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Abstract

The extended bounce-averaged kinetic model for trapped

electron mode instability

Yong Jik Kim

Department of Energy Systems Engineering

The Graduate School

Seoul National University

The bounce-kinetic model based on the modern nonlinear bounce-kinetic

theory has been developed and used for simulations previously. This thesis re-

ports on an extension of the bounce-kinetic model including more accurate

treatment of barely trapped particles, and its implementation in the gKPSP

gyrokinetic code. The Hamiltonian of trapped particles as a function of adia-

batic invariants in bounce-gyrocenter coordinates is derived and the result is

verified against the known formula for precession drift. In the gKPSP code,

using the extended model leads to more accurate gyrokinetic simulations of

Collisionless Trapped Electron Mode (CTEM). In particular, the model shows

reduced growth rate in linear simulations at low magnetic shear and lower heat

flux and radial electric field in nonlinear simulations of reversed shear plasma.

Possible applications of the extended bounce-kinetic model are discussed.

Keywords: fusion plasma, tokamak, turbulence, gyrokinetic simulation, bounce-

kinetics, trapped electron mode

Student Number: 2018-26018
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Chapter 1

Introduction

1.1 Motivation

Tokamak plasma is one of the most promising candidates for making fusion

energy a reality. Significant efforts have been made so far, including decades of

research and various experimental projects, notably the international project

ITER, but many challenges remain. Aside from practical difficulties such as en-

gineering limitations and economic feasibility, the underlying physics including

turbulent transport still has outstanding questions. In tokamak plasma, particle

and heat transport are determined by microturbulence which has time scales

comparable to that of drift waves, and their characteristic time is much slower

than magnetohydrodynamic (MHD) instabilities which limit equilibrium pro-

files. To describe fusion plasma microturbulence, wave-particle interaction in

the kinetic equations has to be properly treated. Reduced kinetic description

based on the nonlinear gyrokinetic formulation [1] and its modern extension
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keeping the conservation properties intact [2,3] have provided theoretical foun-

dations for studying turbulence. It also led to significant advances in nonlin-

ear gyrokinetic simulations [4,5]. Reduction in the dimensionality of the phase

space via decoupling and elimination of the gyrophase dependence for the tur-

bulence phenomena of interest with the characteristic frequency ω ≪ Ωci where

Ωci is the ion cyclotron frequency, has been crucial in saving computational

time. Numerical gyrokinetic studies have calculated quantitative estimates of

the turbulent transport by calculating the linear growth rate and quasilinear

flux, often in local δf gyrokinetic simulations which calculate only the local evo-

lution of the perturbed distribution function. However, limitations of the local

δf approach have become clear as recent studies have shown that non-diffusive

transport processes such as turbulence spreading [6–8] and avalanche-like trans-

port [9–11], and structures resulting from nonlinear interaction of turbulence

such as the E×B staircase [12–14] and transport barriers have a significant im-

pact on transport physics. It is now believed that nonlinear dynamics can have

a substantial role in transport, and those require numerical studies of long-time

evolution in a closed self-consistent system. To that end, global full-f gyroki-

netic codes using flux-driven sources have been developed, but with increased

computing power requirements.

1.2 The bounce-kinetic model

Modern nonlinear bounce-kinetics addresses fusion plasma turbulence with its

frequency ω much lower than the bounce frequency ωb, i.e. ω ≪ ωb [15, 16]. In

this formalism, Lie perturbed transforms are used to remove gyrophase depen-

dency and bounce-phase dependency in phase-space Lagrangian. The bounce-

kinetic model provides several advantages in numerical simulations with ki-
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netic electron responses. In the model, the kinetic responses from fast electron

streaming motions are explicitly removed, which allows us to employ a much

longer time step size compared to the typical time steps for simulations based

on the conventional drift-kinetic electron model. Also, the model employs the

bounce-average operations both in evaluating the source for the Poisson equa-

tion and in interpolating electrostatic fields to evolve the kinetic distribution.

For particle-in-cell simulations, the bounce-average can reduce noises originat-

ing from the discreteness of particles. The bounce-kinetic model has been ap-

plied in various codes to study the TEM instability [17–19] achieving promising

results comparable to codes using fully kinetic electrons while reducing com-

puting cost significantly. In addition, it provided a very efficient method to

extend the Rosenbluth-Hinton residual zonal flow calculation for various appli-

cations [16,20–22].

Regarding the applications to simulations, a bounce-averaged model has

been developed for studies on trapped ion modes (TIM) for which both passing

ions and passing electrons are assumed to follow Boltzmann response, using a

Vlasov code [23]. It has been further extended to address the TIM-driven trans-

port, in particular roles of neoclassical polarization density [15,24], zonal flows,

and the magnetic shear [25]. Idomura et al. have developed the transit aver-

aged reduced kinetic model in a simple geometry [26], and have demonstrated

the feasibility of the bounce-kinetic model for TEM studies in tokamak geom-

etry [17]. Later, a bounce-kinetic model has been applied to a linear studies of

TIM and TEM [27]. More recently, gKPSP gyrokinetic simulations have used

the bounce-kinetic electrons extensively [18,19] and the details of the model are

described in Ref. 19.
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1.3 Outline of this dissertation

In this thesis, I provide a bounce-kinetic model that is valid for both barely

trapped particles and deeply trapped particles. It is an improvement upon pre-

vious bounce-kinetic implementations [18, 19] which use expressions valid only

in deeply trapped limit. I derive the “extended model” using modern bounce-

kinetics, and then use it for gKPSP gyrokinetic simulations of Collisonless

Trapped Electron Mode (CTEM). The new model correctly computes reduced

growth rate in weak magnetic shear plasmas due to barely trapped particles’

reversed precession, hence provides a more realistic result.

The remainder of this thesis is organized as follows. In Chap. 2, the theoret-

ical model is presented after brief reviews of the modern nonlinear gyrokinetics

and bounce-kinetics. Here, formulas for the equilibrium Hamiltonian in deeply

trapped and barely trapped limits are derived. The model is verified against

the existing theory [28] by deriving precession drift. In Chap. 3, I introduce

the implementation of the extended model on the gKPSP gyrokinetic code and

the results from linear and nonlinear CTEM simulations. I compare the results

from the old bounce-kinetics model and the extended model to highlight the

advantages of the extended model. In Chap. 4, I discuss possible applications

and future works of the extended model. In Chap. 5, I summarize the findings

and conclude the thesis.
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Chapter 2

Theoretical model

2.1 Modern nonlinear gyrokinetics

In this section, I introduce the modern nonlinear gyrokinetics which set the basis

of the modern bounce-kinetics. Nonlinear gyrokinetics provides a framework

that can describe the kinetic effects of fully ionized plasmas in a strong magnetic

field, such as tokamak plasmas. One of the central motives of gyrokinetics is to

reduce dimensionality while conserving relevant physics. In tokamak plasmas,

turbulent transport dictates energy confinement, and its characteristic time is

much longer than that of MHD instability or Larmor gyration. Thus, plasma

particles’ fast gyro-motion can be ignored, as long as one properly treats the

spatial effects of gyro-motion, often referred to as the finite Larmor radius

(FLR) effect. This is not a trivial task as both non-perturbed physical quantities

such as the background magnetic field and the perturbation fields vary with

gyro-phase.
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The earliest derivation of nonlinear gyrokinetics by Frieman and Chen [1]

did not explicitly satisfy conservation laws such as conservation of total energy

and momentum. This can lead to inaccurate results in long-time studies, such

as non-physical dissipation in the numerical analysis. In the modern nonlin-

ear gyrokinetics first introduced by Hahm [2], a more sophisticated approach

involving Lie perturbation theory [29, 30] is used. In the modern formalism,

Lagrangian 1-form Γ in non-canonical particle coordinate (x,v) transforms to

gyrocenter (gy) coordinates which eliminate gyrophase dependency in phase

space Lagrangian 1-form Γ to the second order of ϵϕ = eϕ/T , the small param-

eter of perturbation scales. Mathematically, it is written as Γ = T−1
gy Γ + dS.

