insulation or loosening of the winding clamping pressure occur, 

which reduces the transformer’s resistance to short-circuit forces [33].  

According to the case study about failure statistics for large-capacity 

transformers that are operating for about 1 year and 6 months to 2 years and 6 months, 

the main failure modes of transformers are shown in Figure 2-1 [34]. As you can see 

in Figure 2-1, most fault modes are due to insulation defects. Typical major 

insulation defects occurring in the transformer are as follows: moisture in the 

cellulose insulation, contamination of oil with water or particles, insulation surface 

contamination (which occurs mainly due to the adsorption of polar aging products 

on a cellulose surface or due to deposition of conducting particles and insoluble 

aging products), and partial discharges in weaker parts of the insulation. Table 2-1 

summarizes general insulation faults of transformers based on FMEA [35].



11 
 

Table 2-1 General insulation faults in transformer through FMEA 

Root causes of faults Fault modes Fault effects 

Critical contamination (H2O) of oil & Rapid change of 
temperature 

PD appearance at rated voltage Breakdown 

Surface contamination & Rapid change of temperature PD appearance Flashover 

Particle’s contamination & Switching surge Critical PD Breakdown 

Water & Particles contamination Critical PD (Creeping discharge) Breakdown 

Surface contamination & Lightning impulse Surface discharge Flashover 

Distortion of winding geometry PD appearance (Creeping discharge) Breakdown 

Distortion of winding geometry & Switching surge Flashover between coils Gas evolution 

Figure 2-1 Failure rates by major failure modes 
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2.2 Dissolved Gas Analysis (DGA) in Power Transformers 

As previously described, there are various failure modes of transformers; thus, 

developing a diagnosis model for each failure would be costly and ineffective. 

However, most failures are the reason of the generation of dissolved gas in the oil 

filled inside a transformer. Thus, by analyzing the dissolved gas, the overall status 

of the transformer can be monitored, and the failure can be predicted in advance and 

thus prevented. The examination of dissolved gas is commonly called dissolved gas 

analysis (DGA). 

A high-voltage transformer is usually insulated with insulation paper and oil to 

safely handle the high voltage. Two levels of insulation are used. First insulation 

paper is wrapped around the coils and iron core of the transformer. Next, the inside 

of the transformer where the coils and iron core are located is filled with oil for 

further insulation. When there is local heating, arc, or thermal or electrical stress, the 

insulation material is decomposed and combustible gases (e.g., H2, C2H2, C2H4, C2H6, 

CH4, CO, CO2, N2, O2, and C3H8) are generated as shown in Figure 2-2. The ratio of 

these gases varies according to the cause of the decomposition. Therefore, DGA is 

usually utilized to analyze the gas ratio and to infer the status of the transformer. 

From a thermodynamic point of view, the severity of transformer fault is very 

related to enthalpy that changes during the gas decomposition [36]. The gas 

decomposition that has larger enthalpy change occurs faster by more severe faults. 

Table 2-2 summarizes the chemical reaction formula for each major gas and the 

enthalpy change (∆H°) generated when n-octane (C8H18), the main component of 

insulating oil, is pyrolyzed. For example, comparing C2H2 with CH4, since the 
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enthalpy change in C2H2 is 278.3 kJ/mol and the enthalpy change in CH4 is 77.7 

kJ/mol, it can be assumed that more severe faults occurred when C2H2 is produced. 

Accordingly, methods for diagnosing a transformer based on the correlation between 

the transformer fault and the gas concentration have been developed and widely used. 

There are two main ways of DGA: offline and online. The offline is a method 

in which an operator directly collects insulating oil and measures the gas 

concentration using gas chromatography equipment in the laboratory. The online 

method is to measure gas concentration in real time by an online sensor installed on 

a transformer. The offline method has a disadvantage in that data errors may occur 

depending on the skill of the operator, and data sampling interval is too long, from 1 

months to 2 years. So, in recent years, there is a trend of switching to an online 

method. However, verification of sensor performance is still weak, and equipment 

that can measure the concentration of six or more major gases is very expensive. So, 

the penetration rate in the industrial sites is very low. Therefore, in this study, we 

conducted on more practical offline data in consideration of the current state of 

industrial sites. 
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Table 2-2 Chemical reaction and enthalpy change of major gases 

Gas Reaction Formula ∆H° (kJ/mol) 

CH4(g) C଼Hଵ଼(l) = CHସ(g) + C଻Hଵସ(l) 77.7 

C2H6(g) C଼Hଵ଼(l) = CଶH଺(g) + C଺Hଵଶ(l) 93.5 

C2H4(g) C଼Hଵ଼(l) = CଶHସ(g) + C଺Hଵସ(l) 104.1 

H2(g) C଼Hଵ଼(l) = Hଶ(g) + C଼Hଵ଺(l) 128.5 

C2H2(g) C଼Hଵ଼(l) = CଶHଶ(g) + C଺Hଵସ(l) + Hଶ(g) 278.3 

 

2.3 Conventional Fault Diagnosis of Power Transformers 

There are various rule-based diagnostic methods with DGA. These methods 

have been mainly established from empirical hypotheses or know-how of field 

experts for a long time. Nevertheless, a fault that is still difficult to identify occurs, 

and different results may be derived depending on the interpretation method. 

Figure 2-2 Generation of combustible gases by thermal and electrical stress 
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Therefore, they are not acceptable for reliable diagnosis methods yet. There are a 

method of determining the severity based on the gas concentration and a method of 

determining the failure mode based on the gas composition ratio. The six most 

commonly used methods are presented below: 

(1) IEEE Standard C57.104 [1]: A four-level criterion of ‘IEEE Std C57.104TM-

2008 - IEEE Guide for the Interpretation of Gases Generated in Oil-

Immersed Transformers’ is provided to classify risks to transformers. The 

content includes threshold of the dissolved gas concentrations for the 

individual gases and TDCG from Condition 1 to Condition 4. The condition 

for a target transformer is determined by finding the highest level for 

individual gases or the TDCG in Table 2-3. 

(2) IEC 60599 [2]: IEC 60599 is a DGA interpretation guide provided in ‘IEC 

60599 – Mineral oil-filed electrical equipment in service – Guidance on the 

interpretation of dissolved and free gases analysis.’ It is similar to IEEE 

C57.104, but it classifies the status in three grades (Normal, Caution Ⅰ, 

Caution Ⅱ) and excludes TDCG. Table 2-4 summarizes the specific 

threshold by the condition. 

(3) Dornenburg ratio method [4]: Doernenburg ratios is an evaluation of 

possible fault type method provided in IEEE Std C57.104TM for diagnosis 

of fault mode. As shown in Table 2-5, R1 (Ratio1, CH4/H2), R2 (Ratio2, 

C2H2/C2H4), R3 (Ratio3, C2H2/CH4), R4 (Ratio4, C2H6/C2H2) are compared 

to limiting values, suggests corresponding fault mode. 
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(4) Rogers ratio method [5]: The Roger ratios method follows the same general 

procedures as the Doernenburg method, except only three ratios (R1 

=C2H2/C2H4, R2=CH4/H2, R5=C2H4/C2H6). But, as with the Doernenburg 

method, the Rogers ratios can give ratios that do not fit into the diagnostic 

codes. Table 2-6 gives the values for the three key gas ratios corresponding 

to suggested diagnosis. 

(5) Basic gas ratio method [2]: Except Rogers Ratios methods provided in IEEE 

Std C57.104TM-2008, IEC 60599 also guides fault identification method 

using different three gas ratios (R1=C2H2/C2H4, R2=CH4/H2, R3=C2H4/ 

C2H6). Each of six board classes of faults leads to characteristic pattern of 

hydrocarbon gas composition, which is described in Table 2-7. 

(6) Duval triangle method [3]: Duval triangle is a fault identification method 

provided in IEC 60599. As shown in Figure 2-3, the triangle is divided by 

six faults mode zones and depending on the three gas ratios values 

(R1=C2H2/C2H2+C2H4+CH4, R2=C2H4/C2H2+C2H4+CH4, R3=CH4/ 

C2H2+C2H4+CH4), it indicates the corresponding fault mode. 
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Table 2-3 IEEE Standard C57.104 

Status 

Dissolved key gas concentration limits [ppm] 

H2 CH4 C2H2 C2H4 C2H6 CO CO2 TDCG 

Condition 1 100 120 1 50 65 350 2500 720 

Condition 2 101-700 121-400 2-9 51-100 65-100 351-570 2501-4000 721-1920 

Condition 3 701-1800 401-1000 10-35 101-200 101-150 571-1400 4001-10000 1921-4630 

Condition 4 > 1800 > 1000 > 35 > 200 > 150 > 1400 > 10000 > 4630 
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Table 2-4 IEC 60599 

 

 

 

 

 

Status 
Dissolved key gas concentration limits [ppm] 

H2 CH4 C2H2 C2H4 C2H6 CO CO2 

Normal 50 30 2 60 20 4000 3800 

Caution Ⅰ 51-100 31-130 3-20 61-280 21-90 401-600 3801-14000 

Caution Ⅱ > 100 > 130 > 20 > 280 > 90 > 600 > 14000 
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Table 2-5 Doernenburg ratio method 

Suggested fault diagnosis R1 (CH4/H2) R2 (C2H2/C2H4) R3 (C2H2/CH4) R4 (C2H6/C2H2) 

1) Thermal decomposition > 1.0 < 0.75 < 0.3 > 0.4 

2) Partial discharge 

(low-intensity PD) 
< 0.1 Not significant < 0.3 > 0.4 

3) Arcing (high-intensity PD) > 0.1 to < 1.0 > 0.75 > 0.3 < 0.4 
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Table 2-6 Rogers ratio method 

Cases R2 (C2H2/C2H4) R1 (CH4/H2) R5 (C2H4/C2H6) Suggested fault diagnosis 

0 < 0.1 > 0.1 to < 1.0 < 1.0 Unit normal 

1 < 0.1 < 0.1 < 1.0 Low-energy density arcing 

2 0.1 to 3.0 0.1 to 1.0 > 3.0 Arcing: High-energy discharge 

3 < 0.1 > 0.1 to < 1.0 1.0 to 3.0 Low temperature thermal 

4 < 0.1 > 1.0 1.0 to 3.0 Thermal < 700℃ 

5 < 0.1 > 1.0 > 3.0 Thermal > 700℃ 
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Table 2-7 Basic gas ratio method 

Cases Suggested fault diagnosis R1 (C2H2/C2H4) R2 (CH4/H2) R3 (C2H4/C2H6) 

PD Partial discharges Not significant < 0.1 < 0.2 

D1 Discharges of low energy > 1 0.1 – 0.5 > 1 

D2 Discharges of high energy 0.6 – 2.5 0.1 – 1 > 2 

T1 Thermal fault t < 300℃ Not significant > 1 but not significant < 1 

T2 Thermal fault 300℃ < t < 700℃ < 0.1 > 1 1 – 4 

T3 Thermal fault t > 700℃ < 0.2 > 1 > 4 

 

 

 



22 
 

 

 

Figure 2-3 Duval triangle method 
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Chapter 3 Missing Data Imputation via Iterative Denoising Autoencoder (IDAE) 

Equation Chapter 3 Section 1 

Missing Data Imputation via 
Iterative Denoising Autoencoder 
(IDAE) 

 

In this chapter, iterative denoising autoencoder (IDAE) is proposed to impute 

the multiple missing DGA. DGA is missing for various reasons. Therefore, it is 

important to restore DGA for reliable fault diagnosis. Subchapter 3.1 deals with the 

data issues arising from DGA. Subchapter 3.2 describes the theoretical background 

of denoising autoencoder (DAE), which is the basis of this study. Subchapter 3.3 

proposes the new imputation methodology consisting of three processes: 1) data 

preprocessing, 2) construction of DAE model for a single missing value, and 3) 

construction of IDAE model for multiple missing values. Subchapter 3.4 considers 

the results of three case studies: 1) a comparison with conventional methods on 

imputation performance for a single gas, 2) examination of imputation performance 

between multiple missing values, and 3) documentation of diagnosis accuracy before 

and after imputation. At the conclusion, Subchapter 3.5 provides the summary and 

discussions of this study. 
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3.1 Data Issues in DGA 

Although DGA is widely used due to its simplicity and generality in inferring 

the various failures of a transformer, a problem arises when this method is applied 

in practice; specifically, it has difficulty gathering reliable data. Dissolved gas data 

is subject to corruption for various reasons. This is described in reference [25], which 

notes the importance of careful data analysis. Some cases of unreliable data are as 

follows. First, the gas ratio can be significantly different between samples. The 

samples obtained at similar times should have similar quantities; if not, the samples 

should be considered to be error. A low concentration of H2 or CO2 also indicates 

possible error. Because the solubility of these gases is very low, the oil rapidly loses 

these gases when exposed to the air. Therefore, a low ratio of H2 or CO2 means that 

the sample is corrupted by exposure to the air. Similarly, an increase in O2 and N2 

occurs during the exposure, because these gases are abundant in the air and readily 

dissolved in the oil. 

