
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학석사학위논문

Charging Station Location Problem for Electric

Vehicles in a Mixed Duopoly

혼합 복점 시장에서의 전기자동차 충전소 입지선정 문제

2022 년 8 월

서울대학교 대학원

산업공학과

박 준 석



Charging Station Location Problem for

Electric Vehicles in a Mixed Duopoly

혼합 복점 시장에서의 전기자동차 충전소 입지선정 문제

지도교수 문 일 경

이 논문을 공학석사 학위논문으로 제출함

2022 년 6 월

서울대학교 대학원

산업공학과

박 준 석

박준석의 공학석사 학위논문을 인준함

2022 년 7 월

위 원 장 이 덕 주 (인)

부위원장 문 일 경 (인)

위 원 이 경 식 (인)



Abstract

Charging Station Location Problem for
Electric Vehicles in a Mixed Duopoly

Junseok Park

Department of Industrial Engineering

The Graduate School

Seoul National University

This thesis studied a charging station location problem (CSLP) in a mixed mar-

ket on a network space. The research was motivated by the increasing interest in

electric vehicles (EVs) and publicly accessible charging stations. Diverse situations

are presented, and the corresponding mathematical formulations are modeled by

implementing the optimization approach. The relationships between the models are

then analyzed mathematically, showing the existence of complementarity and dom-

inance. Computational experiments follow this in order to validate the presented

models and verify the analyses. The trade-off between the stakeholders’ objectives

is demonstrated, providing policy implications for the public sector and managerial

insights for private investors.

Keywords: Facility location, Charging station location, Mixed market, Multiple

decision makers, Competition, Cooperation
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Chapter 1

Introduction

In the past, electric vehicles (EVs) emerged as a solution to the depletion of

fossil fuels, and interest in them has risen again because of environmental concerns.

While interest in EVs has been growing for quite some time, it dipped temporarily

because of technical problems and the lack of available charging stations. As EV-

related technology has developed, however, tremendous progress has been made in

recent years, and interest in EVs has emerged again. According to Bloomberg NEF

(https://about.bnef.com/electric-vehicle-outlook/), the global EV market

has proliferated and will continue to do so. However, more technical developments

for EVs are necessary.

One of the most critical considerations relates to EV batteries. Conventional

internal combustion engine vehicles (ICEVs), with their gas tanks, only take a few

minutes to refuel, even if the tank is empty. Contrary to this, EVs require about

30 minutes to recharge if quick chargers are supported, and take hours to recharge

with standard chargers. An additional drawback to EVs is that, even with this long

charging duration, EVs have shorter driving ranges than ICEVs. While longer driv-

ing ranges, mostly made possible by bigger battery capacities, and faster charging

options are continuously being researched, advances are still insufficient to spur con-
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sumers to completely replace their ICEVs with EVs. Given this, the greatest concern

for EV users appears to be the ‘charging capabilities for EVs’.

Many studies on EVs have emphasized the importance of charging stations

[39, 25, 6]. These studies showed that the availability of public charging stations,

such as gas stations which can be used by anyone, play a significant role not only

in boosting convenience for EV owners but also in inducing potential customers to

purchase EVs. On the other hand, some studies argue that public charging stations

are actually not crucial to the EV users [59, 61, 63, 23, 6, 43, 42]. Unlike ICEVs,

which are difficult to refuel at home, EVs can be recharged at home whenever as long

as a charger is installed. In surveys of actual EV users, including trial participants,

public charging stations were not used much, and most of the charging events took

place at home. These results obviously assume that a private charger is equipped at

home. It is easy to provide private chargers in a residential environment composed

of houses with garages. However, the availability of home charging is a highly valued

attribute in cities with a high percentage of residents living in multi-units without

garages (for example, Seoul, South Korea). In the end, public charging stations are

essential not only for EV users but also for prospective owners [7, 61, 55]. For this

reason, governments worldwide are allocating a considerable budget for the expan-

sion of charging facilities, while automakers themselves are also actively investing in

such facilities. Considering the significance of publicly accessible charging points, we

focus in this thesis on a charging station location problem (CSLP) between a public

firm and a private firm. We present several situations with corresponding mathe-

matical models. Mathematical analyses are performed based on the optimization of

the presented models.
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The facility location problem (FLP) has received much attention after the work

of Alfred Weber, which considered the location of a warehouse to minimize the total

travel distance between the warehouse and the customers [64]. Many researchers

have dealt with FLPs, and naturally, extensive reviews and surveys were inevitable.

Because of insufficient publications in the past, comprehensive review papers were

published that covered the widespread use of FLPs, such as papers by Brandeau

and Chiu [5] or Owen and Daskin [54]. However, as the number of publications has

increased significantly in the last few decades, there has been a tendency to narrow

the scope of reviews or surveys.

Farahani et al. [18] presented a literature review for set covering problems in

facility locations, which the models we present in this thesis originate from. Set cov-

ering location problems have been used to identify the optimal locations of facilities

to serve demand points within a previously defined distance of time.

The problem may be completely different depending on the purpose of the fa-

cility. In particular, Revelle et al. [56] distinguishes the public firm from the private

firm and demonstrates the difference between the two. The public sector usually

focuses on non-economic benefits (e.g., social welfare), whereas the private firms

typically focus on monetary gain. This distinction mainly appears in the objec-

tives. Current et al. [15] reviewed the studies that examined the multi-objective

aspects of FLPs, as well as classified the objectives most frequently used for FLPs.

They considered the most popular 23 objectives categorized into four types: cost

objectives, demand-oriented objectives, profit objectives, and environmental objec-

tives. Furthermore, Farahani et al. [20] investigated multi-criteria decision-making

problems in the location analysis, where multi-criteria decision-making problems are
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composed of multi-objective decision-making problems and multi-attribute decision-

making problems.

Beyond problems that focus on a single decision maker, there are also prob-

lems that focus on multiple decision makers. When more than one decision maker

exists, interactions inevitably occur between them, which take the form of either

competition or cooperation. The competitive location problem originated with the

study of Hotelling [32]. He considered a case in which two firms simultaneously made

decisions on a finite linear space with uniformly distributed customers. After this

groundbreaking study, much work has been carried out on the competitive loca-

tion problem. Aboolian et al. [1] thoroughly investigated simultaneous situations,

whereas Kress and Pesch [38] presented a rich literature review on the sequential

case setup, especially on networks. On the other hand, research into cooperation has

also been extensively conducted. Goemans and Skutella [24] studied the fair cost

allocation of several variants of facility location problems based on the cooperative

game theory.

