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Abstract

We propose a new discrete formulation of the Wigner transport
equation (WTE) with infinite correlation length of potentials. Since
the maximum correlation length is not limited to a finite value, there
1S no uncertainty in the simulation results, and Wigner—Weyl
transformation 1is unitary in our expression. For general and
efficient simulation, the WTE is solved self—consistently with the
Poisson equation through the finite volume method and the fully
coupled Newton—Raphson scheme. By applying the proposed model
to resonant tunneling diodes and double gate MOSFET, transient
and steady —state simulation results including scattering effects are

shown.
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Chapter 1

Introduction

1—1. Various models for device simulation

TCAD simulation is divided into material/process simulation,
device simulation, and circuit simulation. Among them, device
simulation performs characteristic analysis such as IV curve or
electrical data according to device geometry, doping profiles, and
various device operation parameters. When the MOSFET gate
length is sufficiently long, a continuum model such as the drift—
diffusion equation has been mainly used for device characterization.
However, as device scaling continues and the physical gate length is
shortened to several nm, classical models are no longer valid and an
atomistic model is needed [1]—[7]. Therefore, quantum transport
models have been used for the analysis of nanoscale devices, and
the Non—Equilibrium Green's Function (NEGF) method [8], Wigner

transport equation (WTE) [9],[10], and Pauli mater equation



(PME) are representative quantum transport models [11],[12].
However, in the semiconductor industry, the drift—diffusion
equation is still widely used for faster and simpler simulation [13].
Quantum transport simulation is difficult to apply practically
because it requires a lot of computational power, so these
sophisticated models are generally used to calibrate the mobility of
the drift—diffusion equation. However, if the computing power gets
better and the numerical efficiency of quantum transport models is
improved, it will gradually be able to replace the classical models.
NEGF is a method of solving the Schrédinger equation
considering the inflow/outflow boundary condition at the
source/drain contact. Of these, the NEGF method is the most widely
used, but it has difficulties in transient simulation, and there are
limitations in considering various scattering mechanisms if local
approximation is not used. In NEGF formalism, it is hard to consider
the microscopic scattering mechanism because it requires the
inversion of matrix of huge rank because the self—energy terms are
generally nonlocal function [14]. Electron—phonon scattering can be
efficiently calculated through local approximation, but large
computational cost 1s required to include other scattering
mechanisms [15]—[17]. Also, although this method is well defined

in steady state, it is not suitable for transient simulation which is
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very important in device characterization [18]. Recently, there is a
study that conducted AC simulation in extremely scaled nanosheet
MOSFETs wusing NEGF formalism considering first—order
perturbation [19]. [20]. However, since this is a method based on
small—signal analysis, only high—frequency AC simulation is
possible, and general transient simulation is still difficult.

Recently, Pratik B. Vyas et al reported a simulation of the
dissipative quantum transport through the Pauli master equation
(PME) [21]. They show successful simulation results in an ultra—
thin body double—gate FET based on the quantum transmitting
boundary method (QTBM). This is an attractive model for
efficiently handling the scattering mechanism, but it is also limited
to a steady state solution and can be applied only when the
perturbation is weak and the device length is sufficiently short.
They show that dissipative electron transport is also important in
nanoscale MOSFETs, so it is important to consider various
scattering effects rather than ballistic ones.

As an alternative to the above two methods, we used the WTE
for the simulation of quantum transport in this work [22]— [27].
Transient simulation and dissipative transport simulation are
possible based on the WTE. Since WTE 1is a form that includes a

differential term with respect to time, both transient simulation and
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frequency domain analysis are freely possible. In this thesis, we
propose a method to solve the problems that occur in solving WTE
numerically, and apply it to one—dimensional and two—dimensional

device simulation.

Steady state O
Transient X
Scattering A\

Steady state O
Transient X
Scattering O

Master
Equation

Steady state O
Transient O
Scattering O

Wigner
Equation

Fig. 1. Three methods for quantum transport simulation. WTE is
capable of steady—state simulation and transient simulation, and can

conveniently incorporate scattering mechanisms.



1—2. Numerical Problems in Solving WTE

The WTE is obtained through the coordinate transformation and

the Fourier transform of the density matrix and quantum Liouville

equation:
P, X)) =W <x|i><i|x'>, (1)
op 1 os | 0> 07 ,
il 2okl aE T amE 1P plv(x)=v(x)]p |, (2)

where 71s a complete set of states, w;is a probability, and v is the
potential energy. The Wigner distribution function is obtained
through the following coordinate transformation and the Fourie

transform:

1 .
Z=E(X+x'), {=X—X (3)

k) =[ e ™o r+ 3623 @

Then the Liouville equation of the Wigner distribution function can
be expressed as follow:

o  oe of 1p-dk',
= o[ =2V (g k=k) (kD)
X nkay e 2n (x ) f(x. k) (5)



where the nonlocal potential term given by

V(g,k)z%j:dge‘“{u (;{+%§j—U (;(—%{ﬂ (6)

The WTE can be obtained by simply adding the collisional term to

include the scattering mechanism [10]:

(ﬁj of 888f
C

o). ot hokoy h

~ Lo—vu,k K)F(r k) @

At the semi—classical limit, the second term of the RHS of Eq. (7)
1s reduced to the classical force term, so that the well—known
Boltzmann transport equation (BTE) can be obtained [1]—1[4]. In
the BTE, the calculation can be simplified by using energy—space
grid and H—transformation instead of k—space [1], [2]. However, in
the WTE, since non—locality in k—space cannot be eliminated in
such a way, it requires more memory and longer computation time
than the BTE. However, if various scattering mechanisms are
included in BTE, nonlocality in energy space occurs. Therefore, the
system matrix becomes much denser than in the ballistic case, and
there is no significant difference in terms of numerical efficiency
compared to WTE.

