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Abstract

This work presents a method to mitigate deep neural network (DNN)
accuracy drop and energy consumption increase of DNN accelerator hardware
by utilizing mixed-signal operations. The proposed accelerator includes an
array of 16x16 mixed-signal processing elements (MPEs), which implements
signed upper 4-bit of a signed 9-bit input that significantly influences a DNN
accuracy with digital operations, and latter unsigned 5-bit that frequently
appears with energy-efficient analog operations. The proposed MPE array
supports weight precision from signed 1-bit to 9-bit in a bit-serial manner. In
addition, this dissertation proposes a cyclic multiply-accumulate scheme that
fixes an output precision and performs analog-to-digital conversion by only 2
bits for each cycle to maintain the number of analog-to-digital converted bits
regardless of the weight precision.

The efficacy of the proposed accelerator was verified by results obtained
from the measurement environment, including a prototype IC fabricated with a
28nm CMOS process and a Xilinx Kintex-7 FPGA KC705 board. The
simulations for IC design steps were performed in a verification environment
that could quickly and accurately process numerous calculations in DNN
examples by combining three-level simulators. A 4-layer MNIST CNN, a 5-
layer CIFAR-10 CNN, and a 7-layer CIFAR-100 CNN were used for
simulations and tests. The accuracy of the example CNNs on a prototype IC
was measured by applying the MPE array calibration method using the gradient

descent optimization technique, and tiny MNIST/CIFAR-10 CNN accuracy



changes of -0.42~0.33%p was recorded. The energy consumption for each
DNN layer decreased by 20.4-46.1% compared to the equivalent case with all

digital computations.

Keywords: Analog-to-digital converting, Array architecture, Deep neural
network, Neural computing, Neural network accelerator, Reconfigurable
architecture
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Chapter 1

Introduction

1.1 Motivations

With the rapid development of deep neural network (DNN) software,
many studies have proposed accelerator hardware for DNN
computations. DNNs utilize simple but numerous operations such as
multiply-accumulate (MAC), rectified linear unit (ReLU) activation,
pooling, and normalization. For example, the VGG-19 model [1],
widely used as a benchmark, classifies one 224x224 image and
performs multiplications more than 17 billion times. Therefore, since
DNNs require a lot of data movement between memory and processing
elements (PEs), conventional computing systems with the Von
Neumann architecture generate a bottleneck between separated memory
and PEs, causing a lot of energy and latency consumption.

Various studies have introduced novel DNN accelerator architectures
for replacing the Von Neumann architecture. Many studies like [2-4]
minimized the number of memory accesses by placing memory and PEs

on the same die, including memory in a PE, or rearranging the
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sequences of computations. In addition, various techniques have been
proposed, such as quantization [5-6], model compression [7],
approximate computing [8], utilizing sparsity [9-10], and voltage-
frequency scaling [11-12] to increase hardware performance with
sacrificing accuracy of DNNs. Some researchers introduced analog
operations to achieve higher energy efficiency [13-15]. Furthermore, a
computation-in-memory (CIM) architecture was proposed for

increasing energy efficiency and density by reducing the movements
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of repeatedly computed weights. A CIM architecture realizes a vector-
to-matrix multiplication by accumulating weighted-sum represented
with analog physical values like currents or charges on memory bit-
lines [16-22]. For example, [19] recorded a high energy efficiency of
75.9 TOPS/W with a 2.24-3.14%p decrease in accuracy of DNNs
classifying CIFAR-10 datasets.

However, the following difficulties arose due to the inflexibility of
CIM architectures fixed after fabrication processes. First, it is difficult
to attenuate accuracy drops caused by the uncertainties of analog
operations. Area consumption is significant for adding a calibration
function for each computing element, like a CIM architecture's memory
cell. For example, a 5-bit programmable current source with the ability
to calibrate element-wise multiplication in the proposed architecture of
this dissertation is 278 times larger than a 6T SRAM cell. Some studies
have proposed a method of post-training including the non-ideal
characteristics of each fabricated IC [23-24], but additional time-
consuming processes are required whenever the target [C or DNN
change. Alternatively, there is a way to increase accuracy by utilizing
high precision [25-27]. Some researchers implemented high-precision
operations by placing input and weight bits separately for each column
and cycle [18,21]. However, since all input and weight bits share the
same computation path, there is a problem that energy consumptions
and distortions from an analog domain are experienced equally

regardless of bit position. Therefore, LSB that has less influence on



DNN accuracy [28] than MSB consumes the same energy as MSB. In
addition, depending on the size of the DNN, utilization ratios of
computation elements or conversion circuits like DACs and ADCs
decrease. As shown in Table.1.1, the PE utilization ratio decreases with
increasing the PE array size when running the VGG-19 DNN model. As
shown in Fig. 1.4, the PE utilization ratio of the 16 X 16 PE array differs

within each layer of the VGG-19 DNN model.
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Table 1.1. PE Utilization of the VGG-16 model for different PE array sizes.

Col 16 64 256 1024
Row
16 98.32% 89.94% 86.76% 81.09%
64 96.07% 90.58% 85.80% 79.28%
256 92.50% 89.83% 84.73% 77.66%
1024 87.85% 87.83% 83.18% 76.06%
6



1.2 Thesis Contribution and Organization

This dissertation proposes a DNN accelerator IC with an array
architecture composed of mixed-signal processing elements (MPEs) to
address these problems. An MPE has an SRAM storing 1152 weight
bits and supports analog and digital MACs.

The proposed IC has the following characteristics. First, An MPE
array computes the upper 4-bit of a signed 9-bit input on an accurate
digital domain and the lower 5-bit on an analog domain with high
energy efficiency. Second, An MPE adopts a bit-serial manner to load a
weight bit for each cycle. In a bit-serial manner, weight bits on an MPE
share various circuits for calibration, weight precision reconfigurability,
and domain conversions reducing area overhead and sustaining a high
PE utilization ratio. Third, this dissertation proposed a cyclic MAC
scheme that quantizes the results of analog operations by only 2-bit for
each cycle for a total of 8 cycles and accumulates residue on the analog
domain. Since the cyclic MAC scheme fixes the number of analog-to-
digital converted bits, it is possible to maintain consistent energy
efficiency for variable weight precision from signed 1-bit to 9-bit,
thereby reducing energy consumed in the lower weight bits.

In addition, a verification environment was implemented using a
DNN framework software, a System-Verilog-based simulator, and a
circuit-level simulator. Combining each verification level allows

accurate and fast verification of numerous DNN operations in the



hardware design stage.

Instead of manually calibrating the accelerator of the array structure
for each PE, this dissertation also introduces a calibration technique that
uses a gradient descent algorithm to adjust the output currents of an
MPE array in a direction, offsetting the effect of process variations.

This paper is described in the following order. Chapter 2 introduces
the features of the proposed accelerator with an MPE array and the
cyclic MAC scheme. Chapter 3 introduces the verification environment
and simulation results for the IC designing stage. Chapter 4 introduces
an array calibration technique utilizing a gradient descent algorithm and
the simulation results. Chapter 5 describes the detailed circuit design of
the proposed accelerator. Chapter 6 reports the measurement results

with a fabricated prototype IC running example DNNs.



Chapter 2

Neural Network Accelerator with
Mixed-Signal Processing Element

Array

2.1 Top Architecture

As shown in Fig. 2.1, the proposed IC comprises a 16x16 array of
MPEs, array-peripheral circuits on each side, and a current mirror array
for distributing the bias currents. On the left side of the MPE array,
there are 16 pairs of digital input drivers and digital pulse-width
modulators (DPWMs). Each signed 9-bit input is split into an upper
signed 4-bit signal and a lower unsigned 5-bit signal, and the digital
input driver drives the MSB-lines (MLs) with the upper 4 bits, and the
DPWM drives a pair of word-lines (WLs) with two pulses of which

timing difference expresses the lower 5 bits.
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Figure 2.1. The overall architecture of the proposed mixed-signal NN accelerator.

