

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Improved Fully Homomorphic Encryption
and Practical Implementation of

Privacy-Preserving Deep Neural Networks

완전동형암호의개선및정보보호심층신경망모델의
실용적구현

BY

LEE JOON-WOO

AUGUST 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Improved Fully Homomorphic Encryption
and Practical Implementation of

Privacy-Preserving Deep Neural Networks

완전동형암호의개선및정보보호심층신경망모델의
실용적구현

BY

LEE JOON-WOO

AUGUST 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Improved Fully Homomorphic Encryption
and Practical Implementation of

Privacy-Preserving Deep Neural Networks

완전동형암호의개선및정보보호심층신경망모델의
실용적구현

지도교수노종선

이논문을공학박사학위논문으로제출함

2022년 8월

서울대학교대학원

전기·정보공학부

이준우

이준우의공학박사학위논문을인준함

2022년 8월

위 원 장:
부위원장:
위 원:
위 원:
위 원:

Abstract

Fully homomorphic encryption (FHE) is an encryption scheme that enables the

server to process encrypted data sent by the clients without decrypting them in the

client-server model. It allows the clients to outsource processing the sensitive data to

the distrustful server without leaking any information about the data. Although several

FHE schemes are constructed and improved in various aspects since the first con-

struction of FHE in 2009, the existing FHE schemes are not sufficiently efficient for

being applied to practical application. In this dissertation, four main crucial topics on

FHE schemes are dealt with to make FHE schemes appropriate for practical appli-

cations: Bootstrapping of approximate homomorphic encryption, Galois key manage-

ment, privacy-preserving deep neural network, and sorting for FHE’ed data.

First, the message precision in the bootstrapping operation of the residue num-

ber system variant Cheon-Kim-Kim-Song (RNS-CKKS) scheme is improved. Since

the homomorphic modular reduction process is one of the most important steps in

determining the precision of the bootstrapping, the homomorphic modular reduction

process is focused on. I propose an improved multi-interval Remez algorithm obtaining

the optimal minimax approximate polynomial of modular reduction function and the

scaled sine/cosine function over the union of the approximation regions. Next, I pro-

pose the composite function method using the inverse sine function to reduce the differ-

ence between the scaling factor used in the bootstrapping and the default scaling factor.

With these methods, the approximation error in the bootstrapping of the RNS-CKKS

scheme is reduced by 1/1176∼1/42 (5.4∼10.2-bit precision improvement) for each pa-

rameter setting. While the bootstrapping without the composite function method has

27.2∼30.3-bit precision at maximum, the bootstrapping with the composite function

method has 32.6∼40.5-bit precision.

Second, using the state-of-the-art techniques regarding FHE schemes, the ResNet-

i

20 network with the CKKS scheme is implemented with having almost the same clas-

sification accuracy as the plaintext counterpart without any modification of models

or retraining. To further improve the performance, the total bootstrapping runtime

is minimized using multiplexed parallel convolution that collects sparse output data

for multiple channels compactly. The imaginary-removing bootstrapping is also pro-

posed to prevent the deep neural networks from catastrophic divergence during ap-

proximate ReLU operations. In addition, level consumptions are optimized with lighter

and tighter parameters. Simulation results show that the proposed implementation has

4.67× lower inference latency and 134× less amortized runtime (runtime per im-

age) for ResNet-20 compared to the implementation without the multiplex convolution

technique, with achieving standard 128-bit security. Furthermore, ResNet-32, 44, 56,

110 for CIFAR-10 dataset and ResNet-32 for CIFAR-100 dataset are successfully im-

plemeneted, and the classification accuracy is similar to that of plaintext counterparts.

The maximum classification accuracy is 92.9% at maximum, which is the highest ac-

curacy among the similar privacy-preserving setting.

Third, a new concept of hierarchical Galois key generation method for homomor-

phic encryption is proposed to reduce the burdens of the clients and the server running

BFV and CKKS schemes. The main concept in the proposed method is the hierarchical

Galois keys, such that after the client generates and transmits a few Galois keys in the

highest key level to the server, the server can generate any required Galois keys from

the public key and the smaller set of Galois keys in the higher key level. This proposed

method significantly reduces the number of the clients’ operations for Galois key gen-

eration and the communication cost for the Galois key transmission. For example, if

the standard ResNet-20 network for the CIFAR-10 dataset and the ResNet-18 network

for the ImageNet dataset are implemented with pre-trained parameters of the CKKS

scheme with the polynomial modulus degree N = 216 and N = 217, respectively,

the server requires 265 and 617 Galois keys, which occupy 105.6GB and 197.6GB

ii

of memory, respectively. If the proposed three-level hierarchical Galois key system is

used, the Galois key size generated and transmitted by the client can be reduced from

105.6GB to 3.4GB for ResNet-20 model for CIFAR-10, and reduced from 197.6GB to

3.9GB for ResNet-18 model for ImageNet.

Fourth, in order for the Shell sort algorithm to be used on the FHE data, the Shell

sort is modified with an additional parameter α, allowing exponentially small sorting

failure probability. For a gap sequence of powers of two, the modified Shell sort with

input array length n is found to have the trade-off between the running time complex-

ity of O(n3/2
√
α+ log log n) and the sorting failure probability of 2−α. Its running

time complexity is close to the intended running time complexity of O(n3/2) and the

sorting failure probability can be made very low with slightly increased running time.

Further, the near-optimal window length of the modified Shell sort is also derived via

convex optimization. The proposed analysis of the modified Shell sort is numerically

confirmed by using randomly generated arrays. For the practical aspect, the modifica-

tion can be applied to any gap sequence, and it is shown that Ciura’s gap sequence,

which is known to have good practical performance, is also practically effective when

the modified Shell sort is applied. The modified Shell sort is compared with other sort-

ing algorithms with the FHE over the torus (TFHE) library, and it is shown that this

modified Shell sort has the best performance in running time among in-place sorting

algorithms on homomorphic encryption scheme.

keywords: Bootstrapping, Brakerski/Fan-Vercauteran scheme (BFV), Cheon-Kim-

Kim-Song scheme (CKKS), Composite function approximation, Fully homomorhpic

encryption (FHE), Fully homomorphic encryption with torus (TFHE), Hierarchical

Galois key generation, Imaginary-removing bootstrapping, Improved multi-interval

Remez algorithm, Modified Shell sort, Multiplexed convolution, Privacy-preserving

machine learning, ResNet models, RNS-variant CKKS scheme (RNS-CKKS)

