
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


   

Ph.D. Dissertation 

 

 

A Design of Neural Network 

Processing Element Array with  

Mixed-Signal Operations 

 

혼합 신호 구동을 포함한  

신경망 연산 요소 어레이의 설계 

 

   

August 2022 

 

 

 

Department of Electrical and Computer Engineering 

 

Seoul National University 

 

Seung-Heon Baek 

 

 



   

A Design of Neural Network 

Processing Element Array with  

Mixed-Signal Operations 

 
 

지도 교수  김 재 하  

 

이 논문을 공학박사 학위논문으로 제출함 

2022 년 8 월 

 

서울대학교 대학원 

전기정보공학부 

백 승 헌 
 

백승헌의 박사 학위논문을 인준함 

2022 년 8 월 

 

위 원 장         정  덕  균        (인) 

부위원장         김  재  하        (인) 

위    원         최  우  석        (인) 

위    원         김  재  준        (인) 

위    원         박  종  선        (인) 



  

i 

 

Abstract 

This work presents a method to mitigate deep neural network (DNN) 

accuracy drop and energy consumption increase of DNN accelerator hardware 

by utilizing mixed-signal operations. The proposed accelerator includes an 

array of 16×16 mixed-signal processing elements (MPEs), which implements 

signed upper 4-bit of a signed 9-bit input that significantly influences a DNN 

accuracy with digital operations, and latter unsigned 5-bit that frequently 

appears with energy-efficient analog operations. The proposed MPE array 

supports weight precision from signed 1-bit to 9-bit in a bit-serial manner. In 

addition, this dissertation proposes a cyclic multiply-accumulate scheme that 

fixes an output precision and performs analog-to-digital conversion by only 2 

bits for each cycle to maintain the number of analog-to-digital converted bits 

regardless of the weight precision. 

The efficacy of the proposed accelerator was verified by results obtained 

from the measurement environment, including a prototype IC fabricated with a 

28nm CMOS process and a Xilinx Kintex-7 FPGA KC705 board. The 

simulations for IC design steps were performed in a verification environment 

that could quickly and accurately process numerous calculations in DNN 

examples by combining three-level simulators. A 4-layer MNIST CNN, a 5-

layer CIFAR-10 CNN, and a 7-layer CIFAR-100 CNN were used for 

simulations and tests. The accuracy of the example CNNs on a prototype IC 

was measured by applying the MPE array calibration method using the gradient 

descent optimization technique, and tiny MNIST/CIFAR-10 CNN accuracy 



  

ii 

 

changes of -0.42~0.33%p was recorded. The energy consumption for each 

DNN layer decreased by 20.4-46.1% compared to the equivalent case with all 

digital computations. 

 

Keywords: Analog-to-digital converting, Array architecture, Deep neural 

network, Neural computing, Neural network accelerator, Reconfigurable 

architecture 

Student Number: 2014-21726 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

iii 

 

Contents 

 

ABSTRACT I 

CONTENTS III 

LIST OF FIGURES V 

LIST OF TABLES X 

CHAPTER 1 INTRODUCTION 1 

1.1 MOTIVATION .......................................................................................... 1 

1.2 THESIS CONTRIBUTION AND ORGANIZATION......................................... 7 

CHAPTER 2 NEURAL NETWORK ACCELERATOR WITH MIXED-

SIGNAL PROCESSING ELEMENT ARRAY 9 

2.1 TOP ARCHITECTURE ............................................................................... 9 

2.2 MIXED-SIGNAL MAC REALIZATION ON AN MPE ARRAY 

ARCHITECTURE .......................................................................................... 12 

2.3 CYCLIC MAC SCHEME WITH BIT-SERIAL OPERATION ........................ 17 

2.4 REALIZATION OF DNN LAYERS ON AN MPE ARRAY ........................... 21 

CHAPTER 3 ARRAY CALIBRATION SCHEME WITH GRADIENT 

DESCENT OPTIMIZATION 24 

3.1 GRADIENT DESCENT OPTIMIZATION .................................................... 24 

3.2 CALIBRATION SCHEME ......................................................................... 26 



  

iv 

 

3.3 SIMULATION RESULTS .......................................................................... 29 

CHAPTER 4 IMPLEMENTATION OF A COMPUTATION CORE AND 

TEST LOGICS 33 

4.1 MIXED-SIGNAL PROCESSING ELEMENT ............................................... 33 

4.2 DIGITAL PULSE-WIDTH MODULATOR .................................................. 40 

4.3 CYCLIC MAC UNIT .............................................................................. 43 

4.4 TEST LOGICS ......................................................................................... 48 

CHAPTER 5 VERIFICATION ENVIRONMENT FOR THE IC DESIGN 

STEP 55 

5.1 VERIFICATION ENVIRONMENT WITH THREE TYPES OF SIMULATORS  55 

5.2 VERIFICATION FOR DNN EXAMPLES WITH SYSTEM-LEVEL 

SIMULATIONS ............................................................................................. 58 

5.3 VERIFICATION FOR DNN EXAMPLES WITH DNN-LEVEL SIMULATIONS

 .................................................................................................................... 68 

CHAPTER 6 MEASUREMENT RESULTS OF PROPOSED NEURAL 

NETWORK ACCELERATOR IC 75 

6.1 MEASUREMENT ENVIRONMENT AND PROTOTYPE IC .......................... 75 

6.2 MEASUREMENT RESULTS ..................................................................... 80 

CHAPTER 7 CONCLUSION 91 

BIBLIOGRAPHY 93 

초 록 96 



  

v 

 

List of Figures 

Figure 1.1. Bottleneck on Von-Neumann architecture. 2 

Figure 1.2. Conventional compute-in-memory architecture. 2 

Figure 1.3. Realization of high precision MACs on CIM macro. 4 

Figure 1.4. PE utilization of each layer of the VGG-19 model on a 16×16 PE 

array. 6 

Figure 2.1. The overall architecture of the proposed mixed-signal NN 

accelerator. 10 

Figure 2.2. The realization of mixed-signal MACs on the proposed 

architecture.. 13 

Figure 2.3. Example (a) four-layer CNN with MNIST dataset and (b) five-

layer CNN with CIFAR-10 dataset. 14 

Figure 2.4. Accuracy degradation of an example MNIST CNN with Gaussian 

random variations added on each bit position of the 8-bit activation 

result. 15 

Figure 2.5. The number of appearances of ones and transitions at each bit-

position of 8-bit activations on the example CIFAR-10 CNN network.

 16 

Figure 2.6. (a) A signal flow model illustrating the operation of the CMU (b) 

An example case of the operation of the CMU. 18 

Figure 2.7. Illustration of (a) signed 9-bit × signed 9-bit MAC operation and 

(b) signed 9-bit × signed 2-bit MAC operation of the proposed bit-serial 

architecture. 20 



  

vi 

 

Figure 2.8. Array operation selects a 16 × 16 weight matrix by adding 

addressing logic to each MPE containing 1152 weight bits. 22 

Figure 2.9. Mapping strategies on a 16×16 MPE array for (a) a convolution 

layer and (b) a fully connected layer. 23 

Figure 3.1. The steps of implementing the proposed calibration technique. 27 

Figure 3.2. The accuracy of the example DNN with variation model (a) 

without and (b) with the proposed calibration technique. 30 

Figure 3.3. Average accuracy improvement by sweeping the number of 

gradient bits. 31 

Figure 4.1. Schematic of the MPE. 34 

Figure 4.2. The detailed port connection on an MPE array. 35 

Figure 4.3. The detailed port connections of DLs and MLs for accessing MPE 

SRAMs and operating digital MACs. 36 

Figure 4.4. Example 4-layer MNIST CNN accuracy with a standard Gaussian 

distribution standard deviation for randomly generated output current 

variation. 38 

Figure 4.5. Schematic of the 5-bit programmable current source. 39 

Figure 4.6. Schematic of a DPWM. 40 

Figure 4.7. Operation of a DPWM. 41 

Figure 4.8. Schematic of a CMU. 44 

Figure 4.9. The number of comparators and dynamic range of input voltage. 44 

Figure 4.10. Schematic of a cyclic accumulator. 46 

Figure 4.11. The waveform of a cyclic accumulator in a MAC with a signed 

9-bit weight. 47 



  

vii 

 

Figure 4.12. The structure of a test logic for creating control signals for a 

computations core with instruction codes. 48 

Figure 4.13. An example of instruction loading processes at programming and 

an instruction running phase. 49 

Figure 4.14. The instruction set of test logic includes 21 instruction codes. 51 

Figure 4.15. The examples of operating an RCV and an SND instruction. 52 

Figure 4.16. The logic for monitoring control signals from the control logic to 

the computation core. 54 

Figure 5.1. An overview of the verification environment with three types of 

simulators. 57 

Figure 5.2. The specific range of the system-level verification between the 

circuit-level and the DNN-level verification. 58 

Figure 5.3. The instruction code and simulation result of the 05_mac 

instruction scenario. 61 

Figure 5.4. The simulation result of gradient descent calibration method on 

prototype IC. 63 

Figure 5.5. The task flow of testbench auto-creation with neural network 

information and XMODEL models. 64 

Figure 5.6. The XMODEL simulation result for the MNIST CNN example 

with the 9-bit weight precision configuration. 65 

Figure 5.7. Weight loading scheme for the example CIFAR-10 CNN on a 

computation core. 66 

Figure 5.8. The XMODEL simulation result for the CIFAR-10 CNN example 

with the 9-bit weight precision configuration. 67 



  

viii 

 

Figure 5.9. The differential non-linearity of a designed DPWM was extracted 

with 100 HSPICE Monte-Carlo simulations. 68 

Figure 5.10. The result of curve fitting with Gaussian distribution for the 

offset variations of a DPWM. 69 

Figure 5.11. The Tensorflow simulation result for predicting the accuracy of 

the MNIST CNN example with offset variations of 16 DPWMs 

extracted from HSPICE Monte-Carlo simulations. 70 

Figure 5.12. HSPICE simulation results for noise and ratio between output 

current and noise of an MPE's 5-bit programmable current source at 

three representative PVT variation corners with sweeping an input 

code. 71 

Figure 5.13. Tensorflow simulation results for MNIST CNN accuracy drop 

with randomly generated MPE's 5-bit programmable current source 

noise model extracted from HSPICE simulations with the designed 

circuit. 73 

Figure 5.14. Tensorflow simulation results for MNIST CNN accuracy drop 

with the gradient descent calibration process with MPE's 5-bit 

programmable current source noise model with a doubled standard 

deviation of HSPICE simulation results. 74 

Figure 6.1. The measurement environment with the FPGA board. 76 

Figure 6.2. The schematic of the measurement environment. 76 

Figure 6.3. (a) The die photo of the prototype IC (b) the layout of the IC under 

power straps. 78 

Figure 6.4. Peak energy efficiency with signed 9-bit weight precision 



  

ix 

 

sweeping supply voltage. 79 

Figure 6.5. The utilization and energy efficiency with mixed-signal and 

digital-only MAC operations for each layer of CNN examples. 81 

Figure 6.6. The comparison ratio of additional energy consumption compared 

to the case with zero-inputs and gating analog circuits. 81 

Figure 6.7. The accuracy improvement with the calibration process for the 

example MNIST/CIFAR-10 CNNs. 82 

Figure 6.8. The accuracy improvement with the calibration process for the 

example CIFAR-100 CNN. 83 

Figure 6.9. The training and test accuracy and training and test cost change 

during three training processes 84 

Figure 6.10. The peak energy efficiency with different types of inputs with 

changing weight precision configurations. 86 

Figure 6.11. Energy breakdown. 87 

Figure 6.12. Standby energy ratio with the max case input. 88 

Figure 6.13. Area breakdown. 89 

 

 

 

 

 

 

 

 



  

x 

 

 

 

 

List of Tables 

Table 1.1. PE Utilization of the VGG-16 model for different PE array sizes. 6 

Table 3.1. The average accuracy of the example DNN with and without the 

proposed calibration technique for different variation conditions. 32 

Table 5.1. The list of instruction scenarios for the system-level verifications.