It is easily observable that the multiple decision makers of the previously men-

tioned papers have the same objectives, respectively. Unfortunately, there may be

multiple decision makers with different or conflicting objectives, as we show in this

thesis through our consideration of both a single public firm and a single private firm

that pursued different purposes. A market in which both public and private firms

participate is called a mixed market, which is challenging to analyze because of the

complex situation caused by several different objectives. Due to the complexity in-

herent in the setup, studies dealing with the FLP in a mixed market were limited to

a linear space [50, 53, 30, 31, 57, 58, 3, 67, 22, 51, 66, 21, 29, 49] or a circular space
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[44, 52]. Extensions to more complex spaces should be extensively studied.

As the significance of the charging stations has been emphasized, related studies,

including studies for the CSLP, have increased in practical and academic importance.

Asamer et al. [2], Huang and Kockelman [35], Lee et al. [42], and Kchaou-Boujelben

[36] have solidly introduced the characteristics of charging stations. Except for of-

fering battery swapping, charging stations can be broadly classified into three cate-

gories according to their technology: level 1, level 2, and level 3. The charging time

decreases as the level gets higher, while the installation cost for the station increases.

In particular, levels 1 and 2 chargers require hours for a complete charge, while a

level 3 charger will not take even an hour. Hence, it is reasonable that levels 1 and

2 chargers are preferable in locations with long dwell times or for private purposes

(e.g., home charging), while level 3 chargers are normally used for long-distance

trips.

One major part of the CSLP that has been extensively studied is the flow-based

model [36]. EV drivers taking long-distance trips must recharge the battery on their

way, and indeed, on the return trip, too. To satisfy such demands, charging stations,

mostly level 3, should be located adequately to make sure that the distance between

two consecutive stations is within the driving range, taking into account the origin-

destination trips [40, 65, 45, 17, 28, 9, 13, 37].

Another part considers the node-based models, to which our models belong [36].

These are the cases in which the demands simply arise at the nodes. The node-based

models are usually used for demonstrating the charging events that take hours while

the users are resting at home, working, or shopping [2, 34, 69, 14, 16, 62, 33]. As

mentioned previously, home charging is a highly valued attribute, not only in Seoul,
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but also in most of the cities of South Korea in general [55]. This problem has

also been a challenge for other countries [2, 35]. To this point, the South Korean

government has announced that by 2025, it will build more than 500,000 levels 1 and

2 chargers in areas within 5 minutes’ walking distance from residences or workplaces.

Given this, we focus on the problem of locating publicly accessible charging stations

with level 2 chargers in areas near the demand that offer services similar to home

charging.

In contrast to previous studies handling the node-based models, we study the case

where multiple facility builders participate with different objectives. Only a few stud-

ies have been published that integrate multiple decision makers into a CSLP. Even

papers dealing with multiple decision makers only dealt with competition among

profit maximizers [48, 4, 26, 68, 12] or with a game composed of a charging station

builder and the users [27, 4, 26, 10, 46, 47].

To the best of our knowledge, no attempts have been made to integrate a mixed

market into the FLP on a network or to handle a CSLP with multiple facility builders

with different objectives. The motivation for this study is to tackle such issues.

The remainder of this study is organized as follows: In Chapter 2, we describe our

problem, including the assumptions. The mathematical formulations are presented

in Chapter 3. Based on these formulations, some research questions are raised in

Chapter 4. In addition, mathematical analyses based on four propositions are pro-

vided to answer the research questions. Computational experiments are reported in

Chapter 5, and conclusions are offered in Chapter 6.
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Chapter 2

Problem description

We consider an FLP, especially a CSLP, at a network formed market, based on

the mixed duopoly model for a single period. The terms “facility’’ and “station’’

are used interchangeably throughout this thesis. As we handle a network space, the

optimal solutions could not be expressed in a closed form, or generally. Therefore, we

implement the mixed-integer linear programming optimization with mathematical

analyses instead of the game theoretic approach, which the previous works have ap-

plied to a linear or circular space. The duopoly consists of a public firm attempting

to maximize the total coverage within a given budget and a private firm that max-

imizes its own profit. The firms, hereafter “public’’ and “private’’ respectively, are

willing to locate charging stations that belong to ordinary service facilities [19, 8].

Although we are taking into account both private and public as the decision makers,

we adhere to the position of the public. In order to successfully implement the charg-

ing station expansion plan for the public, we investigate how the public should act

with the consideration of the existence of the private. In addition, any transporta-

tion costs are not considered because the presented models belong to set covering

problems. The demands are assumed to be deterministic. According to Bunce et al.

[6], 49 percent of drivers recharged at regular intervals, usually at home overnight
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or at work during the day. In addition, Langbroek et al. [41] found that 60 percent

of EV owners charge every day, rather than only when it is necessary. Therefore,

we can assume that the majority of people charge their EVs regularly, which leads

to deterministic demands and predictable profits. The stations are located at the

nodes of the network, and only one station, at most, can exist at any node. We also

assume that every charging station is uncapacitated and identical, which leads every

customer to visit only the nearest station. As we assumed deterministic demands

also, the demands that will be served are fixed once the locations of the stations are

decided. Then, the number of the cords could be chosen after choosing the locations,

and a scheduling problem could be conducted afterward to manage all the demands

to be served. More demands require more cords. In Chapter 5, we have considered

this impact by generating the cost with respect to the demands. The problem can

be categorized into six cases, as shown in Table 2.1.

Table 2.1: Categorization of the Problem

Sequential
Simultaneous

Public −→ Private Private −→ Public

Competition Model 1 - -

Cooperation - Model 2 Model 3

First, simultaneous competition can take place between the two firms. However,

considering that an FLP is being handled at a mixed market, simultaneous compe-

tition is not likely to occur in the real world.

Next, the competition can arise sequentially, branching again into two cases: the

private decided first, followed by the public, and vice versa. For the former case, the

public might intrude into the coverage by the private to maximize its own objective.
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Then the private might lose some of its revenue and might file a civil complaint,

which the public would not countenance, because of its publicity. Thus, the public

would attempt to preserve the coverage of the private. This situation is more likely to

represent cooperation and will be introduced again later. The latter situation seems

to be more realistic. After the public chooses its locations myopically, the private can

enter the market only for profitable spots. Because the entry of the private allows

only the total coverage to benefit, the public has no reason to inhibit it.

Cooperation can take place instead of competition, leading to another three

cases. Among them, the private leading in cooperation corresponds to the previous

case. The private decides first to maximize its profit, and then the public chooses the

locations while maintaining the market share of the private. As a result, the public

will cover the lonesome nodes left by the private. Public facilities located in the

countryside, with negligible populations are an example. When the public decides

preemptively, the situation barely shows any characteristics of cooperation.