Here, T−1
gy is the push-forward operator and dS is the gauge term. By requiring

that the first and the second order of Γ is independent of gyro-phase, all the

terms in T−1
gy and S can be explicitly obtained up to the second order. From

here, one now has all the ingredients of the self-consistent gyrokinetic system,

gyrokinetic Vlasov and Poisson-Ampere equations which have been widely used

in numerical and theoretical studies.

2.2 Outline of bounce-kinetic theory

Further reduction of dimensionality is possible if one considers time scale much

slower than trapped particle bounce frequency so that ω ≪ ωb. This leads to

bounce-kinetic equations which now have two ignorable quantities, gyro-phase

and bounce-phase. Based on the modern gyrokinetic framework summarized in

Sec. 2.1, Fong and Hahm [15] have derived bounce-kinetic Vlasov and Poisson

equations. They start their derivation from gy coordinates, where gyrocenter

position is now a function of (α, β, s) where α ≡ φ− qθ is an angle coordinate

along the binormal direction, φ is the toroidal angle, θ is the poloidal angle,
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and q is the safety factor. β ≡ ψ(r) is the poloidal flux, s ≡ qR0θ is the

distance along the magnetic field, and R0 is the major radius. Next, gyrocenter

coordinates transform to bounce-guiding center (bgc) coordinates where bounce

angle dependency is eliminated in phase-space Lagrangian at the lowest order

of ϵϕ. Further transformation eliminates bounce angle dependency in phase-

space Lagrangian to the second order in ϵϕ, and finally one is left with bounce-

gyrocenter (bgy) coordinates. Assuming electrostatic perturbations, Lagrangian

1-form Γ and the Hamiltonian H in bgy coordinates are written as [15]

Γ =
e

c
+ JbdΨ−H0(α, β, Jb)dt− eϕeff(α, β, Jb)dt

=
e

c
+ JbdΨ−Hdt,

H = H0 + δH = H0(α, β, Jb) + eϕeff(α, β, Jb).

(2.1)

where Ψ is the bounce phase,H0 is the equilibrium Hamiltonian, δH = H−H0 is

the perturbed Hamiltonian, and ϕeff is the effective potential in bgy coordinates.

Note that from Eq. 2.1 and onwards, α and β correspond to the binormal angle

coordinate and the poloidal flux written in bgy coordinates respectively. The

Hamilton’s equations in bgy coordinates are given as follows.

dβ

dt
=
c

e

∂δH

∂α
dα

dt
= −c

e

∂H0

∂β
− c

e

∂δH

∂β

dJ

dt
= −∂H

∂Ψ
= 0

dΨ

dt
=
∂H

∂J

(2.2)

Pitch angle κ is defined as

κ2 ≡
v2∥0

2ϵv2⊥0

(2.3)

where v∥0 and v⊥0 are parallel and perpendicular velocities at the outmost

mid-plane of the particle orbit, respectively. In a high aspect ratio tokamak
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(ϵ = a/R0 ≪ 1), bounce frequency ωb and bounce action Jb ≡
∮
v∥dl are given

as [16]

Jb =
8

π
qR0

√
ϵmµB0[E(κ)− (1− κ2)K(κ)]

ωb =
1

qR0

√
ϵµB0

m

π

2K(κ)

(2.4)

where K(κ) and E(κ) are complete elliptic integrals of the first kind and the

second kind, respectively, defined as follows.

E(κ) ≡
∫ π/2

0

√
1− κ2 sin2 θ

K(κ) ≡
∫ π/2

0

dθ√
1− κ2 sin2 θ

(2.5)

The definition of bounce frequency, in terms of action-angle invariant Jb is

ωb =
∂H0

∂Jb
(2.6)

and therefore

H0 =

∫
ωbdJb. (2.7)

For the remainder of this thesis, I refer to the equilibrium Hamiltonian sim-

ply “Hamiltonian”. To date, deeply trapped approximation (Jb ∼ 0) has been

widely used to express Hamiltonian as H0 ≃ H0,init + ωbJb, where H0,init is an

initial value of Hamiltonian in the Jb = 0 limit, for bounce-kinetics applica-

tions [17–19].

In this work, I focus on trapped electron dynamics and deal with Hamilto-

nian of trapped particles. To solve the equations of motion shown in Eq. 2.2, one

has to know the exact expression of H0 in terms of α, β, µ, and Jb. However, in

the literature, such a formula is not readily available except for deeply trapped

particles, while Eq. 2.4 is well-known. In this thesis, I derive such expression

for barely trapped particles and use it for the extended bounce-kinetic model.
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The remainder of this chapter is organized as follows. In Sec. 2.3, I intro-

duce a systematic way to derive the Hamiltonian in terms of bounce action Jb,

and present a model that can accurately describe the dynamics of both deeply

trapped and barely trapped particles. This is done by writing Hamilton’s equa-

tion in deeply trapped and barely trapped limits and making a connection for-

mula. In Sec. 2.4, I verify the model by calculating precession frequency from

the equations of motion and compare it with the well-known results [28].

2.3 Hamiltonian in bounce-gyrocenter coordinates

With flux coordinates and magnetic moment fixed, the Taylor expansion of the

Hamiltonian in bounce action Jb around Jb = 0 is written as

H0(Jb) = H0(0) +
∂H0

∂Jb

∣∣∣∣
Jb=0

Jb +
1

2

∂2H0

∂J2
b

∣∣∣∣
Jb=0

J2
b + · · · . (2.8)

For deeply trapped particles, this method is valid and the coefficients in Eq. 2.8

are derived from parametric derivatives in which Jb and ωb are expressed in

terms of κ as given in Eq. 2.4. Approximations of complete elliptic integrals at

κ≪ 1 are as follows [16]:

E(κ) =
π

2

(
1−

∞∑
n=1

(
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

)2 κ2n

2n− 1

)
=
π

2

(
1− κ2

4
− 3

64
κ4 + · · ·

) (2.9)

K(κ) =
π

2

(
1 +

∞∑
n=1

(
1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

)2

κ2n
)

=
π

2

(
1 +

κ2

4
+

9

64
κ4 + · · ·

) (2.10)
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The expansions of Jb and ωb are then given as [31]

Jb ≃ 2qR0

√
mϵµB0

(
κ2 +

κ4

8
+ · · ·

)
,

ωb ≃
1

qR0

√
ϵµB0

m

(
1− κ2

4
− · · ·

)
.