 60 

Table 6.1. Detailed Specification and Measurement Results of the Prototype 

IC. 78 



 

1 

 

Chapter 1  

 

Introduction 

 

1.1 Motivations 

With the rapid development of deep neural network (DNN) software, 

many studies have proposed accelerator hardware for DNN 

computations. DNNs utilize simple but numerous operations such as 

multiply-accumulate (MAC), rectified linear unit (ReLU) activation, 

pooling, and normalization. For example, the VGG-19 model [1], 

widely used as a benchmark, classifies one 224x224 image and 

performs multiplications more than 17 billion times. Therefore, since 

DNNs require a lot of data movement between memory and processing 

elements (PEs), conventional computing systems with the Von 

Neumann architecture generate a bottleneck between separated memory 

and PEs, causing a lot of energy and latency consumption. 

Various studies have introduced novel DNN accelerator architectures 

for replacing the Von Neumann architecture. Many studies like [2-4] 

minimized the number of memory accesses by placing memory and PEs 

on the same die, including memory in a PE, or rearranging the  



 

2 

 

 

Figure 1.1. Bottleneck on Von-Neumann architecture. 

 

 

Figure 1.2. Conventional compute-in-memory architecture. 

 



 

3 

 

sequences of computations. In addition, various techniques have been 

proposed, such as quantization [5-6], model compression [7], 

approximate computing [8], utilizing sparsity [9-10], and voltage-

frequency scaling [11-12] to increase hardware performance with 

sacrificing accuracy of DNNs. Some researchers introduced analog 

operations to achieve higher energy efficiency [13-15]. Furthermore, a 

computation-in-memory (CIM) architecture was proposed for 

increasing energy efficiency and density by reducing the movements 

 

 
Figure 1.3. Realization of high precision MACs on CIM macro. 



 

4 

 

of repeatedly computed weights. A CIM architecture realizes a vector-

to-matrix multiplication by accumulating weighted-sum represented 

with analog physical values like currents or charges on memory bit-

lines [16-22]. For example, [19] recorded a high energy efficiency of 

75.9 TOPS/W with a 2.24-3.14%p decrease in accuracy of DNNs 

classifying CIFAR-10 datasets. 

However, the following difficulties arose due to the inflexibility of 

CIM architectures fixed after fabrication processes. First, it is difficult 

to attenuate accuracy drops caused by the uncertainties of analog 

operations. Area consumption is significant for adding a calibration 

function for each computing element, like a CIM architecture's memory 

cell. For example, a 5-bit programmable current source with the ability 

to calibrate element-wise multiplication in the proposed architecture of 

this dissertation is 278 times larger than a 6T SRAM cell. Some studies 

have proposed a method of post-training including the non-ideal 

characteristics of each fabricated IC [23-24], but additional time-

consuming processes are required whenever the target IC or DNN 

change. Alternatively, there is a way to increase accuracy by utilizing 

high precision [25-27]. Some researchers implemented high-precision 

operations by placing input and weight bits separately for each column 

and cycle [18,21]. However, since all input and weight bits share the 

same computation path, there is a problem that energy consumptions 

and distortions from an analog domain are experienced equally 

regardless of bit position. Therefore, LSB that has less influence on 



 

5 

 

DNN accuracy [28] than MSB consumes the same energy as MSB. In 

addition, depending on the size of the DNN, utilization ratios of 

computation elements or conversion circuits like DACs and ADCs 

decrease. As shown in Table.1.1, the PE utilization ratio decreases with 

increasing the PE array size when running the VGG-19 DNN model. As 

shown in Fig. 1.4, the PE utilization ratio of the 16×16 PE array differs 

within each layer of the VGG-19 DNN model.  

 

 

Figure 1.4. PE utilization of each layer of the VGG-19 model on a 16×16 PE array. 

 



 

6 

 

 

Table 1.1. PE Utilization of the VGG-16 model for different PE array sizes. 

Col 

Row 

16 64 256 1024 

16 98.32% 89.94% 86.76% 81.09% 

64 96.07% 90.58% 85.80% 79.28% 

256 92.50% 89.83% 84.73% 77.66% 

1024 87.85% 87.83% 83.18% 76.06% 

 

 

 

 

 

 

 

 

 

 

 

 



 

7 

 

1.2 Thesis Contribution and Organization 

This dissertation proposes a DNN accelerator IC with an array 

architecture composed of mixed-signal processing elements (MPEs) to 

address these problems. An MPE has an SRAM storing 1152 weight 

bits and supports analog and digital MACs. 

The proposed IC has the following characteristics. First, An MPE 

array computes the upper 4-bit of a signed 9-bit input on an accurate 

digital domain and the lower 5-bit on an analog domain with high 

energy efficiency. Second, An MPE adopts a bit-serial manner to load a 

weight bit for each cycle. In a bit-serial manner, weight bits on an MPE 

share various circuits for calibration, weight precision reconfigurability, 

and domain conversions reducing area overhead and sustaining a high 

PE utilization ratio. Third, this dissertation proposed a cyclic MAC 

scheme that quantizes the results of analog operations by only 2-bit for 

each cycle for a total of 8 cycles and accumulates residue on the analog 

domain. Since the cyclic MAC scheme fixes the number of analog-to-

digital converted bits, it is possible to maintain consistent energy 

efficiency for variable weight precision from signed 1-bit to 9-bit, 

thereby reducing energy consumed in the lower weight bits. 

In addition, a verification environment was implemented using a 

DNN framework software, a System-Verilog-based simulator, and a 

circuit-level simulator. Combining each verification level allows 

accurate and fast verification of numerous DNN operations in the 



 

8 

 

hardware design stage. 

Instead of manually calibrating the accelerator of the array structure 

for each PE, this dissertation also introduces a calibration technique that 

uses a gradient descent algorithm to adjust the output currents of an 

MPE array in a direction, offsetting the effect of process variations. 

This paper is described in the following order. Chapter 2 introduces 

the features of the proposed accelerator with an MPE array and the 

cyclic MAC scheme. Chapter 3 introduces the verification environment 

and simulation results for the IC designing stage. Chapter 4 introduces 

an array calibration technique utilizing a gradient descent algorithm and 

the simulation results. Chapter 5 describes the detailed circuit design of 

the proposed accelerator. Chapter 6 reports the measurement results 

with a fabricated prototype IC running example DNNs. 

 

 

 

 

 

 

 

 

 

 

 



 

9 

 

Chapter 2  

 

Neural Network Accelerator with 

Mixed-Signal Processing Element 

Array 

 

2.1 Top Architecture  

As shown in Fig. 2.1, the proposed IC comprises a 16×16 array of 

MPEs, array-peripheral circuits on each side, and a current mirror array 

for distributing the bias currents. On the left side of the MPE array, 

there are 16 pairs of digital input drivers and digital pulse-width 

modulators (DPWMs). Each signed 9-bit input is split into an upper 

signed 4-bit signal and a lower unsigned 5-bit signal, and the digital 

input driver drives the MSB-lines (MLs) with the upper 4 bits, and the 

DPWM drives a pair of word-lines (WLs) with two pulses of which 

timing difference expresses the lower 5 bits. 

 

 



 

10 

 

 

Figure 2.1. The overall architecture of the proposed mixed-signal NN accelerator. 

 

Each MPE in the array performs a mixed-signal MAC operation 

between an input and a weight bit stored in an 1152-bit MPE SRAM in 

a bit-serial manner. First, it computes the multiplication between the 



 

11 

 

upper 4-bit input and one of the weight magnitude bits in a digital 

fashion and propagates the accumulated sum towards the bottom of the 

array via the data lines (DLs). Second, it steers discharging currents to a 

pair of capacitively-loaded bit lines (BLs), of which duration is equal to 

the timing difference of the two WL pulses, and the sign of the weight 

sets polarity and magnitude and one of its magnitude bits, respectively. 

The weighted sum of the inputs can be effectively computed through a 

sequential, bit-serial operation in conjunction with the cyclic MAC unit 

and logic module located at the bottom. 

On the bottom side of the MPE array, there are 16 pairs of cyclic 

MAC units (CMUs) and logic modules (LMs). Each CMU produces a 

signed 10-bit output as the weighted sum of the lower 5-bit inputs via 

the sequential, bit-serial operation. Moreover, each LM combines the 

results from the CMU and the weighted sum of the upper 4-bit inputs 

propagated through the DLs and produces the final signed 14-bit 

output. 

The control signals for MPEs, DPWMs, CMUs, and LMs are 

propagated with daisy chain connections to avoid long interconnects. 

Similarly, each LM can update the weights stored on the MPEs by 

propagating the values via the bidirectional DLs. The current mirror 

array distributes the bias currents to 256 MPEs, 16 DPWMs, and 16 

CMUs, all identical copies of the corresponding external bias currents. 

 

 



 

12 

 

2.2 Mixed-Signal MAC Realization on an 

MPE Array Architecture  

Fig. 2.2 illustrates the mixed-signal MAC operation of the MPE in 

more detail. The MAC operation is carried out in a bit-serial manner 

over 9 control cycles. During the first 8 cycles, the analog part of the 

MPE and CMU computes the sum of the lower 5-bit inputs scaled by 

one magnitude bit of the weight and performs the shift-and-add 

operation of the resulting signed 3-bit, 4-level values (±3, ±1) each 

cycle, producing a signed 10-bit result (DANA). During the same 

cycles, the digital part of the MPE and LM performs a similar shift-and-

add operation in the digital domain and produces a signed 16-bit result 

(DDIG) of the weighted sum of the upper 4-bit inputs. And at the last 

ninth cycle, the LM produces a signed 17-bit weighted sum (DMAC) 

by combining DDIG with DANA scaled by 8. The final signed 14-bit 

output (DOUT) is produced by truncating the lowest 3 bits of DMAC. 



 

13 

 

 

Figure 2.2. The realization of mixed-signal MACs on the proposed architecture. 



 

14 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.3. Example (a) four-layer CNN with MNIST dataset, (b) five-layer CNN 

with CIFAR-10 dataset (c) seven-layer CNN with CIFAR-100 dataset. 

MPEs process the upper input bits in digital to preserve the accuracy 

and process the lower input bits in analog to save the power dissipation. 