The two firms could decide simultaneously as well. Cooperation, then, can be

regarded as a bi-objective decision-making problem. Classical approaches for solving

the multi-objective optimization problem, including the bi-objective problem, try to

convert such problems into a single-objective problem. One of the most popular

approaches is to modify all except one objective as a constraint. To apply such an

approach to this case, we consider one of the firms as the main decision maker and

optimize its objective function while guaranteeing the other for a certain level as a

constraint. Consequently, we consider the more realistic three cases: (i) sequential

competition starting from the public (Model 1), (ii) sequential cooperation starting

from the private (Model 2), and (iii) simultaneous cooperation (Model 3).
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Chapter 3

Mathematical formulation

3.1 Notations

The model sets and parameters are defined as follows:

I : set of customer zones

J : set of potential facility locations

B : annual budget allocated to the public firm

r : fixed coverage radius

hi : annual demand of customer zone i ∈ I

dij : distance between customer zone i ∈ I and candidate location j ∈ J

aij : 1 if dij ≤ r, 0 otherwise

fj : annual amortized total cost to open, operate and maintain a facility at candidate

location j ∈ J

α : annual earnings gained by serving a unit demand
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The opening of facilities usually costs a big lump sum, but this expense arises

only once. However, operating costs and maintaining costs occur regularly but are

relatively small. We assume the opening costs to be annually amortized, to consider

all costs together. Consequently, the total cost, including operating costs, mainte-

nance costs, and amortized opening costs, is assumed to arise annually. The interest

rate is not introduced because we are not handling multiple periods. Because we as-

sume regular charging intervals and deterministic demands, the profit is predictable

and can be estimated if the coverage is specified. Hence, we deal with the annual

earnings gained by serving a unit demand instead of dealing with the charging fee

imposed for a one-time charge.

Also, four decision variables are used to construct the mathematical models, as

follows:

xj : 1 if a public facility is located at candidate location j ∈ J , 0 otherwise

yij : the fraction of demand of customer zone i ∈ I served by public facility j ∈ J

zj : 1 if a private facility is located at candidate location j ∈ J , 0 otherwise

wij : the fraction of demand of customer zone i ∈ I served by private facility j ∈ J

11



3.2 The sequential competition model (Model 1)

The sequential competition model (Model 1) is as follows:

max
∑
j

∑
i

hiyij

s.t. yij ≤ aijxj i ∈ I, j ∈ J (3.1)∑
j

yij ≤ 1 i ∈ I (3.2)

yik ≤ 2− (aijxj + aikxk) i ∈ I, j, k ∈ J : dik > dij (3.3)∑
j

fjxj ≤ B (3.4)

xj ∈ {0, 1} j ∈ J (3.5)

yij ≥ 0 i ∈ I, j ∈ J (3.6)
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max α
∑
j

∑
i

hiwij −
∑
j

fjzj

s.t. yij ≤ aijx
′
j i ∈ I, j ∈ J (3.7)

wij ≤ aijzj i ∈ I, j ∈ J (3.8)∑
j

(yij + wij) ≤ 1 i ∈ I (3.9)

x′
j + zj ≤ 1 j ∈ J (3.10)

yik + wik ≤ 2− (aij(x
′
j + zj) + aik(x

′
k + zk)) i ∈ I, j, k ∈ J : dik > dij (3.11)

zj ∈ {0, 1} j ∈ J (3.12)

yij , wij ≥ 0 i ∈ I, j ∈ J (3.13)

max
∑
j

∑
i

hi(yij + w′
ij)

s.t. yij ≤ aijx
′
j i ∈ I, j ∈ J (3.14)∑

j

(yij + w′
ij) ≤ 1 i ∈ I (3.15)

yik + w′
ik ≤ 2− (aij(x

′
j + z′j) + aik(x

′
k + z′k)) i ∈ I, j, k ∈ J : dik > dij (3.16)

yij ≥ 0 i ∈ I, j ∈ J (3.17)

Model 1 consists of three stages. The first and the second stages represent the

decision of the public and the profit-seeking choice of the private with the decision of

the public given, respectively. The objective function of Stage 1 maximizes the pub-

lic’s coverage. Constraints (3.1) prohibit a customer from being covered by a facility

that has not been opened, or that is not within a given radius, r. Constraints (3.2)
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state that customers can be disregarded. Note that altering the inequality to strict

equality necessitates covering every customer, which might be infeasible because of

the budget constraint. Constraints (3.3) represent the customers’ preferences for the

nearest facility. In detail, if facilities j and k are open and j is relatively closer,

customers will not visit facility k. Constraint (3.4) indicates the budget limitation

over the costs. Constraints (3.5) define the domain of variable x, and Constraints

(3.6) require variable y to be non-negative. Restricting x to a binary state satisfies

the assumption that, at most, only one station can exist at any given node. Note

that customers always visit the nearest station, and all stations are uncapacitated.

Therefore, despite y being defined as continuous, there always exists an optimal so-

lution in which yij ∈ {0, 1} ,∀i ∈ I, ∀j ∈ J . In fact, it is reasonable to designate y as

being continuous rather than binary, because the customers of a single node can be

partitioned into several facilities at the same distance. The public’s decision in Stage

1 (x) is fixed as a parameter in Stage 2 (x′), but the coverage is still represented by

a variable (y), because it can change by the private’s choice.

The objective function of the second stage maximizes the private’s profit, which

is composed of the revenue earned from covering the customers and the costs. Note

that the private’s revenue is proportional to its coverage. The variables z and w of

the private correspond to the public’s variables x and y, respectively. Constraints

(3.10) restrict any node from having more than one facility, regardless of the owner.

Other constraints are comparable to the first stage.

The last stage has no conceptual meaning but guarantees the maximum total

coverage among several optimal solutions retrieved from the second stage.
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3.3 The sequential cooperation model (Model 2)

The sequential cooperation model (Model 2) is as follows:

max α
∑
j

∑
i

hiwij −
∑
j

fjzj

s.t. wij ≤ aijzj i ∈ I, j ∈ J (3.18)∑
j

wij ≤ 1 i ∈ I (3.19)

wik ≤ 2− (aijzj + aikzk) i ∈ I, j, k ∈ J : dik > dij (3.20)

zj ∈ {0, 1} j ∈ J (3.21)

wij ≥ 0 i ∈ I, j ∈ J (3.22)

max
∑
j

∑
i

hi(yij + w′
ij)

s.t. yij ≤ aijxj i ∈ I, j ∈ J (3.23)∑
j

(yij + w′
ij) ≤ 1 i ∈ I (3.24)

xj + z′j ≤ 1 j ∈ J (3.25)

yik + w′
ik ≤ 2− (aij(xj + z′j) + aik(xk + z′k)) i ∈ I, j, k ∈ J : dik > dij (3.26)∑

j

fjxj ≤ B (3.27)

xj ∈ {0, 1} j ∈ J (3.28)

yij ≥ 0 i ∈ I, j ∈ J (3.29)
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Model 2 consists of two stages. The first stage represents the decision of the

private with a profit-maximizing objective function. All the constraints of Model 2,

including the second stage, have been described previously.

