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Abstract

Integer Optimization and Approximate
Dynamic Programming Approaches for
Lot-sizing and Scheduling Problem with

Sequence-dependent Setups

Younsoo Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

Lot-sizing and scheduling problem, an integration of the two important decision

making problems in the production planning phase of a supply chain, determines

both the production amounts and sequences of multiple items within a given plan-

ning horizon to meet the time-varying demand with minimum cost. Along with

the growing importance of coordinated decision making in the supply chain, this

integrated problem has attracted increasing attention from both industrial and aca-

demic communities. However, despite vibrant research over the recent decades, the

problem is still hard to be solved due to its inherent theoretical complexity as well

as the evolving complexity of the real-world industrial environments and the corre-

sponding manufacturing processes. Furthermore, when the setup activity occurs in

a sequence-dependent manner, it is known that the problem becomes considerably

more difficult.
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This dissertation aims to propose integer optimization and approximate dynamic

programming approaches for solving the lot-sizing and scheduling problem with

sequence-dependent setups. Firstly, to enhance the knowledge of the structure of

the problem which is strongly NP-hard, we consider a single-period substructure of

the problem. By analyzing the polyhedron defined by the substructure, we derive

new families of facet-defining inequalities which are separable in polynomial time via

solving maximum flow problems. Through the computational experiments, these in-

equalities are demonstrated to provide much tighter lower bounds than the existing

ones. Then, using these results, we provide new integer optimization models which

can incorporate various extensions of the lot-sizing and scheduling problem such as

setup crossover and carryover naturally. The proposed models provide tighter linear

programming relaxation bounds than standard models. This leads to the develop-

ment of an efficient linear programming-based heuristic algorithm which provides

a primal feasible solution quickly. Finally, we devise an approximate dynamic pro-

gramming algorithm. The proposed algorithm incorporates the value function ap-

proximation approach which makes use of both the tight lower bound obtained from

the linear programming relaxation and the upper bound acquired from the linear

programming-based heuristic algorithm. The results of computational experiments

indicate that the proposed algorithm has advantages over the existing approaches.

Keywords: Lot-sizing and scheduling problem, Sequence-dependent setup, Inte-

ger optimization, Approximate dynamic programming, Valid inequality, Extended

Formulation

Student Number: 2018-32331
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Chapter 1

Introduction

1.1 Backgrounds

A supply chain is defined as “a network of organizations that are involved in different

processes and activities that produce value in the form of products and services in

the hands of the ultimate consumer” (Christopher, 2016). Specifically, the supply

chain of a manufacturing organization typically comprises four stages: procurement,

production, distribution, and sales. Within each of these stages, various decisions

which range from short-term (e.g., weekly) to long-term (e.g., yearly) should be

made. As illustrated in Figure 1.1 (Stadtler et al., 2015), these various decisions

have influence on each other. Therefore, they should be made coordinated to obtain

high efficiency and profitability of the whole supply chain.

The importance of the integration of the decision problems is emphasized when

they are closely related. Lot-sizing problem and scheduling problem are examples

that are closely intertwined decision problems in the production stage. The lot-

sizing problem is to determine the size of lots which refer to bundles of identical

product which is produced in one production run without being interrupted by the

production of other products. Before producing the lot, a setup activity is needed

which refers to preparation operations of the production machine such as cleansing

1



Figure 1.1: Supply chain planning network (adapted from Stadtler et al., 2015)

or adjustment. Because the setup incurs the corresponding costs, too frequent setups

are not desirable generally. Therefore, when deciding the optimal size of lots, the

trade-off between the inventory holding and setup costs must be considered, that is,

as the sizes of lots increase, the number of required setups and the corresponding

setup cost reduce whereas the amount of inventory and the corresponding holding

cost increase.

Research on the lot-sizing problem dates back to the seminal work of Harris

(1913) which dealt with the single-item lot-sizing problem with constant demand

and sufficiently large production capacity over an infinite horizon. In this simple

setting, known as the economic order quantity (EOQ) model, the optimal lot size

can be derived as a closed-form solution. Later, Rogers (1958) generalized EOQ

model by considering the limited production capacity and multiple items, whereas

Wagner & Whitin (1958) generalized it by considering the time-varying demand
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over a finite planning horizon. The former was shown to be an NP-hard problem

(Florian et al., 1980; Bitran & Yanasse, 1982), while the latter can be solved within

polynomial time (Zangwill, 1966; Federgruen & Tzur, 1991).

Manne (1958) studied the problem considering both the limited production ca-

pacity and time-varying demand extensions, denoted as capacitated lot-sizing prob-

lem, which can be defined as follows: Within a planning horizon consisting of mul-

tiple time periods, the production capacity and demand of each item are given for

each period. Under these settings, the objective is to allocate the limited production

capacity efficiently to meet the demand at the minimum cost which includes pro-

duction, setup, and inventory holding costs. We give a simple illustrative example

as follows.

Example 1.1. Consider an instance of capacitated lot-sizing problem with five items

and two periods. Let d1 = (15, 40, 0, 10, 0) and d2 = (0, 5, 15, 10, 10) be the demand

vectors of items for period 1 and 2, respectively, which are given in time unit. Assume

that the production capacity is 100. Then, consider the following solutions which are

represented as the vector of production amounts:

x := (x1,x2) =
(
(15, 40, 0, 10, 0), (0, 5, 15, 10, 10)

)
x′ := (x′1,x

′
2) =

(
(15, 45, 15, 20, 0), (0, 0, 0, 0, 10)

)
x′′ := (x′′1,x

′′
2) =

(
(15, 45, 15, 20, 10), (0, 0, 0, 0, 0)

)

Both x and x′ are feasible because they cover the entire demand without loss,

while x′′ is infeasible because the capacity restriction for period 1 is violated. In

terms of the costs, x does not incur inventory holding costs because it uses a lot-for-
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lot strategy, whereas x′ incurs holding costs for items 2,3, and 4. On the other hand,

x′ requires fewer setups than x, which leads to lower setup costs.

Despite its simplicity, capacitated lot-sizing problem with multiple items is shown

to be strongly NP-hard (Chen & Thizy, 1990). Even when only a single item is

considered, the problem belongs to NP-hard as demonstrated by Florian et al. (1980)

and Bitran & Yanasse (1982).

As addressed by Trigeiro et al. (1989), one of the important variants of capac-

itated lot-sizing problem is the additional consideration of the setup time. Besides

the corresponding costs, the setup activity may require a certain amount of time

and consume a portion of the production capacity. If the setup takes a consider-

able amount of time or incurs substantial costs, it should be considered explicitly

and carefully in the planning stage. Long setup times are common in many man-

ufacturing processes. In the fine-chemical process industry considered by Sung &

Maravelias (2008), for instance, the setup takes a significant amount of time, as it

includes several activities such as cleansing and testing. Similarly, in the flat-panel

display manufacturing process studied by Lee & Lee (2020), the setup for highly

automated equipment can take even longer than a day.

Moreover, in many real manufacturing processes, the setup occurs in a sequence-

dependent manner; that is, its cost and time depend on both the item that was pro-

duced before and that which will be produced subsequently. The sequence-dependent

setups occur in various industries from food or beverage production (Ferreira et al.,

2010; Claassen et al., 2016; Larroche et al., 2021) to high-tech industries (Chiang &

Fu, 2009; Xiao et al., 2015; Lee & Lee, 2020).

To properly address the sequence-dependent setups, the production sequences

4



need to be considered explicitly. The traditional capacitated lot-sizing problem,

however, does not consider the production sequence of the lots within each period,

although it determines which items to be produced in which period. In fact, the

sequencing decisions have been often ignored when establishing the production plan

and decided on the shop floor. Alternatively, they are addressed by solving another

decision making problem, called the scheduling problem (Pinedo, 2012). The schedul-

ing problem aims to determine the optimal schedule of machine(s) considering the

given set of jobs (lots) and their due dates.

However, it is not enough to consider the two problems separately in sequence.

For instance, when the setups are sequence-dependent, the available production ca-

pacity is determined after the sequencing decisions are made. Meanwhile, to deter-

mine the optimal sequence, the set of jobs to be produced within each period should

be given which is determined by lot-sizing decisions. However, the optimal lot-sizing

decisions can be made only when the available production capacity is determined.

Therefore, the separated decision-making procedure can make the quality of solu-

tions deteriorate significantly as illustrated in the example below. Therefore, these

two decisions should be integrated and considered simultaneously.

Example 1.2. Let us consider the solution x given in Example 1.1 and the following

production sequences s and s′.

s := (1→ 2→ 4)→ (4→ 5→ 2→ 3)

s′ := (1→ 2→ 4)→ (4→ 2→ 5→ 3)

Assume that the setup times are sequence-dependent and classified into short and

5



Period 1 Period 2

item 1 item 2 item 4 item 5 item 2 item 3

(a) A feasible production schedule corresponding to s

Period 1 Period 2

item 1 item 2 item 4 item 2 item 5 item 3

(b) An infeasible production schedule corresponding to s′

Figure 1.2: Illustration of the production schedules

long setups: the setup from a high-indexed item to a low-indexed item takes a long

time, whereas the converse takes a short time. In practice, this situation can oc-

cur, for instance, in a painting shop. Suppose that the index of an item indicates

the darkness of the color of the item. Then, the setup from the darker item to the

lighter one requires further work such as cleansing of a painting spray. In this set-

ting, the production schedules corresponding to sequence s and s′ are represented in

Figures 1.2(a) and 1.2(b), respectively. There is a single long setup in Figure 1.2(a)

and the corresponding solution is feasible with respect to the capacity constraint. On

the other hand, long setups are presented twice in Figure 1.2(b) which leads to the

violation of the capacity constraint.

1.2 Integrated Lot-sizing and Scheduling Problem

Along with the growing importance of integrated decision making in the supply

chain, the consolidation of the lot-sizing problem and scheduling problem also has

become an important issue because of their closely intertwined nature. In the early

1990s, several researchers including Potts & Van Wassenhove (1992), Lasserre (1992),

6



and Dauzere-Peres & Lasserre (1994) emphasized the integration of the two prob-

lems. Most of these earlier studies proposed solution approaches based on the it-

erative procedure that solves the two problems repeatedly, exchanging the solution

information with each other. However, these approaches have a drawback that it is

not guaranteed to obtain optimal decisions in view of the integrated problem.

Later, the problems are further integrated into a monolithic problem, called a lot-

sizing and scheduling problem (LSP), which has received increasing attention over the

recent decades both from industrial and academic communities. See Figure 1.3 which

illustrates the integrated LSP within the supply chain (Stadtler et al., 2015). LSP

simultaneously determines the sizes of production lots and the production sequences

within a given planning horizon. The objective is to meet the time-varying demand

while minimizing the total cost which is the sum of various components such as

production cost, inventory holding cost, backlog penalty cost, and setup cost. In

Figure 1.3: Integrated lot-sizing and scheduling problem (adapted from Stadtler et
al., 2015)
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addition, various extensions are often considered to model practical problems as will

be introduced later. Earlier reviews on the integrated LSP can be found in Drexl &

Kimms (1997) and Zhu & Wilhelm (2006).

LSP has been widely investigated by a great deal of study in the operations re-

search community resulting in substantial advancements. However, despite the effort

made by researchers, there remain outstanding issues not yet completely resolved.

The sources of the difficulty in conquering LSP are twofold. The first one lies in the

inherent theoretical complexity of LSP. As shown by Chen & Thizy (1990), the prob-

lem is strongly NP-hard even without the scheduling decisions. When the scheduling

decisions need to be considered explicitly, for instance, to incorporate the sequence-

dependent setups, the computational complexity further increases. This is because,

even when the lot sizes of items are fixed, the remaining scheduling problem still

belongs to NP-hard. This can be demonstrated by the fact that the traveling sales-

man problem which is a popular NP-hard problem can be reduced to the problem.

Therefore, LSP is naturally NP-hard which makes it unpromising to devise solution

algorithms that efficiently solve this problem.

The second source of the difficulty lies in rapidly evolving industries and the

corresponding growth in complexity of the manufacturing processes. Because real-

world manufacturing processes have a variety of unique characteristics, there is no

unified solution methodology that is capable of resolving all LSP instances from var-

ious industries. Consequently, active research on optimization models and solution

approaches tailored to solve real problems continues.

This dissertation aims to provide modeling frameworks and solution approaches

that are suitable for LSP with sequence-dependent setups. We provide new opti-
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mization models based on the time-flow modeling approaches which are derived

from the analysis of substructures of the problem. Moreover, we devise an approxi-

mate dynamic programming (ADP) algorithm with a value function approximation

procedure that uses bound information of states. The proposed algorithm shows

competitiveness in solving LSP instances from both the real-world industry and

literature.

1.3 Literature Review

In this section, we review some fundamental literature on optimization models as

well as the recent works on the LSP. The literature relevant to the contents of each

chapter is reviewed there.

1.3.1 Optimization Models for LSP

There is abundant research that proposed various optimization models to formulate

the integrated LSP (see, e.g., Pochet & Wolsey, 2006; Copil et al., 2017, for the

comprehensive review on different models). Specifically, we focus on LSP models

which take into account of the sequence-dependent setups explicitly.

For most of the LSP models, the planning horizon is discretized into several time

buckets, although there exist some alternative frameworks such as continuous time

models. The discretized modeling frameworks are natural because, in practice, the

demand and inventory amounts are investigated and updated in a periodic manner.

For instance, when a firm establishes a three-month production plan, the demand

forecast and update of each product are on a daily basis. The amounts of inventory

are also inspected at the end of each day. Therefore, it is natural to divide the
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three-month planning horizon into several daily buckets.

Depending on the relative size of the time buckets, the models are classified into

big bucket, small bucket, and hybrid models. Big bucket models of LSP are natural

extensions of the conventional capacitated lot-sizing problem (Manne, 1958). In these

models, the planning horizon is divided into multiple periods of length equal to the

granularity of demand occurrence, for example, days. In each period, multiple items

can be produced and their production sequence should be determined. This makes

the difference between the big bucket models and the traditional capacitated lot-

sizing problem model.

In big bucket models, the production sequence within a bucket is usually repre-

sented as a cycle (Gupta & Magnusson, 2005) as illustrated in Figure 1.4. A dummy

item 0 is defined to represent the start and end of the production sequence within

each bucket. Additional variables and constraints for the sequencing decisions need

to be introduced to the model. In this regard, formulations for various routing prob-

lems such as capacitated vehicle routing problem (CVRP) or traveling salesman
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Figure 1.4: Illustration of a big bucket model
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problem (TSP) can be naturally adapted for big bucket models.

One of the earliest big bucket models presented by Haase (1996) is called CLSD

which is an abbreviation of capacitated lot-sizing problem with sequence-dependent

setup. To incorporate the sequence-dependent setup costs in the model, the authors

adapted Miller–Tucker–Zemlin constraints (Miller, Tucker, et al., 1960) originally

proposed for TSP. Later, various big bucket models that differ mainly in the man-

ner of representing the cycle have been proposed. Haase & Kimms (2000) proposed

a pattern-based formulation that uses a set of predefined efficient sequences as a

pattern set. Guimarães et al. (2014) and Sarin et al. (2011) proposed big bucket

models of LSP based on the single-commodity and multi-commodity flow formula-

tions, respectively. Both formulations are natural applications of the similar formu-

lation proposed for TSP. Various big bucket models were investigated and compared

computationally by Guimarães et al. (2014).

Contrary to the big bucket models, the small bucket models further discretize the

time periods into several shorter buckets, for example, hours, which are used as the

unit of production activities such as the production or setup. Therefore, compared

with the big bucket models, the decisions to be made within a single bucket is much

simpler in small bucket models. As a trade-off, the number of buckets of small bucket

models is greater than that of the big bucket models.

Discrete lot-sizing and scheduling problem (DLSP) which is the most represen-

tative small bucket model allows only one item to be produced within a single time

bucket. Moreover, it assumes that the full capacity of each bucket is used for the

production (all-or-nothing assumption). In this regard, unlike big bucket models, the

production sequence within each bucket does not need to be considered. In addition,
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Figure 1.5: Illustration of a small bucket model

because the sequence of the buckets is fixed, the production sequence represented

as a path can be obtained straightforwardly as illustrated in Figure 1.5. DLSP with

sequence-dependent setup costs was firstly proposed by Fleischmann (1994). Later,

Salomon et al. (1997) further considered sequence-dependent setup times. The au-

thors transformed the problem into the TSP with time windows and solved it with a

dynamic programming (DP) approach. There exist other small bucket models such

as continuous setup lot-sizing problem (CSLP) (Karmarkar & Schrage, 1985) and

proportional lot-sizing problem (PLSP) (Drexl & Haase, 1995) which have received

relatively little attention from the researchers.

One alternative model is general lot-sizing and scheduling problem (GLSP), which

is often called a hybrid of the big and small bucket models because it uses a two-

level time structure as illustrated in Figure 1.6. In GLSP, the planning horizon is

divided into multiple macroperiods the lengths of which are fixed similar to the big

bucket models. Each macroperiod is then further divided into several microperiods

the lengths of which are variables to be determined. External dynamics such as the

arrival of the demand or inspection of the inventory levels are modeled at the end
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Figure 1.6: Illustration of a hybrid model

of the macroperiods, while internal dynamics such as the production amounts and

the start/end of the setups are modeled within the microperiods.

GLSP and small bucket models are similar in a sense that both models discretize

the natural time periods into smaller ones. Therefore, the production sequence is

represented as a path in both models. The main difference between the two modeling

frameworks is that the length of microperiods of GLSP is variable, whereas the length

of buckets of small bucket models is fixed. Therefore, contrary to DLSP in which the

production amounts are automatically obtained if a path is given, the microperiods

in GLSP only capture the sequence of the production and the production amounts

should be additionally determined. The number of buckets of GLSP is smaller than

that of small bucket models.

The GLSP was first proposed by Fleischmann & Meyr (1997). As its name in-

dicates, the GLSP can be regarded as a generalization of various models of LSP,

because it has a two-level time structure consisting of macroperiods of fixed length

and microperiods of variable length. The authors formally formulated the model,
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clarified the relationship between the GLSP and the existing models, and devised

a heuristic algorithm that employs a local-search algorithm. Later, Koçlar & Süral

(2005) indicated that the original GLSP provided by Fleischmann & Meyr (1997)

has a minor limitation and corrected it. A more comprehensive review on GLSP and

its variants is provided in Chapter 3 where GLSP-based optimization models are

provided.

1.3.2 Recent Works on LSP

The recent research on LSP includes studies dealing with various practical industrial

problems (for example, Rıos-Solıs et al., 2020; Lee & Lee, 2020) and devising efficient

solution approaches for general problem instances (for example, Guimarães et al.,

2013; Carvalho & Nascimento, 2022). Solution approaches can be categorized into

exact and heuristic approaches. The latter can be further classified into metaheuristic

and matheuristic, that is, mathematical-programming-based heuristic algorithms.

Due to the difficulty in solving the problem exactly, most of the proposed solution

approaches are heuristic algorithms. Relatively recent and comprehensive reviews of

the LSP with sequence-dependent setups can be found in Guimarães et al. (2014)

and Copil et al. (2017).

Rıos-Solıs et al. (2020) addressed LSP in mold-injection production processes

which can be classified as a bi-level LSP. To solve problem instances from real-world

industry, a decomposition-based heuristic algorithm was proposed. Lee & Lee (2020)

studied LSP in a flat-panel display industry which involves unique characteristics

regarding the manufacturing process such as production run limits and maximum

loading time conditions. To incorporate these complex constraints, the authors pro-
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posed an extended formulation based on DLSP model which provides tighter lower

bounds than the standard DLSP. Using the advantages of tighter bounds, the for-

mulation is solved by a relax-and-fix algorithm which successfully solved real-world

instances in a reasonable amount of time. The fruit beverage industry which is char-

acterized by the temporal cleansing steps was studied by Toscano et al. (2019) and

Toscano et al. (2020) where the decomposition-based and MIP-based heuristics were

proposed, respectively. Cervantes-Sanmiguel et al. (2021) studied LSP in plastic in-

jection manufacturing systems and proposed a two-stage heuristic algorithm. Koch

et al. (2022) studied LSP with parallel machines inspired by a real-world tire in-

dustry. The authors proposed a decomposition-based matheuristic algorithm that

can solve industrial-scale problem instances successfully. Oyebolu et al. (2017) stud-

ied LSP in the biopharmaceutical manufacturing process where the setup costs and

times are substantial. The authors proposed problem-specific heuristic algorithms

based on the genetic algorithm.

Carvalho & Nascimento (2022) addressed parallel machine LSP with nontriangu-

lar sequence-dependent setups and setup carryover. The authors devised matheuris-

tic algorithms by hybridizing mathematical programming and local search heuris-

tics. Melega et al. (2020) studied a two-stage lot-sizing, scheduling and cutting stock

problem in which the cutting decision is made in the first stage, while the lot-sizing

and scheduling decisions are made in the second stage. Specifically, the authors,

considering the sequence-dependent setups in both stages, proposed a heuristic al-

gorithm combining a column generation approach and a relax-and-fix heuristic to

deal with their integrated problem. Mahdieh et al. (2018) considered the LSP with

nontriangular sequence-dependent setups, setup crossover, and carryover, proposing
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a multi-commodity-based big bucket model as an extension of the model presented

in Clark et al. (2014). Gicquel, Lisser, et al. (2014) reformulated DLSP models as

quadratic binary programs and applied a semidefinite relaxation approach to obtain

tightened lower bounds. Together with the valid inequalities they further improved

the quality of the lower bounds. Their approaches are successful in solving small-

size instances, whereas a significant amount of computation time is required. Gicquel

& Minoux (2015) proposed a cut-and-branch approach for LSP based on the DLSP

model. They proposed a new family of valid inequalities and their exact and heuristic

separation algorithms.

Contrary to most of the above-mentioned research which provided the integrated

solution approaches, there are other solution approaches such as hierarchical ap-

proaches and iterative approaches to jointly tackle the two problems. See Maravelias

& Sung (2009) and Alves et al. (2021) for these types of solution approaches.

1.4 Research Objectives and Contributions

The main objective of this dissertation is to enhance the ability to solve LSP with

sequence-dependent setups using integer optimization approaches and ADP algo-

rithms.

Firstly, we study the single-period substructure of the problem to enhance the

knowledge of the structure of the problem. Contrary to the problem where the se-

tups are sequence-independent, the single-period substructure of LSP with sequence-

dependent setups has not been investigated in previous research which is our par-

ticular motivation. Therefore, we conduct polyhedral analysis on the single-period

substructure and derive new families of valid inequalities and extended formulations
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which are useful in tightening the linear programming (LP) relaxation bounds. We

compare the strength of the bounds of the proposed inequalities and extended for-

mulations with those of the existing ones by conducting computational experiments.

Secondly, based on the provided results on the extended formulation, we propose

novel optimization models for LSP with sequence-dependent setups which use a set

of decision variables representing the time flow. With these time-flow variables, it

is demonstrated that the models can easily incorporate various extensions such as

setup crossover and carryover. After further tightening the proposed models using

the well-known reformulation techniques, we compare the strength of the models

with the existing models. Furthermore, we devise a LP-based heuristic algorithm

that can provide feasible solutions quickly. The performance of the proposed models

and heuristic algorithm is tested using both instances from the real-world industry

and those from the previous literature.

Thirdly, we propose an ADP algorithm to efficiently solve LSP with sequence-

dependent setups. One of the deficiencies of the traditional DP approach is the so-

called curse-of-dimensionality issue, that is, the number of states can easily explode

as the problem dimension increases (Powell, 2007). Therefore, it becomes hard to

evaluate the value of exponentially many states with the traditional DP recursion

approaches. To alleviate this drawback, our ADP algorithm adapts the value function

approximation approach to approximate the value of the states. The proposed value

function approximation approach uses both the lower and upper bound values of the

states. Therefore, the ADP algorithm enjoys the advantages of both the tight lower

bound values obtained by the proposed optimization model and the upper bound

value which can be obtained in a short time by the LP-based heuristic algorithm.
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The performance of the ADP algorithm is also tested with various problem instances.

The contributions of the dissertation are threefold:

1. Polyhedral study on the single-period substructure.

• We propose new families of valid inequalities for LSP with sequence-

dependent setups by analyzing the single-period substructure, that is,

S-STAR and U-STAR inequalities.

• The proposed inequalities are demonstrated to define facets of single-

period substructure under some conditions. Furthermore, the polynomial-

time separation algorithms are also presented.

• We provide a new type of extended formulation which is shown to provide

the same lower bound as that of the original formulation with all S-STAR

inequalities added.

• Computational experiment results indicate that the proposed inequalities

and formulations are effective in tightening the LP relaxation bounds.

2. Novel integer optimization models incorporating various extensions of LSP.

• We propose novel integer optimization models which are called as time-

flow models. The proposed models can incorporate setup crossover and

carryover which are important modeling extensions of LSP.

• The time-flow model is demonstrated to provide much tighter LP relax-

ation bounds than that of the standard GLSP-based model.

• From the computational experiments, it is demonstrated that the pro-

posed model has advantages compared with the standard model in terms
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of tightness and solvability with the standard mixed integer programming

(MIP) solver.

• We propose an LP-based heuristic algorithm that is based on the time-

flow model. The proposed algorithm is shown to provide feasible solutions

quickly.

3. Approximate dynamic programming algorithm.

• We devise an ADP algorithm for LSP with sequence-dependent setups

to mitigate the “curse-of-dimensionality” issue of the traditional DP ap-

proaches.

• We devise a value function approximation scheme that estimates the value

of each state using both the lower and upper bounds, without recursive

evaluation of future states.

• Computational experiment results indicate that the proposed ADP algo-

rithm has computational benefits over the state-of-the-art optimization

model solved by the standard commercial MIP solver.