student number: 2016-24750

iii

Contents

Abstract i

Contents iv

List of Tables viii

List of Figures xi

1 INTRODUCTION 1

1.1 Contributions of Dissertation . 4

2 PRELIMINARIES 13

2.1 Fully Homomorphic Encryption . 13

2.1.1 TFHE Scheme . 14

2.1.2 BFV and CKKS Schemes 15

2.1.3 RNS-CKKS Scheme . 19

2.2 Key-Switching Operation and Galois Key 24

2.3 Bootstrapping of CKKS Scheme . 27

2.4 Comparison Operation for FHE . 30

2.5 Approximation Theory . 31

2.6 Graph-Theoretic Algorithms . 35

iv

3 HIGH PRECISION BOOTSTRAPPING FOR RNS-CKKS SCHEME 40

3.1 Improved Multi-Interval Remez Algorithm 44

3.1.1 Improved Multi-Interval Remez Algorithm with Criteria for

Choosing Extreme Points . 46

3.1.2 Correctness of Improved Multi-Interval Remez Algorithm . . 48

3.1.3 Efficient Implementation of Improved Multi-Interval Remez

Algorithm . 58

3.1.4 Numerical Analysis with Improved Multi-Interval Remez Al-

gorithm . 66

3.2 Composite Function Approximation for CKKS Bootstrapping 69

3.2.1 Numerical Analysis of Message Precision in Bootstrapping

with Improved Multi-Interval Remez Algorithm in SEAL Li-

brary . 69

3.2.2 Composite Function Approximation of Modular Reduction Func-

tion by Inverse Sine Function 76

3.2.3 Simulation Result with SEAL Library 78

4 PRIVACY-PRESERVING DEEP NEURAL NETWORK 81

4.1 Building Blocks for Privacy-Preserving ResNet Models 86

4.1.1 Binary Tree Based Implementation of Polynomial Evaluation 86

4.1.2 Strided Convolution . 87

4.1.3 Approximation for Softmax 90

4.1.4 Position of Bootstrapping 93

4.2 Implementation Details of ResNet-20 on RNS-CKKS 94

4.2.1 Structure . 94

4.2.2 General Setting for RNS-CKKS Scheme 97

4.2.3 Convolution and Batch Normalization 100

4.2.4 ReLU . 100

4.2.5 Bootstrapping . 103

v

4.2.6 Average Pooling and Fully Connected Layer 105

4.2.7 Softmax . 107

4.3 Multiplexed Convolution . 107

4.3.1 Comparison of Bootstrapping Runtime for Several Data Pack-

ing Methods . 107

4.3.2 Multiplexed Parallel Convolution on Fully Homomorphic En-

cryption . 111

4.4 Details of Multiplexed Convolution 115

4.4.1 Notations and Description of Parameters 115

4.4.2 Mapping of Three-Dimensional Tensor to One-Dimensional

Vector . 115

4.4.3 Batch Normalization on Homomorphic Encryption 117

4.4.4 Multiplexed Packing . 118

4.4.5 Convolution Algorithms for Multiplexed Tensor 118

4.4.6 Multiplexed Parallel Batch Normalization, Downsampling, and

Average Pooling . 124

4.4.7 Convolution/Batch Normalization Integration Algorithm . . . 129

4.5 Catastrophic Divergence from Imaginary Error and Imaginary-Removing

Bootstrapping . 131

4.6 Implementation of Privacy-Preserving ResNet Models 132

4.6.1 Optimization of Level Consumption 132

4.6.2 The Proposed Architecture for ResNet on the RNS-CKKS Scheme133

4.7 Simulation Results . 135

4.7.1 Latency . 136

4.7.2 Amortized Runtime . 138

4.7.3 Accuracy . 139

5 HIERARCHICAL GALOIS KEY GENERATION 140

5.1 Hierarchical Galois Key System . 145

vi

5.1.1 Definition of Hierarchical Galois Key System 145

5.1.2 Galois Key Generation Protocol in Hierarchical Galois Key

System . 146

5.2 Proposed Hierarchical Galois Key Generation for BFV and CKKS

Schemes . 147

5.2.1 Hierarchical Special Modulus 149

5.2.2 Generation of Public Key and Galois Keys in Client 151

5.2.3 GalToGal and PubToGal Operations 153

5.2.4 Galois Key Generation in the Lower Key Level 155

5.2.5 Security Issues . 156

5.3 Efficient Generation Method of Galois Key Set 158

5.3.1 Reduction to Minimum Spanning Arborescence Problem and

Minimum Spanning Tree Problem 159

5.3.2 Edge Weight for p-ary Galois Keys 161

5.3.3 Hoisted Galois Key Generation 162

5.4 Simulation Results with ResNet Models 164

5.5 Correctness Proofs . 177

6 MODIFIED SHELL SORT FOR FHE 186

6.1 Modification of Shell Sort over FHE 190

6.2 Analysis of Modified Shell Sort . 194

6.2.1 Probability Distribution of Required Window Length 194

6.2.2 Derivation of Running Time Complexity for a Specific SFP . 205

6.3 Near-Optimal Window Length by Convex Optimization 212

6.4 Simulation Results . 213

7 CONCLUSION AND FUTURE WORKS 220

Abstract (In Korean) 232

vii

List of Tables

3.1 Comparison of iteration numbers between the improved multi-interval

Remez algorithm and the multi-interval Remez algorithm for δ = 2−40 67

3.2 Message precision of the bootstrapping with the improved multi-interval

Remez algorithm for various degrees of the approximate polynomials 71

3.3 Message precision of the bootstrapping with the improved multi-interval

Remez algorithm for various values of log δdiff 73

3.4 Maximum message precision of the bootstrapping with the improved

multi-interval Remez algorithm for various bootstrapping scaling factors 75

3.5 Maximum message precision of the bootstrapping with improved multi-

interval Remez algorithm for various numbers of slots 75

3.6 Maximum message precision of the bootstrapping with improved multi-

interval Remez algorithm and composite function method for various

δdiff . 78

3.7 Maximum message precision of the bootstrapping with composite func-

tion method for various number of slots 80

4.1 The specification of the ResNet-20 (CIFAR-10) 96

4.2 RNS-CKKS parameter settings . 98

4.3 Boundary of approximation region given key Hamming weight and

failure probability of modular reduction 104

viii

4.4 The number of KSOs and bootstrapping runtime according to various

number of slots for bootstrapping . 109

4.5 The number of bootstrappings for implementation of ResNet-20 ac-

cording to various data packing methods. (a), (b), and (c) imply gap

packing, gap packing with multiple channels, and multiplexed pack-

ing, respectively. Str conv1 and Str conv2 denote the first and the sec-

ond strided convolutions (s = 2) in ResNet-20, respectively. 112

4.6 Parameters that are used in each ConvBN or Downsamp process . . . 116

4.7 Classification runtime for one CIFAR-10/CIFAR-100 image using ResNet

on the RNS-CKKS scheme . 137

4.8 Classification (amortized) runtime for multiple CIFAR-10/CIFAR-100

images using ResNet models on the RNS-CKKS scheme 138

4.9 Classification accuracies for CIFAR-10/CIFAR-100 images using ResNet

models on the RNS-CKKS scheme. An asterisk (*) implies that not all

10,000 test images have been tested 139

5.1 Encryption parameters in the CKKS scheme for ResNet models . . . 171

5.2 Modulus bit-lengths and decomposition numbers for each Galois key

generation scheme in ResNet-20 for CIFAR-10 172

5.3 Modulus bit-lengths and decomposition numbers for each Galois key

generation scheme in ResNet-18 for ImageNet 173

5.4 Number of core operations optimized by hoisted Galois key generation

and Prim’s algorithm . 174

5.5 Simulation results with various Galois key system with ResNet-20 for

CIFAR-10 dataset . 175

5.6 Simulation results with various Galois key system with ResNet-18 for

ImageNet dataset . 176

ix

6.1 The value c = α+ 1+ log log n for array of various lengths when the

Ciura’s gap sequence is used and the SFP is 10−5 216

6.2 TFHE parameters with 128-bit security 217

6.3 Comparison of the running time of several sorting algorithms for array

of length 500 . 219

6.4 Comparison of the running time in seconds of several sorting algo-

rithms for array of various lengths 219

x

List of Figures

3.1 Comparison of minimax approximatio error between the previous ap-

proximation method and the improved multi-interval Remez algorithm. 68

4.1 Stride-2 convolution. 89

4.2 Running time for the rotation operation for various number of cipher-

text modulus with N = 216 (a) Trot-(ℓ + 1) graph (b)
√
Trot-(ℓ + 1)

graph. 95

4.3 Structure of ResNet-20. 97

4.4 Proposed structure of ResNet-20 over RNS-CKKS scheme. 97

4.5 SISO convolution on HE [49]. 110

4.6 Multiplexed packing MultPack when hi = wi = 4 and ki = 2. 110

4.7 Comparison of several data packing methods. 111

4.8 Multiplexed convolution algorithm for multiplexed input tensor for

s = 2, ki = 2, and hi = wi = 4. 113

4.9 Multiplexed parallel convolution algorithm when ki = 2 and co =

cn = 32. 114

4.10 V ec function that maps a given tensor in Rhi×wi×ci to a vector in Rnt . 116

4.11 Multiplexed parallel packing method MultParPack when k2i hiwiti |

nt. 122

4.12 Rearranging process that selects and places k2i ti valid values sequen-

tially in AvgPool algorithm. 128

xi

4.13 Mean of absolute values of imaginary parts after each layer when per-

forming ResNet-110 inference using the normal bootstrapping and the

proposed imaginary-removing bootstrapping. 133

4.14 Level optimization by integrating computations. 134

4.15 Structure of the proposed ResNet-20/32/44/56/110 on the RNS-CKKS

scheme. The input image is packed in ctA in a raster scan fasion and

using RS packing. 136

5.1 Efficient Galois key management in three-level hierarchical Galois key

generation. 143

5.2 Galois key graph for Tℓ = {1, 13, 16, 17, 19} and Uℓ = {±1,±2,±4,±8,±16}.163

6.1 Modified Shell sort using the window technique. 193

6.2 pk(n,m) using Pascal’s triangle. 203

6.3 Running time and SFP of the modified Shell sort for varied array lengths.214

6.4 Running time and SFP of the modified Shell sort for varied α values

and comparison of these values with those obtained from the cases of

Ciura’s optimal gap sequence and near-optimal window length derived

by convex optimization. 216

xii

Chapter 1

INTRODUCTION

Fully homomorphic encryption (FHE) is the encryption scheme enabling any logical

operations [11, 25, 33, 36, 71] or arithmetic operations [19, 21] with encrypted data.

The FHE scheme makes it possible to preserve security in data processing. However,

in the traditional encryption schemes, they are not encrypted to enable the process-

ing of encrypted data, which causes clients to be dissuaded from receiving services

and prevents companies from developing various related systems because of the lack

of clients’ privacy. FHE solves this problem clearly so that clients can receive many

services by ensuring their privacy.

Since Gentry first designed fully homomorphic encryption in 2009, various opti-

mizations have been made for fully homomorphic encryption. The hard computational

problems on which fully homomorphic encryption is based have also varied from Ap-

proximate GCD Problem, LWE, Ring-LWE, etc., and the supported types of messages

range from only one bit to finite ring in large modulus, real numbers, and complex

numbers. In terms of time performance, the fully homomorphic encryption scheme,

which was only theoretically possible but practically difficult to use, has improved

rapidly and has come close to a practical level, leading to practical application and ap-

plication to artificial intelligence systems. Recently, as research on fully homomorphic

encryption is conducted to accelerate fully homomorphic encryption with accelera-

1

tors such as GPU and FPGA, the implementation of fully homomorphic encryption is

improved in terms of engineering sense.

However, optimization is still essential in various ways to use fully homomorphic

encryption for practical use. Since the bootstrapping operation is essential to perform

deep computational circuits with fully homomorphic encryption, optimization of the

bootstrapping operation is also essential. Since the number of consecutive multiplica-

tion operations in most fully homomorphic encryption is limited to a finite number,

unlimited use of the multiplication operations requires the conversion of ciphertexts

that can no longer be multiplied into ciphertexts that can be multiplied. This type of

operation is called bootstrapping. Since the bootstrapping operation is known as the

most time-consuming among homomorphic operations, attempts to reduce bootstrap-

ping time have continued in early studies of bootstrapping. Reducing the running time

of bootstrapping is important, but increasing the precision of bootstrapping operations

also plays an important role in improving bootstrapping performance in that the pre-

cision of bootstrapping is also lower than other homomorphic operations. If a lot of

low-accuracy bootstrapping is used for deep operations, the amplification of the error

may become severe and cause a catastrophic difference from the actual result value.

Recently, fully homomorphic encryption schemes have been actively used in the

field of privacy-preserving machine learning area. The CKKS homomorphic encryp-

tion is known to be suitable for machine learning systems that mainly deal with real

number data. Until now, however, doubting about the practicality of bootstrapping in

CKKS homomorphic encryption scheme, almost all studies only deal with shallow-

depth neural network models or activation functions with low-degree polynomials

to avoid the use of the bootstrapping operations. For this reason, it was not proven

whether a deep standard machine learning model verified by many studies in artifi-

cial intelligence academia could also be used with homomorphic encryption scheme.

Therefore, it remains as an open problem whether validated deep standard machine

learning models such as ResNet or VGGNet can be performed with the fully homo-

2

morphic encryption schemes.

Another important obstacle to fully homomorphic encryption is heavy Galois keys.

The BFV and CKKS schemes support rotation operation which corresponds to a cyclic

shift of message data within ciphertext. Many applications that require important oper-

ations such as bootstrapping, matrix multiplication, and convolution in convolutional

neural networks can be achieved using this rotation. The Galois keys are evaluation

keys for the homomorphic rotation operation, which is the cyclic shift operations for

rows of the encrypted matrix in one ciphertext of the BFV scheme and for encrypted

message vector in that of the CKKS scheme. The homomorphic rotation operation is

inevitable if it is required to operate data with different positions in one ciphertext,

such as the bootstrapping [8, 16, 20, 56, 58], the matrix multiplication [47], and the

convolution in convolutional neural networks [49]. Since different Galois keys are re-

quired for all the different cyclic shift values for the homomorphic rotation operation,

the number and the total size of Galois keys can be significantly large for the complex

computational model. For example, if the standard ResNet-20 network for the CIFAR-

10 dataset is implemeneted with pre-trained parameters with the CKKS scheme with

the polynomial modulus degree N = 216, the server requires 265 Galois keys, which

occupies 105.6GB of memory in the server. If the ResNet-18 network for the Ima-

geNet dataset is designed using the same techniques, 617 Galois keys are required and

it occupies 197.6GB of memory in the server.