Each MPE in the array performs a mixed-signal MAC operation
between an input and a weight bit stored in an 1152-bit MPE SRAM in

a bit-serial manner. First, it computes the multiplication between the
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upper 4-bit input and one of the weight magnitude bits in a digital
fashion and propagates the accumulated sum towards the bottom of the
array via the data lines (DLs). Second, it steers discharging currents to a
pair of capacitively-loaded bit lines (BLs), of which duration is equal to
the timing difference of the two WL pulses, and the sign of the weight
sets polarity and magnitude and one of its magnitude bits, respectively.
The weighted sum of the inputs can be effectively computed through a
sequential, bit-serial operation in conjunction with the cyclic MAC unit
and logic module located at the bottom.

On the bottom side of the MPE array, there are 16 pairs of cyclic
MAC units (CMUSs) and logic modules (LMs). Each CMU produces a
signed 10-bit output as the weighted sum of the lower 5-bit inputs via
the sequential, bit-serial operation. Moreover, each LM combines the
results from the CMU and the weighted sum of the upper 4-bit inputs
propagated through the DLs and produces the final signed 14-bit
output.

The control signals for MPEs, DPWMs, CMUs, and LMs are
propagated with daisy chain connections to avoid long interconnects.
Similarly, each LM can update the weights stored on the MPEs by
propagating the values via the bidirectional DLs. The current mirror
array distributes the bias currents to 256 MPEs, 16 DPWMs, and 16

CMUs, all identical copies of the corresponding external bias currents.
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2.2 Mixed-Signal MAC Realization on an
MPE Array Architecture

Fig. 2.2 illustrates the mixed-signal MAC operation of the MPE in
more detail. The MAC operation is carried out in a bit-serial manner
over 9 control cycles. During the first 8 cycles, the analog part of the
MPE and CMU computes the sum of the lower 5-bit inputs scaled by
one magnitude bit of the weight and performs the shift-and-add
operation of the resulting signed 3-bit, 4-level values (3, +1) each
cycle, producing a signed 10-bit result (DANA). During the same
cycles, the digital part of the MPE and LM performs a similar shift-and-
add operation in the digital domain and produces a signed 16-bit result
(DDIG) of the weighted sum of the upper 4-bit inputs. And at the last
ninth cycle, the LM produces a signed 17-bit weighted sum (DMAC)
by combining DDIG with DANA scaled by 8. The final signed 14-bit

output (DOUT) is produced by truncating the lowest 3 bits of DMAC.

12
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MPEs process the upper input bits in digital to preserve the accuracy
and process the lower input bits in analog to save the power dissipation.
To provide a supporting argument, the median accuracy of running
1000 epochs of the MNIST convolutional neural network (CNN)
example with signed 9-bit weights shown in Fig. 2.3(a) is measured
while adding Gaussian additive noise to each bit position of the
activation, emulating the effects of variation when computing each bit
value in the analog domain. Fig. 2.4 plots the resulting degradation in
accuracy, indicating that the noises added to the upper bits significantly

impact the accuracy than those added to the lower bits. On the other

14



hand, Fig. 2.5 plots the number of transitions that occurred at each bit
position when all the computation for a 5-layer CIFAR-10 CNN
example in Fig. 2.3(b) is done in the digital domain. The number of
transitions is higher for the lower bits, implying that computing the
lower bits in the analog domain can save the most energy while
minimizing the accuracy's impact. This hybrid approach also relaxes the
required precision of the DPWM and reduces the required dynamic

range of the bit-line signal.
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2.3 Cyclic MAC Scheme with Bit-Serial
Operation

Fig. 2.6 illustrates the cyclic MAC unit (CMU) operation using a
signal flow model. The CMU computes the weighted sum of the 16
lower 5-bit inputs in the analog domain while producing signed 3-bit
outputs each cycle for eight cycles.

First, each MPE column generates a voltage difference on a bit-line
pair (Vsr). Ve has a value between +Vyv when Vv represents
maximum output voltage. Next, Vg is transmitted to a 4-level ADC
generating signed 3-bit quantized results (QTZD) with thresholds at 0V
and +£0.5xVwu. A digital-to-analog converter (DAC) generates a
reference voltage (VREF) from QTZD, and a residue (Vrsp) is
computed. In the next cycle, the residue Vrsp is scaled by a factor of 2
and combined with the new Vgp value. By repeating this process for
eight cycles and shifting and adding the signed 3-bit quantized output
of each cycle, the CMU can produce a signed 10-bit result of the
weighted sum.

Note that this architecture performs only the minimum operations
required to produce the final output bits. The sum of 16 unsigned 5-bit
inputs scaled by signed 9-bit weights would produce a 17-bit result.
Rather than first computing this total 17-bit result and then truncating
its seven least significant bits (LSBs) to produce the final 10-bit result,

the CMU computes the weighted sum in a bit-serial manner starting
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Figure 2.6. (a) A signal flow model illustrating the operation of the CMU (b) An

example case of the operation of the CMU.
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from the most significant bit (MSB) and stops when the remaining
computations do not affect the final 10-bit result obtained so far. In
other words, the number of CMU cycles only varies with the number of
output bits required, but not with the number of input or weight bits as
long as the output precision is lower than the total result with a
truncation.

The bit-serial operation of the proposed architecture allows it to
support variable weight bit precision. Fig. 2.7 illustrates the operations
with a signed 9-bit weight and a signed 2-bit weight. First, the sign bit
of the weight is loaded to the sign register. Second, the weighted sum of
the inputs is computed for each weight bit. Third, the CMU
accumulates the analog weighted sum while scaling the residue from
the previous cycle by two and produces the signed 3-bit quantized
output. At the same time, an LM accumulates the digital weighted sum.
Fourth, regardless of the weight bit precision, the signed 3-bit quantized
outputs are collected for eight cycles, and the combined results via

shift-and-add yield the final signed 14-bit result.
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Figure 2.7. Illustration of (a) signed 9-bit x signed 9-bit MAC operation and (b)
signed 9-bit x signed 2-bit MAC operation of the proposed bit-serial architecture.
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2.4 Realization of DNN layers on an MPE
Array

As shown in Fig. 2.8, since 1152 internal weight bits on an MPE
share array peripheral circuits with the bit-serial manner, the MPE array
can map the example CIFAR-10 CNN with high PE utilization of 78%.
Since all MPEs on the array share the same SRAM access address, it
can be understood as an MPE array containing 1152 16x16 weight bit
matrices. Because the number of weight bits activated at a time is small
as 16x16, the MPE array can maintain high PE utilization and require
only 16 peripheral circuits for each side to reduce area consumption.
With the bit-serial manner, an MPE array can efficiently map a weight
matrix of convolution, or a fully-connected layer is larger than a 16x16
array on a separated time domain. As shown in Fig. 2.9(a), the mapping
space of each kernel in a convolution layer was expanded from rows
[29] to SRAM addresses using multiple cycles. A fully connected layer
was mapped by dividing a weight matrix into several 16x16 sub-
matrices, achieving a column expansion by adding all results after sub-
matrix calculations and a row expansion by separating results at
different registers, as shown in Fig. 2.9(b). For operations of a layer
larger than a 16x16, a CMU accumulates intermediate results on signed

16-bit registers before ReLU activations.
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Chapter 3

Array Calibration Scheme with

Gradient Descent Optimization

3.1 Gradient Descent Optimization

Gradient descent is an optimization technique for finding the
minimum value of a target cost function with multiple variables [30]; it
is widely used as a neural network training method. The optimization
process obtains a differential value for the variable to be changed at the
current point; it iteratively moves at a velocity proportional to the
differential value.

The iy iteration step in the process is where o represents a step size

to move per iteration.

Xip1 = X — aVf(x;) (3.1
If the step size is too large, it is possible to bypass the optimum point; if
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it is too small, many iterations are required to reach the optimum point.
A squared error of a MAC is used as the target cost function for the

gradient descent method to achieve neural network learning.

T —t)? = i(f (T wijxj) — t;)? (3.2)

At this point, the weight changes through the ky iteration as Eq. 3.3.

Awijg = Wijrer — Wije = —2a X (y; — ) X Vf(wijx;) X x;  (3.3)
The error can propagate when the product of the weight and input is
positive if a ReLU is used for the activation function f(x). A gradient

matrix is obtained by multiplying the input vector with the error vector

using the sign of the input elementwise as Eq. 3.4.

