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Abstract

Despite the recent advances of conditional text generation systems leveraged from

pre-trained language models, factual consistency of the systems are still not sufficient.

However, widely used n-gram similarity metrics are vulnerable to evaluate the factual

consistency. Hence, in order to develop a factual consistent system, an automatic

factuality metric is first necessary. In this dissertation, we propose four metrics that

show very higher correlation with human judgments than previous metrics in evaluating

factual consistency, for diverse conditional text generation systems. To build such

metrics, we utilize (1) auxiliary tasks and (2) data augmentation methods.

First, we focus on the keywords or keyphrases that are critical for evaluating factual

consistency and propose two factual consistency metrics using two different auxiliary

tasks. We first integrate the keyphrase weights prediction task to the previous metrics to

propose a KPQA (Keyphrase Prediction for Question Answering)-metric for generative

QA. Also, we apply question generation and answering to develop a captioning metric

QACE (Question Answering for Captioning Evaluation). QACE generates questions on

the keywords of the candidate. QACE checks the factual consistency by comparing the

answers of these questions for the source image and the caption.

Secondly, different from using auxiliary tasks, we directly train a metric with a data-

driven approach to propose two metrics. Specifically, we train a metric to distinguish

augmented inconsistent texts with the consistent text. We first modify the original refer-

ence captions to generate inconsistent captions using several rule-based methods such as

substituting keywords to propose UMIC (Unreferenced Metric for Image Captioning).

As a next step, we introduce a MFMA (Mask-and-Fill with Masked-Article)-metric by

generating inconsistent summary using the masked source and the masked summary.

Finally, as an extension of developing data-driven factual consistency metrics, we also

propose a faster post-editing system that can fix the factual errors in the system.
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Chapter 1

Introduction

Recently various natural language generation systems such as chatbot, story generation,

abstractive summarization, and image captioning have shown great success following

the advances in pre-trained language models. Among these systems, the goal of condi-

tional text generation systems is to generate a text for a given specified source such as an

image or an article as shown in Figure 1.1. In such systems, it is necessary to generate a

text that is factual consistent with the source. In other words, all of the contents in the

text must be entailed by the source. However, previous studies [2, 3] have shown that

factual consistency of the current conditional text systems are still insufficient and often

generate the texts that have at least one factual errors as in ”Candidate Summary 1” of

Figure 1.2. In order to overcome this factual inconsistency problem, an automatic metric

that is easily able to evaluate the factual consistency of the current systems is necessary.

But as shown in Figure 1.2, widely used n-gram similarity based evaluation metrics

such as BLEU [4] or ROUGE [5] are vulnerable to evaluate the factual consistency

and often give higher score to the inconsistent text. These n-gram similarity metrics

do not consider the importance of each word in evaluating factual consistency and

simply decide the quality of each text with the overlap between the human generated

reference and the machine generated text. Also, as in ”Candidate Summary 2” in

Figure 1.2, these metrics often give lower score to the factually consistent examples

1



Image Captioning

Caption: A blue subway train 
pulls into the subway station.

Article: State authorities dispatched 
emergency crews tuesday to survey 
the damage after an onslaught of 
severe weather in mississippi…

Summarization
Summary: Six people hospitalized 
after a storm in attala county.

Knowledge 
Grounded Dialogue

Knowledge: Booking confirmations 
will be sent via email.
Query: I need to get a written 
confirmation, is that possible?

Response: Booking confirmations 
are sent via email shortly. Will that 
be all?

Figure 1.1: Examples of conditional text generation systems.

that are differently expressed with the reference summary. These examples show that

judgments between the humans and the n-gram similarity metrics are quite different

especially for evaluating the factual consistency.

In this dissertation, we introduce four novel types of factual consistency metrics in

several conditional text generation systems to overcome the limitation of the widely

used evaluation metrics. The four proposed factual consistency metrics are specified

into two categories as follows; 1) using auxiliary tasks and 2) data augmentation, based

on the types of the approaches to develop each metric.

Part1: Using Auxiliary Tasks for Factual Consistency Evaluation: As shown

in the examples in Figure 1.2, there are keywords or keyphrases that are crucial for

evaluating the factual consistency. Hence, to evaluate the factual consistency, we first

investigate the auxiliary tasks that can focus on keywords or keyphrases to evaluate

factual consistency.

2



Article: Scientists from harvard medical school have discovered a way of turning stem

cells into killing machines to fight brain cancer. In experiments on mice, the stem cells

were genetically engineered to produce and secrete toxins which kill brain tumours,

without killing normal cells or themselves. Researchers said the next stage was to test the

procedure in humans. (. . . )

Reference Summary: Scientists in the us have developed a stem cell therapy for brain

tumours.

Candidate Summary 1: Scientists in the us have developed a stem cell therapy for

killing normal cells.

Factual Consistency: inconsistent

BLEU-4: 0.758

ROUGE-L: 0.820

Candidate Summary 2: Scientists from harvard have discovered a new therapy for

tumours in the brain.

Factual Consistency: consistent

BLEU-4: 0.000

ROUGE-L: 0.462

Figure 1.2: An example of factually inconsistent/consistent examples and the wrong

evaluation of the widely used metrics in abstractive summarization.

We start from changing the previous widely used metrics by adding importance

weights to them. We first utilize the keyphrase weights from an auxiliary task for factual

consistency evaluation in generative question answering (GenQA), where the task is to

generate a free-form answer for a given passage in the following research.
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• Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Doo Soon Kim, Trung

Bui, Joongbo Shin, and Kyomin Jung, KPQA: A Metric for Generative Question

Answering Using Keyphrase Weights, in Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL-HLT), June 2021, Online.

In the automatic evaluation of GenQA systems, it is difficult to assess the correct-

ness of generated answers due to the free-form of the answer. In this task, widely used

n-gram similarity metrics often fail to discriminate the incorrect answers since they

equally consider all of the tokens. To alleviate this problem, we propose KPQA-metric,

a new metric for evaluating the correctness of GenQA. Specifically, our new metric as-

signs different weights to each token via keyphrase prediction, thereby judging whether

a generated answer sentence captures the key meaning of the reference answer. To eval-

uate our metric, we create high-quality human judgments of correctness on two GenQA

datasets. Using our human-evaluation datasets, we show that our proposed metric has a

significantly higher correlation with human judgments than existing metrics.

We further study the usage of another auxiliary tasks to focus on the keywords

to evaluate factual consistency. Different from KPQA, we develop a metric that is

totally different from the n-gram similarity metrics. We adopt Question Generation and

Question Answering (QGQA) that are often used for evaluating the factual consistency

some conditional text generation systems [6]. We focus on the usage of QGQA in

multimodal text generation system, an image captioning in the following research.

• Hwanhee Lee, Thomas Scialom, Seunghyun Yoon, Franck Dernoncourt, and

Kyomin Jung, QACE: Asking Questions to Evaluate an Image Caption, In Find-
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ings of the Association for Computational Linguistics: EMNLP 2021 (Findings

of EMNLP), November 2021, Punta Cana, Dominican Republic.

In this study, we propose QACE, a new metric based on Question Answering for

Caption Evaluation. QACE generates questions on the evaluated caption and checks

its content by asking the questions on either the reference caption or the source image.

We first develop QACERef that compares the answers of the evaluated caption to its

reference, and report competitive results with the state-of-the-art metrics. To go further,

we propose QACEImg, which asks the questions directly on the image, instead of refer-

ence. A Visual-QA system is necessary for QACEImg. Unfortunately, the standard VQA

models are framed as a classification among only a few thousand categories. Instead,

we propose Visual-T5, an abstractive VQA system. The resulting metric, QACEImg

is multi-modal, reference-less, and explainable. Our experiments show that QACEImg

compares favorably w.r.t. other reference-less metrics.

Part2: Data Augmentation for Factual Consistency Evaluation: The main goal

of the factual consistency metric is to distinguish the inconsistent text, where at least

one of the contents in the generated text are not consistent with the source, with the

consistent text. Inspired by this point, we introduce novel data augmentation techniques

to generate synthetic inconsistent samples in two studies included in this part to develop

factual consistency metrics.

We first generate inconsistent samples using pre-defined rules such as keyword

substitution to develop a metric for image captioning system in the following research.

• Hwanhee Lee, Seunghyun Yoon, Franck Dernoncourt, Trung Bui, and Kyomin

Jung, UMIC: An Unreferenced Metric for Image Captioning via Contrastive
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Learning, in Proceedings of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint Conference on Natural

Language Processing (ACL-IJCNLP), August 2021, Online.

Despite the recent advancements in model-based text evaluation metrics such as

BERTScore [7], it is still difficult to evaluate the image captions without enough

reference captions due to the diversity of the descriptions, and the properties of the

multimodal task. In this paper, we introduce a new image captioning metric UMIC, an

Unreferenced Metric for Image Captioning which does not require reference captions

to evaluate image captions. Based on Vision-and-Language BERT, we fine-tune the

model to discriminate erroneous captions via contrastive learning. Specifically, we

apply various approaches such as keyword substitution that can imitate the common

error types in the model-generated captions to human written captions to build negative

captions. Then, we fine-tune Vision-and-Language BERT to distinguish these negative

captions with the original reference captions to develop a captioning metric. Also, we

observe critical problems of the previous benchmark dataset (i.e., human annotations)

on image captioning metric, such as unbalanced score distribution in the dataset. To

solve such problems, we introduce a new collection of human annotations named

CapEval1k on the generated captions using recent captioning systems. We validate

our proposed evaluation metric UMIC on four datasets, including our new dataset

CapEval1k, and show that UMIC has a higher correlation than all previous metrics

that require multiple references. Furthermore, our in-depth analysis demonstrates that

UMIC properly determines the quality of the caption using both the image and the

caption.

As a next step of simple rule-based inconsistent data augmentation method, we

study a more advanced inconsistent data augmentation method based on mask-and-fill.

We generate inconsistent samples that are more difficult to be distinguished from con-
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sistent samples, regarding the relation between the source and the generated text in the

following research.

• Hwanhee Lee, Kang Min Yoo, Joonsuk Park, Hwaran Lee, and Kyomin Jung,

Masked Summarization to Generate Factually Inconsistent Summaries for Im-

proved Factual Consistency Checking, in Findings of the Association for Compu-

tational Linguistics: NAACL 2022 (Findings of NAACL), July 2022, Seattle, WA,

USA.

Despite the recent advances in abstractive summarization systems, it is still difficult

to determine whether a generated summary is factual consistent with the source text.

To this end, the latest approach is to train a factual consistency classifier on factually

consistent and inconsistent summaries. Luckily, the former is readily available as ref-

erence summaries in existing summarization datasets. However, generating the latter

remains a challenge, as they need to be factually inconsistent, yet closely relevant to the

source text to be effective. In this paper, we propose to generate factually inconsistent

summaries using source texts and reference summaries with key information masked.

Experiments on seven benchmark datasets demonstrate that factual consistency classi-

fiers trained on summaries generated using our method generally outperform existing

models and show a competitive correlation with human judgments. We also analyze the

characteristics of the summaries generated using our method.

Part3: Improving Factual Consistency from Evaluation Metrics: Furthermore,

we also study the way to mitigate the factual inconsistency problem itself. As a first

step, we propose a post-editing system to correct the factual errors inspired by the

approaches to train factual consistency metrics in the following work.
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• Hwanhee Lee, Cheoneum Park, Seunghyun Yoon, Trung Bui, Franck Dernon-

court, Juae Kim, Kyomin Jung, Factual Error Correction for Abstractive Sum-

maries Using Entity Retrieval, in arXiv, May 2022

Despite the recent advancements in abstractive summarization systems leveraged

from large-scale datasets and pre-trained language models, the factual correctness of

the summary is still insufficient. One line of trials to mitigate this problem is to include

a post-editing process that can detect and correct factual errors in the summary. In

building such a post-editing system, it is strongly required that 1) the process has a high

success rate and interpretability and 2) has a fast running time. Previous approaches

focus on regeneration of the summary using the autoregressive models, which lack

interpretability and require high computing resources. In this paper, we propose an

efficient factual error correction system RFEC based on entities retrieval post-editing

process. RFEC first retrieves the evidence sentences from the original document by

comparing the sentences with the target summary. This approach greatly reduces the

length of text for a system to analyze. Next, RFEC detects the entity-level errors in the

summaries by considering the evidence sentences and substitutes the wrong entities with

the accurate entities from the evidence sentences. Experimental results show that our

proposed error correction system shows more competitive performance than baseline

methods in correcting the factual errors with a much faster speed.

This dissertation is organized as shown in Figure 1.3. The next chapter, Chapter 2

provides background on text evaluation metrics and evaluation methods for metrics. In

Chapter 3-4, we introduce two independent studies that utilize auxiliary tasks to focus

on keywords-aware evaluation, Keyphrase Weight Prediction (Chapter 3) and Question

Generation and Question Answering (Chapter 4), to develop factual consistency metric

for generative QA and image captioning respectively. In Chapter 5-6, we introduce

two works that generate synthetic inconsistent data using rule-based methods (Chapter
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Introduction (Chapter 1)
Background (Chapter 2)

Integrating Keyphrase Weights for Factual Consistency 
Evalution (Chapter 3)

Question Generation and Question Answering for Factual 
Consistency Evalution (Chapter 4)

Rule-Based Inconsistent Data Augmentationfor Factual 
Consistency Evalution (Chapter 5)

Inconsistent Data Augmentation with Masked 
Generation for Factual Consistency Evalution (Chapter 6)

Conclusion (Chapter 8)

Factual Error Correction for Improving Factual 
Consistency (Chapter 7)

Part 3: Improving Factual Consistency from Evaluation Metrics

Part 2: Data Augmentation for Factual Consistency Evaluation

Part 1: Auxiliary Tasks for Factual Consistency Evaluation

Figure 1.3: Outline of this dissertation.

5) and masked generation (Chapter 6) to train factual consistency metric. We also

introduce a method that can improve factual consistency to mitigate the factual errors

by post-editing in Chapter 7. Finally, we conclude the dissertation in Chapter 8.
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Chapter 2

Background

2.1 Text Evaluation Metrics

We briefly review the current automated text evaluation metrics that have been used to

evaluate conditional text generation systems that are specified as shown in Figure 2.1.

2.1.1 N-gram Similarity Metrics

N-gram/embedding similarity metrics directly measure the similarity between the

reference text and the candidate text. The most widely used evaluation metrics are

n-gram similarity metrics such as BLEU or ROUGE. These metrics simply compute

the similarity between the reference text with the candidate text by measuring the word

overlaps.

BLEU is one of the most popular evaluation metrics for the generated texts based

on n-gram precision. BLEU computes a score of the candidate text by counting the

number of occurrence in the reference among the n-gram of the candidate. Generally, n

varies from 1 to 4, and the geometric mean of the various n are widely used.
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N-gram/Embedding  Similarity Auxiliary Tasks Entailment-based

• BLEU
• ROUGE
• METEOR
• CIDEr
• WMD
• BERTScore

• QuestEval (QA)

• QAGS (QA)

• QACE (QA)

• KPQA (Keyphrase Prediction)

• COCO (Likelihood)

• UMIC
• FEVER
• MNLI
• DocNLI
• FactCC
• MFMA

Source Text

Auxiliary Model + 
Similarity Metrics

Model
TextReference

Direct Prediction

Similarity

Similarity of Keyword/Keyphrases

Source Text

Figure 2.1: Automatic evaluation metrics for conditional text generation systems. The

metrics based on auxiliary tasks and entailment are specialized for factual consistency

evaluation.

ROUGE is also one of the widely used evaluation metrics used for automatic text gen-

eration tasks such as machine translation and summarization. Among various ROUGE

variants, ROUGE-L, which is a F-measure based on the longest common subsequence

between a candidate and the reference, is frequently used.

METEOR [8] is a F1-score based metric computed by unigram alignments. Different

from other metrics, METORS utilizes synonyms, paraphrases, and stemmed words, as

well as the general exact word matches.

CIDER [9] is a consensus-based evaluation metric that is specialized for evaluating

the generated captions in image captioning task. CIDEr uses Term Frequency-Inverse

Document Frequency (TF-IDF) weights to consider the importance of each n-grams

for human-like evaluation.
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2.1.2 Embedding Similarity Metrics

As an advanced method, embedding based metrics such as BERTScore [10] computes

the similarity in the embedding space using the pre-computed embedding for both the

reference text and the candidate text. These metrics are relatively easy to compute than

the advanced metrics.

Word Mover’s Distance (WMD) [11] computes the minimum transportation cost

between two sets of texts using the embeddings from word2vec [12]. In other words, it

computes how much cost is necessary to move the words in one text to another text.

BERTScore is also an embedding similarity based evaluation metric that uses pre-

trained representations from BERT [13]. BERTScore first independently computes

the contextual embeddings of the given references and the candidate texts with BERT.

Then, it computes pairwise cosine similarity scores between two embeddings. When

computing the similarity, BERTScore integrates Inverse Document Frequency (IDF) to

consider the importance of each token.

2.1.3 Auxiliary Task Based Metrics

For factual consistency focused evaluation, various metrics that utilize auxiliary tasks

have introduced. These metrics use auxiliary tasks that can focus on keywords or

keyphrases which are crucial for factual consistency evaluation. Among them, question

answering based metrics [14, 6] are widely used due to the intuitiveness and the

interpretability. However, these metrics often require heavy computational cost.

QA-Based Metrics QuestEval [14] and QAGS [6], which are originally built to

evaluate the summaries, use the question generation and answering framework to

evaluate the factual consistency of the generated text. These metrics usually compute

the factuality score by generating the question for the generated summaries, and then
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comparing the answers of them with both summaries and the article. In this dissertation,

we introduce a new QA-based metric QACE [15] for image captioning evaluation.