To provide a supporting argument, the median accuracy of running 

1000 epochs of the MNIST convolutional neural network (CNN) 

example with signed 9-bit weights shown in Fig. 2.3(a) is measured 

while adding Gaussian additive noise to each bit position of the 

activation, emulating the effects of variation when computing each bit 

value in the analog domain. Fig. 2.4 plots the resulting degradation in 

accuracy, indicating that the noises added to the upper bits significantly 

impact the accuracy than those added to the lower bits. On the other 



 

15 

 

hand, Fig. 2.5 plots the number of transitions that occurred at each bit 

position when all the computation for a 5-layer CIFAR-10 CNN 

example in Fig. 2.3(b) is done in the digital domain. The number of 

transitions is higher for the lower bits, implying that computing the 

lower bits in the analog domain can save the most energy while 

minimizing the accuracy's impact. This hybrid approach also relaxes the 

required precision of the DPWM and reduces the required dynamic 

range of the bit-line signal. 

 

 

Figure 2.4. Accuracy degradation of an example MNIST CNN with Gaussian 

random variations added on each bit position of the 8-bit activation result. 

 



 

16 

 

 

Figure 2.5. The number of appearances of ones and transitions at each bit-position 

of 8-bit activations on the example CIFAR-10 CNN network. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

2.3 Cyclic MAC Scheme with Bit-Serial 

Operation 

Fig. 2.6 illustrates the cyclic MAC unit (CMU) operation using a 

signal flow model. The CMU computes the weighted sum of the 16 

lower 5-bit inputs in the analog domain while producing signed 3-bit 

outputs each cycle for eight cycles.  

First, each MPE column generates a voltage difference on a bit-line 

pair (VBL). VBL has a value between ±VM when VM represents 

maximum output voltage. Next, VBL is transmitted to a 4-level ADC 

generating signed 3-bit quantized results (QTZD) with thresholds at 0V 

and ±0.5×VM. A digital-to-analog converter (DAC) generates a 

reference voltage (VREF) from QTZD, and a residue (VRSD) is 

computed. In the next cycle, the residue VRSD is scaled by a factor of 2 

and combined with the new VBL value. By repeating this process for 

eight cycles and shifting and adding the signed 3-bit quantized output 

of each cycle, the CMU can produce a signed 10-bit result of the 

weighted sum. 

Note that this architecture performs only the minimum operations 

required to produce the final output bits. The sum of 16 unsigned 5-bit 

inputs scaled by signed 9-bit weights would produce a 17-bit result. 

Rather than first computing this total 17-bit result and then truncating 

its seven least significant bits (LSBs) to produce the final 10-bit result, 

the CMU computes the weighted sum in a bit-serial manner starting  



 

18 

 

 

(a) 

 

 

(b) 

Figure 2.6. (a) A signal flow model illustrating the operation of the CMU (b) An 

example case of the operation of the CMU. 

 

 

 



 

19 

 

from the most significant bit (MSB) and stops when the remaining 

computations do not affect the final 10-bit result obtained so far. In 

other words, the number of CMU cycles only varies with the number of 

output bits required, but not with the number of input or weight bits as 

long as the output precision is lower than the total result with a 

truncation. 

The bit-serial operation of the proposed architecture allows it to 

support variable weight bit precision. Fig. 2.7 illustrates the operations 

with a signed 9-bit weight and a signed 2-bit weight. First, the sign bit 

of the weight is loaded to the sign register. Second, the weighted sum of 

the inputs is computed for each weight bit. Third, the CMU 

accumulates the analog weighted sum while scaling the residue from 

the previous cycle by two and produces the signed 3-bit quantized 

output. At the same time, an LM accumulates the digital weighted sum. 

Fourth, regardless of the weight bit precision, the signed 3-bit quantized 

outputs are collected for eight cycles, and the combined results via 

shift-and-add yield the final signed 14-bit result. 



 

20 

 

 
(a) 

 

(b) 

Figure 2.7. Illustration of (a) signed 9-bit × signed 9-bit MAC operation and (b) 

signed 9-bit × signed 2-bit MAC operation of the proposed bit-serial architecture. 

 



 

21 

 

2.4 Realization of DNN layers on an MPE 

Array 

As shown in Fig. 2.8, since 1152 internal weight bits on an MPE 

share array peripheral circuits with the bit-serial manner, the MPE array 

can map the example CIFAR-10 CNN with high PE utilization of 78%. 

Since all MPEs on the array share the same SRAM access address, it 

can be understood as an MPE array containing 1152 16x16 weight bit 

matrices. Because the number of weight bits activated at a time is small 

as 16x16, the MPE array can maintain high PE utilization and require 

only 16 peripheral circuits for each side to reduce area consumption. 

With the bit-serial manner, an MPE array can efficiently map a weight 

matrix of convolution, or a fully-connected layer is larger than a 16×16 

array on a separated time domain. As shown in Fig. 2.9(a), the mapping 

space of each kernel in a convolution layer was expanded from rows 

[29] to SRAM addresses using multiple cycles. A fully connected layer 

was mapped by dividing a weight matrix into several 16×16 sub-

matrices, achieving a column expansion by adding all results after sub-

matrix calculations and a row expansion by separating results at 

different registers, as shown in Fig. 2.9(b). For operations of a layer 

larger than a 16×16, a CMU accumulates intermediate results on signed 

16-bit registers before ReLU activations. 



 

22 

 

 

Figure 2.8. Array operation selects a 16 × 16 weight matrix by adding addressing 

logic to each MPE containing 1152 weight bits. 



 

23 

 

 
(a) 

 

(b) 

Figure 2.9. Mapping strategies on a 16×16 MPE array for (a) a convolution layer 

and (b) a fully connected layer. 

 



 

24 

 

 

Chapter 3  

 

Array Calibration Scheme with 

Gradient Descent Optimization 

 

3.1 Gradient Descent Optimization 

Gradient descent is an optimization technique for finding the 

minimum value of a target cost function with multiple variables [30]; it 

is widely used as a neural network training method. The optimization 

process obtains a differential value for the variable to be changed at the 

current point; it iteratively moves at a velocity proportional to the 

differential value. 

The ith iteration step in the process is where α represents a step size 

to move per iteration. 

 𝑥𝑖+1 =  𝑥𝑖 − 𝛼∇𝑓(𝑥𝑖)  (3.1) 

 

If the step size is too large, it is possible to bypass the optimum point; if 



 

25 

 

it is too small, many iterations are required to reach the optimum point. 

A squared error of a MAC is used as the target cost function for the 

gradient descent method to achieve neural network learning. 

 

 ∑ (𝑦𝑖 − 𝑡𝑖)2
𝑖 =  ∑ (𝑓(∑ 𝑤𝑖𝑗𝑥𝑗𝑗 ) − 𝑡𝑖)2

𝑖   (3.2) 

 

At this point, the weight changes through the kth iteration as Eq. 3.3. 

 

 ∆𝑤𝑖𝑗,𝑘 = 𝑤𝑖𝑗,𝑘+1 − 𝑤𝑖𝑗,𝑘 = −2𝛼 × (𝑦𝑖 − 𝑡𝑖) × ∇𝑓(𝑤𝑖𝑗𝑥𝑗) × 𝑥𝑗  (3.3) 

 

The error can propagate when the product of the weight and input is 

positive if a ReLU is used for the activation function f(x). A gradient 

matrix is obtained by multiplying the input vector with the error vector 

using the sign of the input elementwise as Eq. 3.4. 

 

 𝑊 = 𝑋𝑇𝐸 ⊙ 𝑠𝑖𝑔𝑛(𝑋𝑇𝑊)  (3.4) 

 

 

 

 

 

 



 

26 

 

3.2 Calibration Scheme 

The proposed calibration scheme repeatedly learns the parameters of 

a small 16×16 MPE array to process large layers according to process 

variations. One fully connected layer with 256 weight parameters is 

learned using a 16×16 MPE array as an example. The input vector is 

generated randomly, and the ideal answer is the sum of input vector 

elements with all output nodes sharing the same value. In this case, the 

probability distribution of each input element follows a uniform 

distribution between 0 and 1/16 such that the output value does not 

exceed one and the gradient value does not increase excessively. The 

weight bit of an MPE is fixed to a maximum value of 1. Furthermore, 

the activation function is not used, and the sign term matrix in Eq. 3.4 

disappears because the primary purpose is to check only whether the 

results of multiplication and addition are accurate. 

Fig.3.1 shows the proposed technique's implementation on an MPE 

array. First, an input vector is generated using a PRBS pattern; Since 

only 1/16 of the maximum value of signed 9-bit activation is required to 

represent the number of bits of PRBS, unsigned 4-bit is sufficient for 

the PRBS generator. A DPWM supplies the generated digital vector 

input to the MPE array in the pulse width proportional to the input. In 

addition, a CMU and an LM quantize generates a signed 9-bit digital 

data, and an error vector is generated compared to the sum of the 

elements of the supplied input vector. The last step is multiplying the  



 

27 

 

 

Figure 3.1. The steps of implementing the proposed calibration technique. 

input vector by the error vector to calculate the gradient matrix and add 

it to the input parameter of the programmable current source. The 

stored calibration parameter in an MPE is unsigned 8-bit digital data, 

and it uses 8'b1000_0000, the median value of digital values expressed 

in eight bits, as the initial value. A 5-bit programmable current source 

uses the upper 5-bit of a calibration parameter as an input. 

The generated gradient matrix has the same connection with the 

MPE array between the inputs, outputs, and gradient elements; 

therefore, the gradient matrix can be calculated internally on the MPE 

array instead of using an external computation space. For realizing an 

internal calibration scheme, additional modules are required inside an 

MPE circuit, such as a multiplier for an input and error value and an 

adder for adjusting the parameter of the current source. The input and 

error data were clipped during the gradient operation to a maximum of 

2'b11 using two bits to adopt this internal calibration scheme with a tiny 



 

28 

 

hardware addition. Furthermore, the generated gradient value was 

limited to a maximum of 3'b111, and it could be expressed in three bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 

3.3 Simulation Results 

We modeled an example neural network and the effect of process 

variation using TensorFlow, a machine learning framework. The neural 

network was modeled first and changed to reflect the same effect of 

variation on parts calculated by the same weight because TensorFlow is 

not a framework for describing hardware. Process variation is modeled 

as two 16×16 arrays representing the scale and offset terms. This 

variation array pair was randomly generated through a Gaussian 

distribution with an average of 0 and a standard deviation of 0.5. 

We implemented a set of sub-computations practical to only 16×16 

units of weight left using TensorFlow built-in functions to include this 

variation model in a neural layer operation. After calculating the 

original layer for each sub-weight array, in the same manner, the 

outputs were summed up, and a ReLU activation function was applied 

to create the final result. The process variation was implemented by 

multiplying the scale term and adding the offset term for each sub-

weight-array operation. 

The accuracy improvement proceeds separately from the inference 

process and goes through learning 16 × 16 variation terms with a 

random input generated by a uniform distribution. A process comprising 

forward propagation, multiplication, and addition was performed 

without using the TensorFlow built-in optimizer function to implement 

the synapse circuit clipping of input, weight, and gradient. 



 

30 

 

We generated a set of 1000 different random variation arrays and 

validated how classification accuracy changed when the proposed 

techniques were applied. A four-layer convolution neural network for 

handwritten digit classification based on MNIST data shown in Fig. 

2.3.(a) was used. The ideal accuracy when the effect of process 

variation is not applied to this network is 98.2%. Fig. 3.2 shows the test 

results, including the process variation model. The red histogram shows 

that the accuracy of the network decreases to 17.3~95.2% due to 

process variations. Fig. 3.2(b) shows that the accuracy is almost fully 

restored to the ideal level, ranging from 96.5% to 98.3%, after 500 

epochs of learning with the proposed technique. The required number 

of iterations to recover the accuracy to higher than 97% was measured 

for each test; 150 and 250 times were sufficient for 92.7% and all tests, 

respectively.  