Stage 2 represents the public’s decision with the choice given by the private. The

objective function maximizes the total coverage. The private’s decision of Stage 1 (z)

is fixed as a parameter in Stage 2 (z′), as in Model 1. The coverage (w) is also fixed

(w′), because Model 2 handles the situation of the public that preserves the private’s

market share. Therefore, the private’s coverage should remain static. Integration of

Constraints (3.24) and (3.26) inhibits the public’s intrusion and renders any solution

permitting the private’s loss as infeasible.
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3.4 The simultaneous cooperation model (Model 3)

We can formulate two models by considering which firm has the main decision.

The simultaneous cooperation model with the main decision maker of the private

(Model 3-1) is as follows:

max α
∑
j

∑
i

hiwij −
∑
j

fjzj

s.t.
∑
j

∑
i

hi(yij + wij) ≥ β
∑
i

hi (3.30)

yij ≤ aijxj i ∈ I, j ∈ J (3.31)

wij ≤ aijzj i ∈ I, j ∈ J (3.32)∑
j

(yij + wij) ≤ 1 i ∈ I (3.33)

xj + zj ≤ 1 j ∈ J (3.34)

yik + wik ≤ 2− (aij(xj + zj) + aik(xk + zk)) i ∈ I, j, k ∈ J : dik > dij (3.35)∑
j

fjxj ≤ B (3.36)

xj , zj ∈ {0, 1} j ∈ J (3.37)

yij , wij ≥ 0 i ∈ I, j ∈ J (3.38)

On the other hand, the simultaneous cooperation model with the public having

the main decision (Model 3-2) is as follows:
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max
∑
j

∑
i

hi(yij + wij)

s.t. α
∑
j

∑
i

hiwij −
∑
j

fjzj ≥ P (3.39)

yij ≤ aijxj i ∈ I, j ∈ J (3.40)

wij ≤ aijzj i ∈ I, j ∈ J (3.41)∑
j

(yij + wij) ≤ 1 i ∈ I (3.42)

xj + zj ≤ 1 j ∈ J (3.43)

yik + wik ≤ 2− (aij(xj + zj) + aik(xk + zk)) i ∈ I, j, k ∈ J : dik > dij (3.44)∑
j

fjxj ≤ B (3.45)

xj , zj ∈ {0, 1} j ∈ J (3.46)

yij , wij ≥ 0 i ∈ I, j ∈ J (3.47)

Both versions of Model 3 contain a single stage each, with each showing the

simultaneous circumstance. Note that no variables are fixed and are considered as

parameters because of the simultaneousness of the model. The objective function of

Model 3-1 maximizes the private’s profit, because the private is the main decision

maker, whereas the objective function of Model 3-2 maximizes the total coverage

considering mainly the public.

The only difference in the constraints between the two models is Constraints

(3.30) and (3.39). These two constraints represent the guarantee for the secondary

firms. For example, the main decision maker of Model 3-1 is the private, which makes

the public the secondary participant. Therefore, the total coverage is guaranteed to
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be higher than a certain level, β. The private’s profit is guaranteed in Model 3-2

because the public carries the main decision. All the other constraints have been

described previously.

Note that the objectives of the secondary firms for each model are not guaranteed

as being maximized. In other words, several optimal solutions can exist with the

same objective function value but with different total coverage (Model 3-1) or with

different profit outcomes of the private (Model 3-2) because both models contain a

single stage, unlike Model 1. This latent problem will be handled in the next chapter.
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Chapter 4

Problem analysis

A simple experiment has been conducted based on the presented models, and

the details will be introduced in the next chapter.

Table 4.1: Results of the Small-Size Instance

Model Total coverage The private’s profit

1 79.5% 73.3265
2 82.9% 219.9895
3-1 82.9% 219.9895
3-2 100.0% 115.9871

Based on the results shown in Table 4.1, four research questions have been raised

and investigated. They are as follows:

• Will Model 3-1 and Model 3-2 retrieve the same results, and if so, under which

conditions?

• Will Model 2 and Model 3-1 always retrieve the same results?

• Is there a trade-off between the total coverage and the private’s profit?

• Will Models 2, 3-1, and 3-2 dominate Model 1?

The optimal results are denoted as (P̃ , β̃), (P ∗, β∗), (P ∗
1 (β), β1) and (P2, β

∗
2(P ))
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for Models 1, 2, 3-1, and 3-2, respectively. Before answering the above questions, we

will clarify the definitions of the terms “dominate’’ and “Pareto optimal’’.

Definition 4.1. Model A strictly dominates Model B if the outcomes of Model B

are all worse than Model A. Model A weakly dominates Model B if the outcomes of

Model A are all at least as good as the outcomes for Model B. Model A dominates

Model B if Model A either strictly dominates or weakly dominates Model B.

Definition 4.2. A situation is called “Pareto optimal’’ if some improvements of an

outcome always lead to a strict decline of any other outcome.

Proposition 4.3. Assuming feasibility of Model 3-1 for a given β̄,

1) β∗
2(P

∗
1 (β̄)) ≥ β̄ and (P ∗

1 (β̄), β
∗
2(P

∗
1 (β̄))) is Pareto optimal

2) For P < P ∗
1 (β̄); β∗

2(P ) ≥ β∗
2(P

∗
1 (β̄)) and β∗

2(P ) > β∗
2(P

∗
1 (β̄)) =⇒ P2 < P ∗

1 (β̄)

3) For P > P ∗
1 (β̄); β∗

2(P ) < β∗
2(P

∗
1 (β̄)), P2 > P ∗

1 (β̄) for every feasible solutions of Model 3-2

Proof.

1) The optimal solution of Model 3-1 for a given β̄ is also feasible for Model 3-2 with

P = P ∗
1 (β̄).

∴ β∗
2(P

∗
1 (β̄)) ≥ β1 ≥ β̄

Assume the existence of a solution for Model 3-2 with P = P ∗
1 (β̄) resulting (P2, β

∗
2(P

∗
1 (β̄)))

where P2 > P ∗
1 (β̄). Then, this solution is also feasible for Model 3-1 with given β̄,

and thus makes a contradiction to the optimality of P ∗
1 (β̄).

∴ P2 ≤ P ∗
1 (β̄)

Because β∗
2(P

∗
1 (β̄)) is optimal for Model 3-2 with P = P ∗

1 (β̄), there is no solution re-

sulting (P2, β2) where P2 ≥ P ∗
1 (β̄), β2 > β∗

2(P
∗
1 (β̄)) or P2 > P ∗

1 (β̄), β2 = β∗
2(P

∗
1 (β̄)).
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∴ (P ∗
1 (β̄), β

∗
2(P

∗
1 (β̄))) is Pareto optimal

2) The solution resulting (P ∗
1 (β̄), β

∗
2(P

∗
1 (β̄))) from 1) is also feasible for Model 3-

2 with P < P ∗
1 (β̄).