Since the server processing encrypted data using fully homomorphic encryption

does not know information on encrypted data, the time complexity of an algorithm

cannot be reduced by changing each actions of the algorithm according to the data.

Therefore, it is usually difficult to optimize the homomorphic encryption algorithm

by the existing algorithm optimization method. A representative example is a sorting

algorithm. For example, Quick sort is known as one of the fastest algorithm among

sorting algorithms. This has the worst-case time complexity of O(n2), but in most

cases, the data is sorted fast as the behavior of the algorithm is appropriately deter-

3

mined by the state of the data. However, in situations where data are encrypted with

fully homomorphic encryption, the state of the data cannot be checked. Thus, each

operation of the algorithm cannot be changed according to the encrypted data, and the

optimization method of the quick sort cannot be applied. Due to this problem, it is

necessary to appropriately modify the algorithm previously applied to the plaintext so

that it can be effectively applied on the fully homomorphic encryption.

1.1 Contributions of Dissertation

High Precision Bootstrapping for RNS-CKKS FHE Scheme I propose two meth-

ods to improve the bootstrapping operation of the RNS-CKKS scheme. Firstly, I devise

a fast algorithm, called an improved multi-interval Remez algorithm, obtaining the op-

timal minimax approximate polynomial of any continuous functions over any union

of the finite number of intervals, which include the modular reduction function and

the scaled sine/cosine function over the union of the approximation regions. Although

the previous works have suggested methods to obtain polynomials that approximate

the scaled sine/cosine function well from the minimax perspective, which are used to

approximate the modular reduction function, these methods cannot obtain the optimal

minimax approximate polynomial.

The original multi-interval Remez algorithm is not theoretically proven to obtain

the minimax approximate polynomial, and it is only practically used for two or three

approximation regions in the finite impulse response filter design, while it is required

to approximate functions over the union of tens of intervals. Furthermore, it takes im-

practically much time if this algorithm is used without further improvement to obtain a

polynomial that can be used for the bootstrapping. To make the multi-interval Remez

algorithm practical, the multi-interval Remez algorithm is modified as the improved

multi-interval Remez algorithm. Then the correctness of the improved multi-interval

Remez algorithm is proved, including the original multi-interval Remez algorithm, for

4

the union of any finite number of intervals. Since it can obtain the optimal minimax

approximate polynomial in seconds, one can even adaptively obtain the polynomial

when it is required to abruptly change some parameters on processing the ciphertexts

so that it is required to update the approximate polynomial. All polynomial approxi-

mation methods proposed in previous works for bootstrapping in the CKKS scheme

can be replaced with the improved multi-interval Remez algorithm, which ensures the

best quality of the approximation. It ensures to use the least degree of the approximate

polynomial for a given amount of error.

Next, the composite function method is proposed to enlarge the approximation

region in the homomorphic modular reduction process using the inverse sine func-

tion. The crucial point in the bootstrapping precision is that the difference between the

modular reduction function and the sine/cosine function gives a significant precision

loss. All previous works have used methods that approximate the modular reduction

function as a part of the sine/cosine functions. This approximation has an inherent ap-

proximation error so that the limitation of the precision occurs. Besides, to ensure that

these two functions are significantly close to each other, the approximation region has

to be reduced significantly. They set the half-width of one interval in the approximation

region as 2−10, which is equal to the ratio of default scaling factor to the scaling factor

used in the bootstrapping. The message has to be scaled by multiplying 2−10 to make

the message into the approximation region, and it is scaled by multiplying 210 at the

end of the bootstrapping. Thus, the precision error in the computation for bootstrap-

ping is amplified by 210, and the 10-bit precision loss occurs. If it is tried to reduce

this precision loss by enlarging the approximation region, the approximation error by

the sine/cosine function becomes large, and thus the overall precision becomes lower

than before.

Therefore, It is proposed to compose the optimal approximate polynomial of the

inverse sine function to the sine/cosine function, since composing the inverse sine

function to the sine/cosine function extends the approximation region of the modular

5

reduction function, which makes it possible to improve the precision of the bootstrap-

ping. Note that the inverse sine function used in this situation has only one interval

in the approximation region, and thus the small approximate error can be reached

with relatively low degree polynomials. the minimax approximate polynomials for the

scaled cosine function and the inverse sine function are obtained with sufficiently small

minimax error by the improved multi-interval Remez algorithm. these polynomials are

applied in the homomorphic modular reduction process by homomorphically evaluat-

ing the approximate polynomial for the scaled cosine function, several double-angle

formulas, and the approximate polynomial for the inverse sine function. This enables

me to minimize the inevitable precision loss by approximating the modular reduction

function to the sine/cosine function.

Since the previous works do not focus on the maximum precision of the boot-

strapping of the RNS-CKKS scheme, the maximum precision of the bootstrapping

with the previous techniques is checked. The detailed relation with the precision of

the bootstrapping and various parameters is analyzed with SEAL library. With the

proposed methods, the approximation error in the bootstrapping of the RNS-CKKS

scheme is reduced by 1/1176∼1/42 (5.4∼10.2-bit precision improvement) for each pa-

rameter setting. While the bootstrapping without the composite function method has

27.2∼30.3-bit precision at maximum, the bootstrapping with the proposed compos-

ite function method has 32.6∼40.5-bit precision, which is better precision than 32-bit

fixed-point precision.

Privacy-Preserving Deep Neural Network For the first time, the ResNet-20 model

for the CIFAR-10 dataset [53] is implemented using the residue number system CKKS

(RNS-CKKS) [21] FHE scheme, which is a variant of the CKKS scheme using the

SEAL library 3.6.1 version [68], one of the most reliable libraries implementing the

RNS-CKKS scheme. In addition, the bootstrapping of the RNS-CKKS scheme is im-

plemented in the SEAL library according to [8,16,20,44,56] to support a large number

6

of homomorphic operations for a deep neural network, as the SEAL library does not

support the bootstrapping operation. ResNets are historic convolutional neural network

(CNN) models that enable a very deep neural network with high accuracy for complex

datasets such as CIFAR-10 and ImageNet. Many high-performance methods for im-

age classification are based on ResNets because these models can achieve sufficiently

high classification accuracy by stacking more layers. the ReLU function is firstly ap-

plied based on the composition of minimax approximate polynomials [57] to the en-

crypted data. Using the results, the possibility of applying FHE with bootstrapping to

the standard deep machine learning model is shown by implementing ResNet-20 over

the RNS-CKKS scheme. The implemented bootstrapping can support a sufficiently

high precision to successfully use bootstrapping in ResNet-20 with the RNS-CKKS

scheme for the CIFAR-10 dataset.

Even though the implementation by simply combining the existing techniques is an

important step toward very-deep standard convolutional neural networks (VDSCNN)s,

deeper CNNs than ResNet-20 have not yet been implemented. In addition, the imple-

mentation has high latency of 10,602s even with 64 CPU threads. One major reason

for this high latency comes from its inefficient data packing. The practical PPML for

VDSCNNs is implemented for the first time by resolving the efficiency and feasibility

problems. My contributions are summarized as follows:

• the bootstrapping runtime is effectively reduced by using a multiplexed packing

method (i.e., packing data of multiple channels into one ciphertext in a compact

manner);

• A multiplexed convolution algorithm is proposed to perform convolutions for

multiplexed input tensors, which also supports strided convolutions. A faster

multiplexed parallel convolution algorithm is also proposed, which reduces the

number of required rotations in the multiplexed convolution algorithm by 62%

by utilizing full slots of ciphertext;

7

• It is found that a catastrophic divergence phenomenon occurs when implement-

ing VDSCNNs using approximate ReLU (APR). The imaginary-removing boot-

strapping is proposed to prevent this phenomenon so as to maintain the accuracy

of PPML for VDSCNNs;

• Level consumptions are optimized with lighter and tighter parameters to achieve

faster inference and the standard 128-bit security level;

• The ResNet-20 on the RNS-CKKS scheme is implemented using the SEAL li-

brary [68] with a latency of 3,972s with only one CPU thread, which is 4.67×

lower than that without multiplexed packing technique using 64 threads. Also,

amortized runtime (runtime per image) of the proposed implementation is 134×

smaller due to a significant reduction of the number of operations;

• The ResNet-32/44/56/110 on the RNS-CKKS scheme are implemented with

high accuracies close to those of backbone CNNs.

Hierarchical Galois Key Generation In the BFV and CKKS schemes, it is observed

that the Galois keys can be generated from other Galois keys using key-switching

operation. The crucial observation is that the Galois key can be regareded as a set of

ciphertexts. If the key-switching operation is performed to each ciphertext in a Galois

key, new Galois key for other cyclic shift can be derived. Since the key-switching

operation requires a key-switching key with larger modulus (i.e., in the higher key

level) than the ciphertext, the key-switching key for this Galois key generation should

have higher level than the newly generated Galois key. This high-level key-switching

key is also in the form of the Galois key, and thus it can also be generated by another

higher-level key-switching key. Thus, a chain of Galois keys for various levels can be

defined, where each Galois key may be used as a key-switching key for generating a

lower-level Galois key.

From the above observations, a hierarchical Galois key generation system is pro-

8

posed, which makes it possible to generate a lower-level Galois key using higher-level

Galois key in the server. In this client-server model, clients can generate only a small

set of the highest-level Galois keys such as Galois keys for only power-of-2 cyclic

shifts. Then they send the small set of Galois keys to the key management server

(KMS) or the server. The server can generate a large set of lower-level Galois keys

using the received set of Galois keys without any help from the clients and finally, a

set of level-zero Galois keys is generated, which corresponds to the set of conventional

Galois keys for the cyclic shifts of message data within a ciphertext in the server. In

the server, inert Galois keys can be temporarily removed and re-generated only when

needed to efficiently manage the storage of Galois keys. This proposed method can

significantly reduce the computational burdens of the client, the communication cost

between the client and server, and storage cost of all Galois keys in the server. To

further optimize this Galois key generation, several optimization techniques are pro-

posed, such as the hoisted Galois key generation and the reduction to graph-theoretic

algorithms.

I present a general protocol capable of efficient Galois key management reflecting

the activity of the clients using multi-level Galois key generation scheme. When a

client frequently uses the service, it is important to generate the desired Galois keys

quickly so that the service should not be delayed due to the Galois key generation.