 

 
Figure 3.2. The accuracy of the example DNN with variation model (a) without 

and (b) with the proposed calibration technique. 

 



 

31 

 

We conducted the following tests to confirm that this technique was 

valid under several conditions. It was swept from three to eight bits to 

check whether the number of bits used in the input code of the current 

source was appropriate; then, as shown in Fig. 3.3, the technique could 

not fully restore accuracy using a bit width lower than 5, which 

indicates that finding the required minimum number of bits is essential. 

The required number of bits may vary depending on the expected scale 

or offset error distribution confirmed during the design process. A total 

of 25 cases were tested by changing the standard deviation of Gaussian 

distributions to view the scale distribution and offset error effect. Table 

3.1 summarizes the average drop and improvement of accuracy for each 

test. For each cell, the value on the left indicates the accuracy before 

applying the technique; the value on the right represents the accuracy 

after applying the technique. Accuracy is more affected by the scale 

error, and if the standard deviation is less than 0.5, it can be recovered 

sufficiently using this technique. 

 

 

 

 

 

 

 

 



 

32 

 

 

Figure 3.3. Average accuracy improvement by sweeping the number of gradient 

bits. 

 

Table 3.1. The average accuracy of the example DNN with and without the 

proposed calibration technique for different variation conditions. 

 

 

 

 

 

 

 



 

33 

 

Chapter 4  

 

Implementation of A 

Computation Core and Test 

Logics 

 

4.1 Mixed-Signal Processing Element 

Fig. 4.1 shows the schematic of an MPE having functions of storing 

weight, computing a MAC on the mixed-signal domain, and calibrating 

analog MAC current. First, an MPE uses a 6T SRAM block for storing 

weight. An SRAM block can store a total of 1152 bits as 9 bits for each 

7-bit address. A 9-bit mux selects a bit of weight for a MAC operation 

within the 9-bit output of an SRAM. Second, for digital MAC 

computation, an MPE chains an adder with adders of neighboring 

MPEs using DLs. An adder adds a signed 4-bit digital input on ML to 

signed 7-bit data from the upper MPE's DL[7:0]. And the output of an 

adder is propagated to the downside MPE. Third, for analog MAC 

computation, a WL logic decides whether to transmit or not the timing  



 

34 

 

 

Figure 4.1. Schematic of the MPE.  

difference of WLs according to the weight bit currently selected. And a 

WL logic decides the direction of transmitting with a sign bit stored in a 

sign-bit register. Moreover, the analog computation uses a 5-bit 

programmable current source to control the amount of output current 

with a calibration term. 

Fig. 4.2 shows the port information of an MPE array and the detailed 

connection between the MPEs when constructing the array. To prevent 

a pulse from shrinking due to the propagation delay difference between 

a rising and a falling edge during propagation, a DPWM generates only 

rising edges and sends them separately to two WLs. An MPE has 



 

35 

 

repeaters for pulses and control signals to drive the large parasitic 

capacitance of WLs and control signal paths. An MPE has a bit-line pair 

for each column, and each bit-line pair consists of a positive and a 

negative line. 

 

 

Figure 4.2. The detailed port connection on an MPE array. 



 

36 

 

 

(a) 

 

(b) 

Figure 4.3. The detailed port connections of DLs and MLs for accessing MPE 

SRAMs and operating digital MACs. 



 

37 

 

An MPE array loads and saves weights by accessing MPE SRAMs 

and operates digital MACs using MLs and DLs. As shown in Fig. 

4.3(a), a MPE row is selected using an ML to handle weights. All DLs 

in the target row configures a 9b-bidirectional bus connected and 

transmits 9-bit weight data. For realizing digital MACs, MPEs serially 

connect DLs to form an adder chain, such as Fig. 4.3(b). 

The ability to calibrate the uncertainty of a 5-bit programmable 

current source increases the accuracy of analog operations. Since the 5-

bit programmable current source can adjust the output current range 

from 300nA to 900nA, an MPE can reduce the errors from the effect of 

process variation on a multiplication below 19.35nA by a calibration 

process. Fig. 4.4 shows the accuracy change of the MNIST CNN 

example according to the standard deviation for generating random 

Gaussian distribution for the variation model on output currents. The 

NN accuracy drop is 1%p with a standard deviation of 0.053 × 600nA, 

1.64 times larger than the MPE's calibration unit step. Additionally, 

with the contents of Chapter 3, an easy calibration method to recover 

network accuracy by regarding output currents of MPEs as trainable 

parameters of a gradient descent training algorithm was used. Circuit 

design complexity was reduced by inputting only MSB 5-bit of an 8-bit 

parameter stored in a calibration term register into a programmable 

current source.  



 

38 

 

 

Figure 4.4. Example 4-layer MNIST CNN accuracy with a standard Gaussian 

distribution standard deviation for randomly generated output current variation. 

As shown in Fig. 4.5, a programmable current source uses a current 

digital-to-analog converter (DAC) structure and generates a current 

output by mirroring the current supplied from current bias circuits 

proportional to the digital code. The MSB 2-bit uses unary coding to 

reduce the non-linearity, while the LSB 3-bit uses binary coding to 

reduce area consumption. The output current range is from 300nA to 

900nA; a DAC constantly turns on offset 300nA and divides the 

remaining 600nA by 31 levels. When a DAC enable signal (en_dac) is 

off, analog switches (AMUXs) charge the input node with the supply 

voltage, which is closer to PMOS gate voltages (V_PG, Ib_MPE) at 

run-time than ground, for fast responses. The current mirror of the 



 

39 

 

output stage was implemented in a cascode form to reduce the output 

current change due to the change of bit-line voltage.  

 

 

Figure 4.5. Schematic of the 5-bit programmable current source. 

 

 

 

 

 

 

 

 



 

40 

 

4.2 Digital Pulse-Width Modulator 

 

Fig. 4.6 shows a detailed schematic of a DPWM, including a pair of 

integrate and fire (I&F) cells and steps for creating a pulse signal whose 

width is proportional to the digital code. Like [32], a pair of I&F units 

marking firing timing information proportional to a digital code 

transmitted to an MPE row. A DPWM ctrl logic converts a 5-bit digital 

code to a 31-bit thermometer code controlling switches connected to 

each unit capacitor to guarantee monotonicity. Instead of using a single 

large crossing detector, DPWM uses a miniature crossing detector for 

each unit capacitor to reduce errors caused by the parasitic capacitance  

 

 

Figure 4.6. Schematic of a DPWM. 



 

41 

 

of the crossing detector when the number of selected capacitors is 

small. In addition, to prevent an offset term with parasitic capacitance, 

for converting the digital value of an LSB 5-bit input equal to N, one 

I&F unit connects 32-N capacitors, and another I&F unit connects all 

32 capacitors in phase 1, 32-N in phase 2, as shown in Fig. 4.7. 

 

 

 

Figure 4.7. Operation of a DPWM. 

 

 

 

 



 

42 

 

The HSPICE simulation confirms that the ratio between capacitance 

and current of an I&F cell can vary from 70% to 140% of the typical 

corner case by process variations on the designed DPWM circuit. Due 

to the wide range of variations, DPWMs with a large capacitance can 

not fire within two cycles, which may cause non-linearity of input data. 

To prevent the non-firing situation, a calibration function that adjusts 

the magnitude of the current by checking whether firing occurs for the 

maximum capacitance case was implemented in the DPWM logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 

 

4.3 Cyclic MAC Unit 

As shown in Fig. 4.8, a CMU has six main components: voltage 

reference, 2-bit ADC, cyclic accumulator, capacitor bank, bit-line pre-

charger, and accumulation logic. The capacitor bank calibrates bit-line 

capacitance to an appropriate value for supply voltage and maximum 

pulse-width with 63 adjustable levels in 5.5fF units. A cyclic accumulator 

receives two bit-line voltages as inputs and performs the reference 

subtraction and residue doubling processes required for the cyclic MAC 

scheme with generating differential output voltages. A 4-level flash ADC 

quantizes output voltages from a cyclic accumulator and generates a signed 

3-bit output whose value is one of ±3 and ±1. A voltage reference is a 

voltage divider composed of nine 1kΩ resistors providing a reference 

voltage to the cyclic accumulator and the 4-level ADC. An accumulator 

logic generates signed 10-bit output by shifting and adding signed 3-bit 

ADC output. The 16-bit control signal for a CMU is separated into control 

signals for capacitor bank (cb_ctrl), cyclic accumulator (swcap_ctrl), and 

bit-line pre-charger (bl_prch). 

The quantization level of a CMU is related to the dynamic range of an 

analog input and output voltage of a CMU. As shown in Fig. 4.9, when the 

VOUT range is restricted to ±VM, each quantization level has a size of 

2VM/(N+1) with N comparators. Using midpoints of each quantization 

level as reference voltages, the residue after subtraction has a value 

between ±VM/(N+1). Since the sum of input and doubled residue  



 

44 

 

 
Figure 4.8. Schematic of a CMU. 

 

 

Figure 4.9. The number of comparators and dynamic range of input voltage. 

 



 

45 

 

transferred to the VOUT node cannot exceed VM, the dynamic range of the 

input is limited to VM×(N-1)/(N+1). The dynamic range of input increases, 

but quantizer bits increase together, and three comparators were selected 

for a 4-level quantization as the optimal point. When N is 1, it is the same 

as a cyclic ADC [33] with zero input range without a MAC for the next 

weight bit. 

Fig. 4.10 shows the schematic of the cyclic accumulator with detailed 

connections at each operation phase. The cyclic accumulator consists of a 

differential op-amp, three pairs of capacitors, and switches. There is one 

more capacitor pair than a conventional differential switched capacitor 

structure because a CMU receives the computation result of the following 

weight bit for every cycle during multi-bit MAC operation. As shown in 

Fig. 4.11, the cyclic accumulator has five operation phases, runs phases 1-2 

for the first cycle, and repeats phases 3-5 for the successive seven cycles. 

The swcap_ctrl signal is separated into seven flags as Φs, Φa, Φr, and 

Φ1~4. In phase 1, turn on Φs and Φ1 to sample bit-line voltages to C1. In 

phase 2, turn on Φa and Φ2 to move charges stored in C1 to C3. In phase 

3, turn on Φr to reset C1 and C2. In phase 4, turn on Φ1, transfer the 

charge stored in C3 to C1, doubling the residue voltage, and 

simultaneously turn on Φ3 to sample a bit-line voltage to C2. In phase 5, 

turn on Φ2, transfer the charge stored in C1 and C2 to C3, and turn on Φ4 

to subtract a reference voltage. 

 



 

46 

 

 

Figure 4.10. Schematic of a cyclic accumulator. 



 

47 

 

 
Figure 4.11. The waveform of a cyclic accumulator in a MAC with a signed 9-bit 

weight. 



 

48 

 

4.4 Test logics 

Since MPEs, CMUs, and DPWMs of the computation core require 

many control signals and data ports, a test logic is required to generate 

control signals in a die due to insufficient IC I/O pads. As shown in Fig. 

