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Abstract 

 
Stock short positions in financial investment can be achieved by 

borrowing and selling stocks. Such activities involve fees including 

commissions and stock loan fees. Prediction of such fees is valuable 

in two ways; historical data enables rigorous back-testing of 

investment strategies, and predicting the future fees contributes to 

risk management and execution planning. The fees are highly 

positively skewed, so that the fees are formed around 0 under normal 

regime. Such stocks are referred to as ‘general collateral’. On the 

other hand, those with abnormally high loan fees are said to be 

‘special’. As a contribution to the stock short sales fee prediction, the 

thesis focuses on predicting such specialness via data mining and 

machine learning techniques. As a result, the models are proposed to 

predict the specialness, and performance baselines are produced by 

comparing well-established machine learning techniques. 

 

Keyword: Stock Short Sales, Stock Loan Fee, Machine Learning, Data 

Mining 
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Chapter 1 

 

Introduction 

 

 

1.1. Motivation 

 

A short sale in financial investment is one of the widely used 

methods to construct a short position, from which an investor profits 

when the value of the financial instrument falls. Increasing short 

interest indicates execution of bigger short investments, and the need 

for the market analysis is growing, especially data-driven 

approaches. Figure 1 pictures the daily average short interest values 

in dollars, computed from a proprietary database of short interest. 

Short selling activity involves borrowing stocks to sell, and the 

accompanying fees include not only commission fees but also stock 

borrowing fees. The stock short sales fee could affect the investment 

returns [4]. Identifying stock short sales fees is useful in several 

ways. 

First, historical short fees are crucial for accurate back-testing. 

The most important goal of back-testing is to reproduce a 

hypothetical investment environment as realistically as possible to 

evaluate investment strategies. Realistic back-testing leads to better 

investment decisions. Any kind of short selling strategy must account 

for short fees within back-testing, and sometimes the accuracy of 
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fees used can lead to such undesired ramifications [4, 18]. 

 

Figure 1: Average Short Interest Value 

Second, future short fees are crucial for constructing execution 

strategies. Fees affect future returns, and a good execution strategy 

is expected to take the fees under account during optimization 

process. If the investors would have known the short fees in advance, 

the quality of trade execution boosts. 

Either way, the prediction of the stock short fees is highly in need. 

In the case of historical short fees, the data is not widely available. 

Even if one could get access to it, the data does not cover a complete 

set of assets, and the time horizon is also relatively short, compared 

with the period conventionally used in back-testing. A model could 

provide fees for assets under uncovered periods. In the second case, 

future short fees should be predicted for risk management in 

executing short trades. This is when the prediction model for the 

short fee should be put into production. 

However, not many data-driven modeling approaches have been 

taken towards predicting stock short sales fees. In the next section, 
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we look at the prediction problem and define the scope of the thesis. 

 

 

1.2. Problem Formulation - Stock Short Fee Regimes 

 

When a stock loan occurs, the borrower posts collateral for the 

stock to be borrowed to the lender. Normally the value of the 

collateral is greater than the market value of the borrowed share. In 

the case of cash collateral, the lender pays the borrower the interest 

for the collateral. It is called the ‘rebate’. A stock short sales fee is 

determined implicitly by the rebate rate. Normally the stock loan fee 

is said to be the shortcoming of the rebate from the base rate, such 

as the Federal Funds rate [10]. 

In other cases where the collaterals are other assets (e.g. 

Treasury Bills), the stock loan fee is paid directly from the short 

seller to the lender. Figure 2 depicts the transactions associated with 

stock short sales. In the thesis, we refer to the stock loan fee as 

“stock short sales fee”, “short fee”, or just “fee”. 

 

Figure 2: Transactions of Stock Short Sales 

The short fees are highly positively skewed. Almost all the time 

the fees remain at relatively normal, low levels. This is because, in 

theory, there is an infinite number of stocks to be lent. Borrowed 

stocks can be listed for loan an infinite number of times [34]. 
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However, on some special occasions, the fees are abnormally high. 

In works of literature, the normal times are referred to as the 

“general collateral” (GC) regime, and the abnormal times are referred 

to as the “special” regime [10]. 

The behavior of the fees is different depending on which regime 

a stock is at. Hence, separate models would be employed to predict 

the stock loan fees under different circumstances. Before utilizing 

multiple models, a data point should be classified into either of the 

two regimes. Only then the corresponding model can be used for 

prediction. 

The thesis focuses on this preliminary problem – predicting 

which regime a data point falls under. Of course, such model serves 

as preliminary research, located at the earlier part of a bigger 

prediction pipeline, but it also has a value of its own. 

Abnormally high short fees imply a practically low possibility of 

borrowing stocks. Predicting if a stock will be “special” in the future 

brings high values to investors so that the investors can plan the 

execution. Furthermore, most practitioners tend not to even consider 

shorting assets whose short fees are not in their general collateral 

regime, unless they are professional short investors. This leads to a 

discussion of contributions. 
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1.3. Contributions 

 

The thesis takes data-driven modeling approaches to predict 

stock short sales fees, implementing machine learning techniques. 

The main contributions follow two-fold: 

 

1. We provide machine learning modeling approaches to predict 

the special regime of publicly traded firms. Models built can 

be used to classify if a company is under such regime. 