The causes of unreliable data vary. Most of these causes stem from careless 

handling of samples. In many cases, the samples are manually gathered by workers. 

While taking the samples, it is easy for the samples to be exposed to the air if they 

are not completely sealed. Also, the gases can be lost when the transformer has a 

small crack or rupture in the transformer housing. Some minor cases of unreliable 

data include mis-labeling, data transcription error, and incorrect analysis. Unreliable 

data should be excluded from the analysis. However, transformer data is not 

frequently obtained; it is typically measured only once or twice a year. Therefore, 

every data sample is valuable and should be fully exploited if possible, rather than 

being excluded due to reliability concerns. To this end, the proposed method is 



25 
 

developed to enhance the useability of unreliable or incomplete data. 

 

3.2 Backgrounds of Denoising Autoencoder (DAE) 

To estimate the missing values in a transformer’s DGA data, a denoising 

autoencoder (DAE), first proposed by P. Vincent and Y. Bengio, is adopted [37]. 

DAE is the expanded version of an autoencoder, which is used to recover the original 

data from noise-corrupted data. DAE is based on the fact that the data maintains its 

essential characteristics, even when partially destroyed. Therefore, the DAE model 

can recover the original data from the noise-added input. DAE is widely used for 

image/voice recovery, typo correction, and noise filtering, among other applications 

[38-43]. 

The structure of the DAE model is shown in Figure 3-1. It consists of two parts. 

The first part is the autoencoder, which itself can be decomposed into encoder and 

the decoder parts. The role of the encoder is so-called manifolding learning, which 

sequentially reduces the dimension of the input data. As a result, the essence of the 

original data, called the latent values, which contains enough information about the 

original data, is obtained. For given data 𝐱 ∈ 𝑹஽, the encoder function, 𝑓ఏ is expressed 

as shown in Eq. (1). 

𝑓ఏ(𝐱) = 𝐡 = 𝑠(𝐖𝐱 + 𝐛)  (1) 

where W is the d×D dimensional weight matrix, b is the d dimensional bias vector, 

h is the d dimensional latent value, and s() is the activation function. 
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The decoder is the reverse process of the encoder, which is called generative 

model learning. The decoder uses sequentially increasing layers, and recovers the 

original data from the output of the encoder. The equation for the decoder, 𝑔஘ᇲ is 

as follows. 

𝑔ఏᇲ(𝐡) = 𝐱ො = 𝑠(𝐖′𝐡 + 𝐛′)  (2) 

where 𝐱ො ∈ 𝑹஽ is the recovered data from the input of the decoder or, equivalently, 

the encoder of output, h, and weight parameter 𝛉 = {𝐖, 𝐛} and 𝛉′ = {𝐖ᇱ, 𝐛′} 

are estimated through the learning process. 

The autoencoder learns the weight parameter 𝛉 and 𝛉′ by minimizing the 

loss function 𝐿(𝛉, 𝛉′), which measures the similarity between x and 𝐱ො. In this study, 

the mean-square error function of Eq. (3) is adopted as a loss function to estimate 

the missing values. Given the training dataset {x1, …, xN}, the loss function is 

minimized by updating 𝛉 and 𝛉′ through a backpropagation method that is based 

on the gradient descent algorithm [44]. 

𝐿(𝛉, 𝛉′) =
ଵ

ே
∑ ‖𝐱௞ − 𝐱ො௞‖ଶே

௞ୀଵ =
ଵ

ே
∑ ‖𝐱௞ − 𝑔ఏᇲ(𝑓ఏ(𝐱௞))‖ଶே

௞ୀଵ  (3) 

The other part of DAE is the addition of noise to the raw data. The noisy data 

after this step is designated as 𝐱෤ in Figure 3-1. The noisy data is generated using the 

stochastic corruption procedure 𝐱෤ ~ 𝑞஽(𝐱෤|𝐱) [45]. Through this process, about half 

of the input data is randomly substituted with zero. Noisy data is then provided to 

the autoencoder model, which generates 𝐱ො. Since the loss function is defined as the 

error between the original data x and the reconstructed data 𝐱ො, as the training goes 
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on, the model takes noisy input 𝐱෤ and gives an output similar to original data x. In 

other words, the model now acts like a noise filter. 

 

3.3 DAE-based Iterative Imputation for Multi-Missing DGA 

The overall process of the proposed method is shown in Figure 3-2. It consists 

of three main steps; data preprocessing, DAE training, and IDAE. In the data 

preprocessing step, the input dimension is defined and normalization is performed. 

In the DAE training step, a DAE model to recover a single missing value is 

constructed. Then, IDAE, an imputation model for the multiple missing value 

situation, follows. The initial values for the multiple missing values are first assigned 

by KNN, and the IDAE updates the initial guesses to robust values. In the following 

subsections, each step is described in detail.

Figure 3-1 The structure of the DAE model 
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Figure 3-2 Overall process for missing data imputation in DGA 
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3.3.1 Data Preprocessing 

First, to apply the DAE model to the transformer data, the input needs to be 

defined for accurate reconstruction of the missing data. One way of doing this is to 

use the time-trend of the DGA data. As the gases are accumulated over time, the 

amount of each gas monotonically increases. Hence, the missing data may have a 

value in between the values before and after the missing data. However, DGA data 

is generally not measured often (i.e., once or twice a year); thus, a gradual change 

sometimes is not clearly seen because of interruptions by other electrical events. For 

example, sudden partial discharge could rapidly increase the amount of gases. 

Therefore, when we estimate the missing gas concentration only using time-series 

trend information, it will not be able to interpret the case where the gas has abrupt 

change. 

Thus, in this study, in addition to the time-trend data, the gas concentrations are 

also used to facilitate the determination of the missing value at a certain time. The 

amount of a gas can be estimated using the other gases, when the failure mode is 

verified. As a result, the input of the DAE model is designed to include both the 

time-series data of a gas and the amounts of other gases at a specific time, t. The 

input is defined as follows. 

𝐱 = [𝑥௧ିଷ
௜ , 𝑥௧ିଶ

௜ , 𝑥௧ିଵ
௜ , 𝑥௧

௜ , 𝑥௧
௜ାଵ, 𝑥௧

௜ାଶ, 𝑥௧
௜ାଷ, 𝑥௧

௜ାସ, 𝑥௧
௜ାହ] (4) 

where the superscript and subscript of x are gas type and measurement time, 

respectively. In Eq.(4), 𝑥௧
௜ represents the missing value and will be estimated using 

both the time-series data, [𝑥௧ିଷ
௜ , 𝑥௧ିଶ

௜  , 𝑥௧ିଵ
௜ ] , and gas concentration at time t, 

 [𝑥௧
௜ , 𝑥௧

௜ାଵ, 𝑥௧
௜ାଶ, 𝑥௧

௜ାଷ, 𝑥௧
௜ାସ, 𝑥௧

௜ାହ]. The six gases include H2, C2H2, C2H4, C2H6, CH4, 
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and CO. The missing value 𝑥௧
௜ is set to be -0.1, which is physically impossible to 

obtain, so the learning algorithm can recognize it. 

Another preprocessing step is normalization. The scales of the dissolved gases 

are different. Some gases are more easily generated and dissolved in the oil than 

other gases because of their low enthalpy. In contrast, some gases such as C2H2 

require high enthalpy to be formed. In this case, the gas is generated only when there 

is a fault that releases high energy such as arc or corona. Because this high-energy 

condition is not readily met, C2H2 shows rather low concentrations in the oil. 

However, a fault with high energy indicates a possible severe fault; thus, it is an 

important indicator regardless of low concentrations in the oil. Thus, to reduce the 

scale difference, min-max normalization is adopted, which transforms the data to 

have a value between 0 and 1. 

 

3.3.2 DAE Model for a Single Missing Value 

Using the input defined previously, the model is trained. Before dealing with 

multiple missing values, a model for a single missing value is first trained for each 

gas, based on DAE. As a result, a total of six models are obtained. The structure of 

the DAE model is shown in Fig. 3. In the input layer, the data marked ‘×’ represents 

the missing data. Each input consists of nine elements, including the time trends and 

gas concentrations, as mentioned earlier. The corrupted inputs are reconstructed 

through the encoder and decoder layers. The encoder and decoder layers consist of 

five hidden layers. Since the encoder and decoder have low input dimension and all 

input elements are meaningful, the layers are designed to have a fully connected 
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layer denoted as ‘fc’, as shown in Figure 3-3. The number of nodes of each hidden 

layer are set to 40, 20, 10, 20, and 40, respectively. Every layer except the last uses 

the exponential linear unit (ELU) function as its activation function, as shown in Eq. 

(5). The last layer uses the hyper-tangent function described in Eq. (6) to let the input 

data fall between 0 and 1. The output through the auto-encoder has recovered value, 

which is denoted as ‘o’ in the figure. The mean square error of Eq. (3) is adopted for 

the loss function, and training is conducted to minimize the loss function. This 

trained model is only applicable for data with one missing value. However, many 

DGA data include multiple missing values. Thus, an iterative method for multiple 

missing values is proposed in the following section. 

𝑅(𝑥) = ൜
𝑥                     𝑥 ≥ 0
𝛼(𝑒௫ − 1)    𝑥 < 0

  (5) 

tanh =
ଵି௘షೣ

ଵା௘షೣ
  (6) 

Figure 3-3 Example of the DAE model structure for one gas 
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3.3.3 IDAE Model for Multiple Missing Values 

The previous DAE model works only for a single missing value. To expand the 

previous DAE model to data with multiple missing values, the missing values are 

initially estimated and iteratively updated until they converge. For initial estimation, 

the k-nearest neighborhood (KNN) method is adopted, because it shows quite high 

accuracy when there is enough data whose dimension is small. In addition, the 

learning method is simple and requires little effort to estimate parameters. 

The KNN method estimates the target value by finding samples that are similar 

to the target data. If the target data is 𝑥௧,଴
௜ , which is the ith gas at time t, the input to 

the KNN model is three time-series data before 𝑥௧,଴
௜ , which is represented as 𝐳଴

௜ =

[𝑥௧ିଷ,଴
௜ , 𝑥௧ିଶ,଴

௜ , 𝑥௧ିଵ,଴
௜ ]. Then, the distances between 𝐳଴

௜  and the jth sample 𝐳௝
௜ =

[𝑥௧ିଷ,௝
௜ , 𝑥௧ିଶ,௝

௜ , 𝑥௧ିଵ,௝
௜ ] are measured as follows. 

𝑑௝
௜൫𝐳଴

௜ , 𝐳௝
௜൯ = ට൫𝐳௝

௜ − 𝐳଴
௜ ൯൫𝐳௝

௜ − 𝐳଴
௜ ൯

்
,    (𝑗 ≠ 0)  (7) 

Finally, K samples of 𝐳௞
௜  (k=1,…,K) with the smallest distances from 𝐳଴

௜  are 

selected and their corresponding data at time t, 𝑥௞,௧
௜  is used for estimation of 𝑥଴,௧

௜ , 

as shown in Eq. (8). In this study, we set the number of nearest neighbors as 14 

(K=14). 