Likelihood-Based Metrics BARTScore [16] directly computes the likelihood of the

generated texts using BART [17]. CoCo [18] utilizes the difference of the likelihood

for each summary using the original article and the masked source where the key

information is masked.

2.1.4 Entailment Based Metrics

To simply evaluate the factual consistency, entailment-based metrics that can directly

measure the factual consistency using trained systems are widely used. These metrics

usually use deep neural networks to compute the entailment score between the source

text and the candidate text, which are relatively faster than using auxiliary tasks.

Related Tasks For factual consistency evaluation, the output of several natural lan-

guage understanding tasks such as natural language inference [19] or fact checking [20]

are also used. These tasks are similar to factual consistency evaluation in detecting the

contradiction between the source text and the input text. However, the length of the

input text in these tasks are usually shorter than the general output of the conditional

text generation systems, and this leads to the difficulty of direct application to factual

consistency evaluation.

Data Augmentation Methods Previous studies [21, 3] have shown that the factual

errors in the conditional text generation systems are often trivial. For this reason,

FactCC [22] and DocNLI [23] imitate the factually inconsistent samples using pre-

defined rules and then directly train factual consistency metrics using the augmented

data. We propose UMIC [15] for image captioning based on the rule-based data augmen-

tation.We also present MFMA [24] through the masked generation in this dissertation.
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2.2 Evaluating Automated Metrics

An ideal automatic evaluation metric can imitate the evaluation procedure of the humans.

Hence, the goal of developing automatic evaluation metric is to develop a metric that

is similar to the human judgments. Therefore, to evaluate the quality of the evaluation

metrics, correlation with the human judgments are widely used. We briefly review the

correlation coefficient in this section.

Pearson Correlation Coefficient Pearson correlation coefficient (r) [25] measures

the linear correlation between two species of input data. This coefficient computes the

ratio between the covariance of two input variables and then compute the product of

their standard deviations. The coefficient value is between −1 and +1, and the higher the

value means the higher similarity between the two input data. This Pearson correlation

coefficient assesses the linear relationships between the automated metrics and the

human judgments when evaluating the metrics.

Spearman Correlation Spearman’s rank correlation coefficient(ρ) [26] is a rank

based correlation between the two input variables. Similar to Pearson correlation

coefficient, it computes how well the relationship between two input variables through

a monotonic function. In other words, this correlation coefficient shows the similarity

of the rank (i.e. relative position) between two input variables. In evaluating metrics,

this coefficient is used to measure the similarity of the rank between the automated

metrics and the human judgments.
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Chapter 3

Integrating Keyphrase Weights for Factual Consistency

Evaluation

Question answering (QA) has received consistent attention from the natural language

processing community. Recently, research on QA systems has reached the stage of

generating free-form answers, called GenQA, beyond extracting the answer to a given

question from the context [27, 28, 29, 30, 31, 32]. However, as a bottleneck in devel-

oping GenQA models, there are no proper automatic metrics to evaluate generated

answers [33].

In evaluating a GenQA model, it is essential to consider whether a generated

response correctly contains vital information to answer the question. There exist several

n-gram similarity metrics such as BLEU [34] and ROUGE-L [35], that measure the

word overlaps between the generated response and the reference answer; however, these

metrics are insufficient to evaluate a GenQA system [36, 33].

For instance, in the example in Figure 3.1 from the MS-MARCO [1], the generated

answer receives a high score on BLEU-1 (0.778) and ROUGE-L (0.713) due to the

many overlaps of words with those in the reference. However, humans assign a low

score of 0.063 on the scale from 0 to 1 due to the mismatch of critical information. As

in this example, we find that existing metrics often fail to capture the correctness of the
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Context : ... , this process, called hypothesis testing, consists of four steps. , ...

Question : How many steps are involved in a hypothesis test?

Reference Answer : Four steps are involved in a hypothesis test.

Generated Answer : There are seven steps involved in a hypothesis test .

Human Judgment : 0.063

BLEU-1 : 0.778 BLEU-1-KPQA : 0.057

ROUGE-L : 0.713 ROUGE-L-KPQA : 0.127

Figure 3.1: An example from MS-MARCO [1] where widely used n-gram similarity

metrics does not align with human judgments of correctness. On the other hand, our

KPQA-metrics focus on the key information and give low scores to incorrect answers

similar to humans.

generated answer that considers the key information for the question.

To overcome this shortcoming of the existing metrics, we propose a new metric

called KPQA-metric for evaluating GenQA systems. To derive the metric, we first

develop Keyphrase Predictor for Question Answering (KPQA). KPQA computes the

importance weight of each word in both the generated answer and the reference answer

by considering the question. By integrating the output from the KPQA, we compute

the KPQA-metric in two steps: (1) Given a {question, generated answer, reference

answer}, we compute importance weights for each question-answer pair {question,

generated answer} and {question, reference answer} using a KPQA; (2) We then

compute a weighted similarity score by integrating the importance weights into existing

metrics. Our approach can be easily integrated into most existing metrics, including

n-gram similarity metrics and the recently proposed BERTScore [7].

Additionally, we newly create two datasets for assessing automatic evaluation
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metrics with regard to the correctness in the GenQA domain. We first generate answers

using state-of-the-art GenQA models on MS-MARCO and AVSD [37] where the

target answers are natural sentences rather than short phrases. We then collect human

judgements of correctness over the 1k generated answers for each dataset.

In experiments on the human-evaluation datasets, we show that our KPQA-metrics

have significantly higher correlations with human judgments than the previous metrics.

For example, BERTScore-KPQA, one of our KPQA-integrated metrics, obtains Pearson

correlation coefficients of 0.673 on MS-MARCO whereas the original BERTScore

obtains 0.463. Further analyses demonstrate that our KPQA-metrics are robust to the

question type and domain shift. Overall, our main contributions can be summarized as

follows:

• We propose KPQA metric, an importance weighting based evaluation metric for

GenQA.

• We collect high-quality human judgments of correctness for the model generated

answers on MS-MARCO and AVSD, where those two GenQA datasets aim to

generate sentence-level answers. We show that our proposed metric has a dramatically

higher correlation with human judgments than the previous metrics for these datasets.

• We verify the robustness of our metric in various aspects such as question type and

domain effect.

3.1 Related Work

One important next step for current QA systems is to generate answers in natural

language for a given question and context. Following this interest, several generative

(abstractive) QA datasets [1, 38, 39, 40], where the answer is not necessarily in the

passage, have recently been released. Since the task is to generate natural language

for the given question, the QA system is often trained with seq2seq [41] objective

similarly to other natural generation tasks such as neural machine translation. Hence,
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researchers often use n-gram based similarity metrics such as BLEU to evaluate the

GenQA systems, following other natural language generation tasks.

However, most of these n-gram metrics including BLEU were originally developed

to evaluate machine translation and previous works [42, 43, 44] have shown that these

metrics have poor correlations with human judgments in other language generation

tasks such as dialogue systems. As with other text generation systems, for GenQA,

it is difficult to assess the performance through n-gram metrics. Especially, n-gram

similarity metrics can give a high score to a generated answer that is incorrect but

shares many unnecessary words with the reference answer. Previous works [45, 36, 33]

have pointed out the difficulty of similar problems and studied automated metrics for

evaluating QA systems. Inspired by these works, we focus on studying and developing

evaluation metrics for GenQA datasets that have more abstractive and diverse answers.

We analyze the problem of using existing n-gram similarity metrics across multiple

GenQA datasets and propose alternative metrics for GenQA.

3.2 Proposed Approach: KPQA-Metric

To build a better metric for GenQA, we first propose KPQA. By considering the

question, the KPQA assigns different weights to each token in the answer sentence

such that salient tokens receive a high value. We then integrate the KPQA into existing

metrics to make them evaluate correctness as well.

3.2.1 KPQA

For GenQA, we observe that each word has different levels of importance when assess-

ing a generated answer. As shown in Figure 3.1, there exist keywords or keyphrases that

are considered significant when evaluating the correctness of the answer. Additionally,

some words, such as function words are mostly irrelevant to the correctness of the

answer. Inspired by this observation, we introduce KPQA, which can predict the impor-
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KPQA

KPQA

Reference Answer 𝑿
Four steps are involved in a hypothesis 
test

Generated Answer 𝑿
There are seven steps involved in a 
hypothesis test  

Question 𝑸
How many steps are involved in a 
hypothesis test?

Importance Weights KPQA-Metric

Four steps are involved in a

hypothesis test

areThere seven steps

involved in a hypothesis test

Figure 3.2: Overall flow of KPQA-metric. Importance weights are computed by pre-

trained KPQA for each question-answer pair. And then these weights are integrated

into existing metrics to compute weighted similarity.

tance of each word when evaluating GenQA systems. As shown in Figure 3.3, KPQA

is a BERT-based [13] classifier that predicts salient tokens in the answer sentences

depending on the question. We regard it as a multi-class classification task where each

token is a single class. To train KPQA, we first prepare extractive QA datasets such

as SQuAD [46], which consist of {passage, question, answer-span}. We transform

these datasets into pairs of {answer-sentences, question, answer-span}. We extract the

answer-sentences that contain answer-span in the passage since these sentences are

short summaries for the given question. Specifically, for a single-hop QA dataset such

as SQuAD, we pick a single sentence that includes answer-span as the answer sentence.

For the answers in a multi-hop QA dataset such as HotpotQA [47], there are multiple

supporting sentences for the single answer span. For these cases, we use SpanBERT [48]

to resolve the coreferences in the paragraphs and extract all of the supporting sentences

to compose answer sentences. The {question, [SEP], answer-sentences} is then fed

into the KPQA to classify the answer-span, which is a set of salient tokens, in the given

answer-sentences considering the question.

3.2.2 KPQA Metric

Since KPQA’s training process allows KPQA to find essential words in the answer

sentences to a given question, we use a pre-trained KPQA to get the importance weights
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Figure 3.3: Overall architecture and an output example of KPQA. KPQA classifies

whether each word in the answer sentences is in the answer span for a given question.

We use the output probability KPW as an importance weight to be integrated into

KPQA-metric.

that are useful for evaluating the correctness of generated answers in GenQA. The

overall flow of our KPQA-metric is described in Figure 3.2. We describe how we

combine these weights with existing metrics to derive the KPQA-metric.

We first compute the importance weights for a given question Q = (q1, ..., ql),

reference answer X = (x1, ..., xn) and generated answer X̂ = (x̂1, ..., x̂m) using pre-

trained KPQA. We provide each pair {question, generated answer} and {question,

reference answer} to pre-trained KPQA and get the output of the softmax layer. We

define these parts as KeyPhrase Weight (KPW) as shown in Figure 3.3. We note that
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KPW(Q,X̂) = (w1, ..., wm) is an importance weight of generated answer X̂ for a given

question Q. These weights reflect the importance of each token for evaluating the

correctness.

We then compute KPQA-metric by incorporating the KPW into several existing

metrics modifying the precision and recall to compute the weighted similarity.

BLEU-1-KPQA: We derive BLEU-1-KPQA, which is an weighted precision of

unigram (PKPQA
Unigram) as follows:

PKPQA
Unigram =

Σm
i=1Σ

n
j=1KPW(Q,X̂)

i · I(i, j)

Σm
i=1KPW(Q,X̂)

i

, (3.1)

where I(i, j) is an indicator function assigned the value of 1 if token xi is the same as

x̂j and 0 otherwise.

ROUGE-L-KPQA: We also derive ROUGE-L-KPQA, which is a modified version

of ROUGE-L using KPW to compute weighted precision(PKPQA
LCS ), recall(RKPQA

LCS )

and F1(F1KPQA
LCS ), as follows:

PKPQA
LCS =

LCSKPQA(X, X̂)

Σm
i=1KPW(Q,X̂)

i

, (3.2)

RKPQA
LCS =

LCSKPQA(X, X̂)

Σn
i=1KPW(Q,X)

i

, (3.3)

FKPQA
LCS =

(1 + β2)RKPQA
LCS PKPQA

LCS

RKPQA
LCS + β2PKPQA

LCS

, (3.4)

where LCS is the Longest Common Subsequence between a generated answer and a

reference answer. The LCSKPQA(X, X̂) is defined as follows:

LCSKPQA(X, X̂) = Σm
i=1Ii · KPW(Q, X̂)

i , (3.5)

where Ii is an indicator function which is 1 if each word is in the LCS and 0 otherwise.

β is defined in [35].
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BERTScore-KPQA Similar to ROUGE-L-KPQA, we compute BERTScore-KPQA

using KPW. We first compute contextual embedding x̂ for generated answer X̂ and x for

reference X using the BERT model. Then, we compute weighted precision(PKPQA
BERT ),

recall(RKPQA
BERT ) and F1(F1KPQA

BERT ) with contextual embedding and KPW of each token

as follows:

PKPQA
BERT =

Σm
i=1KPW(Q,X̂)

i · maxxj∈xxi
T x̂j

Σm
i=1KPW(Q, X̂)

i

(3.6)

RKPQA
BERT =

Σn
i=1KPW(Q,X)

i · maxx̂j∈x̂xi
T x̂j

Σn
i=1KPW(Q,X)

i

(3.7)

F1KPQA
BERT = 2 ·

PKPQA
BERT ·RKPQA

BERT

PKPQA
BERT +RKPQA

BERT

(3.8)

PKPQA
LCS =

LCSKPQA(X, X̂)

Σm
i=1KPW(Q,X̂)

i

, (3.9)

RKPQA
LCS =

LCSKPQA(X, X̂)

Σn
i=1KPW(Q,X)

i

, (3.10)

FKPQA
LCS =

(1 + β2)RKPQA
LCS PKPQA

LCS

RKPQA
LCS + β2PKPQA

LCS

, (3.11)

where LCS is the Longest Common Subsequence between a generated answer and a

reference answer. The LCSKPQA(X, X̂) is defined as follows:

LCSKPQA(X, X̂) = Σm
i=1Ii · KPW(Q, X̂)

i , (3.12)

where Ii is an indicator function which is 1 if each word is in the LCS and 0 otherwise.

β is defined in [35].
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Dataset Answer Length (avg.) # Samples

MS MARCO 16.6 183k

AVSD 9.4 118k

Narrative QA 4.7 47k

SemEval 2.5 14k

Table 3.1: Statistics of the generative question answering dataset.

3.3 Experimental Setup and Dataset

3.3.1 Dataset

Generating Answers

GenQA Datasets: To evaluate GenQA metrics, it is necessary to measure the correla-

tion between human judgments and automated text evaluation metrics for evaluating

the model generated answers. Recently, [33] (2019) released human judgments of

correctness for two GenQA datasets, NarrativeQA [39] and SemEval-2018 Task 11 (Se-

mEval) [49]. However, we find that the average lengths of the answer sentence are 4.7

and 2.5 for NarrativeQA and SemEval, respectively, as shown in Table 3.1. These short

answers are often short phrases and cannot be representative of GenQA, because the

answers could be long and may deliver complex meaning. We argue that evaluating long

and abstractive answers is more challenging and suitable for studying the metrics for

general form of GenQA. To fill this gap, we collect the human judgments of correctness

for model generated answers on two other GenQA datasets, MS-MARCO and AVSD,

which have longer answers than NarrativeQA and SemEval as shown in Table 3.1. For

the MS-MARCO, we use the Natural Language Generation (NLG) subset, which has

more abstractive and longer answers than the Q&A subset.

GenQA Models: For each of the two datasets, we first generate answers for questions

on validation sets using two trained GenQA models: UniLM [50] and MHPGM [29]
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Dataset Model BLEU-1 ROUGE-L

MS-MARCO
UniLM 60.2 63.1

MHPGM 43.7 53.9

AVSD
MTN 67.3 52.6

AMF 62.6 48.7

Table 3.2: Performance of the model we trained to generate answers

for MS-MARCO, MTN [51] and AMF [52, 53] for AVSD. We present the performance

of each model we trained in Table 3.2.

After training, we select 1k samples for each dataset in the validation set. Specifi-

cally, we first randomly pick the 500 questions in the validation set of each dataset and

collect the corresponding model generated answers for each model so that we have two

generated answers for each sample. Therefore, we collect a total of 1k samples, two

different answers for 500 questions for each dataset. Also, we discard samples if one of

two GenQA models exactly generates the ground-truth answer since human evaluation

is useless during the sampling.

Collecting Human Judgments of Answer Correctness

We hire workers from the Amazon Mechanical Turk (MTurk) to rate the correctness

of the generated answers from the models we trained. We assign ten workers for each

sample to get reliable data. We ask the workers to annotate correctness using a 5-point

Likert scale [54], where 1 means completely wrong, and 5 means completely correct.

Instructions to Annotators The full instructions to annotators in MTurk are shown

in Figure 3.4. We hire the annotators whose HIT approval rate are higher than 95% and

pay $0.02 for each assignment.
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Figure 3.4: Instruction for MTurk workers

Dataset α # Annotators (avg.)

MS MARCO 0.817 7.08

AVSD 0.725 6.88

Table 3.3: Inter annotator agreement measured by Krippendorff’s alpha(α) and the

average of number of annotators for each dataset.

Filtering Noisy Workers: Some workers did not follow the instructions, producing

poor-quality judgments. To solve this problem, we filter noisy ratings using the z-score,

as in [55]. We first compute the z-score among the ten responses for each sample. Then,

we consider the responses whose z-score is higher than 1 to be noise and remove up to

five of them in the order of the z-score. The average number of annotators after filtering

is shown in Table 3.3. We use the average score of the annotators for each sample as a

ground-truth evaluation score to assess the quality of the evaluation metric.