 

2. We provide baselines for stock short sales fees and a data-

driven understanding of the stock short sales market. Feature 

importance is analyzed, and the model can be used for future 

research on predicting short fees with greater accuracy. 

 

The thesis consists of six chapters. In Chapter 2, we review the 

literature related to the stock short sales market and modeling the 

stock markets. In Chapter 3 we introduce the framework proposed, 

including both the predictors and dependent variables. In Chapter 4 

we list the models used to construct baseline results. Chapter 5 

describes the experimental settings and reports the results with 

discussions. We conclude the thesis with further discussions in 

Chapter 6.  
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Chapter 2 

 

Literature Review 

 

 

2.1. Stock Short Sales Market 

 

The stock short sales market has been investigated in a wide 

range of literature [4, 10, 11, 12, 13, 18, 26, 32, 36, 37]. D’Avolio 

[10] focuses on the shorting activity and fees associated with it, 

whereas previous studies focused on the short interest (quantity) 

only. 1% is used as the threshold to tell if a stock is special – stocks 

whose short loan fees are over the 1% threshold are thought to be 

special. 

The author investigated how the fees are formed in equilibrium 

and provided the framework to assist that the fees move away from 

the general collateral regime when the investor opinions diverge. The 

risk of the borrower not being able to extend the stock loan contract 

under the same terms, called the recall risk, also builds up in the 

variance of the spread between optimistic non-lenders and 

participants of stock loan trades. 

Also, it is pointed out that firm size and institutional ownership 

effects are negatively correlated to the fees, but positively correlated 

with the proxies for differences of opinion. This includes high share 

turnover, high dispersion of analyst forecasts, high price multiples, 
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and low cash flows. The model successfully analyzed the factors 

correlating with the short fee and we develop the idea to focus more 

on the actual prediction. 

Building upon this, Beneish et. al. [4] tried to model if the stock 

is special or not, as a part of a two-stage model to identify 

determinants of lendable stock inventory. The lendable inventory 

gets affected by the borrowing costs and company characteristics, 

and the borrowing cost also gets affected by the company 

characteristics. Moreover, it is shown that short side returns of nine 

well-known market anomalies can be attributed to the special stocks, 

and when the short fees are taken into account while back-testing, 

several of these anomalous returns disappear. 

Duffie et. al. [12] suggested mathematical models for the asset 

value regarding the stock lending market, using market 

microstructures. It is concluded that if the stock is hard to ‘locate’ 

(succeed to agree on the terms of lending), the price of an asset rise 

initially, even higher than the prospect of all investors, and declines 

over time. This was explained by the fact that the short fee acts as 

the source of income for lenders, and the optimists reflect such 

expectations to the price. Duffie et. al. [12] backed D’Avolio [10] 

that the differences in investor consensus on stock valuation elevate 

the short fee, by validating such in the model proposed. 

The thesis has a similar interest to the mentioned literature, but 

the primary focus lies more on the prediction of the specialness itself, 

while possibly investigating the applicable use of machine learning 

techniques. We try to produce results that are closer to the 

practitioners instead of finding economic explanations of the 

phenomena. 

Other literature viewed short interest as one of the variables to 
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explain stock returns. Often regression analysis and investment 

simulations are accompanied [11, 13, 36, 37]. Especially, Kot [26] 

asserted that the shorting activity is positively related to arbitrage 

opportunities and negatively related to stock returns. 

Muravyev et. al. [32] viewed the uncertainty of short fees as the 

source of risk and calculated the risk premium by using option-

implied short fees. The implications from Engelberg et. al. [13] were 

that the short investors would pay risk premia to avoid the variance 

in short fees and recall risk. The term stock loan fee was estimated 

with the option-implied borrowing fee which reflects the risk 

premium. 

The option-implied fee is a reasonable estimator for the 

indicative short fee, but the purpose is not to predict but to derive a 

risk premium. In addition, it is also likely that option data would not 

be widely available for the stocks whose short fees are missing. 

This would be the case as they are likely to be the market 

underdogs, meaning either the market capitalizations are among the 

bottom percentiles, or/hence the trading volumes are dry. Hence the 

explicit mining model gets its significance. 

The abundance of studies viewed the stock loans from an 

economic perspective, assisting economic explanation of investor 

behavior or stock returns. The thesis asserts the value in explicitly 

predicting stock short sales fees. Accordingly, we contribute by 

taking a novel approach to machine learning techniques and providing 

experimental results. 
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2.2. Modelling the Stock Market 

 

There have been modeling approaches to predict the stock 

market, namely stock return and volatility. However, there is little 

literature that tried to predict stock short sales fees, especially using 

machine learning techniques. 

Traditionally financial literature has a huge interest in explaining 

stock returns. Fama & French [14] has proposed that there are 

characteristics of firms, called ‘factors’, which were said to explain 

the returns of the stock of the firms. Since then, a series of studies 

tried to expand their work to explain the variance of the residuals 

[15]. 

The volatility of stock returns is also highlighted among finance 

researchers. Volatility is especially important in risk management 

and portfolio construction. Stocks exhibit volatility clustering, which 

is the empirical characteristic that volatilities of stock returns are 

autocorrelated with themselves [30]. Such observations led to the 

use of statistical time series models such as GARCH (Generalized 

Autoregressive Conditional Heteroskedasticity) [5]. Hwang et. al. 

[25] have implemented GARCH-X which incorporates external 

factors while predicting the volatility. 