𝑥଴,௧
௜ = ∑

௫ೖ,೟
೔

ௗೖ
೔

௄
௞ୀଵ / ∑

ଵ

ௗೖ
೔

௄
௞ୀଵ   (8) 

Once the missing values are replaced with the output of KNN, the DAE model 

becomes applicable. The output of the DAE model, 𝐱ො = 𝑔ఏᇲ(𝑓ఏ(𝐱)), is expected to 

be more accurate than the output of the KNN; however, it is different from the target 
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value because it is trained based on the outputs of KNN, which are roughly estimated 

initial values. The outputs of the DAE models then replace the outputs of the KNN. 

This updating process goes on until the difference between the updated value and the 

previous value is minimized. When there are M missing values, the difference is 

measured by the following equation, where l is the index of the gas that has been 

missed. 

∆=
∑ ∆೗ಾ

೗సభ

ெ
=

ଵ

ெ
∑

ቚ௫ො౤౛౭
೗ ି௫ො౥ౢౚ

೗ ቚ

ห௫ො౤౛౭
೗ ห

ெ
௟ୀଵ   (9) 

The pseudo-code for the algorithm is shown in Table 1. 𝐱෤ is the missed input 

data and 𝑁 is the number of data samples. 

Table 3-1 Pseudo-code for the IDAE algorithm 

Algorithm Impute missing values with IDAE. 

Requirements: Input dataset 𝐗෩ = {𝐱෤𝟏, … , 𝐱෤𝑵} with missing values.  
1. Initialize: 

2.  l = {l1, …, lN}; Define l where ln is missing value index for nth data. 

3.  𝐗෡ = ∅; Dataset of imputed input. 

4. for 𝒏 in 𝑵 do 

5.     Make initial guess 𝐱ො𝒏,𝐨𝐥𝐝 for missing values using KNN. 

6.     while ∆𝐧𝐞𝐰< ∆𝐨𝐥𝐝 do 

7.         for ln in l do 

8.             Predict 𝐱ො𝒏,𝐧𝐞𝐰 corresponding to 𝐱෤𝒏 using DAE model; 

9.         end for 

10.         Calculate ∆𝐧𝐞𝐰; 

11.     end while 

12.     Append 𝐱ො𝒏,𝐧𝐞𝐰 to 𝐗෡; 

13. end for 

14. return imputed matrix 𝐗෡ 
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3.4 Performance Evaluation of IDAE 

The proposed method was verified by examining actual industrial data. Three 

comparative studies were conducted. The first and second case studies were explored 

for verification of the imputation model for single and multiple missing values, 

respectively. The last case study compared the diagnostic performance with and 

without imputation. 

 

3.4.1 Description of DGA Dataset 

The DGA data used for the case studies in this research was provided by the 

Korea Electric Power Corporation (KEPCO). The data was gathered from more than 

8,000 transformers over 10 years. This data reflects the intact characteristics of the 

operating conditions and data gathering conditions. The first rated voltage of the 

transformers in the data set varies from 22.9kV to 765kV; the transformers were 

manufactured by 49 different companies. 

Based on the experts from KEPCO and the literature reports on DGA methods, 

six primary gases, H2, C2H2, C2H4, C2H6, CH4, and CO, were selected for analysis. 

Other gases, such as O2, N2, and CO2, were excluded from the analysis because these 

gases can be generated from reasons other than degradation. Erroneous data, data 

with an obviously incorrect value, and data corrupted by oil filtering, were excluded. 

The total number of data samples in the final study set is 17,850. About 90% of these 

were used for training, and the remaining 10% was used for testing. 
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3.4.2 Performance of Estimation Model for a Single Missing Value 

For the first comparative study, the accuracy of single missing value estimation 

will be compared using the proposed method and other previous methods. The 

comparison algorithms used alongside the proposed method are k-nearest neighbor 

(KNN) [46], XGBoost (XGB) [47], light GBM (LGB) [48], and random forest (RF) 

[49]. 

The accuracy of each algorithm is measured using two metrics. First is the 

normalized root mean square error (NRMSE), which is the root mean square error 

divided by the mean of the square of the original value. It is defined in Eq. (10). 

NRMSE = ඨ
∑ ൫𝐱𝒌ି𝐱ො𝒌൯

𝟐𝑵
𝒌స𝟏

∑ ൫𝐱𝒌൯
𝟐𝑵

𝒌స𝟏

  (10) 

NRMSE alleviates the scale difference of gases, so it allows a fair comparison 

between gases. However, since NRMSE is vulnerable to outliers, it can give biased 

results, despite generally good performance. Hence, another metric, correlation 

coefficient, is adopted to supplement the NRMSE, as shown in Eq. (11). The 

correlation coefficient measures the linearity between the target values and the 

estimated values, a higher value indicates better estimation. 

𝑟 =
∑ ൫𝐱𝒌ି𝐱ത൯𝒏

𝒌స𝟏 (𝐱ො𝒌ି(𝐱ොത))

ට∑ ൫𝐱𝒌ି𝐱ത൯
𝟐𝒏

𝒌స𝟏
ට∑ ൫𝐱ො𝒌ି(𝐱ොത)൯

𝟐𝒏
𝒌స𝟏

  (11) 

where 𝐱ത indicates the mean value. 

Using these metrics, the estimation results are shown in Table 3-2. Both 

NRMSE and correlation coefficient results show that the proposed DAE method is 
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superior to the other methods in estimating the gases, including C2H6, CH4, and CO. 

In the case of C2H2, DAE shows the lowest NRMSE, and the correlation coefficient 

is the second highest. H2 and C2H4 gases are concentrated at 0 ppm; thus, it seems 

that overfitting has occurred due to data imbalance. Although its performance is 

somewhat poor for H2 and C2H4, it has the best overall performance. 

KNN has the lowest performance for more than three gases; it also takes ranks 

lower for the other gases. This is because KNN is dependent on the nearest data. 

Therefore, when there is an abrupt increase or decrease around the missing value, 

which is common in DGA data due to the long intervals between samplings, KNN 

shows low accuracy. This phenomenon is dominant, especially for gases that are 

rarely generated, such as H2, and C2H2. These gases require high enthalpy to be 

generated; thus, in most cases they are absent. However, when the requirements are 

met, they are generated, which is regarded as an abrupt appearance in the KNN 

model. 

XGBoost, light GBM, and random forest are based on the decision tree. Tree-

based methods learn criterion that separate the data into groups with similar 

properties. The criterion is represented as the branch of the tree, and the more the 

branch is subdivided, the more elaborate the model obtained. However, with DGA 

data, the decision tree methods have difficulty subdividing the criterion, because 

most of the DGA data is close to 0 ppm. However, these tree-based algorithms show 

generally better results than KNN, because the finely divided models are merged by 

ensemble learning and avoid the overfitting. The tree-based ensemble models 

performed generally better than DAE for H2 and C2H4 because of these overfitting 

prevention characteristics. In particular, RF is not overfitted more than the other 
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algorithms, because it uses a bagging method. However, when the distribution is 

relatively evenly spread, the performance of DAE is better; this is confirmed for the 

rest of the four gases. 
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Table 3-2 Imputation performance comparison for a single missing value 

Metric Methods H2 C2H2 C2H4 C2H6 CH4 CO 

NRMSE 

DAE 0.532 0.39 0.302 0.165 0.187 0.213 

XGB 0.506 0.525 0.313 0.270 0.372 0.317 

LGB 0.479 0.425 0.262 0.202 0.272 0.222 

RF 0.459 0.425 0.241 0.202 0.204 0.255 

KNN 0.591 0.579 0.275 0.279 0.330 0.226 

Correlation 
coefficient 

DAE 0.807 0.904 0.934 0.981 0.974 0.907 

XGB 0.818 0.855 0.944 0.952 0.913 0.820 

LGB 0.824 0.881 0.957 0.974 0.947 0.900 

RF 0.834 0.907 0.961 0.974 0.969 0.883 

KNN 0.730 0.770 0.945 0.951 0.927 0.899 
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3.4.3 Performance of Imputation for Multiple Missing Values 

Here, the performance results of IDAE are compared as the number of missing 

values increases from one to four. 80 samples are generated for each possible 

combination. For example, there are 12 possible combinations for two missing 

values, so 960 samples are generated. In this way, a total of 2,480 samples are 

prepared. 

All missing samples were imputed by applying the proposed IDAE. In Table 3-

3, the NRMSE and correlation coefficient between the imputed value and the actual 

value are summarized. As the number of missing values increases, the performance 

gradually decreases. This is a natural result, because errors in the single gas 

imputation model accumulate as the missing values increase. 

Comparing the performance decline levels when there is one missing value and 

four missing values, the NRMSE increased by 0.096 and the correlation coefficient 

decreased by 0.04. As the number of missing values increases, the NRMSE increases 

by 0.032 and the correlation coefficient decreased by 0.013, on average. This means 

that as missing values are added one by one, the performance declines about 3.2% 

for NRMSE and 1.3% for the correlation coefficient approach. This seems to be very 

stable because the performance reduction rate according to the number of missing 

values is very small. 
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Table 3-3 Imputation performance of IDAE according to the number of missed 
DGA values 

Number of missing values 1 2 3 4 

NRMSE 0.289 0.313 0.330 0.385 

Correlation coefficient 0.919 0.904 0.894 0.879 

 

3.4.4 Performance of Diagnostic Model with Recovered Data 

Original and recovered data are used to construct the diagnosis models, and the 

diagnostic performances are compared. For diagnostic models, two models, IEEE 

Std. C57.104-2008 and semi-supervised autoencoder (SSAE) model which will be 

introduced in Chapter 4, are used. IEEE Std. C57.104-2008 is the standard rule-based 

diagnostic method and is widely used. The model accepts H2, C2H2, C2H4, C2H6, CH4, 

CO, CO2, and TDCG gases as input and gives the health status of the transformer 

with four severity levels. 

For quantitative analysis of the diagnostic performance, the recall metric is used. 

The recall metric is defined as the ratio of the true positive to the sum of the true 

positive and false negatives, as shown in Eq. (12).  

Recall =  
୘୔

୘୔ା୊୒
  (12) 

where TP and FN stand for the true positive and the false negative, which 

indicate correct and incorrect estimation on the faulty state, respectively. A value 

close to 1 indicates better performance in recall. Although there are other metrics, 

recall is considered a suitable metric for a diagnosis model because in diagnosis, 

knowing the faulty state correctly is more important, even at the expense of false 

alarm. 
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Table 3-4 shows the recall scores of the IEEE and SSAE models. The same 

dataset as in the previous section is used. In both the IEEE and SSAE models, the 

performance is improved after data imputation. In particular, the results of the SSAE 

model are significantly improved after imputation. The SSAE model examines the 

concentration and composition ratio of all gases together. On the other hand, in the 

IEEE model, a limit is set for each gas to evaluate the health grade. This limit is 

judged as the most serious result among them. Therefore, as the number of missing 

values increases, the SSAE model is more likely than the IEEE model to determine 

the condition to be normal. 

Figure 3-4 shows the true data, missing data, and imputed data in the feature 

space of SSAE. The imputed data is located near the true data around the faulty area; 

however, the data with missing values departs from it. Also, as the number of missing 

values increases, the imputed data maintains the data in the faulty area with a slight 

drift from the true data, but the missed data is greatly affected. As a result, the 

imputed data is robust to false alarms. 

Table 3-4 Recalls of the IEEE and SSAE models before and after imputation 

 

Model Imputation N=1 N=2 N=3 N=4 

IEEE 
No 0.852 0.770 0.714 0.671 

Yes 0.985 0.927 0.937 0.893 

SSAE 
No 0.359 0.130 0.018 0 

Yes 0.829 0.794 0.828 0.692 
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(a)                              (b) 

(c)                              (d) 

Figure 3-4 The results of SSAE diagnosis before and after the imputation: (a) one missing value, (b) two missing values, (c) 
three missing values, (d) four missing values 
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3.5 Summary and Discussion 

In this study, we proposed a new methodology that imputes multiple missing 

values of DGA through DAE-based iterative imputation. The proposed methodology 

proceeds via three main steps: 1) preprocessing DGA data, 2) learning the DAE 

imputation model for a single missing value, and 3) iterative imputation of multiple 

missing values using the DAE model. The model is validated through three case 

studies that examined a vast amount of real industrial data. 