W =XTE © sign(XTW) (3.4)
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3.2 Calibration Scheme

The proposed calibration scheme repeatedly learns the parameters of
a small 16x16 MPE array to process large layers according to process
variations. One fully connected layer with 256 weight parameters is
learned using a 16x16 MPE array as an example. The input vector is
generated randomly, and the ideal answer is the sum of input vector
elements with all output nodes sharing the same value. In this case, the
probability distribution of each input element follows a uniform
distribution between 0 and 1/16 such that the output value does not
exceed one and the gradient value does not increase excessively. The
weight bit of an MPE is fixed to a maximum value of 1. Furthermore,
the activation function is not used, and the sign term matrix in Eq. 3.4
disappears because the primary purpose is to check only whether the
results of multiplication and addition are accurate.

Fig.3.1 shows the proposed technique's implementation on an MPE
array. First, an input vector is generated using a PRBS pattern; Since
only 1/16 of the maximum value of signed 9-bit activation is required to
represent the number of bits of PRBS, unsigned 4-bit is sufficient for
the PRBS generator. A DPWM supplies the generated digital vector
input to the MPE array in the pulse width proportional to the input. In
addition, a CMU and an LM quantize generates a signed 9-bit digital
data, and an error vector is generated compared to the sum of the

elements of the supplied input vector. The last step is multiplying the
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Figure 3.1. The steps of implementing the proposed calibration technique.

input vector by the error vector to calculate the gradient matrix and add
it to the input parameter of the programmable current source. The
stored calibration parameter in an MPE is unsigned 8-bit digital data,
and it uses 8'b1000_0000, the median value of digital values expressed
in eight bits, as the initial value. A 5-bit programmable current source
uses the upper 5-bit of a calibration parameter as an input.

The generated gradient matrix has the same connection with the
MPE array between the inputs, outputs, and gradient elements;
therefore, the gradient matrix can be calculated internally on the MPE
array instead of using an external computation space. For realizing an
internal calibration scheme, additional modules are required inside an
MPE circuit, such as a multiplier for an input and error value and an
adder for adjusting the parameter of the current source. The input and
error data were clipped during the gradient operation to a maximum of

2'b11 using two bits to adopt this internal calibration scheme with a tiny
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hardware addition. Furthermore, the generated gradient value was

limited to a maximum of 3'b111, and it could be expressed in three bits.
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3.3 Simulation Results

We modeled an example neural network and the effect of process
variation using TensorFlow, a machine learning framework. The neural
network was modeled first and changed to reflect the same effect of
variation on parts calculated by the same weight because TensorFlow is
not a framework for describing hardware. Process variation is modeled
as two 16x16 arrays representing the scale and offset terms. This
variation array pair was randomly generated through a Gaussian
distribution with an average of 0 and a standard deviation of 0.5.

We implemented a set of sub-computations practical to only 16x16
units of weight left using TensorFlow built-in functions to include this
variation model in a neural layer operation. After calculating the
original layer for each sub-weight array, in the same manner, the
outputs were summed up, and a ReLU activation function was applied
to create the final result. The process variation was implemented by
multiplying the scale term and adding the offset term for each sub-
weight-array operation.

The accuracy improvement proceeds separately from the inference
process and goes through learning 16 x 16 variation terms with a
random input generated by a uniform distribution. A process comprising
forward propagation, multiplication, and addition was performed
without using the TensorFlow built-in optimizer function to implement

the synapse circuit clipping of input, weight, and gradient.
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We generated a set of 1000 different random variation arrays and
validated how classification accuracy changed when the proposed
techniques were applied. A four-layer convolution neural network for
handwritten digit classification based on MNIST data shown in Fig.
2.3.(a) was used. The ideal accuracy when the effect of process
variation is not applied to this network is 98.2%. Fig. 3.2 shows the test
results, including the process variation model. The red histogram shows
that the accuracy of the network decreases to 17.3~95.2% due to
process variations. Fig. 3.2(b) shows that the accuracy is almost fully
restored to the ideal level, ranging from 96.5% to 98.3%, after 500
epochs of learning with the proposed technique. The required number
of iterations to recover the accuracy to higher than 97% was measured
for each test; 150 and 250 times were sufficient for 92.7% and all tests,

respectively.
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Figure 3.2. The accuracy of the example DNN with variation model (a) without
and (b) with the proposed calibration technique.
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We conducted the following tests to confirm that this technique was
valid under several conditions. It was swept from three to eight bits to
check whether the number of bits used in the input code of the current
source was appropriate; then, as shown in Fig. 3.3, the technique could
not fully restore accuracy using a bit width lower than 5, which
indicates that finding the required minimum number of bits is essential.
The required number of bits may vary depending on the expected scale
or offset error distribution confirmed during the design process. A total
of 25 cases were tested by changing the standard deviation of Gaussian
distributions to view the scale distribution and offset error effect. Table
3.1 summarizes the average drop and improvement of accuracy for each
test. For each cell, the value on the left indicates the accuracy before
applying the technique; the value on the right represents the accuracy
after applying the technique. Accuracy is more affected by the scale
error, and if the standard deviation is less than 0.5, it can be recovered

sufficiently using this technique.
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Table 3.1. The average accuracy of the example DNN with and without the

proposed calibration technique for different variation conditions.

scale o=0 g =025 g=05 g =075 =1
offset
G =0 08.2%/98.2% | 96.1%/98.2% | 82.3%/98.1% | 47.9%/96.6% | 25.0%/89.1%
G =025 | 982%/982% | 96.0%/982% | 753%/98.1% | 44.0%/97.0% | 27.7%84.8%
G =05 | 982%/982% | 963%/982% | 78.1%/98.1% | 46.7%/969% | 26.6%/84.3%
o —075 | 982%/982% | 95.9%/982% | 77.8%/98.1% | 46.1%/969% | 27.9%/86.6%
o =1 982%/982% | 94.9%/98.2% | 71.5%/98.1% | 45.3%/96.8% | 27.9%/87.3%
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Chapter 4

Implementation of A
Computation Core and Test

Logics

4.1 Mixed-Signal Processing Element

Fig. 4.1 shows the schematic of an MPE having functions of storing
weight, computing a MAC on the mixed-signal domain, and calibrating
analog MAC current. First, an MPE uses a 6T SRAM block for storing
weight. An SRAM block can store a total of 1152 bits as 9 bits for each
7-bit address. A 9-bit mux selects a bit of weight for a MAC operation
within the 9-bit output of an SRAM. Second, for digital MAC
computation, an MPE chains an adder with adders of neighboring
MPEs using DLs. An adder adds a signed 4-bit digital input on ML to
signed 7-bit data from the upper MPE's DL[7:0]. And the output of an
adder is propagated to the downside MPE. Third, for analog MAC

computation, a WL logic decides whether to transmit or not the timing
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Figure 4.1. Schematic of the MPE.

difference of WLs according to the weight bit currently selected. And a

WL logic decides the direction of transmitting with a sign bit stored in a

sign-bit register. Moreover, the analog computation uses a 5-bit

programmable current source to control the amount of output current

with a calibration term.

Fig. 4.2 shows the port information of an MPE array and the detailed

connection between the MPEs when constructing the array. To prevent

a pulse from shrinking due to the propagation delay difference between

a rising and a falling edge during propagation, a DPWM generates only

rising edges and sends them separately to two WLs. An MPE has
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repeaters for pulses and control signals to drive the large parasitic
capacitance of WLs and control signal paths. An MPE has a bit-line pair
for each column, and each bit-line pair consists of a positive and a

negative line.

WL_15_15[1] WL_15_14[1] WL_15_13[1]
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Figure 4.2. The detailed port connection on an MPE array.
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Figure 4.3. The detailed port connections of DLs and MLs for accessing MPE
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An MPE array loads and saves weights by accessing MPE SRAMs
and operates digital MACs using MLs and DLs. As shown in Fig.
4.3(a), a MPE row is selected using an ML to handle weights. All DLs
in the target row configures a 9b-bidirectional bus connected and
transmits 9-bit weight data. For realizing digital MACs, MPEs serially
connect DLs to form an adder chain, such as Fig. 4.3(b).