On the other hand, in the case of clients who do not use the service frequently, it may

be better to store only the minimal Galois key set and reserve memory in the server

for other services to active users. However, it is required to prepare the inert client to

become an active client at any time. In Figure 5.1 of three-level Galois key generation

scheme, the client generates and transmits the minimum number of the level-2 Galois

keys, and the server generates and retains an appropriate number of the level-1 Galois

keys from the level-2 Galois keys reflecting how often the client uses services, where

server and KMS can be collocated. With these level-1 Galois keys, the server can

generate the level-0 Galois keys more efficiently. The role of the level-1 Galois keys is

9

to give a trade-off between the efficiency of generating the level-0 Galois keys when

requested and the memory used for storing Galois keys, and these level-1 Galois keys

can be updated only by the server without any help from the client. The proposed

protocol can enable this fine key management system to adjust in detail the trade-off

between the memory usage of the Galois keys and the computational complexity of

Galois key generation in the clients and the server.

I conduct the simulation with the proposed Galois key generation system for ResNet

models with an appropriate computing environment for the client-server model. If a

three-level hierarchical Galois key system is used, the Galois key size generated and

transmitted by the client can be reduced from 105.6GB for 265 Galois keys to 3.4GB

for 8 Galois keys for the ResNet-20 for CIFAR-10, and reduced from 197.6GB for

617 Galois keys to 3.9GB for 8 Galois keys for the ResNet-18 for ImageNet. While

the generation of Galois keys for the ResNet-20 and the ResNet-18 by the client takes

368.5s and 786.0s in the conventional system, it is reduced to 12.1s (30×) and 15.7s

(50×) in the three-level hierarchical Galois key system, respectively. The server with

GPU accelerator only needs 25.3s and 22.0s to generate all required Galois keys in the

online phase.

Modified Shell Sort for FHE The Shell sort [69, 70], which is one of the oldest

sorting algorithms, is the generalized version of the insertion sort. The Shell sort al-

gorithm is an in-place algorithm, which is fast and easy to implement, and thus, many

systems use it as a sorting algorithm. It is known that Shell sort uses insertion sort as

a subroutine algorithm, and insertion sort can be performed on the FHE data [14, 15].

However, the Shell sort should be modified to be used in the FHE setting. If any error

in sorting is not allowed, then insertion sort is expected to be quite conservative, i.e.,

the number of operations for sorting must be set for the worst case, because the inser-

tion sort algorithm in the FHE setting is an oblivious algorithm. Thus, if the insertion

sort is used in the Shell sort, the running time complexity of Shell sort in the FHE

10

setting must be O(n2), which makes the use of Shell sort ineffective. Therefore, it is

important to devise a sorting algorithm that is better than the Shell sort on the FHE

data in terms of running time complexity.

I devise a method to modify the Shell sort in the FHE setting using the window

technique, which is proved to be effective in the theoretical aspect and the practical

aspect. It is referred to as a “modified Shell sort”. The window technique in [15] is

applied to each subroutine insertion sort in the modified Shell sort for FHE setting.

Note that the role of the window technique in the modified algorithm is different from

the original use of the window technique. The algorithm does not reduce the bootstrap-

ping itself compared to the number of the homomorphic gates, but the number of the

comparison operations is reduced with the window technique. For this reason, the ho-

momorphic comparison operation in the proposed sorting algorithm does not generate

a comparison error.

For theoretical view, the running time complexity of the modified Shell sort is

O(n3/2
√
α+ log log n) with sorting failure probability (SFP) 2−α when the gap se-

quence is powers-of-two, which is close to the average-case time complexity O(n3/2)

of the original Shell sort. The value of α is an additional parameter that controls the

trade-off between the running time and the SFP. This trade-off is quite effective be-

cause the SFP is decreased exponentially with α but the running time is proportional

only to
√
α. To this end, the exact distribution of window lengths of subarrays in each

gap for successful sorting in the Shell sort is used. If the length of the subarray for the

insertion sort in some gap is s, it is discovered that the average of the required window

length for successful sorting is proportional to
√
s, and the right tail of its probability

distribution is very thin. In the sorting process, the window length is provided as a

constant multiple of
√
s, which ensures a negligible SFP. If the window length is close

to β
√
s, the SFP decays as e−β2

, which signifies a very fast-decaying function. There-

fore, with a fixed negligible SFP, a small window length can be set so that the running

time is asymptotically faster than that of the naive version of the Shell sort on the FHE

11

data.

For the practical view, the running time of the modified Shell sort is effectively

reduced even in the small arrays, compared to the basic in-place sorting algorithms on

the FHE data, bubble sort, and insertion sort.

12

Chapter 2

PRELIMINARIES

2.1 Fully Homomorphic Encryption

The fully homomorphic encryption is a public-key encryption scheme, which supports

an arbitrary number of additions and multiplications of plaintext without decryption

so that anyone without the decryption key can operate the circuit with any ciphertext

without leaking the information of its plaintext.

Gentry suggested the bootstrapping technique to transform a somewhat homomor-

phic encryption scheme, which allows only a finite number of operations on the en-

crypted data, to a fully homomorphic encryption scheme [35]. The bootstrapping op-

eration has enabled several researchers to construct the FHE schemes [20, 35], which

involves implementing the decryption circuit on encrypted data using the evaluation

algorithm, that is, the addition and multiplication algorithms in the FHE setting. All

of the FHE schemes suggested thus far ensure security by adding the plaintext to an

LWE sample or a ring-LWE sample, which is known as pseudorandom samples. For

security reasons, the LWE sample or the ring-LWE sample includes some errors. As

the addition and multiplication operations are repeated, the total number of errors in-

creases, and if the total number of errors exceeds a certain limit, a decryption failure

occurs. Thus, the errors need to be removed after a certain number of operations on

13

the encrypted data, so that the ciphertexts can be further evaluated. The purpose of the

bootstrapping operation is to reset the errors in the ciphertext when the errors are too

large to be decrypted.

As bootstrapping utilizes a considerable amount of computation during the pro-

cessing of the FHE, the number of bootstrapping operations significantly affects the

total number of operations of the FHE. In fact, the number of bootstrapping operations

depends on the multiplicative depth of the circuit. The lower the depth of a circuit,

the fewer the number of bootstrapping operations. Thus, it is crucial to consider the

number of the bootstrapping operations for each element, when bootstrapping is imple-

mented in the FHE schemes. If the total number of operations in an algorithm is fixed,

it is better to evenly distribute the operations on the inputs. Furthermore, to stably ad-

dress errors, deterministic algorithms are better than randomized algorithms. This is

because the error size of each element can be predicted in deterministic algorithms

ensuring that these errors are handled easily and error control is optimized adequately.

2.1.1 TFHE Scheme

The TFHE homomorphic encryption scheme [25] is the most practical bit-wise homo-

morphic encryption scheme now. There are two types of the TFHE scheme: the leveled

homomorphic encryption and the fully homomorphic encryption. Since the fully ho-

momorphic encryption version of the TFHE scheme is used, this version is only dealt

with in this subsection. Its basic elements are the bootstrapped homomorphic gates,

which perform each gate followed by the bootstrapping. Although the noise in the ci-

phertext grows when the homomorphic gate is performed without the bootstrapping,

the bootstrapping refreshes the noise independent of the input noise. Hence, any large-

depth boolean circuits can be performed without noise growth of the ciphertext using

the TFHE scheme.

The secret key s is a vector of length n in {0, 1}n uniformly sampled, and the ci-

phertext is formed by (a, b) ∈ Tn × T, where b = a · s + e + µ and µ ∈ {−1
8 ,

1
8} is

14

encoded by µ = 1
4(b −

1
2) with the message bit b ∈ {0, 1}. The bootstrapping proce-

dure makes the encoded message 1
8 when the input encoded message is in (0, 12) and

makes the encoded message −1
8 when the input encoded message is in (12 , 1). Before

the bootstrapping for each bootstrapped homomorphic gate, each matched linear op-

eration is processed so that the encoded message is in (0, 12) when the output bit is 1

and is in (12 , 1) when the output bit is 0. The linear operations can easily be performed

homomorphically since the LWE ciphertext has the linear property. For example, the

homomorphic NAND gate performs 1
8 −a− b homomorphically where a and b are the

encoded message of the two input ciphertexts before the bootstrapping. All boolean

gates can be designed by this method, and thus any boolean circuits can be composed

with these bootstrapped homomorphic gates. Each linear operation for each homomor-

phic gate and the detailed bootstrapping procedure can be referred to [25].

2.1.2 BFV and CKKS Schemes

Fully homomorphic encryption, abbreviated as homomorphic encryption, is an en-

cryption system designed to enable arbitrary arithmetic operations on encrypted data.

Homomorphic encryption was initially defined as a bit-wise encryption scheme capa-

ble of performing all boolean circuits while encrypted. The definition was mitigated to

include word-wise encryption schemes capable of arbitrary arithmetic circuits for en-

crypted integer or complex number data. The homomorphic encryptions covered in this

dissertation are BFV and CKKS schemes. These homomorphic encryption schemes

support arithmetic operations with the single-instruction multiple-data (SIMD) man-

ner, allowing multiple independent data to be encrypted and operated at once in a

single ciphertext with a single homomorphic operation. In the case of BFV, the data

storing structure is a matrix in which the number of rows is two, and in the case of

CKKS, it is a one-dimensional vector. In addition, in the case of BFV, integer data is

encrypted, and in the case of CKKS, complex data is encrypted. Although each scheme

has several variants, the schemes will be addressed with the following encoding and

15

encryption methods.

• BFV scheme: The packing structure is a 2 × N/2-matrix (vij) ∈ Z2×N/2
t . Let

ω be a 2N -th root of unity in Zt. Then, m(X) ∈ Rt is obtained such that

m(ωαij) = vij for αij = (−1)i · 5j mod 2N and encrypt as u · (b, a) + (Q/t ·

m+ e0, e1), where u, e0, e1 ← χ.

• CKKS scheme: The packing structure is a vector of length N/2, (vi) ∈ RN/2.

Let ζ be a 2N -th root of unity in C. Then, m(X) ∈ R[X]/(XN +1) is obtained

such that m(ζαi) = vi for αi = 5j mod 2N and encrypt it as u · (b, a) + (⌊∆ ·

m⌉+ e0, e1), where u, e0, e1 ← χ.