4.12, the test logic consists of instruction SRAM and finite state 

machine. The test logic sequentially generates a control signal with an 

input instruction code. There are two operating phases for test logic: 

First, the programming phase with instruction programming enabling 

signal (prg_en) turned on. Second instruction running phase, with 

prg_en turned off. As shown in Fig. 4.13, The test logic can load 

instructions at both phases. In the programming phase, the test logic  

 

Figure 4.12. The structure of a test logic for creating control signals for a 

computations core with instruction codes. 



 

49 

 

loads instruction codes from an instruction SRAM storing instruction 

codes provided through programming signal ports. During the 

instruction running phase, the test logic receives instruction codes 

through input bus ports in the instruction running phase. After loading 

an instruction code, a state counter determines the current state for each 

clock cycle, and a combinational instruction logic activated by the 

current instruction code generates control signals for each state and  

 

 

Figure 4.13. An example of instruction loading processes at programming and an 

instruction running phase. 



 

50 

 

transmits control signals to the computation core at the instruction 

running phase. Moreover, the test logic includes registers for handling 

four 9-bit data of each row and column of the computation core. 

Fig.4.14 lists 21 instructions provided by the test logic of the 

prototype IC. The detailed types of instruction codes are as follows:  

first, nine configuration instructions (SSA, ERA, CFD, CFC, UPD, 

SFT, SSB, SRR, and SRW). Second, two communication instructions 

(RCV, SND). Third, five DNN instructions (MUL, ADD, ATV, LDA, 

MXP). Fourth, two for-loop creation instructions (LPS, LPE). Finally, 

three debugging instructions (CNT, JMP, SFS). 

The functions of the configuration instructions are as follows. SSA 

configures an MPE SRAM address for accessing MPE SRAMs for 

MAC, reading, or writing weights. SSB is used to select the target 

weight bit for a MAC manually. ERA initializes weights stored in MPE 

SRAMs to zero. CFD and CFC calibrate or turn on DPWM and CMU, 

respectively. SRW and SRR are used to write and read weights of MPE 

SRAMs, respectively. SFT selects a row of an MPE array for accessing 

MPE SRAMs via DL before using SRW and SRR. Finally, UPD is used 

to load calibration terms for 5-bit programmable current sources of 

MPEs. 

With communication instructions, RCV receives external data, and 

SND sends data to the outside of the prototype IC. As shown in Fig. 

4.15, each 9-bit data is serially received or sent per instruction via 16 

input or output bus ports for each row or column of an MPE array. 



 

51 

 

 
Figure 4.14. The instruction set of test logic includes 21 instruction codes. 



 

52 

 

 

 

Figure 4.15. The examples of operating an RCV and an SND instruction. 

 

The functions of DNN instructions are as follows. MUL implements 

MACs by providing control signals for pulse generation to DPWMs, 

weight bit loading to MPEs, and cyclic accumulator steps to CMUs. 

ADD provides additions between data in registers. ATV supports ReLU 

activation for output data. LDA determines an accumulation time point 

between MAC results. MXP supports max-pooling operations. 

The for-loop creation instructions operate as follows. LPS 

determines a loop's size and stores the loop's starting point. The LPE 



 

53 

 

specifies the point at which the loop ends and returns the instruction 

SRAM address after the LPS with the same loop index. LPS and LPE 

support a total of eight loop index creations. LPE also provides 

incremental controls of MPE SRAM addresses, target weight bit 

positions, and test logic register orders. 

The functions of debugging instructions are as follows. CNT 

provides manual adjustment of an instruction state. JMP provides 

manual adjustment of an instruction SRAM address. As shown in Fig. 

4.16, SFS selects control signals for a computation core to be sent 

outside a prototype IC using bus_out ports. 

 



 

54 

 

 

Figure 4.16. The logic for monitoring control signals from the control logic to the 

computation core. 

 

 

 

 

 

 



 

55 

 

Chapter 5  

 

Verification Environment for the 

IC Design Step 

 

5.1 Verification Environment with Three 

Types of Simulators 

Design steps of a mixed-signal DNN accelerator require a wide 

range of verifications, including circuit-level, system-level, and DNN-

level. The following simulators were used for each verification level. 

First, A HSPICE simulator was used to accurately predict non-ideal 

characteristics of analog circuits such as a 5-bit programmable current 

source of an MPE, a CMU, and a DPWM at the circuit level. Second, 

XMODEL, a System-Verilog-based simulator, was used for system-

level verification. Since XMODEL is an event-driven simulator that 

performs calculations only when any input changes, it is possible to 

quickly and accurately verify interactions between numerous analog 

circuits placed as an array by actively utilizing the sparse nature of 

DNNs. In addition to verifying the functionality at the system level, it is 



 

56 

 

possible to predict the effect on MAC computation accuracy by 

modeling non-ideal characteristics of analog circuits obtained from the 

circuit level simulations. Finally, for DNN-level verification, a 

verification environment using Tensorflow, one of the deep learning 

frameworks, was prepared to verify factors of changing DNN 

accuracies, such as analog circuits and calibration schemes proposed in 

this dissertation. Like system-level verifications, the non-ideality 

characteristics of analog circuits obtained from circuit-level simulations 

were modeled using Python to realize the effect on computations in a 

DNN. DNN-level simulations can determine whether the accuracy drop 

caused by designed analog circuits is acceptable and, conversely, help 

determine specifications for the degree of non-ideal characteristics of 

analog circuits. 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

 

Figure 5.1. An overview of the verification environment with three types of 

simulators. 

 

 



 

58 

 

5.2 Verification Environment with System-

Level Simulations 

The system-level verification is performed for wide ranges between 

circuit-level verifications for a single analog circuit and DNN-level 

verifications for measuring accuracy for thousands of input images. 

Specifically, the targets of the system-level verification are as follows. 

First, the functionalities of test logic and analog and digital operations 

of a computational core are verified for each instruction. Second, the 

interactions between test logic and a computational core are verified  

 

 

Figure 5.2. The specific range of the system-level verification between the circuit-

level and the DNN-level verification. 



 

59 

 

with instruction scenarios frequently appearing in preparing or running 

a DNN example, such as a MAC computation or an SRAM read. 

Finally, a layer computation procedure from an input image to an output 

label is verified by checking the error of each MAC computation 

between ideal MAC results extracted from Tensorflow. 

Table 5.1 shows the list of instruction scenarios for the system-level 

verification. The numbering of each scenario was given following the 

test order to be performed with a prototype IC in a lab. Each scenario 

sweeps all cases or generates thousands of random data by performing 

equivalence checks comparing the results of each scenario with ideal 

values for covering a variety of DNN layer configurations with 

different inputs, weights, and order of computations. Fig.5.3 shows an 

example instruction code and system-level simulation result of the 

05_mac instruction scenario. 

 

 

 

 

 

 

 

 

 

 



 

60 

 

 

Table 5.1. The list of instruction scenarios for the system-level verifications. 

Scenario Verification Target 

00_prgsram Instruction loading at the programming 

phase. 

01_prgbus Instruction loading at the instruction running 

phase. 

02_rcvsnd Identity between received and sent data. 

03_era The functionality of initialization of MPE 

SRAMs 

04_wla Whether written and read, weights are 

identical. 

05_mac MAC errors with random data. 

06_actv The functionality of ReLU. 

07_mxp The functionality of max-pooling. 

08_dpwm DPWM configuration and calibration. 

09_cnt Changing an instruction state. 

10_mnt The functionality of transmitting selected 

control signals to the outside of the IC. 

11_jmp Changing an instruction SRAM address. 

12_cal Decreasing of MAC error along epochs for 

gradient descent calibration process. 

 



 

61 

 

 

 

Figure 5.3. The instruction code and simulation result of the 05_mac instruction 

scenario. 

 



 

62 

 

DNN layers on a prototype IC are implemented by combining 

instruction sequences including 02_rcvsnd, 05_mac, 06_actv, and 

07_mxp scenarios with DNN layer configurations. Scenarios as 

00_prgsram, 01_prgbus, 03_era, 04_wla, 08_dpwm, and 12_cal are 

used to verify pre-requisite tasks for setting a prototype IC before 

running DNN layers. The remaining scenarios (09_cnt, 10_mnt, 

11_jmp) are used for debugging a prototype IC. The system-level 

verifications verified the gradient descent calibration method by 

processing MAC results from the computation core inside a prototype 

IC. Weights were used as max (255 = 9'b0_1111_1111), and 

randomized 6-bit inputs were generated using XMODEL PRBS 

primitives. The randomly generated effects of process variations were 

applied to XMODEL models for each MPE current source. Input and 

error terms were clipped to 2-bit in test logic, and gradients generated at 

each MPE were also clipped at 3-bit through vector multiplication to 

lower the area consumption of an MPE. As shown in Fig. 5.4, MAC 

errors could be minimized through the repeated calibration epochs of 5 

ms. 

 



 

63 

 

 

Figure 5.4. The simulation result of gradient descent calibration method on 

prototype IC. 

 

XMODEL testbenches are automatically generated with layer 

descriptions and input datasets of DNNs to reduce the difficulties of 

building system-level verification environments for various DNN layers 

and weight precision configurations. The generated testbench consists 

of an XMODEL model of the prototype IC, weight information stored 

in MPE SRAMs, and an FPGA part controlling a prototype IC in a 

measurement process. 

 

 

 

 



 

64 

 

Weights were realized with the Verilog force statement assuming 

that weights were stored in MPE SRAMs before MAC calculations for 

fast simulation operation. Weight values were generated with training 

processes with Tensorflow and reshaped to fit the form of MPE SRAM 

addresses. 

An equivalence check module of the FPGA part (eq_chk.sv) 

calculates errors for each MAC result by comparing values from the 

ideal DNN model acquired from Tensorflow for each image input. In  

 

Figure 5.5. The task flow of testbench auto-creation with neural network 

information and XMODEL models. 

 



 

65 

 

addition, the FPGA part includes modules that store, reshape, and 

transmit input and output data between layers to fit the shape of an 

MPE array. The instruction sequence for running a prototype IC is 

automatically generated by adjusting the size of for-loops and the order 

of instructions according to layer descriptions and is provided to the 

FPGA part. 

As shown in Fig 5.5, the functionality of a prototype IC running a 9-

bit MNIST CNN example could be verified with the testbench auto-

generating task flow. The errors in MAC results could be confirmed. 

The error was accumulated along with layers, but the maximum value 

of 4 is sufficiently small. The simulation time required for each image 

was 15 minutes and 9 seconds, making it possible to verify a mixed-

signal system faster than other circuit-level simulators. 

 

 

Figure 5.6. The XMODEL simulation result for the MNIST CNN example with 

the 9-bit weight precision configuration. 



 

66 

 

With 9-bit CIFAR-10 CNN and CIFAR-100 examples, since the 

memory capacity required to store all network weights is greater than 

288 kb of the prototype IC, four weight reloading processes are 

required, as shown in Fig 5.6. For XMODEL simulations for 

simplifying the simulation process, the reloading processes were 

simplified by using Verilog force statements. For measurements on 

prototype ICs requiring more time consumption for data UART 

communications than running instructions, weights are reloaded after 

5,000 images are processed, and the intermediate results are stored in 

FPGA BRAMs. Fig 5.7 shows the result of XMODEL simulation for 

checking the functionality of a prototype IC with running a 9-bit 

CIFAR-10 example, and the simulation time of 2-hour 34-minute 22-

second per image was consumed. 