1.5 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

• In Chapter 2, the single-period substructure of the big bucket model of LSP

with sequence-dependent setups is investigated. By conducting a polyhedral

study, new families of facet-defining inequalities which can be separated in

polynomial time are derived. In addition, new extended formulations are pro-

posed and compared with the existing formulations. The proposed inequalities
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and formulations are shown to facilitate tightening LP relaxation bound.

• In Chapter 3, novel optimization models which can incorporate setup carryover

and crossover are provided. Compared with the existing models, the newly pro-

posed models show advantages in both theoretical and computational aspects.

Furthermore, LP-based heuristic algorithms are also provided in this chapter

with the corresponding experimental results.

• In Chapter 4, we present an ADP algorithm based on the time-flow model. The

value function approximation approach which is incorporated in the ADP algo-

rithm is introduced. The results of computational experiments which demon-

strate the proposed algorithm has computational benefits over the commercial

solver are also provided.

• In Chapter 5, we summarize the results of the dissertation and discuss possible

future research directions.
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Chapter 2

Polyhedral Study on Single-period Substructure
of Lot-sizing and Scheduling Problem with
Sequence-dependent Setups

In this chapter, we propose new valid inequalities and extended formulations for the

LSP, which are derived by investigating the single-period substructure of the prob-

lem. By conducting a polyhedral study on the single-period substructure, we derive

two new families of valid inequalities and identify their facet-defining conditions.

Additionally, we demonstrate that these inequalities can be separated in polyno-

mial time. After introducing the existing extended formulations for the problem, we

provide new extended formulations, called time-flow formulations, and compare the

theoretical strengths of the various formulations and valid inequalities, including the

proposed ones. Finally, we conduct computational experiments to demonstrate the

effectiveness of the proposed inequalities and formulations. The test results indicate

that the proposed inequalities and extended formulations facilitate tightening the

LP relaxation bounds.
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2.1 Introduction

Firstly, we present a generic mathematical formulation of the big bucket models of

LSP with sequence-dependent setups. Let us consider the problem with sets of items

I = {1, . . . , I} and periods T = {1, . . . , T}. We additionally define a fictitious item

0 to represent the start and end of the production sequence, and let I0 = I ∪ {0}.

Then, the production sequence within each period is represented as a cycle including

item 0, as illustrated in Figure 2.1.

As shown in the figure, each item corresponds to a node, whereas the setup

between the two items corresponds to an arc. Throughout this chapter, the terms

item and node are used interchangeably, and setup and arc are also used as such.

Additionally, for a single period, we define a directed graph G = (I0,A0), where

the arc set is defined as A0 := {(i, j) : i ∈ I0, j ∈ I0, i 6= j}. Also, we let A :=

{(i, j) : i ∈ I, j ∈ I, i 6= j}. For sets of nodes S, T ⊆ I0, we denote E(S : T ) as

the set of arcs (i, j), such that i ∈ S and j ∈ T . Using the definition of E(S : T ),
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Figure 2.1: Production sequence and its representation as a big bucket model with
a cycle for each period
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we also can define E(S) := E(S : S), the set of arcs with both endpoints in set S,

δ+(S) := E(S : I0 \ S), set of outgoing arcs from S, δ−(S) := E(I0 \ S : S), set of

incoming arcs to S, and δ(S) := δ+(S) ∪ δ−(S), set of arcs with one endpoint in S

and another in I0 \ S.

Throughout the exposition, i, j ∈ I, t ∈ T are used as indices. Let hcit, bcit,

pcit, and dit denote the unit inventory holding cost, backlogging cost, production

cost, and demand for item i and period t, respectively. The setup cost and time

between items i and j in period t are denoted by scijt and stijt, respectively. For

notational convenience, we also define sti0t and st0it and let their values be zero.

Production capacity of period t, given in time units, is denoted by Kt, whereas the

unit production time of item i is denoted by ai.

Let sit and bit be the decision variables representing the inventory and backlog

amounts of item i at the beginning of period t, respectively. The initial inventory and

backlog amounts of item i are denoted by si0 and bi0, respectively, and are assumed

to be zero. Variable xit represents the production amount of item i in period t. The

binary variable yit is equal to one if item i is produced in period t. The binary

variable zijt is equal to one if the setup from item i to item j occurs in period t.

Moreover, let z0it and zi0t be the binary variables which represent whether item

i is the first and last item produced in period t, respectively. The notations used

are summarized in Table 2.1. We use boldface to denote vectors and matrices; for

example, x = (xit)i∈I,t∈T .
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Table 2.1: Nomenclature for big bucket models

Sets

I Set of items which are indexed by i and j; I = {1, . . . , I}
I0 Set of items including the fictitious item 0; I0 = I ∪ {0}
T Set of time periods which are indexed by t; T = {1, . . . , T}

Parameters

hcit Inventory holding cost of item i in period t

bcit Backlogging cost of item i in period t

pcit Production cost of item i in period t

dit Demand of item i in period t

scijt Cost incurred when setup occurs from item i to j in period t

stijt Time needed for setup from item i to j

Kt Production capacity of period t given in time unit

ai Production time per unit of item i

Variables

sit Inventory amount of item i at the end of period t, si0 = 0

bit Backlog amount of item i at the end of period t, bi0 = 0

xit Production amount of item i in period t

yit = 1 if item i is produced in period t

zijt = 1 if setup from item i to j occurs in period t

z0it (zi0t) = 1 if item i is the first (last) produced item in period t
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The generic mathematical formulation of the big bucket models of LSP can be

written as follows (Guimarães et al., 2014):

minimize
∑
i∈I

∑
t∈T

(
hcitsit + bcitbit + pcitxit

)
+
∑

(i,j)∈A

∑
t∈T

scijtzijt (2.1a)

subject to sit−1 − bit−1 + xit = dit + sit − bit ∀i ∈ I, t ∈ T (2.1b)∑
i∈I

aixit +
∑

(i,j)∈A
stijtzijt ≤ Kt ∀t ∈ T (2.1c)

xit ≤ Ktyit ∀i ∈ I, t ∈ T (2.1d)

zi0t = z0it+1 ∀i ∈ I, t ∈ T \ {T} (2.1e)∑
j∈I0\{i}

zjit =
∑

j∈I0\{i}
zijt = yit ∀i ∈ I, t ∈ T (2.1f)

Do not include cycles without item 0 ∀t ∈ T (2.1g)

xit, sit ≥ 0, yit ∈ {0, 1} ∀i ∈ I,∀t ∈ T (2.1h)

zijt ∈ {0, 1} ∀(i, j) ∈ A,∀t ∈ T (2.1i)

The objective function (2.1a) is the sum of the inventory holding, backlogging

penalty, production, and setup costs, the total of which must be minimized. Con-

straints (2.1b) are balance equations between the demand, inventory, backlog, and

production amounts. Constraints (2.1c) ensure that the sum of the production and

setup times does not exceed the available capacity in each period. Constraints (2.1d)

indicate that an item can only be produced if the corresponding setup occurs. Con-

straints (2.1e) indicate that the setup for the last item in the previous period is
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carried over to the next period. Constraints (2.1f) logically link the binary variables

to ensure a balanced flow of setups. Constraints (2.1h)–(2.1i) ensure the domain of

variables.

As mentioned previously, a production sequence within each period is repre-

sented as a cycle on G, including item 0. To ensure the validity of the cycle, the

constraints (2.1g) which prevent cycles without item 0 are necessary. One possible

option for the constraints (2.1g) is the generalized subtour elimination constraints

(GSECs, Toth & Vigo, 2002) which are written as follows:

∑
(j,i)∈δ−(S)

zjit ≥ ykt ∀S ⊆ I, k ∈ S, t ∈ T (2.2)

GSECs ensure that an item contained in S can be produced only if at least one

incoming arc from the outside of S is selected. Note that there are several other

alternatives, such as the Miller–Tucker–Zemlin formulation (Miller, Tucker, et al.,

1960) or the single-commodity flow formulation (Gavish & Graves, 1978) which

can also eliminate invalid cycles using additionally defined decision variables. These

formulations, with additional variables other than those used in (2.1), are denoted

as extended formulations.

Efficiently solving LSP with sequence-dependent setups seems unlikely because

even the parts of the problem cannot be solved easily. In particular, it is well-known

that even with a single item, the capacitated lot-sizing problem is already NP-hard

without the scheduling decisions (Bitran & Yanasse, 1982). Moreover, even with the

given lot-sizing decisions, that is, fixed x, the remaining scheduling problem is NP-

hard because it can be reduced to the traveling salesman problem (TSP). Because of
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the difficulty inherited from both, LSP with sequence-dependent setups is strongly

NP-hard.

One possible approach to tackle NP-hard problems is to exploit the substructures

of the problems using polyhedral analysis. There are many cases where valid inequal-

ities and extended formulations which are the results of the polyhedral analysis play

a major role in solving NP-hard problems (Wolsey, 2020). Regarding the big bucket

models of LSP, some research has been conducted on substructures. However, most

of these studies address the single-item substructure, where sequence-dependent se-

tups between different items cannot be incorporated. In this regard, by incorporating

sequence dependency, we study the single-period substructure of LSP which is for-

mally described in Section 2.3.

The remainder of this chapter is organized as follows. In Section 2.2, we review

the relevant literature. In Section 2.3, a single-period substructure of LSP is formally

presented, and the basic polyhedral properties are provided. In Section 2.4, we pro-

vide new families of valid inequalities and discuss their properties. In Section 2.5,

we propose new extended formulations and compare them with the existing formu-

lations. In Section 2.6, we present the results of the computational experiments. In

Section 2.7, we summarize the chapter and provide concluding remarks.

2.2 Literature Review

In this section, we narrow the scope of the literature review, that is, we focus on

polyhedral studies, such as valid inequalities and extended formulations of LSP and

the related problems.

Most polyhedral studies on the substructure of LSP have primarily considered
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the single-item structure. For instance, Barany et al. (1984) studied a single-item

uncapacitated lot-sizing problem (ULSP) and provided a complete linear description

of the convex hull of the ULSP in its original space using valid inequalities, denoted

as (l, S)–inequalities. Krarup & Bilde (1977) and Eppen & Martin (1987) proposed

extended formulations for ULSP which can provide an optimal solution by solving

their LP relaxations, based on the facility location and shortest path reformulations,

respectively.

Wolsey (1989) studied the single-item ULSP with start-up costs, while Con-

stantino (1996) studied the capacitated version of the problem. The authors proposed

several families of valid inequalities. The facet-defining conditions and efficient sep-

aration algorithms are also provided. Pochet & Wolsey (1994) studied ULSP with

various extensions such as backlogging, start-up costs, and constant limited capacity.

Assuming the Wagner-Whitin cost structure (Wagner & Whitin, 1958), the authors

provided integral polyhedra, extended formulations, and separation algorithms of

these extensions. Subsequently, Küçükyavuz & Pochet (2009) provided an explicit

description of the convex hull of the ULSP with backlogging in the original space

without the assumption of Wagner-Whitin cost structure. Leung et al. (1989) and

Van Vyve (2007) addressed a single-item capacitated problem with constant capac-

ity. They analyzed the polyhedral structure, proposed facet-defining inequalities,

and devised polynomial-time solution algorithms. The results of the aforementioned

studies on single-item substructures have been successfully adapted to generalized

problems with multiple items or time-varying capacity.

Contrary to the single-item cases, there have been only a limited number of

studies on the single-period substructure, and even those studies did not consider
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the sequence-dependent setups. Miller et al. (2003b) studied the single-period re-

laxation of the capacitated lot-sizing problem with sequence-independent setups.

By incorporating multiple items competing for a limited production capacity, the

authors derived valid inequalities and their facet-defining conditions. They consid-

ered a special case in Miller et al. (2003a), where the demand and setup times were

constant for all items. In this special case, the authors proposed a polynomial-time

algorithm and derived an extended formulation. Akartunalı et al. (2016) consid-

ered two-period relaxation of the big bucket models and proposed cut generating

procedure to cut off given fractional solutions. More recently, Doostmohammadi &

Akartunalı (2018) studied the two-period substructure and derived facet-defining

inequalities, but assumed zero setup times. Unfortunately, these results cannot be

directly applied to LSP because the sequence-dependent setups are not considered.

To the best of our knowledge, the studies on the single-period substructure of LSP

incorporating sequence-dependent setups, are deficient.

Meanwhile, the solution set of the single-period LSP is closely related to that

of routing-type problems such as the capacitated vehicle routing problem (CVRP)

(Toth & Vigo, 2002) in that, both problems select a subset of items to produce (or

customers to visit) from the given sets and determine the sequence of the production

(or sequence of the visit). Therefore, the valid inequalities and extended formulations

of CVRP are also relevant to those of LSP. Gouveia (1995) studied the projection

of single-commodity flow formulations of CVRP. As a result of the projection, they

derived valid inequalities called multi-star inequalities. These results were general-

ized by Letchford, Eglese, et al. (2002) and Letchford & Salazar-González (2006).

Letchford, Eglese, et al. (2002) introduced generalized multi-star inequalities and re-
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ported their computational effects. Letchford & Salazar-González (2006) conducted

a survey of various formulations of CVRP and inequalities derived from the projec-

tion of the formulations and analyzed the relations between them. Later, Letchford

& Salazar-González (2015) provided stronger formulations. These results are rele-

vant to our problem, as discussed in Section 2.4. However, in contrast to CVRP,

the single-period LSP should make additional decisions regarding the production

amount. In this respect, the results of CVRP are not sufficient for LSP.

Guimarães et al. (2014) reviewed various formulations of LSP and proposed clas-

sification criteria. There are various formulations, such as GSEC-based formulation

with exponentially many constraints, pattern-based formulations (Guimarães et al.,

2013) with exponentially many variables, and single/multi-commodity flow formula-

tions. They conducted extensive computational experiments to compare their com-

putational performance and reported that, on average, the single-commodity flow

formulation showed the best performance. However, the theoretical strengths of the

formulations and their relationships were not investigated.

2.3 Single-period Substructure

The single-period substructure of LSP is represented as follows. Because we consider

only a single period, we omit period index t.

minimize
∑
i∈I

(
hcis

+
i + bcis

−
it + pcixi

)
+
∑

(i,j)∈A
scijzij (2.3a)

subject to s−i + xi = di + s+i ∀i ∈ I (2.3b)∑
i∈I

aixi +
∑

(i,j)∈A
stijzij ≤ K (2.3c)
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xi ≤ uiyi ∀i ∈ I (2.3d)∑
i∈I

z0i = 1 (2.3e)

∑
j∈I0\{i}

zji =
∑

j∈I0\{i}
zij = yi ∀i ∈ I (2.3f)

∑
(i,j)∈δ+(S)

zij ≥ yk ∀k ∈ S, S ⊆ I (2.3g)

xi, s
−
i , s

+
i ≥ 0, yi ∈ {0, 1} ∀i ∈ I (2.3h)

zij ∈ {0, 1} ∀(i, j) ∈ A0 (2.3i)

Let X = {(x, s+, s−,y, z) ∈ R3I
+ × BI2+2I : satisfies constraints (2.3b)− (2.3i)}.

Unlike the multi-period problem (2.1), we introduce the variables s−i and s+i which

represent the shortage and surplus for the demand of item i, respectively. Owing to

these variables, demand constraints (2.3b) can always be satisfied, and the solution

set is not empty. In addition, to enrich the analysis, we introduce the parameter ui,

the upper bound on the production amount of item i ∈ I. The individual upper

bounds can be dropped by letting ui = K, ∀i ∈ I. We denote X0 as the solution

set (2.3) with ui = K, ∀i ∈ I. We use GSECs (2.3g) to prevent invalid cycles.

2.3.1 Assumptions

Before presenting basic properties of the single-period substructure, we make some

assumptions. Firstly, without loss of generality, we let ai = 1, ∀i ∈ I. X can be

transformed with general ai into an equivalent set with ai = 1, by considering

variables x′i = aixi, s
−
i
′

= ais
−
i , s+i

′
= ais

+
i , and the modified coefficients d′i = aidi

and u′i = aiui. We also assume that 0 < stij ≤ K, ∀(i, j) ∈ A and ui ≤ K, ∀i ∈ I.
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2.3.2 Basic Polyhedral Properties

We analyze the basic polyhedral structure of the convex hull of X , that is, conv(X ).

We note that, for the proofs in this section, we only exhibit the values of some

variables which are relevant for the sake of simplicity. The variables x,y, and z

are assumed to be zero unless otherwise mentioned. The values of s+ and s− are

automatically set with respect to the corresponding x values and constraints (2.3b).

We start by presenting the dimension of conv(X ).

Proposition 2.1. Dimension of conv(X ) = I2 + 2I − 1.

Proof. The number of the total variables is I2 +5I. As there are 3I+1 equality con-

straints (2.3b) and (2.3e) – (2.3f) which are linearly independent, dim(conv(X )) ≤

I2 + 2I − 1. Therefore, it is sufficient to find I2 + 2I linearly independent points.

Because there are I extreme rays of form s+i = s−i = 1, ∀i ∈ I, it is sufficient to find

I2 + I points.

• For each i ∈ I, z0i = yi = zi0 = 1. (I points)

• For each i ∈ I, z0i = yi = zi0 = 1 and xi = ui. (I points)

• For each (i, j) ∈ A, z0i = yi = zij = yj = zj0 = 1, xi = min{ui, (K − stij)/2},

and xj = min{uj , (K − stij)/2}. (I2 − I points)

It is obvious that the above I2 + I points are linearly independent.

We use the following Lemma 2.2 from Nemhauser & Wolsey (1988) to prove

other propositions.
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Lemma 2.2 (Nemhauser & Wolsey (1988)). Given a polyhedron P = {x ∈ Rn :

Ax ≤ b}, let (A=, b=) be the equality set of P ⊆ Rn and M= be the corresponding

constraint index set. Also, let F = {x ∈ P : πx = π0} be a proper face of P . The

following two statements are equivalent:

1. F is a facet of P .

2. If λx = λ0 for all x ∈ F , then

(λ, λ0) = (uπ + vA=, uπ0 + vb=) for some u ∈ R1 and some v ∈ R|M
=|.

Proposition 2.3. Constraint (2.3c) is a facet-defining inequality of conv(X ) if ui =

K for all i ∈ I, that is, it defines a facet of conv(X0).

Proof. Let us consider a hyperplane

∑
i∈I

(αixi + β+i s
+
i + β−i s

−
i + γiyi) +

∑
(i,j)∈A0

δijzij = π0

which contains all points (x, s+, s−,y, z) in the face defined by constraint (2.3c).

We show that (α,β+,β−,γ, δ) is the sum of a scalar multiple of the coefficients in

constraint (2.3c) and the equality system.

Firstly, without loss of generality, we can let γi = 0 for all i ∈ I because yi can be

replaced with
∑

j∈I0 zij . Moreover, as there are I extreme rays of form s+i = s−i = 1,

we can let β+i + β−i = 0. Due to constraints (2.3b), β+i s
+
i + β−i s

−
i = β+i (s+i − s−i ) =

β+i (di − xi). Therefore, we also can let β+i = β−i = 0 for all i ∈ I without loss

of generality. Now, consider the following points which satisfy constraint (2.3c) at

equality:
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• For i ∈ I, let z0i = yi = zi0 = 1 and xi = K. Then, αiK + δ0i + δi0 = π0.

Consequently, δ0i = π0 − αiK − δi0.

• For (i, j) ∈ A, let z0i = yi = zij = yj = zj0 = 1. Then, xi + xj = K − stij and

the following two cases are possible.

1. (xi, xj) = (0,K − stij), then αj(K − stij) + δ0i + δij + δj0 = π0.

2. (xi, xj) = (K − stij , 0), then αi(K − stij) + δ0i + δij + δj0 = π0.

From the above cases, αi = αj = α∗ and

δij = π0 − δ0i − δj0 − α∗(K − stij)

= π0 − (π0 − α∗K − δi0)− δj0 − α∗(K − stij)

= δi0 − δj0 + α∗stij .

Therefore, the following relations hold between the equations:

∑
i∈I

(αixi + β+i s
+
i + β−i s

−
i + γiyi) +

∑
(i,j)∈A0

δijzij = π0

(⇔)
∑
i∈I

α∗xi +
∑
i∈I

(
δi0zi0 + δ0iz0i

)
+
∑

(i,j)∈A
δijzij = π0

(⇔)
∑
i∈I

α∗xi +
∑
i∈I

(
δi0zi0 + (π0 − α∗K − δi0)z0i

)
+
∑

(i,j)∈A
(δi0 − δj0 + α∗stij)zij = π0

(⇔) α∗
(∑
i∈I

(
xi −Kz0i

)
+
∑

(i,j)∈A
stijzij

)
+
∑
i∈I

δi0

(
zi0 − z0i +

∑
j∈I\{i}

(
zij − zji

))
+ π0(

∑
i∈I

z0i) = π0
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(⇔) α∗
(∑
i∈I

xi +
∑

(i,j)∈A
stijzij −K

)
+

∑
i∈I

δi0(
∑

j∈I0\{i}
zij −

∑
j∈I0\{i}

zji) + π0(
∑
i∈I

z0i − 1) = 0

In the last equation, the first term is a scalar multiplication of the constraint (2.3c),

whereas the second and third terms are scalar multiplications of the equality set.

Therefore, from Lemma 2.2, it is shown that constraint (2.3c) is a facet-defining

inequality if ui = K for all i ∈ I.

Proposition 2.4. For a given i ∈ I, if ui ≤ K −max{stij , stji} for all j ∈ I \ {i},

constraint (2.3d) defines a facet of conv(X ).

Proof. For a given i ∈ I, consider the following points:

• z0i = yi = zi0 = 1 and xi = ui. (1 point)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = 0. (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = uj . (I − 1 points)

• For each j ∈ I \ {i}, z0i = yi = zij = yj = zj0 = 1, xi = ui, and xj =

min{K − stij − ui, uj}. (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zji = yi = zi0 = 1, xi = ui, and xj =

min{K − stji − ui, uj}. (I − 1 points)

• For each (j, k) ∈ A such that j 6= i and k 6= i, z0j = yj = zjk = yk = zk0 = 1,

xj = min{uj , (K−stjk)/2}, and xk = min{uk, (K−stjk)/2}. ((I−1)(I−2)

points)

There are total I2 + I − 1 linearly independent points. Together with I linearly

independent extreme lays of form s+i = s−i = 1 for all i ∈ I, it is demonstrated that
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constraint (2.3d) is a facet defining inequality of conv(X ).

When the condition given in Proposition 2.4 does not hold, even when ui = K for

all i ∈ I, constraint (2.3d) does not define the facets of conv(X0) in general. Instead,

in this case, constraint (2.3d) can be tightened to be the facet-defining inequality of

conv(X0), as shown in Proposition 2.5.

Proposition 2.5. For a given i ∈ I, the following tightened upper bound con-

straint (2.4) is a facet-defining inequality of conv(X ) when ui = K, that is, it defines

a facet of conv(X0).

xi ≤ Kyi −
∑

j∈I\{i}
(stijzij + stjizji) ∀i ∈ I (2.4)

Proof. For a given i ∈ I, consider the following points:

• z0i = yi = zi0 = 1 and xi = K. (1 point)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = 0. (I − 1 points)

• For each j ∈ I \ {i}, z0j = yj = zj0 = 1 and xj = uj . (I − 1 points)

• For each j ∈ I \ {i}, z0i = yi = zij = yj = zj0 = 1 and xi = K − stij . (I − 1

points)

• For each j ∈ I \ {i}, z0j = yj = zji = yi = zi0 = 1 and xi = K − stji. (I − 1

points)

• For each (j, k) ∈ A such that j 6= i and k 6= i, z0j = yj = zjk = yk = zk0 = 1,

xj = min{uj , (K − stjk)/2} and xk = min{uk, (K − stjk)/2}. ((I − 1)(I − 2)

points)
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There are total I2 + I − 1 linearly independent points. Together with I linearly

independent extreme lays of form s+i = s−i = 1 for all i ∈ I, it is demonstrated that

constraint (2.4) defines a facet of conv(X0).

2.4 New Valid Inequalities

2.4.1 S-STAR Inequality

In this section, we propose new families of valid inequalities for conv(X ) and identify

their facet-defining conditions. The first is called the S-STAR inequality because it

forms the shape of a star centered on a given set of nodes S ⊆ I, as illustrated in

Figure 2.2. The inequality can also eliminate all invalid cycles which do not contain

item 0. This indicates that the S-STAR inequalities can replace GSEC (2.3g).

S

Figure 2.2: Illustration of the S-STAR inequality
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Proposition 2.6. For a given node subset S ⊆ I, the following inequality is valid

for X : ∑
i∈S

xi +
∑

(i,j)∈δ(S)
stijzij +

∑
(i,j)∈E(S)

stijzij ≤ K
∑

(i,j)∈δ−(S)
zij . (2.5)

In addition, these inequalities are sufficient to eliminate all cycles which do not

include item 0.

Proof. For a given feasible solution of X , if
∑

(i,j)∈δ−(S) zij ≥ 1, the inequality triv-

ially holds because the right-hand side becomes greater than or equal to the capacity

K. On the other hand, if
∑

(i,j)∈δ−(S) zij = 0, there are no incoming arcs to the nodes

in S which indicates that the items in S cannot be produced, and the corresponding

setups that start or end with the items in S cannot be conducted. Therefore, the

left-hand side value also becomes zero and the inequality holds.

To demonstrate that the S-STAR inequality can prevent any invalid cycles, sup-

pose that we are given a cycle that does not include item 0, and let N be the

set of nodes in the cycle (|N | ≥ 2). Then, from the definition, there are no in-

coming and outgoing arcs for N . Therefore,
∑

(i,j)∈δ−(N) zij = 0, and the right-

hand side of inequality (2.5) defined by N becomes zero. On the other hand, as∑
(i,j)∈E(N) zij = |N | and stij > 0, ∀(i, j) ∈ A, the left-hand side is greater than 0

which indicates that the given solution violates the S-STAR inequality. This demon-

strates that invalid cycles can be eliminated by adding the S-STAR inequalities.