The ability to calibrate the uncertainty of a 5-bit programmable
current source increases the accuracy of analog operations. Since the 5-
bit programmable current source can adjust the output current range
from 300nA to 900nA, an MPE can reduce the errors from the effect of
process variation on a multiplication below 19.35nA by a calibration
process. Fig. 4.4 shows the accuracy change of the MNIST CNN
example according to the standard deviation for generating random
Gaussian distribution for the variation model on output currents. The
NN accuracy drop is 1%p with a standard deviation of 0.053 x 600nA,
1.64 times larger than the MPE's calibration unit step. Additionally,
with the contents of Chapter 3, an easy calibration method to recover
network accuracy by regarding output currents of MPEs as trainable
parameters of a gradient descent training algorithm was used. Circuit
design complexity was reduced by inputting only MSB 5-bit of an 8-bit
parameter stored in a calibration term register into a programmable

current source.
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Figure 4.4. Example 4-layer MNIST CNN accuracy with a standard Gaussian
distribution standard deviation for randomly generated output current variation.

As shown in Fig. 4.5, a programmable current source uses a current
digital-to-analog converter (DAC) structure and generates a current
output by mirroring the current supplied from current bias circuits
proportional to the digital code. The MSB 2-bit uses unary coding to
reduce the non-linearity, while the LSB 3-bit uses binary coding to
reduce area consumption. The output current range is from 300nA to
900nA; a DAC constantly turns on offset 300nA and divides the
remaining 600nA by 31 levels. When a DAC enable signal (en_dac) is
off, analog switches (AMUXs) charge the input node with the supply
voltage, which is closer to PMOS gate voltages (V_PG, Ib_ MPE) at

run-time than ground, for fast responses. The current mirror of the
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output stage was implemented in a cascode form to reduce the output

current change due to the change of bit-line voltage.
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Figure 4.5. Schematic of the 5-bit programmable current source.
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4.2 Digital Pulse-Width Modulator

Fig. 4.6 shows a detailed schematic of a DPWM, including a pair of

integrate and fire (I&F) cells and steps for creating a pulse signal whose

width is proportional to the digital code. Like [32], a pair of I&F units

marking firing timing information proportional to a digital code

transmitted to an MPE row. A DPWM ctrl logic converts a 5-bit digital

code to a 31-bit thermometer code controlling switches connected to

each unit capacitor to guarantee monotonicity. Instead of using a single

large crossing detector, DPWM uses a miniature crossing detector for

each unit capacitor to reduce errors caused by the parasitic capacitance
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Figure 4.6. Schematic of a DPWM.
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of the crossing detector when the number of selected capacitors is
small. In addition, to prevent an offset term with parasitic capacitance,
for converting the digital value of an LSB 5-bit input equal to N, one
I&F unit connects 32-N capacitors, and another I&F unit connects all

32 capacitors in phase 1, 32-N in phase 2, as shown in Fig. 4.7.

Phase 1 » Phase 2
DPWM_en
DPWM_step

Code1[30:0] ~ 31 )( 31-Din’| 31
Code0[30:0] EL X 31-Din X 31

E 31xCuynit ; f
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Figure 4.7. Operation of a DPWM.
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The HSPICE simulation confirms that the ratio between capacitance
and current of an I&F cell can vary from 70% to 140% of the typical
corner case by process variations on the designed DPWM circuit. Due
to the wide range of variations, DPWMs with a large capacitance can
not fire within two cycles, which may cause non-linearity of input data.
To prevent the non-firing situation, a calibration function that adjusts
the magnitude of the current by checking whether firing occurs for the

maximum capacitance case was implemented in the DPWM logic.
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4.3 Cyclic MAC Unit

As shown in Fig. 4.8, a CMU has six main components: voltage
reference, 2-bit ADC, cyclic accumulator, capacitor bank, bit-line pre-
charger, and accumulation logic. The capacitor bank calibrates bit-line
capacitance to an appropriate value for supply voltage and maximum
pulse-width with 63 adjustable levels in 5.5fF units. A cyclic accumulator
receives two bit-line voltages as inputs and performs the reference
subtraction and residue doubling processes required for the cyclic MAC
scheme with generating differential output voltages. A 4-level flash ADC
quantizes output voltages from a cyclic accumulator and generates a signed
3-bit output whose value is one of £3 and +1. A voltage reference is a
voltage divider composed of nine 1k(2 resistors providing a reference
voltage to the cyclic accumulator and the 4-level ADC. An accumulator
logic generates signed 10-bit output by shifting and adding signed 3-bit
ADC output. The 16-bit control signal for a CMU is separated into control
signals for capacitor bank (cb_ctrl), cyclic accumulator (swecap_ctrl), and
bit-line pre-charger (bl_prch).

The quantization level of a CMU is related to the dynamic range of an
analog input and output voltage of a CMU. As shown in Fig. 4.9, when the
Vour range is restricted to £V, each quantization level has a size of
2Vm/(N+1) with N comparators. Using midpoints of each quantization
level as reference voltages, the residue after subtraction has a value

between £Vu/(N+1). Since the sum of input and doubled residue
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Figure 4.9. The number of comparators and dynamic range of input voltage.
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transferred to the Vour node cannot exceed Vu, the dynamic range of the
input is limited to Vmx(N-1)/(N+1). The dynamic range of input increases,
but quantizer bits increase together, and three comparators were selected
for a 4-level quantization as the optimal point. When N is 1, it is the same
as a cyclic ADC [33] with zero input range without a MAC for the next
weight bit.

Fig. 4.10 shows the schematic of the cyclic accumulator with detailed
connections at each operation phase. The cyclic accumulator consists of a
differential op-amp, three pairs of capacitors, and switches. There is one
more capacitor pair than a conventional differential switched capacitor
structure because a CMU receives the computation result of the following
weight bit for every cycle during multi-bit MAC operation. As shown in
Fig. 4.11, the cyclic accumulator has five operation phases, runs phases 1-2
for the first cycle, and repeats phases 3-5 for the successive seven cycles.
The swcap_ctrl signal is separated into seven flags as ®@s, ®a, ®r, and
®1~4. In phase 1, turn on ®s and ®1 to sample bit-line voltages to C1. In
phase 2, turn on ®a and @2 to move charges stored in C1 to C3. In phase
3, turn on Or to reset C1 and C2. In phase 4, turn on @1, transfer the
charge stored in C3 to C1, doubling the residue voltage, and
simultaneously turn on @3 to sample a bit-line voltage to C2. In phase 5,
turn on @2, transfer the charge stored in C1 and C2 to C3, and turn on ®4

to subtract a reference voltage.
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Figure 4.10. Schematic of a cyclic accumulator.
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Figure 4.11. The waveform of a cyclic accumulator in a MAC with a signed 9-bit

weight.
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4.4 Test logics

Since MPEs, CMUs, and DPWMs of the computation core require
many control signals and data ports, a test logic is required to generate
control signals in a die due to insufficient IC I/O pads. As shown in Fig.
4.12, the test logic consists of instruction SRAM and finite state
machine. The test logic sequentially generates a control signal with an
input instruction code. There are two operating phases for test logic:
First, the programming phase with instruction programming enabling
signal (prg_en) turned on. Second instruction running phase, with
prg_en turned off. As shown in Fig. 4.13, The test logic can load

instructions at both phases. In the programming phase, the test logic

input bus
output bus
output

programming signals
input data
Registers
reg_ctrl output data
read/address
Control
MUL,8b,2nd..... logic 8
data ‘ on/off é
a oy
State 5
Instruction enbale,8b,2nd,... | ] Counter <
memor disable 3
y disable 8
i state | e
Instruction
. MUL | UPD | SND [..-
logics : _ . control signals

Figure 4.12. The structure of a test logic for creating control signals for a
computations core with instruction codes.
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loads instruction codes from an instruction SRAM storing instruction
codes provided through programming signal ports. During the
instruction running phase, the test logic receives instruction codes
through input bus ports in the instruction running phase. After loading
an instruction code, a state counter determines the current state for each
clock cycle, and a combinational instruction logic activated by the

current instruction code generates control signals for each state and

prg_en
prg_data _ | 9b data_in
bus_in et tete et
prg_done |_| |_|
ack |
req |

Instruction loading @ Programming phase

ak TUTLUMUMUULULULULULL

prg_en _|
prg_data Ny [ 1
_______________ —--- =
inst_sram_in 0 X__11'h344

Instruction loading @ Instruction running phase

Figure 4.13. An example of instruction loading processes at programming and an
instruction running phase.
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transmits control signals to the computation core at the instruction
running phase. Moreover, the test logic includes registers for handling
four 9-bit data of each row and column of the computation core.