 

Figure 5.7. Weight loading scheme for the example CIFAR-10 CNN on a 

computation core. 



 

67 

 

 

Figure 5.8. The XMODEL simulation result for the CIFAR-10 CNN example with 

the 9-bit weight precision configuration. 

 

 

 

 

 

 

 

 

 

 

 



 

68 

 

5.3 Verification for DNN examples with 

DNN-Level Simulations 

The DNN-level simulations provide predictions of DNN accuracy 

by modeling non-ideality characteristics of various analog circuits with 

Python on the Tensorflow domain. Compared to the circuit- and 

system-level simulations, which take a long time, from 16 minutes to 

several days, to classify an image, the DNN level simulations require 

simple models for computation parts associated with DNN accuracy. 

Moreover, the DNN level simulations maximize the parallel computing  

 

Figure 5.9. The differential non-linearity of a designed DPWM was extracted with 

100 HSPICE Monte-Carlo simulations. 



 

69 

 

capability of GPUs and allow for the prediction of DNN accuracy with 

a small time consumption of less than 1 minute for 5000 images in the 

validation dataset. In this dissertation, the hardware used for the DNN 

level simulations was NVIDIA GeForce GTX 1080 GPU. The fast 

speed of DNN level simulation can significantly reduce the effort 

required in predicting and determining accuracy-related performance 

specifications in the IC design step. The followings are two examples of 

determining the maximum allowable range of each non-ideality 

characteristic in the analog circuit design steps. 

First, it analyzes the effect on the DNN accuracy of DPWM offset 

terms. In Chapter 4, a DPWM control method was proposed to reduce  

 

Figure 5.10. The result of curve fitting with Gaussian distribution for the offset 

variations of a DPWM. 



 

70 

 

offset terms caused by parasitic capacitors of DPWM I&F units, but as 

shown in Fig.5.9, offset terms are not completely reduced due to the 

comparably significant effect of process variations in cases with small 

manner of an MPE array that reuses 16 DPWMs for each computation 

and then repeatedly tiling 16 process variation terms for every 16 

inputs. In addition, the offset term model was implemented only to the 

analog-computed latter 5-bit of inputs. 

As shown in the DNN level simulation results in the blue histogram 

of Fig.5.11, there are only tiny accuracy drops of up to 0.2%p for a 9-

bit MNIST CNN example with DPWM offset term models obtained  

 

Figure 5.11. The Tensorflow simulation result for predicting the accuracy of the 

MNIST CNN example with offset variations of 16 DPWMs extracted from 

HSPICE Monte-Carlo simulations. 



 

71 

 

from the HSPICE Monte-Carlo simulation. The green histogram is the 

DNN level simulation results with a ten times larger standard deviation 

of the Gaussian distribution for generating DPWM offset term than the 

blue histogram, and there is only a tiny accuracy drop of up to 0.6%p. 

Therefore, the offset characteristics of the DPWM circuit design do not  

 

 

Figure 5.12. HSPICE simulation results for noise and ratio between output 

current and noise of an MPE's 5-bit programmable current source at three 

representative PVT variation corners with sweeping an input code. 



 

72 

 

cause a major problem in the accuracy drop, so more design steps were 

not required to reduce non-ideality, enabling to move quickly to the 

next design steps. 

Another DNN-level simulation example is an analysis of the 

relationship between DNN accuracy and noises on the output currents 

of 5-bit programmable current sources of MPEs. As shown in Fig.5.12, 

HSPICE noise simulations were performed for sweeping input codes 

and process-voltage-temperature (PVT) variation corners to find the 

maximum noise case. The largest standard deviation of the noise to 

output current ratio is 9.63e-3 with an input code of 0 at the FSFF 

corner. 

Random noise terms were generated using Gaussian distribution 

with a standard deviation of 1e-2 greater than the maximum value 

obtained from HSPICE simulations to determine the acceptable noise 

range on MPEs' 5-bit programmable current sources. Since noise affects 

each weight bit multiplication on an MPE array, noise terms are added 

to each weight bit computation in the Tensorflow computation flow 

model. 

Fig. 5.13 shows the DNN level simulation results of an MNIST 

CNN example with 500 repetitions. Since the noises on MPEs' 5-bit 

programmable current sources cause an acceptable drop in DNN 

accuracy of 0.1%p compared to ideal accuracy, a designed 5-bit 

programmable current source was determined to use for a prototype IC. 

Simulations with a doubled standard deviation of 2e-2 of the Gaussian  



 

73 

 

 

Figure 5.13. Tensorflow simulation results for MNIST CNN accuracy drop with 

randomly generated MPE's 5-bit programmable current source noise model 

extracted from HSPICE simulations with the designed circuit. 

distribution used to generate noise randomly were performed to 

increase the reliability of the design. As Fig.5.14 shows, when 

repeatedly simulating for 200 times, a significant accuracy drop of 

10%p occurs. However, simulating by implementing a process of 

performing 500 epochs of gradient descent calibration of Chapter 3 on 

Tensorflow, the DNN accuracy drop was reduced to 0.3%p. 



 

74 

 

 

Figure 5.14. Tensorflow simulation results for MNIST CNN accuracy drop with 

the gradient descent calibration process with MPE's 5-bit programmable current 

source noise model with a doubled standard deviation of HSPICE simulation 

results. 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

Chapter 6  

 

Measurement Results of 

Proposed Neural Network 

Accelerator IC 

 

6.1 Measurement Environment and 

Prototype IC  

We constructed a test environment with a 3mm × 3mm IC prototype 

fabricated with a 28nm CMOS process for evaluation. As shown in Fig. 

6.1, a Xilinx Kintex-7 FPGA KC705 evaluation kit was used to handle 

control signals and data for the prototype IC via a UART serial port.  

Fig. 6.2 shows the detailed equipment connection for the 

measurement environment. A Jupyter-Notebook-based environment on 

a personal computer (PC) was built to provide input and weight data 

and analyze output data. A PC and FPGA communicate at a baud rate of 

115200 bps over a UART serial port. Since the UART baud rate is 

significantly lower than the frequency of 40 MHz of a prototype IC, 



 

76 

 

communication between the PC and the FPGA takes place only at the  

 

Figure 6.1. The measurement environment with the FPGA board. 

 

 

Figure 6.2. The schematic of the measurement environment. 

 



 

77 

 

 

first and last stages of the measurement process. Most of the operations 

required to construct a DNN were implemented on the FPGA. The 

Xilinx XM105 Debug Card was attached to the FPGA and connected to 

a printed circuit board (PCB), including a prototype IC using jumper 

cables. A 74AVCH20T245 level shifter capable of converting a 2.5V 

signal supplied from the debug card into a 0.8-1.2V signal required by a 

prototype IC was attached to the PCB. A power supply provides supply 

voltages and bias currents to a prototype IC and level shifters. The 

oscilloscope provides various detection points for debugging the 

measurement environment. 

Fig. 6.3 shows the die photo of the prototype IC and the layout under 

power straps, and the computation core area is 0.97 mm2. The 

prototype IC includes a 0.57 mm2 test logic with 21 instruction sets for 

generating control signals for the computation core and supporting 

functions for on-chip NN realization such as max-pooling, ReLU 

activation, weight loading, and for-loop creation. A 4-layer MNIST 

CNN example and a 5-layer CIFAR-10 CNN example in Fig. 2.3 were 

used. Table 6.1 shows the detailed specification and measurement 

results of the prototype IC. With a clock frequency of 40MHz, the 

prototype IC achieves a throughput of 0.59 GOPS for instruction 

loading, weight loading, and MAC operations. As shown in Fig. 6.4, for 

the supply voltage of 0.8~1.2V, the peak energy efficiency of 0.17~0.54 

TOPS/W for signed 9-bit and 0.22~0.75 TOPS/W for binary weight 



 

78 

 

precision were measured. 

  

(a)                           (b) 

Figure 6.3. (a) The die photo of the prototype IC (b) the layout of the IC under 

power straps. 

Table 6.1. Detailed Specification and Measurement Results of the Prototype IC. 

Die area 9mm2 

Core area 0.97mm2 

Test logic area 0.57mm2 

Supply voltage 0.8-1.2V 

The number of MPE 256 

Clock frequency 40MHz 

Memory Capacity 288kb 

Weight density 0.307bit/μm2 

Weight precision binary - signed 9-bit 

Data precision signed 9-bit 

Peak energy  

efficiency 

0.22-0.75 TOPS/W  

for binary weights 

0.17-0.54 TOPS/W  

for signed 9-bit weights 

Throughput 0.59 GOPS 

Accuracy 

with s8-bit weight 

MNIST: 98.32 %  

(98.74% for ideal) 

CIFAR-10: 74.18 %  

(73.85% for ideal) 



 

79 

 

 

 

 

Figure 6.4. Peak energy efficiency with signed 9-bit weight precision sweeping 

supply voltage. 

 

 

 

 

 

 

 

 



 

80 

 

 

6.2 Measurement Results 

Fig. 6.5 compares the MPE utilization ratio and energy efficiencies 

between the mixed-signal and digital-only MAC operations for each 

layer of CNN examples. The energy efficiency of the mixed-signal 

MAC was measured directly from the prototype IC and all-8-bit digital 

input separately three times, 3-bit, 3-bit, and 2-bit, and then added up 

each increased energy consumption to the zero-input case. The input 

and biasing current of analog circuits were gated to exclude energy 

consumption on the analog domain for measuring the energy of digital 

computation blocks. With the example MNIST/CIFAR-10 CNNs, the 

total energy consumption with mixed-signal inputs is reduced by 

27.72/40.44%, respectively, compared to the all-digital input case. Fig. 

6.6 provides the comparison ratio of additional energy consumption 

compared to the case with zero-inputs and gating analog circuits for 

two cases: First, mixed-signal 8-bit vs. all-digital 8-bit. Second, analog 

5-bit vs. all-digital 5-bit with excluding the effect of common digital 3-

bit computations. The layer with the highest energy consumption 

improvement of 46.12% is the input layer of the CIFAR-10 CNN 

because zero input is scarce for input RGB images, and the number of 

transitions on logic gates is the largest for the digital domain. 

Conversely, the layer with the lowest energy consumption 

improvement of 20.44% is the first fully-connected layer in the CIFAR-



 

81 

 

10 CNN, with very sparse non-zero inputs. In addition, the first layer of 

the MNIST CNN with the lowest column utilization among all layers 

also showed a low energy consumption improvement of 24.51% since 

the prototype IC has no column-wise gating function for analog 

operations for unused columns. The IC can improve energy efficiency 

for low column utilization layers if the CMU at unused columns can be 

turned off. 

 

Figure 6.5. The utilization and energy efficiency with mixed-signal and digital-

only MAC operations for each layer of CNN examples. 

 
Figure 6.6. The comparison ratio of additional energy consumption compared to 

the case with zero-inputs and gating analog circuits. 



 

82 

 

Fig. 6.7 shows that the prototype IC achieves a minimal accuracy 

drop of -0.42 to 0.33%p compared to the ideal accuracy, for example, 

MNIST/CIFAR-10 CNN with signed 9-bit weights applying a 

calibration process. The input parameters of the 5-bit programmable 

current source on MPEs were calibrated from the initial value, the 

midpoint of the adjustable range. The 16×16 calibration parameters 

were trained by gradient descent optimization for cost function, the sum 

of squared errors. All weights were fixed to 255 and used random 16 

inputs whose sum did not exceed 64 for 300 epochs. The trained 

parameters are quantized to 5-bit for programmable current sources. 