We note that the S-STAR inequality is closely related to the generalized large

multistar (GLM) inequality proposed for CVRP by Gouveia (1995) and Letchford,

Eglese, et al. (2002). To demonstrate this more explicitly, consider the following

generic inequality which subsumes both S-STAR and GLM inequalities, although it
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has nonlinear terms xizij .

∑
i∈S

xi +
∑

(i,j)∈δ+(S)

(stij + xj)zij +
∑

(i,j)∈δ−(S)
(xi + stij)zij

+
∑

(i,j)∈E(S)

stijzij ≤ K
∑

(i,j)∈δ−(S)
zij ∀S ⊆ I (2.6)

In CVRP, the value of xi which indicates the delivery amount for customer i, cannot

have any value between 0 and ui, but must be either 0 or di, that is, xi = diyi. In

addition, no setup time is considered in CVRP. In this regard, by setting stij = 0

and xi = diyi for inequality (2.6), we can obtain the GLM inequality immediately

(note that yizij can be linearized as zij). On the other hand, by dropping variables

xj and xi in the second and third terms of inequality (2.6), respectively, we can

obtain the S-STAR inequality.

In contrast to the GLM inequalities, the facet-defining conditions of the S-STAR

inequalities can be identified. Specifically, if the individual upper bound for each

item is not imposed, the S-STAR inequality becomes a facet-defining inequality of

conv(X ).

Proposition 2.7. Given S ⊆ I, the S-STAR inequality defines a facet of conv(X )

when ui = K for all i ∈ I. In other words, it defines a facet of conv(X0).

Proof. Let us consider a hyperplane
∑

i∈I αixi+
∑

(i,j)∈A0
δijzij = π0 which contains

all points (x, s+, s−,y, z) in the face defined by inequality (2.5), given S ⊆ I. As

shown in the proof of Proposition 2.3, we can assume that the coefficients of s+,

s−, and y is zero. Consider the following points which satisfy inequality (2.5) at

equality, given S:
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• For each i ∈ S, z0i = yi = zi0 = 1. Then, xi = K and αiK + δ0i + δi0 = π0,

that is,

δi0 = π0 − δ0i − αiK ∀i ∈ S.

• For each i ∈ I \ S, z0i = yi = zi0 = 1. Then, xi can have any value between 0

and K which indicates αi = 0 and

δi0 = π0 − δ0i ∀i ∈ I \ S.

• For each (i, j) ∈ E(S), z0i = yi = zij = yj = zj0 = 1. In this case, xi and xj can

have any values satisfying xi + xj = K − stij . There exist many combinations

satisfying xi + xj = K − stij . Therefore, αi = αj = α∗ and

δij = π0 − α∗(K − stij)− δ0i − δj0 = α∗stij − δ0i + δ0j ∀(i, j) ∈ E(S).

• For each (i, j) ∈ E(S : I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = K − stij .

Therefore, α∗(K − stij) + δ0i + δij + δj0 = π0, that is,

δij = α∗(stij −K)− δ0i + δ0j ∀(i, j) ∈ E(S : I \ S).

• For each (i, j) ∈ E(I \S : S), z0i = yi = zij = yj = zj0 = 1 and xj = K − stij .

Therefore, α∗(K − stij) + δ0i + δij + δj0 = π0, that is,

δij = α∗stij − δ0i + δ0j ∀(i, j) ∈ E(I \ S : S).
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• For each (i, j) ∈ E(I \ S), z0i = yi = zij = yj = zj0 = 1. In this case,

δij = π0 − δ0i − δj0 = −δ0i + δ0j ∀(i, j) ∈ E(I \ S).

The term
∑

(i,j)∈A0
δijzij can be decomposed as

∑
i∈I

(δi0zi0 + δ0iz0i)︸ ︷︷ ︸
(i)

+
∑

(i,j)∈E(S)

δijzij︸ ︷︷ ︸
(ii)

+

∑
(i,j)∈E(S:I\S)

δijzij︸ ︷︷ ︸
(iii)

+
∑

(i,j)∈E(I\S:S)
δijzij︸ ︷︷ ︸

(iv)

+
∑

(i,j)∈E(I\S)
δijzij︸ ︷︷ ︸

(v)

.

The decomposed terms (i) to (v) can be stated as follows:

(i) =
∑
i∈S

(δi0zi0 + δ0iz0i) +
∑
i∈I\S

(δi0zi0 + δ0iz0i)

=
∑
i∈S

(
(π0 − δ0i − α∗K)zi0 + δ0iz0i

)
+
∑
i∈I\S

(
(π0 − δ0i)zi0 + δ0iz0i)

=π0
∑
i∈I

zi0 +
∑
i∈I

δ0i(z0i − zi0)− α∗K
∑
i∈S

zi0

(ii) =
∑

(i,j)∈E(S)

(
α∗stij − δ0i + δ0j

)
zij

=α∗
∑

(i,j)∈E(S)

stijzij +
∑
i∈S

δ0i

(∑
j∈S

zji −
∑
j∈S

zij

)

(iii) =
∑

(i,j)∈E(S:I\S)

(
α∗stij − α∗K − δ0i + δ0j

)
zij
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=α∗
∑

(i,j)∈E(S:I\S)
(stij −K)zij +

∑
j∈I\S

δ0j

(∑
i∈S

zij

)
−
∑
i∈S

δ0i

( ∑
j∈I\S

zij

)

(iv) =
∑

(i,j)∈E(I\S:S)

(
α∗stij − δ0i + δ0j

)
zij

=α∗
∑

(i,j)∈E(I\S:S)
stijzij +

∑
j∈S

δ0j

( ∑
i∈I\S

zij

)
−
∑
i∈I\S

δ0i

(∑
j∈S

zij

)

(v) =
∑

(i,j)∈E(I\S)
(−δ0i + δ0j)zij =

∑
i∈I\S

δ0i

( ∑
j∈I\S

zji −
∑
j∈I\S

zij

)

Therefore,
∑

i∈I αixi +
∑

(i,j)∈A0
δijzij = π0 is reduced to

α∗
(∑
i∈S

xi +
∑

(i,j)∈δ(S)
stijzij +

∑
(i,j)∈E(S)

stijzij −K
∑

(i,j)∈δ+(S)

zij

)
+

π0

(∑
i∈I

zi0 − 1
)

+
∑
i∈I

δ0i

(∑
j∈I0

zji −
∑
j∈I0

zij

)
= 0.

Because the second and third terms are scalar multiplications of the equality set and

the first term is that of the inequality (2.5), it defines a facet of conv(X0).

2.4.2 Separation of S-STAR Inequality

Given a fractional solution (x̄, s̄+, s̄−, ȳ, z̄), the separation problem of the S-STAR

inequality is to find a subset N ⊆ I such that

∑
i∈N

x̄i +
∑

(j,i)∈E(N)

stjiz̄ji +
∑

(i,j)∈δ(N)

stij z̄ij > K
∑

(i,j)∈δ+(N)

z̄ij
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or equivalently,

∑
i∈N

(
x̄i +

∑
j∈I0\{i}

stjiz̄ji

)
+
∑
i∈N

∑
j /∈N

(
stij −K

)
z̄ij > 0.

To formulate the above separation problem as an integer program, we define the

following notations and variables.

• For i ∈ I, let αi := x̄i +
∑

j∈I0\{i} stij z̄ij which is non-negative.

• For (i, j) ∈ A0, βij :=
(
K − stij

)
z̄ij which is non-negative.

• For i ∈ I, let binary variable pi = 1 if i ∈ N . Let p0 = 0.

• For (i, j) ∈ A0, let binary variable qij = 1 if i ∈ N and j /∈ N .

The separation problem of the S-STAR inequalities can be formulated as follows.

(SEP-S-STAR) maximize
∑
i∈I

αipi −
∑

(i,j)∈A0

βijqij (2.7a)

subject to qij ≤ pi ∀(i, j) ∈ A0 (2.7b)

qij ≤ 1− pj ∀(i, j) ∈ A0 (2.7c)

pi − pj ≤ qij ∀(i, j) ∈ A0 (2.7d)

pi ∈ {0, 1} ∀i ∈ I (2.7e)

qij ∈ {0, 1} ∀(i, j) ∈ A0 (2.7f)

Proposition 2.8. (SEP-S-STAR) is polynomially solvable.

Proof. The objective coefficients of the variables qij are non-positive. Therefore,

there exists an optimal solution with qij value as small as possible. In this regard,
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the value of qij is determined by constraint (2.7d), that is, qij = pi − pj . Because

pi − pj ≤ pi and pi − pj ≤ 1 − pj always hold, constraints (2.7b) and (2.7c) are

automatically satisfied and can be dropped. Then, a matrix corresponding to the

remaining constraints (2.7d) is of the form [I|Q], where I is an identity matrix and

each row of matrix Q contains only two nonzero coefficients of 1 and −1 which

indicates that it is totally unimodular (Nemhauser & Wolsey, 1988). Therefore,

the problem can be solved by solving its LP relaxation which can be performed in

polynomial time.

Separation of S-STAR inequality can be conducted by solving minimum cut prob-

lems (or equivalently maximum flow problems) rather than solving (SEP-S-STAR).

Given a fraction solution obtained after solving LP relaxation (2.3), one can compute

α and β which are defined above. By letting an item s ∈ I be the source node, the

corresponding capacitated network Gs = (I0,A0,C) on which the minimum (s, 0)

cut problem is defined can be constructed by setting arc capacity Cij as follows:

• Csi = M + βsi for all i ∈ I \ {s},

• Ci0 = M − αi for all i ∈ I \ {s},

• Cij = βij for all (i, j) ∈ A such that i 6= s,

• Cs0 = 0.

The maximum value of αi, denoted by M = maxi∈I{αi}, is added to arcs (s, i) and

(i, 0) for all i ∈ I \ {s} to prevent negative arc capacity. Note that among these

2(I−1) arcs with additionally added M , exactly I−1 arcs are always selected when

we find minimum (s, 0) cut. The resulting graph is illustrated in Figure 2.3(a).
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(b) A cut resulting from the maximum flow problem

Figure 2.3: Illustration of the separation procedure of S-STAR inequality
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Algorithm 2.1: Separation procedure of S-STAR inequality

1 C = ∅ ; // storage of violated cut information

2 (α,γ,M)← Calc(x̄, ȳ, z̄);
3 forall s ∈ I do
4 if s was not selected as a member of S in previous iteration then
5 construct Gs with (α,γ,M);
6 (obj, cut)← maxFlow(Gs, s, 0); // get max flow value and cut

7 if obj < (I − 2)M + αs then // violated cut found

8 C ← C ∪ {cut};
9 end

10 end

11 end
12 return C

Given the graph, minimum (s, 0) cut can be found in O(I3) by a maximum flow

algorithm. Therefore, considering the iteration over all possible source nodes s ∈ I,

the overall separation routine takes O(I4) time. When the capacity of the found

minimum (s, 0) cut, denoted as (S : SC) as illustrated in 2.3(b), is smaller than

(I−2)M +αs, the S-STAR inequality defined by the set S is violated, and therefore,

added to (2.3). Otherwise, there is no violated S-STAR inequality which is defined

by a subset of nodes containing an item s.

In our implementation of the separation algorithm, we choose the source node

s ∈ I in increasing order of the index. To speed up the separation procedure, we

prevented nodes which were selected as a member of S in the previous minimum

cut problem from becoming source nodes. From the practical point of view, various

separation strategies can be used to further speed up the separation procedure which,

however, is not the primary interest of this chapter and can be a future research

direction. The overall separation procedure of S-STAR inequality, given a fractional

solution (x̄, ȳ, z̄), is described in Algorithm 2.1.
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2.4.3 U-STAR Inequality

The S-STAR inequality presented above defines a facet if there is no individual upper

bound for the production amount of each item. On the other hand, the following

valid inequality, denoted as U-STAR inequality, can be beneficial when the non-trivial

upper bound for each item is presented.

Proposition 2.9. For a given S ⊆ I, the inequality

∑
i∈S

xi −
∑

(i,j)∈E(S)

λijzij ≤
∑

(i,j)∈δ−(S)
ujzij (2.8)

is valid for X , where λij := min{K − stij − ui, uj} for all (i, j) ∈ A.

Proof. Inequality (2.8) can be rewritten as

∑
i∈S

xi ≤
∑
i∈S

uiyi −
∑

(i,j)∈E(S)

[ui + stij + uj −K]+zij ,

where [a]+ = max{0, a}. To show that this inequality is valid for X , let us given a

feasible solution (x̄, s̄+, s̄−, ȳ, z̄). Then, z̄ forms a cycle C = {(i, j) : z̄ij = 1, (i, j) ∈

A0} which includes node 0. The set of nodes included in C is denoted as V (C).

If ui + stij + uj ≤ K for all (i, j) ∈ E(S) ∩C, then the inequality trivially holds

because it is reduced to an aggregated upper bound constraint for i ∈ S. Therefore,

let R ⊆ E(S)∩C such that ui+stij+uj > K for (i, j) ∈ R, and let R 6= ∅. In addition,

assume that R forms a path, that is, R = {(i1, i2), (i2, i3), · · · , (il−2, il−1), (il−1, il)}.

If not, R can be partitioned into several mutually exclusive paths. Applying the

following logic to each of them separately is straightforward and the proof still
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holds. Then, from the assumption, the following relations hold.

∑
i∈S

uiȳi −
∑

(i,j)∈E(S)

[ui + stij + uj −K]+z̄ij

=
∑

i∈S∩V (C)

ui −
∑

(i,j)∈R
(ui + stij + uj −K)

=
∑

i∈S∩V (C)

ui −
l−1∑
k=1

(uik + uik+1
+ stikik+1

−K)

≥ (l − 1)K − (ui2 + · · ·uil−1
)−

l−1∑
k=1

stikik+1

= K + (K − ui2) + · · ·+ (K − uil−1
)−

l−1∑
k=1

stikik+1
≥ K −

l−1∑
k=1

stikik+1
≥
∑
i∈S

x̄i.

As a result, it is demonstrated that the U-STAR inequality is valid for X .

Proposition 2.10. For a given S ⊆ I, the U-STAR inequality (2.8) defines a facet

of conv(X ) if the following conditions hold.

1. For all i ∈ S and j ∈ I \ S, ui + max{stij , stji} ≤ K.

2. For all (i, j) ∈ E(S), K − stij < ui + uj.

Proof. For a given S ⊆ I, consider the following points satisfying constraint (2.8)

at equality:

• For each i ∈ S, z0i = yi = zi0 = 1 and xi = ui. (|S| points)

• For each i ∈ I \ S, z0i = yi = zi0 = 1 and xi = 0. (I − |S| points)

• For each i ∈ I \ S, z0i = yi = zi0 = 1 and xi = ui. (I − |S| points)

• For each (i, j) ∈ E(I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = xj = 0.

((I − |S|)(I − |S| − 1) points)
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• For each (i, j) ∈ E(S : I \ S), z0i = yi = zij = yj = zj0 = 1 and xi = ui.

(|S|(I − |S|) points)

• For each (i, j) ∈ E(I \ S : S), z0i = yi = zij = yj = zj0 = 1 and xj = uj .

(|S|(I − |S|) points)

• For each (i, j) ∈ E(S), let z0i = yi = zij = yj = zj0 = 1. In this case, xi + xj

should be equal to K − stij . From the second condition of the proposition,

K − stij < ui + uj . Therefore, one can let (xi, xj) = (ui,K − stij − ui).

(|S|(|S| − 1) points)

• Choose one element from S, say i∗. Then, for each j ∈ S \{i∗}, let z0i∗ = yi∗ =

zi∗j = yj = zj0 = 1 and (xi∗ , xj) = (K − sti∗j − uj , uj). (|S| − 1 points)

It is not hard to see that the above I2 + I − 1 points are affinely independent.

Note that when ui = K, the first condition of the Proposition 2.10 is violated.

Particularly, in this case, the U-STAR inequalities are reduced to the weakened version

of the S-STAR inequalities and therefore, are dominated by them.

2.4.4 Separation of U-STAR Inequality

The separation problem of the U-STAR inequality for a given fractional solution

(x̄, s̄+, s̄−, ȳ, z̄), is to find a subset N ⊆ I such that

∑
i∈N

x̄i −
∑

(i,j)∈E(N)

min{K − stij − ui, uj}z̄ij >
∑

(i,j)∈δ−(N)

uj z̄ij .
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Because one can rewrite min{K − stij − ui, uj} = uj − [uj + ui + stij −K]+, where

[X]+ = max{0, X}, the problem is reduced to finding N such that

∑
i∈N

(uiȳi − x̄i)−
∑

(i,j)∈E(N)

[uj + ui + stij −K]+z̄ij < 0.

To formulate the above separation problem as an integer program, we define the

following notations and variables.

• For i ∈ I, let γi := uiȳi − x̄i which is non-negative.

• For (i, j) ∈ A, let δij := [uj + ui + stij −K]+z̄ij which is non-negative.

• For i ∈ I, let binary variable pi = 1, if i ∈ N .

• For (i, j) ∈ A, let binary variable qij = 1, if i ∈ N and j ∈ N .

Using the notation, the separation problem can be formulated as follows.

(SEP-U-STAR) minimize
∑
i∈I

γipi −
∑

(i,j)∈A
δijqij (2.9a)

subject to qij ≤ pi ∀(i, j) ∈ A (2.9b)

qij ≤ pj ∀(i, j) ∈ A (2.9c)

pi + pj − 1 ≤ qij ∀(i, j) ∈ A (2.9d)

pi ∈ {0, 1} ∀i ∈ I (2.9e)

qij ∈ {0, 1} ∀(i, j) ∈ A (2.9f)

Proposition 2.11. (SEP-U-STAR) is polynomially solvable.

Proof. The objective coefficients of variables qij are non-positive. As (SEP-U-STAR)
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is a minimization problem, in contrast to (SEP-S-STAR), there exists an optimal

solution with a qij value as large as possible. Therefore, the lower bounding con-

straints (2.9d) are redundant and can be dropped. Then, each row of the matrix cor-

responding to the remaining constraints (2.9b) and (2.9c) contains only two nonzero

coefficients of 1 and −1 which indicates that it is totally unimodular (Nemhauser

& Wolsey, 1988). Therefore, the problem can be solved by solving its LP relaxation

within a polynomial time.

The separation problem (SEP-U-STAR) also can be converted to maximum flow

problems which are defined on networks Gs for s ∈ I, similar to (SEP-S-STAR). The

capacity Cij is now defined as follows:

• Csi = M + δsi for all i ∈ I \ {s},

• Ci0 = M + γi −
∑

j∈I δij for all i ∈ I \ {s},

• Cij = δij for all (i, j) ∈ A such that i 6= s,

• Cs0 = 0.

M , which is defined as max
{
− mini∈I{γi −

∑
j∈I δij}, 0

}
, is added to arcs (s, i)

and (i, 0) for all i ∈ I \ {s} to prevent negative arc capacity. Note that among these

2(I−1) arcs with additionally added M , exactly I−1 arcs are always selected when

we find minimum (s, 0) cut. The resulting graph is illustrated in Figure 2.4. When

the capacity of the found minim (s, 0) cut is smaller than (I−2)M − (γs−
∑

i∈I δsi,

the violated U-STAR inequality is found. Otherwise, there is no violated U-STAR

inequality which is defined by a subset of nodes containing an item s. The overall

separation procedure of U-STAR inequality is omitted here because it is similar to

that of S-STAR inequality provided in Algorithm 2.1
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Figure 2.4: Construction of the network for the separation procedure of U-STAR

inequality

It is well-known that GSEC also can be separated in polynomial time by solving

maximum-flow problems (Wolsey, 2020). Therefore, in our implementation of the

separation algorithms, we used the maximum flow algorithms for all three inequal-

ities. We denote the formulations obtained by replacing the constraints (2.3g) in

formulation (2.3) with the S-STAR inequality (2.5), and U-STAR inequality (2.8) as

(S-STAR) and (U-STAR), respectively.

2.4.5 General Representation of the Inequalities

Lastly, we note that the S-STAR and U-STAR inequalities can be represented in a

more generalized form which is related to the results of Avella et al. (2018) who

addressed inventory routing problem (IRP). IRP considers both the management

of inventory and routing of vehicles over multiple periods. The authors studied the

single-period substructure of IRP and proposed valid inequalities which are denoted
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as disjoint route inequalities. The disjoint route inequality can be applied to LSP

after making slight modifications which are shown in the following proposition.

Proposition 2.12. Given a subset S ⊆ I and coefficients µij for all (i, j) ∈ A0,

the inequality ∑
(i,j)∈A0

µijzij ≥
∑
i∈S

xi (2.10)

is valid if ∑
(i,j)∈C

µij ≥ min
(
K −

∑
(i,j)∈C

stij ,
∑

i∈V (C)∩S
ui

)
(2.11)

for every feasible cycle C = {(i, j) : z̄ij = 1, (i, j) ∈ A0} that can be formed by a

feasible solution (x̄, s̄+, s̄−, ȳ, z̄). Let V (C) denotes the set of nodes included in C.

Proof. For a given feasible solution (x̄, s̄+, s̄−, ȳ, z̄) ∈ X ,

∑
(i,j)∈A0

µij z̄ij =
∑

(i,j)∈C
µij

for the cycle C and

∑
i∈I

x̄i +
∑

(i,j)∈A
stij z̄ij =

∑
i∈V (C)

x̄i +
∑

(i,j)∈C
stij z̄ij ≤ K.

Therefore,

∑
i∈V (C)∩S

x̄i ≤ K −
∑

(i,j)∈C
stij z̄ij −

∑
i∈V (C)∩Sc

x̄i ≤ K −
∑

(i,j)∈C
stij
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which leads to

min
(
K −

∑
(i,j)∈C

stij ,
∑

i∈V (C)∩S
ui

)
≥ min

( ∑
i∈V (C)∩S

xi,
∑

i∈V (C)∩S
ui

)
≥

∑
i∈V (C)∩S

xi.

This shows the proposition holds.

The above inequality (2.10) is quite general: there is a high degree of freedom in

determining the coefficients µij . Therefore, the separation of the inequality (2.10)

in its current form seems difficult even for a given S as mentioned by Avella et

al. (2018). The authors considered subfamilies by restricting the structure of the

inequality. The S-STAR and U-STAR inequalities also can be regarded as subfamilies

of the above inequalities which are demonstrated by setting µij values as follows:

• S-STAR inequality:

µij =



K − stij , (i, j) ∈ δ+(S)

−stij , (i, j) ∈ δ−(S) ∪ E(S)

0, otherwise.

• U-STAR inequality:

µij =



uj , (i, j) ∈ δ−(S)

min{K − stij − ui, uj}), (i, j) ∈ E(S)

0, otherwise.

It is easy to show that, by setting µij as above, the condition (2.11) is satisfied.
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2.5 Extended Formulations

In this section, we introduce extended formulations—single/multi-commodity flow

formulations and time-flow formulations—for the single-period substructure. Al-

though we present them for the single-period substructure, they can be straight-

forwardly adapted to LSP with multiple time periods.

2.5.1 Single-commodity Flow Formulations

The single-commodity flow formulation, first proposed by Gavish & Graves (1978)

for TSP, has been frequently used to model many routing problems. Guimarães et al.

(2014) used this formulation to model LSP. By defining variable fij for (i, j) ∈ A0

representing the commodity flow along the arc (i, j), the formulation can be written

as follows.

∑
i∈I

f0i =
∑
i∈I

yi (2.12a)

∑
j∈I0\{i}

fji −
∑

j∈I0\{i}
fij = yi ∀i ∈ I (2.12b)

0 ≤ fij ≤ Izij ∀(i, j) ∈ A0 (2.12c)

Constraints (2.12a) indicate that the amount of commodities sent from node 0 is

equal to the total number of items produced. Constraints (2.12b) ensure that if the

item i is produced, the amount of commodity decreases by one, whereas it does not

change if i is not produced. Constraints (2.12c) represent the relation between the

variables f and z and impose the upper bound on the amount of the commodity.

If zij = 1, fij represents the amount of commodity that flows along arc (i, j) and
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fij = 0, if zij = 0. By replacing constraints (2.3g) with (2.12), the first single-

commodity flow formulation which is denoted as (SCF1) can be obtained.

It is commonly known (Gouveia, 1995) that a stronger formulation denoted as

(SCF2) can be obtained by replacing the bound constraints (2.12c) of (SCF1) with

the tighter constraints (2.13).

z0i ≤ f0i ≤ Iz0i ∀i ∈ I (2.13a)

zij ≤ fij ≤ (I − 1)zij ∀(i, j) ∈ A (2.13b)

fi0 = 0 ∀i ∈ I (2.13c)

Both formulations (SCF1) and (SCF2) prevent any cycles without node 0. Fur-

thermore, the following relations hold among (SCF1), (SCF2), and (GSEC).

Proposition 2.13. Let z(F) be the LP relaxation bound obtained from the given

formulation (F). Then,

z(SCF1) ≤ z(SCF2) ≤ z(GSEC).

Proof. By projecting both (SCF1) and (SCF2) onto the original space, one can

obtain the following inequalities (2.14) and (2.15), respectively.

∑
i∈S

yi ≤ I
∑

(i,j)∈δ−(S)
zij ∀S ⊆ I (2.14)

∑
i∈S

yi ≤ I
∑

(i,j)∈δ−(S)
zij −

∑
i∈S

∑
j∈I\S

zij −
∑
i∈I\S

∑
j∈S

zij ∀S ⊆ I (2.15)

No other inequalities can be obtained by the projection because of Hoffman’s circu-
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lation theorem (Hoffman, 1976). It is trivial that inequalities (2.14) are dominated

by inequalities (2.15). We show that inequalities (2.15) are implied by the GSEC.