Inter-Annotator Agreement: The final dataset is further validated with Krippen-

dorff’s alpha [56, 57], a statistical measure of inter-rater agreement for multiple annota-

tors. We observe that Krippendorff’s α is higher than 0.6 for both datasets and models

after filtering, as shown in Table 3.3. These coefficient numbers indicate a “substantial“

agreement according to one of the general guidelines [58] for kappa-like measures.
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3.3.2 Implementation Details

We choose three datasets SQuAD v1.1 [46], HotpotQA [47] and MS-MARCO Q&A

subset to train KPQA. We combine the training set of the three datasets and use a 9:1

split to construct the training and development set of KPQA. For HotpotQA, we exclude

yes/no type questions where the answers are not in the passage.

Hyperparameters For model parameters, we choose bert-base-uncased variants for

the BERT model and use one fully-connected layer with softmax layer after it. We train

5 epochs and choose the model that shows the minimum evaluation loss. We use max

sequence length of 256 for the inputs of KPQA. We use AdamW [59] optimizer with

learning rate 2e-5, and mini-batch size of 16 for all of the experiments. We use bert-

base-uncased with additional one fully-connected layer of 768 units and tanh activation

function. And then we add a softmax layer after it. We train KPQA for 5 epochs and

choose the model that shows the minimum evaluation loss over the development set.

We repeat training 5 times for each best-performing model.

Computing Infrastructure We use Intel(R) Core(TM) i7-6850K CPU (3.60 GHz)

with GeForce GTX 1080 Ti for the experiments. The software environments are Python

3.6 and PyTorch 1.3.1.

Average runtime for each approach Each epoch of our training KPQA on average

takes 150 minutes using the single GPU. For evaluation, it takes 5 minutes.

Evaluation Methods To compare the performance of various existing metrics and

our metric, we use the Pearson coefficient and Spearman coefficient. We compute

these correlation coefficients with human judgments of correctness. We test using MS-

MARCO, AVSD, from which we collected human judgments, and NarrativeQA and

SemEval from [33].For all of the correlation coefficients we computed in the paper, we
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Dataset MS-MARCO AVSD NarrativeQA SemEval

Metric r ρ r ρ r ρ r ρ

BLEU-1 0.349 0.329 0.580 0.562 0.634 0.643 0.359 0.452

BLEU-4 0.193 0.244 0.499 0.532 0.258 0.570 -0.035 0.439

ROUGE-L 0.309 0.301 0.585 0.566 0.707 0.708 0.566 0.580

METEOR 0.423 0.413 0.578 0.617 0.735 0.755 0.543 0.645

CIDEr 0.275 0.278 0.567 0.600 0.648 0.710 0.429 0.595

BERTScore 0.463 0.456 0.658 0.650 0.785 0.767 0.630 0.602

BLEU-1-KPQA 0.675 0.634 0.719 0.695 0.716 0.699 0.362 0.462

ROUGE-L-KPQA 0.698 0.642 0.712 0.702 0.774 0.750 0.742 0.687

BERTScore-KPQA 0.673 0.655 0.729 0.712 0.782 0.770 0.741 0.676

Table 3.4: Pearson Correlation(r) and Spearman’s Correlation(ρ) between various

automatic metrics and human judgments of correctness. All of the results are statistically

significant (p-value < 0.01).

use a t-test using a null hypothesis that is an absence of association to report p-value,

which is the standard way to test the correlation coefficient.

3.4 Empirical Results

3.4.1 Comparison with Other Methods

Performance Comparison: We present the correlation scores for the baseline metrics

and KPQA-augmented ones for multiple datasets in Table 3.4. The correlations between

human judgment and most of the existing metrics such as BLEU or ROUGE-L are

very low, and this shows that those widely used metrics are not adequate to GenQA.

Moreover, the performance of existing metrics is especially low for the MS-MARCO,

which has longer and more abstractive answers than the other three datasets.

We observe a significantly higher correlation score for our proposed KPQA-metric

compared to existing metrics especially for MS-MARCO and AVSD where the answers

are full-sentences rather than short phrases. For the NarrativeQA, where existing metrics

27



Dataset MS-MARCO

Metric r ρ

BLEU-1-KPQA 0.675 0.634

ROUGE-L-KPQA 0.698 0.642

BERTScore-KPQA 0.673 0.655

BLEU-1-KPQA/MARCO 0.573 0.529

ROUGE-L-KPQA/MARCO 0.598 0.564

BERTScore-KPQA/MARCO 0.602 0.595

BLEU-1-KP 0.629 0.589

ROUGE-L-KP 0.671 0.640

BERTScore-KP 0.657 0.649

Table 3.5: Ablation studies for our proposed metrics on domain effect and using the

question context.

also have higher correlations, the gap in performance between KPQA-metric and

existing metrics is low. We explain this is because the answers in NarrativeQA are often

a single word or short phrases that are already keyphrases.

Comparison with IDF: The next best metric after our proposed metric is the original

BERTScore, which uses contextual embeddings and adopts IDF based importance

weighting. Since IDF is dependent on the word-frequency among the documents, it

can assign a lower weight to some important words to evaluate correctness if they

frequently occur in the corpus as shown in Table 3.6. On the other hand, our KPQA

integrated metric assigns weights to words in the answer sentence using the context of

the question. This approach provides dynamic weights for each word that leads to a

better correlation with human evaluation as shown in Table 3.4.
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3.4.2 Analysis

Ablation Study

Domain Effect: Our KPQA metric computes importance weights using a supervised

model; thus our proposed method may suffer from a domain shift problem. Although

our metric is evaluated on out-of-domain datasets except MS-MARCO, we further

examine the effect of the domain difference by changing the trainset of KPQA. Since we

train KPQA with the combination of SQuAD, HotpotQA and MS-MARCO Q&A, the

original KPQA works as in-domain for MS-MARCO. To measure the negative domain

effect, we exclude the MS-MARCO Q&A in the training set of KPQA and measure the

performance of KPQA-metric on MS-MARCO. We annotate it “-KPQA/MARCO” and

report the results in Table 3.5. This drop shows the effect of the negative domain shift

for our KPQA-metric. However, “-KPQA/MARCO” is still much higher than all of the

previous metrics.

Using the Question Context: Our KPQA uses the question as an additional context

to predict the keyphrases in the sentence, as shown in Figure 3.3. To examine the

power of utilizing the question information for the keyphrase predictor, we remove the

question part from the dataset and train the keyphrase prediction model. With the newly

trained model, we compute the importance weights for words in the target sentence

and apply them to BLEU-1, ROUGE-L, and BERTScore. We call this metric as “-KP”

and report the results in Table 3.5. We observe that “-KPQA” metric is better than

“-KP” metric for all of the three variants. These results show that training keyphrase

predictor to find the short answer candidate in the sentence is effective for capturing

the key information in the generated answer, but it is more effective when the question

information is integrated.

Correlation Among Question Type: Since MS-MARCO provides the question type

information (PERSON, NUMERIC, DESCRIPTION, LOCATION, ENTITY) for each
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Context ... , it can take 5-20 hours of walking to lose 1 pound ... , ...

Question How long do i need to walk in order to loose a pound ?

Reference Walk for 5 to 20 hours to lose 1 pound .

IDF Walk for 5 to 20 hours to lose 1 pound .

KPW Walk for 5 to 20 hours to lose 1 pound .

Human Judgment: 0.94, BERTScore: 0.72, BERTScore-KPQA: 0.93

UniLM You need to walk for 5 to 20 hours in order to loose a pound .

IDF You need to walk for 5 to 20 hours in order to loose a pound .

KPW You need to walk for 5 to 20 hours in order to loose a pound .

Table 3.6: An example of the scores given by humans, BERTScore and BERTScore-

KPQA for the samples from MS-MARCO dataset. BERTScore uses IDF and

BERTScore-KPQA uses KPW as importance weights to compute score. Heat map

shows IDF and KPW, which are normalized between 0 and 1.

{question, answer} pair, we evaluate the various metrics by the question type. We

split the dataset into these five question types and measure the performance of various

metrics with Pearson correlation coefficients. As shown in Figure 3.5, our KPQA-metric

variants outperform their original version in all of the question types. KPQA-metric

is especially effective for the NUMERIC question type, whose answer sentence often

has shorter keyphrase such as a number. For ENTITY and PERSON question types,

the gap between KPQA-integrated metric and original metric is lower for BERTScore.

We speculate that this is because the original BERTScore uses IDF-based importance

weighting, unlike other metrics.

Multiple Sentence Answers: Most of the answers in MS-MARCO and AVSD consist

of single sentences, but the answers for GenQA can be multiple sentences like [40].

To verify our KPQA-metric on multiple sentence answers, we collect additional 100
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Figure 3.5: Pearson correlation coefficient among question types on MS-MARCO

dataset.

human judgments for the generated answer whose answers are multiple sentences in

the MS-MARCO like the example in Figure 3.6, and evaluate the various metrics on

this dataset. As shown in Table 3.7, our KPQA integrated metric shows still higher

correlations than other metrics. We observe that the gap between KPQA integrated

metrics and existing metrics is relatively lower than that of Table 3.4. We speculate this

is because many of the multiple sentence answers are DESCRIPTION type answers

whose keyphrases are sometimes vague, similar to the results in Figure 3.5.

Error Analysis: We pick 100 error cases from MS-MARCO in the order of a large

difference in ranks among 1k samples between human judgments and BERTScore-

KPQA. The importance weights have no ground-truth data; thus we manually visualize

the weights as shown in Table 3.6 and analyze the error cases.

From the analysis, we observe some obvious reasons for the different judgments
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Question : How to cook sausage peppers onions ?

Reference Answer : To cook sausage peppers onions first place the sausage in a

large skillet over medium heat, and brown on all sides after that remove from skillet, and

slice meelt butter in the skillet, stir in the yellow onion, red onion, and garlic, and cook 2 to

3 minutes and then mix in red bell pepper and green bell pepper season with basil, and

oregano in last stir in white wine.

Generated Answer : To cook sausage peppers onions , preheat the oven to 350

degrees fahrenheit . Place the onions in the oven and cook for 20 minutes

Figure 3.6: An example from MS-MARCO where the answers are composed of multiple

sentences.

between humans and BERTScore-KPQA. We first classify error cases by the question

types and observe that 51 cases belong to NUMERIC, and 31 cases belong to DESCRIP-

TION. We further analyze the NUMERIC question type and find that many parts of the

errors are due to higher weights on units such as “million” or “years.” There exist a

total of ten error cases for this type, and we believe that there is room for improvement

with regard to these errors through post-processing. In the case of the DESCRIPTION

question type, 17 out of 31 cases are due to inappropriate importance weights. We

speculate this result is because the keyphrases for the answers to questions belonging

to the DESCRIPTION type are sometimes vague; thus, the entire answer needs to be

considered when it is evaluated.

Rank-Pair: One practical usage of the text evaluation metric is ranking outputs of

multiple models. Using the collected human judgments of correctness for the same 500

{question, reference answer} pairs for two models on MS-MARCO and AVSD, we

can compare the output of each models through the human-annotated score. To see the
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Dataset MS-MARCO

Metric r ρ

BLEU-1 0.363 0.364

ROUGE-L 0.584 0.607

BERTScore 0.712 0.728

BLEU-1-KPQA 0.529 0.540

ROUGE-L-KPQA 0.642 0.648

BERTScore-KPQA 0.774 0.786

Table 3.7: Correlation coefficients between various automatic metrics and human

judgments of correctness for evaluating multiple sentence answers in MS-MARCO [1].

Metrics MS-MARCO AVSD

BLEU-1 63.44 72.02

ROUGE-L 61.29 70.98

BERTScore 67.74 78.24

BLEU-1-KPQA 74.19 81.35

ROUGE-KPQA 76.34 77.20

BERTScore-KPQA 76.34 81.35

Table 3.8: The percentage of matches at which human judgment and various metrics on

ranking two models’ output.

alignment of ranking ability among the various metrics with that of human judges, we

conduct a “win-lose match” experiment, counting the number of times that a metric

ranks the output of two models as the same as human judges. To prepare test samples,

we chose only those whose gap between human judgment scores on the two models

is greater than 2. Finally, we obtain 93 and 193 samples for MS-MARCO and AVSD,

respectively. Considering that the range of scores is 1-5, this approach ensures that each

output of the models has a clear quality difference. Table 3.8 shows the percentage of
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Dataset MS-MARCO AVSD

Model UniLM MHPGM MTN AMF

Metric r ρ r ρ r ρ r ρ

BLEU-1 0.369 0.337 0.331 0.312 0.497 0.516 0.655 0.580

BLEU-4 0.173 0.224 0.227 0.26 0.441 0.492 0.579 0.553

ROUGE-L 0.317 0.289 0.305 0.307 0.510 0.528 0.648 0.575

METEOR 0.431 0.408 0.425 0.422 0.521 0.596 0.633 0.608

CIDEr 0.261 0.256 0.292 0.289 0.509 0.559 0.627 0.602

BERTScore 0.469 0.445 0.466 0.472 0.592 0.615 0.701 0.645

BLEU-1-KPQA 0.729 0.678 0.612 0.573 0.687 0.681 0.736 0.673

ROUGE-L-KPQA 0.732 0.667 0.667 0.624 0.681 0.682 0.731 0.700

BERTScore-KPQA 0.696 0.659 0.659 0.655 0.712 0.703 0.738 0.695

Table 3.9: Pearson Correlation(r) and Spearman’s Correlation(ρ) between various

automatic metrics and human judgments of correctness for MS-MARCO dataset and

AVSD dataset. We generate the answers and collect human judgments for two models

on each dataset. All of the results are statistically significant (p-value < 0.01).

rank-pair matches for each metric with human judgments of correctness on two datasets.

Our KPQA-metric shows more matches than previous metrics in all of the datasets;

thus, it is more useful for comparing the generated answers from different models.

Correlation by Models The dataset we collect has human judgments on a generated

answer from two models for each dataset; thus we can observe how the performance of

each metric depends on the type of GenQA model. The experimental results in Table 3.9

show that our proposed metric outperforms other metrics in both of the GenQA models

for each dataset.
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3.5 Conclusion

In this study, we create high-quality human judgments on two GenQA datasets, MS-

MARCO and AVSD, and show that previous evaluation metrics are poorly correlated

with human judgments in terms of the correctness of an answer. We propose KPQA-

metric, which uses the pre-trained model that can predict the importance weights

of words in answers to a given question to be integrated with existing metrics. Our

approach has a dramatically higher correlation with human judgments than existing

metrics, showing that our model-based importance weighting is critical to measure the

correctness of a generated answer in GenQA.
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Chapter 4

Question Generation and Question Answering for Fac-

tual Consistency Evaluation

Image captioning is a task that aims to generate a description containing the main

content of a given image. The field of caption generation is prolific [60, 61], and it

is, therefore, important to provide reliable evaluation metrics to compare the systems.

Most of the prior works still report n-gram similarity metrics such as BLEU [4] or

CIDEr [9]. However, these n-gram similarity metrics often fail to capture the semantic

errors in the generated captions [62].

To overcome this limitation, we propose QACE, a radically different evaluation

framework from n-gram metrics. QACE first generates questions about the candidate

caption, and then checks if the answers are consistent w.r.t. either the reference or the

source image. We depict QACE in Figure 4.1.

Specifically, we propose two variants of QACE, depending on what content the

evaluated caption is compared to: QACERef when it is compared to the reference, and

QACEImg when it is compared to the source image. QACEImg has the desired feature to

be reference-less, i.e., the score can be computed without requiring a gold reference.

In this reference-less setup, a Visual Question Answering (VQA) system is required

to answer those questions. However, in the VQA literature [63], the task is usually seen
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as a classification task on 3k pre-defined answer choices (e.g., blue, sea, or banana).

Therefore, these VQA models are not general QA systems; their usage off-the-shelf for

QACEImg would limit the comparison to these very few pre-defined categories, which

is not satisfying. To solve this issue, we also propose an abstractive VQA system Visual-

T5 as a new module for QACEImg that can generate free-form abstractive answers given

a textual question and an image. We conduct a human evaluation of Visual-T5 and show

that it is capable of generating accurate abstractive answers. Using Visual-T5, we are

now able to compare the answers of the candidate caption directly with the answers of

the corresponding image.

Experimental results show that our proposed QACERef and QACEImg show promis-

ing results compared to other reference and reference-less metrics on three benchmark

datasets: Pascal50s [9], Composite [64] and Flickr8k [65]. Also, as shown in Figure 4.1,

QACE has a natural form of interpretability through the visualization of the questions

and the answers.

4.1 Related Work

Image Captioning Metrics Similar to other text generation tasks such as machine

translation and summarization, n-gram similarity metrics such as BLEU, METEOR [8]

and ROUGE [5] are arguably the standard in automatic evaluation. Among them,

the most widely used metric is CIDEr [9] which uses TF-IDF based weighted n-

gram similarity. SPICE [66] metric is based on scene graph, while more recently,

BERTScore [10] compute the similarity of the contextualized embeddings. Different

from prior works, we are the first to use Question Generation (QG) and Question

Answering (QA) to evaluate the image captions.

Question and Answering for Evaluation [67] proposes a new method to generate

informal captions that can answer the visual questions. In our work, we focus on caption

evaluation using the QA systems, not on generating the captions. Several QA-based
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Reference 𝒙
a man in a wet suit riding a surfboard on a wave

Candidate 𝒙
a man riding a 1)wave on 2)top of a 3)surfboard

Q1: What is a man riding on top of a surfboard?
Q2: What part of a surfboard is a man riding a wave on?
Q3: What is a man riding a wave on top of?

A1: wave A2: top A3: surfboardA1: wave A2: top A3: surfboard

QACE‐Img QACE‐Ref

A1: wave A2: wet suit A3: surfboard

Visual QA Textual QA

Generating Questions

Figure 4.1: The overall flow of QACE. QACE extracts possible answer spans and

generates answer-aware questions for a given candidate caption x. The VQA and

TQA answer these questions given the image and reference captions, respectively. The

correctness of the candidate caption is evaluated by comparing the answers.

evaluation metrics [68, 69] are recently proposed to evaluate abstractive summarization.