Fig.4.14 lists 21 instructions provided by the test logic of the
prototype IC. The detailed types of instruction codes are as follows:
first, nine configuration instructions (SSA, ERA, CFD, CFC, UPD,
SFT, SSB, SRR, and SRW). Second, two communication instructions
(RCV, SND). Third, five DNN instructions (MUL, ADD, ATV, LDA,
MXP). Fourth, two for-loop creation instructions (LPS, LPE). Finally,
three debugging instructions (CNT, JMP, SFS).

The functions of the configuration instructions are as follows. SSA
configures an MPE SRAM address for accessing MPE SRAMs for
MAC, reading, or writing weights. SSB is used to select the target
weight bit for a MAC manually. ERA initializes weights stored in MPE
SRAMs to zero. CFD and CFC calibrate or turn on DPWM and CMU,
respectively. SRW and SRR are used to write and read weights of MPE
SRAMs, respectively. SFT selects a row of an MPE array for accessing
MPE SRAMs via DL before using SRW and SRR. Finally, UPD is used
to load calibration terms for 5-bit programmable current sources of
MPEs.

With communication instructions, RCV receives external data, and
SND sends data to the outside of the prototype IC. As shown in Fig.
4.15, each 9-bit data is serially received or sent per instruction via 16

input or output bus ports for each row or column of an MPE array.
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Inst. | Full name 10 9 8 7] 6 | s 4 3 | 2 1 0 |mec|RreG
SSA | Set SRAM addr 0 0 0 layer inc_dis
ERA Erase 0 0 1 0 MEC whole REG_h REG_v _ reg_all reg_num
ADD Add 0 1 0 0 loc invert adc_rst src_reg_num trg_reg_num
MUL MAC 0 1 1 0 loc bit_width[3:0] reg_num
CFD CFG DPWM 0 1 1 1 0 0 on cal loc
CFC CFG CYMAC 0 1 1 1 0 1 on cal loc sgn
UPD | Update scale 0 1 1 1 1 load mult reg_num_h reg_num_v
SFT Shift row/col 1 0 0 0 0 loc shift_num _ rst
ATV | RelU activation 1 0 0 0 1 loc src_reg_num _ trg_reg_num
SSB | Set SRAM bit 1 0 0 1 0 0 osel[3:0]

LDA Load actv 1 0 0 1 0 1 loc adc_rst trg_reg_num
MXP Max-pool 1 0 0 1 1 0 loc clear reg_num
SRR SRAM read 1 0 0 1 1 1 0 0 loc reg_num
SRW SRAM write 1 0 0 1 1 1 0 1 loc reg_num
RCV Receive 1 0 0 1 1 1 1 0 loc reg_num
SND Send 1 0 0 1 1 1 1 1 loc reg_num
LPE Loop end 1 0 1 0 loc layer layer_rst | layer_save | layer_load | trg_reg | trg_rst
LPS Loop Start 1 1 epoch_times = MAX LOOP SIZE (249 = 512)

CNT | Control state cnt| 1 0 1 1 idx start _ step_count

IMP Jump 0 0 1 1 Address[6:0]

SFS | Select flag set 0 1 0 1 _ Flag_set_sel[2:0]

instruction codes.

ludes 21

ic inc

Figure 4.14. The instruction set of test log
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bus_out 0000 e 0000

with SND instruction

Figure 4.15. The examples of operating an RCV and an SND instruction.

The functions of DNN instructions are as follows. MUL implements
MAC:s by providing control signals for pulse generation to DPWMs,
weight bit loading to MPEs, and cyclic accumulator steps to CMUS.
ADD provides additions between data in registers. ATV supports ReLU
activation for output data. LDA determines an accumulation time point
between MAC results. MXP supports max-pooling operations.

The for-loop creation instructions operate as follows. LPS

determines a loop's size and stores the loop's starting point. The LPE
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specifies the point at which the loop ends and returns the instruction
SRAM address after the LPS with the same loop index. LPS and LPE
support a total of eight loop index creations. LPE also provides
incremental controls of MPE SRAM addresses, target weight bit
positions, and test logic register orders.

The functions of debugging instructions are as follows. CNT
provides manual adjustment of an instruction state. JMP provides
manual adjustment of an instruction SRAM address. As shown in Fig,.
4.16, SFS selects control signals for a computation core to be sent

outside a prototype IC using bus_out ports.
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Figure 4.16. The logic for monitoring control signals from the control logic to the
computation core.
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Chapter 5

Verification Environment for the

IC Design Step

5.1 Verification Environment with Three
Types of Simulators

Design steps of a mixed-signal DNN accelerator require a wide
range of verifications, including circuit-level, system-level, and DNN-
level. The following simulators were used for each verification level.
First, A HSPICE simulator was used to accurately predict non-ideal
characteristics of analog circuits such as a 5-bit programmable current
source of an MPE, a CMU, and a DPWM at the circuit level. Second,
XMODEL, a System-Verilog-based simulator, was used for system-
level verification. Since XMODEL is an event-driven simulator that
performs calculations only when any input changes, it is possible to
quickly and accurately verify interactions between numerous analog
circuits placed as an array by actively utilizing the sparse nature of

DNN:s. In addition to verifying the functionality at the system level, it is
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possible to predict the effect on MAC computation accuracy by
modeling non-ideal characteristics of analog circuits obtained from the
circuit level simulations. Finally, for DNN-level verification, a
verification environment using Tensorflow, one of the deep learning
frameworks, was prepared to verify factors of changing DNN
accuracies, such as analog circuits and calibration schemes proposed in
this dissertation. Like system-level verifications, the non-ideality
characteristics of analog circuits obtained from circuit-level simulations
were modeled using Python to realize the effect on computations in a
DNN. DNN-level simulations can determine whether the accuracy drop
caused by designed analog circuits is acceptable and, conversely, help
determine specifications for the degree of non-ideal characteristics of

analog circuits.
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Figure 5.1. An overview of the verification environment with three types of

simulators.
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5.2 Verification Environment with System-
Level Simulations

The system-level verification is performed for wide ranges between
circuit-level verifications for a single analog circuit and DNN-level
verifications for measuring accuracy for thousands of input images.
Specifically, the targets of the system-level verification are as follows.
First, the functionalities of test logic and analog and digital operations
of a computational core are verified for each instruction. Second, the

interactions between test logic and a computational core are verified

Analog circuits

(MPE, CMU, DPWM)
Circuit-Level /|

Verification

Single instruction

System-Level

epe e Instruction scenario
Verification

DNN layers
DNN-Level

Verification

v

DNN accuracy
with ~5000 images

Figure 5.2. The specific range of the system-level verification between the circuit-
level and the DNN-level verification.



with instruction scenarios frequently appearing in preparing or running
a DNN example, such as a MAC computation or an SRAM read.
Finally, a layer computation procedure from an input image to an output
label is verified by checking the error of each MAC computation
between ideal MAC results extracted from Tensorflow.

Table 5.1 shows the list of instruction scenarios for the system-level
verification. The numbering of each scenario was given following the
test order to be performed with a prototype IC in a lab. Each scenario
sweeps all cases or generates thousands of random data by performing
equivalence checks comparing the results of each scenario with ideal
values for covering a variety of DNN layer configurations with
different inputs, weights, and order of computations. Fig.5.3 shows an
example instruction code and system-level simulation result of the

05_mac instruction scenario.
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Table 5.1. The list of instruction scenarios for the system-level verifications.

Scenario Verification Target

00_prgsram Instruction loading at the programming
phase.

01_prgbus Instruction loading at the instruction running
phase.

02_rcvsnd Identity between received and sent data.