In general, to solve the WTE numerically, the integral range of
the nonlocal potential term (Eq. (6)) is limited to a finite range. But

in this way, some of the information in the density operator is lost,

6 -":lx_! _'q.l.'\-' ik



and the Wigner—Weyl transformation is not unitary [10]. For
example, if mesh spacing of dy=dx and d<¢=2dx is used,
information on corner triangles of the density operator in X space is
lost, and half of the information is lost among other components.
Main and Haddad devised a method to use a mesh of dy =1/2dx and
d & =2x, but the loss of corner triangles still cannot be recovered.
There have been attempts to increase the maximum correlation
length to obtain more reliable results. However, even if the
maximum correlation length (integral range) is increased, the
calculation result has uncertainty unless the integration range is
infinite [28], [29]. A. S. Costolanski and C. T. Kelley confirmed that
different simulation results were obtained depending on the
correlation length, and mentioned that the appropriate correlation
length is different depending on the device structure and there is no
simple physics—based rule to determine it [29]. For a more
accurate simulation, a high order differential scheme is also widely
used, but this is a physically distinct problem from the maximum
correlation length [30]. As such, the simulation based on the finite
correlation length has a problem in that there is uncertainty in the
simulation result depending on the correlation length and may not
be physically consistent with the density operator. Therefore, we

need a method to correctly calculate the nonlocal potential term

7 X | - '_. 1_]|



without uncertainty.

In this paper, we propose a new formulation with an infinite
correlation length by assuming an ideal semi—infinite reservoir in
the contact region. Through simple reconstruction of the nonlocal
potential term, an equivalent equation with a finite integral range is
derived. Since our new formula considers the integral range of
nonlocal potential terms up to infinity, it can solve the problem of
uncertainty of simulation results according to the finite correlation
length. To avoid the statistical fluctuation of solution and for a more
general—purpose simulator, we adopt the deterministic method with
finite volume method (FVM) rather than the stochastic Monte Carlo
method. We use the fully coupled Newton Raphson method to obtain
excellent convergence. Through these, quantum transport steady—
state and transient simulation with excellent convergence are
successfully implemented. By applying our simulator to resonant
tunneling diode (RTD), it was confirmed that reliable results are
obtained by showing the plateau region and transient oscillation in
unstable bias. A more practical structure, the double gate MOSFET,
was also simulated through the mode space method, and the device
characteristics for various conditions were confirmed. In addition,
since the WTE has a similar shape with the BTE except for
quantum mechanical term, transient simulation, small signal (noise)

8 2] .
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analysis and including of scattering are also readily possible in a

similar manner as in BTE [31].
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Chapter 2

Simulation methods

2—1. WTE with infinite correlation length

The WTE can be expressed as follow [10]:

== o 2V (k=K f (g, k),
X hokdy he2m (x ) E(2.K) (8)

(afj of  oe of 1= dk'
atC

where the first term of LHS is scattering integral, ¢ is time, # is
Dirac’s constant, and ¢ 1s energy level. In general, to solve the WTE
numerically, the integral range of the nonlocal potential term (Eq.

(6)) is limited to a finite range.

Vi) =3 dge [u (ﬁ%;j—u (z—%éﬂ ©

A method such as Eq. (9) causes simulation uncertainty according
to Lc. Therefore, to consider the infinite correlation length, we first
assume an ideal contact condition in which the reservoir is semi—

infinitely long and has a constant potential energy. Such boundary

10 .__:Ix_s _'-I:-'_ 1..5



conditions are commonly used in quantum transport simulation. In a
one—dimensional space, the contact is located at y=0 and y=L, and
the potential energy at the right contact is higher than the left one
by U.x as Fig.2. We assume one—dimensional transport and derive
the equation, but more complex boundary conditions will be needed

to solve the nonlocal potential term in two or three dimensions.

(v=v,,) Device (V=V, 1+ Vg,)

x:0 x:l_
Fig.2. The contact is located at y=0 and y=L, and the potential

energy at the right contact is higher than the left one by U.x

To reconstruct the equation, the nonlocal potential term is divided

into the sum of the two terms as follows:

\7()(’ k) = %J‘_O:Odé/eigk [Ucor (Z’ g) _Uexu(é/) +Uexu(_é/)]
L 10)
+?J‘w dé’elgk [Uexu(g) _Uexu(_g)]’

Ucor(X’é’):U(Z_'_%é’J_U (Z_%QIJ’ 11

where u 1s a unit step function. In this representation, we just add

and subtract the product of U.y and the unit step function to the

11 .__:Ix_s _'q.;:-'_ T



nonlocal potential term. The reason that the expression is divided
into two terms as in Eq. (10) is that each term can be calculated
analytically in this form. The integrand function of the first term in
Eq. (10) becomes an odd function for ¢, and the second term can be
calculated through the Fourier transform relational expression of

the unit step function as follow:
t F.T. 1 5
U()<——>.—W+7f (w), (12)

Thus, Eq. (10) can be rewritten as:

V(20 =2 4 Sin(@h U (1,€) ~U, ]+ 252 (13)

When y is between 0 and L, the integrand of the first term is always
O if { is greater than 2L because U, is equal to U.x. Therefore, the

integration range can be reduced to [0, 2L]:

V() =2[ desinCUn (1) -Up]+ 252 )

Since the integral range is finitely limited through reformulation of
nonlocal potential terms, it is possible to solve WTE with infinite
correlation length numerically. Now, if you separate an analytically

integrable term, it can be expressed by the following formula.

V(r k) =2 desin@i[Un (1. )]+ 25 2 cos2l) (5

When the integral range is finitely limited in the nonlocal potential
§

12 21



term, it can be expressed by the following equation.

V(;(,k):i}j_idgeig{u (Z+%§)—U (;{—%{ﬂ (16)

Here, if the integration range is set to [—2L 2L], it can be seen that
this is most similar to Eq.(15), which is an expression with infinite
correlation length. However, Eq.(15) is a form of adding the cosine
function to Eq.(16), and we can see that this is clearly different
from the case where the integration range is limited to 2L.
Simulation results according to correlation length will be shown

later in the results section.