I assume that the residue number system variants of BFV and CKKS schemes [3, 21]

are used. In these variants, the ciphertext modulus is chosen as the product of large

primes, and the ciphertext is represented as a vector of remainders for the primes rather

than one large remainder for the ciphertext modulus. By the Chinese remainder theo-

rem (CRT), each vector of remainders for the primes has a one-to-one correspondence

to the large remainder of the large modulus. The element-wise addition and multi-

plication between two vectors of remainders also correspond to those between two

corresponding remainders of the product of the primes. The non-trivial operations in

these RNS variants are the ModUp and ModDown operations. The ModUp operation

raises the modulus with remaining the remainder, and the ModDown operation divides

the modulus and the remainder by the product of some prime moduli and round the

output. These operations include many heavy NTT/INTT operations and CRT merge

processes, and thus these are one of the most time-consuming low-level operations in

the BFV and CKKS. Since the decomposition process in the key-switching operation

requires several ModUp processes, reducing the decomposition process is important in

minimizing homomorphic operations. The specific ModUp and ModDwon operations

are described in Algorithms 1 and 2, where it is assumed that each ring element is in

the NTT form.

16

Algorithm 1 ModUp

Input: Two disjoint sets of primes C = {q0, · · · , qσ−1}, B = {p0, · · · , pτ−1}, where

Q =
∏

i qi and P =
∏

j pj , and an RNS-form ring element (a0, · · · , aσ−1) ∈∏σ−1
i=0 Rqi for a ∈ RQ, where ai = a mod qi.

Output: An RNS-form ring element (ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×∏τ−1
j=0 Rpi for a′ ∈ RPQ, where āi = a′ mod qi, ãj = a′ mod pj , and

a′ = a+Q · e for small e.

INTT operation to (a0, · · · , aσ−1).

for i← 0 to σ − 1 do
āi ← ai

bi ← ai · [q̂−1
i]qi ∈ Rqi

for j ← 0 to τ − 1 do
ãj ← 0

for i← 0 to σ − 1 do
ãj ← ãj + bi · [q̂i]pj ∈ Rpj

NTT operation to (ā0, · · · , āσ−1, ã0, · · · , ãτ−1).

return (ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi

17

Algorithm 2 ModDown

Input: Two disjoint sets of primes C = {q0, · · · , qσ−1}, B = {p0, · · · , pτ−1},

where Q =
∏

i qi and P =
∏

j pj , and an RNS-form ring element

(ā0, · · · , āσ−1, ã0, · · · , ãτ−1) ∈
∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi for a ∈ RPQ, where

āi = a mod qi, ãj = a mod pj .

Output: An RNS-form ring element (a′0, · · · , a′σ−1) ∈
∏σ−1

i=0 Rqi for a′ ∈ RQ, where

a′i = a′ mod qi and a′ = ⌊P−1 · a⌉+ e for small e.

for i← 0 to σ − 1 do
b̄i ← āi + [⌊P/2⌋]qi ∈ Rqi

for j ← 0 to τ − 1 do
b̃j ← ãj + [⌊P/2⌋]pj ∈ Rpj

(b̄′0, · · · , b̄′σ−1, b̃
′
0, · · · , b̃′τ−1) ← ModUp for (b̃0, · · · , b̃τ−1) from

∏τ−1
j=0 Rpi to∏σ−1

i=0 Rqi ×
∏τ−1

j=0 Rpi

for i← 0 to σ − 1 do
a′i ← [P−1]qi · (b̄i − b̄′i) ∈ Rqi

return (a′0, · · · , a′σ−1) ∈
∏σ−1

i=0 Rqi

18

This pair of ring elements (b, a) is the public key of each scheme. Although there

are evaluation keys for homomorphic operations that are opened to the public domain,

these pairs (b, a) for the encryption process are represented as the public key in this

dissertation. For the CKKS scheme, the level of a ciphertext is the maximum num-

ber of multiplications that can be performed on the ciphertext without bootstrapping.

In the RNS-CKKS scheme, if the level of a ciphertext is ℓ, there is ℓ + 1 number of

RNS moduli for the ciphertext. Each size of RNS moduli is determined by the required

precision of the multiplication in each level. Since the other homomorphic operations

rather than the rotation operation of the BFV and CKKS schemes are not relevant to

understanding this dissertation, the rotation operation for m(X) is only dealt with,

corresponding to cyclic shift of the message vector. The detailed explanations of other

operations can be found in [12, 19, 21, 33]. The rotation operation in the BFV scheme

is an operation mapping (vi,j) 7→ (vi,(j+r)) while encrypted, where the addition oper-

ation of the subscript is in modulo N/2. The rotation operation of the CKKS scheme

is an operation mapping (vi) 7→ (vi+r) while encrypted. In terms of ring elements,

these operations can be unified as operations mapping m(X) 7→ m(X5r).

For these operations, an operation of (b(X), a(X)) 7→ (b(X5r), a(X5r)) opera-

tion is first performed. This processed ciphertext satisfies b(X5r)+a(X5r) ·s(X5r) ≈

m(X5r), which means that it is a ciphertext with a plaintext of m(X5r) with the secret

key s(X5r). this ciphertext should be converted to a ciphertext with the same plaintext

and the original secret key. This is done by taking the key-switching operation from

s(X5r) to s(X).

2.1.3 RNS-CKKS Scheme

It is known that the CKKS scheme supports several operations for encrypted data of

real numbers or complex numbers. Since it deals with usually real numbers, the noise

that ensures the security of the CKKS scheme can be embraced in the outside of the

significant figures of the data, which is the crucial concept of the CKKS scheme.

19

The RNS-CKKS scheme [21] uses the RNS form to represent the ciphertexts and

to perform the homomorphic operations efficiently. While the power-of-two modulus

is used in the CKKS scheme, the product of large primes is used for ciphertext modulus

in the RNS-CKKS scheme so that the RNS system can be applied. These large primes

are chosen to be similar to the scaling factor, which is some power-of-two integer.

There is a crucial difference in the rescaling operation between the CKKS scheme

and the RNS-CKKS scheme. While the CKKS scheme can rescale the ciphertext by

the exact scaling factor, the RNS-CKKS scheme has to rescale the ciphertext by one

of the RNS modulus, which is not equal to the scaling factor. Thus, the RNS-CKKS

scheme allows approximation in the rescaling procedure. Detailed procedures in the

RNS-CKKS scheme are described as follows.

Several independent messages are encoded into one polynomial by the canonical

embedding before encryption. The canonical embedding σ embeds a ∈ Q[X]/ ⟨ΦM (X)⟩

into an element of CN whose elements are values of a evaluated at the distinct roots

of ΦM (X). It is a well-known fact that the roots of ΦM (X) are exactly the power of

odd integers of the M -th root of unity, and Z∗
M = ⟨−1, 5⟩. Let H = {(zj)j∈Z∗

M
: zj =

z−j}, and π be a natural projection from H to CN/2. Then, it is easily known that the

range of σ is exactly H. When N/2 complex number messages constitute an element

in CN/2, each coordinate is called a slot. The encoding and decoding procedures are

given as follows.

Ecd(z; ∆): For a vector z ∈ CN/2, return

m(X) = σ−1
(⌊

∆ · π−1(z)
⌉
σ(R)

)
∈ R,

where ∆ is the scaling factor and
⌊
π−1(z)

⌉
σ(R)

denotes the discretization (round-

ing) of π−1(z) into an element of σ(R).

Dcd(m; ∆): For a polynomial m(X) ∈ R, return a vector z ∈ CN/2 whose entry of

index j is zj =
⌊
∆−1 ·m(ζ5

j

M)
⌉

for j ∈ {0, 1, · · · , N/2− 1}, where ζM is the

M -th root of unity.

20

Before describing the RNS-CKKS scheme, several basic operations for RNS sys-

tem is defined: Conv, ModUp, and ModDown. LetB = {p0, p1, · · · , pk−1}, C = {q0, q1, · · · , qℓ−1},

and D = {p0, p1, · · · , pk−1, q0, q1, · · · , qℓ−1}, where pi’s and qj’s are all distinct

primes.

ConvC→B: It converts the RNS bases from C to B without the merge process of Chi-

nese remainder theorem, which is defined as

ConvC→B([a]C) =

ℓ−1∑
j=0

[a(j) · q̂−1
j]qj · q̂j mod pi

0≤i<k

,

where [a]C = (a(0), · · · , a(ℓ−1)) ∈ Zq0 × · · · × Zqℓ−1
and q̂j =

∏
j′ ̸=j qj′ ∈ Z.

ModUpC→D: It adds other moduli in B to the current RNS bases to expand the modulus

space without changing the value as

ModUpC→D(·) :
ℓ−1∏
j=0

Rqj →
k−1∏
i=0

Rpi ×
ℓ−1∏
j=0

Rqj

: [a]C → (ConvC→B([a]C), [a]C).

ModDownD→C: It removes the moduli in B from the current RNS bases with dividing

the value by P =
∏k−1

i=0 pi as

ModDownD→C(·) :
k−1∏
i=0

Rpi ×
ℓ−1∏
j=0

Rqj →
ℓ−1∏
j=0

Rqj

: ([a]B, [b]C)→ ([b]C − ConvB→C([a]B)) · [P−1]C .

Then, each procedure of the RNS-CKKS scheme is given as follows.

Setup(q, L; 1λ): Given a scaling factor ∆, the number of levels L, and a security

parameter λ, several parameters are chosen as follows.

• A power-of-two degree N of the polynomial modulus of the ring is chosen

so that the number of level L can be supported with the security parameter

λ.

21

• A secret key distribution χkey, an encryption key distribution χenc, and an

error distribution χerr over R are chosen considering the security parameter

λ.

• A basis with prime numbersB = {p0, p1, · · · , pk−1} and C = {q0, q1, · · · , qL}

is chosen so that pi ≡ 1 mod 2N , qj ≡ 1 mod 2N for 0 ≤ i ≤

k − 1, 0 ≤ j ≤ L, and |qi −∆| is as small as possible. All prime numbers

are distinct and D = B ∪ C. Let Cℓ = {q0, q1, · · · , qℓ} and Dℓ = B ∪ Cℓ
for 0 ≤ ℓ ≤ L.

Let P =
∏k−1

i=0 pi, Q =
∏L

j=0 qj , p̂i =
∏

0≤i′≤k−1,i′ ̸=i pi′ for 0 ≤ i ≤ k − 1,

and q̂ℓ,j =
∏

0≤j′≤ℓ,j′ ̸=j qj′ for 0 ≤ j ≤ ℓ ≤ L. Then, the following numbers

are computed.