Such topics are also active in the machine learning community. 

Various models have been used to predict the return or volatility of 

stock returns. Company characteristics or technical indicators are 

normally used as predictors. 

Gu et. al. [20] extensively compared several machine learning 

methods to measure asset risk premia. 94 company characteristics 

are used, together with industry indicators. Gu et. al. [21] proposed 

an autoencoder-based model which can learn deep latent factors. 
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Non-linear conditional latent factor exposures are estimated, and 

economic discussions were made. 

Abe & Nakayama [1] used company characteristics as inputs and 

deep learning models to predict cross-sectional stock returns one 

month ahead. They used five points of time for 25 factors which adds 

up to 125 input features. Alonso-Monsalve et. al. [2] used 18 market 

technical indicators and deep learning models to predict the direction 

of crypto assets. Mohan et. al. [31] and Vargas et. al. [40] made use 

of alternative unstructured data is used as well as other commonly 

used company characteristics for stock market prediction. 

Christensen el. al. [8], Feng et. al. [15], and Yang et. al. [42] 

used company characteristics, macro indicators, and a range of 

unstructured data with machine learning models to predict stock 

returns volatility. The thesis makes use of the techniques established 

by the literature and expands them to the stock loan fee prediction. 
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2.3. Other Literature 

 

Other literature includes Nashikkar & Pedersen [33] which 

claims that the specialness of corporate bonds and equity are 

correlated, so that given that a firm’s stocks are special, its bonds 

are likely to be special and vice versa. As bad credit indices support 

bond specialness, we tried to include credit-related features to 

predict the specialness. 

Psillaki et. al. [35] produced an early-warning model for 

evaluating credit default risk. While proposing a novel efficiency 

measuring technique, hints are found on what credit-related features 

could be. They are grouped as firm size, profitability, liquidity, 

leverage, turnover, or tangible collateral. 

Especially, Moody’s KMV model is widely used to assess credit 

risk by estimating the default probability based on market data [39]. 

The thesis incorporates the features that appeared in the above 

literature to construct a concise but information-wise extensive set 

of features.  



 

 １２ 

 

 

 

Chapter 3 

 

Proposed Framework 

 

The thesis presents machine learning models as baselines for 

predicting the special regime. Since machine learning models are built 

upon data, we describe the predictor and target variables used to 

build models. Stock short sales fee data is used as the dependent 

variable, whereas company characteristics and asset characteristics 

comprise the input data. A total of 1.3M data points are used for the 

analysis. The overall framework is depicted in Figure 3. 

 

Figure 3: Proposed Framework  
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3.1. Stock Short Fee as Target Variable 

 

The dependent variable is a stock short fee, which is the fee the 

broker charges in return for serving stock short sales. The data is 

collected from the brokers through surveys and is averaged on a daily 

frequency. Among the universe, 70% of the stocks are covered on 

average. 

Figure 4 is a histogram of stock short fees. The skewness can 

be observed from the data. The plots have been separated at 100bps 

following D’Avolio [10], and the bottom plot contains the larger fees. 

The labels are distributed from the short fees. There is no agreed 

hard boundary for a stock being special. Pedersen [34] has 

empirically mentioned those with the top 10% of short fees are hard 

to borrow, Beneish et. al. [4] used scores obtained from a 

professional data vendor. Geczy et. al. [18] estimated the ‘GC rate’ 

(rebate rate of a GC stock) depending on the size of the loan and 

calculated the specialness of the rebate. 25bps of a buffer from the 

GC rate was given to tell if a stock is special. 

Following D’Avolio [10] and Muravyev et. al. [32] viewed 1% as 

the hard boundary of special stocks. As D’Avolio [10] pointed out, 

any stock with a rebate less than the GC rate can be considered a 

special stock, and the threshold is chosen to stratify the economically 

significant sense of “costliness”. Geczy et. al. [18] used around 

33bps to 40bps on average as the threshold, depending on the size of 

the loans. Moreover, the average short fee of the stocks falling into 

the boundary score used in Beneish et. al. [4] was over 270bps. This 

implies that the thresholds can be set in a malleable manner, as far 

as the rebates of the specials stay below the GC rate. 



 

 １４ 

 

 

Figure 4: Stock Short Sales Fee Distribution 

In the thesis, the base rate is used as the threshold for the 

‘specialness’, which indicates that the special stocks would be 

regarded to incur negative rebates. The stocks with negative rebates 

have also been of a focus. Similar to the stocks with loan fees 

exceeding 100bps, those with negative rebates are hard to borrow, 

often with a greater magnitude especially in rising interest rate 

regimes, and hence referred to as “very special” [10]. Such rare 

incidents have encouraged previous studies to focus on the 1%-rule 
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instead. However, the same argument also suggests taking the 1% 

convention with caution during the low-interest rate regime. Under 

such circumstances, special stocks defined conventionally exhibit 

higher specialness than those with negative rebates. In other words, 

if the base rate stays lower than 1%, the portion of specials gets 

smaller if we were to follow the 1%-rule. 

Other than the empirical reasons, thresholds involving the base 

rates can be considered from economic perspectives. The base rates 

tend to be positively correlated to the default risks of firms, and it 

would lift the loan fees of the special stocks. It can also be seen in 

the perspective of cost of capital, as the base rate provides the 

baseline for the risk-free nature of any investments or financing and 

the stock lending market should also be impacted by the money 

market. Hence the base rate can be seen as the threshold for the 

significance in the economic sense [10], point in time. 