2—2. Numerical Methods

To solve our new formulation numerically, we use the finite
volume method (box integration method). In the steady state, WTE

can be expressed as

o 0
——f(y,k)+W_, -C_, =0,
7oK o7 (. })+W,, -C,, (17)

where Wis quantum evolution term (the second term in the RHS of
Eq. (8)) and Cis collisional term (the first term in the LHS of Eq.
(8)). To apply the upwind scheme, the formula can be divided into

two cases according to the direction of the group velocity:

13 .__:Ix_s _'q.;:-' ok



XK

0 .+ + +
iVZ,kaf‘(}(,k)JrW‘z,k—C_ =0, (18)

where vis group velocity and the + and — sign represents when the
group velocity is positive and negative, respectively. For easy box
integration, the equation is transformed as follows using partial

differentiation:

o,
Oy

0 + +
£ E

+Ww*  -C* , =0.

XK

(19)

Through this, the first term can be modified in a form that can be
more easily integrated in the control volume.
In ¥ space with a uniform mesh size, the box integration at node

x;can be obtained by integrating Eq. (19) from Xx;-05 to x/+0.5:

X

£V, (] F [, oxt* (2. k)

+(\Ni)(,k —Cilyk)Ax =0.

o,
oy

i (20)

To calculate the first term of Eq. (20), we need to know the
distribution function at x;-¢s and Xxj+05 The simplest way to do this
1s to use the average value of two adjacent nodes. However, in this
work we use the Quadratic upstream interpolation for convective
kinematics (QUICK) scheme for high numerical accuracy [32]. This

method takes the second order derivative into account and has third

14 .__:Ix_c 'q.l.'\-' ] '.
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order accuracy. The value at the cell face can be

follows through the QUICK scheme:

+ 3 + 3 + 1 +
R At K = N W= AL
+ 3 + 3 + 1 +
R e K s LA M= K
3 3 1

If the mesh nodes are outside of simulation domain,

calculated as

(21a)

(21b)

(21¢)

(21d)

vl s

assumed to have the same value as in the boundary. Dirichlet

boundary conditions apply only to the left if the group velocity is

greater than O, and only to the right if it is less than O as upwind

method. After integration over a perpendicular wave vector, the

boundary condition of the Wigner function in one dimension without

transverse consideration is as follows:

mk.T . | 1 (12K |
f(0,k)=—=—In|1+exp| -——| ——
k) ==" p( kBT(Zm “‘)D
£ (LK) = KsT In_1+exp S re )
T T kTl 2m™ ™

(22a)

(22b)

where k5 is the Boltzmann constant, 7 is the temperature, and wup

and u; are the Fermi energies at the ends of the device.

15



The second term of Eq. (17) vanishes if the group velocity is
constant. However, if the group velocity changes at any point for
reasons such as partial varying effective mass, the second term
should be calculated. If the group velocity at x; abruptly changes

from A to B, the second term can be written as

Trj oxt (2, K)(B-AS(x - 2)
=F(B-A)f*(x,k),

(23)

where ¢ is the Dirac delta function which is the derivative of the unit
step function. For example, assuming a parabolic band, if the

effective mass at x; changes from m; to ms, Eq. (23) becomes

Ak Rk
— —— |7 (x,k).
mm (%, k) (24)

Before describing the quantum evolution term, mesh spacing in
k—space should be considered. When Eq. (17) is integrated over k—
space, the equation becomes a continuity equation for charge
density. In order to satisfy the charge conservation, the integral of
the quantum evolution term must also be 0. If a uniform mesh size

1s used, the integral can be expressed discretely as

Jw®, dk=>W*, Ak =0, 25)

The above equation holds when the Fourier completeness

16 A=



relation 1s satisfied, and the mesh size at that time can be

expressed as follow [10]:

T

AK = ———,
N, AX (26)

where N; is the number of meshes in k—space. And the k—space is

discretized as follow:

7 ((1+05)
=—<——2_05:,1=01...,N,_
" AX] N, “t @

For calculating the quantum evolution term, we first need to
calculate the nonlocal potential term. To calculate the first term of
RHS, we assume that the potential changes linearly between
adjacent mesh points. In this way, the nonlocal potential is
calculated through direct integration rather than discrete integration
in order to accurately account for changes in the sine function by
position. Since a linear potential is assumed, the equation can be
expressed in the form of a product of a sine function and a linear
function, so that analytical calculations are possible. Also, even
after integration within the mesh, the nonlocal potential consists of
sin and cos functions with the same period as before integration, so
the Fourier completeness relation is still satisfied. A more precise
integration into k—space i1s not considered. It was difficult to

analytically integrate the equation integrated in the real—space

A o 1 &)
17 4 - _h ’!.
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again in the k—space, and the accuracy of the simulation is
increased by using a mesh size in the k—space that is small enough.
If more accurate integration is possible for k—space, more accurate
and efficient simulation will be possible. The detailed calculation
method for this will be shown in the appendix.

Eventually, the quantum evolution term is calculated as follow:

W* = > hZV(;(,k k) f*(x.k) (28)

To simply include the scattering effect we use the relaxation

time approximation [1]:

1 foq (2K
Ci ~__ ft , eq
K . (x, k) - J.dk . (z k)

fdk £k | 20)

X

Where 7 is the relaxation time and £, is the local equilibrium
distribution function. The equilibrium distribution function uses the
solution when the applied bias is zero. In solving this problem, if the
integral of the Wigner function is considered as a known value and
non—locality between k—space in the Jacobian matrix is not
considered, the simulation does not converge well and the current
continuity is broken. Therefore, when constructing the system
matrix for this, an accurate simulation was carried out considering
all the interactions between k—space. When the scattering effect is

considered through relaxation time approximation, inaccurate or

1] O 11 3
18 -’x_g'l']li'



unphysical results may be obtained [33], [34], so more complex
nonlocal scattering models will be needed for more accurate
simulation [34].