The first study compares the imputation performance for six types of single 

gases, using conventional algorithms. The DAE model had the best imputation 

performance for overall gases, so it was adopted as a core imputer in the iterative 

imputation process. The second study tested the performance of the proposed 

methodology for imputing multiple missing values. The number of missing values 

was increased from one to four, and we tested the imputation performance according 

to the number of missing values. The performance gradually decreased as the number 

of missing values increased. This is an expected result because the number of 

unknown variables to be estimated increases. The third study confirmed the 

difference in diagnostic performance before and after imputation based on existing 

diagnosis methods for power transformers. The diagnostic methods used in the study 

are rule-based IEEE Std. C57.104-2008 and an artificial intelligence-based SSAE 

model. Both methods significantly improved diagnostic accuracy after correction. 

Most oil-immersed transformers are managed through DGA. Much research has 

been conducted to develop accurate diagnosis models; however, prior work has not 

thoroughly examined the importance of the integrity of the data used in the diagnosis. 
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In particular, DGA data has a long measurement cycle and a small number of data; 

thus, each data point is meaningful. Therefore, the methodology proposed in this 

study is expected to further improve the performance of the diagnosis model and 

greatly reduce post-mortem maintenance that is required when a wrong diagnosis is 

provided due to missing data. 

In addition, the proposed method has the advantage of being applicable 

regardless of the data domain to the missing data problem. Traditional imputation 

algorithms are specialized in single missing problems occurring from time series or 

sequence-based data or multi missing problems occurring from the data consisting 

of various variables. However, the method developed in this study can solve both 

problems at the same time. Various missing values can be imputed for time series 

data composed of various variables, and it has originality in that it is a method that 

has not been attempted before. 

Due to the limitations of the offline DGA method, attempts have recently been 

made in industry to gradually convert to an online DGA method. Online methods 

have the advantage of higher sampling frequency and lower probability of missing 

data. However, due to the physical limitations of the measurement method, the data 

accuracy is lower than that of the offline gas chromatography method. In future 

studies, research for increasing the accuracy of online DGA data will be conducted. 

Sections of this chapter have been submitted as the following journal articles:  
1) Boseong Seo, Jaekyung Shin, Taejin Kim, and Byeng D. Youn, “Missing Data 

Imputation Using an Iterative Denoising Autoencoder (IDAE) for Dissolved Gas 
Analysis,” Electric Power Systems Research, Submitted, 2022. 
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Chapter 4 Health Feature Extraction via Semi-Supervised Autoencoder (SSAE) 

Equation Chapter 4 Section 1 

Health Feature Extraction via 
Semi-Supervised Autoencoder 
(SSAE) 

 

In this chapter, the new health features are developed for diagnosis of power 

transformers using semi-supervised autoencoder (SSAE). The limitation of the 

existing standard rules is that the false alarm rate is high because it does not consider 

the composition cost or combination between gases, but simply considers the gas 

concentration level. Further detailed diagnosis is difficult because the condition of 

the transformer is classified into several severities. Because the decomposition 

reaction of insulation is very complex, it is difficult to build a physical model. Thus, 

we would like to extract a monotonic health index that enables more accurate and 

detailed diagnosis based on deep learning. Subchapter 4.1 explains the theoretical 

background of autoencoder and softmax classifier, which compose the SSAE model. 

Subchapter 4.2 proposes the new diagnosis methodology consisting of two steps: 1) 

data preprocessing, and 2) construction of health feature space (HFS) through SSAE. 

Subchapter 4.3 evaluates the diagnostic performance of the proposed method 

comparing with conventional diagnostic methods. At the conclusion, Subchapter 4.4 

provides the summary and discussions of this study. 
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4.1 Backgrounds of SSAE 

The main purpose of this study is to extract key features representing the health 

status of the transformers from DGA data. Semi-supervised autoencoder (SSAE) has 

excellent performance in learning features that are highly correlated with both input 

data and labeled data. We use the SSAE method because it is the most suitable 

method for the research purpose. The SSAE proposed in this study consists of a 

combination of autoencoder (AE), one of the unsupervised learning techniques for 

extracting important features by reducing the dimension of data, and softmax 

classifier (SC), one of the supervised learning techniques for classifying the labeled 

data. Therefore, the corresponding subchapter briefly introduces the theory of 

autoencoder and softmax classifier that make up the SSAE model. 

 

4.1.1 Autoencoder: Unsupervised Learning for Feature Extraction 

AE is the most representative method of unsupervised learning and has 

excellent performance in dimension reduction and feature extraction of high-

dimensional data [50]. The structure of the autoencoder is divided into an encoder 

part and a decoder part consisting of a hidden layer as shown in Figure 4-1. Encoder 

acts as a manifolding learning that performs dimension reduction, and decoder acts 

as a generative model learning that performs data restoration [51]. 

For a given learning data 𝐱 = {𝐱ଵ, 𝐱ଶ, … , 𝐱௞} ൫𝐱௞ ∈ 𝑹ௗ൯, the encoder function 

𝑓ఏ  reduces the dimension to 𝑹ௗ → 𝑹ௗᇲ
 (𝑑 > 𝑑ᇱ)  through the model parameter 

𝛉 = {𝐖, 𝐛} ( 𝐖: 𝑑 × 𝑑ᇱ  dimensional weight matrix and 𝐛: 𝑑ᇱ  dimensional bias 

vector) and the activation function s, as shown in Eq. (1). There are many types of 
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activation functions, and commonly used functions include sigmoid, modified linear 

unit (ReLU), and exponent linear unit (ELU), as shown in Table 4-1. Conversely, 

the decoder function 𝑔ఏᇲ  reconstructs the dimensionally reduced feature 𝐡 =

{𝐡ଵ, … , 𝐡௞}  (𝐡௞ ∈ 𝑹ௗᇲ
)  to 𝐱ො = ൛𝐱ො1, 𝐱ො2, … , 𝐱ො𝑘ൟ  ቀ𝐱ො𝑘 ∈ 𝑹𝑑

ቁ  through Eq. (2). The 

feature 𝐡 extracted through the optimization process of 𝛉 is called the latent value, 

and this feature implicitly represents the main characteristics of the input data. 

𝑓ఏ(𝐱௞) = ℎ௝
௞ = 𝑠൫∑ 𝑊௝௜𝑥௜

௞ௗ
௜ୀଵ + 𝑏௝൯   (13) 

𝑔ఏᇲ(𝐡௞) = 𝑥ො௜
௞ = 𝑠൫∑ 𝑊෡௜௝ℎ௝

௞ௗᇲ

௝ୀଵ + 𝑏෠௜൯   (14) 

AE learns 𝛉  to minimize loss function 𝐿(𝐱, 𝐱ො) . Loss function 𝐿(𝐱, 𝐱ො)  is 

represented by a mean square error (MSE) of the input (original data) and output 

(reconstructed data), as shown in Eq. (15), and updates 𝛉  through a gradient 

descent-based back-propagation method [44]. Update equation of 𝛉 is described in 

Eq. (16), and 𝜂 means the learning rate, the hyperparameter that optimizes the step 

size at each iteration. 

𝐿(𝐱, 𝐱ො) =
ଵ

௡
∑ ฮ𝐱௜ − 𝐱ො௜ฮ

ଶ௡
௜ୀଵ =

ଵ

௡
∑ ฮ𝐱௜ − 𝑔ఏᇲ(𝑓ఏ(𝐱௜))ฮ

ଶ௡
௜ୀଵ   (15) 

𝛉௧ାଵ = 𝛉௧ − 𝜂
డ௅(𝐱,𝐱ො)

డ𝛉
   (16) 
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Table 4-1 The typical activation functions of autoencoder 

Type Sigmoid ReLU ELU 

Equation 
1

1 + 𝑒ି௫
 max (0, 𝑥) ൜

𝑥                     𝑥 ≥ 0
𝛼(𝑒௫ − 1)    𝑥 < 0

 

 

4.1.2 Softmax Classifier: Supervised Learning for Classification 

SC is one of the widely used methods for multinomial classification problems. 

The softmax function is an activation function originally used to predict the 

probability distribution for discrete variable with n possible values. Therefore, when 

the softmax function is used as the output unit of the neural network, the output of 

the neural network is the probability classified into a specific class. The standard 

softmax function 𝜎: 𝑹௡ → (0, 1)௡ (𝑛 > 1) is defined by Eq. (17). It normalizes the 

exponential of each input element 𝑧௜  by dividing by the sum of all these 

exponentials. Through the normalization, the sum of all components of the output 

vector 𝜎(𝒛) is 1. 

𝜎(𝐳)௜ =
ୣ୶୮ (௭೔)

∑ ୣ୶୮ (௭ೕ)೙
ೕ

   (17) 

Figure 4-1 The structure of autoencoder 
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Assuming that there are input data 𝐱 = {𝐱ଵ, 𝐱ଶ, … , 𝐱௞} ൫𝐱௞ ∈ 𝑹ௗ൯ and output 

data 𝐲 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡)  consisting of n discrete labels, let’s calculate the 

probability 𝑦ො௝
௜ that the given input 𝐱௜ belongs to a particular output 𝑦௝ using the 

softmax function in Eq. (17). 𝑦ො௝
௜ can be calculated as Eq. (18). 

𝑦ො௝
௜ = 𝑃൫𝐲௜ = 𝑦௝ห𝐱௜൯ = 𝜎൫𝐳௜൯

௝
=

ୣ୶୮ (௭ೕ
೔)

∑ ୣ୶୮ (௭ೕ
೔)೙

ೕసభ

   (18) 

When the softmax function is used as the output unit of the natural network, 𝐳௜ 

is defined as follows: 

𝐳௜ = 𝐖ௌ஼
୘ 𝐡௜ + 𝐛ୗେ

௜    (19) 

where, 𝐖ௌ஼
୘  is the weight matrix of SC and 𝐛ୗେ

௜  is the bias vector of SC, and 𝐡௜ 

is the output vector of the preliminary hidden layer. 

If the loss function of the SC model is applied in the same way as the loss 

function of the linear model, the MSE function, it is expressed in a bumpy form, 

since the softmax function has the normalized form of the exponential function. 

Therefore, it is difficult to find the minimum value of loss function by the gradient-

descent method. To solve this problem, the log function is used as a loss function of 

the SC model, and a representative method is the cross-entropy (CE) method. The 

loss function with CE is presented as Eq. (20), and the exponential function is 

linearized by taking log to the predicted value of SC. Mathematically, CE means the 

uncertainty of the difference in similarity between the two probability distributions 

(in this case, the distribution of actual labeled data 𝐲௜ and predicted data 𝐲ො௜). 

𝐿஼ா൫𝐲௜ , 𝐲ො௜൯ = − ∑ 𝐲௜log (𝐲ො௜)௡
௜ୀଵ = − ∑ 𝐲௜log (𝜎(𝐳௜))௡

௜ୀଵ   (20) 
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4.2 SSAE-based Health Feature Extraction 

This subchapter describes the process of extracting the health feature for 

diagnosing and predicting the status of transformers. The process of health feature 

extraction consists of 2 steps: 1) data preprocessing for SSAE model training, and 2) 

construction of health feature space using SSAE. In the data processing step, DGA 

data is normalized to log scale. Then, SSAE model is trained for health feature 

extraction. The SSAE model has a structure in which the softmax function is 

implanted into the output layer inside the autoencoder.  

 

4.2.1 Data Preprocessing 

In this study, we use the concentration and the composition ratio of the main 

six gases, H2, C2H2, C2H4, C2H6, CH4, and CO, as the input of SSAE model. The 

enthalpy in which the gas is decomposed varies from gas to gas. Therefore, the 

amount of gas produced varies greatly depending on the gas as shown in Figure 4-2. 

Figure 4-2 is an excerpt from the study of S. Bustamante et al. [52], and shows the 

histogram distribution of DGA data and the positions of 90th and 95th percentiles. 