This leads to the point from the practitioner’s view. Investments 

that give up more than the risk-free rate require extra care since it 

is guaranteed that the returns start below the risk-free level. This 

motivates additional research and risk assessment of such 

investments, and such prediction brings value before the execution. 

The Federal Funds rates are used as the proxy for the base rate. 

It is to be noted that during the period of the sample the rates do not 

diverge too far from the 100bps line, hence the label distributions 

under both circumstances remain close to each other. 

Other than the exceptional circumstances which require a more 

delicate approach, such as periods of zero or negative interest rates, 

we believe the thresholds set by the base rate can reflect economic 

conditions to a certain extent. Other techniques to set thresholds that 

provide better perspectives of the market and adjust for the time-
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variability of the label distribution at the same time, are to be 

investigated in future research. 

As a result, short fees which exceed the Federal Funds rates are 

labeled as special, and others are labeled as GC. The labels are then 

shifted a day so that the model gets to predict the abnormality of the 

fees the day after. The datasets are defined in a time-serial manner 

and the distribution of the label changes in the time dimension. We 

observed 7.4% of special instances in total. 

 

 

3.2. Company Characteristics as Predictor Variables 

 

Company Characteristics, sometimes called company 

fundamentals, are chosen according to two criteria. First, regarding 

the companies susceptible to credit risk are likely to go under the 

special regime [33], credit-related features are selected. As 

discussed in Psillaki et. al. [35] firm size measured in sales, 

profitability, liquidity, leverage, turnover, and tangible collateral 

features are calculated. Second, other company characteristics which 

are widely used in literature to represent a company are used. [1, 20] 

Table 1 includes the complete list of company characteristics used 

as input features. All features are calculated so that they are point-

in-time. 

Table 1: Company Characteristics 

Feature Description 

Asset Turnover Net sales over total assets 

Book to Price Book value over market 

capitalization 
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Table 1: Company Characteristics - Continued 

Feature Description 

Cash Flow Ratio Operating cash flow over 

current liabilities  

Cash Ratio Cash and equivalents over 

current liabilities 

Current Liabilities to Price Current liabilities over market 

capitalization 

Current Ratio 
Current assets over current 

liabilities 

Debt to Assets Total debt over total assets 

Debt to Price 
Total debt over market 

capitalization 

Earnings to Price 
EBITDA over market 

capitalization 

Equity Value to Liabilities 
Total market value of equity 

to total liabilities 

Interest Coverage Ratio EBIT over interest expenses 

Long-Term Debt to Assets 
Long-term debt over total 

assets 

Market Capitalization Market Capitalization 

Net Cash Flow to Price 
Net cash flow over Market 

capitalization 

Net Current Assets to Price 

(Current asset – current 

liabilities) over market 

capitalization 
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Table 1: Company Characteristics – Continued 

Feature Description 

Net Profit Margin Net profit over revenue 

Quick Ratio 

Liquid assets (cash & 

equivalents, accounts 

receivables) over current 

liabilities 

Receivables Turnover Ratio 
Net credit sales over average 

accounts receivable 

Return on Assets Net income over total assets 

Return on Equity 
Net income over 

shareholder’s equity 

Return on Invested Capital 
Net operating tax over 

invested capital 

Sales to Enterprise Value Sales over enterprise value 

Sales to Price 
Sales over market 

capitalization 

Share Turnover 

Average trade volume for the 

trailing month over the 

number of shares outstanding 

Total Liabilities to Assets Total liabilities to total assets 

Working Capital Accruals 
(Non-cash assets – current 

liabilities) over total assets 

Working Capital to Assets 
(Current assets – current 

liabilities) over total assets 

Working Capital 

Turnover Ratio 
Net sales over working capital 
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Table 1: Company Characteristics – Continued 

Feature Description 

YoY Total Debt 
Year-on-year growth in total 

debt 

YoY Asset Growth 
Year-on-year growth in total 

assets 

YoY Debt to Assets 
Year-on-year growth in debt 

to assets 

 

 

3.3. Asset Characteristics as Predictor Variables 

 

Asset Characteristics are mainly calculated from the information 

collected from the market. Basic market features as well as technical 

indicators, commonly used to predict short-term stock returns, are 

used as inputs. Volume and volatility-related features are expected 

to represent the interest of the market in the equity. Other technical 

indicators are expected to represent if general technical traders see 

if the equity is under/overvalued at the time. The features are 

described in Table 2. 

Furthermore, as Moody’s KMV credit model implies, the actual 

credit risk of a company, namely the distance to default, can be 

estimated using market features [41]. We expect the model can 

retrieve some hints of the market sentiment as well as fundamental 

implications from the market data. 