However, all those prior works are limited to text-to-text evaluation, while our work

develops a multi-modal metric.

4.2 Proposed Approach: QACE

We propose QACE, which is a QG- and QA-based framework for evaluating an image

caption. As shown in Figure 4.1, QACE first extracts answer candidates (i.e., 1) wave,

2) top, 3) surfboard) from a candidate caption and generates corresponding questions.

With these questions, visual-QA (VQA) and textual-QA (TQA) models answers given

their context (i.e., image and reference x̂). By comparing the answers from each source,

we can directly judge the correctness of the candidate caption.

4.2.1 Question Generation

The goal of this component is to generate questions that ask the primary information of

the candidate caption. Our QG model is a text-to-text generation model (i.e., T5 [70]),

fine-tuned on SQuAD v2 [71] to generate answer-aware questions. Given a caption, we

extract possible answer span; in particular, we focus on extracting noun phrases since

they mostly contain salient information and can be easily foiled [72]. We argue that
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What type of bus is driving down a street? <img>

Textual Embedding

Encoder‐Decoder

Visual Embedding

…

red double decker bus

Figure 4.2: The overview of Visual-T5, an abstractive VQA model. We embed questions

with additional special separation token and concatenate the visual embeddings to make

inputs for T5.

questions generated on this salient information should be answered similarly from the

image or the captions if they share the same information.

4.2.2 Question Answering

For QACERef, we use a TQA model. We train T5 to answer the generated questions

(see 4.2.1) with the reference captions as context. Conversely, QACEImg requires a

VQA model. We propose a new architecture, Visual-T5, that can generate abstractive

answers given an image and a question, as opposed to the standard multiple-choice

VQA.
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4.2.3 Abstractive Visual Question Answering

When no reference captions are available, one of the most important parts of QACE

is the VQA model that can produce correct answers. To move beyond VQA as a

classification task, we are the first, to the best of our knowledge, to develop an abstractive

VQA model that can generate free-form answers. Specifically, we enable multimodal

encoding for T5, inspired by the previous works on adapting pre-trained language

models for multimodal tasks [73]. We illustrate our proposed Visual-T5 in Figure 4.2.

Based on default T5 architecture, Visual-T5 has an additional visual embedding layer

that encodes regional features of the image from Faster RCNN [74]. This linear layer

maps detection features to 768 dimensions, same as the dimension of textual embedding.

This 768d features are therefore considered as a standard token in Visual-T5, which can

encode an image and a question together.

We provide the training details including the additional output examples of our

proposed abstractive VQA model, Visual-T5 in this section.

Visual Embedding We extract the regional features for each object using Faster

RCNN [74]. We fixed the number of boxes to 36 and each regional feature consists of

dimension 2048 and 6 additional dimensions consists of the location and the size of

each box. We concatenate this additional dimensions to make dimension of 2054 for

each regional feature. And single linear layer maps these 2054d features to 768d to be

considered as a token in T5.

Answer Examples We provide more examples of our abstractive VQA models in

Figure 4.3. We observe that many predicted answers are correct, but expressed in a

different form as in the first and the second example. Also, model outputs unanswerable

to the questions that are unanswerable for a given image like the third example.

Answerability We make unanswerable visual questions by randomly sampling the

questions from the different images to the given image. We mixed 20% of these
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Question: What vegetable is a 
small child holding?

Prediction: unanswerable
Ground‐Truth : unanswerable

Question: What does a child sleep 
in a bed with?

Prediction: stuffed animals
Ground‐Truth : stuffed toys

Question: What day are people 
out on their snow boards?

Prediction: sunny day
Ground‐Truth : clear blue day

Figure 4.3: Various output examples on the evaluation set of abstractive VQA model,

Visual-T5.

unanswerable questions similar to the third example in Figure 4.3 to train VQA model.

Human Evaluation We hire the workers whose locations in one of the US, UK, CA,

NZ, AU to guarantee the fluency in English. We restrict the workers whose HIT approval

rates are higher than 95%, and minimum hits are over 500. We pay workers more than

USD $10 in an hour through several preliminary experiments on the compensation. We

provide the full instructions and the interface in Figure 4.4. We compute the annotator

agreement using Krippendorff’s α [56]. We observe that Krippendorff’s α is 0.56 that
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In this task, you are supposed to evaluate the quality of the candidate answer for 
the given image. Please read the image, questions, and answers carefully and 
decide whether the candidate answer is correct or not

Figure 4.4: Full instructions and interface to workers for evaluating the answers of VQA

model.

indicates a “moderate“ agreement according to one of the referenced guidelines [58]

for kappa-like measures.

4.2.4 QACE Metric

For a given candidate caption x, We use QG to generate questions Q= (q1, ..., qM ) for

all of M noun phrases of x. Then, we compare the answers for each question in Q on x

with the answers on the reference source. We introduce two QACE variants, QACERef

for which the reference caption is compared, and QACEImg for which the source image

is compared. Using QG and QA, we compute QACERef and QACEImg as follows:

QACE =
ΣM
i=1f(QA(qi, x), QA(qi, ctx))

M
, (4.1)
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where ctx corresponds to the image for QACEImg and the gold reference for QACERef,

f(A1, A2) is the function that measures the similarity between two answers A1 and A2.

The standard metric in QA is the F1, as introduced by [46]. However, two abstractive

answers can be similar but written in two different ways, limiting the effectiveness of

a naive F1. Hence, in addition to the F1, we propose to use the BERTScore. Finally,

we also complete the similarity metrics using the answerability of the questions for

function f , in order to measure whether the question is answerable. The answerability

corresponds to 1− Punanswerable, where Punanswerable is the probability attributed by

the model to the token unanswerable.1 To consider all the different aspects, we use the

average of three values computed using each function as the default value of QACE.

4.3 Experimental Setup and Dataset

4.3.1 Dataset

Synthetic Data Generation for VQA

As discussed in 4.2.3, relying on a VQA dataset such as VQA v2 [75] limits possible

answers to a small size of pre-defined categories. To train a general and abstractive VQA

model, we create synthetic abstractive VQA datasets. We generate Questions/Answers

pairs using the captions in the training set of MS-COCO [76]. Specifically, we extract

noun phrases from a reference caption and generate an answer-aware question using

our QG model. To increase the validity of these synthetic questions, we apply the round

trip consistency [77], filtering out the questions for which the QA model predicts a

different answer than the extracted noun phrase. We convert these synthetic QA dataset

to create {question, answer, image} triples by concatenating the corresponding images

to these captions.
1SQuAD v2 contains unanswerable questions, for which we associate the token unanswerable as the

correct answer during training. Therefore, our QA model associates this token with the probability that the

question is not answerable.
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In addition, we randomly add 20% of unanswerable questions2 to the synthetic

training set, so that the model learns to judge the answerability of a given question.

Through this, if a candidate caption contains any hallucinating content that is not

included in the image, questions about it can be marked as unanswerable by our VQA

model, as shown in the second example of Figure 4.5. This synthetic dataset enables

the training of the abstractive VQA model. We report the performance of the model

through a human evaluation in Section 4.4.2.

Benchmark Dataset

We evaluate our proposed metric on three benchmark datasets (i.e. human annotations),

PASCAL-50S, Composite and Flickr8k.

PASCAL-50S provides 4k caption triplet <A, B, C>, where ”A” is composed of 50

reference captions(A) and two candidate captions(B, C) for the given image. There are

human judgments as to which “B” or “C” is more appropriate caption for a given image

compared to “A”.

Composite is composed of 11,985 human judgments scores range from 1 to 5

depending on the relevance between each candidate caption-image pair with 5 reference

captions.

Flickr8k provides three human-expert judgments for 5,822 candidate caption-image

pairs. The scores are from 1 to 4, depending on the relevance of each caption-image

pair.

4.3.2 Implementation Details

For all of the results on reference based metrics we reported in the paper, we compute

the average of each metric score with each reference for all of the references on each

dataset.
2We consider an image and a question that are not paired to be unanswerable, and do negative sampling.
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Ref? Pascal50s Composite Flickr8k

BLEU-4 ✓ 65.2 45.7 28.6

ROUGE-L ✓ 67.7 47.7 30.0

METEOR ✓ 80.5 46.6 40.3

CIDEr ✓ 77.8 47.4 41.9

SPICE ✓ 76.1 48.6 45.7

BERTScore ✓ 72.0 45.6 30.5

QACE-Ref (ours) ✓ 75.1 49.3 40.5

F1 ✓ 57.5 55.1 9.2

BERTScore ✓ 76.4 46.0 30.9

Answerability ✓ 71.6 47.3 39.0

-Perplexity ✗ 46.8 1.7* 10.1

VIFIDEL ✗ 69.0 13.1 33.6

QACE-Img (ours) ✗ 70.0 19.1 29.1

F1 ✗ 62.0 12.5 27.3

BERTScore ✗ 65.9 12.8 27.1

Answerability ✗ 74.5 15.7 27.8

Table 4.1: First column represents the accuracy of matches between human judgments in

PASCAL50s. Columns 2 to 3 show the Kendall Correlation between human judgments

and various metrics. All p-values in the results are < 0.05 except for *.

4.4 Empirical Results

4.4.1 Comparison with Other Methods

We present the experimental results for all three datasets in Table 4.1. For the reference-

aware metrics, QACERef shows best results on Composite and comparable to the best
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metrics for Pascal50s and Flickr8k, indicating the relevance of a QA based metric to

evaluate image captioning.

For the reference-less metrics, all the correlations are lower this time, showing

the difficulty of evaluating the captions without reference. Nonetheless, among these

metrics, QACEImg shows the best results for Pascal50s and Composite and comparable

results in Flickr8k. For Flickr8k, we found that more than half of the human judgments

of the candidate captions are less than 0.2 as 0 to 1 scale. In other words, most of the

captions in this dataset are totally not related to the image. For this reason, most of the

generated questions are unanswerable for an image and we explain that this leads to

relatively lower performance of QACEImg in Flickr8k compared to other metrics.

Furthermore, We investigate the independent contribution of each answer similarity

function, f , in computing QACE and present the results in Table 4.1 (note that default

QACE-Img uses the mean of F1, BERTScore and answerability). The table reveals that

each similarity function has a different aspect, and averaging three results suggests the

best performance for two of three datasets.

4.4.2 Analysis

VQA Model Performance

Visual-T5 is one of the main components of QACEImg. Since it can generate free-form

answers, its automatic evaluation is challenging. We therefore conduct a human evalua-

tion on 200 examples randomly sampled from the test set. We hire three annotators to

judge whether the generated answer is correct or not given the image. On the majority

vote from three annotators, VQA model correctly answers for the average 69% of the

examples. Among these 69% correct answers, half of them were written differently

from the original answer, showing that our model can generate abstractive answers.
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Ref‐ A1:<uns> A2: disc A3:<uns>         | 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.5 
Img‐ A1:<uns> A2: frisbee A3:man      | 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.5 

Candidate: a 𝐜𝐨𝐰𝐀𝟏 is standing in a 𝐟𝐢𝐞𝐥𝐝𝐀𝟐 of 𝐠𝐫𝐚𝐬𝐬𝐀𝟑 (Human: 0.2)
Reference: a dog with a frisbee standing in the grass
Q1: What animal is standing in a field of grass?
Q2:What is a cow standing in?
Q3: What type of field is a cow standing in?

Ref A1:dog A2:grass A3:grass 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.60

Img A1:dog A2:unanswerable A3:grassy field 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.47 

Ref A1:yellow car A2:parking lot A3:fire hydrant 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.78

Img A1:car A2:parking lot A3:fire hydrant 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.67 

Candidate: a 𝐦𝐚𝐧𝐀𝟏 is standing on a 𝐬𝐮𝐧𝐧𝐲 𝐛𝐞𝐚𝐜𝐡𝐀𝟐 (Human: 1.0)
Reference: a man walks down the beach near the ocean
Q1: What is standing on a sunny beach?
Q2:What is a man standing on? 

Ref A1:man A2:beach 𝑸𝑨𝑬𝑪𝑹𝒆𝒇: 0.88

Img A1:man A2:sand 𝑸𝑨𝑬𝑪𝑰𝒎𝒈: 0.79

7854

Figure 4.5: Case study on QACE metric. Human judgments are normalized to between

0 and 1.

Case study

Different from the previous metrics, QACE can be easily interpreted through the visual-

ization of the generated questions and the following answers as shown in Figure 4.5. In

the first example, we observe that the second question is answered differently by the

VQA model (sand VS beach). Despite, the answer itself being correct - it is true that

the man is standing on the sand - it results in a lower score for QACEImg compared to

QACERef. This emphasizes the importance to use other similarity metrics than the F1

when comparing two answers (see Section 4.2.4). For instance, BERTScore should be

able to consider closer sand and beach than sand and a random word.

The second example is very illustrative: for the first question, both TQA and VQA

answer dog, hence detecting an error in the candidate caption that talks about a cow.

The second question refers to the cow, which makes it ambiguous. The VQA model

considers it as unanswerable, while the TQA model correctly answers grass. Following

this study, we expect that QACEImg can be improved through a finer answer comparison

method in future work.
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4.5 Conclusion

In this paper, we propose QACE, a captioning metric that directly compares each

content in the candidate caption with either the source image or a gold reference caption

by asking questions. To enable asking questions directly on the source image, we

introduce Visual T5, an abstractive VQA model to generate free-form visual answers,

for which we report strong results based on a human evaluation. Our proposed metric

can be applied in both reference and reference-less settings. It holds high explainability

and compares favorably to the state-of-the-art in terms of correlations with human

judgments.
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Chapter 5

Rule-Based Inconsistent Data Augmentation for Factual

Consistency Evaluation

Image captioning [78] aims to generate a short description that explains the main

content in the given image with a natural language. While there have been many

advances for image captioning systems [60, 79, 61, 80] and captioning datasets [81, 82],

few studies [9, 66, 83, 84, 85] have focused on assessing the quality of the generated

captions. Especially, most of the evaluation metrics only use reference captions to

evaluate the caption although the main context is an image. However, as shown in the

examples Figure 5.1, since there are many possible reference captions for a single image,

a candidate caption can receive completely different CIDEr [9] scores depending on the

type of reference [86]. Also, like the candidate caption in second example, candidate

caption may get a high score depending on the reference caption even though the fact

”kicking” is completely wrong.

Due to difficulties of evaluating an image caption caused by diverse nature of

image captions, reference-based metrics usually use multiple human written reference

captions which are difficult to obtain. To overcome this limitation, we propose UMIC,

an Unreference Metric for Image Captioning, which is not dependent on the reference

captions and only use an image-caption pair to evaluate a caption. We develop UMIC
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Reference 1: A dog standing in the 
snow with a stick in its mouth. 
Reference 2: A little dog holding 
sticks in its mouth.

Candidate: A dog standing on the 
snow with a dog.

CIDEr with Reference 1: 3.166
CIDEr with Reference 2: 0.281

Human Judgments : 1.875 out of 5

Reference 1: There is a man running 
on a field with a soccer ball.
Reference 2: The soccer player is 
bringing back the ball into play.

Candidate : A young man kicking a 
soccer ball on a field.

CIDEr with Reference 1 : 2.869
CIDEr with Reference 2 : 0.782

Human Judgments : 3 out of 5

Figure 5.1: An example where the metric score for a given candidate caption varies

significantly depending on the reference type.

upon UNITER [87] which is a state-of-the-arts pre-trained representation for vision-

and-language tasks. Since UNITER is pre-trained to predict the alignment for large

amounts of image-text pairs, we consider that UNITER can be a strong baseline for

developing an reference-less metric. We fine-tune UNITER via contrastive learning,

where the model is trained to compare and discriminate the ground-truth captions and

diverse synthetic negative samples. We carefully prepare the negative samples that can

represent most of the undesirable cases in captioning, such as grammatically incorrect,

irrelevant to the image, or relevant but have wrong keyword.

When evaluating the metric’s performance, it is required to compare the correla-

tions between human judgments and the metric’s evaluation score for given datasets.

We choose three standard benchmark datasets (i.e., Composite [64], Flickr8k [65],
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PASCAL-50s [9]) and further analyze the quality of the dataset. Interestingly, we found

that there exist critical issues in the benchmark datasets, such as poor-label or polarized-

label. To perform a rigorous evaluation as well as stimulate the research in this area,

we collect new 1,000 human judgments for the model-generated caption. Finally, we

evaluate our proposed metric on four benchmark datasets, including our new dataset.

Experimental results show that our proposed reference-less metric is highly correlated

with human judgments than all of the previous metrics that use reference captions.

Overall, our main contributions can be summarized as follows:

• We propose an image captioning metric UMIC that does not utilize reference captions

through contrastive learning.

• To evaluate the quality of the proposed metric, we introduce a new benchmark dataset

CapEval1k composed of high-quality human judgments for 1k captions generated

from four recent captioning models.

• We demonstrate that our proposed metric has a higher correlation with human judg-

ments than the previous metrics in four benchmark datasets including CapEval1k.

• We verify the effectiveness of our metric in various aspects such as case study and an

observation on attention map.