For example, CO occurs in thousands to tens of thousands of ppm, while C2H2 is 

only a few ppm. If  the difference in the scale of the gas concentration is hundreds 

of times or more, it is highly likely that the model will be trained to overfit to a gas 

with high concentration. Therefore, it is necessary to uniformly normalize each gas 

concentration from 0 to 1. In this study, DGA data is normalized to a logarithmic 

scale by Eq. (21). The log-scale DGA data might help to avoid the overfitting on the 

numerical operations. 
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𝑥ᇱ =
୪୭୥(௫)ି୪୭୥ (௫ౣ౟౤) 

୪୭୥(௫ౣ౗౮)ି୪୭୥ (௫ౣ౟౤)
=

୪୭୥ (
ೣ

ೣౣ౟౤
)

୪୭୥ (
ೣౣ౗౮
ೣౣ౟౤

)
  (21) 

where, x is the original DGA data and x’ is the log-scale normalized DGA data. 

 

4.2.2 Construction of Health Feature Space (HFS) via SSAE 

The purpose of this study is to extract features that are highly correlated with 

the degradation of the transformer from the DGA data. In machine learning, feature 

extraction refers to a process that analyzes the main components of high-dimensional 

data and converts them into low-dimensional data. The process of extracting major 

features from data is to select the most influential features among the various features 

of the data. Therefore, if a feature is extracted by general methods, there is a 

possibility that the feature does not include information on the health status of the 

Figure 4-2 Distribution of gas concentrations and positions of 90th and 95th 
percentiles 
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transformer. In this study, we developed SSAE method to solve this problem. As 

illustrated in Figure 4-3, the proposed SSAE has a neural network structure that 

combine the unsupervised learning, AE, and the supervised classification algorithm, 

SC, sharing the hidden layers. By sharing hidden layers, it has the advantage of being 

able to perform feature extraction and health status learning at the same time. 

If a feature is extracted by using only the autoencoder, there is a possibility that 

the feature does not include information on the health status of the transformer. 

Therefore, in this study, we tried to extract features including health information by 

applying SSAE to simultaneously train the labeled data for normal and failure. As 

illustrated in Figure 4-3, the SSAE used in this study has a structure in which the 

unsupervised learning, AE, and the supervised classification algorithm, SC, share 

the encoder layer.  

For the given training data (𝐱, 𝐲) = {(𝐱ଵ, 𝐲ଵ), (𝐱ଶ, 𝐲ଶ), … , (𝐱௞, 𝐲௞)}  ( 𝐱௞ : 

dissolved gas concentration and ratio data, 𝐲௞: status labeled data, 𝐱௞ , 𝐲୩ ∈ 𝑹ௗ), 

the loss function of the proposed SSAE model is described in Eq. (22). It is a 

combination of the loss function of AE (Eq. (15)) and SC (Eq. (20)) which are 

introduced in Subchapter 4.1. 

𝐿ୗୗ୅୉൫𝛉ୣ୬, 𝛉ୢୣ, 𝛉ୱୡ൯ = 𝛼𝐿୅୉൫𝛉ୣ୬, 𝛉ୢୣ൯ + (1 − 𝛼)𝐿ୗେ(𝛉ୣ୬, 𝛉ୱୡ)  

=
ଵ

௡
∑ ฮ𝐱௜ − 𝐱ᇱ௜

ฮ
ଶ

௡
௜ୀଵ −

ଵ

௡
∑ 𝐲௜ log൫𝐲ᇱ௜൯௡

௜ୀଵ    (22) 

=
ଵ

௡
∑ ฮ𝐱௜ − 𝑔ఏౚ౛(𝑓ఏ౛౤(𝐱௜))ฮ

ଶ௡
௜ୀଵ −

ଵ

௡
∑ 𝐲௜ log൫𝜎ఏ౩ౙ(𝑓ఏ౛౤൫𝐱௜൯)൯௡

௜ୀଵ   

where 𝛼 is the hyperparameter to control the weight between 𝐿୅୉ and 𝐿ୗେ. SSAE 
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optimizes the encoder layer parameters 𝛉ୣ୬, decoder parameter 𝛉ୢୣ, and softmax 

parameter 𝛉ୱୡ  so that softmax can extract a latent value that can distinguish 

between normal and failure of a transformer. 

As can be seen in Table 4-2, the SSAE used in this study consists of one input 

layer, three hidden encoder layers, two hidden decoder layers, one autoencoder 

output layer, and one softmax output layer. ELU is used for unsupervised learning 

as an activation function, and softmax is used for supervised learning. It is expected 

that the implicit health features are extracted from shared hidden layers. It is intended 

to visualize the degradation behavior of the transformer in a 2D space so that it could 

be intuitively well understood. Therefore, we set the end of the shared hidden layer 

to have two nodes. 

Figure 4-4 shows the health feature space (HFS) reflecting the characteristics 

of the health feature that deteriorates monotonically. The blue dot and the red dot 

mean normal and fault respectively, and the decision boundary between normal and 

fault can be obtained through clustering techniques. HFS can be interpreted that as 

the degradation of the transformer progresses, the feature moves to the lower right. 
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Figure 4-3 Structure of the proposed SSAE 
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Table 4-2 Parameters in the proposed SSAE 

Layer 
Activation 
Function 

Number of Nodes 
Number of 
Parameters 

Input - 12 - 

Encoder 1 ELU 8 104 

Encoder 2 ELU 4 36 

Encoder 3 ELU 2 10 

Decoder 1 ELU 4 12 

Decoder 2 ELU 8 40 

Output 1 ELU 12 108 

Output 2 Softmax 2 6 

 

4.3 Performance Evaluation of SSAE 

The SSAE is the AI-based diagnostic model that can classify the normal and 

fault states of a power transformer by extracting health features that represent the 

deterioration of the insulation. The SSAE model can visualize the degree of the 

Figure 4-4 Visualization of the health feature behavior in HFS 
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degradation, so the effectiveness of the recovered data can be inspected visually. The 

transformer data in the feature space of the SSAE model is shown in Figure 4-5. It 

shows the decision boundary between the normal (sky blue) and the fault area (red). 

When the transformer degrades, the data in the feature space moves toward the red 

area. The sample degradation data over time is summarized in Table 4-3 and 

designated in Figure 4-5. 

To evaluate the performance of the proposed SSAE model, we compared the 

diagnosis accuracy of SSAE with that of conventional methods, IEEE and IEC. In 

Section 4.3.1, dataset used for test is described. And evaluation metrics and 

experimental results are covered in Section 4.3.2. 

 

 

Figure 4-5 Degradation of DGA data in HFS 
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Table 4-3 Sample DGA data reflecting degradation over time 

No. Acquisition date H2 C2H2 C2H4 C2H6 CH4 CO 

1 20071214 0 0 0 0 4 224 

2 20081202 2.8 0 12.3 1.2 6.1 1024 

3 20101201 6 0 20 1 7 1416 

4 20111121 10 0 17 2 10 1302 

5 20121115 7 0 16 4 13 1108 

6 20131127 3 0 19 7 21 1453 

 

4.3.1 Description of Dataset 

We had a total of 141,690 data including 141,573 data provided from KEPCO 

and 117 IEC TC data, which are public data. Of these, a total of 131,503 data are 

used for the test after removing all missing data or duplicated data. However, there 

are several difficulties in using these data as it is. First, there are more than 20,000 

unlabeled data, accounting for more than 17% of the total data. Second, the data 

imbalance problem between normal and failure data is severe. In fact, among the 

KEPCO data, 121 cases of data marked as failure are very small, but when we 

checked even this, there were cases where the gas concentration is as low as normal, 

so the reliability of the handwritten data is low. Finally, the criteria for failure are 

not clear. Since there is no data recording maintenance action after the failure 

determination, it is difficult to determine the severity of failure. For example, after 

determining the failure, it is possible to replace the insulating oil or the internal parts, 

or entire transformer, but there is no such information. Therefore, we newly 

established failure criteria and reorganized datasets based on maintenance reports 

and domain knowledge of substation diagnosis experts. 
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The criteria for newly defined failure data are as follows: 

1) Failure data determined by the detailed inspection in the maintenance report 

2) Data with higher numerical values than concentrations of all five gases (H2, 

C2H2, C2H4, C2H6, and CH4) of failure data in the maintenance report 

3) Data with C2H2 concentration higher than 1 ppm 

4) Data with top 50 concentrations of four gases (H2, C2H4, C2H6, CH4) and 

total combustible gases (TCG) 

The number of normal and failure data newly reorganized is 126,664 and 4,839, 

respectively. By establishing a new failure criterion, it is possible to solve the data 

imbalance problem to some extent by retaining more failure data and assign the 

labeling information to non-labeled data. Table 4-4 is an example of DGA data 

actually used for the test, and as you can see, the concentration and ratio of six gases 

are used as input of the model, and normal and fault label information is used as 

output. 

Table 4-4 Example of DGA data samples for experiment 

Sample 
Input Output 

H2 C2H2 C2H4 C2H6 CH4 CO Status 

1 22 0 99 136 122 200 Normal 

2 181 0 23 27 67 83 Normal 

3 58 3 54 51 54 927 Fault 

4 3 0 29 193 121 311 Normal 

5 76 7 25 42 31 43 Fault 

6 113 13 603 144 237 249 Fault 
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4.3.2 Diagnosis Accuracy of SSAE for Power Transformers 

To evaluate the diagnostic accuracy of the proposed SSAE model, two 

conventional diagnostic models, IEEE Std. C57.104 and IEC 60599, are used for 

comparative study. And the following four evaluation metrics are used for 

quantitative performance evaluation: positive predictive rate (PPV), true positive 

rate (TPR), true negative rate (TNR), and F1 score. These are mainly used to verify 

the performance of the classification model. In particular, it is possible to objectively 

evaluate the model performance for the imbalanced data. PPV refers to the actual 

positive rate to predicted positive by the model, TPR refers to the predicted positive 

rate to the actual positive, TNR refers to the predicted negative rate to the actual 

negative, and F1 score is the weighted average of PPV and TPR. It is closer to 1 as 

the model performs better. These evaluation metrics are obtained from confusion 

matrix. Table 4-5 is the confusion matrix of the model, and the evaluation metrics 

can be mathematically expressed as follows: 

PPV =  
୘୔

୘୔ା୊୔
  (21) 

TPR =  
୘୔

୘୔ା୊୒
  (22) 

TNR =  
୘୒

୘୒ା୊୔
  (23) 

F1 =  
ଶ∗୔୔୚∗୘୔ୖ

(୔୔୚ା୘୔ୖ)
  (24) 
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Table 4-5 Confusion matrix for model evaluation 

 
Actual value 

Normal Fault 

Predicted 
value 

Normal TN FN 

Fault FP TP 

Figure 4-6 represents the confusion matrices of the SSAE, IEEE and IEC 

models. And four evaluation metrics, PPV, TPR, TNR, and F1, are summarized in 

Table 4-6. The noticeable difference between SSAE and other models is that PPV is 

about three to six times higher than other models. That is, the SSAE model has the 

lowest false alarm rate. In addition, SSAE also shows the best results in TNR and F1 

scores. 

In the training process, the SSAE model calculates the weight for each gas, 

representing the correlation between the gas and the status. Then, SSAE 

comprehensively diagnoses the transformer status based on the gas concentration, 

gas composition ratio, and gas weight. However, conventional diagnostic methods 

determine the worst grade based on the thresholds of each gas. So, it is difficult to 

consider the overall composition ratio and weight. Consequentially, the diagnosis 

accuracy is highest, and the false alarm rate is lowest in SSAE. In the case of TPR, 

IEC was 0.035 higher than SSAE because IEC has a greater tendency to determine 

as failure. Therefore, it is important to evaluate the diagnostic performance using 

various metrics together, not just TPR. 
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Table 4-6 Health diagnosis performance of SSAE and conventional methods, IEEE 

and IEC 

 

4.4 Summary and Discussion 

In this study, we proposed a new methodology that extracts the health features 

for power transformers using DGA data. The proposed methodology proceeds via 

two main steps: 1) data normalization to log-scale, 2) learning the semi-supervised 

autoencoder (SSAE) model for health feature extraction. SSAE can construct the 

health feature space that visualizes the monotonic behavior of health degradation. 

Thanks to the monotonous behavior of the health feature, workers can understand 

the health status of the transformer intuitively. 

The model is validated through a comparative study that compared the 

Model PPV TPR TNR F1 
SSAE 0.3800 0.5195 0.9676 0.4389 
IEEE 0.1073 0.4085 0.8702 0.1700 
IEC 0.0606 0.5542 0.6717 0.1092 

Figure 4-6 Confusion matrices of SSAE and conventional methods, IEEE and IEC 
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diagnostic performance of SSAE with conventional methods. Confusion matrix 

(PPV, TPR, and TNR) and F1 score are used as the performance evaluation index. 