All features have been passed through z-score transformation 

before being fed into the model for a stable optimization process. A 

total of 43 features are used as inputs.  
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Table 2: Asset Characteristics 

Feature Description 

1 Month Price Momentum Price change in a month 

1 Year Return Volatility 
Volatility of stock returns for the 

trailing year 

3 Months Return Volatility 
Volatility of stock returns for the 

trailing 3 months 

5-Day Money Flow/Volume 

Return-weighted dollar volume 

over dollar volume for the 

trailing 5 days 

6 Months Return Volatility 
Volatility of stock returns for the 

trailing 6 months 

9MA MACD 9 days moving average of MACD 

Volume to Price 
Daily dollar volume over market 

capitalization 

MACD 
Moving average 

convergence/divergence [3] 

MACD cross-section 
Cross-sectional z score for 

MACD given the universe 

Relative Volume Momentum 

Average volume for the trailing 

10 days over average volume for 

the trailing 50 days 

RSI Relative strength index [41] 

Volume Daily trade volume 
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3.4. Universe 

 

We replicate Russell 3000 Index to build a universe comprising 

stocks of the 3000 largest companies being traded in the US markets 

at a given point in time. We then filter out those with no short fees 

available, which is around 30% of the data. 

Then some more are lost due to periodic calculations such as 

YoY’s, as some stocks just do not have enough history being included 

in the universe. For example, YoY features have values only after 

such stock has been in the index for a year. Others have been taken 

out if we simply do not have access to data for that stock at that date. 

This leaves an average of 1800 stocks at a given date. 

The fact that the short fees of only 70% of the stocks are 

available supports the need for the model. The strategies involving 

short positions over such equities cannot be rigorously evaluated. As 

the literature suggests, some well-known ‘market anomalies’ lose 

their abnormal returns when the short fees are fully taken into 

account [4]. 

Moreover, as mentioned, the loss of data during preprocessing 

would have little if not a negative impact on the modeling, as if there 

were more data available, the imbalance of the specials would be 

mitigated, helping the model learn the distributions. 
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Chapter 4 

 

Classification Models 

 

Here we introduce techniques used for prediction. 

 

4.1. Penalized Logistic Regression 

 

Penalized logistic regression adds a regularization term to the 

objective function of logistic regression fitting to reduce the variance 

of the model. Logistic Regression is a linear model which computes 

the log odds and uses a logistic function to translate the log odds into 

probability. Let’s say we have the input data 𝑥𝑖 ∈ ℝ𝑛+1 where 𝑛 is 

the number of features, containing 1 as its first element. Logistic 

Regression models class probability of a data point x, p(x) such that 

𝑝(𝑥)

1 − 𝑝(𝑥)
= 𝑒𝜃𝑇𝑥 

where 𝜃 is the parameter vector. The parameters are learned by 

solving the following optimization problem over the parameters. 

min ∑ (𝑦𝑖 −
1

1+𝑒−𝜃𝑇𝑥
) + 𝜆𝑅(𝜃)𝑖  

where 𝑅 is the regularization function. In the case of 𝑅 =∥∙∥1, we call 

the model LASSO [38], and in the case of 𝑅 =∥∙∥2, we call the model 

Ridge logistic regression [23]. 𝜆  is the hyperparameter which 

determines the strength of regularization. In the thesis, a validation 

dataset is used to determine the hyperparameter. L-BFGS solver 
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[43] is used to solve the optimization problem. 

 

 

4.2. Decision Tree 
 

Decision tree [6] finds decision rules depending on the 

information gain in a greedy way. Typically, a decision rule consists 

of a feature and decision boundary, and the process of finding the 

decision rule occurs recursively. The branches grow as the decision 

rule adds on. There are many ways of measuring information gain, 

and in this thesis, we used the Gini index, defined as follows: 

𝐺 =  ∑ 𝑝(𝑖)(1 − 𝑝(𝑖))

𝑖

 

where 𝑝(𝑖) is the empirical frequency of class 𝑖. The boundaries are 

chosen in a way that the information gain before and after the 

potential split is the greatest. The depth of the tree is a 

hyperparameter to decide. The thesis uses 5 as the maximum depth 

of a tree, and the ratio of classes in the leaf nodes is used as a 

prediction probability for plotting the ROC curve. 

 

 

4.3. Random Forest 

 

Random forest [7] is an ensemble method that uses multiple 

decision tree models to arrive at the final decision. During training, 

randomly sampled subsets of data are used to construct multiple 

weak trees which vote for the result. This is the basic idea of 

bootstrap aggregating (bagging), which results in lower model 

variance. Following Breiman [7], and Zhu et. al. [44], the importance 
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of each input feature can be calculated to enable some interpretation 

of the model and help understand the behavior of the dataset. Several 

sub-trees to make, or the maximum depth of each tree are 

hyperparameters. We use 1000 trees with a maximum depth of 10. 

 

 

4.4. Adaptive Boosting 

 

Adaptive boosting [17] is also an ensemble method that uses 

subsequent weak learners. The weights of previously incorrectly 

predicted data points are adjusted, so the subsequent model gets 

rewarded for predicting such data points. It can be used with any kind 

of base estimator. The family of model series then is combined to 

return the final output of the boosted model. The thesis used a 

decision tree with a maximum depth of 5 as the base estimator, with 

1000 sequential learners. 

 

 

4.5. Support Vector Machine 

 

Support vector machine [9] for classification finds the 

hyperplane that separates data points into classes. Especially, the 

hyperplane between two classes is found by maximizing the average 

distance from the hyperplane to the support vectors of each class. 

Sometimes kernel functions can be used to transform the input space 

to a higher dimension to enable non-linear separations. The thesis 

used a linear SVM classifier. 
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4.6. Quadratic Discriminant Analysis 

 

Quadratic discriminant analysis [22] uses a quadratic decision 

surface to separate data into classes. Assuming the data points are 

normally distributed given class, the decision boundary of QDA can 

be shown to be quadratic. The likelihood ratio is used to tell if the 

data falls into a category, and some threshold is used to make a 

classification decision. 