(2.11)

Using these expressions, coefficients of the Hamiltonian are given as

∂H0

∂Jb

∣∣∣∣
Jb=0

= ωb|κ=0 =
1

qR0

√
ϵµB0

m
,

∂2H0

∂J2
b

∣∣∣∣
Jb=0

=
∂ωb(κ)/∂κ

∂Jb(κ)/∂κ

∣∣∣∣
Jb=0

=
1

2m(qR0)2

−1

2
κ− · · ·

2κ+
1

2
κ3 + · · ·

∣∣∣∣
κ=0

= − 1

8m(qR0)2
.

(2.12)

Then, the Hamiltonian is

hdeeply(µ, Jb) = µBom +

√
ϵµB0

qR0
√
m
Jb −

1

16m(qR0)2
J2
b . (2.13)

Here, Bom is the magnetic field at the outer most mid-plane of the particle

orbit. Note that in the Hamiltonian, ϵ and q have explicit dependencies on β,

while Jb is an independent variable.

A different approach should be taken for barely trapped particles. For them,

Jb can not assumed to be small when compared to µBom, and ∂ωb/∂Jb diverges

at κ = 1 so Taylor expansion of H0 around κ = 1 is not valid. For barely

trapped particles, I start from asymptotic formulas of Jb and ωb, and write Jb

as a function of ωb. Then, I integrate ωb as given in Eq. 2.7. For κ′ ≪ 1, where

κ′2 = 1− κ2, complete elliptic integrals can be approximated as:

E(κ) ≃ 1 +
κ′2

2

(
log

4

κ′
− 1

2

)
, (2.14)

K(κ) ≃ log
4

κ′

(
1 +

κ′2

4

)
− κ′2

24
. (2.15)
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Therefore, asymptotic formulas of Jb and ωb are

Jb ≃
8

π
qR0

√
mµϵB0

(
1− κ′2

4
− κ′2

2
log

4

κ′

)
≃ Jb∗

(
1− κ′2

4
log

16

κ′2

) (2.16)

ωb ≃
π

2qR0

√
ϵµB0

m

1

log
4

κ′

=
ωb∗

log
16

κ′2
(2.17)

where Jb∗ =
8

π
qR0
√
mµϵB0 and ωb∗ =

π

qR0

√
ϵµB0

m
. This leads to

ωb = −ωb∗
1

Wm

(
1

4

(
Jb
Jb∗
− 1

))
(2.18)

where Wm(x) denotes the second branch of Lambert function which is defined

by W (x)eW (x) ≡ x for W (x) < −1 (Fig. 2.1. [32]. Then, H0 in terms of Jb is

given as:

hbarely(µ, Jb) = µBim + 4ωb∗Jb∗

∫ (1/4)(1−Jb/Jb∗)

0

dt

Wm(−t)
(2.19)

Here, Bim is the magnetic field at the innermost mid-plane of the particle orbit.

Note that the first term is the particle energy of the marginally trapped particle

at the limit κ = 1. Also, note that the second term has a minus sign.

One can derive Hamiltonian and respective Hamilton’s equations for barely

passing (κ′2 = κ2 − 1 ≪ 1) and strongly passing particles (κ2 ≫ 1) using the

same procedures from this section. In other words, the same methodology can

be applied to expand Jt and ωt, then obtain H0 as a function of Jt. Here, t

stands for “transit”.
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Figure 2.1 Two branches of the Lambert function Wm(x) in blue and Wp(x) in

red [32].
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2.4 Precession drift

In tokamak plasmas, background magnetic field is inhomogeneous and this leads

to bounce motion of particles as I discussed in the Sec. 2.3. Inhomogenous

magnetic field results in a drift motion which direction is binormal to both

radial direction and magnetic field line direction. This is called precession drift,

and in this thesis the precession drift corresponds to a drift motion along α

coordinate. Precession drift’s analytic expression is well known since Kadomtsev

and Pogutse’s paper from 1967 [28] and can be derived explicitly using orbit

averaging [33]. Here, I derive precession drift in the context of modern bounce-

kinetic formalism, i.e., directly from differentiation of Hamiltonian with respect

to the second adiabatic invariant Jb. This can be done with our result from

Eqs. 2.13 and 2.19 in deeply trapped and barely trapped limits. In this section,

I verify the results from the extended model by comparing it with Kadomtsev

and Pogutse’s formula.

According to Kadomtsev and Pogutse, precession drift frequency ⟨ωdj⟩b of

a species j is expressed as follows:

⟨ωdj⟩b = ω∗j
LnjE0

R0Tj
G(ŝ, κ) = −kθ

cTj
ZjeBLnj

LnjE0

R0Tj
G(ŝ, κ)

= − ckθE0

ZjeBR0
G(ŝ, κ)

where G(ŝ, κ) = 2
E(κ)

K(κ)
− 1 + 4ŝ

(
E(κ)

K(κ)
+ κ2 − 1

)
.

(2.20)

For electrons Eq. 2.20 can be simplified as ⟨ωde⟩b = ωdeG(ŝ, κ) with ωde =
ckθE0

eBR0
. Here, E0 is the particle energy. The G function is plotted in Fig. 2.2.

The sign of G function indicates precession direction of trapped particles. For

most positive magnetic shear values, G is positive for all κ. For weak magnetic

shear ŝ ≃ 0, precession reversal of barely trapped particles (κ ≃ 1) starts to

13
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Figure 2.2 G(ŝ, κ) function [28] plotted in terms of κ for different magnetic

shear ŝ values. Sign of function G determines precession direction.

occur. For negative magnetic shear (for instance, ŝ = −1) as shown in Fig. 2.2,

precession reversal happens at wide range of κ values, thus its impact can be

significant. This ŝ dependence of G is important for TEM as it is destabilized by

the precession of trapped electrons in the electron diamagnetic drift direction.

Therefore, TEM drive gets weaker as magnetic shear decreases, especially when

barely trapped particle fraction is high.

Now, I derive the precession drift from the extended model. First, I consider

deeply trapped particles (κ≪ 1). Using the approximations for elliptic integrals

given in Eqs. 2.14 and 2.15, I write

E(κ)

K(κ)
≃

1− κ2

4
− 3

64
κ4

1 +
κ2

4
+

9

64
κ4

= 1− 1

2
κ2 − 1

16
κ4 +O(κ6). (2.21)
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Then, G(ŝ, κ) is approximated as

G(ŝ, κ) ≃ 1− κ2 − 1

8
κ4 + ŝ

(
2κ2 − κ4

4

)
. (2.22)

Partial derivative of Hamiltonian for deeply trapped particles hdeeply (Eq. 2.13)

in radial direction is

∂hdeeply
∂r

= −µB0

R0
+

1

2

1

qR2
0

√
µB0

mϵ
Jb −

√
ϵµB0

qrR0
√
m
ŝJb +

ŝ

8mq2R2
0r
J2
b

≃ µB0

R0

[
−1 + κ2 +

κ4

8
− ŝ

(
2κ2 − κ4

4

)]
= −µB0

R0
Gdeeply.