5.1 Related Work

Image Captioning Metrics Following other text generation tasks such as dialogue

systems and machine translation, n-gram similarity metrics such as BLEU [4], ROUGE [5]

and METEOR [8] are widely used to evaluate an image caption. Especially, CIDEr [9],

which weights each n-gram using TF-IDF, is widely used. SPICE [66] is a captioning

metric based on scene graph. BERTScore [10], which computes the similarity of the

contextualized embeddings, are also used. BERT-TBR [86] focuses on the variance in

multiple hypothesis and ViLBERTScore (VBTScore) [84] utilizes ViLBERT [88] to

improve BERTScore.
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Different from these metrics, VIFIDEL [85] computes the word mover distance [11]

between the object labels in the image and the candidate captions, and it does not re-

quire reference captions. Similar to VIFIDEL, our proposed UMIC does not utilize

the reference captions. However, UMIC directly uses image features and evaluates a

caption in various perspectives compared to VIFIDEL.

Quality Estimation Quality Estimation (QE) is a task that estimates the quality

of the generated text without using the human references and this task is same as

developing an unreferenced metric. QE is widely established in machine translation

(MT) tasks [89, 90, 91]. Recently, [92] introduces a large scale human ratings on image-

caption pairs for training QE models in image captioning tasks. Our work also trains

caption QE model, (i.e. unreferenced captioning metric) but we do not use human

ratings to train the metric. Instead, we create diverse synthetic negative samples and

train the metric with these samples via ranking loss.

5.2 Proposed Approach: UMIC

We propose UMIC, an unreferenced metric for image captioning using UNITER. We

construct negative captions using the reference captions through the pre-defined rules.

Then, we fine-tune UNITER to distinguish the reference captions and these synthetic

negative captions to develop UMIC.

5.2.1 Modeling

Since UNITER is pre-trained to predict the alignment of large amounts of image-text

pairs, we use the output of the layer that predicts this alignment as the baseline of

UMIC to be fine-tuned. Specifically, we compute the score of a caption S(I,X) for

given image I = (i1, ..., iN ) and X = (x1, ..., xT ) as follows.

We first compute the contextual embedding for I and X using UNITER to get the
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𝑆

𝑆 𝑆 𝑆

A blue subway train pulls into the subway station.

Ranking Loss

A red subway train pulls into the subway station.

UNITER

UNITER

Image 𝐼
Positive Caption 𝑥

Negative Caption 𝑥

Figure 5.2: Overall training procedure of UMIC. Given an image I , a positive caption

x and a negative caption x̂, we compute the score of each image-caption pair Sx and

Sx̂ using UNITER respectively. Then, we fine-tune UNITER using raking loss that Sx

is higher than Sx̂.

joint representation of image and text as follows.

i[CLS], i1, ..., iN , x1, ..., xT =UNITER(I,X), (5.1)

where i[CLS] is a joint representation of the input image and input caption. Then we

feed it into a single fully-connected layer to get a score as follows.

S(I,X) = sigmoid(Wi[CLS] + b), (5.2)

where W and b are trainable parameters.

5.2.2 Negative Samples

To model negative captions, we observe the captions’ common error types in the model-

generated captions. Specifically, we pick 100 bad captions in the order of whose human

judgments are low in Composite and Flickr8k, respectively. Then, we categorize the

main errors into three types:relevant but have wrong keywords, totally irrelevant to

the image, grammatically incorrect. To model most imperfect captions including these

frequent type errors, we prepare negative captions as follows.
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Original: a woman hugging a girl who is holding a suitcase

Substitiution: a boy hugging a girl who is holding a suitcase

Random(Hard Negative): a very small cute child by a suitcase

Repetition & Removal:  a woman hugging a girl is holding a 

suitcase suitcase 

Target Image
Similar Image

Figure 5.3: An example of the generated negative captions for the left image to train

UMIC. Hard negative caption is one of the reference captions for the right image which

is similar to the left image.

Substituting Keywords To mimic the captions that are relevant but have wrong

keywords, as in the example of Figure 5.2, we randomly substitute 30% of the words in

the reference captions and use them as negative samples like Figure 5.3. The motivation

we choose 30% is that the average length of the generated caption is about 10 words

and the number of keywords is usually around three. We only substitute verb, adjective,

and noun, which are likely to be keywords since they are usually visual words. Also,

we substitute them with the words with the same POS-Tags using the pre-defined

dictionaries for the captions in the training set to conserve the sentence structure.

Random Captions We randomly sample captions from other images and use them

as negative samples to generate totally irrelevant captions for the given image. Also,
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similar to the image-text retrieval task, we use hard-negative captions, which are difficult

to be discerned, with a probability of 50%. Specifically, we utilize the captions of the

images similar to the given images using the pre-trained image retrieval model. We get

negative captions that are the captions of the similar image sets computed by image-text

retrieval model VSE++ [93] as in [94]. Then, we sample the captions in the reference

captions of the Top-3 similar image sets like the example in Figure 5.3.

Repetition & Removal We find that some of the captions have repeated words or

have incomplete sentences. Hence, we randomly repeat or remove some words in the

reference captions with a probability of 30% in the captions to generate these kinds of

captions. Specifically, we choose to repeat or remove with a probability of 50% for the

sampled word.

Word Order Permutation We further generate negative samples by randomly chang-

ing the word order of the reference captions, so that the model sees the overall structure

of the sentence, not just the specific visual words.

5.2.3 Contrastive Learning

Using the negative captions generated by the above rules, we fine-tune UNITER via

contrastive loss for positive caption X and negative caption X̂ as follows.

Loss = max(0,M − (S(I,X)− S(I, X̂))), (5.3)

where M is the margin for the ranking loss, which is a hyperparameter. We make each

batch composed of one positive caption and four negative captions that are made by

each negative sample generation technique.
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5.3 Experimental Setup and Dataset

5.3.1 Dataset

We briefly explain the previous benchmark datasets for captioning metrics and analyze

the problems for two of these datasets, Flickr8k and Composite. Also, we introduce a

new benchmark dataset to alleviate the addressed problems.

Commonly Used Datasets

Composite consists of 11,985 human judgments for each candidate caption generated

from three models and image pair. This dataset’s human judgments range from 1 to 5,

depending on the relevance between candidate caption and image.

Flickr8k provides three expert annotations for each image and candidate caption on

5,822 images. The score ranges from 1 to 4, depending on how well the caption and

image match. All of the captions in this dataset are reference captions or captions from

other images.

PASCAL50s contains 1,000 images from UIUC PASCAL Sentence Dataset with 50

reference captions for each image. Different from other datasets, this dataset provides

4,000 caption triplet <A, B, C> composed of 50 reference captions(A) and two candi-

date captions(B, C) for the given image. There are human annotated answers to which

is more similar to “A”, “B” or “C”.

Problems in Flickr8k and Composite

We investigate the human judgments in Flickr8k and Composite, and visualize the

distributions of judgment scores for two datasets, Flickr8k and Composite in Figure 5.4,

and find several problems.

For the Flickr8k, most of the scores are less than 0.2 since the candidate captions
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Figure 5.4: Score distributions of human judgments in Composite, Flickr8k and our

proposed CapEval1k dataset. All scores were normalized from 0 to 1.

were sampled by an image retrieval system from a reference caption pool, not model-

generated captions. Therefore, most captions are not related to images and differ

significantly from the model-generated captions. We argue that this naive configuration

is not enough to distinguish the performance of the metric precisely.

For the Composite, most of the scores are placed near 0 or 1. We explain this because

only a single annotator annotates each sample’s score resulting in biased output. We also

manually investigated the captions and found that the captions are coarsely generated.

Note that the captions for this dataset were generated by the old model [95, 64]. For

these reasons, we conclude that additional benchmark dataset is necessary to evaluate

the captioning metrics.
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Evaluate the captions comparing them with reference captions and considering "fluency", 
"relevance" and "descriptiveness".
[Image]

[Reference Captions]
Ref1: two ducks floating together on a body of water.
Ref2: two ducks are swimming in the green colored pond.
Ref3: two canadian geese swim in a green pond.
Ref4: two ducks swim in a pond with green water.
Ref5: two swam swimming next to each other on a lake.

Caption 1: a couple of ducks swimming in the water

Caption 2: two ducks swimming in the water in a body of water

Caption 3: three ducks are swimming in the water

Caption 4: three ducks swimming in the water

Read the instructions and examples below and evaluate candidate captions (Click to collapse)

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Figure 5.5: Annotation interface and short instructions for captioning evaluation task.

CapEval1k Dataset

To alleviate the addressed issues in Flickr8k and Composite, we introduce a new dataset

CapEval1k, which is composed of human judgments for the model-generated captions

from four recently proposed models: Att2in [79], Transformer [96], BUTD [61] and

AoANet [80]. Different from Flickr8k and Composite, we ask each annotator to evaluate

the captions by considering three dimensions: fluency, relevance, descriptiveness. We

hire 5 workers who are fluent in English for each assignment from Amazon Mechanical

Turk and use the average score.

Instructions to Annotators The interface and instructions to annotators in MTurk

are shown in Figure 5.5 and Figure 5.6. We request the worker to evaluate four captions

at once in a single assignment so that the worker can consider the difference among the

captions.
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[Overview]
In this task, you are supposed to evaluate the quality of the caption for the given 
image.
Please read the image and the captions carefully and assign the score for each caption 
considering three criterias.

[Instructions]
1. Read the candidate captions, reference captions and see the given image.
2. Evaluate the four candidate captions considering three criterias(refer to the negative 
examples below) and comparing them to the reference captions
- Note that reference captions are not always perfect.

Criterias & Common negative examples in the captions
Please consider 3 things comprehensively and rate the overall score for the capture.
(1) Fluency
Whether the caption is fluent, natural and grammatically correct
Ex) Grammatically correct but strange
a plate of food and food
(2) Relevance
Whether the sentence correctly describes the visual content and be closely relevant to 
the image.
Ex) Relevant/Minor Mistake: relevant but tiny parts are wrong
a plate of fruits and a crepe on a grey dish
(3) Descriptiveness
Whether the sentence is a precise, informative caption that describes important details 
of the image.
Ex) Too General Capton
a plate of fruits

Figure 5.6: Full instructions for the captioning evaluation task. We provide an image

and five reference captions to the workers and request them to evaluate four captions.

Inter-annotator Agreement We compute the annotator agreement using Krippen-

dorff’s α [56]. We observe that Krippendorff’s α is 0.37 that indicates a “fair“ agreement

according to one of the general guidelines [58] for kappa-like measures.

Worker Pool & Pay We hire the annotators whose locations in one of the US, UK,

CA, NZ, AU. We restrict the workers whose HIT approval rates are higher than 96%,
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and minimum hits are over 5000. We pay workers more than USD $10 in an hour

through several preliminary experiments on the compensation.

Score Distribution Since our CapEval1k dataset is composed of annotations via

recently proposed models, the overall scores are relatively higher than other datasets as

shown in Figure 5.4. Compared to other datasets, CapEval1k contains the annotators’

comprehensive judgment across multiple dimensions in evaluating the quality of the

generated captions, so we can see that the score distribution score is not concentrated in

a particular area.

5.3.2 Implementation Details

Hyperparameters We use the pre-trained UNITER-base with 12 layers in the official

code provided by the authors [87]1. We use the COCO dataset [81] to fine-tune UNITER

through ranking loss. We use the train and validation split of COCO dataset in [87]. The

number of the training set is 414k, and the validation set is 25k. We set the batch size

of 320, learning rate of 2e-6, and fine-tune UNITER for a maximum of 4k steps. We

select the model that shows the minimum loss in the validation set. We set margin M

as 0.2 in the ranking loss. We repeat training 5 times for each best-performing model.

Computing Infrastructure We use AMD Ryzen Threadripper 2950X (3.50 GHz)

with GeForce GTX 2080 Ti for the experiments. The software environments are Python

3.6.8 and PyTorch 1.1.0.

Average runtime for each approach Each epoch of our training UMIC on average

takes 20 minutes using a single GPU. For evaluation, it takes a minute.

Correlation Coefficient We compute Kendall-C for Flickr8k [65], since we could

produce the similar results for most of the previous papers. And we compute Kendall-B
1https://github.com/ChenRocks/UNITER
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Metric Flickr8k Composite CapEval1k PASCAL50s

BLEU-1 0.274 0.406 0.233 74.3

BLEU-4 0.286 0.439 0.238 73.4

ROUGE-L 0.300 0.417 0.220 74.9

METEOR 0.403 0.466 0.288 78.5

CIDEr 0.419 0.473 0.307 76.1

SPICE 0.457 0.486 0.279 73.6

BERTScore 0.396 0.456 0.273 79.5

BERT-TBR 0.467 0.439 0.257 80.1

VBTScore 0.525 0.514 0.352 79.6

VIFIDEL 0.336 0.191 0.143 70.0

UMIC 0.468 0.561 0.328 85.1

UMIC-C 0.431 0.554 0.299 84.7

Table 5.1: Columns 1 to 3 represent Kendall Correlation between human judgments

and various metrics on Flickr8k, Composite and CapEval1k. All p-values in the results

are < 0.01. The last column shows the accuracy of matches between human judgments

in PASCAL50s.

for Composite [64] and CapEval1k. For Composite, we use five references and some of

the candidate captions in this dataset are exact same with one of the references.

5.4 Empirical Results

5.4.1 Comparison with Other Methods

We compute caption-level Kendall’s correlation coefficient with human judgments

for the Composite, Flickr8k, and our proposed CapEval1k. For the PASCAL50s, we

compute the number of matches between human judgments for each candidate caption

pair. For all of the reference based metrics, we use five reference captions and then get

average score among the five references except for BERTScore where we use maximum.

We present the experimental results for all four datasets in Table 5.1. We show

that although UMIC does not utilize any reference captions, UMIC outperforms the
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baseline metrics except for VBTScore in all of the datasets that depend on multiple

references. We also report the strong unreferenced baseline UMIC-C, which is directly

using the pre-trained weights from UNITER without contrastive learning. Interestingly,

UMIC-C shows a higher performance than most of the metrics. This high performance

shows that pre-trained image-text matching layer of UNITER already has a good

representation for evaluating image captions. Especially for Composite, both UMIC

and UMIC-C significantly outperform baseline metrics. We explain this in the polarized

distribution of human judgments as we explained in Section 5.3.1. In other words, the

relevance of most image-caption pairs in this dataset is too obvious so that UNITER

can easily distinguish them. However, while UMIC shows higher performance on all

datasets, UMIC-C shows relatively low performance on Flickr8k and CapEval1k. And

this demonstrates the effectiveness and generalization ability of our contrastive learning

objective to develop UMIC.

Also, we can observe that the performance of each metric is relatively low and the

rank of each metric changes in our proposed CapEval1k dataset. We explain that this

is because the captions in CapEval1k are relatively difficult to be evaluated since the

score distribution is not biased as explained in Section 5.3.1.

5.4.2 Analysis

Case Study

We visualize one sample each showing the strengths and weaknesses of UMIC in

Figure 5.7. In the above example, the candidate caption is partially relevant to the

image, but the single word “three” in the caption is totally incorrect since there are only

“two” giraffes in the image. And this leads to a low human judgment of 0.2. Nevertheless,

unlike our UMIC, widely used metrics and UMIC-C give this caption a high score due

to the many words overlaps or missing the keywords. The bottom example shows one of

the error cases and the limitations of our proposed method. Since the detection model in

UMIC could not recognize the important object like the “baseball bat”, UMIC outputs
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References
- two giraffe standing next to each other in a field.
- two giraffes are climbing a hill with mountains in 
the background.

Candidate
- three giraffes standing in a field of grass

BLEU1: 0.324 ROUGE-L: 0.320 METEOR: 0.173 CIDER: 0.866

SPICE: 0.289 UMIC: 0.352 UMIC/ 𝑪: 0.770 Human: 0.200 

References
- a person breadking a bottle with a baseball bat
- a boy in yellow shirt swinging a baseball bat

Candidate
- a man swinging a baseball bat at a ball

BLEU1: 0.360 ROUGE-L: 0.354 METEOR: 0.176 CIDER: 1.205

SPICE: 0.192 UMIC: 0.094 UMIC/ 𝑪: 0.062 Human: 0.450

Figure 5.7: Case study for the various metrics on candidate captions in CapEval1k

Dataset. Human judgments are normarlized from 0 to 1.

very low score.

Interpreting the Output

To interpret the output of UMIC, we visualize the attention maps to interpret the output

of UMIC as shown in Figure 5.8. To compute attention weights, we first find the

head that is specialized in inter-modaility attention between the image and the caption.

Following [87], we find a reversed block that can show the cross-modality relations

between a caption and an image by computing the ratio of the attention weights in

cross-modality alignment for each head. We choose the third head that has the highest

attention ratio in cross-modal alignment for interpreting the output of the metric. Then,

63



Caption 2: a red fire hydrant sitting in the middle of a sidewalk UMIC: 0.014  
red sitting sidewalkfire

Caption 1: a yellow fire hydrant on a green piece of grass next to a road UMIC: 0.985
yellow green roadgrass

Figure 5.8: Text-to-image attention map visualization of our metric on two different

captions for a same image. We represent the top-3 regions in the images according to

the attention weights with specific words in the caption.

we pick top-3 regions among detection features in the image that have higher attention

weights to the specific words as shown in Figure 5.8. For the first example that gets

higher UMIC score, we observe that attention weights on each word are assigned to

desired image regions. For example, for the ”yellow”, yellow parts in the fire hydrant

are aligned to the word. However, for the wrong captions in the second example, the

aligned regions are usually not relevant to the words, and each word point the same

regions in the image. We explain that red fire hydrant does not exist in the image and

the model cannot find the proper region in the image for this case.
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5.5 Conclusion

In this paper, we propose UMIC, an unreferened metric that does not require any

reference captions for image captioning task through contrastive learning in one of the

vision-and-language pre-trained models UNITER. To train a metric, we propose several

methods such as keyword substitution and retrieving hard negative captions to prepare

negative captions that imitate the wrong captions in the captioning systems. Also, we

analyze the problems widely benchmark datasets for image captioning metrics and

introduce a new benchmark dataset CapEval1k that relieve the issues such as polarity

in previous datasets. Experimental results on four benchmark datasets, including our

proposed CapEval1k, show that UMIC outperforms previous metrics. We also validate

the properties of UMIC through an observation on the attention map. In future work,

we will study a way to integrate our metric to the training step in image captioning to

improve the quality of the generated caption following [97].
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Chapter 6

Inconsistent Data Augmentation with Masked Genera-

tion for Factual Consistency Evaluation

As textual content available on- and offline explodes, automated text summarization is

becoming increasingly crucial [98]; with the advances in neural text generation methods,

abstractive summarization systems that generate paraphrases are quickly replacing

extractive ones that simply select essential sentences from the source text [99]. While

abstractive summaries can be more coherent and informative (given the same length)

than their extractive counterparts, they frequently contain information inconsistent

with the source text. This is a critical issue, as it directly affects the reliability of the

generated summaries. [2, 100, 101].