∴ β∗
2(P ) ≥ β∗

2(P
∗
1 (β̄))

Assume the existence of a solution resulting (P2, β2) where P2 ≥ P ∗
1 (β̄) and β2 >

β∗
2(P

∗
1 (β̄)). Then, this solution is also feasible for Model 3-2 with P = P ∗

1 (β̄)), and

thus makes a contradiction to the optimality of β∗
2(P

∗
1 (β̄)).

∴ β∗
2(P ) > β∗

2(P
∗
1 (β̄)) =⇒ P2 < P ∗

1 (β̄)

3) For an arbitrary feasible solution of Model 3-2 with P > P ∗
1 (β̄), P2 ≥ P > P ∗

1 (β̄).

If β∗
2(P ) ≥ β∗

2(P
∗
1 (β̄)), then β∗

2(P ) ≥ β̄ by 1). This solution is also feasible for Model

3-1 with given β̄, and thus makes a contradiction to the optimality of P ∗
1 (β̄).

∴ β∗
2(P ) < β∗

2(P
∗
1 (β̄))

Proposition 4.4. Assuming feasibility of Model 3-2 for a given P̄ ,

1) P ∗
1 (β

∗
2(P̄ )) ≥ P̄ and (P ∗

1 (β
∗
2(P̄ )), β∗

2(P̄ )) is Pareto optimal

2) For β < β∗
2(P̄ ); P ∗

1 (β) ≥ P ∗
1 (β

∗
2(P̄ )) and P ∗

1 (β) > P ∗
1 (β

∗
2(P̄ )) =⇒ β1 < β∗

2(P̄ )

3) For β > β∗
2(P̄ ); P ∗

1 (β) < P ∗
1 (β

∗
2(P̄ )), β1 > β∗

2(P̄ ) for every feasible solutions of Model 3-1

Proof.

Omitted. Symmetric to the proof of Proposition 4.3.
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Corollary 4.5. P ∗
1 (β

∗
2(P

∗
1 (β))) = P ∗

1 (β), β∗
2(P

∗
1 (β

∗
2(P ))) = β∗

2(P )

The first question can be answered by Corollary 4.5 and Propositions 4.3 and

4.4. Models 3-1 and 3-2 will retrieve the same results when β̄ = β∗
2(P

∗
1 (β)) for Model

3-1 and P̄ = P ∗
1 (β) for Model 3-2 with a given β or β̄ = β∗

2(P ) for Model 3-1, and

P̄ = P ∗
1 (β

∗
2(P )) for Model 3-2 with a given P .

As mentioned previously, Models 3-1 and 3-2 may have several optimal solu-

tions. Note that (P ∗
1 (β̄), β

∗
2(P

∗
1 (β̄))) and (P ∗

1 (β
∗
2(P̄ )), β∗

2(P̄ )) are Pareto optimal

each, which indicates that these results are the best among those multiple optimal

solutions. Consequently, using the two models sequentially is the key to ensuring

the best outcome for the secondary firm in a given circumstance. This demonstrates

the complementarity of the two models, despite the fact that they are presented to

describe different situations.

Proposition 4.6. Assuming feasibility of Model 2,

1) P ∗ ≥ P ∗
1 (β), ∀β

2) β ≤ β∗ ⇐⇒ P ∗
1 (β) = P ∗

3) For β = β∗; (P ∗
1 (β), β1) = (P ∗, β∗)

4) For β < β∗; β∗
2(P

∗
1 (β)) = β∗

5) For β > β∗; P ∗
1 (β) < P ∗, β1 > β∗ for every feasible solutions of Model 3-1

Proof.

1) All feasible solutions of Model 3-1 regardless of the value of β are also feasible for

the first stage of Model 2 and the objective functions are the same, which implies

that the first stage of Model 2 is a relaxation of Model 3-1.
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∴ P ∗ ≥ P ∗
1 (β), ∀β

2) (=⇒) If β ≤ β∗, the optimal solution of Model 2 is also feasible for Model 3-

1, which implies P ∗
1 (β) ≥ P ∗. Because P ∗ ≥ P ∗

1 (β), ∀β by 1), β ≤ β∗ =⇒ P ∗
1 (β) =

P ∗.

(⇐=) Assume the existence of a solution for Model 3-1 with an arbitrary β resulting

(P ∗
1 (β), β1) where P ∗

1 (β) = P ∗ and β1 > β∗. This solution is also feasible for Model

2, and thus makes a contradiction to the optimality of β∗.

∴ P ∗
1 (β) = P ∗ =⇒ β ≤ β1 ≤ β∗

∴ β ≤ β∗ ⇐⇒ P ∗
1 (β) = P ∗

3) Because β = β∗ satisfies β ≤ β∗, P ∗
1 (β) = P ∗ by 2). Also, P ∗

1 (β) = P ∗ =⇒

β1 ≤ β∗ as shown in the proof of 2). On the other hand, β1 ≥ β = β∗.

∴ (P ∗
1 (β), β1) = (P ∗, β∗)

4) The optimal result (P ∗, β∗) of Model 2 is also an optimal result for Model 3-

1 with β < β∗, but there could also exist additional optimal results (P ∗, β1) where

β ≤ β1 < β∗. The optimal solution of Model 2 is also feasible for Model 3-2 with

P = P ∗ which implies β∗
2(P

∗) ≥ β∗.

Assume the existence of a solution for Model 3-2 with P = P ∗ resulting (P2, β
∗
2(P

∗))

where β∗
2(P

∗) > β∗. Note that P2 ≥ P ∗. If P2 > P ∗, a contradiction to the optimal-

ity of P ∗ occurs because all feasible solutions of Model 3-2 regardless of the value

of P are also feasible for the first stage of Model 2. Therefore, P2 = P ∗. Then, the

proposed solution is also feasible for Model 2, and thus makes a contradiction to the

24



optimality of β∗.

∴ β∗
2(P

∗) ≤ β∗

Because β < β∗ satisfies β ≤ β∗, P ∗
1 (β) = P ∗ and β∗

2(P
∗
1 (β)) = β∗

2(P
∗) by 2).

∴ β∗
2(P

∗
1 (β)) = β∗

2(P
∗) = β∗

5) For an arbitrary feasible solution of Model 3-1 with β > β∗, β1 ≥ β > β∗.

Note that P ∗ ≥ P ∗
1 (β) by 1). Assume the existence of a solution for Model 3-1 with

β > β∗ resulting (P ∗
1 (β), β1) where P ∗

1 (β) = P ∗. This solution is also feasible for

Model 2, and thus makes a contradiction to the optimality of β∗.

∴ P ∗
1 (β) < P ∗

The second question can be answered “no’’ by Proposition 4.6. It is easily shown

that Model 2 is a relaxation of Model 3-1. Therefore, the two models are not precisely

equivalent and may not retrieve the same results. In detail, Model 3-1 will always

result in the same outcome as the outcome for Model 2 if the given β is equal to

β∗. If the given β is smaller than β∗, the private’s profit in Model 3-1 is the same

as that of Model 2, but the total coverage is not guaranteed to be the same because

of the existence of multiple optimal solutions. For this case, additionally applying

Model 3-2 after Model 3-1 will ensure that the results of Model 2 are achieved. The

two models cannot have the same results if β is given as being bigger than β∗.