For a given S ⊆ I, by aggregating the GSEC for all i ∈ S, we obtain
∑

i∈S yi ≤

|S|∑(i,j)∈δ−(S) zij . Therefore, it is sufficient to show that

∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij ≤ (I − |S|)
∑

(i,j)∈δ−(S)
zij . (2.16)

When |S| = I, it naturally holds because I \S = ∅. When |S| = I−1, |I \S| = 1,

and let k be the only element in I \ S. Then,

∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij =
∑
i∈S

(zik + zki)

and

(I − |S|)
∑

(i,j)∈δ−(S)
zij =

∑
i∈S

∑
j∈I0\S

zij =
∑
i∈S

(zik + zi0) =
∑
i∈S

zik + 1− zk0

as
∑

i∈I zi0 = 1. Because
∑

i∈S zki + zk0 ≤ 1, inequality (2.16) also holds. Finally,

when |S| ≤ I − 2, inequality (2.16) can be written as

∑
i∈S

∑
j∈I\S

zij +
∑
i∈I\S

∑
j∈S

zij ≤
∑

(i,j)∈δ+(S)∪δ−(S)
zij

= 2
∑

(i,j)∈δ−(S)
zij ≤ (I − |S|)

∑
(i,j)∈δ−(S)

zij ,

and therefore, it also holds.
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2.5.2 Multi-commodity Flow Formulations

Multi-commodity flow formulations have also been studied for various routing prob-

lems. Sarin et al. (2011) presented a multi-commodity flow formulation for Chesa-

peake problem which is an instance of LSP. In contrast to single-commodity flow

formulations, multi-commodity flow formulations define one commodity per item.

Let us define the binary variable qkij for i ∈ I0 and j, k ∈ I which represents whether

arc (i, j) is traversed on the way from node 0 to node k. Accordingly, the following

constraints are formed.

∑
j∈I

qk0j = yk ∀k ∈ I (2.17a)

∑
j∈I0\{k}

qkjk = yk ∀k ∈ I (2.17b)

∑
j∈I0\{i}

qkji =
∑

j∈I\{i}
qkij ∀i, k ∈ I, k 6= i (2.17c)

qkkj = 0 ∀j, k ∈ I (2.17d)

0 ≤ qkij ≤ zij ∀i ∈ I0, j, k ∈ I (2.17e)

Constraints (2.17a) and (2.17b) ensure that when item k is produced, the corre-

sponding commodity should flow from node 0 to node k. Constraints (2.17c) are the

flow balance constraints. Constraints (2.17d) and (2.17e) ensure that the commodity

variable can have a nonzero value only when the corresponding arc is traversed. By

replacing constraints (2.3g) with the set of constraints (2.17), the multi-commodity

flow formulation denoted as (MCF1) can be obtained. It is known that by projecting

(MCF1) onto the original space, (GSEC) is obtained, and they provide the same LP
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bounds (Padberg & Sung, 1991).

Because (MCF1) only uses additional variables qkij regarding the sequencing de-

cisions, there are no considerations for lot-sizing decisions. In this regard, to further

enhance the LP relaxation bound, we derive the following additional constraints that

incorporate both decisions.

∑
(i,j)∈A

stijq
k
ij + xk ≤ Kyk ∀k ∈ I (2.18a)

stijq
j
ij + stjiq

i
ji + xi + xj ≤ K(yi + yj − zij − zji) ∀(i, j) ∈ A (2.18b)

It is not difficult to show that inequalities (2.18a) and (2.18b) are valid. Incorporat-

ing these inequalities into (MCF1), a tighter formulation (MCF2) is obtained. Their

strength and effectiveness are further investigated through computational experi-

ments. Additionally, we obtain the following corollary.

Corollary 2.14. z(SCF1) ≤ z(SCF2) ≤ z(GSEC) = z(MCF1) ≤ z(MCF2).

2.5.3 Time-flow Formulations

The time-flow formulations are similar to the single-commodity flow formulations,

except that they represent the flow of time instead of the commodity. To present

the formulations, we define a set of time-flow variables wij for (i, j) ∈ A0 which

represents the remaining capacity when the setup from item i to item j begins.

∑
j∈I0\{i}

(wji − stjizji)− xi =
∑

j∈I0\{i}
wij ∀i ∈ I (2.19a)

0 ≤ wij ≤ Kzij ∀(i, j) ∈ A0 (2.19b)
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Constraints (2.19a) are time flow balance equations that ensure that by subtracting

the setup and production time for item i from the given capacity, one can obtain

the remaining capacity. Constraints (2.19b) impose upper bounds on the time-flow

variables. We call this formulation (TF1). Similar to (SCF1), (TF1) can be further

strengthened with tighter bound constraints (2.20) instead of (2.19b) which we call

(TF2).

stijzij ≤ wij ≤ Kzij ∀(i, j) ∈ A0, i 6= 0 (2.20a)

w0i = Kz0i ∀i ∈ I (2.20b)

The time-flow formulations can represent the consumption of the capacity and

therefore, can additionally incorporate the production amount and setup times which

distinguishes them from the single-commodity flow formulations. This difference is

illustrated in Figure 2.5. The single and multi-commodity flow variables in Fig-

ures 2.5(a) and 2.5(b) contain only production sequence information. On the other

hand, the time-flow variables in Figure 2.5(c) additionally contain information on

the production amount and the remaining capacity which can be more beneficial in

modeling LSP.
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Figure 2.5: Illustration of the extended formulations
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Finally, we provide the relation between the time-flow formulations and S-STAR

inequalities.

Proposition 2.15. Projection of (TF2) onto the original space results in S− STAR

inequalities (2.5). Furthermore, z(TF1) ≤ z(TF2) = z(S− STAR).

Proof. For a given S ⊆ I, by adding the inequalities (2.19a) for all i ∈ S and

rearranging the terms, one can obtain

∑
(j,i)∈E(S)∪δ−(S)

stjizji +
∑
i∈S

xi

=
∑
i∈S

( ∑
j∈I0\{i}

wji −
∑

j∈I0\{i}
wij

)
=

∑
(j,i)∈δ−(S)

wji −
∑

(i,j)∈δ+(S)

wij .

From the bound constraints (2.20),

∑
(j,i)∈E(S)∪δ−(S)

stjizji +
∑
i∈S

xi

=
∑

(j,i)∈δ−(S)
wji −

∑
(i,j)∈δ+(S)

wij ≤ K
∑

(i,j)∈δ−(S)
zij −

∑
(i,j)∈δ+(S)

stijzij

can be obtained, which is the S-STAR inequality for S ⊆ I. This indicates that all fea-

sible solutions of (TF2) satisfy the S-STAR inequalities. Moreover, due to Hoffman’s

circulation theorem (Hoffman, 1976) it can be shown that z(TF2) = z(S-STAR).

There are no other dominance relations between the time-flow formulations and

commodity-flow formulations. Their strengths are compared through computational

experiments, as discussed in the next section.
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2.6 Computational Experiments

2.6.1 Experiment Settings

We stress that the aim of the computational experiments here is to compare the

strengths of various inequalities and formulations, rather than to solve real-world

LSP instances. Thus, we compare the LP relaxation bounds of the extended for-

mulations, that is, (SCF1), (SCF2), (MCF1), (MCF2), (TF1), and (TF2), and the

formulations with valid inequalities, that is, (GSEC), (S-STAR), and (U-STAR).

To compute the bound value with a particular type of valid inequalities, we

exhaustively separate the violated inequalities at the root node until none is found or

the objective value does not improve during the last 100 iterations of the separation

procedure. Furthermore, for the purpose of comparison, we also report the results

when all three types of inequalities are separated which is denoted as (ALL).

All experiments were conducted on an Intel Core 3.10 GHz PC with 16 GB RAM

under Windows 10 Pro. The separation algorithms and mathematical formulations

were implemented using C++. FICO Xpress 8.12 with its default parameter settings

was used as the LP solver.

We use two sets of test instances, that is, single-period and multi-period instances

that are generated following the instance-generation scheme proposed by Almada-

Lobo, Klabjan, et al. (2007) which has been frequently used in the literature. The

descriptions of the instances are given below.
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Single-period Instances

The type of single-period instance is defined by the combination of the number of

items (I), capacity utilization parameter (UTIL), setup cost parameter (SC), and

upper bound parameter (IUB). These parameters are adopted from the study of

Almada-Lobo, Klabjan, et al. (2007), except for the last parameter which is addi-

tionally defined to determine whether there is an individual upper bound for the

production amount of each item (IUB = T) or not (IUB = F).

The demand for item i, di, is generated from DU [40, 60], and capacity K is

set to I · davg/ρ. The unit surplus and shortage costs of item i, that is, hci and

bci, respectively, are generated from DU [2, 10]. In addition, we use a negative unit

production cost, that is, profit, pci = −1, to make production profitable. The setup

time stij is drawn from DU [0.05K, 0.1K], and the setup cost is set as scij = SC ·stij .

The upper bound ui for item i is generated from DU [di + 1,K] if IUB = T, while it

is set to K if IUB = F. We use the following parameters: I ∈ {5, 15, 25, 35}, UTIL =

{0.6, 0.8, 1}, SC ∈ {50, 100}, IUB ∈ {T, F}. For each combination, we generated 100

instances, resulting in a total of 4800 single-period instances.

Multi-period Instances

Multi-period instances are also generated, similar to the single-period instances.

The main difference is in setting the cost parameters which are set as pcit = 1,

hcit ∼ DU [2, 10], bcit ∼ DU [10, 50], and scij = SC · stij . We use the following

parameters: I ∈ {5, 15, 25}, T ∈ {5, 15, 25}, UTIL = {0.6, 0.8, 1}, SC ∈ {50, 100},

IUB ∈ {T, F}. For each combination, we generated 10 instances, resulting in a total

of 1080 multi-period instances.
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2.6.2 Experiment Results on Single-period Instances

We compared the strengths of the extended formulations and valid inequalities using

the following measures:

• LP gap (%): (OPT)−z(∗)
(OPT)

× 100,

• Closed gap (%): z(∗)−z(PURE)
(OPT)−z(PURE) × 100,

where (OPT) is an optimal objective value, and (PURE) is the basic lower bound

obtained using formulation (2.3) without GSEC (2.3g). Note that, therefore, (PURE)

itself is not a valid formulation and is only used for comparison. The LP gap and

Closed gap results for single-period instances are provided in Figures 2.6 and 2.7,

respectively. The corresponding detailed results are reported in Tables B.1 and B.2

in Appendix B.

First, the following relations established in Section 2.4 and 2.5 are verified based

on the results:

• z(SCF1) ≤ z(SCF2) ≤ z(MCF1) = z(GSEC) ≤ z(MCF2),

• z(TF1) ≤ z(TF2) = z(S-STAR), and

• z(U-STAR) ≤ z(S-STAR) when IUB = F.

The newly proposed formulations (TF1) and (TF2) provide considerably tighter

LP bounds than the other extended formulations. They can close approximately

40% of the gap on average, whereas only approximately 3% can be closed by (MCF1).

The effect of the constraints added in (MCF2) is considerably significant, whereas the

strengthened bounds of (SCF2) and (TF2) are not particularly significant compared

with (SCF1) and (TF1), respectively.
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When IUB = F, (S-STAR) provides better results than (U-STAR) because U-STAR

inequalities are dominated by S-STAR inequalities in this case. On the other hand,

(U-STAR) provides slightly better results than (S-STAR) when IUB = T which indi-

cates that U-STAR inequalities are beneficial when there exists a non-trivial upper

bound on the production amount of each item. Obviously, the tightest bound is

obtained when all three types of inequalities are added in (ALL). The results also

show that the three types of inequalities do not dominate each other.

Additionally, we report the ratio of instances in which the LP gap is below certain

values in Figure 2.8 and Table B.3. Similar to the above results, (TF2) provides the

best results among the extended formulations. Using (TF2), in approximately 8.6%

of the instances, one can obtain the same LP bound as the optimal objective value.
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Figure 2.6: Test results on single-period instances: LP gap
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Figure 2.7: Test results on single-period instances: Closed gap

Moreover, in approximately 40% of the instances, the LP gap is smaller than 10%.

In Table 2.2, we present the sizes of the extended formulations relative to the

smallest formulation (SCF1). As expected, the size of the multi-commodity flow for-

mulations is the largest, and the relative size increases with the number of items. In

particular, owing to additional constraints, (MCF2) has the largest number of vari-

ables and constraints. Averagely, (MCF2) requires 9.95 times more variables and 19.33

times more constraints than (SCF1). This results in an increase in computation time,

as demonstrated in Table 2.3, which shows the difficulty of using multi-commodity

flow formulations in practice.

The number of separated inequalities is reported in Table 2.4. On average, ap-

proximately four times more inequalities are added when using the S-STAR inequality
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Table 2.2: Test results on single-period instances: Relative formulation size

I

Variables Constraints

(SCF1) (SCF2) (MCF1) (SCF1) (SCF2)
(MCF1) (MCF2)

=(TF1) =(TF2) =(MCF2) =(TF1) =(TF2)

5 1.00 1.00 2.67 1.00 1.47 3.81 4.66

15 1.00 1.00 7.43 1.00 1.74 12.88 14.31

25 1.00 1.00 12.36 1.00 1.83 22.58 24.21

35 1.00 1.00 17.33 1.00 1.87 32.43 34.15

Average 1.00 1.00 9.95 1.00 1.73 17.93 19.33

than when using GSEC. This can be considered as a trade-off for the tighter bound.

When using all three types, (ALL), the number of added inequalities is smaller than

the sum of that when each type is used individually.
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Figure 2.8: Test results on single-period instances: Ratio of instances with LP gap
below certain values
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Table 2.3: Test results on single-period instances: Computation time

I
Computation Time (s)

(SCF1) (SCF2) (TF1) (TF2) (MCF1) (MCF2)

5 0.002 0.002 0.002 0.003 0.003 0.004

15 0.005 0.006 0.007 0.008 0.030 0.144

25 0.012 0.015 0.026 0.032 0.292 1.579

35 0.028 0.035 0.071 0.073 2.297 11.368

Average 0.012 0.014 0.027 0.029 0.656 3.274

Table 2.4: Test results on single-period instances: Number of added inequalities

Factors
Number of added inequalities

(GSEC) (S-STAR) (U-STAR) (ALL)

I

5 0.8 1.9 0.9 3.0

15 4.0 10.3 3.4 14.8

25 5.7 22.8 6.7 30.9

35 6.2 38.0 10.2 49.0

UTIL

60 4.1 18.3 5.0 23.8

80 4.2 18.0 4.9 23.9

100 4.2 18.5 6.0 25.6

SC
50 4.7 29.6 8.2 38.1

100 3.6 6.9 2.3 10.7

IUB
F 4.7 16.9 2.7 22.5

T 3.6 19.6 7.9 26.4

Average 4.2 18.2 5.3 24.4

2.6.3 Experiment Results on Multi-period Instances

For the results of the multi-period instances, we report the strength of the for-

mulations relative to the bound which can be obtained when we know the ideal

formulation of the single-period substructure, that is, conv(X ). This bound is de-
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Figure 2.9: Test results on multi-period instances: LP strength

noted by z(IDEAL). To calculate z(IDEAL), we define a pattern-based formulation

whose LP relaxation is solved using a column generation procedure. Because they

are outside the scope, we do not provide detailed descriptions of the pattern-based

formulation and column generation procedure in this section. They are provided in

Appendix A. We denote the strength of a formulation (F) as z(F)
z(IDEAL) × 100 and

present the corresponding results in Figure 2.9. The detailed results are provided in

Table B.4 in Appendix B.

Similar to the results of the single-period instances, the newly proposed formu-

lations and inequalities are successful in providing tight bounds for the multi-period

instances. On average, they provide only approximately 3.2% less tight bounds rel-

ative to (IDEAL). In particular, when IUB = F, they provide almost the same LP

bound (99.95%) as that of the ideal formulation. When IUB = T, the advantage of

(U-STAR) is emphasized as it provides the tightest LP bound among others.
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Figure 2.10: Test results on multi-period instances: Ratio of instances with LP
strength above certain values

In addition, we report the ratio of instances whose LP strength is above certain

values in Figure 2.10 and Table B.5. In approximately 40% of the instances, (TF2)

and (S-STAR) provide the same LP bound as that of the ideal formulation. In

addition, the difference is less than 1% for more than 65% of instances. There is

little difference between the formulations and inequalities in terms of the number of

instances with a strength greater than 90%.

In Table 2.5, we present the sizes of the formulations relative to the smallest

one (SCF1). As expected, the multi-commodity flow formulations are the largest.

Particularly, when I = 25, (MCF2) requires 12.4 times more variables and 23.5

times more constraints than (SCF1) which may be prohibitively large. The average

computation times for different problem dimensions are shown in Table 2.6. This

result also demonstrates that multi-commodity formulations are not viable options
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Table 2.5: Test results on multi-period instances: Relative formulation size

Factors

Variables Constraints

(SCF1) (SCF2) (MCF1) (SCF1) (SCF2)
(MCF1) (MCF2)

=(TF1) =(TF2) =(MCF2) =(TF1) =(TF2)

I

5 1.00 1.00 2.67 1.00 1.43 3.59 4.37

15 1.00 1.00 7.43 1.00 1.71 12.37 13.75

25 1.00 1.00 12.36 1.00 1.81 21.95 23.53

T

5 1.00 1.00 7.49 1.00 1.65 12.69 13.94

15 1.00 1.00 7.49 1.00 1.65 12.62 13.87

25 1.00 1.00 7.49 1.00 1.65 12.61 13.85

Average 1.00 1.00 7.49 1.00 1.65 12.64 13.89

Table 2.6: Test results on multi-period instances: Computation time

Factors
Computation Time (s)

(SCF1) (SCF2) (TF1) (TF2) (MCF1) (MCF2)

I

5 0.01 0.02 0.02 0.02 0.03 0.05

15 0.12 0.18 0.16 0.26 1.40 4.25

25 0.53 0.96 0.92 1.36 15.07 31.89

T

5 0.04 0.06 0.06 0.10 0.62 1.90

15 0.21 0.36 0.36 0.55 6.10 10.47

25 0.42 0.75 0.68 0.99 9.79 23.81

Average 0.22 0.39 0.37 0.55 5.50 12.06

when the problem dimension increases.

Regarding the valid inequalities, as reported in Table 2.7, the numbers of added

inequalities of (S-STAR) and (U-STAR) are much larger than that of GSEC which can

be regarded as a trade-off for the tighter bound. We observe that most of the S-STAR

and U-STAR inequalities added after earlier iterations do not contribute significantly

to the strengthening of the bounds. Nevertheless, owing to the original purpose of the
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Table 2.7: Test results on multi-period instances: Number of added inequalities

Factors
Number of added inequalities

(GSEC) (S-STAR) (U-STAR) (ALL)

I

5 4.9 26.9 27.8 66.9

15 14.4 147.0 152.1 300.6

25 25.5 296.9 382.3 574.5

T

5 5.6 69.1 77.0 125.4

15 15.7 154.8 172.2 309.6

25 23.6 247.0 313.1 507.0

UTIL

60 11.3 41.5 47.5 101.8

80 16.2 67.7 69.9 152.0

100 17.3 361.6 444.9 688.2

SC
50 18.3 153.3 180.7 309.4

100 11.6 160.6 194.2 318.7

IUB
F 0.0 215.3 263.8 376.0

T 29.9 98.6 111.1 252.0

Average 15.0 156.9 187.4 314.0

experiments, we did not terminate the separation which led to a number of additional

inequalities, most of which were insignificant. In this regard, if these inequalities are

used as cutting planes in tree-search algorithms, more detailed analysis and further

studies on their effects are required.

2.7 Summary

In this chapter, we addressed the lot-sizing and scheduling problem with sequence-

dependent setups and its single-period substructure. We presented S-STAR and

U-STAR inequalities which are new families of valid inequalities for the problem.
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The theoretical strength and separation complexity of the proposed inequalities are

discussed and the facet-defining conditions are also identified. In addition, we pre-

sented polynomial-time separation procedures of these inequalities which use the

maximum-flow algorithm. New extended formulations based on the time-flow vari-

ables are proposed and compared with the existing ones. Results of computational

experiments on both single-period and multi-period instances demonstrated distinct

advantages of the newly proposed inequalities and extended formulations in tight-

ening the LP relaxation bounds.
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Chapter 3

New Optimization Models for Lot-sizing and
Scheduling Problem with Sequence-dependent
Setups, Crossover, and Carryover

In this chapter, we propose new integer optimization models for the lot-sizing and

scheduling problem with sequence-dependent setups, based on GLSP. To incorporate

setup crossover and carryover which are extensions of the problem frequently consid-

ered when dealing with real-world industrial problems, we first propose a standard

model that straightforwardly adapts a formulation technique from the literature.

Then, as the main contribution, we propose a novel optimization model that in-

corporates the notion of time flow. We derive a family of valid inequalities with

which to compare the tightness of the models’ LP relaxations. The proposed models

are further tightened using the well-known reformulation techniques. In addition, to

obtain feasible solutions quickly, we devise an LP-based heuristic algorithm. Compu-

tational experiments are conducted to test the performance of the proposed models

and heuristic algorithm. The test results indicate that the newly proposed time-flow

model has considerable advantages compared with the standard model in terms of

tightness and solvability. It is also shown that the proposed heuristic algorithm can

provide a feasible solution within a short computation time.
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3.1 Introduction

As reviewed in Chapter 1, there have been many studies on LSP over recent decades,

resulting in substantial advancements. However, as real-world manufacturing pro-

cesses have a variety of unique characteristics and the features to be considered have

been evolving, there remain outstanding issues not yet completely resolved, and in-

deed, active research on optimization models and solution approaches tailored to

solve real problems continues.

One of the main sources of the uniqueness of certain manufacturing processes is

their setup activity. Regarding the characteristics of the manufacturing process, the

corresponding setup occurs in various aspects. For instance, in process industries,

the setup takes a relatively long time due to preventive maintenance activities. In

such cases, the setups can occur across consecutive time buckets, which situation is

called setup crossover. However, the traditional big bucket models for LSP assume

that a setup must be completed in a single time period. Therefore, in cases where

the setup takes a considerable amount of time, the traditional optimization models

cannot capture the situation properly and need modifications to allow setups to be

crossed over. In addition, setup carryover, which indicates the preservation of the

setup state across time buckets, should be allowed in order to avoid unnecessary

setups.

As shown by Fiorotto, Huaccha Neyra, et al. (2020), if the model does not in-

corporate setup crossover and carryover, the quality of the established production

schedule can deteriorate significantly, or a feasible schedule may not be found even if

it exists. In this regard, there exist some previous studies which have discussed setup

crossover and carryover and their consideration within various LSP models (Suerie,
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2006; Belo-Filho et al., 2014; Fiorotto, Jans, et al., 2017). Particularly, there has

been much effort devoted to the development of big bucket models that can consider

various characteristics such as nontriangular sequence-dependent setup as well as

setup crossover and carryover, which has resulted in more complex models with a

larger number of variables and constraints (e.g. Menezes et al., 2011; Clark et al.,

2014; Mahdieh et al., 2018).

As pointed out by Almeder & Almada-Lobo (2011), GLSP-based models enable

accurate modeling, as they incorporate the two-level time structure. For these mod-

els, unlike big bucket models, consideration of sequence-dependent setup is straight-

forward. Because the sequence of the microperiods is fixed, the production sequence

within each macroperiod is naturally obtained (Camargo et al., 2012). Moreover,

setup carryover can be expressed in such a way that the setup states of the last mi-

croperiod in the previous macroperiod and the first microperiod in the subsequent

macroperiod are identical.

The modeling framework of the GLSP also is beneficial when the setup times

are relatively long, because the maximum number of items that can be produced

within a macroperiod is small, which leads to a smaller number of microperiods.

Therefore, to deal with the long and sequence-dependent setups in this study, we

focused on GLSP-based models. However, to the best of our knowledge, there is

a lack of studies addressing setup crossover for GLSP-based models. Moreover, as

pointed out by Almada-Lobo, Clark, et al. (2015), introducing setup crossover into

GLSP-based models is not straightforward.

The remainder of this chapter is organized as follows. In Section 3.2, we review

the literature related to both the optimization model and the solution algorithm
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that we consider. In Section 3.3, we present the optimization models and describe

the differences among them by deriving a family of valid inequalities. In Section 3.4,

we propose an LP-based heuristic algorithm. In Section 3.5, we present the results

of computational experiments. In Section 3.6, we summarize the chapter and make

concluding remarks.

3.2 Literature Review

GLSP modeling framework was first proposed by Fleischmann & Meyr (1997). As

referred to in Copil et al. (2017), the GLSP can be regarded as a generalization of

various models of LSP, because of its two-level time structure consisting of macrope-

riods of fixed length and microperiods of variable length. Meyr (2000) proposed an

extension of the GLSP that considers a sequence-dependent setup, namely, GLSPST.

In particular, as indicated by Camargo et al. (2012), the sequence-dependent setups

can be incorporated into GLSP naturally because the sequence of microperiods is

fixed. In addition, the heuristic algorithm of Fleischmann & Meyr (1997) was im-

proved using a dual reoptimization technique by Meyr (2000). Meyr (2002) and Meyr

& Mann (2013) considered the GLSPST with parallel machines and solved it with

heuristic algorithms.

Recently, several studies have shown that the GLSPST can be extended to more

general settings. Alem et al. (2018) considered the LSP with demand uncertainty

and proposed a robust optimization model based on the GLSPST. Alipour et al.

(2020) addressed the LSP with perishable products in the context of the food in-

dustry. They modeled the problem based on the GLSPST and proposed MIP-based

heuristic algorithms. Guimarães et al. (2014) pointed out that the GLSPST can
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be tightened using the well-known network flow reformulation presented by Wolsey

(1997). Starting from the tightened GLSPST presented in Guimarães et al. (2014),

we herein propose new GLSP-based models that can consider sequence-dependent

setup, setup crossover, and carryover.

In fact, for consideration of setup crossover and carryover, various models have

been proposed. They are based on either big or small bucket models. Suerie &

Stadtler (2003) proposed a big bucket model that incorporates setup carryover.