Electrostatic potential V), is obtained through the Poisson

equation as

da
dxzp Z—E[Nd(x)—n(x)], (30)

where N, is the doping concentration and n(x) is the electron

density obtained from the Wigner function:

(9 == [ f(x kdk. o

The potential energy U used in the nonlocal potential term can be

calculated as follow:

U (X)=—qV,(x) +U. (), (32)
where U, is the band structure function which considers the band
offset considering the barriers and wells.

An iterative solver is required because WTE is a nonlinear
system that needs to be solved together with the Poisson equation.
We simulate with two methods: the Gummel method [35], which is
mainly used as a decoupled scheme, and the Newton Raphson

method, which i1s a fully coupled scheme. Through the Newton

Raphson method, quadratic convergence is obtained, and since an
2] 2 11
19 £y | - |; _Ii
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accurate response function can be obtained, small signal analysis is
also readily possible. In the Newton—Raphson method, most of the
computational time is required to update the Jacobian matrix every
iteration. Therefore, we use the Newton—Richardson method, which
only updates the Jacobian matrix when the convergence is poor. On
the other hand, in the case of the Gummel iteration method, since
the computational cost for each iteration is small, it is more useful
when the system matrix size is too large, such as in 2D or 3D
simulations. Also, since the simulation converges well even if the
initial value is relatively far from the solution in the Gummel method,
it can be used to obtain the approximated initial condition before
using the Newton—Raphson method. Most calculations are matrix
operations, and their size is usually very large. Therefore, in order
to reduce the memory occupancy rate and accelerate the calculation
speed, a sparse matrix solver was used rather than directly
inversion of the matrix.

In the case of transient simulation, the nonlinear simulation
method is the same as that of steady—state simulation, and the
backward Euler method is applied for the implicit time integration.
Compared to the forward Euler (explicit) method, a much larger
time step size can be used and more stable simulation is possible.

The WTE in the transient state is expressed by adding the time

20 ;ﬁ'! X
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derivative term to Eq. (17):

0 e 0
(k) f(ykt
p (x. k1) 7oK o7 (x.k,1)

W, (-C,, (1) =0,

(33)

The simplest way to solve this is to use the forward Euler
method (explicit method). The upwind scheme is stable only when

the Courant—Friedrichs—Lewy condition (CFL) is satisfied:

vat

C= SCmaX. (34)

Here, if the explicit method is used, Cuax becomes 1, so a very
small time step is required. For example, if dx is 0.5 nm and v is
5%10° m/s, dt must be smaller than 1 fs, and with such a small time
step size, general transient simulation over a wide time range is
difficult because of the long calculation time. Therefore, to avoid
this problem, the backward Euler method (explicit method) is used
in this work. In this method, since Cuax has a value much larger than
1, a sufficiently large time step size is allowed. The solution at #=¢;
is known, and the solution at =72 can be calculated through the

following equation:

{1, hek oy 7

+W;(,k (t,) - Cl,k (t,)=0.

(35)

21 A=



Since the implicit method 1s used, more complex calculations
are required differently from the explicit method. As in the steady
state, a fully coupled scheme through the Newton—Raphson method
is used to obtain a self—consistent solution. Also, all the other
discretization methods are the same as in the steady state.
However, empirically, it takes too long to find a solution through
iterative calculation for each time step in fully implicit transient
simulation. Therefore, we propose and use a semi—implicit method
to avoid iterative calculations. The system to be solved is a non—
linear system because it is necessary to find a solution that
satisfies both the Poisson equation and WTE. However, if the
electrostatic potential is handled explicitly, the potential becomes
constant value at each time step, and only the implicit WTE needs
to be solved. If only WTE is solved, since this is a linear system,
the solution in the next time step can be obtained without iteration
using the given potential. Even using this semi—implicit method,
stable simulation results were obtained, and a sufficiently small time
step size was used to reduce the truncation error.

For both the explicit method and the implicit method, the error
for exact solution increases as the time step increases. It 1s also
known that the implicit method has a smaller error than the explicit
method for the same time step. However, there is a problem that

99 ;ﬁ'! X

3 =11 =1
|-1-'l| .J!'



the explicit method overestimates the transient energy and the
implicit method underestimates the transient energy. Therefore, for
accurate transient simulation, a sufficiently small time step should
be used in both methods. In addition, in the case of simulation for
high frequency oscillations, in the case of implicit method, if the
time step is large, the transient energy i1s underestimated to damp
the oscillation, and proper characteristics may not appear in the
simulation results. However, in our method, the implicit method is
used for WTE and the explicit method is used for the Poisson
equation, so the shortcomings of both methods can be compensated.
Because explicit methods are mixed, a small time step should be
used unlike the fully —implicit method under the influence of the CFL
condition. However, it is suitable for efficient transient simulation
because it is desirable to use a sufficiently small time step to

reduce the truncation error.

2—3. Multi—dimensional Simulation Methods

The previously derived WTE with infinite correlation length and
numerical methods assume a one—dimensional simulation. In order

to extend it to two or three dimensions, the equation must be

reconsidered according to several directions. Also, the Jacobian
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matrix size for solving the WTE becomes too large, and calculating
the nonlocal potential term in multiple dimensions is also challenging
and requires a lot of calculations.

Therefore, in an alternative way, we limited the
multidimensional simulation to devices with double gate (DG)
structures. And a mode space approach is used to solve the one—
dimensional transport equation in the source—drain direction and
solve the Schrodinger equation for each cross section in the
confinement direction.