Unfortunately, existing approaches to identify such factual inconsistency without

constructing new resources have not been satisfactory. Directly measured similarity

between the summary and its source text—using popular n-gram similarity metrics such

as ROUGE [35] and BLEU [34]—exhibits low correlation with human judgments for

factual consistency. Also, leveraging related tasks—such as natural language inference

(NLI) [19] and fact verification [20]—is not ideal. This is because these tasks aim to

identify relations between two sentences, whereas factual consistency checking involves

a multi-sentence summary and an even longer source text [102, 103].
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Article: Guus Hiddink, the Russia and Chelsea coach, has had much to smile about in his

22-year managerial career. ,. . . , Enjoying success around the world – at different levels

with different players in different cultures – has made Guus Hiddink one of the most

admired bosses around. ,. . . , Hiddink’s resume includes stints in other high-pressure jobs

such as Fenerbahce, Valencia and Real Madrid. ,. . . , But the straight-speaking Dutchman

is loyal to the project he has in charge of the Russian national side and insists he will leave

Chelsea at the end of the season regardless.

Reference Summary: Born in 1946, Hiddink has become one of the best managers in the

world . Dutchman has enjoyed huge success at club and international level. He’s currently

coach of Russia and is in charge of Chelsea until end of the season.

Mask-and-fill Summary Without Article:

Born in 1946, Dutchman has become one of the most respected politicians in the

world. Dutchman is enjoyed success at the Olympics and World Cup. He’s currently the

President of Russia and is in charge of the country until the end of the season.

Mask-and-fill Summary With Masked Article:

Born in 1946, Hiddink has become one of the most admired managers in the world. Dutch-

man has enjoyed successful spells at Chelsea and Real Madrid. He’s currently manager of

Russia and is in charge of the country until the end of the season.

Figure 6.1: An example of generated negative summary using masked article. Spans that

are highlighted are masked when generating the negative summary. Note that red spans

are factually inconsistent with the given article and blue spans are factually consistent.

A remaining solution is to train a factual consistency classifier with a dataset

specifically constructed for this purpose. Note that positive summaries are readily

available. That is, the reference summaries from existing text summarization datasets

can be assumed to be factually consistent with the respective source texts. Thus, the

main challenge is in generating effective negative summaries, i.e., summaries that are
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factually inconsistent with the source text. Recent works generate negative summaries

by simply replacing keywords in the reference summaries or sentences extracted from

the source texts [22, 23]. This, however, results in negative summaries that significantly

diverge from the source texts and positive summaries, which is not ideal for training

factual consistency classifiers. For instance, Figure 6.1 shows that coach in the reference

summary is changed to President of Russia, which is an inconsistency that is too

obvious.

In this study, we propose a novel method, Masked-and-Fill with Masked Article

(MFMA), where parts of the source text and reference summary is masked and later

inferred to generate a plausible but factually inconsistent summary. Experiments on

seven benchmark datasets demonstrate that factual consistency classifiers trained on

negative summaries generated with our method mostly outperform existing models and

show competitive correlation with human judgment. We also analyze the characteristics

of the negative summaries generated. Our main contributions are as follows:

• We propose a novel negative summary generation method for training factual consis-

tency classifiers for abstractive summaries.

• We show the efficacy of our method on seven benchmark datasets using classification

performance and correlation with human judgement.

• We analyze the characteristics, such as affinity and diversity, of the negative sum-

maries generated using our method.

6.1 Related Work

Factual Inconsistency in Summarization Systems

Previous works [101, 100, 2] have studied the factual inconsistency in abstractive

summarization systems. Especially, [2] demonstrates that 30% of the model generated

summaries have at least one factual errors and this obstacle the practical usage. [101]

specifies these factual errors in the abstractive summarization system into two types:
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intrinsic errors and extrinsic errors. Intrinsic errors occurs using the contents present in

the source article like ”Switzerland” and ”England” in the negative summary example

in Figure 6.2. On the other hand, extrinsic extrinsic errors are the errors generated

by ignoring the source article when generating summaries. ”in the second half” in

Figure 6.2, which is not included in the source article, is an example of extrinsic errors.

In this work, we propose a system for detecting these various factual errors that

are necessary for developing summarization system. We propose a unified method for

intentionally modeling both types of errors to build a dataset for training this system.

Measuring Factual Consistency

As a better way to evaluate the factual consistency, recent works such as QAGS [6]

and QuestEval [14] adopt question generation and question answering framework

to evaluate the factual consistency. Both methods firstly generate questions using

entities or noun phrases in the candidate summary and then compare the answers

of these questions between the source and the summary. Although these methods

do not require any reference summaries, they have higher correlation with human

judgments than previous metrics in consistency checking. Also, the generated questions

and their answers are easily interpretable. But due to their complicated structure,

computational complexity of these methods is relatively heavy and the errors in each

component can be cascaded. Following the idea that all of the contents in the summaries

should be entailed by source document, models from the related tasks such as Natural

Language Inference(NLI) [19, 104, 103] are also used to verify factual consistency of

the summaries. This approaches are simpler and more intuitive than QA-based metrics.

But the data pairs in these datasets are usually composed of single sentences, and this

makes it difficult to be directly used for factual consistency checking in summarization

where the task requires multi-sentence level reasoning. For this reason, two recent

studies FactCC [22] and DocNLI [23] have studied ways to make synthetic datasets

for training factual consistency checking model. Both works create synthetic negative
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summaries using the pre-defined rules such as entity substitution or mask-and-fill. In

this study, we propose a more general negative summary generation method additionally

using the masked source.

CoCo [18] compares the likelihood of the generated summaries using the original

source and the masked source to estimate the counterfactual samples. Different from

CoCo, our work directly augments the negative summaries and train the classifier using

them.

6.2 Proposed Approach: MFMA and MSM

England started their qualifying 

campaign for the 2016 European 

Championships in the perfect 

manner with a 2-0 victory over 

Switzerland at St Jakob-Park. 

Danny Welbeck netted a brace

to see Roy Hodgson's men claim 

victory in what could prove to be 

the toughest hurdle on the road

to France 2016. (…)

England started their 

qualifying campaign for 

<mask> in <mask> with 

<mask> over <mask> at 

<mask> . <mask> netted 

<mask> to see Roy 

Hodgson's men claim 

<mask> in what could 

prove to be the toughest 

hurdle on <mask> to 

France 2016 (…)

Original Article  𝐴 Masked Article ҧ𝐴𝛾𝐴

England won 2-0 against 

Switzerland at St Jakob-Park on 

Monday night . Danny Welbeck

netted a brace for Roy 

Hodgson's men in Switzerland.

Original Summary  𝑆

<mask> won 2 - 0 against 

<mask> at <mask> on 

<mask> . <mask> netted 

a brace for <mask> in 

<mask> . 

Masked Summary ҧ𝑆𝛾𝑆

Switzerland won 2-0 against 

England at Wembley on 

Saturday. Danny Welbeck

netted a brace for the Roy 

Hodgson's men in the second 

half.

Negative Summary 𝑆𝐼

Inference to Generate 

Inconsistent Summary

Training with 

Reconstruction Loss

Masking 𝛾𝑆

Masking 𝛾𝐴

England won 2-0 against 

Switzerland at St Jakob-Park on 

Monday night . Danny Welbeck

netted a brace for Roy

Hodgson's men in Switzerland.

Original Summary  𝑆

“Summary: ҧ𝑆𝛾𝑆, 

Article: ҧ𝐴𝛾𝐴”

Summarizer

(BART)

Figure 6.2: Overall flow of our proposed negative summary generation method Mask-

and-Fill-with-Masked Article.

For a given article A and a summary S, we aim to develop a factual consistency

checking system that can evaluate whether S is factual consistent with A. In other

words, the system is required to discriminate a factual consistent summary SC with

the factual inconsistent summary SI that consists of at least one factual error. We

consider this problem as a classification task between SC and SI . However, large-scale

human-annotated training datasets for this task have not been constructed yet, especially

for the inconsistent summaries SI .
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In this study, we focus on effective augmentation methods of the inconsistent sum-

maries. In order for that, there are two crucial conditions: 1) guarantee of inconsistency;

the generated summaries should be indeed inconsistent with the source article, 2) rele-

vance to the source article; the generated summaries should include contents related

to the article. These two factors are in trade-off relations, which means that when the

generated summaries are strongly inconsistent they might not be related to the article

and vice versa. Therefore appropriate negative summary augmentation is required to

improve the factual consistency classifier.

To generate confusing and hard negative summaries, we propose a summary gen-

eration using a masked article and masked reference summary where some salient

information is hidden. By doing so, we let the summarizer model infer hidden infor-

mation through the masked article to generate plausible negative summaries. Note

that, previous works such as FactCC and DocNLI generate negative summaries SI by

changing positive summaries SC through entity replacements or mask-and-fill methods

without referring to the source article. We observe that previous methods can easily

guarantee negativeness, but they often generate summaries that are very irrelevant to

the source article or unnatural as shown in Figure 6.1.

6.2.1 Mask-and-Fill with Masked Article

To model inconsistent summaries but related to the article, we propose a method, Mask-

and-Fill with Masked Article (MFMA), which generates negative summaries with

masked articles and masked reference summaries, as shown in Figure 6.2.

Specifically, we assumed noun phrases and entities in the articles are salient infor-

mation, and mask them with the ratio of γA, resulting in masked article AγA . Similarly,

we also mask the salient spans in the positive summary, i.e., reference summary, with

the ratio of γS to form a masked summary SγS . Then, we concatenate AγA and SγS

by prepending prefix token for each input text (i.e., “Summary: SγS , Article: AγA”) as

shown in Figure 6.2. Next, we train a summarizer based on an encoder-decoder model,
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BART [17], to reconstruct the original summary S with the following loss:

L =
∑
t

− logP (St|S<t, [SγS ;AγA ]). (6.1)

After training, we generate negative summaries of unseen and masked article-

summary pairs through inference. Obviously, if the mask ratio is high enough, the

model is hard to correctly fill the masked contents from the erased article and reference

summary. However, we assume the trained reconstruction model is able to fill the masks

with plausible contents by inferring the related contents with the masked article.

6.2.2 Masked Summarization

As a variant of MFMA, we also study another negative summary generation model,

Masked SuMmarization(MSM). The model aims to generate summaries using masked

articles AγA but without masked reference summaries as follows:

L =
∑
t

− logP (St|S<t, AγA). (6.2)

The MSM model is trained to generate the entire summaries without the information

guidance of masked reference summaries, so MSM has merits in generating more

diverse summaries than MFMA.

6.2.3 Training Factual Consistency Checking Model

Finally, for the factual consistency checking model, we train a binary classifier of

consistent summaries and inconsistent generated summaries. The pair of summary and

the corresponding article are concatenated and then fed into the classification model

as an input. We fine-tuned the pre-trained ELECTRA [105] by adding a classifier head

with binary cross-entropy loss.
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6.3 Experimental Setup and Dataset

6.3.1 Dataset

For evaluating the performance of factual consistency checking system, it is necessary

to compare the human judgments of the consistency for the summary with the system.

And these human judgment exist in two forms, binary level(consistent, inconsistent)

or numerical levels such as likert scale. In general, in the case of binary level data,

performance is measured through accuracy with human judgments. For the case of

numerical levels, correlation with human judgments is measured. In addition to using

the results for the existing benchmark dataset in this way, we also report the accuracy

by casting these numerical level datasets to the binary level dataset since we develop

classifier based system. We report the results on the following datasets.

FC-Test [22] release a human-annotated factual consistency for the model generated

summaries for CNN/DM Dataset in binary-level to test the performance of FactCC.

There are 513 instances in this dataset.

XSumHall [101] study the types of hallucination in the generated summaries and

collect the annotation on the errors in the 2K model generated summary for BBC XSum

dataset [106]. We use the datasets as binary level benchmark for XSum dataset as

in [22].

SummEval [107] collect the likert scale human judgments for the 1600 summaries

generated from sixteen abstactive summarizer on CNN/DM testset. This dataset pro-

vides human judgments scores in terms of ”coherence” , ”consistency”, ”fluency”,

and ”relevance” by three expert annotators in likert scale. We only use ”consistency”

score of three annotators, for evaluating our proposed metric. For casting this score to

binary level, we let the cases where at least one annotators give less than 5 points for

”consistency” as inconsistent, otherwise consistent.
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QAGS-CNN/DM & XSum [6] release a human judgments for factual consistency

on the model generated summaries for 235 summaries on CNN/DM testset and 239

summaries on XSum testset. Each summary is annotated by three annotators. We also

cast the dataset to binary level by assigning inconsistent if at least one annotators give

inconsistent label, otherwise consistent.

FRANK-CNN/DM & XSum [3] releases a benchmark dataset FRANK for sum-

marization factual metrics which consists of 2246 summaries on the model generated

summaries for 1250 summaries in CNN/DM and 996 summaries XSum. Three annota-

tors evaluated factual consistency of the generated summaries in this dataset. We also

convert this dataset to binary level as same as QAGS-CNN/DM and QAGS-XSum.

6.3.2 Implementation Details

Negative Summary Generation We randomly split the training set of CNN/DM

dataset [108] in half and use half for training negative summarizer and the other half for

generating negative summary after training. We use spaCy for finding entities and noun

phrases in both summaries and articles. We train bart-base1 for five epochs to train

MFMA, and use bart-base model without fine-tuning for MF. We use t5-small [70]2

for MSM, which shows better results than bart-base for this task. We attach the further

details in Appendix.

Training Classifier We train google/electra-base-discriminator3 for five epochs with

learning rate 2e-5, batch size of 96 using adam optimizer [109] with the dataset we

generate using MF, MFMA and MSM. For DocNLI and FactCC, we get the original

training dataset that each author release, and we train a model with the same setting

as our method except for the training datasets for a fair comparison. We choose model
1https://huggingface.co/facebook/bart-base
2https://huggingface.co/t5-small
3https://huggingface.co/google/electra-base-discriminator
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using the balanced accuracy on validation set of FactCC [22] which consists of 1k

human annotated summaries.

Hyperparameters We train five epochs for MFMA and MSM using bart-base for

MFMA and t5-small for MSM respectively. We train the model with batch size of 48,

max input sequence size of 1024, and max target sequence size of 140. We conduct

experiment with various article masking γA ratio-summary masking ratio γS combi-

nations, at 0.2 intervals from (0.2, 0.2) to (1.0, 1.0). For the case of training classifier,

we train google/electra-base-discriminator for five epochs with learning rate 2e-5 and

batch size of 96. We choose the best parameters using the validation set provided by

the [22]. The best mask ratio combination is γA = 0.6 and γS = 0.8.

6.4 Empirical Results

6.4.1 Comparison with Other Methods

Dataset FactCC-Test SummEval QAGS-CNN/DM FRANK-CNN/DM Average

Metric F1 BA F1 BA F1 BA F1 BA F1 BA

Baselines

FactCC 71.0 71.3 65.1 68.2 69.3 69.6 64.1 63.9 67.4 68.2

DocNLI 67.2 71.0 71.5 71.3 62.4 66.2 66.0 66.0 66.8 68.6

MNLI 55.0 56.0 51.7 51.7 48.6 53.4 50.4 53.3 51.4 53.6

FEVER 57.9 56.2 52.6 53.6 39.4 53.3 49.8 55.6 49.9 54.7

MF 59.9 64.1 68.2 67.5 47.6 56.9 62.4 62.7 59.5 62.8

Ours

MFMA 79.7 84.5 71.3 69.6 70.5 72.3 69.5 69.2 72.8 73.9

MSM 70.6 72.7 66.8 68.2 67.6 68.7 69.6 69.3 68.6 69.7

Table 6.1: Macro F1-score(F1) and class-balanced accuracy(BA) of the human annotated

factual consistency for the benchmark datasets based on CNN/DM.
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Dataset XSumHall QAGS-XSum FRANK-XSum Average

Metric F1 BA F1 BA F1 BA F1 BA

Baselines

FactCC 52.1 61.8 63.6 63.7 50.7 58.0 55.5 61.2

DocNLI 55.1 56.4 65.3 66.0 60.3 63.4 60.2 61.9

MNLI 33.3 52.1 45.2 51.1 28.8 50.6 35.8 51.3

FEVER 53.1 55.5 62.2 63.7 54.9 63.5 56.7 60.9

MF 53.6 53.3 54.6 54.9 55.7 55.3 54.6 54.5

Ours

MFMA 55.5 56.0 66.6 67.0 59.6 59.6 60.6 60.9

MSM 52.6 53.9 50.8 55.5 50.8 51.3 51.4 53.6

Table 6.2: Macro F1-score(F1) and class-balanced accuracy(BA) of the human annotated

factual consistency for the benchmark datasets based on XSum.