 

 

4.7. Gaussian Naïve Bayes 
 

Gaussian naïve bayes [22] also assumes that the data is normally 

distributed given the class. On top of that, the independence 

assumption is added. That is, given class information the features are 

independent, which leaves the same technique as QDA but with a 

diagonal covariance matrix. The class probability is then calculated 

using the Bayes Rule. 

 

 

4.8. Artificial Neural Network 
 

Artificial neural network [27] consists of a module called the 

perceptron, which is a linear operation followed by a non-linear 

activation function, which normally has significant values over some 

threshold. Such perceptrons build a layer of the neural network, and 

multiple layers can be used to make compositions. Normally artificial 

neural networks have more than 3 layers, namely the input layer, 

hidden layers, and the output layer. 
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The output of the output layer then passes through the softmax 

function so that the output gets translated into the probabilities of the 

class represented by each node of the output layer. The softmax 

values are compared with the label to produce the objective function 

to optimize. The backpropagation algorithm is widely used so that the 

parameters of the perceptrons are fitted. 

The thesis used a 43-dimensional input layer, one 43-

dimensional hidden layer, and a 2-dimensional output layer. AdamW 

[29] optimizing algorithm is used to find the parameters. The learning 

rate is determined to be 1e-4. Early stopping is applied so that if the 

cost does not enhance for 5 epochs the training stops, and the model 

with the highest validation score up to the point of stop is selected. 

 

 

4.9. Isolation Forest 
 

Isolation forest [28] detects anomalies by isolating anomalies 

from the normal points. By randomly selecting a feature and randomly 

determining a value to be used for splits, partitions are made within 

the data space. The split value is bounded by the minimum and 

maximum values of the selected feature. Such split takes place 

recursively until a partition contains only one value or data points 

inside a partition have the same values. Data points which require 

less partitioning are more likely to be anomalies. 

As the number of splits conducted to isolate a data point is 

equivalent to the length of the path from the root to the leaf node of 

a tree representing a recursive partitioning, the average length over 

random trees is used to compute the anomaly score. 
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Chapter 5 

 

Experimental Results 

 

 

5.1. Experimental Settings 

 

Experiments are conducted in two settings. Setup 1 simply 

divides train and test datasets from the entire dataset. The train set 

consists of data from 2017-01-01 to 2019-01-01. The test set 

follows from 2019-01-01 to 2019-12-31. 

Setup 2 follows rolling-window settings, where multiple 

train/test set pairs are constructed in a rolling window sense. The 

experiment is designed to construct a train set of 6 months and a test 

set of the following 3 months of data. The size of the window is fixed 

to 1 month. As a result, 30 pairs of datasets are used to build and 

evaluate models. 

In Figure 5, both experiment settings are shown. The green batch 

represents the train dataset, and the blue batch represents the test 

datasets. The hyperparameters are found using the validation dataset 

built from the train dataset. 
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Figure 5: Dataset Preparation 

 

As we are dealing with an imbalanced problem, we use another 

evaluation metric than accuracy. Normally recall or precision are 

used, but one class is not particularly more important than the other 

class, we consider an average classification performance, the AUROC. 

One other reason why this is considered the right metric is that there 

are a series of models built. We then conclude that the model with 

the highest average AUROC exhibits the best fit with the problem. 

We formulate the modeling problems as follows. Let’s say 

𝐷𝑡
𝑟𝑎𝑤 = {(𝑋𝑡

𝑡𝑟𝑎𝑖𝑛, 𝑠𝑡
𝑡𝑟𝑎𝑖𝑛), (𝑋𝑡

𝑡𝑒𝑠𝑡, 𝑠𝑡
𝑡𝑒𝑠𝑡)}  is the train-test set pair of 

input data and adjusted short rates, time 𝑡 denoting the index of the 

test dataset. The label is distributed such that 

 

𝑦
𝑡
𝑡𝑟𝑎𝑖𝑛 = {

1,   𝑠𝑡
𝑡𝑟𝑎𝑖𝑛 ≥ 𝛼

0,   𝑠𝑡
𝑡𝑟𝑎𝑖𝑛 < 𝛼

 and 𝑦
𝑡
𝑡𝑒𝑠𝑡 = {

1,   𝑠𝑡
𝑡𝑒𝑠𝑡 ≥ 𝛼

0,   𝑠𝑡
𝑡𝑒𝑠𝑡 < 𝛼

, 

 

where 𝛼 =  𝐹𝑒𝑑𝐹𝑢𝑛𝑑𝑠𝑅𝑎𝑡𝑒𝑡. 

The goal is to learn a function 𝑓: ℝ43 → {0,1}, with series of 

datasets: {{(𝑋1
𝑡𝑟𝑎𝑖𝑛, 𝑠1

𝑡𝑟𝑎𝑖𝑛), (𝑋1
𝑡𝑒𝑠𝑡, 𝑠1

𝑡𝑒𝑠𝑡)}, … ,  

{(𝑋𝑡
𝑡𝑟𝑎𝑖𝑛, 𝑠𝑡

𝑡𝑟𝑎𝑖𝑛), (𝑋𝑡
𝑡𝑒𝑠𝑡, 𝑠𝑡

𝑡𝑒𝑠𝑡)} … , {(𝑋𝑡
𝑡𝑟𝑎𝑖𝑛 , 𝑠𝑡

𝑡𝑟𝑎𝑖𝑛), (𝑋𝑡
𝑡𝑒𝑠𝑡, 𝑠𝑡

𝑡𝑒𝑠𝑡)}}. 
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5.2. Results 

 

We report test evaluation results of the aforementioned models 

under both settings. Classification accuracies are calculated with a 

decision threshold of 0.5. 