We can solve the Schrédinger equation for the confinement

direction as follow:

——mV2w+Vw= Ey (36)

In this study, an effective mass Hamiltonian with a parabolic
band is assumed, and Eq. (36) is solved for each valley. The wave
function in the gate oxide is assumed to be zero, and the boundary
condition at the interface is zero. Since Eq. (36) is an eigen value
and eigen vector problem, subband energy (eigen value) and wave
vector (eigen vector) are calculated after constructing a system
matrix for a given device structure. Eigen value and vector form a
pair, and the number is the same as the number of mesh nodes. The

subband energy calculated in each valley is arranged in ascending

o4 ;ﬁ'! X

3 =11 =1
|-1-'l| .J!'



order, and the lowest 5 subbands are considered.

This subband profile is used as potential energy in WTE to
obtain WTE solution in the same way as described above. Since the
electron density calculated through WTE is the 1D electron density,
the 3D electron density is calculated as follows by multiplying the

subband and the wave function corresponding to the position:
2
N (%, Y,2) = 2 |22 (6 Y)| 10, (2) 37)

where y is the wavefunction of the subband v. The calculated 3D
electron density is used to update the electric potential by solving

the Poisson equation.
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Chapter 3.

Simulation Results

3—1. Simulation results according to the correlation

length

First, we compared simulation results according to correlation
length. When the correlation length is finitely limited, the following

nonlocal potential term is used.

Vi) =3[ dget {u [ﬁ%:)—u (z—%éﬂ 38)

For infinite correlation length, we used the new expression we

derived earlier as follows.

V(20 =2 4 SinR) Uy (7:6)]+ 27 2 cos@LK) (39

Fig. 3 shows the simulation results according to the correlation
length. It was confirmed that all simulation results were different

according to the correlation length. Considering that the formula at
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L. = oo derived in this study is the most accurate solution, it
showed the most similar results when L. = 2L, and shows a
negative current in low bias when L. = L, and too large current
when L. = 4L. It showed nonphysical results with a large current
and two peak currents. It can be seen that using a finite integral
range sometimes shows nonphysical results, and all of them show
different results from L.=oo. Although only the results up to the
integration range of 4L are shown, if a finite integration range 1is
used, the results will not converge to the results with infinite
correlation length no matter how much the integration range is
increased. To explain the reason, when Lc > 2L, Eq. (38) is

converted into the following form:

V(z.K) =2 dgsin(ck)[U, (7.0)]

U (40)
+2% (cos(2Lk) —cos(2L.k))

Looking at Eq.(40), we can know that no matter how much the
correlation length is increased, the entire calculated value oscillates
in the form of a cosine function. Also, as the correlation length
increases, the period of the last term becomes smaller, so it
becomes a function that changes very quickly according to k.
Therefore, the longer the correlation length, the smaller the mesh
size in k—space is required for accurate calculation. For this reason,
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assuming the same mesh size, as the correlation length increases,
the nonlocal potential term is overestimated or underestimated to
obtain a non—physical simulation result. Of course, this problem can
be solved if the nonlocal potential term is analytically integrated
inside the mesh not only in the real space but also in the k space.
However, the formula integrated in the real space has a form that is
difficult to integrate analytically up to the k space. And since the
calculated value oscillates even if the correlation length is
continuously increased as described above, it is preferable to use
the formula with infinite correlation length for accurate calculation.
In addition, the simulation result through NEGF was also added
as a comparison group under the same conditions, and it was
confirmed that reliable resonant tunneling characteristics were
shown. Compared to NEGF, it shows peak current at lower voltage
and higher valley current. This is a phenomenon that has also
appeared in other paper comparing WTE and NEGF in resonant
tunneling diodes, and is expected to occur because the formulation
and detailed boundary conditions of WTE and NEGF are different

[28].
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Fig. 3. Current characteristics according to correlation length.
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3—2. Simulation for resonant tunneling diode

For the verification of the new model, we simulate a GaAs—
AlGaAs—GaAs resonant tunneling diode as an example. Many
previous studies have solved WTE by assuming the linear potential
drop in the active region of RTD. In addition, even in the previous
studies on the solution of deterministic Poisson—Wigner equation,
detailed simulation convergence has not been mentioned. In this
part, we compare the convergence of the coupled scheme and the
decoupled scheme, and show the results for small signal analysis
and transient simulation. We only simulated resonant tunneling
diode and double gate MOSFET in this work, but we are currently
working on applying it to 3D structures such as nanowire through
the mode space approach.

As shown in Fig. 4, the emitter and collector have a doping
concentration of 2%10'/cm?, and the barrier and well are not doped.
A 3nm barrier, 4nm well, and 7nm spacer are used. The band offset
at the barrier is assumed to be 0.3eV, and the band diagram at the
zero bias is shown in Fig. 5. In this work, we use 0.5nm for dx and
150 for Nk. We only consider one—dimensional transport in the z

direction, and the boundary condition of the Wigner functi_lon is as _
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follows:

ke T 1 (#’K®
f+(0, k) — mﬂ-th |nl:1+exp(——£ - —,Uojj:|, (41)

mk.T 1 ( h’k?
f(Lk)= B In|l+exp| ——— —— ,
(L,k) 2 {+ p( kBT(Zm ﬂLJH (42)

where 4, is the Boltzmann constant, T is the temperature, and wp

and u; are the Fermi energies at the ends of the device. We use a
parabolic band approximation, and when k>0, the group velocity is
greater than O, so the boundary condition of (41) is applied, and
when k<0, the boundary condition of (42) is applied.