(2.23)

Here, I used Jb ≃ 2qR0
√
mϵµB0(κ

2 + κ4/8) +O(κ6).

The derivation of Hamiltonian for barely trapped particles follows similar

steps. For barely trapped particles with κ′2 ≡ 1− κ2 ≪ 1, I write

E(κ)

K(κ)
≃

1 +
κ′2

2

(
log

4

κ′
− 1

2

)
log

4

κ′

≃ κ′2

2
+

1

log
4

κ′

(2.24)

and

G(ŝ, κ) ≃ −1 + κ′
2
+

2

log
4

κ′

+ 4ŝ

(
−κ

′2

2
+

1

log
4

κ′

)
(2.25)

with expansions up to O(κ′2) and O(log−1 κ′). To obtain precession drift from

Hamiltonian, I use the following identity:∫
dx

Wm(−x)
= E1(−Wm(−x)) + x

Wm(−x)
+ C, (2.26)

where E1(x) ≡
∫∞
x u−1e−udu is the exponential integral function, and C is some

constant. The integral term in Hamiltonian (Eq. 2.19) is now simplified as∫ (1/4)(1−Jb/Jb∗)

0

dt

Wm(−t)
= E1

(
2 log

4

κ′

)
− κ′2

16
. (2.27)
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Then, the radial partial derivative of the Hamiltonian for barely trapped par-

ticles hbarely (Eq. 2.19) is

∂hbarely
∂r

=
µB0

R0
+

32µB0

R0

(
E1

(
2 log

4

κ′

)
− κ′2

16

)
− 2µB0

R0
(2 + 4ŝ)

(
1

2 log
4

κ′

− κ′2

4

)

=− µB0

R0
Gbarely.

(2.28)

Using asymptotic formula E1(x) ≃ xe−x, Eq. 2.28 up to O(κ′2) and O(log−1 κ′)

is written as

∂hbarely
∂r

≃µB0

R0
+
µB0

R0

(
κ′2

log
4

κ′

− 2κ′
2
)

− 2µB0

R0
(2 + 4ŝ)

(
1

2 log
4

κ′

− κ′2

4

)

≃µB0

R0

[
1− κ′2 − 2

log
4

κ′

− ŝ
(

4

log
4

κ′

− 2κ′
2
)]
.

(2.29)

From Hamilton’s equations Eqs. 2.23 and 2.29, the precession drift is ob-

tained as follows.

dα

dt
≃


−c
e

µB0

RR0Bp

[
1− κ2 − κ4

8
+ ŝ

(
2κ2 − κ4

4

)]
if κ≪ 1

−c
e

µB0

RR0Bp

[
−1 + κ′2 +

2

log
4

κ′

+ ŝ

(
4

log
4

κ′

− 2κ′2
)]

if κ′ ≪ 1

(2.30)

By comparing Eqs. 2.22, 2.25 and 2.30, it’s evident that precession drift cal-

culated from the extended model is consistent with Kadomtsev and Pogutse’s

formula as ⟨ωde⟩b = ⟨vde ·k⊥⟩b ≃ −kθ
r

q

dα

dt
≃ ωdeG(ŝ, κ) in both limits. It should

be noted that Eq. 2.29 is a more crude approximation than Eq. 2.28, and it is
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only mentioned for comparison with Eq. 2.25. I will be using Eq. 2.28, i.e.,

Gbarely to assess the accuracy of the extended model. In Fig. 2.3, ω/ωde against

G(ŝ, κ) is plotted using Eq. 2.30. In the figure, the extended model’s approxi-

mations fit G(ŝ, κ) function very well in the respective limits. Furthermore, a

connection formula can be constructed as Gcon (Eq. 2.31) which approximates

G(ŝ, κ) from Kadomtsev and Pogutse well for all κ in 0 ≤ κ ≤ 1 and in wide

range of ŝ in −1 < ŝ < 1, as shown in Fig. 2.3.

Gcon =

[
1−

(
Jb
Jb∗

)2]
Gdeeply +

(
Jb
Jb∗

)2

Gbarely (2.31)

Here, Jb is given by Eq. 2.4 with no approximations used for E(κ) and K(κ).
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Figure 2.3 Precession drift obtained using deeply trapped approximation

(Gdeeply) in blue line, using barely trapped approximation in green line (Gbarely)

and using connection formula in red line (Gcon) as given in Eqs. 2.23, 2.28, and

2.31. Three results are compared with G(ŝ, κ) from Kadomtsev and Pogutse [28]

in black dotted line, at magnetic shear ŝ = −1, 0, 0.5 and 1.
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Chapter 3

Extended bounce-kinetic model
for trapped electron mode
simulations

In this chapter, I implement the extended model in the gKPSP code and apply it

in TEM studies, in particular for weak magnetic shear. I describe the numerical

model of the bounce-kinetics used in gKPSP in Sec. 3.1, then discuss the linear

simulation results in Sec. 3.2 and the nonlinear simulation results in Sec. 3.3.

3.1 Implementation of bounce-kinetic model in gy-

rokinetic simulation

gKPSP is a global δf gyrokinetic particle-in-cell (PIC) code [34] which has

been used to study various topics of turbulent transport physics [18, 35, 36].

The implementation of the bounce-kinetic model for ion temperature gradient-

trapped electron mode (ITG-TEM) turbulence in the gKPSP code can be found
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in Kwon et al. [19]. In its numerical scheme, ions follow the usual nonlinear gy-

rokinetic equations [2] with Coulomb collisions. Trapped electrons and passing

electrons are handled separately. Equation 3.1 is used to describe the evolution

of trapped electron distribution function fTe ,

∂

∂t
fP, T
e +

dX

dt
· ∂
∂X

fP, T
e +

dv∥

dt

∂

∂v∥
fP, T
e = CL(f

P, T
e ) + Se + SP, T . (3.1)

Here, SP is the flux of electrons from being trapped to passing, and ST is the

opposite. X is the guiding center position and v∥ is the parallel velocity of

the guiding center. Ss denotes the external source term required to maintain

equilibrium profiles for electrons. The bounce-averaged distribution function

Fe ≡ ⟨fTe ⟩b, which represents the distribution function of bounce-gyrocenters,

follows bounce-kinetic equations as follows.

∂Fe

∂t
+
dβ

dt

∂Fe

∂β
+
dα

dt

∂Fe

∂α
= ⟨CL⟩b + ⟨Se⟩b + ⟨ST ⟩b, (3.2)

dβ

dt
= c

∂⟨ϕ⟩b
∂α

dα

dt
= −c

e

∂H0

∂β
− c∂⟨ϕ⟩b

∂β
.