The authors then derived an extended formulation and presented families of valid

inequalities. Later, this model was extended by Mohan et al. (2012) to further con-

sider setup crossover. Suerie (2006) proposed two small bucket models that consider

setup crossover.

Almada-Lobo, Klabjan, et al. (2007) presented big bucket models with both

sequence-dependent setup and setup carryover. These models treat a production

sequence in a macroperiod as a connected path or cycle without any subtours. Based

on these results, Menezes et al. (2011) further developed models to incorporate

nontriangular setups by identifying certain types of admissible subtours. Further,

the authors devised a new big bucket model that considers setup carryover and

crossover simultaneously. It was shown by Fiorotto, Jans, et al. (2017) that this

model performs better than that proposed by Mohan et al. (2012). Therefore, we

applied the formulation technique of Menezes et al. (2011) to the model of Guimarães

et al. (2014), resulting in our first, standard model (ST).
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3.3 Integer Optimization Models

Let I = {1, . . . , I}, T = {1, . . . , T}, S = {1, . . . , S} be the sets of items, macrope-

riods, and microperiods, respectively. Throughout the exposition, i, j ∈ I, t ∈ T ,

s ∈ S are used for indices. Let hcit, bcit, pcit, and dit denote the unit inventory

holding, backlogging, production cost, and demand for each item i and macroperiod

t, respectively. Also, let scijt be the cost incurred when setup occurs from item i to

item j in macroperiod t. The production capacity for macroperiod t, given in time

units, is denoted by Kt. The unit production time of item i is ai, while the time

required for setup from item i to item j is stij . We also define stii for item i and

let the values be zero to represent the situation wherein the setup state is carried

over. We let St ⊂ S be the set of microperiods that are contained in macroperiod

t. The first and the last microperiods within the macroperiod t are denoted by f t

and lt, respectively. In other words, St = {f t, f t + 1, . . . , lt}. Moreover, for micrope-

riod s, we define T (s) as the macroperiod that contains s; that is, T (s) = t if and

only if s ∈ St. Let startt and endt be the start/end time of macroperiod t; that is,

startt =
∑t−1

k=1Kt and endt =
∑t

k=1Kt for all t ∈ T .

Next, we define the decision variables. Let Iit and Bit be the inventory level and

backlog amount of item i at the end of macroperiod t. The initial inventory and

backlog for item i are denoted by Ii0 and Bi0, which are assumed to be zero. The

variable xis represents the production amount of item i in microperiod s. Binary

variable yis is equal to one if item i is produced in microperiod s. For i, j ∈ I and

s ∈ S \ {1}, binary variable zijs is equal to one if the setup from item i to j occurs

from microperiod s − 1 to s. Variable ziis represents the setup carryover of item i

from microperiod s− 1 to s (see Meyr & Mann, 2013). For notational convenience,
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Table 3.1: Nomenclature

Sets and Indices

I Set of items which are indexed by i and j; i, j ∈ I = {1, . . . , I}
T Set of macroperiods which are indexed by t; t ∈ T = {1, . . . , T}
S Set of microperiods which are indexed by s; s ∈ S = {1, . . . , S}
St Set of microperiods contained in a macroperiod t

Parameters

hcit Inventory holding cost of item i in macroperiod t

bcit Backlog penalty cost of item i in macroperiod t

pcit Production cost of item i in macroperiod t

scijt Cost incurred when setup occurs from item i to item j in macroperiod t

dit Demand of item i in macroperiod t

Kt Production capacity of macroperiod t given in time unit

ai Production time per unit of item i

stij Time required for setup from item i to j. stii = 0

T (s) Macroperiod that contains microperiod s, i.e., T (s) = t ⇔ s ∈ St
f t/lt First/last microperiod of macroperiod t, i.e., St = {f t, f t + 1, . . . , lt}
startt Start time of macroperiod t, i.e., startt =

∑t−1
k=1Kk

endt End time of macroperiod t, i.e., endt =
∑t

k=1Kk

Variables

Iit Inventory level of item i at the end of macroperiod t, Ii0 = 0

Bit Backlog amount of item i at the end of macroperiod t, Bi0 = 0

xis Production amount of item i in microperiod s

yis = 1 if item i is produced in microperiod s; yis = 0, otherwise

zijs = 1 if setup from item i to j occurs from microperiod s− 1 to s;

zijs = 0, otherwise

qijt = 1 if setup from item i to j crosses over from macroperiod t− 1 to t;

qijt = 0, otherwise; qij1 = qijT+1 = 0

vijt Setup time split into macroperiod t− 1, if qijt = 1;

vijt = 0, otherwise; vij1 = vijT+1 = 0
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we additionally define zij1 for all i, j ∈ I and let their values be zero. For i, j ∈ I and

t ∈ T \ {1}, the binary variable qijt is equal to one if the setup from item i to item

j crosses over from macroperiod t− 1 to t. In this case, the setup time is split into

t− 1 and t. The continuous variable vijt represents the amount of the corresponding

setup time distributed to t−1. It can be interpreted as the extra time borrowed from

macroperiod t− 1 to t for the setup crossover. Although there are no possibilities of

setup crossover at the beginning of the first macroperiod and at the end of the last

macroperiod, we define qij1, qitT+1, vij1, and vijT+1 for notational convenience and

let their values be zero. All of the notations are summarized in Table 3.1.

3.3.1 Standard Model (ST)

We first provide the standard model (ST). This model is a generalization of the

model presented by Guimarães et al. (2014) that can further consider setup crossover.

After providing the model, we illustrate how setup crossover and carryover can be

represented with the GLSP-based model. Later, this model is used to demonstrate

the strength of our novel time-flow model (TF). The (ST) is as follows:

minimize
∑
i∈I

∑
t∈T

(
hcitIit + bcitBit

+
∑
s∈St

(
pcitxis +

∑
j∈I

scijtzijs

))
(3.1a)

subject to Iit −Bit + dit = Iit−1 −Bit−1 +
∑
s∈St

xis ∀i ∈ I, t ∈ T (3.1b)

∑
i∈I

∑
s∈St

(
aixis +

∑
j∈I

stjizjis
)

≤ Kt +
∑
i∈I

∑
j∈I

(
vijt − vijt+1

)
∀t ∈ T (3.1c)

aixis ≤ Ktyis ∀i ∈ I, t ∈ T , s ∈ St (3.1d)
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∑
i∈I

yi1 = 1 (3.1e)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (3.1f)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (3.1g)

vijt ≤ stijqijt ∀i, j ∈ I, t ∈ T (3.1h)

qijt ≤ zijft ∀i, j ∈ I, t ∈ T (3.1i)

Iit, Bit, xis, yis, vijt ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S (3.1j)

qijt, zijs ∈ {0, 1} ∀i, j ∈ I, t ∈ T , s ∈ S (3.1k)

The objective function (3.1a) is the sum of the inventory holding, backlog penalty,

production, and setup costs, which total is to be minimized. Constraints (3.1b) are

balance equations between the inventory, backlog, demand, and production amounts.

Constraints (3.1c) ensure that the sum of the production and setup times is less than

or equal to the available capacity. The available capacity in t is computed in consid-

eration of the time required for setup crossover. Constraints (3.1d) indicate that an

item can be produced only if the corresponding setup occurs. Constraint (3.1e) rep-

resents the start of production in the first microperiod. Constraints (3.1f) and (3.1g)

logically link the binary variables. They ensure that a setup from item i to j in

microperiod s occurs if and only if i is produced in s− 1 and j is produced in s. In

other words, zijs = 1 if and only if yis−1 = yjs = 1. Constraints (3.1h) ensure that

the setup time can be split only if the corresponding setup crossover occurs. The

amount of split time is limited by the setup time. Constraints (3.1i) indicate that if

the setup crossover occurs from t − 1 to t, the item setup for the first microperiod

of t can be determined. Constraints (3.1j) and (3.1k) ensure the domains of the
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Figure 3.1: Illustration of the network flow corresponding to a production plan

variables. Note that the binary restriction of variable y is not necessary because it

is implied by the constraints (3.1e) – (3.1g) and (3.1k).

With this model, a production plan can be represented as a network flow as

shown in Figure 3.1. The bar shown in the upper part of Figure 3.1 represents a

production plan wherein the productions and setups are indicated by the dashed and

dark areas, respectively. This production plan is represented as a network flow in the

lower part of Figure 3.1. The setup variables correspond to the arcs of the network,

the flow balance equations of which correspond to the constraints (3.1e) – (3.1g). In

this example, the setup state of item N is carried over from s = 3 to s = 4; that

is, zNN4 = 1. Moreover, the setup between item 1 and item 2 is crossed over from

t = 2 to t = 3; that is, q123 = 1.

3.3.2 Time-flow Model (TF)

We present the new time-flow model, which is denoted by (TF). For (TF), we in-

troduce new variables and additional notations. Let us define a continuous variable

wijs to represent the start time of the setup from item i to j in microperiod s, which

can have a nonzero value only if zijs = 1. Note that, from the definition, wij1 = 0

84



for all i, j ∈ I. In addition, let ris denote the idle time associated with item i in

microperiod s. Lijs and Uijs denote the lower and upper bounds on the value of wijs,

respectively. By adjusting these bounds, the model may or may not consider setup

crossover, as shown later. The (TF) is as follows:

minimize
∑
i∈I

∑
t∈T

(
hcitIit + bcitBit

+
∑
s∈St

(
pcitxis +

∑
j∈I

scijtzijs

))
(3.2a)

subject to Iit −Bit + dit = Iit−1 −Bit−1 +
∑
s∈St

xis ∀i ∈ I, t ∈ T (3.2b)

∑
j∈I

(wjis + stjizjis) + aixis + ris =
∑
k∈I

wiks+1 ∀i ∈ I, s ∈ S (3.2c)

aixis + ris ≤ Ktyis ∀i ∈ I, t ∈ T , s ∈ St (3.2d)∑
i∈I

yi1 = 1 (3.2e)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (3.2f)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (3.2g)

Lijszijs ≤ wijs ≤ Uijszijs ∀i, j ∈ I, s ∈ S \ {1} (3.2h)

Iit, Bit, xis, ris, yis, wijs ≥ 0 ∀i, j ∈ I, t ∈ T , s ∈ S (3.2i)

zijs ∈ {0, 1} ∀i, j ∈ I, s ∈ S (3.2j)

The objective function (3.2a) and other constraints (3.2b) and (3.2e) — (3.2g) are

defined as in (3.1a), (3.1b), and (3.1e) – (3.1g) of (ST), respectively. Constraints

(3.2c) indicate that if an item i is set up in microperiod s from the previous item

j (zjis = 1), the sum of its start time (wjis), setup time (stji), production time

(aixis), and idle time (ris) is equal to the start time of the next setup to another
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Figure 3.2: Illustration of the constraint (3.2c)

item k (wiks+1). This relation is shown in Figure 3.2. As illustrated in the figure, con-

straints (3.2c) can be regarded as the time-flow balance equations. Constraints (3.2d)

indicate that an item can be produced only if the corresponding setup occurs. Con-

straints (3.2h) ensure that wijs cannot have a nonzero value unless the corresponding

setup occurs. If the corresponding setup occurs, its start time is bounded by Lijs

and Uijs. Constraints (3.2i) and (3.2j) ensure the domains of the variables.

Now, we show how to set the values of Lijs and Uijs. If s ∈ S \{1} and s = fT (s),

the setup zijs can be crossed over. In this case, the setup start time wijs should be

within the range [startT (s−1), endT (s−1)], while the setup end time wijs+ stij should

be within the range [startT (s), endT (s)]. Assuming that stij ≤ Kt for all i, j ∈ I and

t ∈ T , the following holds: startT (s−1) ≤ startT (s)−stij and endT (s−1) = startT (s) ≤

endT (s) − stij . Therefore, we can set Lijs = startT (s) − stij and Uijs = startT (s) for

all s ∈ S \ {1} such that s = fT (s). On the contrary, when s 6= fT (s), there is no
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chance of setup crossover as both s − 1 and s belong to the same macroperiod. In

this case, we can set Lijs = startT (s) and Uijs = endT (s) − stij . In summary, by

letting

Lijs =


startT (s) − stij if s = fT (s)

startT (s) if s 6= fT (s)
∀i, j ∈ I, s ∈ S \ {1} (3.3a)

Uijs =


startT (s) if s = fT (s)

endT (s) − stij if s 6= fT (s)
∀i, j ∈ I, s ∈ S \ {1} (3.3b)

the model can properly address setup crossover.

It is easy to modify both (ST) and (TF) so as not to allow setup crossover.

For (ST), we simply need to set vijt = 0 and qijt = 0. In this case, (ST) becomes

equivalent to the model of Guimarães et al. (2014). For (TF), it is sufficient to modify

Lijs = Uijs = startT (s) for all s = fT (s) in equations (3.3), such that the first setup

of a macroperiod starts at the very beginning of the macroperiod and there is no

chance for setup crossover from the previous macroperiod.

Moreover, when the setup crossover is not allowed, it is possible to reduce the

number of constraints in (TF) by slightly modifying the definition of the variable

w. Using the modified lower and upper bounds Lijs = Uijs = startT (s) for all

the s = fT (s), one can define new variables w′ijs in replacement of wijs which are

defined as w′ijs = wijs − startT (s)zijs. The variable w′ijs can be interpreted as the

difference between the start time of the corresponding setup and the start time of

the macroperiod T (s), as illustrated in Figure 3.3. Then, by definition, w′ijs = 0 for

all s = fT (s) and constraints (3.2c) and (3.2h) are changed to (3.2c′) and (3.2h′),

87



Time· · ·item 1 item 3 item 4 item 2 item 1 item 2

w216

w′
216

Figure 3.3: Definition of the variable w′ijs

respectively, as follows:

∑
j∈I

(w′jis + stjizjis) + aixis + ris =
∑
k∈I

w′iks+1 s 6= lT (s)

∑
k∈I

KT (s)ziks+1 s = lT (s)
∀i ∈ I, s ∈ S (3.2c′)

w′ijs ≤
(
KT (s) − stij

)
zijs ∀i, j ∈ I, s ∈ S, s 6= fT (s) (3.2h′)

With this simple modification of using variable w′, the numbers of constraints

and variables of (TF) can be reduced. Also, from the relation between the variables

w′ and w, it is clear that, from any solution of one version, a solution of another

version with the same objective value can be recovered.

In Guimarães et al. (2014), GLSP is classified as a product-oriented microperiod

model. Therefore, following their classification scheme, (ST) and (TF) are also cate-

gorized as product-oriented microperiod models. In addition, Copil et al. (2017) clas-

sified GLSP as a generic model among various LSP models. Particularly, GLSP pro-

vides much flexibility in incorporating various extensions such as sequence-dependent

or nontriangular setups as well as setup carryover, thanks to its two-level time struc-

ture. This is also true for (ST) and (TF) as they both are based on GLSP. Moreover,
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our models can further consider setup crossover which allows for even more flexibility

than the basic GLSP.

3.3.3 Comparison of (ST) and (TF)

In this section, we compare the tightness of the LP relaxations of (ST) and (TF).

For comparison, let PST, PTF and zSTLP , zTFLP be the sets of feasible solutions of the LP

relaxations of (ST) and (TF) and their LP relaxation bounds, respectively.

Proposition 3.1. zTFLP ≥ zSTLP.

Proof. We show that for any given solution (Ī, B̄, x̄, r̄, ȳ, w̄, z̄) ∈ PTF, the corre-

sponding solution (I,B,x,y,v,q, z) ∈ PST with the same objective value can be

constructed. Firstly, by letting (I,B,x,y, z) = (Ī, B̄, x̄, ȳ, z̄), the constraints that are

common in both models are satisfied. In addition, we set vijt = starttz̄ijf t − w̄ijf t

and qijt = z̄ijf t , for all i, j ∈ I and t ∈ T . Then, constraints (3.1i) clearly hold.

Moreover, constraints (3.1h) are satisfied by the bound constraints (3.2h). For a

given t ∈ T , the following result can be obtained by summing constraints (3.2c) for

all i ∈ I and s ∈ St:

∑
i∈I

∑
s∈St

(∑
j∈I

stjiz̄jis + aix̄is + r̄is
)

=
∑
i,j∈I

(
w̄ijf t+1 − w̄ijf t

)
=
∑
i,j∈I

((
startt+1z̄ijf t+1 − vijt+1

)
−
(
starttz̄ijf t − vijt

))
= startt+1 − startt −

∑
i,j∈I

(
vijt+1 − vijt

)
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= Kt −
∑
i,j∈I

(
vijt+1 − vijt

)
.

The second equality holds by the relation between variables vijt and w̄ijf t con-

structed above, while the third holds as
∑

i,j∈I z̄ijf t = 1 for all t ∈ T \ {1} and

start1 = 0. Therefore, constraints (3.1c) of (ST) are also satisfied. Finally, it is clear

that if constraints (3.2d) are satisfied, then constraints (3.1d) are satisfied. As a

result, from any given solution in PTF, the corresponding solution that satisfies the

set of constraints defining PST can be constructed. Moreover, because the objective

functions are identical, their values are the same.

The above proposition shows that the LP bound of (TF) is at least as strong as

that of (ST), which means that PTF is at least as tight as PST. We then show that

PTF can be tighter than PST. To this end, we derive a family of valid inequalities

for (ST) using (TF). Let X := {(i, s) : i ∈ I, s ∈ S} be the set of pairs of an item

and a microperiod that coincides with the nodes in Figure 3.1. Similarly, for a given

macroperiod t ∈ T , let Xt := {(i, s) : i ∈ I, s ∈ St}. For ease of notation, we denote

an arc
(
(i, s − 1), (j, s)

)
as (i, j, s). For X1, X2 ⊆ X , let E(X1, X2) be the set of

arcs (i, j, s) such that (i, s − 1) ∈ X1 and (j, s) ∈ X2. In addition, for X ⊆ X , let

E(X) := E(X,X), δ+(X) := E(X,XC), and δ−(X) := E(XC , X).

We firstly provide a generic form of the inequalities. For a given X ∈ X , by

summing the constraints (3.2c) over all (i, s) ∈ X and eliminating the common

terms of both sides, we obtain

∑
(i,s)∈X

(
aixis + ris +

∑
j∈I

stjizjis

)
=

∑
(i,k,s+1)∈δ+(X)

wiks+1 −
∑

(j,i,s)∈δ−(X)

wjis.
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From the bound constraints (3.2h), the following inequality can be attained:

∑
(i,s)∈X

(
aixis +

∑
j∈I

stjizjis

)
≤

∑
(i,k,s+1)∈δ+(X)

Uiks+1ziks+1 −
∑

(j,i,s)∈δ−(X)

Ljiszjis.

(3.4)

The right-hand side coefficients depend on the bounds L and U of the variable w.

With the bounds defined in (3.3), the following proposition can be derived.

Proposition 3.2. For a given subset of nodes X ⊆ X , the inequality

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)

stjizjis +
∑

(j,i,s)∈δ−(X):

s 6=fT (s)

stjizjis +
∑

(i,k,s+1)∈δ+(X):

s 6=lT (s)

stikziks+1

≤
∑

(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(X)

startT (s)zjis ∀X ⊆ X (3.5)

is valid for (ST). Moreover, if we restrict X to be a subset of Xt for a given t ∈ T ,

inequality (3.5) is presented in a more concise form:

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)

stjizjis +
∑

(j,i,s)∈δ−(X):
s 6=f t

stjizjis +
∑

(i,j,s+1)∈δ+(X):
s 6=lt

stikziks+1

≤ Kt

∑
(j,i,s)∈δ−(X)

zjis ∀X ⊆ Xt (3.6)

Proof. From the bound (3.3), we have

∑
(i,s)∈X

(
aixis +

∑
j∈I

stjizjis

)
≤

∑
(i,k,s+1)∈δ+(X)

Uiks+1ziks+1 −
∑

(j,i,s)∈δ−(X)

Ljiszjis
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=
∑

(i,k,s+1)∈δ+(X):

s+1=fT (s+1)

startT (s+1)ziks+1 +
∑

(i,k,s+1)∈δ+(X):

s+16=fT (s+1)

(endT (s+1) − stik)ziks+1

−
∑

(j,i,s)∈δ−(X):

s=fT (s)

(startT (s) − stji)zjis −
∑

(j,i,s)∈δ−(X):

s 6=fT (s)

startT (s)zjis.

As startT (s+1) = endT (s) when s + 1 = fT (s+1) and endT (s+1) = endT (s) when

s+ 1 6= fT (s+1), the right-hand side term is equal to

∑
(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(X)

startT (s)zjis

−
∑

(i,k,s+1)∈δ+(X):

s+16=fT (s+1)

stikziks+1 +
∑

(j,i,s)∈δ−(X):

s=fT (s)

stjizjis.

After the rearrangement of the terms, the inequalities (3.5) can be derived. In addi-

tion, when X is restricted to a subset of Xt, T (s) = t. Moreover,

∑
(i,k,s+1)∈δ+(X)

ziks+1 =
∑

(j,i,s)∈δ−(X)

zjis.

Therefore, inequality (3.6) can be obtained.

The meaning of inequality (3.6) is as follows: When
∑

(j,i,s)∈δ−(X) zjis = 0, there

are no incoming arcs to X; therefore, the nodes in X and the adjacent arcs cannot

be visited. When
∑

(j,i,s)∈δ−(X) zjis ≥ 1, the right-hand side is greater than or equal

to Kt. As the setup arcs that may cross over are not included in the summations

of the left-hand side, the inequalities are satisfied owing to the capacity constraints.

Next, we show that inequalities (3.5) are not implied in (ST), which means that PTF
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can be tighter than PST.

Proposition 3.3. The inequalities (3.5) are not dominated by the constraints of

(ST).

Proof. As inequalities (3.6) belong to a family of valid inequalities (3.5), it is suffi-

cient to show that inequalities (3.6) can cut off some fractional solutions of (ST).

We consider the fractional solution of (ST) illustrated in Figure 3.4. This solution

is constructed as follows: For a given t ∈ T , let f := f t and l := lt. Then, for

a given i ∈ I, let yis = 1 for s ∈ S such that s ≤ f or s ≥ l. Furthermore, let

ziif+1 = ziif+2 = · · · = ziil = 1
Kt

and zikf+1 = zkkf+2 = · · · = zkkl−1 = zkil = Kt−1
Kt

for any k ∈ I. We can easily observe that the constructed partial solution is feasible

for PST.

By letting X = {(i, f + 1), (i, f + 2)}, ∑(j,i,s)∈δ−(X) zjis = 1
Kt

, and therefore,

the right-hand side of the corresponding inequality (3.6) is equal to one. Meanwhile,

due to the setup constraints aixif+1 ≤ Ktyif+1 and aixif+2 ≤ Ktyif+2, we can

let xif+1 = xif+2 = 1
ai

. In this case, the left-hand side of inequality (3.6) is at

1
Kt

1
Kt

1
Kt

Kt−1
Kt

Kt−1
Kt

Kt−1
Kt

X

f f + 1 · · · ls =

Figure 3.4: Illustration of the fractional solution of (ST)
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least greater than two. Therefore, inequality (3.6) is violated, which means that the

fractional solution is cut off by it.

With a slight abuse of notation, we define PST+(3.5) be the feasible set of the

LP relaxation of (ST) after adding the family of inequalities (3.5). In addition, for

F ∈ {ST, ST+(3.5), TF}, let QF := proj(I,B,x,y,z)PF; that is, the projection of PF onto

the space of variables (I,B,x,y, z). The above results yield the following corollary,

which implies that zTFLP can be greater than zSTLP .

Corollary 3.4. QTF ⊆ QST+(3.5) ( QST.

By restricting the problem settings, one can make the above inclusion rela-

tionship holds as equality. Particularly, we consider the situation where the setup

crossover decisions are already fixed. In other words, we are given the fixed values

of setup crossover variables v̄ and q̄ for (ST). Then, it is possible to set the bounds

L̄ and Ū in (TF) corresponding to (v̄, q̄). Specifically, by changing L̄ijs = Ūijs =

startT (s) − v̄ijT (s) for all s = fT (s), the same consequence is obtained. With these

bounds, the generic inequality (3.4) is rewritten as follows:

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)∪δ−(X)

stjizjis +
∑

(i,k,s+1)∈δ+(X):

s 6=lT (s)

stikziks+1

≤
∑

(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(x)
startT (s)zjis

+
∑

(j,i,s)∈δ−(X):

s=fT (s)

v̄jiT (s)zjis −
∑

(i,k,s+1)∈δ+(X):

s=lT (s)

v̄ikT (s+1)ziks+1 ∀X ⊆ X (3.7)

For a given (v̄, q̄), let us define PST(v̄, q̄) :=
{

(I,B,x,y,v,q, z) ∈ PST ∩ {v =
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v̄,q = q̄}
}

, that is, the polyhedron defined by (ST) with fixed (v̄, q̄) values. The

corresponding LP relaxation bound is denoted by zSTLP(v̄, q̄). Also, for the bounds

(L̄, Ū) corresponding to (v̄, q̄), PTF(L̄, Ū) and zTFLP(L̄, Ū) can be defined similarly.

From Proposition 3.1, it is easy to observe that zTFLP(L̄, Ū) ≥ zSTLP(v̄, q̄). We will

show that after adding inequalities (3.7) to (ST), the same LP relaxation bound

with (TF) can be obtained. We define z
ST+(3.7)
LP (v̄, q̄) be the LP relaxation bound of

(ST) with the fixed (v̄, q̄) after adding the family of inequalities (3.7).

Proposition 3.5. For a given fixed variables (v̄, q̄) of the formulation (ST) and the

corresponding bounds (L̄, Ū) of the formulation (TF),

z
ST+(3.7)
LP (v̄, q̄) = zTFLP(L̄, Ū).