Fig. 6 shows the convergence characteristics of our simulation
method. A bias step of 0.01V is used, and the solution from the

previous bias is used as the initial guess of the solution.
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Fig. 4. The emitter and collector have a doping concentration of

2%10'%/cm?®, and the barrier and well are not doped. A 3nm barrier,

4nm well, and 7nm spacer are used. The band offset at the barrier

1s assumed to be 0.27eV
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Since the exact linear response (Jacobian matrix) for the WTE
and Poisson equations 1s calculated, it shows much more robust
convergence when compared to the Gummel iteration method
(decoupled scheme). As the bias increases, the convergence speed
of the Gummel iteration method is significantly slower. In particular,
as shown in Fig. 6, it can be seen that the simulation results
oscillate at V¢=0.27 V. This is because the assumption used for
the potential derivative term for the charge density becomes
increasingly inaccurate as the electrical field increases and the
resonance (quantum mechanical effect) occurs. Multiplying by a
suitable damping constant or dividing the voltage step finer will
result in convergence of simulation results, but this greatly
increases the computational time. On the other hand, if the
Newton—Raphson method (coupled scheme) is used, accurate
results can be obtained with only a few iterations even at a high
bias. When using the Newton Raphson method, it takes about twice
as much time to solve a linear system equation using a sparse
matrix solver. However, we confirm that it is generally more
efficient because solution can be found with much fewer iterations.
Also, since the linear response extracted in this process can be
used for small—signal analysis or noise simulation, this simulation
method is highly versatile [2].
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Fig. 7 is the result showing the current continuity. As explained in
numerical methods, it shows that the Fourier completeness relation
i1s still satisfied even if the nonlocal potential term is integrated in

the real space in the mesh for accurate calculation.
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Fig. 7. Current density according to location within the device.
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Fig. 8 shows the I—V characteristics for forward bias sweep and
backward bias sweep. It can be seen that the current shows
different currents in the range of 0.25 V to 0.32 V depending on the
direction of the bias sweep and exhibits bistable characteristics. A
plateau region in a positive bias sweep can also be found in previous
studies [36]—1[40]. However, since we performed -calculations
through the steady-—state simulation method, there is a possibility
that the wrong solution was found among several possible solutions.
Therefore, to verify that the IV curve is calculated correctly,
transient simulations are performed for the same biases. Fig. 9 is
the simulation result when the bias is changed in step function form
by 0.01V. We used 10fs as the time step size. Figure A shows the
transient characteristics in the case of a positive bias sweep, and
Figure B shows the transient characteristics in the case of a
negative bias sweep. In all other biases except 0.27V, if transient
simulation is performed for a long time, it converges to a steady—
state solution. 0.27 V is a negative resistance region in the plateau,
and it is known that intrinsic oscillations occur in this region in the
previous studies. Fig. 10 shows the transient characteristics in a
wider time domain. The solid line represents the transient current
during forward bias sweep, and the dotted line represents the
steady—state solution under the same bias. As in the red line, 0.28V,
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in all other biases, the transient simulation results converge to a
steady—state solution, but in the black line, 0.27V, the transient
current oscillates. Also, this oscillation occurs centered on the
steady —state solution, so it is shown that the same result as the
steady —state solution can be obtained even by time—averaging the
oscillating current. When sweeping the bias in the opposite direction,
it was also confirmed that all bias converges to a steady state
through transient simulation as shown in Fig. 11, and oscillation like

the previous situation did not occur.
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The previous results are simulation results for time step 10fs. In
order to check the dependence of simulation results on different
time step sizes, we conducted simulations for several time steps.
Fig. 12 shows the forward bias sweep for 6 time steps and the
transient current at 0.27V. Since we used the semi—implicit method
when the time step size i1s 20 fs, the transient power 1is
underestimated and the oscillation characteristic is not appear.
From the time step size of 10fs, oscillation characteristics appeared,
and the smaller the time step size, the closer to the real solution,
the larger the oscillation amplitude. Through this, it can be
confirmed that the time step size does not significantly affect the
frequency, but mainly affects the oscillation size. Fig. 13 shows the
transient current characteristics in section A (0~2ps) and section B
(10~15ps). In section A, we can know that the difference in
simulation results according to the time step size is not large.
Therefore, 1f there 1s no intrinsic oscillation, high—accuracy
simulation can be performed even with a relatively large time step
size. However, since the characteristic difference according to the
time step is clearly seen in section B, it can be seen that the
truncation error can be minimized by using a time step size that is
sufficiently small compared to the frequency when performing
simulation of high—frequency oscillation. And the result when using
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a time step size of 1fs showed an oscillation size of about 3.5
A/cm”2, which is much larger than the results of previous papers,

and the frequency is about 2.5 THz, showing similar results.
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Fig. 14 and Fig. 15 show the results of calculating the Wigner
function under various bias conditions. It can be confirmed that
there is a section showing a fairly large negative value due to the
quantum interference effect at 0.24V, which is near the peak
current. This is a characteristic of the qausi—probabilty density in
which a negative value appears due to the uncertainty principle,
When the electron density is calculated by integrating over the k—

space, the positive electron density is well defined in all positions.
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Fig. 16 shows the band diagram at the plateau and the electron
density at several biases. Figure A shows the band diagram in
steady—state when forward bias sweep is performed. The solid line
from 0.27 V to 0.32 V is the plateau region, and it can be seen that
the characteristic is clearly different from the normal operation
region, which is the dotted line. At the plateau, we can see that band
banding occurs in the emitter region in front of the first barrier.
Therefore, the emitter region also shows characteristics like
another quantum well, and a quantized state exists. And when this
state is similar to the resonance energy level between the double
barriers, a new current path is formed as shown schematically in
Fig. 16. Therefore, as shown in Fig. 17, not only the current in the
plateau region but also the electron density in the quantum well
does not drop significantly compared to the peak current.

These results show that our proposed new numerical formulation
method shows good convergence and is reliable because it shows
the same tendency as previous papers for RTD

simulation.
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3—3. Simulation for double gate MOSFET

Mode space method is used for simulation of double gate
MOSFET. As described above, 1D WTE i1s solved in the source—
drain direction and the Schrédinger equation is solved in the

confinement direction. The boundary condition of WTE in Contact is

as follows:
I 1 n3K? N
f,, (0,k)=|1+exp (ﬁ( ™ + Ej;o —yLD , (41)
i B
I 1 (hK? B
fv,n_ (0,k) =|1+exp (ﬁ( om + E‘f;L — Hg JJ ) (42)
B

Where up and ur are the quasi—Fermi levels at the source/drain
contacts.