(3.3)

Here, CL is the Lorentz collision operator used to model Coulomb collisions

of electrons against ions, with CL(f
P, T
e ) =

νe
2

∂

∂λ
(1 − λ2)

∂

∂λ
fP, T
e , and ϕ is

the perturbed electric potential. Note that Eq. 3.3 is an example of Eq. 2.2

with δH = −e⟨ϕ⟩b. Distribution function for species s is decomposed as fs =

fs0 + δfs. Here, fs0 is a Maxwellian distribution function, and the evolution of

the perturbed distribution function δfs is obtained from(
∂

∂t
+
dz

dt
· ∂
∂z

)
δfs = −

dz

dt

∣∣∣∣
1

· ∂
∂z
fs0 + Cs + Ss. (3.4)

where Cs is the collision term for species s, z represents phase-space variables

for each species, and dz/dt|1 stands for the terms in the equations of motion
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for particles containing the electric potential ϕ. This scheme uses drift-kinetic

model in Eq. 3.1 for passing electrons. In gKPSP, the passing electrons passively

evolve according to the perturbed electric potential, which is self-consistently

determined by the ion and trapped electron distribution functions. Without a

careful treatment, this approach could lead to a violation of the ambipolar con-

dition. Ref. 37 has demonstrated that such problem can be avoided by using the

hybrid kinetic electron model. In bounce-kinetic model implemented in gKPSP,

to ensure ambipolarity, the passing electron motions are accurately followed in

a sub-cycling way according to Eq. 3.1, except their weights to determine the

perturbed distribution δfPe is set as adiabatic i.e., δfPe = (ϕ − ⟨ϕ⟩Z)fe0/Te.

Here, ⟨ϕ⟩Z denotes the zonal component of the electrostatic potential. In other

words, Eq. 3.1 for fPe is used to describe the positions and velocities of the

simulation marker particles for passing electrons, while the δfPe weights of the

particles are set as adiabatic. This feature of gKPSP is demonstrated in Fig. 6-

(a) of Ref. 19. The evolution of the passing electrons is required to account for

the particle fluxes crossing the trapped-passing boundaries and evaluate SP, T

(see Ref. 19 for details).

As mentioned, the Hamiltonian used in Ref. 19 is H0 = µBom+

√
ϵµB0

qR0
√
me

Jb,

where me is the electron mass, which is valid only for deeply trapped electrons.

Despite its limitation, it has been used for all trapped electrons in Ref. 19,

both deeply trapped and barely trapped. Improving upon this old model, I now

use the extended model as given by Eqs. 2.13 and 2.19. Checking if a trapped

particle is deeply trapped or barely trapped whenever simulation solves equation

of motion of a particle, can lead to numerical issues such as ambiguity in setting

deeply trapped and barely trapped boundary, and discontinuity in precession

drift as a function of κ. For this reason, in the extended model, I construct

a connection formula of the derivative of Hamiltonian in a similar fashion as
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Eq. 2.31 as follows:

∂H0

∂ψ
≃

[
1−

(
Jb
Jb∗

)2]∂hdeeply
∂ψ

+

(
Jb
Jb∗

)2∂hbarely
∂ψ

. (3.5)

Here, as in Eq. 2.31, Jb is given by Eq. 2.4 with no approximations used for

E(κ) and K(κ). Since the connection formula for Gcon (Eq. 2.31) achieved high

accuracy for all κ as shown in Fig. 2.3, the connection formula for
∂H0

∂ψ
from

Eq. 3.5 also accurately describe all trapped particles in the extended bounce-

kinetic model of gKPSP simulation.

3.2 Linear gyrokinetic simulation results

I first apply the extended model using so-called “Cyclone” parameters [38] for

ITG-TEM linear simulations. I assume collisionless plasma with minor and

major radius a = 0.48 m and R0 = 1.3 m, respectively. Other parameters are

set as R0/Lne = R0/Lni = 2.22, R0/LT i = 6.92, R0/LTe = 6.92, ŝ = 0.8,

and q = 1.4. Here, Lns = −
(

1

ns

dns
dr

)−1

and LTs = −
(

1

Ts

dTs
dr

)−1

are density

gradient length and temperature gradient length of species s, respectively. I set

the time step size as ∆t = 0.05 R0/vT i and the number of marker particles

for trapped electrons as Np = 6000. Simulation results of the linear growth

rate and real frequency of the instability, compared with the results from the

Gyrokinetic Toroidal δf 3D (GT3D) particle code and Gyrokinetic Toroidal

Code (GTC) [39], are given in Fig. 3.1.

As shown in Fig. 3.1, all four simulations—GT3D, GTC, gKPSP using the

old model, and gKPSP using the extended model—show a similar trend in real

frequency and in growth rate. For real frequency ωr, the plus sign corresponds

to electron diamagnetic direction and the minus sign corresponds to ion diamag-

netic direction. For all four cases, real frequency increases linearly with negative
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Figure 3.1 Benchmark of the gKPSP code using the extended model for real

frequency ωr and growth rate γ result compared to those from GT3D, GTC,

and gKPSP using the old model [19,39].
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sign below some kθρi threshold, and after that the sign is reversed to positive.

This means that at a long wavelength, ITG is the dominant instability mode

and at a short wavelength TEM is dominant. The transition value of kθρi for

gKPSP, at which ITG ←→ TEM transition occurs, was higher than those for

GT3D and GTC, and the extended model’s threshold was lower than the old

model. This result suggests that gKPSP using the extended model yields closer

results to those from GT3D and GTC which use fully kinetic electrons, com-

pared to the old model. For the growth rate, maximum values at ITG-unstable

kθρi region were similar across four results with γ = 0.15 ∼ 0.2. In gKPSP,

the extended model shows decrease in the growth rate for the ITG-dominant

region, whereas the difference is marginal for TEM-dominant cases.

To further investigate the characteristics of CTEM instability using the

extended model, I have run more linear simulations using the same Cyclone

parameters as Fig. 3.1 except for a = 0.666 m, R0 = 1.86 m, and R0/LT i = 2.22

to look at TEM-dominant cases. The extended model shows a considerable

difference when magnetic shear ŝ is varied across 0 because deeply trapped

approximation fails to capture the precession reversal exist at weak shear. This

is demonstrated in Fig. 3.2. kθ scan result (Fig. 3.3) with ŝ = 0.1 shows that

TEM instability is dominant under these parameters. It also shows that the

extended model has reduced growth rate compared to the old model, especially

at higher kθ.

Next, I perform a magnetic shear scan in ŝ = −0.4 ∼ 1.5 at r = 0.5a. The

results of real frequency ωr and growth rate γ are shown in Figs. 3.4 and 3.5. As

shown in Fig. 3.4, real frequency ωr shows only little difference between the two

models. The extended model shows reduction in growth rate in ŝ = 0 ∼ 1.2, by

up to 20 %. The linear increase in ωr(ŝ) in both models and a slight concave
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Figure 3.5 Magnetic shear ŝ scan of the growth rate γ in reversed shear plasma

using the extended model (solid line) and using the old model (dashed line).

downwards shape of γ(ŝ) in ŝ = −0.4 ∼ 0.5 for the extended model matches

well with CTEM calculations using kinetic electrons [40]. The reduction of the

growth rate in the extended model for ŝ = 0 ∼ 1.2 can be attributed to the old

model’s poor representation of precession reversal for barely trapped particles,

as shown in Fig. 3.2.