Proof. By restricting X to be the subset of Xt for a given t for inequalities (3.7), we

attain

∑
(i,s)∈X

aixis +
∑

(j,i,s)∈E(X)∪δ−(X)

stjizjis +
∑

(i,k,s+1)∈δ+(X):
s 6=lt

stikziks+1

≤ Kt

∑
(j,i,s)∈δ−(X)

zjis +
∑

(j,i,s)∈δ−(X):
s=f t

v̄jitzjis −
∑

(i,k,s+1)∈δ+(X):
s=lt

v̄ikt+1ziks+1 (3.8)

for all X ⊆ Xt. We firstly show that, although the inequalities (3.8) are the restricted

version of the inequalities (3.7), they are sufficient to replace the inequalities (3.7),

that is, z
ST+(3.7)
LP (v̄, q̄) = z

ST+(3.8)
LP (v̄, q̄). Without loss of generality, we consider a

node set X such that X = Xt ∪ Xt+1 where Xt ⊆ Xt and Xt+1 ⊆ Xt+1. We show

that the sum of inequalities (3.8) defined by Xt and Xt+1, respectively, is identical
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to the inequality (3.7) defined by X. The left-hand side of the sum of the two

inequalities is as follows:

∑
(i,s)∈Xt∪Qt+1

aixis +
∑

(j,i,s)∈E(Xt)∪δ−(Xt)
∪E(Xt+1)∪δ−(Xt+1)

stjizjis

+
∑

(i,k,s+1)∈δ+(Xt):
s 6=lt

stikziks+1 +
∑

(i,k,s+1)∈δ+(Xt+1):
s 6=lt+1

stikziks+1.

Note that

E(Xt) ∪ δ−(Xt) ∪ E(Xt+1) ∪ δ−(Xt+1)

= E(Xt) ∪ δ−(Xt) ∪ E(Xt+1) ∪ E(Xt, Xt+1) ∪ E
(
X \X,Xt+1

)
= E(X) ∪ δ−(Xt) ∪ E

(
X \X,Xt+1

)
= E(X) ∪ δ−(X).

Also, when s is not the last microperiod of T (s), δ+(Xt) ∪ δ+(Xt+1) = δ+(X).

Therefore, the left-hand side turns out to be the same as that of the inequality (3.7)

defined by X. Regarding the right-hand side,

∑
(j,i,s)∈δ−(Xt)

Ktzjis +
∑

(j,i,s)∈δ−(Xt+1)

Kt+1zjis

=
∑

(i,k,s+1)∈δ+(Xt)

endtziks+1 −
∑

(j,i,s)∈δ−(Xt)

starttzjis

+
∑

(i,k,s+1)∈δ+(Xt+1)

endt+1ziks+1 −
∑

(j,i,s)∈δ−(Xt+1)

startt+1zjis

=
∑

(i,k,s+1)∈δ+(X)

endT (s)ziks+1 −
∑

(j,i,s)∈δ−(X)

startT (s)zjis
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because
∑

(j,i,s)∈δ−(Xt)
zjis =

∑
(i,k,s+1)∈δ+(Xt)

ziks+1 and startt+1 = endt. From this,

the right-hand side is shown to be the same with that of the inequality (3.7) defined

by X. As a result, we can conclude that the inequalities (3.8) are sufficient to replace

the inequalities (3.7).

Next, we prove that z
ST+(3.8)
LP (v̄, q̄) = zTFLP(L̄, Ū) by showing that for any given

fractional solution in PST+(3.8)(v̄, q̄), the corresponding assignment for the variable

w that satisfies (3.2c) and (3.2h) always exists. To show this, we use Hoffman’s

circulation theorem which is stated as follows.

Lemma 3.6 (Hoffman (1976)). Let G = (V,E) be a directed graph and let l, u : E →

R+ satisfy l(e) ≤ u(e) for all e ∈ E. Then there exists a feasible flow f : E → R+

with l(e) ≤ f(e) ≤ u(e) if and only if

∑
e∈δ−(X)

u(e) ≥
∑

e∈δ+(X)

l(e)

for all X ⊆ V .

For a macroperiod t, let us construct a digraph G = (V,E) with V = Xt ∪ {0}

where 0 is a dummy node and E = E1 ∪ E2 ∪ E3 ∪ E4. Given a fractional solution

(Ī, B̄, x̄, ȳ, z̄, v̄, q̄), the arc sets are defined as follows.

• E1 =
{(

0, (i, f t)
)

: (i, f t) ∈ Xt
}

with l
(
0, (i, f t)

)
= u

(
0, (i, f t)

)
=
∑

j∈I(startt − v̄jit + stji)z̄jif t + aix̄is

• E2 =
{(

0, (i, s)
)

: (i, s) ∈ Xt, s 6= f t
}

with l
(
0, (i, s)

)
= u

(
0, (i, s)

)
=
∑

j∈I stjiz̄jis + aix̄is
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• E3 =
{(

(i, lt), 0
)

: (i, lt) ∈ Xt
}

with l
(
(i, lt), 0

)
= u

(
(i, lt), 0

)
=
∑

k∈I(startt+1 − v̄ikt+1)z̄ikf t+1

• E4 =
{

(j, i, s) : (j, s− 1), (i, s) ∈ Xt
}

with l(j, i, s) = starttz̄jis and u(j, i, s) = (endt − stji)z̄jis.

From the construction of the graph, the question “For a given fractional solution in

PST+(3.8)(v̄, q̄), does feasible w that satisfies (3.2c) and (3.2h) exist?” is equivalent

to “Does there exist a feasible flow f on G?”. We show that there always exists a

feasible flow using Lemma 3.6. We consider the following cases:

1. If 0 ∈ X, we have

∑
e∈δ−(X)

u(e) =
∑

(i,lt)∈XC

∑
j∈I

(
startt+1 − v̄ijt+1

)
z̄ijf t+1

+
∑

(j,i,s)∈E4∩δ−(X)

(endt − stji)z̄jis,

∑
e∈δ+(X)

l(e) =
∑

(i,f t)∈XC

∑
j∈I

(
startt − v̄jit

)
z̄jif t +

∑
(i,s)∈XC

aix̄is

+
∑
j∈I

∑
(i,s)∈Xc

stjiz̄jis +
∑

(j,i,s)∈E4∩δ+(X)

starttz̄jis.

Therefore,

∑
e∈δ−(X)

u(e) ≥
∑

e∈δ+(X)

l(e)

(⇔)
∑

(i,lt)∈XC

∑
j∈I

(
startt+1 − v̄ijt+1

)
z̄ijf t+1 +

∑
(j,i,s)∈E4∩δ−(X)

(endt − stji)z̄jis

≥
∑

(i,f t)∈XC

∑
j∈I

(
startt − v̄jit

)
z̄jif t +

∑
(i,s)∈XC

aix̄is
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+
∑
j∈I

∑
(i,s)∈Xc

stjiz̄jis +
∑

(j,i,s)∈E4∩δ+(X)

starttz̄jis

(⇔)
∑

(j,i,s)∈δ+(XC)

endtz̄jis −
∑

(j,i,s)∈δ−(XC)

starttz̄jis

+
∑

(j,i,f t)∈δ−(XC)

v̄jitz̄jif t −
∑

(i,j,f t+1)∈δ+(XC)

v̄ijt+1z̄ijf t+1

≥
∑

(i,s)∈XC

aix̄is +
∑

(j,i,s)∈E(XC)∪δ−(XC)

stjiz̄jis +
∑

(j,i,s+1)∈δ+(Xc):
s 6=lt

stjiz̄ji,s+1

which coincides with the inequality (3.8) defined by XC . Because the given

solution satisfies the inequalities (3.8), the above inequality holds. As a result,

there exists a feasible flow.

2. If 0 /∈ X, we have

∑
e∈δ−(X)

u(e) =
∑

(i,f t)∈X

∑
j∈I

(
startt − v̄jit

)
z̄jif t +

∑
(i,s)∈X

aix̄is

+
∑
j∈I

∑
(i,s)∈X

stjiz̄jis +
∑

(j,i,s)∈E4∩δ−(X)

(endt − stji)z̄jis,

∑
e∈δ+(X)

l(e) =
∑

(i,lt)∈X

∑
k∈I

(
startt+1 − v̄ikt+1

)
z̄ikf t+1 +

∑
(j,i,s)∈E4∩δ+(X)

starttz̄jis.

Therefore,

∑
e∈δ−(X)

u(e) ≥
∑

e∈δ+(X)

l(e)

(⇔)
∑

(i,f t)∈X

∑
j∈I

(
startt − v̄jit

)
z̄jif t +

∑
(i,s)∈X

aix̄is +
∑
j∈I

∑
(i,s)∈X

stjiz̄jis

+
∑

(j,i,s)∈E4∩δ−(X)

(endt − stji)z̄jis −
∑

(i,lt)∈X

∑
k∈I

(
startt+1 − v̄ikt+1

)
z̄ikf t+1
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−
∑

(j,i,s)∈E4∩δ+(X)

starttz̄jis ≥ 0. (3.9)

We will show that the inequality (3.9) holds. Firstly,

∑
(j,i,f t)∈δ−(X)

starttz̄jif t +
∑

(j,i,s)∈E4∩δ−(X)

endtz̄jis

−
∑

(i,lt)∈X

∑
k∈I

startt+1z̄ikf t+1 −
∑

(j,i,s)∈E4∩δ+(X)

starttz̄jis

=
( ∑

(j,i,s)∈δ−(X)

endtz̄jis −Kt

∑
(j,i,f t)∈δ−(X)

z̄jif t
)

−
( ∑

(j,i,s)∈δ+(X)

endtz̄jis −Kt

∑
(j,i,s)∈E4∩δ+(X)

z̄jis

)
= Kt

( ∑
(j,i,s)∈E4∩δ+(X)

z̄jis −
∑

(j,i,f t)∈δ−(X)

z̄jif t
)

= Kt

( ∑
(j,i,s)∈E4∩δ−(XC)

z̄jis − (1−
∑

(j,i,f t)∈δ−(XC)

z̄jif t)

)

= Kt

( ∑
(j,i,s)∈δ−(XC)

z̄jis − 1
)
.

In addition,

∑
(i,s)∈X

aix̄is +
∑
j∈I

∑
(i,s)∈X

stjiz̄jis −
∑

(j,i,s)∈E4∩δ−(X)

stjiz̄jis

=
∑

(i,s)∈X
aix̄is +

∑
(j,i,s)∈E(X)

stjiz̄jis +
∑

(j,i,f t)∈δ−(X)

stjiz̄jis.

Therefore, the inequality (3.9) is equivalent to

Kt

∑
(j,i,s)∈δ−(XC)

zjis ≥ Kt +
∑

(j,i,f t)∈δ−(X)

v̄jitzjif t −
∑

(i,s)∈X
aixis
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−
∑

(i,k,f t+1)∈δ+(X)

v̄ikt+1zikf t+1 −
∑

(j,i,s)∈E(X)

stjizjis −
∑

(j,i,f t)∈δ−(X)

stjizjis

≥
∑

(i,k,f t+1)∈δ+(XC)

v̄ikt+1zikf t+1 −
∑

(j,i,f t)∈δ−(XC)

v̄jitzjif t

+
∑

(i,s)∈XC

aixis +
∑

(j,i,s)∈E(XC)∪δ−(XC)

stjizjis +
∑

(j,i,s)∈δ+(XC):
s 6=lt

stjizjis

where the second inequality holds due to the capacity constraints (3.1c). The

above inequality coincides with the inequality (3.8) defined by XC . As a result,

it is shown that there exists a feasible flow.

This proposition shows that, for example, when the setup crossover is not allowed,

(ST) with inequalities (3.7) gives the same LP bound with (TF).

3.3.4 Facility Location Reformulation

After firstly being introduced by Krarup & Bilde (1977), the facility location (FL)

reformulation technique has been widely used for various LSP models. It is part of

the folklore, so to speak, that this reformulation significantly improves the quality

of the LP bound; see, for example, Pochet & Wolsey (2006). Our models also can

be further tightened by the FL reformulation. The basic idea is to use variables

representing the fraction of demand for a specific period satisfied by the production

in another period. Let αist be the variable representing the fraction of the demand of

item i in macroperiod t satisfied by the production in microperiod s. As backlogging

is allowed, the demand in t can be served from any microperiod s. In addition, we

use a dummy microperiod S+1 to represent the demand that is not satisfied during
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the entire planning horizon; for example, αiS+1t represents the fraction of demand

of item i in macroperiod t that is not satisfied. The following relations hold between

the original variables (x, I,B) and the new variable α.

xis =
∑
t∈T

ditαist ∀i ∈ I, s ∈ S,

Iit =

T∑
l=t+1

lt∑
s=1

dilαisl ∀i ∈ I, t ∈ T ,

Bit =
t∑
l=1

S+1∑
s=f t+1

dilαisl ∀i ∈ I, t ∈ T .

Using the above relations, (ST) and (TF) can be reformulated as (ST-FL) and

(TF-FL), respectively. The following additional variables and notations are intro-

duced for the reformulations (ST-FL) and (TF-FL). We define a dummy micrope-

riod S + 1 to represent the demand that is not satisfied. Let T (S + 1) = T + 1 and

S0 = S ∪ {S + 1}. Then, we define variable αist as the fraction of demand of item

i in macroperiod t satisfied by the production in microperiod s. If s = S + 1, it

represents the fraction of demand of item i in macroperiod t that is not satisfied.

Regarding the cost, let Hist =
∑t−1

k=T (s) hcikdit when T (s) < t; otherwise, Hist =

0. Similarly, let Bist =
∑T (s)−1

k=t bcikdit when T (s) > t; otherwise, Bist = 0. The cost

coefficient of αist is defined as Cist := Hist + Bist + pciT (s)dit. The (ST-FL) is as

follows:

minimize
∑
i∈I

∑
t∈T

( ∑
s∈S0

Cistαist +
∑
j∈I

∑
s∈St

scijtzijs

)
(3.10a)

subject to
∑
s∈S0

αist = 1 ∀i ∈ I, t ∈ T (3.10b)

∑
i∈I

∑
s∈St

(∑
l∈T

aidilαisl +
∑
j∈I

stijzijs

)
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≤ Kt +
∑
i∈I

∑
j∈I

(vijt − vijt+1) ∀t ∈ T (3.10c)

αist ≤ yis ∀i ∈ I, s ∈ S, t ∈ T (3.10d)∑
t∈T

aiditαist ≤ KT (s)yis ∀i ∈ I, s ∈ S (3.10e)

∑
i∈I

yi1 = 1 (3.10f)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (3.10g)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (3.10h)

vijt ≤ stijqijt ∀i, j ∈ I, t ∈ T (3.10i)

qijt ≤ zijft ∀i, j ∈ I, t ∈ T (3.10j)

αist, yis, vijt ≥ 0 ∀i, j ∈ I, t ∈ T , s ∈ S0 (3.10k)

qijt, zijs ∈ {0, 1} ∀i, j ∈ I, t ∈ T , s ∈ S (3.10l)

The objective function (3.10a) is the total cost. Constraints (3.10b) are the de-

mand constraints. Constraints (3.10c) are the capacity constraints. Constraints (3.10d)

indicate that an item can be produced only if the corresponding setup occurs. Con-

straints (3.10e) represent the upper bound constraints for the amount of an item

produced in a microperiod. Constraints (3.10f) – (3.10l) are defined in the same

manner as the constraints (3.1e) – (3.1k) of (ST), except for the domains of variable

α. Similarly, the (TF-FL) is as follows:

minimize
∑
i∈I

∑
t∈T

( ∑
s∈S0

Cistαist +
∑
j∈I

∑
s∈St

scijtzijs

)
(3.11a)

subject to
∑
s∈S0

αist = 1 ∀i ∈ I, t ∈ T (3.11b)

∑
j∈I

(wjis + stjizjis) +
∑
l∈T

aidilαisl + ris
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=
∑
k∈I

wiks+1 ∀i ∈ I, s ∈ S (3.11c)

αist ≤ yis ∀i ∈ I, s ∈ S, t ∈ T (3.11d)

ris +
∑
t∈T

aiditαist ≤ KT (s)yis ∀i ∈ I, s ∈ S (3.11e)

∑
i∈I

yi1 = 1 (3.11f)

yis =
∑
j∈I

zjis ∀i ∈ I, s ∈ S \ {1} (3.11g)

yis =
∑
j∈I

zijs+1 ∀i ∈ I, s ∈ S \ {S} (3.11h)

Lijszijs ≤ wijs ≤ Uijszijs ∀i, j ∈ I, s ∈ S \ {1} (3.11i)

αist, yis, wijs ≥ 0 ∀i ∈ I, s ∈ S0, t ∈ T (3.11j)

zijs ∈ {0, 1} ∀i, j ∈ I, s ∈ S (3.11k)

The objective function (3.11a) and other constraints (3.11b) and (3.11d) – (3.11k)

are defined in the same manner as those for (ST-FL). Constraints (3.11c) are the

same as the time flow balance equations of (TF), except that variable xis is replaced

with
∑

l∈T dilαisl.

3.4 LP-based Naive Fixing Heuristic Algorithm

In this section, we provide an LP-based naive fixing heuristic (LPNF) algorithm

that is based on the iterative procedure of solving LP problems. This algorithm, also

known as integer rounding heuristic or LP-rounding heuristic, has been popularly

used in solving hard MIP problems including LSPs. For instance, Maes et al. (1991)

proposed several variants of the heuristic and compared their performance for multi-

level problems. Alfieri et al. (2002) applied the LP-rounding heuristic to several
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LSP models and analyzed the differences. Denizel & Süral (2006) used the LP-

rounding heuristic for the lot-sizing problem with setup times. The performance of

the LP-based heuristic algorithms heavily relies on the tightness of the LP relaxation

bounds. When the LP relaxation provides tighter bounds, the solution of the LP

relaxation is more likely to be closer to the optimal solution. In this regard, we

devise an LPNF algorithm to exploit the advantage of the tight bound obtained by

the proposed time-flow models.

The LPNF algorithm for an instance P is described in Algorithm 3.1. In the

Algorithm 3.1: LPNF(P, γup, γdown, δ, Y0, Y1)
1 flag ← true; // set the flag

2 (obj,yLP )← solveLP (P,Y0,Y1) // get obj. value and sol. value of

variable y
3 repeat
4 if yLP all binary then // if all y variables are binary,

5 (UBLPNF ,yLPNF )← (obj,yLP ); // return UB and feasible sol.

6 break; // escape

7 end
8 forall (i, s) ∈ (I × S) \ {Y0 ∪ Y1} do
9 if yLP

is > γup then // fix to one

10 Y1 ← Y1 ∪ {(i, s)};
11 flag ← false;

12 else if yLP
is < γdown then // fix to zero

13 Y0 ← Y0 ∪ {(i, s)};
14 flag ← false;

15 end

16 end
17 if flag then // if no variables are fixed in current iteration

18 pick δ least fractional variables and put them in Y0 or Y1 ; // fix δ
variables

19 end
20 flag ← true; // reset the flag

21 (obj,yLP )← solveLP (P,Y0,Y1);

22 until false;

23 return (UBLPNF ,yLPNF )
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algorithm, LP relaxation is recursively solved (lines 2, 21) with the subroutine

solveLP (P,Y0,Y1) which provides the solution and the objective value of the LP

relaxation of P. The input parameters Y0 and Y1 are the index sets of variable y,

which are fixed to zero and one, respectively. After obtaining the fractional solution,

variables whose values are greater than an upper threshold γup (0.5 ≤ γup < 1)

are fixed to one, while variables whose values are less than a lower threshold γdown

(0 < γdown < 0.5) are fixed to zero (lines 8–16). This procedure is repeated until

all binary variables are fixed to zero or one (lines 4–7). We only consider the binary

condition of variable y, because if it is fixed to binary values, the variable z is also

restricted to binary values.

If all fractional values of the nonfixed binary variables are neither below the lower

threshold nor above the upper threshold, during the iterations, the algorithm can run

permanently. To avoid this, if there are no variables to be fixed in an iteration, the

least fractional variables are forcibly fixed to zero or one, whichever is closer (lines

17–19). When applying this alternative fixing procedure, we considered the relative

value of the variables, rather than the absolute value of them. To be more specific,

when evaluating the value of variable yLPis , we take into account of the number of

variables regarding the microperiod s which are already fixed to zero (when there

is a variable which is fixed to one, other variables in microperiod s are fixed to zero

automatically). Therefore, we use the following value to assess the relative value of

the solution:

ŷLPis = yLPis × (I − |Y0s|)

where Y0s represents the subset of variables in microperiod s which are already fixed

to zero. This alternative fixing procedure is illustrated in the following example.
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Example 3.1. Let us consider a fractional solution of the problem with five items

illustrated in Figure 3.5. The variables already fixed to zero are represented by nodes

with a dashed border, whereas those fixed to one are represented by nodes filled in

gray. The slashed nodes represent the variables with fractional solution values.

In microperiod 2, item 3 has the largest solution value (0.5). Because two vari-

ables are already fixed to zero, ŷLP32 = 0.5×3 = 1.5. On the other hand, in microperiod

3, no variables are fixed yet. Item 1 has the largest solution value of 0.4 and the cor-

responding relative solution value is 0.4 × 5 = 2. Therefore, although the absolute

solution value of variable y32 is greater than that of y13, the variable y13 is fixed to

one because it has a greater relative solution value.

When considering the variables to be fixed to zero, the smallest relative solution

value is obtained with ŷLP52 = 0.2 × 3 = 0.6 although the absolute solution values of

item 2 through 5 in microperiod 3 are 0.15, smaller than 0.2.
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Figure 3.5: Illustration of the fixing procedure

107



The number of variables that can be forcibly fixed in one iteration is indicated

by an integer parameter δ. Note that the LPNF algorithm for a given instance P can

use any of the previously presented models as a base model: (ST), (TF), (ST-FL),

or (TF-FL). We conducted experiments on the performance of the LPNF algorithm

with different base models.

3.5 Computational Experiments

3.5.1 Test Instances

The set of instances is generated considering the characteristics of the flat-panel

display manufacturing environment introduced in Lee & Lee (2020). In this manu-

facturing process, the setup takes a significant amount of time, and thus, it should

not occur frequently in each macroperiod. In this regard, we set |St| = 3 for all

t ∈ T . The length of each macroperiod is set to 100 (i.e., Kt = K = 100), and the

unit production time ai is set to 1 for all instances. The dimension of an instance

is defined by the number of items (I) and the number of macroperiods (T ). We use

five dimensions: (5, 10), (5, 15), (10, 10), (10, 15), and (15, 15).

In order to generate demand data similar to the demand patterns of this man-

ufacturing environment, we use two parameters ρ and f , which denote the produc-

tion capacity utilization level and the demand frequency, respectively. Specifically,

ρ =
∑

i∈I,t∈T dit
K·T and f =

∑
i∈I,t∈T I{dit>0}

I·T where I{dit>0} = 1 if nonzero demand occurs

for item i in macroperiod t. From these parameters, the average amount of nonzero

demand can be determined; that is, davg = K·ρ
I·f . Among the elements of the set I×T ,

we randomly choose f ·I ·T demand points while ensuring that at least one item has

nonzero demand in the last macroperiod and that there is no item with zero demand
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during the entire planning horizon. For each selected demand point, the amount of

demand is generated from a discrete uniform distribution [0.8 · davg, 1.2 · davg]. We

use the parameters ρ ∈ {0.8, 1}, f ∈ {1/3, 1/2}.

To determine the influence of the length of the setup times, we use three different

classes: S, M , and L, whose (stmin, stmax) are (0.05, 0.15), (0.1, 0.3), and (0.4, 0.6),

respectively. Then, the setup times are generated from a discrete uniform distribution

DU [stmin · K, stmax · K]. The inventory holding cost hcit is set to 1, whereas the

backlogging cost bcit is generated from DU [1, 5]. The setup costs are set to be the

same as the setup times; that is, scijt = stij .

There are 5× 3× 4 = 60 different combinations of factors, and we generate five

instances for each combination, such that 300 instances are presented in total. The

experimental results represented in this section are averaged over these five instances

of a particular combination. The detailed test results are reported in Appendix C.

All of our experiments were conducted on an Intel Core 3.10 GHz PC with 16 GB

RAM under Windows 10 Pro. The proposed algorithms were implemented in C++.

FICO Xpress 8.9 with its default parameter settings was used as the LP/MIP solver.

We set the time limit for solving an MIP problem to 600 s.

3.5.2 LP Bound

We first present the test results regarding the strength of the LP relaxation bound in

Figures 3.6 and 3.7 which present the LP gap and Gap closed, respectively. LP gap

is computed as (MIP Best Sol)−(LPB)
MIP Best Sol ×100%, where MIP Best Sol is the best solution

among those obtained by solving the four models using the MIP solver. Gap Closed

of each model represents the ratio of the closed gap with respect to the LPB of ST;
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that is, (LPB of the model)−(LPB of ST)
(MIP Best Sol)−(LPB of ST) × 100%.

As shown in Figures 3.6 and 3.7, the FL reformulation has a significant impact

on tightening the LPB for both (ST) and (TF). The average LP gap of the models

with the FL reformulation is about 65%, whereas that of the models without the FL

reformulation is above 80%. From these results, we can see that, similarly to other

LSP models, our models can benefit significantly from FL reformulation.

In addition, there is an obvious improvement in LPB if (TF) is used instead

of (ST). The LP gap is reduced by approximately 8% on average. This also holds

between (ST-FL) and (TF-FL). The LPB provided by (TF-FL) is tighter than that

by (ST-FL). In summary, (TF-FL) is the tightest model, and approximately 25% of

the gap is closed compared to (ST). The following relationship is shown between the
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tightness of the models: (TF-FL) > (ST-FL) > (TF) > (ST). Detailed results of the

tightness of the LP bound are presented in Table C.1 which summarizes the results

for each factor, as indicated in the first column.