Even without calibration, MSB 3-bit digital computations guarantee 

tiny accuracy drops of 2.44/2.80%p compared to the ideal accuracy.  

 

 

Figure 6.7. The accuracy improvement with the calibration process for the 

example MNIST/CIFAR-10 CNNs. 



 

83 

 

The accuracy improvement with the calibration process saturates 

around 150 epochs, and it was confirmed that the result accuracy was 

2.02/3.13%p higher than the case without applying calibration. 

Fig. 6.8 shows top-1 and top-5 accuracy changes when the CIFAR-

100 CNN in Fig. 2.3(c) is tested under the same conditions. After 

completing the calibration process, the final top-1/top-5 accuracy drop 

is 2.07/-0.77%p, and the top-1 accuracy drop is higher than that of 

MNIST/CIFAR-10 CNN examples. In addition, the accuracy drop for 

the only-digital-input case is 10.54/7.76p%, which is significantly 

higher than the MNIST/CIFAR-10 CNN examples. The primary cause 

of the high accuracy drop is the unstable learning state of the example  

 

 

Figure 6.8. The accuracy improvement with the calibration process for the 

example CIFAR-100 CNN. 



 

84 

 

CNN. Fig. 6.9 shows the training process of the example CIFAR-100 

CNN. Despite three long training processes, the test accuracy sustained 

much higher than the training accuracy. Therefore the network is 

overfitted. In addition, since the test cost tends to increase at later 

iterations of the training process, it can be presumed that the probability  

 

 

 

Figure 6.9. The training and test accuracy and training and test cost change during 

three training processes. 

 



 

85 

 

of the network selecting similar-but-incorrect classes increases. It can 

also be thought that this network's characteristic helped the top-5 

accuracy record a higher accuracy than the ideal accuracy with the non-

ideality from the analog operations of the prototype IC. And the top-5 

accuracy increases significantly with activating analog operations even 

without the calibration process because the outputs of the last fully 

connected layer with relatively low values for similar-but-incorrect 

classes can produce non-zero values with latter bit computations. 

For checking less additional energy consumption for the latter 

weight bit-position than MSB, the energy consumption for 1 MAC 

operation was measured with increasing weight precision from binary 

to signed 9-bit. Fig. 6.10 shows the peak energy efficiency with 

changing weight precision configurations for four cases of inputs for 16 

WLs. The four cases are as follows; First, all inputs are zero (zero 

case). Second, all inputs are 31 (8'b0001_1111), the maximum of LSB 

5-bit (analog-max case). Third, all inputs are 224 (8'b1110_0000), the 

maximum MSB 3-bit (digital-max case). Fourth, all inputs are 

maximum of 255 (8'b1111_1111, max case). The weights for all MPEs 

are the same as +170 (=9'b0_1010_1010), which causes many 

transitions of eight. For reference, it was confirmed that when only the 

analog operation is used, there is no difference from using 255 

(9'b0_1111_1111) for weights with the number of transitions of two.  

 



 

86 

 

 

Figure 6.10. The peak energy efficiency with different types of inputs with 

changing weight precision configurations. 

 

As the weight precision increases, energy consumption increases as 

a linear relationship with the large constant term. Since the constant 

term is larger than the differential term, the energy consumption for the 

latter weight bit-position consumes less energy than the MSB. The 4-

level quantization and accumulation of CMU repeated eight times to 

generate a signed 10-bit output generates the constant term, and the 

digital computation, bit-line pre-charge, DPWM pulse generation, and 

weight bit shifting create the differential term for each weight bit 

configuration. In addition, due to the energy consumed during the 



 

87 

 

digital transitions, the energy consumption increased by weight 

precision of the digital-max case is 1.47 times greater than that of the 

analog-max case. 

Fig. 6.11 shows the energy breakdown, which shows the energy  

consumption ratio of each circuit in the case of maximum energy 

consumption. Energy consumption in MPE SRAM and the LM shared 

by analog and digital domains does not affect the difference in energy 

efficiency improvement between mixed-signal and all-digital cases. The 

 

Figure 6.11. Energy breakdown. 



 

88 

 

 
Figure 6.12. Standby energy ratio with the max case input. 

analog domain, occupying 5/8 of the operations, accounts for 43.6% of 

the total energy consumption by adding the figures of the DPWM, the 

MPE current source, and the CMU. On the other hand, the digital 

domain, occupying 3/8 of the operations, accounts for 49.4% of the 

total energy consumption, and the energy consumption per bit is 1.89 

times higher than the analog operation. However, the energy efficiency 

of the digital operation in the example CNNs is better than in the 

maximum energy case since the bit sparsity of input and weight reduces 

energy consumption. In addition, the energy consumption of a CMU is 

more than 20 times that of an MPE current source, indicating that the 

CMU is the primary energy consumption source of the analog 



 

89 

 

computations. As shown in Fig. 6.12, the standby energy consumption 

is 31.3% of the maximum energy consumption, of which the entire 

analog circuit and 16 CMUs generate 77.6% and 52.4%, respectively. 

Therefore, reducing the standby current of an op-amp in a CMU is 

necessary to improve the analog domain energy efficiency of the 

prototype IC. 

Fig. 6.13 shows the area breakdown, which shows the area 

consumption ratio of each circuit. The area of the MPE array is 0.74 

mm2, 77.29% of the area of the computation core. Moreover, the 

accounted area of SRAM, 5-bit programmable current source, and 

auxiliary logic is 55.90%, 10.45%, and 33.66% of the MPE area,  

 

 

Figure 6.13. Area breakdown. 



 

90 

 

respectively. To improve the weight bit density of 0.307bit/μm2, 

increasing memory capacity and simplifying logic for an MPE is 

necessary. The area sum of a CMU and an LM was 6369 μm2, 

respectively, and the area of one DPWM was 656 μm2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

 

Chapter 7  

 

Conclusion 

 

This dissertation proposes a DNN accelerator hardware based on an 

MPE array that supports mixed-signal domain operations combining the 

advantages of accurate digital and energy-efficient analog domain 

operations. The proposed accelerator accurately computes the upper 

signed 4-bit, significantly affecting DNN accuracy among signed 9-bit 

inputs in the digital domain via an MPE column adder chain. The 

remaining lower unsigned 5-bit is modulated as pulse width with a 

DPWM and multiplied by weights in a bit-serial manner to generate a 

current sum on MPE bit-lines. Weight precision reconfigurability is 

implemented, and a cyclic MAC scheme is proposed to fix the number 

of analog-to-digital converted bits regardless of weight precision in a 

bit-serial manner. 

The efficacy of the proposed DNN accelerator is verified by the 

results from a measurement environment, including a prototype IC 

fabricated with a 28 nm CMOS process and a Xilinx Kintex-7 FPGA 

KC705 evaluation kit. A 4-layer MNIST CNN example and a 5-layer 

CIFAR-10 CNN example were used for testing, and classification 



 

92 

 

accuracy changes of -0.42 to 0.33%p were recorded when 300 

calibration epochs were performed. In addition, the energy consumption 

of each layer decreased by 20.4 to 46.1% compared to the case with 

only digital calculations. 

A technique of simultaneously calibrating all 16×16 current sources 

on an MPE array with a gradient descent training method was proposed 

to simplify calibration processes for improving DNN accuracy with 

analog operations. With Tensorflow simulation, the calibration process 

of 500 epochs could recover classification accuracy to 96.5-98.3% from 

defected accuracy of 17.3-95.5% by a process variation model added to 

MNIST CNN with an ideal accuracy of 98.2%. 

A verification environment including three-level simulations was 

established for fast and accurate verifications for IC design steps. The 

system-level simulation built with the XMODEL simulator validates 

the functionality of the prototype IC for running DNN examples, 

consuming a short simulation time of 15 minutes per input image. In 

addition, the non-ideal characteristics obtained from analog circuit 

simulations were modeled on Tensorflow to predict the effect on DNN 

accuracy, and the acceptable range for each non-ideal characteristic 

could be determined early in the circuit design steps. 

 

 



 

93 

 

Bibliography 

[1] K. Simonyan and A. Zisserman, "Very deep convolutional networks for 

large-scale image recognition," in arXiv preprint arXiv:1409.1556, Sep. 

2014. 

[2] T. Luo, et al., "DaDianNao: A Neural Network Supercomputer," IEEE 

Transactions on Computers, pp. 73-88, May. 2016. 

[3] Y. -H. Chen, et al., " Eyeriss: An Energy-Efficient Reconfigurable 

Accelerator for Deep Convolutional Neural Networks," IEEE J. Solid-State 

Circuits, pp. 127-138, Apr. 2017. 

[4] J. Lee, et al., "UNPU: An Energy-Efficient Deep Neural Network 

Accelerator with Fully Variable Weight Bit Precision," IEEE J. Solid-State 

Circuits, pp. 173-185, Jan. 2019. 

[5] P. C. Knag, et al., " A 617-TOPS/W All-Digital Binary Neural Network 

Accelerator in 10-nm FinFET CMOS," IEEE J. Solid-State Circuits, pp. 

1082-1092, Apr. 2021. 

[6] S. Yin, et al., "An Energy-Efficient Reconfigurable Processor for Binary- 

and Ternary-Weight Neural Networks with Flexible Data Bit Width," IEEE 

J. Solid-State Circuits, pp. 1120-1136, Apr. 2019. 

[7] J. Yue, et al., "STICKER-T: An Energy-Efficient Neural Network 

Processor Using Block-Circulant Algorithm and Unified Frequency-

Domain Acceleration," IEEE J. Solid-State Circuits, pp. 1936-1948, Jun. 

2021. 

[8] M. S. Ansari, et al., "Improving the Accuracy and Hardware Efficiency of 

Neural Networks Using Approximate Multipliers" IEEE Trans. Very Large 

Scale Integr. (VLSI) Syst., pp. 317–328, Feb. 2020. 

[9] A. Parashar et al., "SCNN: An Accelerator for Compressed-Sparse 

Convolutional Neural Networks," ACM SIGARCH Computer Architecture 

News, pp. 27–40, May. 2017. 

[10] J. -F. Zhang, et al., "SNAP: An Efficient Sparse Neural Acceleration 

Processor for Unstructured Sparse Deep Neural Network Inference," IEEE 

J. Solid-State Circuits, pp. 636-647, Feb. 2021. 

[11] B. Moons, et al., "Envision: A 0.26-to-10tops/w subword-parallel 

dynamic-voltage-accuracy-frequency-scalable convolutional neural 



 

94 

 

network processor in 28nm FDSOI," in IEEE Int. Solid State Circuit Conf. 

(ISSCC), pp. 246–247, Feb. 2017. 

[12] F. Tu, et al., "Evolver: A Deep Learning Processor with On-Device 

Quantization–Voltage–Frequency Tuning," IEEE J. Solid-State Circuits, 

pp. 658-673, Feb. 2021. 

[13] D. Bankman, et al., "An Always-On 3.8 μJ/86% CIFAR-10 Mixed-

Signal Binary CNN Processor with All Memory on Chip in 28-nm CMOS," 

IEEE J. Solid-State Circuits, pp. 158-172, Jan. 2019. 