The performance of the SSAE model is superior in most evaluation indices. 

Especially, the SSAE model can reduce the false alarm rate compared to other 

methods. In real industrial sites, frequent false alarms increase worker’s fatigue and 

lose the confidence in the solution. The proposed SSAE helps workers perform 

active maintenance by accurately diagnosing the status of the power transformers. 

The existing semi-supervised learning method solves the problem by 

additionally performing supervised learning to a pre-trained model through 

unsupervised learning. However, the method had a limitation that the pre-trained 

unsupervised model cannot extract the degradation features of the transformer. This 

is because the dissolved gasses are generated by various reasons including 

degradation of the transformer. Therefore, the model structure of proposed method 

was changed in such a way that unsupervised and supervised learning are not 

sequentially learned but simultaneously learned. In this way, the health features can 

be extracted effectively. An originality of the proposed methodology is that it can be 

applied to feature extraction with specific purposes regardless of the data domain. 

Dissolved gases in insulating oil may be generated due to various causes, so 

there is a limitation in diagnosis accuracy of transformer using only DGA data. A 

further study is needed under the theme of developing a physical model for 

estimating the amount of dissolved gas generated by thermal decomposition of 

insulation. It is possible to develop a physical model for reaction enthalpy of 

insulation thermolysis and thermal and electrical energy required for thermolysis by 

using DGA, temperature and partial discharge data. If the estimated gas 
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concentrations and energy obtained from the physical model are additionally used as 

features of the training model, it will be able to construct a more accurate diagnostic 

model. 
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Chapter 5 Health Prognosis Model via XGBoost Regression 

Equation Chapter 5 Section 1 

Health Prognosis Model via 
XGBoost Regression 

 

In this chapter, XGBoost regression-based health prognostic method is 

proposed to predict the health status and remaining useful life of power transformers. 

DGA-based diagnosis or detailed inspection of transformers are not frequently 

performed. Thus, safety accidents caused by faulty transformers often occur 

unexpectedly. To prevent this, interest in preventive maintenance of transformers 

has recently emerged. Subchapter 5.1 introduces the theoretical background of 

XGBoost, the basis of this study. Subchapter 5.2 proposes the new prognosis 

methodology consisting of two steps: 1) calculation of health index, and 2) 

construction of XGBoost model for health prognosis. Subchapter 5.3 describes the 

results of two case studies: 1) a comparison with other machine learning algorithms 

on prognostic performance, and 2) examination of prognostic performance according 

to the prediction period. At the conclusion, Subchapter 5.4 provides the summary 

and discussions of this study. 

 

 



65 
 
 

5.1 Backgrounds of XGBoost 

T.Chen and C.Guestrin introduced XGBoost in 2016 for the first time, which is 

a scalable machine learning method for tree boosting system [47]. XGBoost is one 

of the ensemble techniques that uses a combination of weak decision trees, which 

weights the errors of weak prediction models and sequentially reflects them in the 

next learning model to create a strong prediction model. We will explain 

mathematically below how XGBoost learns data. 

For a given data set with 𝑛 × 𝑚 (n samples, m features) dimensions, 𝐷 =

{(𝐱௜, 𝑦௜)} (|𝐷| = 𝑛, 𝐱௜ ∈ 𝐑௠, 𝑦௜ ∈ 𝐑) , a tree ensemble model using K additive 

functions is expressed as Eq. (23) 

𝑦ො௜ = 𝜙(𝐱௜) = ∑ 𝑓௞(𝐱௜)
௄
௞ୀଵ , 𝑓௞ ∈ ℱ  (23) 

where, ℱ = {𝑓(𝐱) = 𝑤௤(𝐱)} (𝑞: 𝐑௠ →  𝑇, 𝑤 ∈ 𝐑்) is the space of regression trees. 

q is a function that maps a sample to the corresponding leaf index, and w is a leaf 

weight. T is the number of leaves. XGBoost uses a regularized loss function, Eq. 

(24), to train the trees. 

𝐿(𝜙) = ∑ 𝑙(𝑦ො௜, 𝑦௜)௜ + ∑ Ω(𝑓௞)௞ , Ω(𝑓௞) = 𝛾𝑇 +
ଵ

ଶ
𝜆‖𝑤‖ଶ (24) 

where, l is a differentiable convex function which calculates the difference between 

prediction 𝑦ො௜ and true 𝑦௜. And there is a regularization term Ω. This serves to learn 

that the structure of the model is simple and prevents overfitting. In order to find the 

best tree from the tree model and loss function, XGBoost adopts an additive manner 

that increases one branch in the tree for each iteration. The equation below is the loss 

function in the t-th iteration. 
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𝐿(௧) = ∑ 𝑙 ቀ𝑦௜ , 𝑦ො௜
(௧ିଵ)

+ 𝑓௧(𝐱௜)ቁ௡
௜ୀଵ + Ω(𝑓௧) + 𝐶 (25) 

Gradient boosting is a method of weighting the parts that were not well learned 

in the previous iteration in the procedure of ensemble learning. Intuitively 

interpreting the Eq. (25), the loss function is minimized by adding the current 

prediction 𝑓௧(𝐱௜) to the previous prediction 𝑦ො௜
(௧ିଵ). So, this explains that XGBoost 

is the one of Gradient Boosting methods and why is the name extreme gradient 

boosting (XGBoost). 

To optimize the loss function, Eq. (25) can be approximated to Eq. (26) by 

second-order approximation with Taylor expansion. 

𝐿(௧) ≅ ∑ [𝑙ቀ𝑦௜, 𝑦ො௜
(௧ିଵ)

ቁ௡
௜ୀଵ + 𝑙௜

ᇱ𝑓௧(𝐱௜) +
ଵ

ଶ
𝑙௜

ᇱᇱ𝑓௧
ଶ(𝐱௜)] + Ω(𝑓௧) (26) 

where, 𝑙௜
ᇱ =

డ

డ௬ො
೔
(೟షభ) 𝑙(𝑦௜ , 𝑦ො௜

(௧ିଵ)
) and 𝑙௜

ᇱᇱ =
డ

డమ௬ො
೔
(೟షభ) 𝑙(𝑦௜ , 𝑦ො௜

(௧ିଵ)
), which are first and 

second order gradient of the loss function. Removing constant term, Eq. (27) 

becomes the final objective function in t-th iteration. As a result, since the objective 

function depends on 𝑙௜
ᇱ and 𝑙௜

ᇱᇱ, we can optimize XGBoost by entering the first and 

second derivatives of loss function l. 

𝐿෨(௧) = ∑ [௡
௜ୀଵ 𝑙௜

ᇱ𝑓௧(𝐱௜) +
ଵ

ଶ
𝑙௜

ᇱᇱ𝑓௧
ଶ(𝐱௜)] + Ω(𝑓௧)  (27) 

The goal of XGBoost is to find split points that allow the loss function to be 

reduced as much as possible. XGBoost can find the split points quickly by using 

approximate algorithm. 

As a result, the advantages of XGBoost over other tree boosting algorithms are 

as follows: 1) fast execution time through parallelism, 2) overfitting regularization, 



67 
 
 

and 3) excellent predictive performance in classification and regression problems. 

Therefore, we want to build a health prediction model for power transformers using 

XGBoost. 

 

5.2 XGBoost Regression Model for Health Prognosis 

This Subchapter introduces the process of constructing a health prediction 

model for power transformers based on XGBoost regression. A regression model is 

created by learning the trend of the health index calculated from the HFS in Chapter 

4. If the health indices at the past four points are given, it is possible to predict the 

health index at any future time with this regression model. The process of building a 

model consists of two main components: 1) health index calculation via orthogonal 

projection in HFS and 2) XGBoost training. Sections 5.2.1 and 5.2.2 will cover each 

process in detail. 

 

5.2.1 Health Index Calculation via Orthogonal Projection (OP) 

The health index has two significances: 1) quantification of the health status of 

the transformer and 2) application as a prognosis feature. Since the existing IEEE or 

IEC diagnostic methods determined the health status of the transformer by dividing 

it into several grades, it is difficult to distinguish the status if it is determined to be 

the same grade, even though the degree of degradation is different. Therefore, 

intuitive and detailed diagnosis is possible by numerically expressing the state of the 

transformer. In addition, the digitized health index can be utilized as input to the 

health prediction model of the transformer. If the health index has monotonous 
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behavior, the future status can be predicted by learning the historical trend of the 

health index. Therefore, we attempted to calculate the index from the health feature 

having the monotonous behavior. We suggest applying the concept of orthogonal 

projection (OP) to calculate the health index. 

The proposed process of deriving a health index is described in Figure 5-1. It 

consists of three steps: 1) finding a linear decision boundary to distinguish between 

normal and failure using support vector machine (SVM), 2) finding a straight line 

perpendicular to the decision boundary, and 3) using the x-coordinate value of the 

axis-rotated coordinate system as the health index. In the process of obtaining the 

decision boundary, the decision boundary is assumed to be linear because it is 

actually nonlinear but almost linear. And during axis rotation, the rotation angle 𝜃 

is the angle between the orthogonal line and the x-axis. 

Although there are many different ways dimension reduction, the OP is 

proposed because it is the most effective way to prevent the reversal of the health 

index near the boundary between normal and failure. Here, the reversal of the health 

index means that the health index of a transformer in a relatively poor status is 

calculated as if it is in a better status. 
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Figure 5-1 Process of deriving a health index in HFS: (a) finding a linear decision boundary using SVM, (b) finding a 
orthogonal line to the boundary, and (c) health index calculation through axis rotation by 𝜃 
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5.2.2 Model Training based on XGBoost Regression 

(1) Health Index Mapping 

Prior to the point, note that this study aims to develop technologies that can be 

applied in real industrial sites. Therefore, we tried to express the health index in the 

range [0, 1] for an intuitive understanding. The health index developed in Subchapter 

4 has a range of [-∞, ∞], where (-15, 0) is the degradation area. The degradation area 

is a status in which the transformer can be operated normally, and when the health 

index exceeds 0, a defect occurs, and repair or replacement is required. An area 

below -15 means an absolutely normal status. Therefore, the health index is 

proportionally mapped as shown in the Figure 5-2. The health index is designed to 

decrease from 1 to 0 as degradation progresses. 
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Figure 5-2 Health index mapping for intuitive understanding of degradation 
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(2) Definition of Input and Output Data 

Based on the IEEE recommendations in Figure 5-3, it is recommended that the 

DGA sampling interval be taken differently depending on the condition of the 

transformer. Typically, DGA is measured on a daily interval for short and on a yearly 

interval for long. This irregularity in the data acquisition interval makes it difficult 

to predict the status of the transformer. Therefore, the goal of this study is to create 

a predictive model, robust to data sampling interval. To achieve the goal, we tried to 

define the proper input and output to learn the health trend of transformers. We 

defined the input and output as shown in Figure 5-4. The health index (HI0, HI1, HI2, 

HI3) at the past four times, the measurement interval (T1-T0, T2-T1, T3-T2), and the 

prediction interval (Tp-T3) are set as inputs, and the health index (HIp) at the 

prediction time is set as output. By defining in this way, the health of the transformer 

and time series information can be learned together. If the historical data and the 

prediction period are inputted, a future health index may be obtained. Four 

measurement data are used in consideration of the DGA data acquisition 

environment in real industrial sites. In order to adjust the scale of input data, the 

measurement interval and the prediction interval are also normalized by total four 

measurement periods. 
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Figure 5-4 Recommendation for DGA sampling intervals by IEEE Std C57.104 

Figure 5-3 Definition of input and output for XGBoost learning 
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(3) XGBoost Design for Health Index Prediction 

As shown in Figure 5-5, the XGBoost used in this study predicts the output as 

the sum of the results of all tree models for a given input data 𝐱௜ =

{𝑥௜ଵ, 𝑥௜ଶ, 𝑥௜ଷ, 𝑥௜ସ, 𝑥௜ହ, 𝑥௜଺, 𝑥௜଻, 𝑥௜଼}  and output data 𝑦௜ . In this case, the model is 

learned to minimize the residual of the previous tree, and if the residual is no longer 

reduced, the tree is not generated. As explained in Subchapter 5.1, the structure of 

the tree is determined by pruning until the loss function is minimized. In other words, 

branches are created until the loss of the child branch exceeds the loss of the parent 

branch. 