By combining the three propositions, we can conclude that a trade-off between

the total coverage and the private’s profit exists, and we can answer the third ques-

tion. In particular, Proposition 4.6 shows that the maximum profit among any cir-

cumstances is achieved by Model 2 and gives the bound for the trade-off curve. In
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detail, the result of Model 2 (P ∗, β∗) will be placed at one end of the curve having

the highest profit of the private and the lowest total coverage. The other points of

the curve can be found by increasing the input β of Model 3-1 starting from β∗

until 100 percent, and applying Model 3-2 consecutively. Decreasing the input P of

Model 3-2 starting from P ∗ could be another way to achieve this end. For this case,

P decreases until the resulting total coverage of the subsequent model, Model 3-1,

reaches 100 percent. Either approach will give the same results in the same order,

and we implement the first procedure for the experiments. The complementarity

of the models is enhanced by accompanying Model 2, considering that it sets the

starting point when drawing the trade-off curve.

Note that the private’s profit also contains a part of the coverage, given that the

private’s revenue is expressed as a linear function of its own coverage. The interesting

part of the third question is that the total coverage and the private’s profit present

a trade-off despite the common factor. In fact, it is quite apparent mathematically,

because Propositions 4.3 and 4.4 guarantee the Pareto optimality. However, it is

slightly more complex logically. Recall that locating more facilities never drops the

total coverage. Model 3-1 does not particularly inhibit the overlapped demands

heading to the public, whereas immediately following Model 3-2 assures the private’s

profit to be achieved. Considering a solution having the Pareto optimality, there are

only two cases that can increase the total coverage: (i) the public locating additional

facilities, regardless of however the private changes its decision, and (ii) the private

locating more facilities while the public does not add more.

The first case denotes that there was enough left in the budget to place more

facilities. However, the public did not utilize the remaining budget, although Model
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3-2 maximizes the total coverage, indicating that the private’s profit would have suf-

fered. On the other hand, the private covers the most profitable nodes after Model

3-1, while assuring a certain level of the total coverage. If any valuable nodes re-

mained, the private should have already covered them. Consequently, all remaining

nodes are genuinely unprofitable, signifying that the private has to take a loss to lo-

cate more facilities. Therefore, either case necessitates cutting off the private’s profit

in order to increase the total coverage.

Proposition 4.7. Assuming feasibility of Model 1,

1) P ∗ ≥ P ∗
1 (β̃) ≥ P̃

2) β∗
2(P̃ ) ≥ β̃, β∗

2(P̃ ) ≥ β∗

Proof.

1) The optimal solution of Model 1 is also feasible for Model 3-1 with β = β̃, which

implies P ∗
1 (β̃) ≥ P̃ .

Additionally, P ∗ ≥ P ∗
1 (β̃) because P ∗ ≥ P ∗

1 (β), ∀β by Proposition 3.

∴ P ∗ ≥ P ∗
1 (β̃) ≥ P̃

2) The optimal solution of Model 1 is also feasible for Model 3-2 with P = P̃ ,

which implies β∗
2(P̃ ) ≥ β̃.

Additionally, the optimal solution of Model 2 is also feasible for Model 3-2 with

P = P̃ because P ∗ ≥ P̃ by 1), which implies β∗
2(P̃ ) ≥ β∗.

∴ β∗
2(P̃ ) ≥ β̃, β∗

2(P̃ ) ≥ β∗
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The dominance of Models 3-1 and 3-2 over Model 1 can be easily established

by Proposition 4.7. There always exists a case in which the two models weakly

dominate Model 1. One of the objectives is guaranteed to be no worse than Model

1 by Constraints (3.30) and (3.39), while the other is ensured by Proposition 4.7

for both models. Furthermore, Model 1 could be strictly dominated in practice, as

shown in the next chapter. However, the dominance of Model 2 is uncertain. The

private’s profit is always at least better than Model 1, as shown in Proposition 4.7,

but the total coverage is not assured. The total coverage can either be higher or

lower, which is also demonstrated in the next chapter.

We can conclude that the first three propositions indicate the main contribution

of this study, which shows that a trade-off between the total coverage and the pri-

vate’s profit exists. Meanwhile, the last proposition implies that cooperation always

guarantees a better solution than competition. These findings are illustrated and

verified via computational experiments in the next chapter.
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Chapter 5

Computational experiments

5.1 Experiments for the small-size instance

The mathematical models were solved with FICO Xpress version 8.12. To vali-

date the models presented in Chapter 3, a simple experiment has been conducted.

The data were taken from Snyder and Shen [60], which was named “10-node facil-

ity instance’’. The set of customer zones and potential facility locations are equal

(i.e., I = J). The coordinate values of the nodes have been scaled up 10 times, and

the distances between nodes are calculated as the Euclidean distance, assuming a

complete graph. The fixed costs were substituted to amortized total costs. Table 5.1

summarizes the data.

Table 5.1: Data of the Small-Size Instance

Index x-coordinate y-coordinate Annual demand Annual amortized total cost

1 2 1 60 200
2 9 7 27 200
3 2 4 29 200
4 9 2 26 200
5 5 9 33 200
6 6 3 15 200
7 8 4 17 200
8 5 3 97 200
9 3 6 97 200
10 2 6 19 200
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Other parameters have been generated on the basis of work by Chu et al. [11],

Franke and Krems [23], and Huang and Kockelman [35]. Chu et al. [11] noted that

EV users in South Korea charged their vehicles 14.07 times per month, while Franke

and Krems [23] figured out that users in Berlin, Germany, charged their EVs 3.1

times per week. Consequently, we assumed that people charge their EVs around

161∼169 times per year, on average. The financial parameters refer to Huang and

Kockelman [35] and are organized in Table 5.2.

Table 5.2: Assumptions for Financial Parameters

Assumption

Average charging duration 30minutes/charge
Charging price per minute $ 0.125/minute

Average charging price $ 3.75/charge

Amortization period 5 years
Land acquisition cost $ 300,000 ∼ $ 500,000
Cord installation cost $ 20,000

Variable cost including maintenance $ 10,000/year

Annual amortized total cost $ 74,000/year ∼ $ 114,000/year

Aggregating the charging frequency and the charging price, the revenue gained

by serving one demand per year (α) is between $603.75 and $633.75. Because the

amortized total cost (f) is in the range of $74,000 to $114,000, f/α varies from 116

to 189. Therefore, we assumed the value of f/α to be fixed as 150. Because the costs

are all equal to 200, α will take the value of 4/3. In addition, the public’s budget,

B, is assumed to be 10 percent of the sum of the costs, while the coverage radius,

r, is set so that 2.8 nodes, on average, are within r, resulting in a B of 200 and an

r of 4, respectively. The numerical results were summarized in Table 4.1.