Classification Accuracy Due to the imbalance in each dataset, we report the macro-

f1 and the class balanced accuracy in Table 6.1 and Table 6.2. We observe that one

of our proposed methods MFMA outperforms baseline entailment metrics in four of

seven benchmark datasets. MFMA shows better performances than other methods in

especially for CNN/DM benchmarks, and shows similar performance to other baseline

in XSum datasets. We explain that this is because we only use training set of CNN/DM

to construct training set. On the other hand, DocNLI additionally uses the datasets

from related tasks such as ANLI [110] and SQuAD [46] except for synthetic negative

summaries. Another proposed method MSM also shows competitive performance for

CNN/DM benchmarks, but relatively lower performance in XSum based benchmark

datasets. We explain the performance gap between MSM and MFMA is due to the

properties that directly generates summaries, resulting in many noisy samples that are

relatively easy to be distinguished.
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Dataset SummEval QAGS-CNN/DM QAGS-XSum FRANK-CNN/DM FRANK-XSum

Metric r ρ r ρ r ρ r ρ r ρ

Baselines

ROUGE-L 0.16 0.14 0.29 0.24 0.13 0.13 0.16 0.13 0.16 0.13

BLEU-4 0.11 0.12 0.18 0.23 0.03 0.03 0.16 0.17 0.11 0.14

METEOR 0.18 0.16 0.26 0.25 0.11 0.12 0.29 0.28 0.18 0.16

BERTScore 0.16 0.14 0.37 0.36 0.11 0.13 0.33 0.30 0.19 0.17

QuestEval 0.35 0.30 0.42 0.36 0.20 0.20 0.46 0.41 0.19 0.18

CoCo 0.42 0.36 0.67 0.57 0.20 0.18 0.50 0.45 0.14 0.12

FactCC 0.38 0.36 0.45 0.48 0.30 0.30 0.32 0.36 0.09 0.08

DocNLI 0.51 0.41 0.60 0.59 0.36 0.35 0.49 0.49 0.25 0.21

MNLI 0.11 0.13 0.19 0.22 0.08 0.10 0.15 0.16 0.02 0.03

FEVER 0.33 0.32 0.40 0.34 0.38 0.41 0.38 0.43 0.20 0.19

MF 0.44 0.35 0.43 0.30 0.10 0.10 0.40 0.39 0.10 0.13

Ours

MFMA 0.52 0.38 0.62 0.65 0.37 0.38 0.52 0.45 0.16 0.17

MSM 0.43 0.36 0.50 0.48 0.20 0.22 0.51 0.48 0.05 0.09

Table 6.3: Summary level Pearson Correlation(r) and Spearman’s Correlation(ρ) be-

tween various automatic metrics and human judgments of factual consistency for the

model generated summaries. Note that we use the confidence of consistency label for

entailment based metrics.

Correlation with Human Judgments To compare with general metrics that are

not classification level, we also report the correlation with human judgments for five

datasets in Table 6.3. We demonstrate that our proposed method has higher pearson

correlation coefficient with human judgments in three of five benchmark datasets and

competitive with best results results in spearman correlation coefficient. Especially,

entailment based methods, which are relatively easy to compute, including our proposed

methods show better results than QA-based QuestEval or likelihood based CoCo. Also,

reference based method such as ROUGE-L show very lower performance than other

methods that does not require any references.
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Figure 6.3: Validation Performance among Masked Ratio for Mask-and-Fill with

Masked Article. We experiment with each of the five combinations of article mask ratio

and summary mask ratio, and then plot the interpolated results.

6.4.2 Analysis

Performance among Masked Ratio We analyze the effects of the mask ratio for

both source article and summary in our proposed method MFMA and present results

using the validation set in Figure 6.3. Through this experiment, we investigate the

tradeoff in adjusting both article masking ratio and summary masking ratio. As shown

in Figure 6.3, we find that too high masking ratio decreases performance by sacrificing

affinity. On the other hand, if the masking ratio is insufficient, the generated negative

sample is often not really negative and this leads to lower performance. Also we can

infer that there is an optimal masking ratio combination.
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Generated Samples among Masking Ratio We visualize the generated negative

summaries through our proposed method MFMA and MSM using CNN/DM in Fig-

ure 6.4. We also visualize the example through MF, which simply fills in the mask

without the article. We observe that if the article masking ratio γA is too low, the gener-

ated summaries become almost similar to the original summary since there are enough

information to fill the mask. However, if the γA is too high, the generated examples are

too far from the article, resulting in too negative summary similar to filling the mask

without article.

Dataset Avg-CNN/DM Avg-XSum

NP/Ent 73.9 60.9

Token 58.6 53.9

Sentence 53.5 53.4

Table 6.4: Balanced accuracy of the human annotated factual consistency among

masking unit. NP/Ent denotes noun phrases and entities.

Performance among Masking Unit We basically perform masking operation in the

noun phrases and entities units for both summary and article. In order to see the effect

of the masking unit, we also conduct an experiment on word level masking and sentence

level masking, and present the classification level results in Table 6.4. We observe that

noun phrases level masking shows the best results following the work [111] where

many errors in summarization system are related to noun phrases and entities.

Distance from Original Reference Summary Using the results on various combi-

nations of article masking ratio and summary masking ratio for MFMA as presented

in Figure 6.3, we also investigate the relation between the average distance from the

reference summary on each mask ratio combination and the performance. We compute

BERTScore between original reference summary and the negative summary generated
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using the reference summary to get the distance. Interestingly, as shown in Figure 6.5,

we observe the distribution in which performance is maximized within the appropriate

distance around 0.8 as the two-dimensional distribution with an R2 of 0.74. This result

shows how far the synthetic negative summaries must be from the reference summaries

to help training the factual consistency checking model.

Diversity among Masked Ratio Our proposed method can generate various samples

depending on the location of the mask for the same summary-article pair with the

fixed mask ratio. Hence, we analyze the diversity of the generated negative summaries

among the combinations of mask ratio for MFMA and present the result using vali-

dation set in Figure 6.6. We define the diversity of each mask ratio combination as

the negation of pairwise similarity score for each sample following [112]. We sample

four negative summaries using the given article for each method and then compute the

pairwise similarity scores for all of the combinations. We also use BERTScore as a

similarity measure. Similar to the distance, we observe that diversity has also similar to

a two-dimensional form with an R2 of 0.7, in which the accuracy is maximized at an

appropriate point.

Case Study To understand the pros and cons of our proposed factual consistency

checking system, we conduct a case study and illustrate the representative examples in

Figure 6.7. We observe that our proposed method is good at judging the facts themselves

in the summary like the first example, but still not perfect in examples that require

high-level reasoning like the second example.

80



Article: Tropical Storm Andrea formed in the Gulf of Mexico on Wednesday, marking the first storm of the 2013

Atlantic hurricane season. The storm was about 270 miles west-southwest of Tampa, Florida, and moving north at

6 mph, said the National Hurricane Center. It had maximum sustained winds of 40 mph. ,..., Thursday afternoon

and move over southeastern Georgia and eastern South Carolina Thursday night and Friday. Little change in

strength is expected over the next 48 hours.

Reference Summary: Storm moving north at faster rate (6 mph) A storm warning is issued for parts of the

Florida coast . Little change in strength is forecast for the next 48 hours . Andrea the first storm of the 2013

Atlantic hurricane season .

MF: Storm moving north at 6 mph (11 kph ) A storm warning is issued for parts of the Carolinas. Little change in

strength is forecast for the Carolines. Andrea the first storm of the season.

MFMA γA = 0.4: Andea moving north at faster rate (6 mph) A storm warning is issued for parts of the Florida

coast. Little change in strength is forecast for the next 48 hours. Andea the first storm of the 2013 Atlantic

hurricane season.

MFMA γA = 0.6: Storm moving north at faster rate (6 mph) Tropical storm watch is issued for west coast of

Florida. Little change in strength is forecast for next 48 hours. Storm the first storm of the 2013 Atlantic hurricane

season.

MFMA γA = 0.8: Andrea moving north at 12 mph (6 mph) A tropical storm warning is issued for parts of the

East Coast. A significant increase in strength is forecast for Thursday. Andrea the first storm of the Atlantic

hurricane season.

MFMA γA = 1.0: Storm moving north at 6 mph (10 kph) A tropical storm watch is issued for the west coast of

Florida. A hurricane watch in effect is forecast for the East Coast. The center of the storm forms.

MSM γA = 0.4: The storm is about 270 miles west-southwest of Fort Myers, Florida. NEW: The storm is in

effect for the west coast of Florida. The storm is the first of the 2013 Atlantic hurricane season.

Figure 6.4: Generated negative summaries among through various masking ratio in

CNN/DM dataset. For MFMA and MF, we fix the summary masking γS = 0.6:
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Figure 6.5: Validation Set Performance among BERTScore between the original refer-

ence summaries and the negative summaries we generate using the various combinations

of article and summary masking ratios.
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Figure 6.6: Validation Set Performance among diversity among various combinations

of article masking ratio and summary masking ratio. Diversity is computed as negative

of the pairwise BERTScore between four negative samples generated by each masking

ratio.
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Article: Nkaissery told reporters the university will be able to confirm Saturday if everyone has been accounted

for. Thursday’s attack by al-Shabaab militants killed 147 people, three security officers and two university

security personnel. The attack left 104 people injured, including 19 who are in critical condition, Nkaissery said.,...,

Candidate Summary: 147 people, including 142 students, are in critical condition.

Ground Truth: INCONSISTENT

MFMA: INCONSISTENT

MSM: INCONSISTENT

DocNLI: INCONSISTENT

FactCC: CONSISTENT

Article: Media playback is not supported on this device United remain 15 points clear at the top of the table with

eight games left after a 1-0 win at Sunderland. ”We are not concerned with what we have left behind us, we are

only focusing on what is in front of us,” said Ferguson. ”,...,

Candidate Summary: Manchester United manager Sir Alex Ferguson says he is not concerned about his side’s

unbeaten start to the season as they attempt to win the Premier League title.

Ground Truth: CONSISTENT

MFMA: INCONSISTENT

MSM: INCONSISTENT

DocNLI: INCONSISTENT

FactCC: CONSISTENT

Figure 6.7: Case study on entailment based models. First example comes from and

FactCC-Test and second example comes from XSumHall.
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6.5 Conclusion

In this study, we proposed an effective generation method of factually inconsistent

summaries, called MFMA. In this method, some proportion of the source text and

corresponding reference summaries is hidden, then a summarization model generates

plausible but factually inconsistent summaries by inferring the masked contents. Exper-

iments on seven benchmark datasets demonstrate that factual consistency classifiers

trained using our method generally outperform existing models and show competitive

correlation with human judgement.
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Chapter 7

Factual Error Correction for Improving Factual Consis-

tency

Text summarization is a task that aims to generate a short version of the text that

contains the important information for the given source article. With the advances

of neural text summarization systems, abstractive summarization systems [99] that

generate novel sentences rather than extracting the snippets in the source are widely

used [113]. However, factual inconsistency between the original text and the summary

is frequently observed in the abstractive summarization system [2, 100, 101] as shown

in the system summary of Figure 7.2. As in the example of Figure 7.2, many of these

errors in the summaries occur at the entry-level such as person name and number.

But these types of errors are sometimes trivial and can often be easily solved through

simple modification like changing the wrong entities, as shown in Figure 7.2. For this

reason, previous works [114, 115] have introduced post-editing systems to alleviate

these factual errors in the summary. But all of those works adopt the seq2seq model,

which requires a similar cost to the original abstractive summarization systems, as a

post-editing. Therefore, using such systems based on seq2seq doubles the inference time

for performing post-editing, resulting in significant inefficiency. In addition, seq2seq

based post-editing model can be affected by the model’s own bias to the input summary.
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Article: Singer-songwriter David Crosby hit a jogger with his car Sunday evening, a

spokesman said. The accident happened in Santa Ynez, California, near where Crosby

lives. Crosby was driving at approximately 50 mph when he struck the jogger, according to

California Highway Patrol Spokesman Don Clotworthy. The posted speed limit was 55.

The jogger suffered multiple fractures, and was airlifted to a hospital in Santa Barbara,

Clotworthy said.,...

System Summary with Factual Error: Don Clotworthy hit a jogger with his car Sunday

evening. The jogger suffered multiple fractures and was airlifted to a hospital.

After Correction: David Crosby hit a jogger with his car Sunday evening. The jogger

suffered multiple fractures and was airlifted to a hospital.

Figure 7.1: An example of generated summary with factual errors and the correct

summary after minor modification.

To overcome this issue and develop efficient factual corrector for summarization

systems, we propose a totally different approach, RFEC(Retrieval-based Factual Error

Corrector) that efficiently corrects the factual errors with much faster running time

compared to seq2seq model. RFEC first retrieves the evidence sentences for the given

summary for correcting and detecting errors. By doing so, we shorten the input length

of the model to obtain computational efficiency. Then, RFEC examines all of the

entities whether each entity has a factual error. If any entities have a factual error, RFEC

substitutes these wrong entities with the correct entity by choosing them among the

entities in the source article. Through these steps, we do not create a whole sentence

as in the seq2seq model, but decide whether to fix and correct it through the retrieval,

resulting in higher computational efficiency. Experiments on both synthetic and real-

world benchmark datasets demonstrate that our model shows competitive performance
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with the baseline model with much faster running time. Also, as shown in Figure 7.3,

RFEC has a natural form of interpretability through the visualization of the erroneous

score and the scores of each candidate entity for correcting the wrong entities.

7.1 Related Work

With the advancement of pre-training language models such as BERT [13] and BART [17],

abstractive summarization systems have adopted these models to use the rich infor-

mation inherent in parameters. While these models improved the performance, the

generated summaries are still often factually inconsistent with the source article. [3].

To solve the factual inconsistency in abstractive summarization systems, FA-

SUM [115] adopted graph attention network [116] for generating the correction sum-

mary. [117] studied contrast candidate generation and selection by ranking approach

as a model-agnostic post-processing technique to correct the extrinsic hallucinations.

Another line of mitigating the factual errors is to develop a post editing system to

fix the errors. [114] presented a post-editing corrector module using a BART-based

auto-regressive model. To train such system, the study generated corrupted summary

by substituting the key information such as an entity or a number to construct a training

dataset. [118] also develop a seq2seq based error correction system in the claim of

FEVER dataset [119] by correcting the words after masking some words. Different

from seq2seq based previous works, we develop a faster retrieval based factual error

correction system that does not generate the whole summary, only corrects the entity-

level errors by substituting them with one of the entities in the article.
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Article: Singer-songwriter David Crosby hit a jogger with his car Sunday evening, a

spokesman said. The accident happened in Santa Ynez, California, near where Crosby

lives. Crosby was driving at approximately 50 mph when he struck the jogger, according to

California Highway Patrol Spokesman Don Clotworthy. The posted speed limit was 55.

The jogger suffered multiple fractures, and was airlifted to a hospital in Santa Barbara,

Clotworthy said.,...

System Summary with Factual Error: Don Clotworthy hit a jogger with his car Sunday

evening. The jogger suffered multiple fractures and was airlifted to a hospital.

After Correction: David Crosby hit a jogger with his car Sunday evening. The jogger

suffered multiple fractures and was airlifted to a hospital.

Figure 7.2: An example of generated summary with factual errors and the correct

summary after minor modification.

7.2 Proposed Approach: RFEC

7.2.1 Problem Formulation

For a given summary S and an article A, we aim to develop a factual error correction

system that can fix the possible factual errors in S. Since most of the factual errors

appear in entity-level, we develop a system that is specialized in correcting entity-level

errors. Specifically, we define this problem as two steps, entity-level error detection

and entity-level error correction as shown in Figure 7.3. For given ns entities ES =

{es1, es2, ..., esns} in a summary S, we first classify whether each entity is factually

consistent with the article A. If any entity eSi is factually inconsistent, the system

substitutes it with one of the na entities in the article EA = {ea1, ea2, ..., eana}.
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The partnership started as a 

single shop on Oxford Street in 

London , opened in 1864 by 

John Lewis . Today the 

partnership is an organization 

with bases throughout the UK , 

with supermarkets and 

department stores, employing 

approximately 67,100 people, …,

[1] The partnership started as a 

single shop on Oxford Street in  

London, opened in 1864 by John 

Lewis. 

[2] All  67,100 permanent staff are 

partners who own  26 John Lewis  

department stores, 183 Waitrose 

supermarkets, an online and 

catalogue business. 

[3] John Lewis Direct a direct 

services company - Greenbee,  

three production units and a farm.

Article  𝐴 Evidence Sentences 𝑽

John Lewis Partnership began 

as a shop on London 's Oxford

street in the last financial year . 

All 67,100 employees are 

partners in the organization and 

own shares.

Summary  𝑆

[𝑆; <Is Error>; 𝑉] BERT

John Lewis 
Partnership

London

Oxford

the last 
financial year

67,100

Summary Entities: 𝐸𝑆 Evidence Entities: 𝐸𝐸

<Is Error> Oxford Street

1864

John Lewis

67,100

London

26

John Lewis 
department 

stores

0.01

183

John Lewis 
Direct

three

0.70

0.95

0.08

Special Token

<s> John Lewis Partnership <e> began as a shop on <s> London <e> ‘s <s> Oxford street <e> in <s> the last financial year <e> . ,…, <Is Error> ,…, The partnership started as a single 
shop on <s> Oxford Street <e> in  London, opened in <s> 1864 <e> by <s> John Lewis <e> . All <s> 67,100 <e>  permanent staff are partners who own <s> 26 <e> ,…,

1) Error Detection 2) Error Correction

Figure 7.3: Overall flow of our proposed retrieval-based factual error correction system.