In this study, the XGBoost library provided by Python was used, and it was 

applied for regression analysis to solve the problem of predicting future health index. 

There are various hyperparameters in XGBoost: 1) general parameters for adjusting 

booster structure and computing power, 2) booster parameters for tree optimization 

and regularization, and 3) task parameters for setting objective functions and 

evaluation metrics. In this study, the main parameters were set as described in Table 

5-1. The booster structure was set to 'gbtree' for tree-based learning, and the objective 

function and evaluation metric were set to 'reg:squarederror' and 'rmse', respectively, 

according to the purpose of regression analysis. XGBoost also has several tricks to 

prevent model overfitting, such as learning rate 𝜂 that can control the influence of 

each tree model and regularization term 𝛾 and 𝜆 in Eq. (24). The optimal value of 

𝜂 was derived through parameter study. For 𝛾 and 𝜆, since the scale of the input 

data is normalized between 0 and 1, the default of 1 was used as it is. Finally, you 

can limit the maximum number of trees. Even if the maximum number is not reached, 

learning is interrupted if the error is no longer improved. Since the number of trees 
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is correlated with 𝜂, the optimal combination was found through parameter study. 

Table 5-1 Parameters in the proposed XGBoost 

Parameter Value 

Booster Gbtree 
Objective function Linear regressor (reg:squarederror) 
Evaluation metric Root mean squared error (rmse) 
Learning rate (𝜂) 0.1 

Regularization 1 (𝛾) 1 
Regularization 2 (𝜆) 1 

# of estimators 10000 
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Figure 5-5 Structure of the proposed XGBoost 
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5.3 Performance Evaluation of XGBoost Regression 

The proposed XGBoost-based prognosis model was verified by testing the 

actual industrial data provided by KEPCO. Two comparative studies were conducted. 

The first study compared the performance with the proposed algorithm and other tree 

structure algorithms, light GBM and random forest, and DNN which is based on the 

neural network. In this study, a parameter study was also performed simultaneously, 

and performance was evaluated on the optimal parameters. The second study 

compared the prognostic accuracy according to the prediction period. It was 

confirmed how much the prediction performance declined for a total period of 5 

years on a yearly basis. 

 

5.3.1 Description of Dataset 

This study was conducted using DGA data provided by KEPCO. These data 

have been accumulated by operating more than 8,000 transformers in South Korea 

for more than 30 years. The amount of historical DGA data is enough to make a 

prediction model. A total of five historical data are required to learn the proposed 

XGBoost model, so transformer data less than five times are excluded. For given 

DGA data 𝐗(௡) = {𝐱ଵ
(௡)

, 𝐱ଶ
(௡)

, … , 𝐱௧
(௡)

}  of the n-th transformer, the dataset was 

reconstructed as shown in Figure 5-6, to get as much data as possible. The total 

number of reconstructed datasets is 495,196, of which 85% is used for model 

learning and the remaining 15% is used for model validation. Then, features of input 

and output as defined in Section 5.2.1 are calculated from DGA data, and are used 

for model construction. 
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5.3.2 Prognosis Accuracy of XGBoost for Power Transformers 

In general, the maintenance work is planned differently according to the health 

status of the transformer at the industrial site. Therefore, it is important to predict the 

health status of the transformer several months in advance. In this work, we evaluate 

the performance by focusing on how well the proposed XGBoost regression model 

predicts the actual health status. Here, the health status is classified into four levels 

based on the health index as shown in Table 5-2. The thresholds of health index by 

levels are derived based on the cluster of data in HFS obtained in Chapter 4. Back to 

the point, the accuracy calculation metric is defined as a ratio of the number of 

correctly predicted samples and the total number of samples, as shown in Eq. (28). 

The average accuracy is calculated through cross validation of seven folds. 

Figure 5-6 Dataset configuration for XGBoost regression 
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𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 =
்௛௘ ௡௨௠௕௘௥ ௢௙ ௖௢௥௥௘௖௧ ௣௥௘ௗ௜௖௧௜௢௡

்௛௘ ௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௦௔௠௣௟௘௦
  (28) 

Table 5-2 Range of health index according to health status 

Health status Range of HI 

Normal 0.5 < HI ≤ 1 

Warning 0.2 < HI ≤ 0.5 

Critical 0 < HI ≤ 0.2 

Fault HI = 0 

(1) Case Study 1: Comparison of Prognosis Accuracy with Other Algorithms 

This case study compares the prognosis accuracy of the proposed XGBoost with 

other algorithms such as light GBM, random forest, and DNN. Light GBM and 

random forest are ensemble learning methods based on decision tree structure, like 

XGBoost. A typical gradient boosting method adopts a level-wise method that binary 

division is performed for pruning to achieve balance. On the other hand, light GBM 

adopts the leaf-wise method that pruning is carried out around less trained branches. 

This saves both time and memory for learning compared to XGBoost. Unlike 

XGBoost, random forest learns the model by adopting a bagging method. In the 

Boosting method, the next tree is learned to minimize the error of the previous tree, 

whereas in the bagging method, each tree is independent and has the same weight. 

The performance is generally lower than that of XGBoost, but the learning process 

is relatively simple. So, it is one of the most used algorithms. DNN is a neural 

network-based learning method that consists of several hidden layers between input 

and output layers. This is effective in modeling the nonlinear relationship between 

features based on various activation functions. However, due to the chronic problem 

of overfitting and high time complexity, care must be taken to find optimal activation 
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functions and learning parameters. 

The highest accuracy for each algorithm is compared through a parameter study, 

and the results are summarized in Table 5-3. As can be seen in Table 5-3, the 

accuracy of XGBoost is the highest at about 87.1%. The degradation pattern varies 

greatly depending on the manufacturer, operating conditions, manufacturing year, 

and data sampling interval of a transformer, so I think that the performance of 

XGBoost, which is strong against overfitting problem, is the best.  

Table 5-3 Comparison of prognosis accuracy (%) by training model and parameters 

Model 
Learning 
rate (𝜂) 

The number of estimators (trees) 

1000 2000 3000 5000 10000 

XGBoost 

0.05 81.957 83.118 83.912 84.999 86.406 

0.1 83.068 84.502 85.384 86.283 87.090 

0.2 84.420 85.815 86.449 86.944 87.088 

0.3 84.967 86.122 86.534 86.853 86.854 

Light 
GBM 

0.05 81.207 82.304 83.130 84.272 85.799 

0.1 82.247 83.747 84.634 85.709 86.767 

0.2 83.616 85.015 85.721 86.491 86.991 

0.3 84.149 85.473 86.047 86.589 86.880 

Random 
forest 

- 77.708 77.745 77.748 77.759 77.752 

DNN 

77.328  
(𝑁௟௔௬௘௥௦: input layer (1), hidden layers (3), output layer (1) 

Layer depth: input layer (8), hidden layers (8), output layer (1) 
Activation function: elu) 
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Light GBM is ranked second by a slight difference. To compare the 

performance of XGBoost and light GBM, case studies were additionally performed 

by varying the number of datasets. Table 5-4 summarizes the results of comparing 

the performance of XGBoost and light GBM according to the number of datasets. 

The number of estimator and learning rate were set to 10000 and 0.1, respectively. 

Table 5-4 shows that the smaller the number of datasets, the better the performance 

of XGBoost than light GBM. This is because the leaf-wise tree growth learning 

method of light GBM increases the likelihood of overfitting as the tree depth 

increases when the number of data is small. As expected, random forest is much less 

accurate than XGBoost. This is due to the limitations of the bagging method which 

is relatively weak for model optimization. DNN also has a low performance due to 

an overfitting problem. But also, it may be because the structure of DNN is simple 

in this study. 

Table 5-4 Comparison of prognosis accuracy between XGBoost and light GBM 
according to the number of datasets 

 
The number of datasets 

100 200 300 400 500 

Prognosis 
accuracy (%) 

XGBoost 70.00 72.50 74.00 76.25 80.20 

Light GBM 53.00 63.50 70.30 75.25 79.60 

(2) Case Study 2: Performance Comparison According to Prediction Period 

According to KEPCO's transformer maintenance manual, a normal inspection 

is conducted every three years and a detailed inspection is conducted every six years. 

It is important to predict and prevent failures that occur during the inspection period 

in advance. Therefore, the prognosis accuracies of XGBoost are compared as the 

prediction period increases from one to five. The number of datasets used for each 
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period is as follows: 1) 0~1 year: 3,855 sets, 2) 1~2 years: 4,694 sets, 3) 2~3 years: 

4,024 sets, 4) 3~4 years: 3,398 sets, 5) 4~5 years: 3,015 sets. 

The prognostic performances are described in Table 5-5. Prediction accuracy, 

precision, and recall values are summarized for each prediction period, and the 

overall average accuracy is emphasized in bold. As the predict period increases, the 

performance gradually decreases. Comparing the performance between 0~1 year and 

4~5 years, a performance decrease about 4.5%. This is a logical result, because the 

longer the prediction period, the greater the uncertainty that affects the status of the 

transformer. In addition, 80% of accuracy of 4~5 years is considered sufficient for 

planning maintenance work in real industrial field. 

In more detail, comparing the prognosis accuracy according to the health status, 

the accuracy of the normal grade is the highest and the warning and critical grades 

are relatively low. The range of health index in normal is the largest, and the range 

of health index in the other grades become gradually smaller. Therefore, the 

performance decreases further because the amount of learning data for warning or 

critical grades is smaller. 
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Table 5-5 Prognosis accuracy according to prediction period 

 

5.4 Summary and Discussion 

Many studies have been conducted to diagnose the state of the transformer, but 

few studies have been conducted for prediction. Therefore, we proposed a new 

methodology that prognoses the health status of power transformers using DGA data 

in this study. The proposed methodology proceeds via two main steps: 1) calculation 

Period 
Data 

length 
Performances 

0~1 
year 

3,855 

Normal / accuracy: 96.8131 / precision: 0.9681 / recall: 0.9644 
Warning / accuracy: 82.1429 / precision: 0.8214 / recall: 0.7965 
Critical / accuracy: 77.4141 / precision: 0.7741 / recall: 0.7870 
Fault / accuracy: 82.4351 / precision: 0.8244 / recall: 0.8568 
total accuracy: 84.7013 

1~2 
years 

4,024 

Normal / accuracy: 96.9590 / precision: 0.9696 / recall: 0.9536 
Warning / accuracy: 77.1505 / precision: 0.7715 / recall: 0.7746 
Critical / accuracy: 76.6212 / precision: 0.7662 / recall: 0.7728 
Fault / accuracy: 84.0000 / precision: 0.8400 / recall: 0.9038 
total accuracy: 83.0249 

2~3 
years 

3,398 

Normal / accuracy: 96.5031 / precision: 0.9650 / recall: 0.9448 
Warning / accuracy: 76.7188 / precision: 0.7672 / recall: 0.7496 
Critical / accuracy: 69.7674 / precision: 0.6977 / recall: 0.7544 
Fault / accuracy: 81.9249 / precision: 0.8192 / recall: 0.8410 
total accuracy: 83.6827 

3~4 
years 

3,015 

Normal / accuracy: 95.0863 / precision: 0.9509 / recall: 0.9366 
Warning / accuracy: 72.9021 / precision: 0.7290 / recall: 0.7303 
Critical / accuracy: 72.6562 / precision: 0.7266 / recall: 0.7223 
Fault / accuracy: 80.2353 / precision: 0.8024 / recall: 0.8525 
total accuracy: 81.2285 

4~5 
years 

4,694 

Normal / accuracy: 96.2420 / precision: 0.9624 / recall: 0.9595 
Warning / accuracy: 78.0000 / precision: 0.7800 / recall: 0.7577 
Critical / accuracy: 74.9216 / precision: 0.7492 / recall: 0.7399 
Fault / accuracy: 82.9358 / precision: 0.8294 / recall: 0.8968 
total accuracy: 80.2200 
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of health index through orthogonal projection in the health feature space, and 2) 

learning the XGBoost regression model using time series health index trend. The 

model is validated through two case studies that examined a large amount of real 

industrial data. 