Figure 5.1 visualizes the results of the first stage and the third stage of Model 1,
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Figure 5.1: Results of Model 1

respectively. Black and red represent the public and the private, respectively. The big

circles show the coverage radius, and the green crosses indicate the nodes uncovered.

The small circles denote the locations where the facilities are placed, and the dots

signify the covered nodes.

The public can locate exactly one station, because all costs are equal to 200, and

the budget is also 200. To maximize its own coverage, the public set its placement at

(5,3), which offers the most coverage. After the public made its decision, the private

located a facility at (2,4). Because Model 1 describes a competitive situation, we

might have found that the private felt free to intrude into the public’s coverage. The

result also indicates that other points are not profitable enough for the private to

place additional facilities, considering that it placed only one.

Figure 5.2 shows the results of the two stages of Model 2. The private also chose

the point that the public chose in Model 1. However, the public could not make

the same decision as the private made in Model 1. Points (5,9) and (9,7) were the

only feasible nodes the public could have chosen in order to preserve the private’s
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Figure 5.2: Results of Model 2

coverage, thereby maintaining the cooperation. The public placed its facility at (5,9),

which garners more demand. The overlapping point (3,6) is located at the same

distance from the two facilities. Still, the private fully covers that point because the

capacities are infinite, and the public will not care, given that the total coverage is

the same, no matter who covers it.

Figure 5.3: Results of Model 3

Figure 5.3 demonstrates the results of Model 3-1 and Model 3-2. The results
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of Model 1 were used as the assurance levels for Model 3-1 and Model 3-2. These

were 79.5 percent for Model 3-1 and 73.33 for Model 3-2. As shown in Table 4.1,

the results of Model 3-1 are the same as those for Model 2, and it is not surprising

that the solutions are also the same. Model 3-2 shows that even 100 percent coverage

could be achieved while still guaranteeing that the profit is higher than it is in Model

1.
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5.2 Experiments for the large-size instance

A larger-size experiment also has been conducted to illustrate the theoretical re-

sults established in Chapter 4. The large-size instance was generated according to the

instance on the Euclidean plane of simple location problems from the Benchmark

Library (http://www.math.nsc.ru/AP/benchmarks/english.html). Because our

contribution is neither algorithmic nor based on computations, we have not at-

tempted to solve large or various instances. Instead, a single instance from the

Benchmark Library, Code 111, was implemented to verify the theoretical results

and the answers to the research questions. The given transportation costs between

nodes in the instance were substituted with distances between nodes.

The demands and the costs were generated following the small-size instance. The

mean and the standard deviation of the demands in the small-size instance were 42

and 31.6, respectively. Excluding the biggest and the smallest demand for each, the

mean and the standard deviation become 38.5 and 27.09. The demands (hj) were

randomly generated from a normal distribution with the parameters of 38.5 and

27.09.

fj =

(
Hj + 2

Amortization period(= 5)
+ 1

)
× 100 (unit: $100) (5.1)

The costs were calculated as Equation (5.1), where Hj corresponds to the land

acquisition cost in Table 5.2. Considering a node with a bigger demand as being more

profitable, we assumed the cost to be affected by the demand. To implement such

influence, every Hj is randomly generated from a normal distribution with mean hj
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and standard deviation (hj/5)
2 (i.e., N(hj , (hj/5)

2)), respectively.

E [fj ] =
E [Hj ] + 7

5
× 100 =

hj + 7

5
× 100 (5.2)

E
[
E [fj ]

]
=

E
[
hj
]
+ 7

5
× 100 = 910 (5.3)

Equation (5.2) shows the expectations of the costs, which are also random vari-

ables. Note that the expectation of the sample mean of the costs becomes 910, as

calculated as Equation (5.3), which moderately fits within 740 and 1,140, the range

investigated previously (Table 5.2). As a result, costs with an average of 1,043 were

generated, and this data was used throughout this chapter.

Other parameters nearly follow the assumptions of the small-size instance. The

value of f̄/α instead of f/α is approximated to 150, resulting in α having the value of

7. The public’s budget, B, is again assumed to be 10 percent of the sum of the costs.

The coverage radius, r, is set so that 2.82 nodes are within r, on average, because

there was no r that carried out exactly 2.8 nodes, on average. Consequently, the

standards were set to be B of 10,430 and r of 663. Based on these settings, five

values of r and B each were considered, with B and r being fixed as the standards,

respectively. In detail, the value of r was changed from 500 to 600, 663, 750, and

900, with B fixed as 10,430. Then the value of B was changed from 2,086 to 5,215,

10,430, 20,860, and 52,150, which corresponds to changing n of 1,043×n from 2 to 5,

10, 20, and 50, with r fixed as 663. Models 1 and 2 have been applied in each case,

followed by an iteration of Models 3-1 and 3-2, with the input β increasing from β∗

to 100 percent while only having integer percentages.
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Figure 5.4: Aggregated results of each r

Figure 5.4 shows the total coverage and the private’s profit of the models for each

r. The isolated points for each case correspond to the results of Model 1. Except

for the points of Model 1, it is clear that Models 2, 3-1, and 3-2 demonstrate the

trade-off between the total coverage and the private’s profit, regardless of the value

of r, and form a trade-off curve. Also, it is noticeable that only until r=750 are the

isolated points located at the bottom left of the trade-off curve. This indicates that

for r=900, the total coverage of Model 1 is higher than that of Model 2, which leads

to the fact that Model 2 cannot dominate Model 1. The public locates its facilities

within a given budget. For Model 1, when r gets bigger, the public could cover

a bigger area by itself in the first stage. However, the facilities would be located

sparsely to offer efficient coverage. This leads to more favorable circumstances for

the private to intrude, resulting in higher coverage. On the other hand, the private

will now locate its facilities sparsely in the first stage in Model 2. When r gets bigger,
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only a few nodes will remain feasible in the next stage for the public, because the

private’s coverage should be preserved. Consequently, the total coverage could not

rise sufficiently in Model 2, while it rises steeply in Model 1, and thus, a reversal

takes place. Note that the graphs generally move to the upper right. Figure 5.5

demonstrates such movement by emphasizing the shifts of the points for Models 1

and 2, as well as the points representing total coverage of 100 percent, caused by

the change of r.
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Figure 5.5: Results of changing the value of r

Model 1 draws a gentle upward curve. Considering that the private faces an easier

market in which to intrude and that the total coverage increases as r gets bigger, this

still does not mean that the private will place many facilities. Arranging facilities

sparsely may in fact increase the number of lost opportunities when competing on

scales of distance with the public. In contrast, if the facilities are placed densely,

the overlapping areas will increase, leading to inefficient and unprofitable coverage.
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As a result, the increase of the private’s profit is insignificant compared to the total

coverage, which indicates that a vulnerable market (i.e., a market that is easy to

intrude upon), does not always guarantee high profits. Such a market will work

positively if the private bears a cutthroat competition to secure more market share,

but this is not the case, and thus, it would be more prudent to expand cautiously.