 

Table 3: Experiment Results (Setup 1) 

Evaluation Metrics of Short Fees Prediction under Setup 1 

 

Models Test AUROC Test Acc. 

AdaBoost 0.928 0.958 

ANN 0.920 0.939 

Decision Tree 0.889 0.832 

Logistic Regression 

(LASSO) 
0.909 0.796 

Logistic Regression 

(Ridge) 
0.909 0.796 

Naïve Bayes 0.854 0.889 

QDA 0.789 0.838 

Random Forest 0.939 0.917 

SVM 0.906 0.810 

 

Random forest showed the best test AUROC among the models 

tested. Although the AdaBoost model exhibited higher test accuracy, 

we take into account that average classification performance 

(ARUOC) is our prime performance indicator. It is inspiring that 

majority of baseline models achieved AUROC greater than 0.9, 

serving as strong baselines. 
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Table 4: Experiment Results (Setup 2) 

Evaluation Metrics of Short Fees Prediction under Setup 2 

 

Models Test AUROC Test Acc. 

AdaBoost 0.911 0.945 

ANN 0.909 0.932 

Decision Tree 0.869 0.826 

Logistic Regression 

(Ridge) 
0.886 0.828 

Logistic Regression 

(LASSO) 
0.887 0.827 

Naïve Bayes 0.841 0.898 

QDA 0.830 0.900 

Random Forest 0.943 0.935 

SVM 0.883 0.838 

 

Table 2 shows the same indicators as Table 1 but under setup 2. 

Unlike setup 1, multiple models are built during the training process, 

and the figures reported are the average metrics over the time 

horizon. 

Random Forest again gained the highest AUROC of all, and the 

highest accuracy again goes to the AdaBoost method. The average 

AUROC of all baseline models sustained over 0.8, which again forms 

solid baselines. 

For both setups, Naïve Bayes and QDA are the worst models to 

use, and it is thought to be due to the assumptions made by the 

models, that the data is normally distributed given the label. As we 

did not perform any kind of transformation to fit normality, the shape 

of the data might act as a hindrance to effective training. Of course, 



 

 ３１ 

the discrepancy exists, nevertheless. 

We observed better models under setup 1 compared to setup 2, 

in general. It is suspected that the covariate shift in the data is not 

strong enough, as if there were an extreme distribution shift over the 

time horizon, models are hard to be built. This is due to the fact that 

the consistency in data distribution between the train and test sets is 

widely assumed. However, such results can justify that the effect of 

covariate shift is weaker than the advantage models gain from 

outnumbered training data. 

 

 

5.3. Discussions 

 

The results give few implications to discuss. First of all, we plot 

the evaluation metrics over time under setup 2. Figure 6 shows 

AUROC over time, and Figure 7 plots the test accuracies over time. 

The x-axis is the time index of the start of each test dataset. 

Decision Tree and QDA model seem to show high variances of 

AUROC over time, but those with higher performance metrics, such 

as Random Forest or ANN models show smaller variances. 

Also, in general, models tend to perform better for more recent 

data. This could be considered in conjunction with the distribution of 

the labels. From the assumptions, the thresholds have increased 

during the period of the sample (as rates rise) and have induced 

severer imbalance. The result is counterintuitive - it is known that 

models are hard to build under a greater degree of imbalance for 

general problems. 
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Figure 6: Test AUROC of Baseline Models 

 

This leads to the discussion of the anomalous behavior of the 

special stocks, and there could be a possibility that the earlier 

datasets might have included general collateral stocks in the special 

class. The need for further studies on finding better measurement of 

specialness rises, although the thesis already took a step further from 

the previous studies. Figure 8 shows the ROC curves of all baseline 

models, for reference. 
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Figure 7: Test Accuracy of Baseline Models 

 
Figure 8: ROC Curves of Baseline Models 
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Next, we look at the feature importance of AdaBoost and Random 

Forest models built under setup 2. The feature importances are 

averaged over time. In Figure 7, the AdaBoost model saw share 

turnover and market capitalization as the most important features, 

which agrees with both the short fee studies [10] and credit studies 

[35]. Also, high-ranking features involve asset turnover, receivables 

turnover, working capital to total assets, working capital accruals, and 

cash ratio, which are used to evaluate how efficiently a company uses 

its assets. These have been pointed out in Psillaki et. al. [35] as 

factors for credit risks. 

In Figure 8, feature importances from Random Forest are shown. 

Random Forest used market volatility and market capitalization 

factors to make decisions. The market capitalization factor agrees 

with the literature, and the volatility is not a surprise, as volatility 

captures much information about an asset, and related features are 

directly used in the KMV model to estimate the default probability. 

This also applies to AdaBoost results, that 1 Year Return Volatility 

can be found as one of the most important features. 