The length of the source and drain region is 9 nm and the doping
concentration is 10?°/cm®. The gate oxide uses SiO: and has a
thickness of 1 nm. The channel length is 7nm and 10nm, and the
body thickness 1s 3nm and 5nm. To produce an off—current of
1~100A/m, the gate work function is set to 4.22eV.

Unlike simulation in RTD, Schrédinger equation in cross section
also needs to be solved, so using Newton—Raphson method makes

the system matrix size too large. Therefore, for efficient simulation,
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the Gummel method, which consumes less memory, is used. Since
the exact Jacobian matrix used in the Newton—Raphson method is
required to obtain the correct linear response of the device by any
source, 1n this case, the matrix can be calculated directly. However,
since the size of the matrix can be larger than the DRAM memory
size of the simulation computer, only the non—zero elements of the
matrix are stored and the sparse matrix solver is used.

Fig. 18 shows the IV curve when the gate length is 7 nm and Fig.
19 shows the gate length is 10 nm. Obviously, when the channel
length i1s short, we show that the leakage current increases and the
on/off ratio decreases. In addition, when the body thickness is thin,
gate controllability is improved, resulting in lower off—current and

higher on—current characteristics.
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Fig. 20 and Fig. 21 shows the lowest subband pofile in on—state
(Vgs=0.5V) and off—state (Vgs=0V) when the gate length is 7nm.
Fig. 20 shows a body thickness of 3 nm and Fig. 21 is when the
body thickness is 5 nm. Fig. 22 and Fig. 23 shows the lowest
subband pofile according to the body thickness when the gate length
is 10 nm.

We can know that the thinner the body thickness for the same
gate length, the lower the energy barrier in the on—state, so that a
higher current flows, and in the off—state, the energy barrier
becomes higher and thus a lower leakage current flows. As such,
when the body thickness is thin, electrostatically improved gate
controllability improves device characteristics.

For the same body thickness, the shorter the channel length, the
lower the energy barrier in off—state. Structurally, because it is
electrostatically affected by source and drain, the energy barrier is
lowered, and at the same time, the channel length is also shortened,
so that a higher leakage current including source—drain tunneling

flows.

54 -":r-\ﬁ-! _kl.':_ -|_- ] -



0.2

T L) T L |
: L =10nm, T, ,=3nm
g body
0.1 —=—V, =04V, V =0V
i —e—V_ =04V, V_=0.5V

0.0
PN
2 .01
> |
B '
5 0.2
c
L
0.3
0.4

0.0 5.0n 100n 150n 20.0n 25.0n
Z Position (m)
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off —state (Vgs=0V) when the gate length is 10nm and body
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Fig. 23. The lowest subband pofile in on—state (Vgs=0.5V) and

off—state (Vgs=0V) when the gate length is 7nm and body

thickness 5nm
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Fig. 24—27 shows the Wigner function in each condition. Simulation
was performed under the same conditions as Fig. 20—23, and this is
the result of WTE calculation in the lowest subband. The figures
show that in the on—state, the current flows well with the Wigner
function showing a high value even near the channel in all cases. In
off —state, the Wigner function shows a high value only in the
source and drain regions, but when the gate length is 7 nm and the
body thickness is 5 nm, the Wigner function increases near the
channel and the leakage current flows clearly. The reason why only
the results for the lowest subband are shown in the previous results
is that, since the largest Wigner function is injected as the boundary
condition in the lowest subband, it has the largest electron density
and has a major influence on the results. The 3D electron density
and electrostatic potential for each condition are shown in the

appendix.
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Fig. 24. Wigner function in (a)off—state (Vgs=0V) and (b)on—state

(Vgs=0.5V) when the gate length is 7nm and body thickness 3nm.
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Fig. 25. Wigner function in (a)off—state (Vgs=0V) and (b)on—state

(Vgs=0.5V) when the gate length is 7nm and body thickness 5nm.
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Fig. 26. Wigner function in (a)off—state (Vgs=0V) and (b)on—state

(Vgs=0.5V) when the gate length is 10nm and body thickness 3nm.
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Fig. 27. Wigner function in (a)off—state (Vgs=0V) and (b)on—state

(Vgs=0.5V) when the gate length is 10nm and body thickness 5nm.
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The gate length of 10 nm, body thickness of 3 nm, and gate oxide
thickness of 1 nm, which showed the best characteristics among the
previous results, also showed a much higher subthreshold slope
(SS) than 60 mV/dec of about 95 mV/dec, even though ballistic
transport was assumed. Therefore, in order to predict better
performance, a simulation was conducted with a thinner equivalent
oxide thickness (EOT). To reduce EOT, there is a method of
depositing a thinner silicon oxide or a method of using a high—k
gate oxide. When a high—k material is used as the gate oxide, EOT
can be expressed as
Ksio
EOT =ty | 7— |*1sio, (43)
high—k

We conducted the simulation by reducing the EOT from 1 nm to 0.5
nm. In order to make the simulation simpler without changing the
device structure, the oxide thickness was fixed at 1 nm and only the
dielectric constant was changed. As shown in Fig. 28, it can be seen
that as EOT decreases, the on current increases and the off current
decreases. For example, looking at the lowest subband profile, we
can know that the gate controllability is improved when EOT is
0.5nm compared to when it is 1nm. As a result, SS is also improved
to 95 mV/dec when EOT is 1 nm and to 82 mV/dec when EOT is 0.5

nm.
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Fig. 28. (a) gate voltage — drain current charateristic and (b)

lowest subband diagram according to EOT.