Model 2 also draws an upward curve. As r gets bigger, the private could cover

the nodes more efficiently, resulting in higher profits and coverage. Consequently,

the total coverage grows together but faces a wall when r gets excessive.

The private’s profit also increases for the points having 100 percent of the total

coverage. To cover all the demands when r is restricted, the private must take a

loss, because it is responsible for all the nodes that the public could not cover due

to the budget constraint. As r increases, the public could cover more nodes by itself.

Considering that more of the unprofitable nodes are taken away by the public and

that the private covers the nodes more efficiently, the private’s profit grows as the

burden transferred to it is reduced.

Figure 5.6 presents the results that occur when the value of B gets changed.

Note that the isolated points correspond to the results of Model 1 and that the

trade-off curves are well illustrated, regardless of the value of B, as is the case when

r is changed. It is again noticeable that the isolated point appears at the bottom

right of the trade-off curve only for B=52,150. Model 2 also failed to dominate

Model 1 in the case of increasing the budget. The public only focuses on expanding

its coverage within a given budget, irrespective of its profit. Therefore, the public

would simply build more facilities as the budget increases, and it could achieve high-

level coverage even by itself in the first stage of Model 1. This implies that the public
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Figure 5.6: Aggregated results of each B

fully utilizes the budget in Model 1, which is not happening in Model 2. In Model 2,

the private moves first, and thus, always makes the same decision, because the only

changing part is the budget, which belongs to the public. For this reason, all points

corresponding to Model 2, the left side starting points of the trade-off curves, display

the same level of the private’s profit. However, the public must preserve the private’s

coverage. Eventually, the public should leave some of the budgets idle when they

are given immoderately, while the results of the first stage remain, regardless of the

budget. Consequently, a sufficient budget is underutilized in Model 2, and the total

coverage could not rise enough compared with Model 1, resulting in an overtaking

as was the case with r. Note that the graphs generally move to the right. Figure

5.7 shows the results of Models 1 and 2, as well as the cases of the total coverage

reaching 100 percent, similar to Figure 5.5.

Model 1 draws a downward curve as opposed to the case of r. As the budget
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increases, the public simply builds more facilities. Accordingly, the achievable nodes

for the private competing on the platform of distance against the public will decrease,

and thus, the profit will reduce, too.

Model 2 presents a horizontal line, indicating constant profit and increasing total

coverage as the budget grows. Note that only four points are illustrated on the line.

The last two cases retrieve the same total coverage, magnifying the underutilization

of a sufficient budget. It is also noticeable that the constant profit is less than the

profit gained by a bigger r, because the facilities’ covering capabilities are unchanged.

The private’s profit increased again for the points with 100 percent of the total

coverage, as in the case of r. To fully cover the demands for a fixed r and an

insufficient budget, the private must give up its profit again. As the budget grows,

the public could handle more of the nodes by itself, just as in the case of r. The

difference is that the covering efficiency of the private is consistent. Consequently, the
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private retains gainful nodes and gets emancipated from covering the unprofitable

ones as the budget increases. The profit eventually rises in general as the budget

grows but ceases when only the most profitable nodes are left, specifically when

the budget is excessive. It is evident that only four points are presented again for

this reason, indicating that the last two points overlap. Additionally, it is again

conspicuous that the profit gained from the most significant budget is lower than

that from the biggest r, for the same reason as in Model 2.
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Chapter 6

Conclusions

To support the replacement of ICEVs with EVs, publicly accessible charging

stations are necessary. For this reason, the public sector, as well as private firms, are

actively investigating the expansion of charging stations. In this thesis, we studied

a CSLP in a mixed market on a network space. To the best of our knowledge, this

study is the first to graft a mixed market to an FLP on a network, or to consider

multiple participants with different objectives in locating charging stations. We pre-

sented diverse situations and modeled the corresponding mathematical formulations

by implementing the optimization approach. We mathematically analyzed the re-

lationships between the models and showed that complementarity and dominance

exist. We conducted computational experiments in order to validate the presented

models and verify the analyses. Consequently, we demonstrated the trade-off be-

tween the total coverage and the private sector’s profit, despite a common factor

being shared.

To disseminate EVs harmoniously, not only technical developments but also poli-

cies should be carefully considered, because a public charging infrastructure is es-

pecially essential for cities with a high percentage of residents living in multi-unit

housing, without garages. Our research supports the decision makers, regardless of
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their sectors. In detail, we provided policy implications in this thesis for the public

sector (e.g., the policymakers or the budget allocators), and we provided managerial

insights for private investors. We suggest that cooperation among the public and

private sectors is beneficial for both parties, compared to a competitive situation,

and we supported this theory through analyses and verification with the computa-

tional experiments. Moreover, we believe that the shown trade-off could shed light

on how best to negotiate conflicting interests between stakeholders.

For researchers, we hope that our research will serve as a base for future studies

of the FLP in a mixed market on a network, or in the CSLP with multiple decision

makers. The objectives of each sector vary widely, and there might be conflicting

viewpoints about the objectives we proposed in this thesis. In addition, some re-

searchers may not accept the assumptions raised by our research (for example, the

deterministic demands or the identical uncapacitated facilities or the single period

of focus). Adopting spatial interaction models or market share attraction, applying

a stochastic approach for probabilistic demands, or implementing a game theoretic

approach might be considered in future research. Further consideration for the ex-

tensions and variations of our work can yield meaningful conclusions and enrich the

growing body of literature on the FLP.
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국문초록

전세계적으로 환경에 대한 관심이 증가함에 따라 전기자동차에 대한 관심과 수요 또한

지속적으로 증가하고 있다. 하지만 대한민국과 같이 개인 충전시설을 구비하기 어려운

상황에서는 이러한 동향을 따라가기 위해 충분한 수의 공용 충전소를 확보하는 것이

필수이다. 이에 본 연구는 네트워크 상에서 혼합 시장의 전기자동차 충전소 입지선정

문제를 다루었다. 본 연구에서는 경쟁과 협력을 바탕으로 다양한 상황을 고려하였으며,

각 상황에 대응하는 최적화 수리 모형을 제시하였다. 각 모형 간의 관계를 수학적으로

분석하여 이들간의 상호보완성과 우열을 보였으며, 제시한 모형들과 분석 결과들을 검

증하기위한실험을진행하였다.이해관계자들의목표사이에트레이드-오프(trade-off)

가 존재함을 보임으로써 정책적 시사점과 경영적 통찰력을 모두 제공하였다.

주요어: 설비 입지선정, 충전소 입지선정, 혼합 시장, 다중 의사결정자, 경쟁, 협력

학번: 2020-21928
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