03 era The functionality of initialization of MPE
SRAMs

04 _wla Whether written and read, weights are
identical.

05_mac MAC errors with random data.

06_actv The functionality of RelLU.

07_mxp The functionality of max-pooling.

08_dpwm DPWM configuration and calibration.

09_cnt Changing an instruction state.

10_mnt The functionality of transmitting selected
control signals to the outside of the IC.

11_jmp Changing an instruction SRAM address.

12_cal Decreasing of MAC error along epochs for
gradient descent calibration process.
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Figure 5.3. The instruction code and simulation result of the 05_mac instruction
scenario.
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DNN layers on a prototype IC are implemented by combining
instruction sequences including 02 rcvsnd, 05_mac, 06_actv, and
07_mxp scenarios with DNN layer configurations. Scenarios as
00 prgsram, 01 prgbus, 03 era, 04 wla, 08 dpwm, and 12 cal are
used to verify pre-requisite tasks for setting a prototype IC before
running DNN layers. The remaining scenarios (09 cnt, 10_mnt,
11_jmp) are used for debugging a prototype IC. The system-level
verifications verified the gradient descent calibration method by
processing MAC results from the computation core inside a prototype
IC. Weights were used as max (255 =900 1111 _1111), and
randomized 6-bit inputs were generated using XMODEL PRBS
primitives. The randomly generated effects of process variations were
applied to XMODEL models for each MPE current source. Input and
error terms were clipped to 2-bit in test logic, and gradients generated at
each MPE were also clipped at 3-bit through vector multiplication to
lower the area consumption of an MPE. As shown in Fig. 5.4, MAC
errors could be minimized through the repeated calibration epochs of 5

ms.

62



Figure 5.4. The simulation result of gradient descent calibration method on
prototype IC.

XMODEL testbenches are automatically generated with layer
descriptions and input datasets of DNNs to reduce the difficulties of
building system-level verification environments for various DNN layers
and weight precision configurations. The generated testbench consists
of an XMODEL model of the prototype IC, weight information stored
in MPE SRAMSs, and an FPGA part controlling a prototype IC in a

measurement process.

63



Weights were realized with the Verilog force statement assuming

that weights were stored in MPE SRAMs before MAC calculations for

fast simulation operation. Weight values were generated with training

processes with Tensorflow and reshaped to fit the form of MPE SRAM

addresses.

An equivalence check module of the FPGA part (eq_chk.sv)

calculates errors for each MAC result by comparing values from the

ideal DNN model acquired from Tensorflow for each image input. In
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Figure 5.5. The task flow of testbench auto-creation with neural network
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addition, the FPGA part includes modules that store, reshape, and
transmit input and output data between layers to fit the shape of an
MPE array. The instruction sequence for running a prototype IC is
automatically generated by adjusting the size of for-loops and the order
of instructions according to layer descriptions and is provided to the
FPGA part.

As shown in Fig 5.5, the functionality of a prototype IC running a 9-
bit MNIST CNN example could be verified with the testbench auto-
generating task flow. The errors in MAC results could be confirmed.
The error was accumulated along with layers, but the maximum value
of 4 is sufficiently small. The simulation time required for each image
was 15 minutes and 9 seconds, making it possible to verify a mixed-

signal system faster than other circuit-level simulators.
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Figure 5.6. The XMODEL simulation result for the MNIST CNN example with
the 9-bit weight precision configuration.
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With 9-bit CIFAR-10 CNN and CIFAR-100 examples, since the
memory capacity required to store all network weights is greater than
288 kb of the prototype IC, four weight reloading processes are
required, as shown in Fig 5.6. For XMODEL simulations for
simplifying the simulation process, the reloading processes were
simplified by using Verilog force statements. For measurements on
prototype ICs requiring more time consumption for data UART
communications than running instructions, weights are reloaded after
5,000 images are processed, and the intermediate results are stored in
FPGA BRAMs. Fig 5.7 shows the result of XMODEL simulation for
checking the functionality of a prototype IC with running a 9-bit
CIFAR-10 example, and the simulation time of 2-hour 34-minute 22-
second per image was consumed.

Layer #1: 3D CNN Layer #2 : 3D CNN Layer #3 : 3D CNN Layer #4 : FCN Layer #5 : FCN
3x3x3x32 = 6/128 3x3x32x48 = 96/128 3x3x48x60 = 192/128 960x64 = 240/128 64x10 = 4/128

L
3¢ 2 : " CORE #2
> .
48 A CORE #3
: T ¢ %
| CORE #1 : 50 2
10000 Images N . 10000 Images N . 10000 Images 10000 Images . 10000 Images N
| Core 1 MAC Re-W I Core 2 MAC Re-W | Core 3 MAC Re-W I Core 4 MAC Re-W I Core 5 MUL |

| L1 I Layer 2 | Layer 3 | Layer 4 | L5 |

Figure 5.7. Weight loading scheme for the example CIFAR-10 CNN on a
computation core.
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Figure 5.8. The XMODEL simulation result for the CIFAR-10 CNN example with
the 9-bit weight precision configuration.
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5.3 Verification for DNN examples with
DNN-Level Simulations

The DNN-level simulations provide predictions of DNN accuracy
by modeling non-ideality characteristics of various analog circuits with
Python on the Tensorflow domain. Compared to the circuit- and
system-level simulations, which take a long time, from 16 minutes to
several days, to classify an image, the DNN level simulations require
simple models for computation parts associated with DNN accuracy.

Moreover, the DNN level simulations maximize the parallel computing

DNL

1
0 5 10 15 20 25 30 35
DPWM input code

Figure 5.9. The differential non-linearity of a designed DPWM was extracted with
100 HSPICE Monte-Carlo simulations.
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capability of GPUs and allow for the prediction of DNN accuracy with
a small time consumption of less than 1 minute for 5000 images in the
validation dataset. In this dissertation, the hardware used for the DNN
level simulations was NVIDIA GeForce GTX 1080 GPU. The fast
speed of DNN level simulation can significantly reduce the effort
required in predicting and determining accuracy-related performance
specifications in the IC design step. The followings are two examples of
determining the maximum allowable range of each non-ideality
characteristic in the analog circuit design steps.

First, it analyzes the effect on the DNN accuracy of DPWM offset

terms. In Chapter 4, a DPWM control method was proposed to reduce
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Figure 5.10. The result of curve fitting with Gaussian distribution for the offset
variations of a DPWM.
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offset terms caused by parasitic capacitors of DPWM I&F units, but as
shown in Fig.5.9, offset terms are not completely reduced due to the
comparably significant effect of process variations in cases with small
manner of an MPE array that reuses 16 DPWMs for each computation
and then repeatedly tiling 16 process variation terms for every 16
inputs. In addition, the offset term model was implemented only to the
analog-computed latter 5-bit of inputs.

As shown in the DNN level simulation results in the blue histogram
of Fig.5.11, there are only tiny accuracy drops of up to 0.2%p for a 9-
bit MNIST CNN example with DPWM offset term models obtained
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Figure 5.11. The Tensorflow simulation result for predicting the accuracy of the

MNIST CNN example with offset variations of 16 DPWMs extracted from
HSPICE Monte-Carlo simulations.
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from the HSPICE Monte-Carlo simulation. The green histogram is the
DNN level simulation results with a ten times larger standard deviation
of the Gaussian distribution for generating DPWM offset term than the
blue histogram, and there is only a tiny accuracy drop of up to 0.6%p.
Therefore, the offset characteristics of the DPWM circuit design do not
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Figure 5.12. HSPICE simulation results for noise and ratio between output
current and noise of an MPE's 5-bit programmable current source at three
representative PVT variation corners with sweeping an input code.
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cause a major problem in the accuracy drop, so more design steps were
not required to reduce non-ideality, enabling to move quickly to the
next design steps.

Another DNN-level simulation example is an analysis of the
relationship between DNN accuracy and noises on the output currents
of 5-bit programmable current sources of MPEs. As shown in Fig.5.12,
HSPICE noise simulations were performed for sweeping input codes
and process-voltage-temperature (PVT) variation corners to find the
maximum noise case. The largest standard deviation of the noise to
output current ratio is 9.63e-3 with an input code of 0 at the FSFF
corner.