63 A 2T}



Fig. 29 is a diagram showing all subbands in each valley. As shown
in the figure, except for a few subbands, all of them have high
energy, so only 5 modes for each valley were considered. As
mentioned above, since subbands with high energy hardly
contribute to electron density, it can be confirmed that sufficiently
accurate simulation results can be obtained by considering only a

few subbands.
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Fig. 29. (a) Subband energy for each valley.
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Next, transient simulation was performed on a double gate
MOSFET. With Vds of 0.4V, a bias in the form of a step function
was applied to Vgs from OV to 0.5V. As a result, Fig. 30 shows that
the drain current converges to a steady state at several ps.
However, this is only an attempt at transient simulation in a two—
dimensional simulation, and there are several issues to consider.
Among all equations, only WTE has a transient form, and the
Schrédinger equation in the cross section 1s a steady—state
equation. Therefore, the transient characteristics of WTE can be
considered for each time step, but in the case of Schrédinger's
equation, only a steady—state solution for a given potential can be
derived. Therefore, it is necessary to verify whether the method we

used is valid through another method.
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Fig. 30. Transient current characteristic. With Vds of 0.4V, a bias in

the form of a step function is applied to Vgs from OV to 0.5V. Gate

length is 10nm, body thickness is 3nm, and Tox is 0.5nm.
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The previous simulation results are for ballistic transport. As in the
simulation for RTD, we analyzed the device -characteristics
considering the scattering effect through relaxation time
approximation. Relaxation time can be expressed as follows for

effective mobility.

T=Mmy xule (44)
We performed simulation for u=386cm?/Vs. Fig. 31, it was
confirmed that the on—current decreased by about 31% when
scattering was considered. Fig. 32 also shows that it has a
broadened Wigner function when there is scattering in the on—state.
However, since relaxation time approximation is used in this study,
the shape of the Wigner function may be different if more

sophisticated scattering models are used.
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there is no scattering and (b) is when there is scattering.
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3. Conclusion

We derive a novel representation of nonlocal potential terms
with infinite correlation length with the assumption of ideal contact.
Even if the correlation length is not finitely limited, the integral
range can be finitely limited through the modification of the equation,
and thus it is possible to solve it numerically. Through this, more
accurate simulation is possible without uncertainty of the WTE
solution due to the finite correlation length. In addition, robust
convergence was obtained using fully—coupled scheme in one
dimension, and it was confirmed that reliable simulation results
were obtained by well showing unique characteristics such as
plateaus in RTD. Simulation was applied not only to one—
dimensional but also to two—dimensional simulation of double gate
structure, device characteristics were confirmed, and quantum
transport transient simulation in multi—dimensional simulation was
also attempted for the first time. Unlike NEGF and PME, not only
steady—state simulation but also transient simulation are possible,
and since the Newton—Raphson method is used, the accurate linear
response of the equation can be calculated, and thus small signal or
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noise analysis will be readily possible.
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Appendix

A—1. Numerical integration method of the nonlocal

potential terms

Assuming a linear potential drop between meshes as shown in
Fig. 8, the potential in the device can be expressed in a linear

function form for each section.

. Control box
Potential 4
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SRR 2 S YR
ViV ,, —
y-Vi=—/Z (x—x;)
Vi s
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:I .
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Fig. 33. Assuming a linear potential drop between meshes, the

potential can be expressed as a linear function.
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Then, we can integrate the nonlocal potential term analytically as

follow:
V(z.k) = 2j0“dgsin(gk)[ucm (. O)]+ z%cos(sz)

1302 j(’;dxl)dxd;sin(;k)[uw ( ;(,g”)]}rz%cos(ZLk)

V V.

i+A "~ Vira
Ny y —(g_xi+A) +Vi+A
=| > 2[™ desinek|
a1 (ADK ian —Vica
_T (é/ - Xi—A) _Vi—A
+2%cos(2Lk)
_ e
Vi+A _Vi+A—1 X -
i+A
Ecos(gk) dx
&, [K i—A+1 _V'—A
= 22 I +dX == Xioa +Viia —Viia
A=1
+(Vi+A ~Viias Viaa—Via )(Sin(gk) ¢k COS(gk)j
2
I dx dx k At
+2%cos(2Lk)
(40)

This is difficult to integrate in k—space, so we assume that nonlocal
potential terms are uniform in k—space. Therefore, when the finite
correlation length is used, the longer the correlation length is, the
shorter the period of the sine cos function is, so that the nonlocal

potential term changes rapidly in the k—space and a non—physical
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result 1s obtained. Fig. 34 shows the I—V curve according to the
number of meshes in k—space when Lc=4L. Since the mesh size in
k—space decreases as the number of meshes increases, non—
physical results due to the rapidly changing nonlocal potential term

do not appear.
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A—2. 2D electron density and electric potential

results

For better understanding, 2D electron density and potential values
are shown when the gate length is 10 nm, the body thickness is 3
nm, and the oxide thickness is 1 nm. It can be confirmed that the
electron density and potential energy in the channel are increased

in the on—state.
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Fig. 35. (a) Electron density and (b) potential when gate length is
10nm and body thickness is 3nm. Drain voltage is 0.4V and gate

voltage is OV (off—state).
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Fig. 36. (a) Electron density and (b) potential when gate length is
10nm and body thickness is 3nm. Drain voltage is 0.4V and gate

voltage is 0.5V (on—state).
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A—3. Wigner function for each subband

The Wigner function in the on/off state is shown in figures. The
figures show that the second or more subbands in each valley show
a low Wigner function and thus do not significantly affect the
solution. Also, it can be seen that the 3rd valley (t, t, 1) shows the

highest Wigner function value and has the greatest influence.
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Fig. 37. Wigner function at (a) first and (b) second subband of the
1st valley (1, t, t) when gate length is 10nm and body thickness is

3nm. Drain voltage is 0.4V and gate voltage is OV (off—state).
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2nd valley (i, I, t) when gate length is 10nm and body thickness is

3nm. Drain voltage is 0.4V and gate voltage is OV (off—state).
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