• [p̂i]qj and [p̂−1
i]pi for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ L

• [P−1]qj for 0 ≤ j ≤ L

• [q̂ℓ,j]pi and [q̂−1
ℓ,j]qj for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ ℓ ≤ L

KSGen(s1, s2): This procedure generates the switching key for switching the secret

key s1 to s2 without changing the message in a ciphertext. Given s1, s2 ∈ R,

sample (a′(0), · · · , a′(k+L)) ← U
(∏k−1

i=0 Rpi ×
∏L

j=0Rqj

)
and an error e′ ←

χerr, and generate the switching key swk as

(
swk(0) = (b′(0), a′(0)), · · · , swk(k+L) = (b′(k+L), a′(k+L))

)
∈

k−1∏
i=0

R2
pi×

L∏
j=0

R2
qj ,

where b′(i) ← −a′(i) · s2 + e′ mod pi for 0 ≤ i ≤ k − 1 and b′(k+j) ←

−a′(k+j) · s2 + [P]qj · s1 + e′ mod qj for 0 ≤ j ≤ L.

KeyGen: This procedure generates the secret key, the evaluation key, and the pub-

lic key. Sample s ← χkey and set sk ← (1, s) as the secret key. The evalua-

tion key is set by evk ← KSGen(s2, s). Also, sample (a(0), a(1), · · · , a(L)) ←

22

U
(∏L

j=0Rqj

)
and e← χerr and the public key is generated as

pk←
(
pk(j) = (bj , a(j)) ∈ R2

qj

)
0≤j≤L

,

where b(j) ← −a(j) · s+ e mod qj for 0 ≤ j ≤ L.

Encpk(m): For a message slot z ∈ CN/2, generate the message polynomial by m =

Ecd(z; ∆). Then, sample v ← χenc and e0, e1 ← χerr and generate the cipher-

text ct = (ct(j))0≤j≤L ∈
∏L

j=0R
2
qj , where ct(j) ← v · pk(j) + (m + e0, e1)

mod qj for 0 ≤ j ≤ L.

Decsk(ct): For a ciphertext ct = (ct(j))0≤j≤ℓ ∈
∏ℓ

j=0R
2
qj , compute m̃ = ⟨ct(0), sk⟩

mod q0 and output z = Dcd(m̃; ∆).

Add(ct1, ct2): For two ciphertexts ctr =
(
ct

(j)
r

)
0≤j≤ℓ

for r = 1, 2, output the cipher-

text ctadd =
(
ct

(j)
add

)
0≤j≤ℓ

, where ct(j)add ← ct
(j)
1 + ct

(j)
2 mod qj for 0 ≤ j ≤ ℓ.

Multevk(ct1, ct2): For two ciphertexts ctr =
(
ct

(j)
r = (c

(j)
r0 , c

(j)
r1)
)
0≤j≤ℓ

, compute the

followings and output the ciphertext ctmult ∈
∏ℓ

j=0R
2
qj .

• d
(j)
0 = c

(j)
00 c

(j)
10 mod qj , d

(j)
1 = c

(j)
00 c

(j)
11 + c

(j)
01 c

(j)
10 mod qj , and d

(j)
2 =

c
(j)
01 c

(j)
11 mod qj for 0 ≤ j ≤ ℓ.

• ModUpCℓ→Dℓ
(d

(0)
2 , d

(1)
2 , · · · , d(ℓ)2) = (d̃

(0)
2 , d̃

(1)
2 , · · · , d̃(k−1)

2 , d
(0)
2 , d

(1)
2 , · · · , d(ℓ)2).

• c̃t = (c̃t
(k+ℓ)

= (c̃
(j)
0 , c̃

(j)
1))0≤j≤k+ℓ, where ˜ct(i) = d̃

(i)
2 · evk

(i) mod pi

and ˜ct(k+j) = d
(j)
2 · evk

(k+j) mod qj for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ ℓ.

•
(
ĉ
(0)
r , ĉ

(1)
r , · · · , ĉ(ℓ)r

)
= ModDownDℓ→Cℓ

(
c̃
(0)
r , c̃

(1)
r , · · · , c̃(k+ℓ)

r

)
for r =

0, 1.

• ctmult = (ct
(j)
mult)0≤j≤ℓ, where ct(j)mult =

(
ĉ
(j)
0 + d

(j)
0 , ĉ

(j)
1 + d

(j)
1

)
mod qj

for 0 ≤ j ≤ ℓ.

RS(ct): For a ciphertext ct =
(
ct(j) = (c

(j)
0 , c1(j))

)
0≤j≤ℓ

, output the ciphertext ct′ =(
ct′(j) = (c

′(j)
0 , c

′(j)
1)

)
0≤j≤ℓ−1

, where c
′(j)
r = q−1

ℓ ·
(
c
(j)
r − c

(ℓ)
r

)
mod qj for

r = 0, 1 and 0 ≤ j ≤ ℓ− 1.

23

There are additional homomorphic operations, rotation, and complex conjugation,

which are used for homomorphic linear transformation in the bootstrapping of the

RNS-CKKS scheme. Since these operations are not used in this dissertation, these

operations are omitted in this chapter.

2.2 Key-Switching Operation and Galois Key

I now explain the key-switching operation [44] in BFV and CKKS schemes. This op-

eration converts a ciphertext (b, a) that can be decrypted by a secret key s to another

ciphertext (b′, a′) that can be decrypted by another secret key s′ without changing

the messages. It requires an evaluation key called the key-switching key, which is

constructed as follows. Suppose that it is required to perform the key-switching op-

eration switching the secret key from s to s′. The RNS moduli for key-switching are

Qi for i = 0, · · · , dnum − 1 and the special modulus is P , where dnum is defined

to be the number of the RNS moduli decomposed for the key-switching operation. In

this case, the RNS bases for these RNS moduli are Q̂i · [Q̂−1
i]Qi , where Q̂i means∏

j ̸=iQj . The special modulus P should be set to be larger than all Qi’s because

of the noise reduction in the key-switching operation. The key-switching key is con-

structed as dnum ciphertexts, each of which is (bi, ai) ∈ R2
PQ, where ai ← RPQ and

bi = −ai · s′ + e + P · Q̂i · [Q̂−1
i]Qi · s. In the key-switching operation, a is first de-

composed into the RNS elements of a with the ModUp operation, which is described

in Algorithm 3. Each RNS element is multiplied by the ciphertext having the corre-

sponding RNS basis in the key-switching key and added with each other. Then, the

ciphertext and the modulus are divided by the special modulus with the ModDown op-

eration. The whole algorithm for key-switching operation is described in Algorithm 4.

This process of temporarily raising and reducing the modulus prevents the noise from

amplifying, and the special modulus should be larger than all of the dnum RNS moduli

used in the key-switching operation.

24

Algorithm 3 Decompose

Input: A ring element a ∈ RQ in the RNS form, where Q =
∏δ−1

i=0 Qi and Qi’s are

pairwisely coprime, and the additional modulus P coprime to Q.

Output: A vector of ring elements (a0, · · · , aδ−1) ∈ Rδ
PQ, where ai = [a]Qi +Qi · ẽi

for small ẽi’s and ai’s are in the RNS form.

for i← 0 to δ − 1 do
ai ← ModUp for [a]Qi ∈ RQi from RQi to RPQ.

return (a0, · · · , aδ−1) ∈ Rδ
PQ

A trade-off for various performances occurs depending on the value of dnum. As

the value of dnum increases, the computation amount in the key-switching operation

increases due to the increase in the number of NTT/INTT operations and the amount of

inner-product computation. Also, the size of the key-switching keys increases because

the number of ciphertexts in the key-switching key is dnum. On the other hand, if the

value of dnum is large, each RNS modulus used in the key-switching operation is small,

making the special modulus small. Since the upper bound of the size of the total mod-

ulus is fixed with the specified security level, the available modulus for homomorphic

computations, except the special modulus, can be large. This can accommodate a more

deep homomorphic circuit without the bootstrapping operation or reduce the number

of the bootstrapping operations when a deep homomorphic circuit is performed with

the bootstrapping operations. The value of dnum is selected in consideration of these

trade-offs.

If it is required to perform the rotation operation for cyclic shift r, the key-switching

key for this operation can be constructed as above for s′ = s(X5r). This key-switching

key is called a Galois key for cyclic shift r of the corresponding message vector be-

cause this key is used for performing Galois automorphism m(X) 7→ m(X5k) to

encrypted message polynomial, which is equivalent to the rotation operations. The

specific algorithm for the key-switching operation is shown in Algorithm 4.

Note that in this algorithm, a general case is dealt with when the modulus Q̄ of

25

a ciphertext is a divisor of the maximum evaluation modulus Q. The modulus Q can

be simply replaced with Q̄ in the key-switching operation with the same decomposed

RNS moduli except the last RNS modulus. The non-trivial point is that

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is a valid Galois key for the evaluation modulus Q̄ and the special modulus P . For ease

of understanding, the proof for this fact is proved in the following theorem.

Assume that

{(b(i), a(i))}i=0,··· ,dnum−1 ∈ (RPQ)
dnum

is a valid shift-r Galois key for the evaluation modulus Q and the special modulus P .

Let Q̄ = (
∏µ−2

i=0 Qi) · Q̄µ−1, where Q̄µ−1 is a divisor of Qµ−1 and µ ≤ dnum. Then,

the shift-r Galois key

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is valid for the evaluation modulus Q̄ and the special modulus P .

Proof. Since the Galois key

{(b(i), a(i))}i=0,··· ,dnum−1 ∈ (RPQ)
dnum

is valid, it is obtained

b(i) + a(i) · s = P · Q̂i · [Q̂−1
i]Qi · s(X5r) + ei ∈ RPQ

for all i and small error ei’s. If the modular reduction is performed to b(i) + a(i) · s by

each Qj for 0 ≤ j ≤ µ− 1, it is obtained

[b(i) + a(i) · s]Qj =

[P]Qi · s(X5r) + ei if i = j

ei if i ̸= j.
(2.1)

If the modular reduction is performed to b(i) + a(i) · s by each P , it is obtained [b(i) +

a(i) · s]P = ei. Since Q̄µ−1 is a divisor of Qµ−1, Qµ−1 can be replaced in (2.1) with

Q̄µ−1 for all i and j.

26

On the other hand, the following ring element

P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei ∈ RPQ̄

is considered, where Q̄i = Qi for 0 ≤ i ≤ µ − 2 and ˆ̄
iQ =
∏µ−1

j=0,j ̸=i Q̄i. Note that it

is obtained

[P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei]Q̄j
=

[P]Q̄i

· s(X5r) + ei if i = j

ei if i ̸= j.

If the modular reduction is performed to P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei by each P , it

is obtained [P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei]P = ei.

Since b(i) + a(i) · s and P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei have the same remainders

for all Q̄i’s and P , the two values is equal to each other in modulo PQ̄ by the Chinese

remainder theorem. Thus, it is obtained

[b(i)]PQ̄ + [a(i)]PQ̄ · s = [b(i) + a(i) · s]PQ̄

= P · ˆ̄Qi · [ˆ̄Q−1
i]Q̄i

· s(X5r) + ei

for all i’s. Thus, the shift-r Galois key

{([b(i)]PQ̄, [a
(i)]PQ̄)}i=0,··· ,µ−1 ∈ (RPQ̄)

µ

is valid for the evaluation modulus Q̄ and the special modulus P .