Given a summary S and an article A, we first retrieve evidence sentences V . Using

S and V , we compute BERT embeddings for entities in summary ES and evidence

sentence V . Note that ⟨ Is Error ⟩ is a special token for classifying whether each entity

is an error. If the erroneous score computed using ⟨ Is Error ⟩ token is above threshold,

we regard those entity as an error and substitute it with one of the entities in the evidence

sentences that obtains highest score.

7.2.2 Training Dataset Construction

To train a factual error correction system, we need a triple composed of an input

summary S1 that may have factual errors, an article A and a target summary S2 that

is a modified version of S1 without factual errors. However, it is difficult to obtain S1

that has the errors with the position annotated and the right ground truth correction of

such errors. Hence, to train a system, we construct a synthetic dataset by modifying the

reference summaries following previous works [114, 115, 22]. We corrupt reference

summaries in CNN/DM dataset [108] by randomly changing one of the entities with

the same type of other entities in the dataset to make a corrupted summary. Finally, we

construct a triple (S1, A, S2). Meanwhile, in the real world dataset, a significant number

of summaries are factually consistent, so we only make errors for 50% of the summaries

and set S1 = S2 for the rest of the summaries in the dataset. Through this procedure,
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we construct the synthetic training dataset where the number of each train/validation

split is 133331/6306, respectively.

7.2.3 Evidence Sentence Retrieval

Generally, a summary does not treat all of the contents in the article but only contains

some important parts of the article. Hence, in most cases, checking for errors within

the summary and correcting them does not require the entire article, and using the

part related to the summary is sufficient, as shown in Figure 7.3. Inspired by this

observation, we extract some of the sentences in the article according to the similarity

with the summary to increase the efficiency of the system by shortening the input

length. We use ROUGE-L [35] score as a similarity measure to extract top-2 evidence

sentences for each sentence in summary. Then, we remove the duplicates and sort them

according to the order in which they appear in the article, and combine them to form

V = {V1, V2, ..., VM}, a set of evidence sentences for detecting and correcting errors

in the summary S.

7.2.4 Entity Retrieval Based Factual Error Correction

Computing Embedding Using summary S and the evidence sentences V , we first

extract entities ES and EV respectively using SpaCy1 named entity recognition model.

And we insert special tokens ⟨ s ⟩ and ⟨ e ⟩, before and after each extracted entity. Then

we also insert an additional token ⟨ Is Error ⟩, which is later used for checking the

factual consistency between S and V and concatenate them to make an input for the

BERT [13]. Using BERT, we obtain the contextualized embedding of each entity in S

and V as follows:

H=[h1,h2,...,hl]=BERT ([S;<IsError>;V ]), (7.1)

where l is maximum sequence length of the input.
1https://spacy.io/api/entityrecognizer

90



And we get the embedding of start token ¡s¿ for each entity as the entity embed-

dings HEV = {hev1 , hev2 , ..., hevnv} and HES = {hes1 , hes2 , ..., hesns} for V and S

respectively. We also get herr, an embedding of ¡Is Error¿.

Error Detection Using the computed embeddings, we compute the erroneous score

for all of the entities, in summary, using the embedding of ¡Is Error¿ token herr as

follows.

ŝerri=P (Err|esi)=sigmoid(h⊺
esi

Wdetherr+bdet) (7.2)

,where i = 1, 2, 3, ..., ns. The Wdet and bdet are model parameters.

Error Correction For the entities that are factual errors, we compute the correction

score between the entities and all of the entities in the evidence sentences similar to

error detection as follows.

ŝcorij=P (Cor|esi,evj)=sigmoid(h⊺
esi

Wcorhevj+bcor) (7.3)

,where i = 1, 2, 3, ..., nserr, j = 1, 2, 3, ..., nv. nserr is the number of errors in the

summary. The Wcor and bcor are model parameters.

Training Objective We train the model using binary cross entropy loss for both

detection and correction as follows.

Ldet=−
∑ns

i=1(serri log(ŝerri )−(1−serri ) log(1−ŝerri ))

ns
(7.4)

Lcor=−
∑ns

i=1
∑nv

i=1(scorij log(ŝcorij )−(1−scorij ) log(1−ŝcorij ))

ns·nv
(7.5)

L=Ldet+Lcor (7.6)

,where serri ∈ {0, 1} and scorij ∈ {0, 1}, which are the ground truth labels for detection

and correction.
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Inference For the inference stage, we do not have the label as to whether each entity

is an error. Therefore, we calculate the two results sequentially, error detection and error

correction, using the same BERT embeddings. For each entity, if an erroneous score is

above thrdet, then we let that entity be an error as shown in Figure 7.3. And then, we

search the candidate of correction among the evidence entities HEV , and substitute it

with the entity that gets the maximum score as in Figure 7.3. We conduct correction

only when the maximum score is higher than thrcor to prevent unnatural correction

caused by failure to find the appropriate entity within the candidate.

7.3 Experimental Setup and Dataset

7.3.1 Dataset

For our experiments, we evaluate our proposed factual error correction method on both

synthetic dataset and real-world dataset, based on CNN/DM. We briefly describe the

details of two benchmark datasets below. Using the same method in Section 7.2.2,

we make a separate 3,000 test tests. As same as the training dataset, the corrupted

summaries, and the reference summaries are mixed at the same ratio in this testset. For

this synthetic testset, we know the ground truth correction for each summary. Hence,

we measure the success rate of correction through whether the post-editing model’s

correction is the same as the ground truth correction. In addition to this synthetic

data, we also use the FactCC-Test set [22] that has labels on the 503 system-generated

summaries whether they are factually consistent or not. Among them, 62 summaries

are inconsistent, and 441 summaries are consistent. Different from the synthetic testset,

FactCC-Test Dataset does not provide the ground truth correction for the inconsistent

summaries. Hence, we manually check the results of all of the systems as in the example

of Figure 7.4.
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7.3.2 Implementation Details

Hyperparameters For our experiments, we use bert-base-cased2 for RFEC. We train

the model for five epochs using Adam Optimizer [109] with a learning rate of 3e-5.

For baseline seq2seq model, we use bart-base3 following the previous work [114] and

train the model using the same dataset we used for training RFEC with same epochs

for fair comparison.We set both thrdet and thrcor for 0.5 using the validation set. For

maximum sequence length, we set 1024 for BART, 256 for BART without evidence

selection, 256 for RFEC, and 512 for RFEC without evidence sentence selection.

7.4 Empirical Results

Computing Infrastructure All of the experiments are done using NVIDIA RTX

A5000 24G with Python 3.8.8 and PyTorch 1.10.1. We measure the running time,

including the preprocessing time of each method using a single A5000 GPU and

Intel(R) Xeon(R) Silver 4210R CPU (2.40 GHz).

7.4.1 Comparison with Other Methods

Synthetic Dataset We present the results for the 3k synthetic testset in Table 7.1. We

observe that the performance of BART is slightly better than RFEC, but our proposed

retrieval-based model has a much faster running time. We also observe that accuracy

for all of the models is very high for the synthetic dataset since the type of the errors

is relatively trivial. Also, we find that using only evidence sentences performs slightly

lower than using the whole article sentences but have advantages in computing speed

for both systems. Especially for RFEC, it does not take much time to calculate the

model output, but it costs relatively much time on preprocessing, especially for named

entity recognition. And reducing the input length through the sentence selection also
2https://huggingface.co/bert-base-cased
3https://huggingface.co/facebook/bart-base
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reduces the preprocessing time, resulting in faster running time, as shown in Table 7.1.

For computing the throughput, we make the best effort to set the maximum batch size

for each setting using a same environment for a fair comparison.

Method Sample/min Accuracy

Seq2seq - BART 933 90.93

- sentence selection 629 92.20

RFEC 4024 91.06

- sentence selection 1810 91.15

Table 7.1: Factual error correction results on test split of synthetic Test Dataset with the

average running time.

Method
Inconsistent(62) Consistent(441)

Changed Edited Changed Edited

Seq2seq - BART 8 15 2 14

- sentence selection 9 23 7 78

RFEC 7 9 2 23

- sentence selection 6 8 3 31

Table 7.2: Factual error correction results on FactCC-Testset. Each column represents

how many corrections each system has performed for the sample of each label, and how

many labels have changed from the correction.

FactCC-Test Dataset We present the results for the FactCC-Test Dataset in Table 7.2.

Compared to the results in the synthetic dataset, both seq2seq and RFEC do not correct

many errors, only 9 and 7 for the best settings in both systems among 62 errors. However,

as in the synthetic dataset, our proposed method shows almost the same results with

eight times less running time compared to the seq2seq method. Also, we can observe

that using the correction model also creates a significant number of new errors especially
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for the seq2seq model without sentence selection.

7.4.2 Analysis

We present the representative success and failure cases of our proposed retrieval-

based factual error correction system with the top-3 retrieved entities for the errors in

Figure 7.4. For the first example, RFEC successfully corrects the error Valerie Braham

by substituting it with Philippe Braham that gets a higher correction score among the

entities in the evidence sentences. Also, as the object to be corrected is a person’s name,

we can observe that other correction candidates are also names. On the other hand,

for the second example, although RFEC detects the error Raymond, but do not find

the correction candidates whose correction score is above thrcor. For this example,

Raymond should be changed to the front bench, but the named entity recognition model

fails to capture it and leads to missing it from the correction candidate.

7.5 Conclusion

In this study, we proposed an efficient factual error correction system RFEC based on

two retrieval steps. RFEC first retrieves evidence sentences based on textual similarities

between the summary and the article for detecting and correcting factual errors. Then,

if there is an entity that is a cause of factual errors, RFEC substitutes it with one of the

entities in the evidence sentences as a retrieval-based approach. Experiments on two

benchmark datasets demonstrate that our proposed method shows competitive results

compared to strong baseline seq2seq with a much faster inference speed.
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Example 1) - Success

Evidence Sentences: Her husband, Philippe Braham, was one of 17 people killed in

January’s terror attacks in Paris. One month after the terror attacks in Paris, a gunman

attacked a synagogue in Copenhagen, Denmark, killing Dan Uzan, who was working as a

security guard for a bat mitzvah party.

Input Summary: Valerie Braham was one of 17 people killed in January

’s terror attacks in Paris

Corrected Summary: Philippe Braham was one of 17 people killed in January’s terror

attacks in Paris.

Top3 Correction Candidates for Valerie Braham:

Philippe Braham, Dan Uzan, bat mitzvah

Example 2) - Failure

Evidence Sentences: Sawyer Sweeten grew up before the eyes of millions as a child star

on the endearing family sitcom ” Everybody Loves Raymond.” Sweeten , best known for

his role Geoffrey Barone , was visiting family in Texas, entertainment industry magazine

Hollywood Reporter reported, where he is believed to have shot himself on the front porch.

Input Summary: He is believed to have shot himself on Raymond

Corrected Summary: He is believed to have shot himself on Raymond.

Top3 Correction Candidates for Raymond:

Everybody Loves Raymond, Geoffrey Barone, Sawyer Sweeten

Figure 7.4: Case study on our proposed factual error correction system. The entities in

the evidence sentences are highlighted. The color on each entity in each input summary

represents the erroneous score, and the darker the color, the higher the erroneous score.
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Chapter 8

Conclusion

In this dissertation, we propose four novel factual consistency metrics that has higher

correlation with human judgments than previous methods for various conditional

text generation systems based on two approaches; (1) using auxiliary tasks, (2) data

augmentation methods as shown in Table 8.

First, we utilize auxiliary tasks to focus on keywords that are salient for evalu-

ating factual consistency and propose two metrics, KPQA and QACE. We develop

a KPQA-metric specialized for generative QA by integrating keyphrase weights to

existing metrics such as BLEU or BERTScore using a pre-trained auxiliary task. We

use the soft labels of the pre-trained auxiliary model designed to get the keyphrase

weights. Experimental results show that keyphrase weights are helpful in evaluating the

correctness. Furthermore, we propose a QACE metric for image captioning task based

Name Method Reference Computation Interpretability

KPQA
Auxiliary Tasks

O
Slow High

QACE X

UMIC
Data Augmentation

X
Fast Low

MFMA X

Table 8.1: Properties of the proposed factual consistency metrics.
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on question generation and question answering system. Different from KPQA-metric,

QACE do not require human generated reference. QACE generates questions for the

given captions and then directly evaluate the factual consistency of the captions by

comparing the answers of the questions for the source and the candidate caption.

Secondly, we tackle the problem of developing a factuality metric as a data-driven

approach and propose two novel metrics, UMIC and MFMA. We solve the factual

consistency evaluation in image captioning task with data augmentation method by

generating inconsistent captions with pre-defined rules to edit the human written caption.

We train a metric through contrastive learning to distinguish fake inconsistent captions

with the human written caption. This novel training method achieves higher correlation

with human judgments, resulting in state-of-the-arts in evaluating image caption. We

propose a more general way of creating inconsistent examples through masked gen-

eration in evaluating factual consistency of the abstractive summaries. We generate

inconsistent examples using masked articles to generate hard negative examples. Exper-

imental results show that proper masking ratio can generate inconsistent samples that

are helpful for develping factual consistency metrics, resulting in state-of-the-arts in

abstractive summarization evaluation. Finally, we investigate the way to mitigate the

factual inconsistency itself inspired by the approaches in data-driven factual consistency

metrics. We develop an entity-level faster post-editing system RFEC to correct the

factual errors in the abstractive summarization system.

Extensive experiments have demonstrated that all of our proposed metrics out-

perform previous metrics in evaluating factual consistency for target text generation

systems. Also, we confirm that the methods use auxiliary tasks have natural form of in-

terpretability due to the properties of each auxiliary task, but have higher computational

cost. On the other hand, data-driven approaches generally show higher performance

and faster computation speed, while sacrificing the interpretability.

In the future work, we will study a method to optimize the conditional text genera-

tion systems using a factual consistency metrics. Since most of the evaluation metrics

98



are not differentiable, we will start from the reinforcement learning based approach.

Specifically, we will use proximal policy optimization algorithms [120] to directly

optimize the conditional text generation systems using factual consistency metrics. We

will also study new decoding methods that can utilize factual consistency metrics in the

inference stage.
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nett, eds.), pp. 13042–13054, 2019.

[51] H. Le, D. Sahoo, N. Chen, and S. Hoi, “Multimodal transformer networks

for end-to-end video-grounded dialogue systems,” in Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, (Florence,

Italy), pp. 5612–5623, Association for Computational Linguistics, 2019.

[52] H. Alamri, C. Hori, T. K. Marks, D. Batra, and D. Parikh, “Audio visual scene-

aware dialog (avsd) track for natural language generation in dstc7,” in DSTC7 at

AAAI2019 Workshop, vol. 2, 2018.

[53] C. Hori, T. Hori, T. Lee, Z. Zhang, B. Harsham, J. R. Hershey, T. K. Marks,

and K. Sumi, “Attention-based multimodal fusion for video description,” in

IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy,

October 22-29, 2017, pp. 4203–4212, IEEE Computer Society, 2017.

[54] R. Likert, “A technique for the measurement of attitudes.,” Archives of

psychology, 1932.

[55] H. J. Jung and M. Lease, “Improving consensus accuracy via z-score and

weighted voting,” in Workshops at the Twenty-Fifth AAAI Conference on

Artificial Intelligence, 2011.

[56] K. Krippendorff, “Estimating the reliability, systematic error and random error

of interval data,” Educational and Psychological Measurement, vol. 30, no. 1,

pp. 61–70, 1970.

[57] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” Computing,

vol. 1, pp. 25–2011.

108



[58] J. R. Landis and G. G. Koch, “The measurement of observer agreement for

categorical data,” biometrics, pp. 159–174, 1977.

[59] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in

International Conference on Learning Representations, 2018.

[60] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image

caption generator,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 3156–3164, 2015.

[61] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,

“Bottom-up and top-down attention for image captioning and visual question

answering,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 6077–6086, 2018.
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초록

최근의 사전학습 언어모델의 활용을 통한 조건부 텍스트 생성 시스템들의 발

전에도 불구하고, 시스템들의 사실 관계의 일관성은 여전히 충분하지 않은 편이다.

그러나 널리 사용되는 n-그램 기반 유사성 평가 기법은 사실 일관성 평가에 매우

취약하다.따라서,사실일관된텍스트생성시스템을개발하기위해서는먼저시스

템의사실관계를제대로평가할수있는자동평가기법이필요하다.본논문에서는

다양한조건부텍스트생성시스템에대해,이전평가기법보다사실관계일관성평

가에서인간의판단과매우높은상관관계를보여주는 4가지평가기법을제안한다.

이기법들은 (1)보조태스크활용 및 (2)데이터증강기법등을활용한다.

첫째로, 우리는 중요한 핵심 단어또는 핵심 구문에 초점을 맞춘 두 가지 다른

보조태스크를활용하여두가지사실관계의일관성평가기법을제안한다.우리는

먼저 핵심 구문의 가중치 예측 태스크를 이전 평가 기법에 결합하여 주관식 질의

응답을위한평가기법을제안한다.또한,우리는질의생성및응답을활용하여키

워드에 대한 질의를 생성하고, 이미지와 캡션에 대한 질문의 답을 비교하여 사실

일관성을확인하는 QACE를제안한다.

둘째로, 우리는 보조 태스크 활용과 달리, 데이터 기반 방식의 학습을 통해 두

가지의평가기법을제안한다.구체적으로,우리는증강된일관성없는텍스트를일

관성있는텍스트와구분하도록훈련한다.먼저규칙기반변형을통한불일치캡션

생성으로이미지캡션평가지표 UMIC을제안한다.다음단계로,마스킹된소스와

마스킹된요약을사용하여일관성이없는요약을생성하는MFMA를통해평가지

표를 개발한다. 마지막으로, 데이터 기반 사실 일관성 평가 기법 개발의 확장으로

시스템의사실관계오류를수정할수있는빠른사후교정시스템을제안한다.
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