At negative magnetic shear of ŝ = −0.4 ∼ 0, the stabilizing effect of barely

trapped electrons is insignificant. This rather counter-intuitive result can be

understood as follows. From the bounce-averaged gyrokinetic theory, the TEM

growth rate is determined from the resonance term between the precession

drift and the electron diamagnetic drift [41]. The precession-reversed electrons

do not resonance with the TEM, which has an opposite sign of phase velocity.

When magnetic shear is strongly negative, most trapped particles except for
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the deeply trapped ones have fast reversed precession, and the old model using

deeply trapped approximation is sufficiently accurate to describe particles with

the positive precession direction. Thus, despite the two models with drastically

different precession frequency for barely trapped particles, the TEM instability

is quite insensitive to such difference for strongly negative shear and shows no

difference in γ.

Figure 3.6 shows mode structures of TEM turbulence in the old model and

in the extended model. The two models share a very similar mode structure, but

eigenmode shapes are a bit different. The mode amplitude maximum position

for the extended model is around the center with r/a = 0.5 and R/R0 = 1.17,

where electron temperature gradient is maximum. In contrast, the amplitude

maximum is located further outside for the old model, at around R/R0 = 1.20.

This result implies that in reversed shear plasmas, stabilizing influence due to

barely trapped particles’ reversed precession is as important as that of electron

temperature gradient around qmin. Hence, the extended model can lead to a

more realistic description of TEM instability. In nonlinear simulations where

nonlinear mode interaction is significant and their interaction persists in the

time scale as long as confinement time, improvements provided by the extended

model may lead to a more accurate description of TEM turbulence properties

such as thermal transport.

3.3 Nonlinear gyrokinetic simulation results

In this section, I analyze nonlinear simulation results using the extended model

and the old model. In Sec. 3.2, the linear simulations showed a clear trend of

reduction in growth rate under weak magnetic shear (0 < ŝ < 1.2), albeit by

a small amount. This may suggest that nonlinear simulation results between
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Figure 3.6 TEM electric potential ϕ mode structure in the old model (top) and

in the extended model (below) from the linear simulations. Here, R and Z are

horizontal position and vertical position normalized by R0, respectively.
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two models would be similar aside from minor difference in growth rate. To

check this conjecture, I study nonlinear simulations of two CTEM unstable

plasmas which are suspected to show the most clear difference based on the

linear simulation results. The first one is the reversed shear (RS) plasma. As

argued in Sec. 2.4, the difference in precession motion between the two models

is the most significant when ŝ is near 0. Reversed shear plasmas which typically

have −0.5 < ŝ < 0.5 in core plasma meet such criteria. However, the results

from Sec. 3.2 suggest that magnetic shear values of 0 < ŝ < 1.2 show larger

difference of growth rate than weakly negative magnetic shear. Hence, the other

plasma uses magnetic shear profile relevant for hybrid scenario plasmas, which

has 0 < ŝ < 1 in the core plasma [42, 43], and will be referred to as the hybrid

scenario (HS) plasma. Aside from safety factor q and magnetic shear ŝ, all the

other parameters such as temperature gradients are identical to the ones used

in magnetic shear scan of linear growth rate, from Sec. 3.2, with their initial

profiles shown in Fig. 3.7. Density and temperature profiles are exponential in

0.3a < r < 0.7a, i.e., their gradient lengths are constant. The safety factor

and magnetic shear profile used for two plasmas in nonlinear simulations are

shown in Figs. 3.8 and 3.9, respectively. In the nonlinear simulations, I use 40

toroidal modes n = 0 ∼ 156 which correspond to kθρi = 0 ∼ 2.4, so that

the most unstable mode and the higher modes are included. Time step size is

∆t = 0.02R0/vT i, radial grid number is Nx = 200, and the number of marker

particles per mode is 1920 for ions and 384 for electrons.

Electric potential plots from the reversed shear and the hybrid scenario plas-

mas using the extended model after nonlinear saturation are shown in Figs. 3.10

and 3.11. In nonlinear gyrokinetic simulation of microinstabilities such as ITG

and TEM, exponential growth of instability eventually reach saturation due

to mode interaction. For the reversed shear plasma, eigenfunction maxima is
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Figure 3.9 Magnetic shear ŝ profiles used in nonlinear simulations for reversed

shear (RS) plasma in solid line and hybrid scenario (HS) plasma in dashed line.

around r = 0.6a and for the hybrid scenario, r = 0.4a. When compared with

magnetic shear profiles in Fig. 3.9, both points roughly correspond to where

ŝ ∼ 0.4 in which linear growth rate has its maximum value for both models

(Fig. 3.5). In terms of the bounce-kinetic models used, there were no signifi-

cant difference in mode structure between the two models. Time evolution of

potential at mode structure maximas from reversed shear plasma and hybrid

scenario plasma are shown in Figs. 3.12 and 3.13, respectively. In these figures,

the growth rate differences are ∼ 11% for reversed shear plasma and ∼ 14%

for hybrid scenario plasma. These quantities are roughly in line with the linear

simulations, where the extended model yields up to ∼ 20% of reduced growth

rate.

Heat flux results show a more clear difference between the two models. The

spatiotemporal evolution of heat flux in the reversed shear plasma is shown
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Figure 3.10 Mode structure of the perturbed electric potential from the reversed

shear plasma at t = 150R0/vT i when nonlinear saturation is established, using

the extended model.
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Figure 3.11 Mode structure of the perturbed electric potential from the hybrid

scenario plasma at t = 150R0/vT i when nonlinear saturation is established,

using the extended model.
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Figure 3.12 Time evolution of the perturbed electron potential δϕ in reversed

shear plasma at mode structure maxima (r = 0.6a) using the extended model

(red) and using the old model (blue).
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Figure 3.13 Time evolution of the perturbed electric potential δϕ in hybrid

scenario plasma at mode structure maxima (r = 0.4a) using the extended model
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in Fig. 3.14. Here, heat flux level is higher in the old model, especially at the

beginning of nonlinear saturation (t ∼ 42R0/vT i). Time evolution of heat flux

at r = 0.58a where TEM is the most unstable, is plotted in Fig. 3.15. I set

t = 80R0/vT i as the time when the nonlinear saturation effect starts to plateau.

In this figure, before t = 80R0/vT i, the heat flux is reduced by ∼ 22% in the

extended model and after t = 80R0/vT i, heat flux is reduced by ∼ 14% in the

extended model. For the hybrid scenario plasma (Fig. 3.16), the difference in

heat flux at the most unstable spot, r = 0.42a, is not as apparent as shown

in Fig. 3.17. Before t = 80R0/vT i, the extended model shows ∼ 4% more heat

flux and after t = 80R0/vT i, about 6% more. In summary, despite the linear

and nonlinear simulation results of electric potential suggesting that difference

between two models would be more apparent in the hybrid scenario plasma, in

the case of heat flux, meaningful difference between the models exist only for

the reversed shear plasma.