2.3 Bootstrapping of CKKS Scheme

The framework of the bootstrapping of the CKKS scheme was introduced in [19],

which is the same as the case of the RNS-CKKS scheme. The purpose of bootstrap-

ping is to refresh the ciphertext of level 0, whose multiplication cannot be performed

anymore, to the fresh ciphertext of level L having the same messages. Bootstrapping

is composed of the following four steps:

27

Algorithm 4 Key-Switching Operation [44]

Input: A key-switching key from s to s′, swk = {(b(i), a(i)}i=0,··· ,dnum−1 ∈

(R2
PQ)

dnum for Q =
∏dnum−1

i=0 Qi, and a ciphertext (b, a) ∈ R2
Q̄

encrypted with

secret key s ∈ R for Q̄ = (
∏µ−2

i=0 Qi) · Q̄µ−1, where Q̄µ−1 is a divisor of Qµ−1

and µ ≤ dnum.

Output: A ciphertext (b′, a′) ∈ R2
Q̄

encrypted with secret key s′ ∈ R

Decompose a into a vector (a0, · · · , aµ−1) ∈ Rµ
PQ̄

, where ai = [a]Qi + Qi · ẽi for

small ẽi’s for 0 ≤ i ≤ µ− 2 and aµ−1 = [a]Q̄µ−1
+ Q̄µ−1 · ẽµ−1 for small ẽµ−1.

(b̄, ā)← (0, 0) ∈ R2
PQ̄

for i← 0 to µ− 1 do
(b̄, ā)← (b̄, ā) + ai · ([b(i)]PQ̄, [a

(i)]PQ̄)

(b′, a′)← (⌊P−1 · b̄⌉, ⌊P−1 · ā⌉) ∈ R2
Q̄

b′ ← b′ + b

return (b′, a′)

i) Modulus raising

ii) Homomorphic linear transformation; COEFFTOSLOT

iii) Homomorphic modular reduction

iv) Homomorphic linear transformation; SLOTTOCOEFF

Modulus Raising:

The starting point of bootstrapping is modulus raising, where the ciphertext of level

0 is simply considered as an element of R2
Q, instead of R2

q0 . Since the ciphertext of

level 0 is supposed to be ⟨ct, sk⟩ ≈ m mod q0, it is obtained ⟨ct, sk⟩ ≈ m + q0I

mod Q for some I ∈ R when it is decrypted. It is assured that the absolute values

of coefficients of I are rather small, for example, usually smaller than 12, because

coefficients of sk consist of small numbers [20]. The crucial part of the bootstrapping

of the CKKS scheme is to make ct′ such that ⟨ct′, sk⟩ ≈ m mod qL. This is divided

28

into two parts: homomorphic linear transform and homomorphic evaluation of modular

reduction function.

Homomorphic Linear Transformation:

The ciphertext ct after modulus raising can be considered as the ciphertext encrypt-

ing m + q0I , and thus the modular reduction should be performed to coefficients of

message polynomial homomorphically. However, the operations are all for slots, not

coefficients of the message polynomial. Thus, to perform some meaningful operations

on coefficients, ct should be converted into a ciphertext that encrypts coefficients of

m+q0I as its slots. After evaluation of homomorphic modular reduction function, this

ciphertext should be reversely converted into the other ciphertext ct′ that encrypts the

slots of the previous ciphertext as the coefficients of its message. These two operations

are called COEFFTOSLOT and SLOTTOCOEFF operations. These operations are re-

garded as homomorphic evaluation of encoding and decoding of messages, which are

a linear transformation by some variants of Vandermonde matrix for roots of ΦM (x).

This can be performed by general homomorphic matrix multiplication [20], or FFT-

like operation [16].

Homomorphic Modular Reduction Function:

After COEFFTOSLOT is performed, it is required to perform modular reduction ho-

momorphically on each slot in modulus q0. This procedure is called EVALMOD. This

modular reduction function is not an arithmetic function and even not a continuous

function. Fortunately, by restricting the range of the messages such that m/q0 is small

enough, the approximation region can be given only near multiples of q0. This allows

me to approximate the modular reduction function more effectively. Since the opera-

tions that the CKKS supports are arithmetic operations, most of the works [16, 20, 44]

dealing with CKKS bootstrapping approximate the modular reduction function with

some polynomials, which are sub-optimal approximate polynomials.

29

The scaling factor is increased when the bootstrapping is performed because m/q0

needs to be very small in the homomorphic modular reduction function. In this dis-

sertation, the default scaling factor means the scaling factor used in the intended ap-

plications, and the bootstrapping scaling factor means the scaling factor used in the

bootstrapping. The bit-length difference between these two scaling factors is usually

10.

2.4 Comparison Operation for FHE

Lee et al. [57] showed that the ReLU function have to be approximated with suffi-

ciently high precision if the pre-trained model parameters with the original ResNet-

20 model is used. A polynomial with a large degree is required if a single minimax

polynomial approximates the ReLU function, and a large running time is required

to evaluate homomorphically. Instead of using a single minimax polynomial for the

ReLU function, they used the formula ReLU(x) = 1
2x(1+sign(x)) and approximated

sign(x) by the minimax composition of the small degree polynomials [54]. It reduces

the running time of the homomorphic evaluation of the ReLU function, and this ap-

proximation method makes the homomorphic evaluation of non-arithmetic functions,

such as the ReLU function, more practical.

Lee et al. [54] specified a method for determining the optimal composite polyno-

mials for the sign function. When each polynomial composing the composite polyno-

mial was found, the range of the previous polynomial was used as the approximation

domain for the next polynomial. If each polynomial is a minimax approximate poly-

nomial of the sign function for each domain, the range of each polynomial is always

two intervals symmetric to the origin. Each degree of the element polynomial requir-

ing minimal nonscalar multiplications for the desired precision is determined by a

dynamic programming algorithm.

30

2.5 Approximation Theory

Approximation theory is needed to prove the convergence of the minimax polynomial

obtained by the proposed improved multi-interval Remez algorithm. Assume that func-

tions are defined on a union of the finite number of closed and bounded intervals in the

real line. From the following well-known theorem [66] in real analysis, it is convinced

that this domain of functions is a compact set.

Theorem 2.5.1 ([66] Bolzano-Weierstrass Theorem). A subset of Rn is a compact

set if and only if it is closed and bounded.

A union of the finite number of closed and bounded intervals in the real line

is trivially closed and bounded, and thus this domain is a compact set by Bolzano-

Weierstrass theorem. This theorem will be used in the convergence proof of the im-

proved multi-interval Remez algorithm in Section 3.1.2.

The next theorem [66] states that any continuous function on a compact set in

the real line can be approximated with an arbitrarily small error by polynomial ap-

proximation. In fact, the theorem includes the case of continuous functions on more

general domains, but the special case on compact sets in the real line is only used in

this dissertation.

Theorem 2.5.2 ([66] Stone-Weierstrass Theorem). Assume that f is a continuous

function on the compact subset D of the real line. For every ϵ > 0, there is a polyno-

mial p such that ∥f − p∥∞ < ϵ.

There are many theorems for the minimax approximate polynomials of a func-

tion defined on a compact set in approximation theory. Before the introduction of

these theorems, the definition of the Haar condition of a set of functions is refered

to, which deals with the generalized version of power bases used in polynomial ap-

proximation and its equivalent statement. It is a well-known fact that the power basis

{1, x, x2, · · · , xd} satisfies the Haar condition. Thus, if an argument deals with the

31

polynomials with regard to a set of basis functions satisfying Haar condition, it natu-

rally includes the case of polynomials.

Definition 2.5.1 ([18] Haar’s Condition). A set of functions {g1, g2, · · · , gn} satisfies

the Haar condition if each gi is continuous and if each determinant

D[x1, · · · , xn] =

∣∣∣∣∣∣∣∣∣
g1(x1) · · · gn(x1)

...
. . .

...

g1(xn) · · · gn(xn)

∣∣∣∣∣∣∣∣∣
for any n distinct points x1, · · · , xn is not zero.

Lemma 2.5.3 ([18]). A set of functions {g1, · · · , gn} satisfies the Haar condition if

and only if zero polynomial is the only polynomial
∑

i cigi that has more than n − 1

roots.

Firstly, there is the unique minimax approximate polynomial in the union of the

finite number of closed and bounded intervals as in the following two theorems.

Theorem 2.5.4 ([18] Existence of Best Approximations). Let F be a normed linear

space, and f is any fixed element in F . If S is a linear subspace of F with finite

dimension, S contains at least one element of minimum distance from f .

Theorem 2.5.5 ([18] Haar’s Unicity Theorem). Let f be any continuous function on

a compact set K. Then the minimax polynomial
∑

i cigi of f is unique if and only if

{g1, g2, · · · , gn} satisfies the Haar condition.

In Theorem 2.5.4 for the existence of the best approximation, consider a set F

of continuous functions on a union D of the finite number of closed and bounded

intervals. It can be easily known that F is a linear space with a max-norm ∥f∥∞ =

maxx∈D |f(x)|. The set Pd of polynomials with regard to the finite number of basis

functions on D is a finite-dimensional linear subspace. Then, from Theorem 2.5.4,

there is at least one minimax approximate polynomial for any f ∈ F .

32

The core property of the minimax approximate polynomial for a function on D is

introduced.

Theorem 2.5.6 ([18] Chebyshev Alternation Theorem). Let {g1, · · · , gn} be a set

of continuous functions defined on [a, b] satisfying the Haar condition, and let D be

a closed subset of [a, b]. A polynomial p =
∑

i cigi is the minimax approximate poly-

nomial on D to any given continuous function f defined on D if and only if there are

n+1 distinct elements x0 < · · · < xn in D such that for the error function r = f − p

restricted on D,

r(xi) = −r(xi−1) = ± sup
x∈D
|r(x)|.

This condition is also called the equioscillation condition. This means that if we

find a polynomial satisfying the equioscillation condition, then this is the unique mini-

max approximate polynomial, needless to compare with the maximum approximation

error of any polynomials.

The following three theorems are used to prove the convergence of the improved

multi-interval Remez algorithm in Section 3.1.2.