For both models, we can again observe that the technical 

indicators (eg. RSI, MACD, and their variants) are far less important 

than other features and are not considered as useful when making 

decisions. It is interesting that volatility features and other technical 

indicators contain different information, and different contributions 

are made to the prediction. 
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5.4. Anomaly Detection 

 

The last thing to note is an ad-hoc experiment conducted. We 

have used Isolation Forest [28] technique, which is widely used for 

anomaly detection. The experiment settings are quite similar to 

experiments discussed above, but there is a crucial difference. As 

Isolation Forest is trained in an unsupervised fashion, each train 

dataset is used without labels. 

Under the anomaly detection settings, we assume that the special 

stocks are ‘anomalies’. Isolation Forest can be trained with or without 

the anomalies, but there is no agreed caveat. In the thesis, all data 

points in a train dataset including the anomalies are used to train the 

anomaly detection model. 

 

Figure 11: ROC Curve of Isolation Forest Model 



 

 ３８ 

The test data points are then fed into the model so that the model 

predicts if the data point is an anomaly or not. The output lies 

between -1 and 1, the anomaly being closer to -1. The output space 

has been linearly transformed between 0 and 1. We use this as the 

predicted probability of being special, to compute the AUROC. 

The resulting metric shows an AUROC of 0.829 under setup 1 

and 0.817 under setup 2. Although the AUROC is lower than any of 

the supervised models, we could see some predictive power of 

abnormal short fees. Interestingly, the anomalies determined only by 

looking at the input variables tend to fall under the special regime. 

Figure 9 shows the ROC (Receiver Operating Characteristics) curve 

for Isolation Forest under setup 1, and Figure 10 is the test AUROC 

obtained under setup 2. 

 

Figure 12: Test AUROC of Isolation Forest Model 
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Chapter 6 

 

Conclusion 

 

 

 

Understanding the stock short sales fee has big implications for 

both practitioners and academia. Under the general collateral regime, 

short sales fees show fairly consistent behavior, remaining on low 

levels near 0. However, the special regime occurs, where the short 

fee skyrockets, potentially threatening investment returns. 

For practitioners, it is valuable to predict how the short fee is 

going to behave shortly and how it behaved in the past. They are 

used for trade execution planning and strategy evaluations through 

back-testing. Especially, we formulated the problem so that the 

prediction has bigger implications for the practitioners compared with 

the previous conventions in academia. 

The thesis provides preliminary research for data-driven stock 

short sales fee prediction. This is because we assumed that different 

modeling approaches are to be taken for different regimes. 

Furthermore, viewing prediction of the specialness as a sole problem, 

we provided baselines for such prediction problem. Predicting the 

special regime itself has values, as it gives the practitioners a guide 

to screening a universe for building short investments.  

Also, limited literature is available that investigated the behaviors 

of the short fees using data mining/machine learning techniques. The 

thesis provides initiatives for further studies on data-driven short 

fee analysis. 

There is room for improvement as far as the threshold of the 

specialness threshold is concerned. Although we have not used a 
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fixed boundary for it, more research is to be done on how to infer the 

proper measure of specialness from either the stock market 

conditions or stock loan market microstructure, more realistic 

problems can be defined. 

For one example, if the broker’s Hard-To-Borrow (HTB) 

catalogue is available, the problem can also be formulated in a way to 

predict the hard-to-borrow stocks on the list, which are not 

available for immediate loans. 

There can be two streams of future research stepping on this 

thesis. First, as the model serves as a preliminary stage of stock 

short fee prediction, the model suggested can be used as the indicator 

for which subsequent model to use. Different features and models are 

expected to be used to solve regression problems to predict the short 

fees, under each regime. 

Furthermore, to solve the problem defined in the thesis better, 

state-of-the-art machine learning techniques could be tried, 

although studies are saying that deep learning and tree-based 

ensemble methods do not show significant performance differences 

when dealing with tabular data [19, 24]. One could formulate the input 

data in another format, for example, a sequence, to apply various 

modeling techniques from different fields. In addition, the market-

related features could be built more delicately from Moody’s KMV 

model, namely the distance to default. 
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Abstract 

  

주식 공매도를 위한 주식 대여는 비용이 발생한다. 해당 비용을 

예측하는 것은 두 가지 측면에서 투자자에게 유리하다. 먼저, 과거 

공매도 비용 데이터가 정확하다면 투자 전략 백테스팅의 정확도 향상을 

기대할 수 있다. 또한, 미래의 공매도 데이터를 예측한다면 투자 위험 

관리와 전략 실행 최적화의 재료가 된다. 주식 대여 비용의 분포는 아주 

치우쳐져 있다. (양의 왜도) 일반적으로 0에 가까운 값을 가지는데 이를 

문헌에선 일반 담보 (General Collateral)의 상태에 있다고 한다. 하지만 

공매도 수요가 높은 상황에서는 공매도 비용이 크게 증가하는 것을 

관찰할 수 있는데 이를 특이한 (Special) 상태에 있다고 한다. 본 

연구는 주식 공매도 비용 예측에 공헌하고자 특이 주식과 일반 담보 

주식을 분류하는 모델을 개발한다. 특히, 머신러닝 및 데이터 마이닝 

방법을 사용한다. 분류 모델을 제안하는 것과 더불어 다양한 기법을 

적용함으로써 해당 문제의 베이스라인을 제공한다. 
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