3.5.3 Computational Performance with MIP Solver

Now, we compare the solution quality and computational burden when the MIP

solver is used. The test results are shown in Table 3.2 and Figure 3.8. Each row in

Table 3.2 shows the summarized results. Gap indicates the final gap between the

best solution and the best lower bound found by the solver within the time limit;

for example, a zero gap indicates that the optimal solution is found. The ratio of

the instances that found the optimal solution among all corresponding instances is
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Table 3.2: Summary of the computational performance of the models

Model ST TF ST-FL TF-FL

Gap (%) 32.7 24.8 36.7 30.5

Opt (%) 29.3 39.0 24.7 32.7

Time (s) 459.7 410.7 488.2 445.6

# Node 292835 13536 71281 6691

represented in row Opt. The next rows #Node and Time represent the average num-

ber of nodes visited while running the branch-and-bound algorithm and the average

computation time, respectively. The detailed test results are given in Tables C.2

and C.3 in Appendix C.

The main observation is that (TF) and (TF-FL) are more successful in solving

problem instances than are (ST) and (ST-FL). The average gap of (ST) and (ST-FL)
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Figure 3.8: Comparison of the computational performance of the models
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is approximately 35%, whereas that of (TF) and (TF-FL) is approximately 27%.

Meanwhile, even if the FL reformulation is effective in reducing the LP gap, it does

not seem to help much in improving the MIP solvability. With the reformulation,

the final gap increases, and the number of optimal solutions found diminishes. This

is due to the fact that the disadvantage of the increased model size is greater than

the gain from the tighter LP bound. In conclusion, (TF) shows the best performance

among the others.

The number of nodes visited by (TF) and (TF-FL) to close the gap is much

smaller than those by (ST) and (ST-FL). Furthermore, they require less computa-

tion time. In summary, the proposed idea of the time-flow model seems quite useful.

For the largest instances of dimensions (15, 15), however, the performance is not sat-

isfactory, because the average gap is above 50%. Therefore, we applied our solution

approaches to those instances.

3.5.4 Performance of LPNF Algorithm

Lastly, we test the performance of the LPNF algorithm. Specifically, we investigate

the effects of the tightness of the base model and the different parameter settings. We

compare the different parameters γup ∈ {0.7, 0.9} and δ ∈ {1, 2, 3, 4, 5}, while γdown

is fixed to zero. Figure 3.9 presents the relative solution values and computation

times where the relative solution value is defined as LPNF solution value
MIP Best Sol × 100%. In

Figure 3.9 we present the results of (ST-FL) and (TF-FL) for the sake of clarity.

The detailed test results including the results of (ST) and (TF) are presented in

Table C.4 of Appendix C.

As shown in Figure 3.9, there are significant differences in the algorithms’ perfor-
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mance with the different models. The quality of the solution obtained using (TF-FL)

is much better than that obtained using the others. The average deviation from the

MIP Best Sol is approximately 80% with (ST-FL), whereas it is about only 24%

with (TF-FL). These results show that the tightness of the base model greatly affects

the solution quality, which is natural, as the algorithm is highly dependent on the

quality of the LP bound. Among all of the models, (TF-FL), the tightest, shows the

best solution quality. The computation time for (TF-FL) is approximately twice that

of (ST-FL), but is short enough to be used in practice. Regarding the parameters,

the value of γup does not affect either the solution quality or the computation time
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Figure 3.9: Test results for the LPNF algorithm
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considerably. When the larger δ value is used, which means the more variables can

be fixed in each iteration, the shorter computation time is required. On the other

hand, the solution quality does not change significantly according to δ.

3.6 Summary

In this chapter, we introduced new integer optimization models for the LSP with

sequence-dependent setups that can consider setup crossover and carryover. It was

shown that the newly proposed time-flow models (TF) and (TF-FL) have certain

benefits compared with the standard GLSP-based models in terms of the tightness

of the LP bound and solvability with the MIP solver. Moreover, it was demonstrated

that the tightness of the model not only affects the solvability with the MIP solver,

but also has a significant impact on the performance of the proposed LP-based

heuristic algorithm through the computational experiment results.
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Chapter 4

Approximate Dynamic Programming Algorithm
for Lot-sizing and Scheduling Problem with
Sequence-dependent Setups

In this chapter, we devise an ADP algorithm for LSP with sequence-dependent se-

tups to alleviate the drawback of traditional DP approaches, that is, the number of

states can easily explode as the problem dimension increases. The proposed ADP

algorithm estimates the value of states using their lower and upper bounds obtained

by an optimization model. Specifically, the lower bound is obtained by the LP re-

laxation of the optimization model, whereas the upper bound is acquired from the

LPNF algorithm provided in the previous chapter. Particularly, the time-flow model

presented in Chapter 3 is employed as a base model. We conduct computational ex-

periments to demonstrate the competitiveness of the proposed ADP algorithm. The

ADP algorithm shows clear benefits over the standard MIP solver. Moreover, its

performance is revealed to be competitive with a state-of-the-art big bucket model.
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4.1 Introduction

4.1.1 Markov Decision Process

DP algorithms have been essential solution approaches for many optimization prob-

lems including LSP. To apply DP algorithms to typical optimization problems, they

should be reformulated as dynamic programs which are also referred to as Markov

decision processes (MDP). In this section, we firstly introduce MDP which provides

a general modeling framework for the class of sequential decision making problems.

Then, we briefly review DP-based solution approaches proposed for LSP. We adapt

the general definition of MDP taken from textbooks by Puterman (2014) and Powell

(2007) with some simplification to fit our problem. Readers are referred to Puterman

(2014) and Powell (2007) for a comprehensive and detailed introduction of MDP.

MDP is defined with a given planning horizon which, in our discussion, is assumed

to be finite and discrete with a set of periods t = 1, . . . , T . At the beginning of each

period, called as a decision epoch or simply a stage, decisions for the period should

be made based on the current state. The current status of the MDP at stage t

is represented by a state variable St. Based on the state information, we choose

an action xt which should be chosen from a set of feasible actions defined by the

current state, that is, from Xt(St). The action xt taken at the state St are evaluated

by a contribution function Ct(St, xt). Depending on the context, the contribution

function can be either the cost or profit. Because our problem is to minimize the total

costs, the contribution function is interpreted as a cost that occurs when we choose

a specific action given a specific state. After making a decision, the state transition

from the current state to the next one is made according to a transition function
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SM , that is, St+1 = SM (St, xt). Because we do not consider the data uncertainty,

the transition function is assumed to be deterministic.

The objective of the problem is to determine a sequence of optimal actions x∗ =

(x∗1, . . . , x
∗
T ) which minimizes the total costs that occur within the entire planning

horizon, given an initial state S1, that is,

x∗ = arg min
x∈X

{
T∑
t=1

Ct(St, xt)

∣∣∣∣S1
}

(4.1)

where X = ΠT
t=1Xt(St). The optimal action at stage t, given the state St, can be

written as

x∗t (St) = arg min
xt∈Xt(St)

(
Ct(St, xt) +

{
T∑

t′=t+1

Ct′(St′ , x
∗
t′(St′))

∣∣∣∣∣St+1

})
(4.2)

where St+1 = SM (St, xt). In the above equation, the term inside the curly brackets

forms another smaller problem. Defining a value function Vt(St), the value of being

at the state St, the recursion can be concisely represented as follows:

x∗t (St) = arg min
xt∈Xt

(
Ct(St, xt) + Vt+1(St+1)

)
. (4.3)

Therefore, the above equation can be written as a recursion of the value functions:

Vt(St) = min
xt∈Xt

(
Ct(St, xt) + Vt+1(St+1)

)
. (4.4)

The above equation (4.4) is well-known as the Bellman equation (Bellman, 1957).

Bellman (1957) introduced the concept of the principle of optimality which enables
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the optimal solution of the problem to be obtained by solving smaller subproblems

recursively. In this regard, the class of solution approaches based on the forward

or backward recursion procedure using the principle of optimality is called a DP

approach. After the introduction of DP approaches, numerous optimization prob-

lems from vast research areas including optimal control theory, operations research,

and sequential decision making have been tackled by DP approaches. See Bertsekas

(2012) for detail.

Like other optimization problems, the LSP can be reformulated as MDP and

solved via DP algorithm. In fact, DP algorithms have been essential solution ap-

proaches for many production planning problems including lot-sizing and schedul-

ing problems. Since first being addressed by Wagner & Whitin (1958), many DP

algorithms have been proposed to solve lot-sizing problems efficiently (e.g., Zang-

will, 1966; Florian et al., 1980; Federgruen & Tzur, 1991; Wagelmans et al., 1992;

Aggarwal & Park, 1993; Van Hoesel & Wagelmans, 1996, to name a few influential

early works). For a well-organized summary of the various algorithms for the class

of LSP, including DP, readers are referred to Pochet & Wolsey (2006).

In addition to the standalone use of DP algorithms, they are often combined

with other optimization approaches or heuristic algorithms to solve LSP. For ex-

ample, Hartman et al. (2010) proposed valid inequalities for single-item capacitated

lot-sizing problem derived from a truncated forward DP algorithm. The proposed

valid inequalities are used as cutting planes in a branch-and-bound algorithm. Sub-

sequently, Büyüktahtakın, Smith, et al. (2018) proposed valid inequalities for multi-

item capacitated lot-sizing problem which are derived by a partial DP algorithm.

The inequalities were strengthened by a lifting procedure and used as cutting planes.
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Recently, Cunha & Melo (2021) proposed a DP-based heuristic algorithm to solve

multi-level uncapacitated lot-sizing problem which uses a multi-start randomized

procedure to obtain feasible solutions quickly.

4.1.2 Approximate Dynamic Programming Algorithms

Except for certain special cases such as the uncapacitated or single-item problem,

however, most real-world LSPs are difficult to solve via DP algorithms, because they

often have a prohibitively large number of states and actions which increases expo-

nentially with the problem instance size. Particularly, if there exist some practical

constraints or characteristics such as sequence-dependent setups, the dimension of

the states also can drastically increase. Therefore, obtaining an optimal solution for

practical large instances using exact DP approaches seems unpromising.

In order to avoid this issue, known as the “curse of dimensionality’’ (Powell,

2007), ADP algorithms have been widely employed. Most of the ADP approaches

often use a policy, which is defined as “a rule (or function) that determines a feasible

decision given the available information in a state” (Powell, 2019), based on a specific

approximation strategy. There is a great deal of freedom in designing the policy, and

a great variety of options exist. Powell categorized various approximation strategies

in the ADP framework into four broad classes: policy function approximation, cost

function approximation, direct lookahead approximation, and value function approx-

imation.

In this study, among the four strategies, we adapt value function approxima-

tion to devise an ADP algorithm for LSP with sequence-dependent setups. Using

the value function approximation strategy, the true value functions of states are re-
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placed with the approximated value functions. Therefore, the equation (4.3) can be

rewritten as follows:

xADPt (St) = arg min
xt∈Xt

(
Ct(St, xt) + V̂t+1(St+1)

)
. (4.5)

Then the corresponding policy is to choose actions greedily with respect to the ap-

proximated value function without the recursive evaluation of an exponential number

of future states.

There are many possibilities in designing the approximated value function V̂t(St).

One of the widely used methods is to assume specific function structures. When

determining the function structure, one should consider the trade-off between sim-

plicity and expressivity. As the function structure gets simpler, it becomes easier to

handle, whereas it is less likely to capture the structure of the true value function.

One of the simplest structures is a linear function. The function V̂t(St) is often as-

sumed as a linear function of the state variable St with the corresponding coefficient

vector vt, i.e., V̂t(St) = vtSt. Because of its simplicity, linearly approximated func-

tions can be naturally incorporated into large optimization problems. However, it

cannot provide a good approximation of the true value due to its simplicity except

for some special cases.

Alternatively, one can adapt piecewise-linear value function structures which

have much more expressivity. Especially, when convexity or concavity can be as-

sumed, the value function also can be incorporated into optimization problems easily.

There are types of problems where the convexity or concavity assumption is natural

and plausible such as dynamic resource allocation problems. For instance, Topaloglu
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& Powell (2006) addressed stochastic time-staged integer multi-commodity flow

problems and proposed ADP algorithms. They proposed three different approxi-

mation strategies: linear, concave piecewise-linear, and hybrid of them. Using the

characteristics of the network flow problem, they provide efficient estimation and

update procedures for function coefficients. Toriello et al. (2010) provided an ADP

algorithm for deterministic inventory routing problems. The authors used a separable

piecewise-linear concave function to approximate the value function. They provided

a fitting procedure that preserves the concavity of the function. Papageorgiou et al.

(2015) proposed an ADP algorithm for maritime inventory routing problems with a

long planning horizon. They also used a piecewise-linear value function, but did not

necessarily assume concavity or convexity.

Alternatively, there exist value function approximation approaches which directly

estimate the value without any assumption on the structure. For instance, to solve

multi-dimensional knapsack problems, Bertsimas & Demir (2002) used both the pri-

mal and dual bounds of the true state value, which were obtained by simple heuristic

algorithms and LP relaxation, respectively. In addition, the authors proposed ADP

algorithms with parametric and nonparametric approximations. See Powell (2007)

and Powell (2016) for several other successful applications of ADP.

There exists some research where the value function approximation is applied

to solve LSPs. Büyüktahtakın & Liu (2016) proposed various ADP algorithms for

a single-item capacitated lot-sizing problem. Using the characteristics of the inven-

tory cost function, they devised a direct-connection algorithm and a slope-check

algorithm based on the sampling of the states. To apply the value function approx-

imation approach proposed by Büyüktahtakın & Liu (2016) to the problem with
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multiple items, however, one should assume the separability of the value function,

that is, the value function of the problem can be represented as the sum of value

functions defined for each item. However, there exist interactions between the items.

For instance, multiple items compete for the restricted capacity to be produced

which implies that the true value function is nonseparable. In addition, when the

setups occur in a sequence-dependent manner, the inter-dependency between the

items further increases and cannot be neglected. Therefore, the ADP algorithm pro-

posed in Büyüktahtakın & Liu (2016) is hard to be applied to our problem. Instead,

we present an ADP algorithm that is similar to the approach presented by Bertsimas

& Demir (2002) who made use of the bound information.

The remainder of this chapter is organized as follows. In Section 4.2, we refor-

mulate our problem as an MDP. In Section 4.3, we present our ADP algorithm and

the value function approximation procedure. In Section 4.4, we present the results

of computational experiments. In Section 4.5, we summarize the chapter and make

concluding remarks.

4.2 Markov Decision Process Reformulation

Before presenting the ADP algorithm, we first present our problem as an MDP

based on the optimization model addressed in Chapter 3. We regard microperiods

s = 1, . . . , S as stages. The state of the system at stage s, denoted by Rs, is defined as

a sequence of items that are set up to microperiod s. Specifically, let Rs = (i1, . . . , is),

where ik denotes an index of the item that is set up in microperiod k. Thus, the

state space at stage s is defined as Rs = {(i1, . . . , is)| ik ∈ I, ∀k = 1, . . . , s}. The set

of possible states at stage s, given a previous state R̄s−1 = (̄i1, . . . , īs−1) ∈ Rs−1, is
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defined as

Rs(R̄s−1) = {(̄i1, . . . , īs−1, i)| i ∈ I} = {(R̄s−1, i)| i ∈ I}.

This state definition is different from those commonly used in other studies where

the states are defined by inventory level or cumulative production amounts (Florian

et al., 1980; Hartman et al., 2010; Büyüktahtakın & Liu, 2016).

Let us define the value function Vs(Rs) as the minimum total cost, except for the

setup cost from 1 to s, under a given fixed sequence Rs. Then, the value function

of the last stage S for a given RS , VS(RS), can be easily computed by solving an

LP, because the entire setup sequence is already determined. The problem is then to

calculate the value function V0(R0), where R0 is a null sequence in which nothing is

fixed. When a state Rs−1 transitions to Rs, the corresponding state transition cost

occurs. Specifically, if Rs−1 = (i1, . . . , is−1) and Rs = (i1, . . . , is−1, is), the transition

cost Cs(Rs−1, Rs) is the setup cost between is−1 and is; that is, scis−1,is,T (s). We

assume that C1(R0, ·) = 0. With this definition, the DP recursion can be expressed

as

Vs−1(Rs−1) = min
Rs∈Rs(Rs−1)

{
Cs(Rs−1, Rs) + Vs(Rs)|Rs−1 = (i1, . . . , is−1)

}
= min

i∈I

{
scis−1,i,T (s) + Vs(i1, . . . , is−1, i)

}
, (4.6)

for s = 1, . . . , S. The last stage value function VS(·) is easy to compute, as previ-

ously mentioned. Starting with s = S, V0(R0) can be calculated using the backward

recursion of equation (4.6). Subsequently, the optimal production sequence can be
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identified using

R∗s = (R∗s−1, i
∗
s) = (i∗1, . . . , i

∗
s) where i∗s = arg min

i∈I
{sci∗s−1,i,T (s)

+ Vs(i
∗
1, . . . , i

∗
s−1, i)}

for s = 1, . . . , S and R∗0 = R0.

The DP recursion is illustrated in Figure 4.1. As shown in the figure, however, the

number of total states is O(IS) which is exponentially large. Therefore, the number

of states easily explodes when the number of items and periods increases. Therefore,

it is not practical to solve the DP recursion exactly. In the following section, we

present an ADP algorithm to avoid the issue of the curse of dimensionality.
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Figure 4.1: Illustration of the dynamic programming recursion
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4.3 Approximate Dynamic Programming Algorithm

In our ADP algorithm, we use the approximated value function V̂s(Rs), which ap-

proximates Cs(Rs−1, Rs) + Vs(Rs). Then, the recursion (4.6) is modified as

Ṽs−1(Rs−1) = min
Rs∈Rs(Rs−1)

{
V̂s(Rs)|Rs−1

}
(4.7)

where Ṽs−1(Rs−1) is an estimate of the value of being at Rs−1. The approximated

value function V̂s(Rs) is constructed using both the lower bound LB(Rs) and the

upper bound UB(Rs) of the true value of Cs(Rs−1, Rs) + Vs(Rs). There are many

different ways to obtain these bounds. One can expect that if tighter LB(Rs) and

UB(Rs) are used, the approximation will be more accurate and the solution quality

will be improved. In addition, as these bounds need to be obtained repetitively in

the ADP algorithm, it is important to do so in a short time. Considering this trade-

off, acquiring good bounds in a short time is a key aspect of the ADP algorithm.

In this regard, to obtain LB(Rs), we solve the LP relaxation of the problem with

the partially fixed production sequence Rs = (i1, . . . , is); that is, yikk = 1 for all

1 ≤ k ≤ s. To obtain UB(Rs) in the ADP algorithm, we use LPNF algorithm which

is proposed in Chapter 3 as a subroutine.

With LB(Rs) and UB(Rs), calculated by the LP relaxation and the LPNF

algorithm, respectively, we evaluate V̂s(Rs) using the equation

V̂s(Rs) = (1− ε) · LB(Rs) + ε · UB(Rs)

where the parameter ε indicates the ratio of the upper bound when estimating the
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value of state (0 ≤ ε ≤ 1). If we set ε = 1 (ε = 0), the value is approximated using

only the upper bound (lower bound). Using this approximation, the production

sequence can be identified using

R̂s = (R̂s−1, îs) = (̂i1, . . . , îs) where îs = arg min
i∈I

{V̂s(̂i1, . . . , îs−1, i)}

for s = 1, . . . , S and R̂0 = R0. Moreover, given a state, it is possible to consider

only some promising states among all possible next states so as to avoid wasting

computational time on evaluating prospectless states. The set of promising candidate

states, denoted by CAND, is chosen as those with a large LP fractional solution

value. An integer parameter 1 ≤ λ ≤ I is used to indicate the number of states to

be evaluated. By setting λ = I, every possible future state is evaluated. If λ = 1,

only one future state, which is to say, that with the largest LP fractional solution

value, is evaluated.

The ADP algorithm for an instance P is given in Algorithm 4.1. Starting from

stage 1, at each stage, the algorithm fixes the state with the best approximated value

until it reaches the last stage and returns the solution yADP and its objective value

UBADP . While executing the algorithm, UBADP is updated whenever a better so-

lution is obtained. In this algorithm, a subroutine getCand(yLP , λ, s), which selects

candidate states to be evaluated at stage s, is used. From the fractional solution

yLP , this subroutine compares the yLPis values for i ∈ I and returns a set of indices

of λ largest fractional values: CAND(s) = {(i1, s), . . . , (iλ, s)}.

The overall procedure of the ADP algorithm is illustrated in Figure 4.2. At state

0 in stage 1, the next state is decided based on the approximated value function
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Algorithm 4.1: ADP(P, ε, λ, γup, γdown, δ)
1 Y1 ← ∅, Y0 ← ∅, s← 1, UBADP ←∞ ; // initialization

2 (obj,yLP )← solveLP (P,Y0,Y1) ; // solve LP relaxation

3 CAND(s)← getCand(yLP , λ, s) ; // select candidates to be evaluated at

stage s
4 do
5 forall c ∈ CAND(s) do // evaluate each candidate state

6
(
LB(c),yLP (c)

)
← solveLP (P,Y0,Y1 ∪ {c}) ;

7
(
UB(c),yLPNF (c)

)
← LPNF (P, γup, γdown, δ,Y0,Y1 ∪ {c}) ;

8 if UB(c) < UBADP then // if better solution found

9 (UBADP ,yADP )← (UB(c),yLPNF (c))
10 end

11 V̂ (c)← (1− ε) · LB(c) + ε · UB(c);

12 end

13 c∗ ← arg min
c∈CAND(s)

V̂ (c);

14 Y1 ← Y1 ∪ {c∗};
15 CAND(s+ 1)← getCand(yLP (c∗), λ, s+ 1) ;
16 s← s+ 1;

17 while s < S;

18 (obj,yLP )← solveLP (P,Y0,Y1);

19 if obj < UBADP then
20 (UBADP ,yADP )← (obj,yLP )
21 end

22 return (UBADP ,yADP )

V̂1(R1) which is calculated by the lower and upper bound values of the state R1.

After choosing the most promising state with the highest approximated value, state

6 in Figure 4.2(a), the states in the next stage are evaluated as shown in 4.2(b), and

so on.
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Figure 4.2: Illustration of ADP algorithm
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4.4 Computational Experiments

We conducted two sets of computational experiments. The first aims to compare the

performance of the presented time-flow model and the ADP algorithm using a set of

instances similar to a specific real-world manufacturing environment. In the second

experiment, the time-flow model and ADP algorithm are further compared with a

recent big bucket model using a set of instances from the literature.

4.4.1 Comparison with (TF-FL) Model

The set of instances used for the first experiment is identical to that used in Chapter 3

which is generated considering the characteristics of the manufacturing environment

introduced in Lee & Lee (2020). Among the instances with different problem di-

mensions, we use the largest dimension, (I, T ) = (15, 15) which was shown to be a

hard instance by the test results in Chapter 3. Again, all of our experiments were

conducted on an Intel Core 3.10 GHz PC with 16 GB RAM under Windows 10

Pro. The proposed algorithms were implemented in C++. FICO Xpress 8.9 with its

default parameter settings was used as the LP/MIP solver. We set the time limit

for solving a MIP problem to 600 s.

For the ADP algorithm, we fix the threshold parameters (γdown, γup) to (0, 0.9)

and use (TF-FL) as the base model which provides tight LP bounds as well as

shows good performance with the LPNF algorithm. In addition, fixing parame-

ters δ ∈ {1, 3, 5}, candidate parameters λ ∈ {2, 3, 5}, and weighting parameters

ε ∈ {0, 0.2, 0.5, 0.8, 1} are used for the ADP algorithm. Note that when ε = 0, the

parameter δ has no meaning because the LPNF algorithm is not used.

Tables 4.1, 4.2, and 4.3 report the relative solution values, the ratio of instances
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whose ADP solution is better than the MIP Best Sol , and the computation time for

λ = 2, 3, and 5, respectively. The relative solution values and computation time are

also illustrated in Figures 4.3 and 4.4, respectively. In Figure 4.4, the computation

time for the ADP algorithms with ε greater than zero are averaged and grouped

together because there are no meaningful differences between them.

Overall, the performance of the ADP algorithm seems satisfactory. As shown in

Tables 4.1 – 4.3, the largest average deviation from MIP Best Sol is only about 4%

when the LP bound is not used (ε = 1). When both the LP bound and the LPNF

algorithm are used, the ADP algorithms succeed in finding even better solutions

under most of the parameter settings. For instance, when (λ, δ, ε) = (5, 1, 0.2) is

used, the solution quality improves by more than 10% compared with MIP Best

Table 4.1: Test results for the ADP algorithm: λ = 2

λ δ ε
Relative

Solution Value (%)
Better

Solution (%) Time (s)

2

- 0 93.54 80.00 66.5

1

0.2 92.46 81.67 263.6

0.5 94.81 76.67 259.4

0.8 95.78 76.67 251.1

1 95.84 75.00 272.0

3

0.2 96.28 66.67 174.8

0.5 98.94 61.67 170.1

0.8 99.03 61.67 164.8

1 99.38 56.67 183.6

5

0.2 98.01 65.00 152.6

0.5 101.08 55.00 163.2

0.8 101.97 50.00 142.1

1 102.45 48.33 170.7

Average 97.66 65.77 187.3
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Table 4.2: Test results for the ADP algorithm: λ = 3

λ δ ε
Relative

Solution Value (%)
Better

Solution (%) Time (s)

3

- 0 91.65 83.33 99.8

1

0.2 90.59 85.00 420.1

0.5 95.17 75.00 384.2

0.8 96.05 70.00 366.3

1 96.09 70.00 407.4

3

0.2 96.89 66.67 260.5

0.5 100.15 56.67 249.1

0.8 101.12 55.00 236.1

1 101.50 55.00 270.1

5

0.2 96.92 63.33 224.3

0.5 100.92 60.00 237.1

0.8 103.43 40.00 206.4

1 103.68 48.33 252.2

Average 98.01 64.49 278.0

Sol . Under this setting, the ADP algorithm obtains better solutions for 90% of the

instances.