To further compare two models in nonlinear simulation, I analyze radial elec-

tric field results. In the simulation, radial electric field is calculated from zonal

potential ϕ0,0 as Er =
∂ϕ0,0
∂r

. Radial electric field results from the nonlinear

simulations are shown in Fig. 3.18 and Fig. 3.19. Note that the result is time-

averaged in t = 144R0/vT i ∼ 156R0/vT i for both plasmas. In the results, radial

electric field profiles after nonlinear saturation change very slowly over time

and their time dependency is negligible. In the reversed shear plasma, as shown

in Fig. 3.18, radial electric field is much higher in the old model whereas the

profile shape is similar. For the hybrid scenario plasma, the difference between

the two models is not very clear. The lack of significant difference between two

models is in line with the heat flux result from hybrid scenario plasma. How-

ever, it requires further work as to discuss how reduction in radial electric field

and correspondingly E × B shear can lead to suppressed heat transport. This
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Figure 3.14 Spatiotemporal evolution of heat flux using the old model (above)

and the extended model (below) in the reversed shear plasma.
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Figure 3.15 Time evolution of heat flux in the reversed shear plasma at the mode

maxima (r = 0.58a) using the old model in blue line and using the extended

model in red line. Dashed lines indicate t = 80R0/vT i when the nonlinear

saturation effect starts to plateau.
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Figure 3.16 Spatiotemporal evolution of heat flux using the old model (above)

and the extended model (below) in the hybrid scenario plasma.
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Figure 3.17 Time evolution of heat flux in the hybrid scenario plasma at the

mode maxima (r = 0.58a) using the old model in blue line and using the ex-

tended model in red line. Dashed lines indicate t = 80R0/vT i when the nonlinear

saturation effect starts to plateau.
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Figure 3.18 Radial electric field Er in the reversed shear plasma at r = 0.58a,

averaged in t = 144R0/vT i ∼ 156R0/vT i.

remains as a future work.

Nonlinear simulation results highlight the extended model’s capability to

accurately calculate barely trapped particle dynamics. Extending the equations

of motion (Eq. 2.2) for barely trapped particles change how bounce orbits

travel in the binormal direction, i.e. it changes
dα

dt
. This is demonstrated in

Fig. 2.3, where at ŝ = 0.5 and ŝ = 1, barely trapped particles with κ ∼ 1 show

lower
dα

dt
in the extended model. This could meaningfully reduce heat transport

when barely trapped particle effects are significant, suggesting that the trend

of transport reduction shown in Fig. 3.15 is due to barely trapped electrons.
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Figure 3.19 Radial electric field Er in the hybrid scenario plasma at r = 0.42a,

averaged in t = 144R0/vT i ∼ 156R0/vT i.
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Chapter 4

Discussions

So far, I have discussed that the extended model can accurately describe trapped

particles dynamics by including the effects of barely trapped particles, through

its better estimation of CTEM linear growth rate, heat flux, and zonal flow. In

this section, I present applications and future works of the extended model.

One possible application is internal transport barrier (ITB) research using

bounce-kinetics. ITBs in fusion plasma enable enhanced confinement regime by

creating a stiff pressure gradient layer with suppressed transport. Studies have

shown that turbulence suppression from negative magnetic shear [44, 45] and

strong E × B flow shear are favorable for ITB formation. In a recent work,

ITB formation in reversed shear plasma has been observed from gyrokinetic

simulations using hybrid electrons, and the authors have found that counter

rotation of TEM turbulence is favorable for the formation of ITB [46]. Hybrid

electron regime which assumes adiabatic response for non-zonal passing elec-

trons and treats the rest as fully kinetic electrons [47] saved computing cost
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considerably and enabled the authors to conduct nonlinear flux-driven simula-

tion while retaining the trapped electron physics. The extended bounce kinetic

model provides a more efficient numerical model by using further reduction of

dimensionality, thus can be used in gyrokinetic simulations of ITB formation

where TEM plays a significant role.

It is possible to develop the extended model for general geometry in princi-

ple. So far, bounce action and bounce frequency formulas in bounce-kinetics all

have assumed circular high aspect ratio tokamak [15,16]. However, the general

bounce-kinetic model is written in flux coordinates and is valid for any toka-

mak geometries. One can further develop the extended model using the general

forms of Jb and ωb [48] and apply them in other geometries. To do this, Jb and

ωb are written as functions of mutually dependent parameter κ, which indicate

“trapped-ness”, so that ωb as a function of Jb is independent with κ in both

deeply trapped and barely trapped limits. Then, Hamiltonian and Hamilton’s

equations are written as functions of flux coordinates and adiabatic invariants

in respective limits. For example, one can follow geometries used by Xiao and

Catto [49] or Roach et al. [50]. After getting the expression for Hamiltonian,

the result can be verified by following similar steps as Sec. 2.4.

Another application suitable for the extended model is trapped fast particle

effects on microturbulence. Recently, fast ion stabilization of ITG turbulence

due to wave-particle resonance has been reported [51, 52]. This has been ex-

plained in the analytic study using bounce-kinetic theory by Wang et al. [53]

where the authors showed that fast ions with precession drift along ion diamag-

netic direction resonate stabilize ITB turbulence. On the other hand, fast ions

in reversed shear plasma with reversed precession can destabilize electron drift

wave [54,55]. These trapped fast ion effects can be studied in gyrokinetic simu-

46



lations using the extended model, and one can explore their roles in long-time

nonlinear simulations, ultimately in reactor plasmas.

Limitations exist in the current bounce-kinetic model implemented in gKPSP,

as electromagnetic effects have not been included. The feasibility of expanding

bounce-kinetics for electromagnetic perturbations has been addressed in Ref. 3.

However, deriving explicit forms of generating functions and the coordinate

transforms which are necessary to build a numerical model have not been done

to date. If the extended bounce-kinetic model’s capability is expanded to in-

clude the electromagnetic effects, the extended model can explore the effects

of various low frequency MHD modes on transport in gyrokinetic simulations.

For example, one can study energetic particle mode (EPM) driven by the pre-

cession of trapped energetic particles [56] or the electron fishbones driven by

barely trapped supra-thermal electrons [57].
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Chapter 5

Conclusion

In this thesis, I have developed the extension of the bounce-kinetic model that

can properly describe barely trapped particles. Using the extended model, I

have performed collisionless TEM simulations using the gKPSP gyrokinetic

code. Compared to the old model, the extended model yields a reduction in the

TEM linear growth rate for low magnetic shear due to the reversed precession

of barely trapped electrons. In the nonlinear simulations of TEM instability, the

extended model yields lower heat transport and lower radial electric field in the

reversed shear plasma, likely due to modifications for the barely trapped parti-

cle motions. The results exhibit that the extended model is capable of properly

treating barely trapped particles, and more accurate simulations of TEM tur-

bulence, in particular for low magnetic shear. The extended model can provide

a new and efficient way of properly studying trapped particle effects in the re-

versed shear plasmas and low magnetic shear hybrid scenario [42, 43] plasmas.

Several applications were discussed, including studying the effects of trapped
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fast particles [51,54] and studying ITB formation in the presence of TEM [46].

Further advancement of the bounce-kinetic theory to include electromagnetic

effects will enable the extended model to properly study some low-frequency

MHD modes driven by trapped particles [56,57]. Wide adoption of the extended

model can help to efficiently simulate the long-time evolution of turbulence

physics while attaining the kinetic response of the trapped particles and the

physical rigor that modern gyrokinetics provides, and ultimately help reveal

the mysteries of fusion plasma turbulence.