The first study compares the prognostic performance with other machine 

learning algorithms, light GBM, random forest, and DNN. The predicted accuracy 

of the proposed XGBoost was the best at about 87.1%. It is considered that the 

proposed method is powerful for data overfitting compared to other algorithms. The 

second study examines the performance variations over prediction period. The 

performance gradually decreases as the prediction period increases. It is a reasonable 

result because the longer the prediction period, the more factors affecting the status 

of the transformer increase. 

The proposed XGBoost-based prediction model has distinctive advantages as 

follows: 1) It is robust to irregular sampling intervals, and 2) it can avoid data 

overfitting by searching the optimal ensemble model from several random tree 

models. The prognosis model guarantees at least 80% accuracy over a period of up 

to 5 years. Therefore, we assured that the sudden safety accidents of transformers 

can be prevented, and it helps the workers plan the maintenance work substantially. 

This study has an originality in that it is the first study to succeed in prognosing 

the status and RUL of the transformer by using a machine learning technique. Two 

previous studies have been attempted, but the performance was very low with an 

accuracy of 50% or less. However, the method developed in this study can predict 

the status of the transformer with a high accuracy of 85% or more. The machine 
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learning technique used in this study is XGBoost, which is generally used mainly for 

classification or regression problems. Given the excellent performance of the 

regression model of XGBoost, it was applied for the first time to prognose the 

transformer status. There is also a contribution that can be universally applied to 

prediction problems for time series data with irregular sampling rate. 

However, there are limitations to further improvement of prognosis accuracy 

due to outliers such as sudden increase in gas concentration. This can be explained 

as two limitations of the data used in this study. One is a very low sampling rate, and 

the other is a very high variance. To overcome these limitations, further research is 

proposed as below. 

A low sampling rate causes information losses about gradual degradation. 

Therefore, it is necessary to increase the sampling rate through online data 

acquisition rather than offline data acquisition. The sampling interval of offline data 

acquisition is about 3 months to 1 year, while the online data acquisition method has 

a much shorter sampling interval of 6 hours on average. However, the online method 

has a different data value from the offline method. This is because the online method 

has different gas concentration measurement mechanisms and requires additional 

calibration. Therefore, more research on the correlation analysis between online and 

offline measurements or online DGA-based transformer diagnosis is required. 

If the variance of the data is high, the training model is likely to be overfit. 

Therefore, in this study, the XGBoost, the most appropriate technique for overfitting, 

was used, and the optimal hyperparameters were obtained through parameter studies. 

However, the fundamental solution is to reduce the variance of the data. The sudden 
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increase in gas concentration is closely related to the partial discharge of the 

transformer. In the gradual degradation process, the gas concentration gradually 

increases, but when a sudden event such as a partial discharge occurs, the gas 

concentration suddenly increases due to high electric energy. Therefore, Therefore, 

a study on the health prognosis of the transformer using the partial discharge signal 

will be conducted in future research. By adding a feature about the partial discharge 

to model training, it is possible to reduce the variance of the training data. This is 

because the cases in which gas concentration increases rapidly can be trained 

separately. 
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Chapter 6 Conclusion 

 

Conclusion 

 

6.1 Contributions and Significance 

This doctoral dissertation provides a series of schemes for diagnosing and 

prognosing the health status of industrial power transformers based on deep learning 

techniques. Three major researches have  been conducted to devise the new 

framework for preventive diagnosis of power transformers using dissolved gas 

analysis data: (1) iterative denoising autoencoder (IDAE) for data imputation, (2) 

semi-supervised autoencoder (SSAE) for health feature extraction, and (3) XGBoost 

regression for health prognosis of transformer. It is expected that the proposed 

research offers the following potential contributions. 

 

Contribution 1: Improvement of data reliability through the restoration of 

DGA data 

The gas concentration is often missing in the process of DGA due to worker’s 

inexperience, which negatively affects transformer diagnostic accuracy. The first 

research proposes a iterative denoising autoencoder (IDAE) to impute the missing 
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values of dissolved gas analysis (DGA) data. Through the comparative studies, it 

was confirmed that the proposed IDEA could effectively estimate the original value 

for randomly generated missing gas concentrations. By recovering the DGA data 

through IDAE, the reliability of the data can be secured, which enables more accurate 

transformer diagnosis. 

 

Contribution 2: Accurate and intuitive diagnosis of power transformer by 

health features with monotonous behavior 

The second research proposes a semi-supervised autoencoder (SSAE) to extract 

representative health features for fault diagnosis of power transformers. A large 

amount of DGA data measured in real industrial site was used for this study. The 

proposed SSAE extracts two characteristic health features which have a highly linear 

correlation with the health status of power transformer. Through a comparative study, 

it was confirmed that the proposed SSAE could diagnose the transformers more 

accurate than conventional diagnostic methods. In addition, it is possible to construct 

the health feature space for intuitive diagnosis. Due to these advantages, the 

proposed SSAE is expected to be very useful for maintenance of the transformer in 

real industrial sites. 

 

Contribution 3: Health prognosis of power transformer robust to irregular 

data sampling interval 
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Since DGA data is acquired based on the health status of the transformer, the 

sampling interval is irregular. Therefore, it is difficult to prognose the health status 

of the transformer with the existing prediction model based on sequential data. In 

order to overcome this, the third research proposes an XGBoost-based prediction 

model that can learn the measurement intervals and health indices simultaneously. 

Through the comparative studies, it was confirmed that the proposed method could 

accurately prognose the health status regardless of the sampling interval. The 

performance of the proposed method is also assured up to a prediction period of 5 

years. This research is the first attempt for fault prognosis of transformer using a vast 

amount of industrial data, and it is meaningful in that it can be applied directly to the 

real industries. 

 

6.2 Suggestions for Future Research 

Although this doctoral dissertation achieves various technical advances in fault 

diagnosis and prognosis of power transformers, there are still several research topics 

for improvement. Specific suggestions for future research are described as follows: 

 

Suggestion 1: Predictive diagnosis of power transformers using real-time 

online DGA sensors 

In this study, the fault diagnosis and prognosis techniques of power transformer 

are proposed based on offline DGA data. Offline DGA data has some limitations for 
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fault diagnosis, such as missing data and irregular sampling intervals. In recently, to 

overcome these problems, online DGA sensors are being introduced at industrial 

sites. Although the measurement accuracy of online sensor is lower than the gas 

chromatography sensor in the laboratory, it is gradually improving. Therefore, it is 

necessary to prepare an online DGA-based transformer diagnosis study in advance, 

while leading to a study on the correlation analysis between online and offline DGA 

data. 

 

Suggestion 2: Comprehensive fault diagnosis by multi-sensor fusion system 

This study was conducted to diagnose transformers using only DGA data. 

However, DGA data only contains indirect information on health conditions, such 

as blood tests, in human terms. In fact, in the industrial field, data are acquired 

through various types of tests such as doble test, furan test, partial discharge test, and 

thermal image test as well as DGA. Therefore, for a more accurate and detailed 

diagnosis of the power transformer, it is necessary to utilize the various types of test 

data to identify the correlation between the data and comprehensively analyze the 

results. However, in the real industry, it is difficult to obtain these data because a 

sensor fusion system that can integrate the sensory data is not currently installed. 

Recently, as research on sensor fusion with digital transformation has become active, 

it is expected that sensor fusion technology will be introduced to substations and that 

the comprehensive diagnosis research on transformers using all sensor information 

will be activated. 
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국문 초록 

 

오염된 유중가스분석 데이터에 대한 

딥러닝 기반 유입식 변압기 

상태예측 연구 
 

서울대학교 대학원 

기계항공공학부 

서 보 성 

 

스마트 그리드, 에너지 저장 시스템, 전기자동차 등 에너지 시장의 

가속화와 함께 안전하고 지속적인 전력 공급을 위한 신뢰성 높은 전력 

계통에 대한 수요가 증가하고 있다. 이를 충족시키기 위해, 송·변전 

시스템의 핵심 설비에 대한 진단 기법 및 예방정비에 대한 연구들이 

많이 수행되고 있다. 그 중에서 특히 주변압기는 사용자의 목적에 맞게 

전압을 변화시켜주는 장치로 전력 시스템의 중추적인 역할을 하고 있다. 

따라서 주변압기 진단을 위한 다양한 검사 방법들이 개발되었으며, 

유중가스분석법 (DGA: Dissolved Gas Analysis)이 가장 대표적인 

방법이다. 유중가스분석법은 변압기의 결함에 의해 내부 절연물이 

분해되면서 발생하는 가스농도를 측정하는 방법이다. IEEE와 IEC 등 

다양한 전기전자 국제기구에서 수십년간 연구와 산업 경험을 통해 DGA 
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데이터 기반의 변압기 진단 표준을 수립하였다. 하지만 이러한 방법은 

전문가의 경험과 해석에 근거하기 때문에 오진단율이 높다. 따라서 본 

연구에서는 실제 산업 현장에서 취득한 대용량의 DGA 데이터를 

사용하여 데이터 기반의 성능이 우수한 변압기 예측진단 방법을 

개발하고자 하였다. 

변압기 예측진단 성능을 개선하기 위해서 다음과 같이 해결해야할 

세 가지 주요 이슈들이 존재한다: 1) DGA 데이터 결측 이슈, 2) 저차원 

데이터에 대한 건전성 특성인자 추출 이슈, 그리고 3) 불규칙한 샘플링 

주기에 대한 상태예측 이슈. 소개된 세 가지 이슈들을 해결하기 위해서 

본 학위논문은 다음 세 가지 연구를 제안하였다.  

첫 번째 연구는 Iterative Denoising Autoencoder (IDAE)를 

사용한 다중 결측치 보정 방법을 제안하였다. 제안하는 방법은 

Denoising Autoencoder (DAE)를 반복적으로 수행함으로써 결측치의 

원본값을 복원할 수 있다. 노이즈를 최소화하려는 DAE의 성질을 

이용하여 결측치를 노이즈로 인식하게 함으로써 결측치의 원본값을 

추정하는 것이다. 제안하는 방법은 DGA 데이터의 신뢰도를 높임으로써 

더 정확한 변압기 진단이 가능하게 만든다. 

두 번째 연구는 Semi-supervised Autoencoder (SSAE)를 통한 

건전성 특성인자 추출 방법을 제안하였다. 제안하는 방법은 데이터의 

차원 축소와 변압기의 상태 학습을 동시에 수행함으로써 단조로운 열화 

거동을 가지는 두 개의 특성인자들을 추출할 수 있다. 방대한 양의 산업 

데이터를 학습하여 가스 농도 간 상관관계를 모델링하였기 때문에 

기존의 진단 방법보다 더 정확한 진단이 가능하다. 또한, 건전성 

특성인자로 이루어진 건전성 평면을 시각화 함으로써 직관적으로 열화 

추세를 이해할 수 있다. 
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마지막으로, 세 번째 연구는 XGBoost 회귀 분석법을 통한 변압기 

상태예측 방법을 제안하였다. 제안하는 방법은 트리기반의 앙상블 

학습방법을 사용하여 불규칙한 시계열 데이터를 학습함으로써 샘플링 

주기에 강건한 상태예측 모델을 구할 수 있다. 제안하는 방법은 다양한 

모델을 순차적으로 나열하여 오차가 최소화되게 학습하기 때문에 

과적합을 방지하고 정확하게 상태를 예측할 수 있다. 최대 5년까지 

우수한 성능을 보장하기 때문에 변압기의 예방정비에 큰 도움이 될 

것으로 기대된다. 

제안하는 세 가지 방법을 연속된 과정으로 수행함으로써 변압기의 

상태예측 프레임워크를 구축하는데 사용될 수 있다. 또한, 실산업에서 

취득된 방대한 양의 데이터를 사용함으로써 산업에 바로 적용가능한 

범용 모델을 개발했다는 점에서 의의가 있다. 

 

 

주요어:  예측진단 

결측치 보정 

 주변압기 

 딥러닝 

         머신러닝 

 유중가스분석 
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