Regarding the parameters, δ = 1 and ε = 0.2 show, as indicated in Figure 4.3,

the best results with respect to the relative solution value. Smaller δ leads to better

solutions at the expense of increased computation times. The average computation

time is also proportional to the value of λ. Moreover, we observe that a larger λ

does not always lead to better solution quality. For ε values with relatively good

performance, a larger λ value helps improve the solution quality. On the contrary,

for ε values with poor performance, evaluating additional states makes it even poorer.
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Table 4.3: Test results for the ADP algorithm: λ = 5

λ δ ε
Relative

Solution Value (%)
Better

Solution (%) Time (s)

5

- 0 89.82 91.67 158.2

1

0.2 88.98 90.00 555.0

0.5 94.72 71.67 569.3

0.8 95.59 71.67 549.6

1 96.20 70.00 590.8

3

0.2 95.68 70.00 431.2

0.5 100.79 60.00 407.6

0.8 101.86 55.00 371.4

1 101.86 55.00 474.2

5

0.2 97.86 63.33 373.8

0.5 102.62 55.00 373.1

0.8 103.48 53.33 318.0

1 103.93 51.67 412.3

Average 97.95 66.03 429.6

4.4.2 Comparison with Big Bucket Model

In our second experiment, we further investigate the performance of the (TF) and

ADP algorithm relative to a big bucket model recently proposed by Mahdieh et al.

(2018). This model, denoted as (MCB), uses a multi-commodity flow formulation to

capture the sequence of production within each bucket. As far as we know, (MCB)

is the latest LSP model that can incorporate the sequence-dependent setup, setup

crossover, and setup carryover. Note that the models presented in Guimarães et al.

(2014) cannot incorporate them all simultaneously. Moreover, (MCB) is an improved

version of the models previously presented in Menezes et al. (2011) and Clark et al.

(2014).

For the comparison, we create a set of instances according to the instance gener-
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ation scheme in Almada-Lobo, Klabjan, et al. (2007), which is frequently used in the

literature (e.g. James & Almada-Lobo, 2011; Guimarães et al., 2014). The instance

type is defined by the combination of problem dimensions (I × T ), capacity utiliza-

tion (Cut), and setup cost factor (θ). See Almada-Lobo, Klabjan, et al. (2007) for

further details. We additionally introduce one more parameter to control the average

length of the setup time (Setup Time), as in the instances of the first experiment.

We use the following parameters: I ∈ {10, 15}, T ∈ {10, 15}, Cut ∈ {0.6, 0.8, 1},

θ ∈ {50, 100}, and Setup Time ∈ {S,M,L}. The (stmin, stmax) of classes S, M ,

and L are (0.2, 0.4), (0.4, 0.6), and (0.6, 0.8), respectively. For each combination, we

generate five instances, resulting in a total of 360 instances. For these instances, we

set the time limit for solving a MIP problem to 1800 s, and for the ADP algorithm,

900 s.

We compare the results obtained by solving (TF) and (MCB) with the MIP solver

and those obtained by our ADP and LPNF algorithms. For the algorithms, we use

(TF-FL) as a base model which provides the tightest bound among other models

and set the parameters as (γdown, γup, δ, λ) = (0, 0.9, 3, 3). Table 4.4 represents the

relative solution quality obtained from different approaches when we let the solution

values of (TF) as 100. The subscript of the ADP algorithm indicates the types of

bounds used; that is, ADPLU uses both the lower and upper bounds (using ε = 0.2),

while ADPL uses only the lower bound (ε = 0).

In the comparison of the two models, (TF) performs worse than (MCB) on average,

though it is better in some instances. This can be explained by the fact that, due to

the microperiods, the size of (TF) is larger than that of (MCB), which makes it harder

to solve. The performance of (TF) gets better as the setup time increases, which
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appears to be because the maximum number of items that can be produced within

a macroperiod decreases, resulting in fewer microperiods. This result indicates that

(TF) can be beneficial when the number of setups that can be conducted within a

macroperiod is limited. Although (MCB) shows relatively better performance than

(TF), it is not successful in solving instances within the time limit.

The solution provided by ADPLU is 3% better than that of (TF) on average.

Moreover, it is even better than the solution of (MCB), though the difference is quite

small. Similar to the results of the first experiment, ADPLU performs better than

Table 4.4: Comparison of the models and the solution algorithms

Factors
Relative Solution Value (%) Time (s)

TF MCB ADPLU ADPL LPNF TF/MCB ADPLU ADPL LPNF

Dim

10× 10 100.0 96.61 101.88 105.26 112.15 1800 120.8 24.6 2.1

10× 15 100.0 98.40 98.57 103.00 109.60 1800 403.8 92.3 6.7

15× 10 100.0 96.34 95.94 97.44 105.52 1800 256.0 72.5 4.8

15× 15 100.0 98.04 91.43 91.92 100.29 1800 537.7 242.0 14.2

Cut

0.6 100.0 95.78 96.43 99.24 109.63 1800 337.4 97.5 6.4

0.8 100.0 97.68 96.28 98.91 105.67 1800 332.4 113.1 7.0

1 100.0 98.59 98.14 100.07 105.37 1800 318.9 113.0 7.4

θ

50 100.0 97.24 96.40 98.49 106.73 1800 333.4 112.4 7.1

100 100.0 97.45 97.51 100.32 107.05 1800 325.7 103.4 6.8

Setup Time

S 100.0 91.82 93.60 97.60 104.64 1800 658.7 227.3 13.6

M 100.0 98.40 98.15 99.89 107.34 1800 247.4 69.3 5.0

L 100.0 101.83 99.11 100.74 108.69 1800 82.6 27.0 2.3

Total 100.0 97.35 96.95 99.41 106.89 1800 329.6 107.9 7.0

137



ADPL with a longer computation time. Notably, the relative performance of both

ADPLU and ADPL gets better as the size of instances increases. This indicates that the

ADP algorithms can be more beneficial for larger instances. The computation time

required for the ADP algorithms is much shorter than 1800 s.

However, the performance of the ADP algorithms relies on the choice of the

parameters. Especially, in contrast to other parameters whose effects are quite pre-

dictable, choosing the value of the weighting parameter ε may require several trials.

In spite of the additional effort for choosing appropriate parameters, considering its

advantages in terms of computation time, the ADP algorithm can be one viable

option for solving LSPs with sequence-dependent setups.

4.5 Summary

In this chapter, we devised an ADP algorithm that can alleviate the curse-of-

dimensionality problem of the traditional DP approaches. The proposed algorithm

uses the value function approximation procedure that estimates the value of states

using both the lower and upper bounds of them. In the first experiment, our ADP al-

gorithm shows some benefits over the MIP solver; that is, it can find a better solution

within a shorter computation time. In addition, in the second experiment, the ADP

algorithms show competitive performance in comparison with a state-of-the-art big

bucket model in the literature.
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Chapter 5

Conclusion

5.1 Summary and Contributions

In this dissertation, we proposed integer optimization and ADP approaches to solve

LSP with sequence-dependent setups. In Chapter 2, we addressed the single-period

substructures of the big bucket models of LSP with sequence-dependent setups

which, contrary to the problems with sequence-independent setups, have not been

investigated in previous research. We conducted polyhedral analysis on the single-

period substructures and derived new families of valid inequalities, that is, S-STAR

and U-STAR inequalities. The proposed inequalities are demonstrated to define facets

of the single-period substructures under some conditions. In addition, we presented

polynomial-time separation procedures of these inequalities which use the maximum-

flow algorithm. Then, we provided a new type of extended formulation which is

shown to provide the same lower bound as that of the original formulation with

all S-STAR added. The practical effectiveness of the newly proposed inequalities

and extended formulations was compared with the existing formulations by con-

ducting computational experiments. The results of computational experiments on

both single-period and multi-period instances demonstrated distinct advantages of

the newly proposed inequalities and formulations in tightening the LP relaxation
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bounds.

In Chapter 3, we provided new optimization models for LSP that can incorporate

the setup crossover and carryover, which are important extensions of the problem

encountered frequently in the real-world manufacturing processes. The proposed

models are called time-flow models which were constructed based on the results of

Chapter 2. After further tightening the proposed models using the well-known re-

formulation techniques, we compared the strength of the proposed models with the

existing models. The time-flow models were demonstrated to provide a much tighter

LP relaxation bound than that of the standard GLSP-based models. Furthermore,

we proposed an LP-based heuristic algorithm based on the time-flow model which

can provide feasible solutions quickly. The performances of the proposed models and

heuristic algorithm were tested through computational experiments using instances

from the real-world industry. From the computational experiments, it was demon-

strated that the proposed models have advantages compared with standard models

in terms of tightness and solvability.

In Chapter 4, we devised an ADP algorithm for LSP with sequence-dependent

setups to mitigate the so-called “curse-of-dimensionality” issue of the traditional

DP-based solution approaches, that is, the number of states can easily explode as

the problem dimension increases (Powell, 2007). It becomes hard to evaluate the

value of exponentially many states with the traditional DP recursion approaches.

To alleviate this drawback, our ADP algorithm adapts the value function approxi-

mation approach to approximate the value of the states. The proposed value function

approximation approach estimates the value of each state using both the lower and

upper bound values without recursive evaluation of future states. Therefore, the pro-
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posed ADP algorithm enjoys the advantages of both the tight lower bound values

obtained by the time-flow model and the upper bound value which can be obtained in

a short time by the LP-based heuristic algorithm proposed in Chapter 3. To examine

the performance of the proposed algorithm, we conducted two sets of computational

experiments using instances from the real-world industry and the previous litera-

ture, respectively. The results of the first experiment indicated that the proposed

ADP algorithm has clear benefits over the algorithm provided by the MIP solver,

that is, it can find a better solution within a shorter computation time. Moreover,

in the second experiment, the ADP algorithm showed competitive performance in

comparison with a state-of-the-art big bucket model in the literature.

5.2 Future Research Directions

The results of the dissertation offer several future research directions. The valid

inequalities proposed in Chapter 2 can be utilized to devise efficient solution algo-

rithms such as branch-and-cut algorithms for LSP with sequence-dependent setups.

Specifically, when used as cuts in the branch-and-cut algorithm, detailed algorith-

mic components such as the number of cuts added in one iteration, the frequency of

adding cuts during the tree search, and the order in which cuts are added, affect the

algorithm performance. Therefore, considering the algorithmic elements, additional

extensive computational experiments are required in future research. In addition,

the known inequalities provided in previous studies such as the (l, S)-inequality can

be used together with the proposed S-STAR or U-STAR inequalities. Analyzing the

interaction between these inequalities is also an interesting future research topic.

The polyhedral results can also be extended to other optimization problems
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such as TSP, CVRP, IRP, and their variants due to the similarity between the

single-period substructures and these problems. As we mentioned, the proposed

inequalities are closely related to the known results for those problems, for instance,

generalized multistar inequalities for CVRP and disjoint route inequalities for IRP.

Therefore, theoretical analysis in this dissertation can be utilized for those problems

to derive new results.

In addition, the proposed time-flow formulation can be adapted to matheuristics,

that is, heuristic algorithms based on mathematical programming methodologies,

to solve real-world problems. Other than the proposed LP-based fixing heuristic,

various matheuristics such as relax-and-fix and fix-and-optimize algorithms have

been popularly used to solve LSP with sequence-dependent setups that occurs in

various industries. The performance of these heuristics is significantly affected by

the tightness of the base formulation. At the same time, the formulation with a large

number of variables and constraints might be prohibitive because it may have to be

solved many times repeatedly. Considering this trade-off between the formulation

size and tightness, the proposed time-flow formulation can be utilized to improve

the performance of the various matheuristics which can be another possible future

research direction.

As another research direction, there are some possible improvements to the pro-

posed ADP algorithm. For instance, different schemes could be used to obtain primal

and dual bound values instead of the LPNF algorithm and LP relaxation, respec-

tively. In particular, as the size of the real-world problems to be solved has been

continually increasing, even the proposed ADP algorithm can take too much com-

putation time to evaluate the approximated value of states. In this case, the approx-
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imation procedure can be made faster by sacrificing the tightness of the bounds. In

fact, even whether they are valid bounds or not is unimportant when approximat-

ing the values. It is sufficient if the true value can be approximated appropriately.

Further, one can newly define the state in each stage, such as the inventory po-

sition of the items or the cumulative production amounts. With these states, the

value function can be approximated using various techniques such as piece-wise lin-

ear function fitting, regression, or machine-learning-based techniques. In addition,

the value function approximation scheme using lower and upper bounds can also be

adapted to solution frameworks other than the DP-based approaches. For instance,

during tree search algorithms one can choose nodes to be explored based on their

bound information.

Finally, the ADP algorithm can be extended for application to cases in which

uncertainty is present in data (e.g., demand or setup time). In fact, the ADP al-

gorithm has been popularly used as a tool for sequential decision making under

uncertainty where the uncertainty reveals over time. Then, decision makers should

choose action in each stage considering the revealed uncertainty until the stage and

then observe the realization of uncertain parameters of the next stage. In such cases,

the expected value of each state should be approximated, which can be achieved by

various methods such as sampling or scenario grouping. This is another interesting

direction for future research.
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Büyüktahtakın, I Esra, J Cole Smith & Joseph C Hartman (2018). “Partial objective

inequalities for the multi-item capacitated lot-sizing problem”. Computers &

Operations Research 91, pp. 132–144.

Camargo, V. C B, F. M B Toledo & B. Almada-Lobo (2012). “Three time-based scale

formulations for the two-stage lot sizing and scheduling in process industries”.

Journal of the Operational Research Society 63.11, pp. 1613–1630.
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Appendix A

Pattern-based Formulation in Chapter 2

We present a pattern-based formulation which is obtained by applying Dantzig-

Wolfe decomposition for the original LSP-SQ. In particular, we apply a period-wise

decomposition, that is, each pattern corresponds to a production plan of a single

period. Let Pt be the set of possible production schedules in period t. For each

pattern p ∈ Pt, the following associated parameters are defined:

• x̄pit: Production amount of item i in pattern p ∈ Pt.

• ȳpit = 1 if item i is produced in pattern p ∈ Pt.

• z̄pijt = 1 if setup from item i to j occurs in pattern p ∈ Pt.

• Ctp: Sum of the production and setup costs of pattern p ∈ Pt, corresponding

to (x̄p, ȳp, z̄p).

Let the pattern variable λtp = 1 if the pattern p ∈ Pt is selected in period t. The

master problem (MP) is represented as follows:

(MP) minimize
∑
i∈I

∑
t∈T

(hcitsit + bcitbit)

+
∑
t∈T

∑
p∈Pt

Ctpλtp (A.1a)
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subject to sit−1 − bit−1 +
∑
p∈Pt

x̄pitλtp

= dit + sit − bit ∀i ∈ I, t ∈ T (A.1b)∑
p∈Pt

z̄p0itλtp =
∑

p∈Pt+1

z̄pi0t+1λt+1p ∀i ∈ I, t ∈ T \ {T} (A.1c)

∑
p∈Pt

λtp = 1 ∀t ∈ T (A.1d)

sit, bit ≥ 0 ∀i ∈ I, t ∈ T (A.1e)

λtp ∈ {0, 1} ∀t ∈ T , p ∈ Pt (A.1f)

Demand constraints (2.1b) and setup carryover constraints (2.1e) of the original

LSP-SQ (2.1) are kept in (MP) as linking constraints (A.1b)–(A.1c). Other con-

straints are presented in subproblems. It is known that, as the pattern incorporates

all the decisions regarding a single period, the LP relaxation bound of (MP) is equiv-

alent to that which is obtained when the convex hull of the single-period solution

set X is known (Wolsey, 2020).

The LP relaxation of (MP) is solved by a column generation procedure which

recursively adds profitable columns by solving pricing subproblems until no one

is found (Desaulniers et al., 2006). Let µit, πit, and σt be the dual variables of

constraints (A.1b)–(A.1d), respectively. Then, the pricing subproblem for period

t which tries to find profitable patterns by minimizing the reduced cost can be

constructed as follows:

(SPt) minimize
∑
i∈I

(
(pcit − µit)xit − πitz0it + πit−1zi0t

)
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+
∑

(i,j)∈A
scijtzijt (A.2a)

subject to
∑
i∈I

xit +
∑

(i,j)∈A
stijtzijt ≤ Kt (A.2b)

xit ≤ uityit ∀i ∈ I (A.2c)∑
i∈I

z0it = 1 (A.2d)

∑
j∈I0

zjit =
∑
j∈I0

zijt = yit ∀i ∈ I (A.2e)

∑
i∈I

f0it =
∑
i∈I

yit (A.2f)

∑
j∈I0\{i}

fjit −
∑

j∈I0\{i}
fijt = yit ∀i ∈ I (A.2g)

fijt ≤ Izijt ∀(i, j) ∈ A0 (A.2h)

xit ≥ 0, yit ∈ {0, 1} ∀i ∈ I (A.2i)

fijt ≥ 0, zijt ∈ {0, 1} ∀(i, j) ∈ A0 (A.2j)

We use single-commodity flow formulation (A.2f)–(A.2h) to ensure the validity of

cycles. If the optimal objective value of (SPt) is smaller than σt, that is, if a pattern

with the negative reduced cost is found, the pattern corresponding to the optimal

solution of (SPt) is added to (MP). This procedure is repeated until no pattern is

generated by (SPt) for all t ∈ T .
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Appendix B

Detailed Test Results in Chapter 2

In Appendix B, we report the detailed computational test results in Chapter 2.
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Appendix C

Detailed Test Results in Chapter 3

In Appendix C, we report the detailed computational test results in Chapter 3.

Table C.1: Comparison of the LP bound of the models

Factors
LP Gap (%) Gap Closed (%)

ST TF ST-FL TF-FL TF ST-FL TF-FL

Dim

5× 10 74.6 63.1 70.6 62.2 16.6 5.2 17.7

5× 15 73.2 62.4 69.4 61.7 16.2 5.0 17.0

10× 10 91.6 84.4 65.9 63.8 8.0 27.9 30.3

10× 15 92.1 85.3 70.0 67.9 7.6 23.7 26.1

15× 15 97.2 93.2 65.4 63.9 4.1 32.7 34.2

Setup Time

S 77.4 70.3 51.1 47.3 11.0 29.0 35.7

M 86.1 77.9 69.8 65.2 10.7 17.4 23.8

L 93.7 84.8 83.9 79.1 9.8 10.2 15.6

Demand

(0.8, 1/3) 85.8 77.7 67.7 63.3 10.2 19.7 25.6

(0.8, 1/2) 95.2 90.8 67.0 65.7 4.9 29.0 30.4

(1, 1/3) 76.8 64.9 68.2 60.7 17.3 10.0 22.0

(1, 1/2) 85.2 77.4 70.1 65.9 9.7 16.8 22.1

Total 85.7 77.7 68.3 63.9 10.5 18.9 25.1
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Table C.2: Comparison of the computational performance of the models: Gap and
Opt

Factors
Gap (%) Opt (%)

ST TF ST-FL TF-FL ST TF ST-FL TF-FL

Dim

5× 10 1.0 0.1 2.4 0.0 96.7 98.3 83.3 100.0

5× 15 18.8 4.4 23.7 8.1 35.0 71.7 28.3 56.7

10× 10 31.5 25.5 35.7 35.6 11.7 18.3 10.0 5.0

10× 15 50.9 40.5 57.4 49.9 3.3 6.7 1.7 1.7

15× 15 61.1 53.6 64.4 58.9 0.0 0.0 0.0 0.0

Setup Time

S 18.4 11.4 21.1 17.2 41.0 54.0 39.0 28.0

M 35.3 25.4 39.8 31.5 24.0 32.0 18.0 21.0

L 44.3 37.7 49.3 42.8 23.0 31.0 17.0 29.0

Demand

(0.8, 1/3) 30.2 21.0 32.4 27.4 36.0 46.7 33.3 26.7

(0.8, 1/2) 33.8 24.6 36.4 29.9 28.0 38.7 21.3 52.0

(1, 1/3) 30.4 24.8 36.3 29.6 29.3 38.7 26.7 38.7

(1, 1/2) 36.3 28.9 41.8 35.1 24.0 32.0 17.3 40.0

Total 32.7 24.8 36.7 30.5 29.3 39.0 24.7 32.7
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Table C.3: Comparison of the computational performance of the models: #Node and
Time

Factors
# Node Time (s)

ST TF ST-FL TF-FL ST TF ST-FL TF-FL

Dim

5× 10 306301 9609 123924 7899 103.7 37.0 179.2 59.6

5× 15 814890 50286 150243 22390 450.4 305.1 504.3 391.4

10× 10 209644 5562 67427 2456 555.2 539.0 563.7 579.0

10× 15 113881 2186 12330 708 589.4 572.3 593.9 598.2

15× 15 19461 37 2480 5 600.0 600.0 600.0 600.0

Setup Time

S 212255 8141 52716 5549 396.3 340.6 420.1 411.1

M 327046 16186 81573 7321 483.9 440.5 510.6 464.7

L 339204 16281 79553 7204 498.9 450.9 533.9 461.2

Demand

(0.8, 1/3) 257561 9636 72453 6037 423.6 368.5 446.3 418.2

(0.8, 1/2) 298199 17258 69246 7078 475.1 429.7 510.3 476.1

(1, 1/3) 271736 9605 77482 5814 444.9 402.1 478.3 413.9

(1, 1/2) 343845 17645 65942 7836 495.2 442.5 518.0 474.4

Total 292835 13536 71281 6691 459.7 410.7 488.2 445.6
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Table C.4: Test results for the LPNF algorithm

γup δ
Relative Solution Value (%) Time (s)

ST TF ST-FL TF-FL ST TF ST-FL TF-FL

0.7

1 263.0 178.3 120.3 106.5 3.5 6.9 3.9 6.8

2 276.6 175.5 138.7 116.6 2.5 4.8 2.6 4.7

3 496.2 179.7 245.2 126.7 2.4 3.9 2.1 4.0

4 423.7 182.7 201.4 132.8 1.9 3.3 1.8 3.4

5 330.9 189.8 202.8 133.8 1.7 3.0 1.6 3.1

0.9

1 253.2 170.2 123.1 107.2 3.6 6.9 3.8 6.7

2 280.3 174.4 140.1 116.1 2.5 4.7 2.6 4.7

3 488.5 180.6 240.6 129.9 2.5 3.8 2.1 3.9

4 432.3 185.6 200.9 133.7 2.5 3.3 1.8 3.4

5 328.4 186.9 201.4 133.0 2.8 2.9 1.6 3.1

Average 357.3 180.4 181.5 123.6 2.6 4.4 2.4 4.4
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국문초록

공급망의생산계획단계에서의주요한두가지단기의사결정문제인 Lot-sizing문제와

Scheduling 문제가 통합된 문제인 Lot-sizing and scheduling problem (LSP)은 계획

대상기간 동안 주어진 복수의 제품에 대한 수요를 최소의 비용으로 만족시키기 위한

단위 기간 별 최적의 생산량 및 생산 순서를 결정한다. 공급망 내의 다양한 요소에 대한

통합적 의사 결정의 중요성이 커짐에 따라 LSP에 대한 관심 역시 산업계와 학계 모두

에서 지속적으로 증가하였다. 그러나 최근 수십 년에 걸친 활발한 연구에도 불구하고,

문제 자체가 내포하는 이론적 복잡성 및 실제 산업 환경과 제조 공정의 고도화/복잡화

등으로 인해 LSP를 해결하는 것은 여전히 어려운 문제로 남아있다. 특히 순서의존적

작업준비가 있는 경우 문제가 더욱 어려워진다는 것이 잘 알려져 있다.

본 논문에서는 순서의존적 작업준비가 있는 LSP를 해결하기 위한 정수 최적화 및

근사 동적 계획법 기반의 해법을 제안한다. 먼저, 이론적으로 강성 NP-hard에 속한다

는 사실이 잘 알려진 LSP의 근본 구조에 대한 이해를 높이기 위하여 단일 기간만을

고려하는 부분구조에 대해 다룬다.단일 기간 부분구조에 의해 정의되는다면체에 대한

이론적 분석을 통해 새로운 유효 부등식 군을 도출하고 해당 유효 부등식들이 극대면

(facet)을 정의할 조건에 대해 밝힌다. 또한, 도출된 유효 부등식들이 다항시간 내에 분

리 가능함을 보이고, 최대흐름문제를 활용한 다항시간 분리 알고리듬을 고안한다. 실험

결과를통해제안한유효부등식들이모형의선형계획하한강도를높이는데큰영향을

줌을 확인한다. 또한 해당 부등식들이 모두 추가된 모형과 이론적으로 동일한 하한을

제공하는 확장 수리모형(extended formulation)을 도출한다. 이를 활용하여, 실제 산업

에서발생하는 LSP에서종종고려하는주요한추가요소들을다룰수있는새로운수리

모형을제안하며해당모형이기존의모형에비해더욱강한선형계획하한을제공함을
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보인다. 이 모형을 바탕으로 빠른 시간 내에 가능해를 찾을 수 있는 선형계획 기반 휴리

스틱 알고리듬을 개발한다.마지막으로 해당 문제에 대한 근사 동적 계획법 알고리듬을

제안한다. 제안하는 알고리듬은 가치함수 근사 기법을 활용하며 특정 상태의 가치를

근사하기 위해 해당 상태에서의 근사함수의 상한 및 하한을 활용한다. 이 때, 좋은 상한

및 하한값을 구하기 위해 제안된 모형의 선형계획 완화문제와 선형계획 기반 휴리스틱

알고리듬을 사용한다. 실험 결과를 통해 제안한 알고리듬이 기존의 방법들과 비교하여

우수한 성능을 보임을 확인한다.

주요어: 생산계획 문제, 순서의존적 작업준비, 정수 최적화, 근사 동적 계획법, 유효 부

등식, 확장 수리모형

학번: 2018-32331
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