[14] D. Chang, et al., "Compact Mixed-Signal Convolutional Neural 

Network Using a Single Modular Neuron," IEEE Trans. on Circuits and 

Systems I: Regular Papers, pp.5189-5199, Dec. 2020. 

[15] B. Murmann, "Mixed-Signal Computing for Deep Neural Network 

Inference," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., pp. 3–13, 

Jan. 2021. 

[16] J. Zhang, et al., "In-Memory Computation of a Machine-Learning 

Classifier in a Standard 6T SRAM Array," IEEE J. Solid-State Circuits, pp. 

915-924, Apr. 2017. 

[17] A. Biswas and A. P. Chandrakasan, "CONV-SRAM: An Energy-

Efficient SRAM With In-Memory Dot-Product Computation for Low-

Power Convolutional Neural Networks," IEEE J. Solid-State Circuits, pp. 

217-230, Jan. 2019. 

[18] H. Jia, et al., "A Programmable Heterogeneous Microprocessor Based 

on Bit-Scalable In-Memory Computing," IEEE J. Solid-State Circuits, pp. 

2609-2621, Sep. 2020. 

[19] J. Yue, et al., "A 2.75-to-75.9TOPS/W Computing-in-Memory NN 

Processor Supporting Set-Associate Block-Wise Zero Skipping and Ping-

Pong CIM with Simultaneous Computation and Weight Updating," in IEEE 

Int. Solid State Circuit Conf. (ISSCC), pp. 238–240, Feb. 2021. 

[20] J.-W. Su, et al., "A 28nm 384kb 6T-SRAM Computation-in-Memory 

Macro with 8b Precision for AI Edge Chips," in IEEE Int. Solid State 

Circuit Conf. (ISSCC), pp. 250–252, Feb. 2021. 

[21] J.-H. Kim, et al., "Z-PIM: A Sparsity-Aware Processing-in-Memory 

Architecture with Fully Variable Weight Bit-Precision for Energy-Efficient 

Deep Neural Networks," IEEE J. Solid-State Circuits, pp. 1093-1104, Apr. 

2021. 

[22] H. Jia, et al., "Scalable and Programmable Neural Network Inference 



 

95 

 

Accelerator Based on In-Memory Computing," IEEE J. Solid-State Circuits, 

pp. 198-211, Jan. 2022. 

[23] K. Zia, et al., "Calibrating Process Variation at System Level with In-

Situ Low-Precision Transfer Learning for Analog Neural Network 

Processors," in the 28th ACM/IEEE Design Automation Conf. (DAC), pp. 

1–6, Jun. 2018. 

[24] S. K. Cherupally et al., "Improving DNN Hardware Accuracy by In-

Memory Computing Noise Injection," IEEE Design & Test, pp.1-8, Dec. 

2021.  

[25] S. K. Esser, et al., "Learned Step Size Quantization," in The Intl. Conf. 

on Learning Representations (ICLR), pp. 1–12, Apr. 2020. 

[26] L. Deng, et al., "Model Compression and Hardware Acceleration for 

Neural Networks: A Comprehensive Survey," Proceedings of the IEEE, pp. 

485-532, Apr. 2020. 

[27] A. N. Mazumder, et al., "A Survey on the Optimization of Neural 

Network Accelerators for Micro-AI On-Device Inference," IEEE J. 

Emerging and Selected Topics in Circuits and Systems, pp. 532-547, Dec. 

2021 

[28] E. Park, et al., "Value-aware Quantization for Training and Inference 

of Neural Networks," in European Conf. on Computer Vision (ECCV), pp. 

580-595, Sep. 2018. 

[29] L. Song, et al., "PipeLayer: A Pipelined ReRAM-Based Accelerator 

for Deep Learning," in Pro. of IEEE Int. Symp. on High Performance 

Computer Architecture (HPCA), pp. 541-552, Feb. 2017. 

[30] S. Ruder, "An Overview of Gradient Descent Optimization 

Algorithms," arXiv preprint arXiv:1609.04747, Sep. 2016. 

[31] S. Baek and J. Kim, "A Gradient-Descent Calibration Method to 

Mitigate Process Variations in Analog Synapse Arrays," in Int. Conf. on 

Electronics, Information, and Communication (ICEIC), pp.1-4, Feb. 2022. 

[32] Y. Lee, et al., "A 9-11 bits Phase-Interpolating Digital Pulse-Width 

Modulator with 1000X Frequency Range," in Pro. of IEEE Energy 

Conversion Congress and Exposition (ECCE), pp. 2172-2176, Nov. 2014. 

[33] B. Murmann and B. E. Boser, "A 12-bit 75-MS/s Pipelined ADC 

Using Open-Loop Residue Amplification," IEEE J. Solid-State Circuits, pp. 

2040-2050, Dec. 2003. 



 

96 

 

초 록 

본 학위 논문은 혼합 신호 연산을 활용하여 심층신경망 연산기 

하드웨어의 정확도 하락과 에너지 소모 증가를 완화하는 방법을 제

시한다. 제안하는 하드웨어 구조는 16×16 혼합 신호 연산 유닛 어

레이를 포함하며, 심층신경망 정확도에 큰 영향을 주는 입력의 앞 

네 자리를 디지털 연산으로 구현하고 자주 발생해 에너지 소모가 

큰 뒤 다섯 자리를 아날로그 연산으로 구현하여 입력 자릿수에 따

라 불필요하게 소모하는 에너지를 줄이며 높은 심층신경망 정확도

를 유지할 수 있다. 제안하는 혼합 신호 연산 유닛은 가중치의 비트

를 직렬로 연산하여 다양한 가중치 자릿수 연산을 지원한다. 또, 출

력의 자릿수를 고정하고 가중치 자릿수 별로 2 비트씩만 아날로그-

디지털 변환을 수행하여 가중치 자릿수와 관계없이 동일한 변환 수

를 유지할 수 있는 주기 연산 방식도 제안하였다.  

제안한 하드웨어의 유효성은 28nm CMOS 공정으로 제작한 프로

토타입 IC 과 Xilinx Kintex-7 FPGA KC705 보드를 포함하는 측정 

환경에서 얻은 측정 결과를 통해 검증되었으며, IC 의 설계 과정은 

세 가지 시뮬레이터를 조합하여 예제 단위의 수많은 연산을 빠르고 

정확하게 처리할 수 있는 검증 환경을 통해 검증되었다. 검증에는 

4-layer MNIST CNN, 5-layer CIFAR-10 CNN, 7-layer 

CIFAR-100 CNN이 사용되었다. 별도로 제안된 경사하강법을 활용

한 어레이 캘리브레이션 방식을 적용하여 프로토타입 IC 상에서의 

예제 CNN 의 정확도를 측정하였을 때, -0.42~0.33%p 의 

MNIST/CIFAR-10 예제의 작은 정확도 변화를 기록하였다. 각 심



 

97 

 

층신경망 레이어 별 에너지 소모는 모든 연산을 디지털로 수행한 

등가 상황과 비교하였을 때 20.4~46.1%만큼 줄어들었음을 확인하

였다. 

 

주요어 : 딥 뉴럴 네트워크, 신경망 연산, 신경망 연산 가속기, 아날

로그 디지털 간 변환, 어레이 구조, 재구성 가능한 구조 

학 번 : 2014-21726 


	CHAPTER 1 INTRODUCTION
	1.1 MOTIVATION
	1.2 THESIS CONTRIBUTION AND ORGANIZATION

	CHAPTER 2 NEURAL NETWORK ACCELERATOR WITH MIXED-SIGNAL PROCESSING ELEMENT ARRAY
	2.1 TOP ARCHITECTURE
	2.2 MIXED-SIGNAL MAC REALIZATION ON AN MPE ARRAY ARCHITECTURE
	2.3 CYCLIC MAC SCHEME WITH BIT-SERIAL OPERATION
	2.4 REALIZATION OF DNN LAYERS ON AN MPE ARRAY

	CHAPTER 3 ARRAY CALIBRATION SCHEME WITH GRADIENT DESCENT OPTIMIZATION
	3.1 GRADIENT DESCENT OPTIMIZATION
	3.2 CALIBRATION SCHEME
	3.3 SIMULATION RESULTS

	CHAPTER 4 IMPLEMENTATION OF A COMPUTATION CORE AND TEST LOGICS
	4.1 MIXED-SIGNAL PROCESSING ELEMENT
	4.2 DIGITAL PULSE-WIDTH MODULATOR
	4.3 CYCLIC MAC UNIT
	4.4 TEST LOGICS

	CHAPTER 5 VERIFICATION ENVIRONMENT FOR THE IC DESIGN STEP
	5.1 VERIFICATION ENVIRONMENT WITH THREE TYPES OF SIMULATORS 
	5.2 VERIFICATION FOR DNN EXAMPLES WITH SYSTEM-LEVEL SIMULATIONS
	5.3 VERIFICATION FOR DNN EXAMPLES WITH DNN-LEVEL SIMULATIONS

	CHAPTER 6 MEASUREMENT RESULTS OF PROPOSED NEURAL NETWORK ACCELERATOR IC
	6.1 MEASUREMENT ENVIRONMENT AND PROTOTYPE IC
	6.2 MEASUREMENT RESULTS

	CHAPTER 7 CONCLUSION
	BIBLIOGRAPHY
	초 록


<startpage>14
CHAPTER 1 INTRODUCTION 1
 1.1 MOTIVATION 1
 1.2 THESIS CONTRIBUTION AND ORGANIZATION 7
CHAPTER 2 NEURAL NETWORK ACCELERATOR WITH MIXED-SIGNAL PROCESSING ELEMENT ARRAY 9
 2.1 TOP ARCHITECTURE 9
 2.2 MIXED-SIGNAL MAC REALIZATION ON AN MPE ARRAY ARCHITECTURE 12
 2.3 CYCLIC MAC SCHEME WITH BIT-SERIAL OPERATION 17
 2.4 REALIZATION OF DNN LAYERS ON AN MPE ARRAY 21
CHAPTER 3 ARRAY CALIBRATION SCHEME WITH GRADIENT DESCENT OPTIMIZATION 24
 3.1 GRADIENT DESCENT OPTIMIZATION 24
 3.2 CALIBRATION SCHEME 26
 3.3 SIMULATION RESULTS 29
CHAPTER 4 IMPLEMENTATION OF A COMPUTATION CORE AND TEST LOGICS 33
 4.1 MIXED-SIGNAL PROCESSING ELEMENT 33
 4.2 DIGITAL PULSE-WIDTH MODULATOR 40
 4.3 CYCLIC MAC UNIT 43
 4.4 TEST LOGICS 48
CHAPTER 5 VERIFICATION ENVIRONMENT FOR THE IC DESIGN STEP 55
 5.1 VERIFICATION ENVIRONMENT WITH THREE TYPES OF SIMULATORS  55
 5.2 VERIFICATION FOR DNN EXAMPLES WITH SYSTEM-LEVEL SIMULATIONS 58
 5.3 VERIFICATION FOR DNN EXAMPLES WITH DNN-LEVEL SIMULATIONS 68
CHAPTER 6 MEASUREMENT RESULTS OF PROPOSED NEURAL NETWORK ACCELERATOR IC 75
 6.1 MEASUREMENT ENVIRONMENT AND PROTOTYPE IC 75
 6.2 MEASUREMENT RESULTS 80
CHAPTER 7 CONCLUSION 91
BIBLIOGRAPHY 93
초 록 96
</body>