49



Bibliography

[1] E. A. Frieman and Liu Chen, Phys. Fluids 25, 502 (1982).

[2] T. S. Hahm, Phys. Fluids 31, 2670 (1988).

[3] A. J. Brizard and T. S. Hahm, Rev. of Modern Phys. 79, 421 (2007).

[4] Z. Lin, et al., Science 281, 1835 (1998).

[5] X. Garbet, et al., Nucl. Fusion 50, 043002 (2010).

[6] T. S. Hahm et al., Plasma Phys. Conrol. Fusion 46, A323 (2004).

[7] O. D. Gurcan et al., Phys. Plasmas 13, 052306 (2006).

[8] S. Yi et al., Nucl. Fusion 55, 092002 (2015).

[9] P. A. Politzer, Phys. Rev. Lett. 84, 1192 (2000).

[10] S. J. Zweben et al., Phys. Plasmas 9, 1981 (2002).

[11] M. J. Choi et al., Nucl. Fusion 59, 086027 (2019).

[12] G. Dif-Pradalier et al., Phys. Rev. Lett. 114, 085004 (2015).

[13] G. Hornung et al., Nucl. Fusion 57, 014006 (2017).

50



[14] G. Dif-Pradalier et al., Nucl. Fusion 57 066026 (2017).

[15] B. H. Fong and T. S. Hahm, Phys. Plasmas bf 6, 188 (1999).

[16] Lu Wang and T. S. Hahm, Phys. Plasmas 16, 062309 (2009).

[17] Y. Idomura, et al., J. Plasma Fusion Res. Ser. 6, 17 (2004).

[18] Lei Qi et al., Phys. Plasmas 23, 062513 (2016).

[19] J. M. Kwon et al., Comp. Phys. Comm. 215, 81 (2017).

[20] F. -X. Duthoit et al., Phys. Plasmas 21, 122510 (2014).

[21] Y. W. Cho and T. S. Hahm, Nucl. Fusion 59, 066026 (2019).

[22] Y. W. Cho and T. S. Hahm, Phys. Plasmas 28, 052303 (2021).

[23] G. Depret et al., Plasma Phys. Control. Fusion 42, 949 (2000).

[24] T. S. Hahm and W. M. Tang, Phys. Plasmas 3, 242 (1996).

[25] A. Ghizzo et al., Phys. Plasmas 17, 092501 (2010).

[26] Y. Idomura et al., J. Plasma Fusion Res. 75, 131 (1999).

[27] T. Drouot et al., Eur. Phys. J. D 68, 280 (2014).

[28] B. B. Kadomtsev and O. P. Pogutse, Sov. Phys. JETP 24, 1172 (1967).

[29] R. G. Littlejohn, J. Math. Phys. 23, 742 (1982).

[30] J. R. Cary and R. G. Littlejohn, Ann. Phys. (NY) 151, 1 (1983).

[31] B. C. Carlson, “Elliptic Integrals”, in NIST Handbook of Mathematical

Functions (Cambridge University Press, Cambridge, 2010), Chap. 19.

51



[32] R. Roy and F. W. J. Oliver, “Elementary Functions”, in NIST Handbook of

Mathematical Functions (Cambridge University Press, Cambridge, 2010),

Chap. 4.

[33] F. Y. Gang and P. H. Diamond, Phys. Fluids B 2, 2976 (1990).

[34] J. M. Kwon et al., Nucl. Fusion 52, 013004 (2012).

[35] Lei Qi et al., Nucl. Fusion 59, 026013 (2019).

[36] Lei Qi et al., Nucl. Fusion 61, 026010 (2021).

[37] Y. Idomura, J. Comput. Phys. 313, 511 (2016).

[38] A. M. Dimits et al., Phys. Plasmas 7, 969 (2000).

[39] G. Rewoldt et al., Comp. Phys. Comm. 177, 775 (2007).

[40] Jiquan Li and Y. Kishimoto, Plasma Phys. Control. Fusion 44, A479

(2002).

[41] J. C. Adam et al., Phys. Fluids 19, 561 (1976).

[42] F. Turco et al., Phys. Plasmas 22, 056113 (2015).

[43] Yong-Su Na et al., Nucl. Fusion 60, 086006 (2020).

[44] P. H. Diamond et al., Phys. Rev. Lett. 78, 1472 (1997).

[45] T. S. Hahm, Plasma Phys. Control. Fusion 44, A87 (2002).

[46] K. Imadera and Y. Kishimoto, 28th IAEA-FEC, TH/4-5

[47] E. Lanti et al., J. Phys.: Conf. Ser. 1125, 012014 (2018).

[48] A. J. Brizard, Phys. Plasmas 7, 3238 (2000).

52



[49] Y. Xiao and P. Catto, Phys. Plasmas 13, 082307 (2006)

[50] C. M. Roach et al., Plasma Phys. Control. Fusion 37, 679 (1995).

[51] A. Di Siena et al., Nucl. Fusion 58, 054002 (2018).

[52] A. Di Siena et al., Phys. Plasmas 26, 052504 (2019).

[53] S. Wang et al., Plasma Sci. Technol. 24, 065102 (2022).

[54] B. J. Kang and T. S. Hahm, Phys. Plasmas 26, 042501 (2019).

[55] B. J. Kang et al., Phys. Plasmas 27, 072510 (2020).

[56] L. Chen, Phys. Plasmas 1, 1519 (1994).

[57] F. Zonca et al., Nucl. Fusion 47, 1588 (2007).

53



초록

비선형 bounce 동역학적 이론을 따르는 bounce 평균된 동역학 모델 은 이미 여러

수치모사 연구에 적용된 바 있다. 본 학위논문은 간신히 갇힌 입자들에 대해서

도 올바른 계산을 수행할 수 있도록 기존 모델을 개량한, 연장된 bounce 동역

학 모델에 대해 보고하며 gKPSP 시뮬레이션에 이를 적용한 결과를 소개한다.

Bounce-gyrocenter 좌표계의 단열불변량들에 대한 함수로 표현된 갇힌 입자의

Hamiltonian을 유도하고, 세차 드리프트에 관한 기존 식과 비교하여 결과를 검증

한다.새롭게개발된모델은낮은자기장전단을갖는플라즈마에서비충돌성갇힌

전자모드 (CTEM)에대한 gyrokinetic전산모사에적용했을때더정확한결과를

얻었다. 새로운 모델은 낮은 자기장 전단을 갖는 플라즈마의 선형 시뮬레이션에서

더 낮은 성장률을 보였고 역전된 자기장 전단을 갖는 플라즈마의 비선형 시뮬레이

션에서는 더 낮은 열류속과 더 낮은 반지름 방향 전기장을 나타냈다. 마지막으로,

연장된 bounce 동역학 모델의 적용 분야에 대해 논의한다.

주요어: 핵융합 플라즈마, 토카막, 난류, gyrokinetic 전산모사, bounce 동역학론,

갇힌 전자 모드

학번: 2018-26018
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