Random noise terms were generated using Gaussian distribution
with a standard deviation of 1e-2 greater than the maximum value
obtained from HSPICE simulations to determine the acceptable noise
range on MPEs' 5-bit programmable current sources. Since noise affects
each weight bit multiplication on an MPE array, noise terms are added
to each weight bit computation in the Tensorflow computation flow
model.

Fig. 5.13 shows the DNN level simulation results of an MNIST
CNN example with 500 repetitions. Since the noises on MPEs' 5-bit
programmable current sources cause an acceptable drop in DNN
accuracy of 0.1%p compared to ideal accuracy, a designed 5-bit
programmable current source was determined to use for a prototype IC.

Simulations with a doubled standard deviation of 2e-2 of the Gaussian
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Figure 5.13. Tensorflow simulation results for MNIST CNN accuracy drop with
randomly generated MPE's 5-bit programmable current source noise model
extracted from HSPICE simulations with the designed circuit.
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distribution used to generate noise randomly were performed to
increase the reliability of the design. As Fig.5.14 shows, when
repeatedly simulating for 200 times, a significant accuracy drop of
10%p occurs. However, simulating by implementing a process of
performing 500 epochs of gradient descent calibration of Chapter 3 on

Tensorflow, the DNN accuracy drop was reduced to 0.3%p.

73



Accurcay transition during calibration
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Figure 5.14. Tensorflow simulation results for MNIST CNN accuracy drop with
the gradient descent calibration process with MPE's 5-bit programmable current
source noise model with a doubled standard deviation of HSPICE simulation

results.
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Chapter 6

Measurement Results of
Proposed Neural Network

Accelerator 1C

6.1 Measurement Environment and
Prototype IC

We constructed a test environment with a 3mm x 3mm IC prototype
fabricated with a 28nm CMOS process for evaluation. As shown in Fig.
6.1, a Xilinx Kintex-7 FPGA KC705 evaluation kit was used to handle
control signals and data for the prototype IC via a UART serial port.

Fig. 6.2 shows the detailed equipment connection for the
measurement environment. A Jupyter-Notebook-based environment on
a personal computer (PC) was built to provide input and weight data
and analyze output data. A PC and FPGA communicate at a baud rate of
115200 bps over a UART serial port. Since the UART baud rate is

significantly lower than the frequency of 40 MHz of a prototype IC,
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communication between the PC and the FPGA takes place only at the

Debug
card

Figure 6.1. The measurement environment with the FPGA board.
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<
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<
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XILINX XILINX 74AVCH20T245
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KC705 | ool Level Din<15:0>
FPGA shifter
Dout<15:0>

DPO70804 Real-time
Oscilloscope

Figure 6.2. The schematic of the measurement environment.
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first and last stages of the measurement process. Most of the operations
required to construct a DNN were implemented on the FPGA. The
Xilinx XM 105 Debug Card was attached to the FPGA and connected to
a printed circuit board (PCB), including a prototype IC using jumper
cables. A 74AAVCH20T245 level shifter capable of converting a 2.5V
signal supplied from the debug card into a 0.8-1.2V signal required by a
prototype IC was attached to the PCB. A power supply provides supply
voltages and bias currents to a prototype IC and level shifters. The
oscilloscope provides various detection points for debugging the
measurement environment.

Fig. 6.3 shows the die photo of the prototype IC and the layout under
power straps, and the computation core area is 0.97 mm2. The
prototype IC includes a 0.57 mm?2 test logic with 21 instruction sets for
generating control signals for the computation core and supporting
functions for on-chip NN realization such as max-pooling, ReLU
activation, weight loading, and for-loop creation. A 4-layer MNIST
CNN example and a 5-layer CIFAR-10 CNN example in Fig. 2.3 were
used. Table 6.1 shows the detailed specification and measurement
results of the prototype IC. With a clock frequency of 40MHz, the
prototype IC achieves a throughput of 0.59 GOPS for instruction
loading, weight loading, and MAC operations. As shown in Fig. 6.4, for
the supply voltage of 0.8~1.2V, the peak energy efficiency of 0.17~0.54
TOPS/W for signed 9-bit and 0.22~0.75 TOPS/W for binary weight
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precision were measured.

Figure 6.3. (a) The die photo of the prototype IC (b) the layout of the IC under

power straps.

DPWM &
Drivers
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| Blas Circults

Test
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(b)

Table 6.1. Detailed Specification and Measurement Results of the Prototype IC.

Die area 9mm?
Core area 0.97mm?
Test logic area 0.57mm?
Supply voltage 0.8-1.2v
The number of MPE 256
Clock frequency 40MHz
Memory Capacity 288kb
Weight density 0.307bit/pum?
Weight precision binary - signed 9-bit
Data precision signed 9-bit

Peak energy
efficiency

0.22-0.75 TOPS/W

for binary weights

0.17-0.54 TOPS/W
for signed 9-bit weights

Throughput

0.59 GOPS

Accuracy
with s8-bit weight

MNIST: 98.32 %
(98.74% for ideal)
CIFAR-10: 74.18 %
(73.85% for ideal)
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6.2 Measurement Results

Fig. 6.5 compares the MPE utilization ratio and energy efficiencies
between the mixed-signal and digital-only MAC operations for each
layer of CNN examples. The energy efficiency of the mixed-signal
MAC was measured directly from the prototype IC and all-8-bit digital
input separately three times, 3-bit, 3-bit, and 2-bit, and then added up
each increased energy consumption to the zero-input case. The input
and biasing current of analog circuits were gated to exclude energy
consumption on the analog domain for measuring the energy of digital
computation blocks. With the example MNIST/CIFAR-10 CNNs, the
total energy consumption with mixed-signal inputs is reduced by
27.72/40.44%, respectively, compared to the all-digital input case. Fig.
6.6 provides the comparison ratio of additional energy consumption
compared to the case with zero-inputs and gating analog circuits for
two cases: First, mixed-signal 8-bit vs. all-digital 8-bit. Second, analog
5-bit vs. all-digital 5-bit with excluding the effect of common digital 3-
bit computations. The layer with the highest energy consumption
improvement of 46.12% is the input layer of the CIFAR-10 CNN
because zero input is scarce for input RGB images, and the number of
transitions on logic gates is the largest for the digital domain.

Conversely, the layer with the lowest energy consumption

improvement of 20.44% is the first fully-connected layer in the CIFAR-
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10 CNN, with very sparse non-zero inputs. In addition, the first layer of

the MNIST CNN with the lowest column utilization among all layers

also showed a low energy consumption improvement of 24.51% since

the prototype IC has no column-wise gating function for analog

operations for unused columns. The IC can improve energy efficiency

for low column utilization layers if the CMU at unused columns can be

turned off.

100%

80%

60%

40%

Utilization

20%

0

°
P

‘5‘)

s 2 = = 2
%] (=) = [, (=]
Energy Efficiency
(TOPS/W)

o
o

0.0 wmUtilization

m Mixed-Signal

mm All-Digital

Figure 6.5. The utilization and energy efficiency with mixed-signal and digital-
only MAC operations for each layer of CNN examples.
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Figure 6.6. The comparison ratio of additional energy consumption compared to
the case with zero-inputs and gating analog circuits.
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Fig. 6.7 shows that the prototype IC achieves a minimal accuracy
drop of -0.42 to 0.33%p compared to the ideal accuracy, for example,
MNIST/CIFAR-10 CNN with signed 9-bit weights applying a
calibration process. The input parameters of the 5-bit programmable
current source on MPEs were calibrated from the initial value, the
midpoint of the adjustable range. The 16x16 calibration parameters
were trained by gradient descent optimization for cost function, the sum
of squared errors. All weights were fixed to 255 and used random 16
inputs whose sum did not exceed 64 for 300 epochs. The trained
parameters are quantized to 5-bit for programmable current sources.
Even without calibration, MSB 3-bit digital computations guarantee

tiny accuracy drops of 2.44/2.80%p compared to the ideal accuracy.

Gradient Descent Calibration

5%
74.18%

L

4%
98.32%

3% i

2%
—a—MNIST

1% —a—CIFAR-10

Accuracy Improvement
Vs. Only-Digital Case (%p)

0%
0 100 200 300

Epoch

Figure 6.7. The accuracy improvement with the calibration process for the
example MNIST/CIFAR-10 CNNs.
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The accuracy improvement with the calibration process saturates
around 150 epochs, and it was confirmed that the result accuracy was
2.02/3.13%p higher than the case without applying calibration.

Fig. 6.8 shows top-1 and top-5 accuracy changes when the CIFAR-
100 CNN in Fig. 2.3(c) is tested under the same conditions. After
completing the calibration process, the final top-1/top-5 accuracy drop
is 2.07/-0.77%p, and the top-1 accuracy drop is higher than that of
MNIST/CIFAR-10 CNN examples. In addition, the accuracy drop for
the only-digital-input case is 10.54/7.76p%, which is significantly
higher than the MNIST/CIFAR-10 CNN examples. The primary cause

of the high accuracy drop is the unstable learning state of the example

Gradient Descent Calibration
10%
9%
8%
7%
6%
5%
4%
3%
2%

57.45%

40.57%

Accuracy Improvement
Vs. Only-Digital Case (%p)

. CIFAR-100 CIFAR-100
1% Top-1 Top-5

0%
0 100 200 300

Epoch

Figure 6.8. The accuracy improvement with the calibration process for the
example CIFAR-100 CNN.
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CNN. Fig. 6.9 shows the training process of the example CIFAR-100

CNN. Despite three long training processes, the test accuracy sustained

much higher than the training accuracy. Therefore the network is

overfitted. In addition, since the test cost tends to increase at later

iterations of the training process, it can be presumed that the probability
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Figure 6.9. The training and test accuracy and training and test cost change during

three training processes.
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of the network selecting similar-but-incorrect classes increases. It can
also be thought that this network's characteristic helped the top-5
accuracy record a higher accuracy than the ideal accuracy with the non-
ideality from the analog operations of the prototype IC. And the top-5
accuracy increases significantly with activating analog operations even
without the calibration process because the outputs of the last fully
connected layer with relatively low values for similar-but-incorrect
classes can produce non-zero values with latter bit computations.

For checking less additional energy consumption for the latter
weight bit-position than MSB, the energy consumption for 1 MAC
operation was measured with increasing weight precision from binary
to signed 9-bit. Fig. 6.10 shows the peak energy efficiency with
changing weight precision configurations for four cases of inputs for 16
WLs. The four cases are as follows; First, all inputs are zero (zero
case). Second, all inputs are 31 (8'b0001 1111), the maximum of LSB
5-bit (analog-max case). Third, all inputs are 224 (8'b1110_0000), the
maximum MSB 3-bit (digital-max case). Fourth, all inputs are
maximum of 255 (8'b1111_1111, max case). The weights for all MPEs
are the same as +170 (=9'b0_1010_1010), which causes many
transitions of eight. For reference, it was confirmed that when only the
analog operation is used, there is no difference from using 255

(9'b0 1111 _1111) for weights with the number of transitions of two.
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Figure 6.10. The peak energy efficiency with different types of inputs with
changing weight precision configurations.

As the weight precision increases, energy consumption increases as
a linear relationship with the large constant term. Since the constant
term is larger than the differential term, the energy consumption for the
latter weight bit-position consumes less energy than the MSB. The 4-
level quantization and accumulation of CMU repeated eight times to
generate a signed 10-bit output generates the constant term, and the
digital computation, bit-line pre-charge, DPWM pulse generation, and
weight bit shifting create the differential term for each weight bit

configuration. In addition, due to the energy consumed during the
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digital transitions, the energy consumption increased by weight
precision of the digital-max case is 1.47 times greater than that of the
analog-max case.

Fig. 6.11 shows the energy breakdown, which shows the energy
consumption ratio of each circuit in the case of maximum energy
consumption. Energy consumption in MPE SRAM and the LM shared
by analog and digital domains does not affect the difference in energy

efficiency improvement between mixed-signal and all-digital cases. The

Energy Breakdown

7.0%
3.6%
22.4% \‘

17.6% |

= Digital MAC = MPE current source
= CMU " DPWM
= SRAM+LM

Figure 6.11. Energy breakdown.
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Standby Energy Ratio

= Non-standby = MPE current source
= CMU DPWM
= SRAM+LM+Digital MAC

Figure 6.12. Standby energy ratio with the max case input.

analog domain, occupying 5/8 of the operations, accounts for 43.6% of
the total energy consumption by adding the figures of the DPWM, the
MPE current source, and the CMU. On the other hand, the digital
domain, occupying 3/8 of the operations, accounts for 49.4% of the
total energy consumption, and the energy consumption per bit is 1.89
times higher than the analog operation. However, the energy efficiency
of the digital operation in the example CNNS is better than in the
maximum energy case since the bit sparsity of input and weight reduces
energy consumption. In addition, the energy consumption of a CMU is
more than 20 times that of an MPE current source, indicating that the

CMU is the primary energy consumption source of the analog
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computations. As shown in Fig. 6.12, the standby energy consumption
is 31.3% of the maximum energy consumption, of which the entire
analog circuit and 16 CMUs generate 77.6% and 52.4%, respectively.
Therefore, reducing the standby current of an op-amp in a CMU is
necessary to improve the analog domain energy efficiency of the
prototype IC.

Fig. 6.13 shows the area breakdown, which shows the area
consumption ratio of each circuit. The area of the MPE array is 0.74
mm2, 77.29% of the area of the computation core. Moreover, the
accounted area of SRAM, 5-bit programmable current source, and

auxiliary logic is 55.90%, 10.45%, and 33.66% of the MPE area,

Area Breakdown

10.79%
55.90%
2.16% D—— 76.02%
11.03%
10.45%

= CMU+LM = DPWM Current bias

= MPE SRAM = MPE Logic = MPE Current Source
Figure 6.13. Area breakdown.
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respectively. To improve the weight bit density of 0.307bit/um?2,
increasing memory capacity and simplifying logic for an MPE is
necessary. The area sum of a CMU and an LM was 6369 pum?2,

respectively, and the area of one DPWM was 656 um?2.
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Chapter 7

Conclusion

This dissertation proposes a DNN accelerator hardware based on an
MPE array that supports mixed-signal domain operations combining the
advantages of accurate digital and energy-efficient analog domain
operations. The proposed accelerator accurately computes the upper
signed 4-bit, significantly affecting DNN accuracy among signed 9-bit
inputs in the digital domain via an MPE column adder chain. The
remaining lower unsigned 5-bit is modulated as pulse width with a
DPWM and multiplied by weights in a bit-serial manner to generate a
current sum on MPE bit-lines. Weight precision reconfigurability is
implemented, and a cyclic MAC scheme is proposed to fix the number
of analog-to-digital converted bits regardless of weight precision in a
bit-serial manner.

The efficacy of the proposed DNN accelerator is verified by the
results from a measurement environment, including a prototype IC
fabricated with a 28 nm CMOS process and a Xilinx Kintex-7 FPGA
KC705 evaluation kit. A 4-layer MNIST CNN example and a 5-layer

CIFAR-10 CNN example were used for testing, and classification
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accuracy changes of -0.42 to 0.33%p were recorded when 300
calibration epochs were performed. In addition, the energy consumption
of each layer decreased by 20.4 to 46.1% compared to the case with
only digital calculations.

A technique of simultaneously calibrating all 16 X 16 current sources
on an MPE array with a gradient descent training method was proposed
to simplify calibration processes for improving DNN accuracy with
analog operations. With Tensorflow simulation, the calibration process
of 500 epochs could recover classification accuracy to 96.5-98.3% from
defected accuracy of 17.3-95.5% by a process variation model added to
MNIST CNN with an ideal accuracy of 98.2%.

A verification environment including three-level simulations was
established for fast and accurate verifications for IC design steps. The
system-level simulation built with the XMODEL simulator validates
the functionality of the prototype IC for running DNN examples,
consuming a short simulation time of 15 minutes per input image. In
addition, the non-ideal characteristics obtained from analog circuit
simulations were modeled on Tensorflow to predict the effect on DNN
accuracy, and the acceptable range for each non-ideal characteristic

could be determined early in the circuit design steps.
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