Theorem 2.5.7 ([18] de La Vallee Poussin Theorem). Let {g1, · · · , gn} be a set of

continuous functions on [a, b] satisfying the Haar condition. Let f be a continuous on

[a, b], and p be a polynomial such that p − f has alternately positive and negative

values at n+ 1 consecutive points xi in [a, b]. Let p∗ be a minimax approximate poly-

nomial for f , and e(f) be the minimax approximation error of p∗. Then, it is obtained

e(f) ≥ min
i
|p(xi)− f(xi)|.

Lemma 2.5.8 ([18]). Let {g1, · · · , gn} be a set of continuous functions satisfying the

Haar condition. Assume that x1 < · · · < xn and y1 < · · · < yn. Then the deter-

minants D[x1, · · · , xn] and D[y1, · · · , yn], defined by Definition 2.5.1, have the same

sign.

33

Theorem 2.5.9 ([18] Strong Unicity Theorem). Let {g1, · · · , gn} be a set of func-

tions satisfying the Haar condition, and let p∗ be the minimax polynomial of a given

continuous function u. Then, there is a constant γ > 0 determined by f such that for

any polynomial p, it is obtained

∥p− f∥∞ ≥ ∥p∗ − f∥∞ + γ∥p− p∗∥∞.

Remez algorithm [18,62,65] is an iterative algorithm that always returns the mini-

max approximate polynomial for any continuous function on an interval of [a, b]. This

algorithm strongly uses the Chebyshev alternation theorem [18] in that its purpose is

finding the polynomial satisfying the equioscillation condition. In fact, the Remez al-

gorithm can be applied to obtain the minimax approximate polynomial, whose basis

function {g1, · · · , gn} satisfies the Haar condition. The following explanation includes

the generalization of the Remez algorithm, and if we want to obtain the minimax ap-

proximate polynomial of degree d, we can choose the basis function {g1, · · · , gn} by

the power basis {1, x, · · · , xd}, where n = d+ 1.

Remez algorithm firstly initializes the set of reference points {x1, · · · , xn+1},

which will be converged to the extreme points of the minimax approximate polyno-

mial. Then, it obtains the minimax approximate polynomial in regard to only the set

of reference points. Since the set of reference points is the set of finite points in [a, b],

it is a closed subset of [a, b], and thus Chebyshev alternation theorem holds on the set

of reference points. Let f(x) be a continuous function on [a, b]. The minimax approxi-

mate polynomial on the set of reference points is exactly the polynomial p(x) with the

basis {g1, · · · , gn} satisfying

p(xi)− f(xi) = (−1)iE i = 1, · · · , d+ 2

for some real number E. This forms a system of linear equations having n+1 equations

and n+1 variables of n coefficients of p(x) and E, which is ensured to be not singular

34

by Haar’s condition, and thus the polynomial p(x) is obtained. Then, n zeros of p(x)−

f(x) can be found, zi between xi and xi+1, i = 1, 2, · · · , n, and n+ 1 extreme points

y1, · · · , yn+1 of p(x)−f(x) can be found in each [zi−1, zi], where z0 = a and zn+1 =

b. That is, the minimum point of p(x)−f(x) in [zi−1, zi] is chosen if p(xi)−f(xi) < 0,

and the maximum point of p(x) − f(x) in [zi−1, zi] is chosen if p(xi) − f(xi) > 0.

Thus, a new set of extreme points y1, · · · , yn+1 is found. If this satisfies equioscillation

condition, the Remez algorithm returns p(x) as the minimax approximate polynomial

from the Chebyshev alternation theorem. Otherwise, it replaces the set of reference

points with these extreme points y1, · · · , yn+1 and processes above steps again. This

is the Remez algorithm in Algorithm 5. The Remez algorithm is proved to be always

converged to the minimax approximate polynomial by the following theorem.

Theorem 2.5.10 ([18] Convergence of Remez Algorithm). Let {g1, · · · , gn} be a set

of functions satisfying the Haar condition, pk be a polynomial generated in the k-th

iteration of Remez algorithm, and p∗ be the minimax polynomial of a given f . Then,

pk converges uniformly to p∗ by the following inequality,

∥pk − p∗∥∞ ≤ Aθk,

where A is a non-negative constant, and 0 < θ < 1.

2.6 Graph-Theoretic Algorithms

An arborescence in a given directed graph is a directed subgraph in which a single

path exists on any node from a specific root node, and a spanning arborescence is an

arborescence having paths from the root node to all nodes in the graph. The minimum

spanning tree problem is the problem of finding a spanning tree whose sum of edge

weights is minimum. This problem is also known to be solved within polynomial time,

and Edmonds’ algorithm is known to solve this problem [29], shown in Algorithm 6.

A spanning tree in a given undirected graph is a subgraph in a given graph such

that all edges and all nodes are connected and there is no cycle in the subgraph. The

35

Algorithm 5 Remez Algorithm [18,62,65]
Input : An input domain [a, b], a continuous function f on [a, b], an approximation

parameter δ, and a basis {g1, · · · , gn}.

Output: The minimax approximate polynomial p for f

Select x1, x2, · · · , xd+2 ∈ [a, b] in strictly increasing order.

Find the polynomial p(x) =
∑n

i=1 cigi(x) with p(xi) − f(xi) = (−1)iE for i =

1, · · · , d+2 and some E by solving the system of linear equations with variables ci’s

and E.

Divide the interval into n + 1 sections [zi−1, zi], i = 1, · · · , n + 1, from zeros

z1, · · · , zn of p(x) − f(x), where xi < zi < xi+1, and boundary points z0 =

a, zn+1 = b.

Find the maximum (resp. minimum) points for each section when p(xi) − f(xi) has

positive (resp. negative) value. Denote these extreme points y1, · · · , yn+1.

ϵmax ← maxi |p(yi)− f(yi)|

ϵmin ← mini |p(yi)− f(yi)|

if (ϵmax − ϵmin)/ϵmin < δ then
return p(x)

else
Replace xi’s with yi’s and go to line 2.

end

36

minimum spanning tree problem is the problem of finding a spanning tree whose sum

of edge weights is minimum. There are many algorithms for this, but Prim’s algorithm

[63] will be used, which is appropriate for the dense graph in this dissertation because

a complete graph is used in this dissertation, shown in Algorithm 7.

37

Algorithm 6 Edmonds’ Algorithm[29]
Input: A directed graph G = (V,E) with an edge weight w(e) for all e ∈ E, the root

node vr ∈ V

Output: A minimum spanning arborescence G′ = (V,E′) from the root node vr

Remove all edges to the root node vr from E

E′ ← ∅

for v ∈ V \{vr} do
π(v)← the node such that an edge (π(v), v) ∈ E has the minimum weight among

edges to v

E′ ← E′ ∪ {(π(v), v)}

if G′ = (V,E′) has no cycle then
return G′ = (V,E′)

else
C = (Vc, Ec)← a cycle in G′

V̄ ← (V \Vc) ∪ {vc} for new node vc

Ē ← E\Ec

for (v1, v2) ∈ E such that v1 ∈ V \Vc, v2 ∈ Vc do
Generate an edge (v1, vc) with a weight w(v1, vc) = w(v1, v2)−w(π(v2), v2)

Ē ← (Ē\{(v1, v2}) ∪ {(v1, vc)}

for (v1, v2) ∈ E such that v1 ∈ Vc, v2 ∈ V \Vc do

if (vc, v2) /∈ Ē or w(vc, v2) > w(v1, v2) then
Generate (or update) an edge (vc, v2) with a weight w(vc, v2) = w(v1, v2)

Ē ← Ē\{(v1, v2)} ∪ {(vc, v2)}

Ḡ′ = (V̄ , Ē′)←Edmonds’ algorithm for (V̄ , Ē) with vr

E′ ← all edges in E that correspond to edges in Ē′

vt ← the node such that (u, vt) ∈ E′ corresponds to (u, vc) ∈ Ē′

E′ ← (E′ ∪ Ec)\{(π(vt), vt)}

return G′ ← (V,E′)

38

Algorithm 7 Prim’s Algorithm[63]
Input: An undirected graph G = (V,E) with an edge weight w(e) for all e ∈ E

Output: A minimum spanning tree G′ = (V,E′)

Initialize G′ = (V ′, E′), where V ′ ← {v}, E′ ← ∅ for randomly selected v ∈ V

while V ′ ̸= V do
Ē ← {(v1, v2)|v1 ∈ V ′, v2 ∈ V \V ′}

Find an edge ē = (v̄1, v̄2) ∈ Ē having the minimum edge weight among Ē

V ′ ← V ′ ∪ {v̄2}

E′ ← E′ ∪ {ē}
return G′ = (V,E′)

39

Chapter 3

HIGH PRECISION BOOTSTRAPPING FOR RNS-CKKS

SCHEME

Since the CKKS scheme includes noises used to ensure security as the approximate

error in the message, the use of the RNS-CKKS scheme requires more sensitivity to

the precision of the message than other homomorphic encryption schemes that sup-

port accurate decryption and homomorphic evaluation. This can be more sensitive for

large-depth homomorphic operations because errors are likely to be amplified by the

operations and distort the data significantly. Fortunately, the basic homomorphic op-

erations in the RNS-CKKS scheme can ensure sufficiently high precision for practical

use, but this is not the case for the bootstrapping operation. Ironically, while the boot-

strapping operation in other homomorphic encryption schemes reduces the effect of

the errors on messages so that they do not distort messages, the bootstrapping opera-

tion in the CKKS scheme amplifies the errors, which makes it the most major cause of

data distortion among any other homomorphic operations in the RNS-CKKS scheme.

Since advanced operations with large depth may require bootstrapping operation many

times, the message precision problem in the bootstrapping operation is a crucial obsta-

cle to applying the RNS-CKKS scheme to advanced applications.

Although the RNS-CKKS scheme is currently one of the most potential solutions

40

to implement privacy-preserving machine learning (PPML) system [6,7,28], the meth-

ods for the PPML studied so far have mainly been applied to simple models such

as MNIST, which has such a low depth that bootstrapping is not required. Thus, the

message precision problem in the bootstrapping operation in the RNS-CKKS scheme

did not need to be considered in the PPML model until now. However, the advanced

machine learning model currently presented requires a large depth, and thus the boot-

strapping operation is required and cannot avoid the message precision problem in the

bootstrapping operation. Of course, the fact that bootstrapping requires longer running

time and larger depth than other homomorphic operations is also pointed out as a major

limitation of bootstrapping. While these points may be improved by simple parame-

ter adjustments and using hardware optimization, the message precision problem in

bootstrapping is difficult to solve with these simple methods.

Most of the works about PPML with FHE focused on the inference process rather

than the training process because of the large running time. However, training neural

networks with encrypted data is actually more important from a long-term perspective

for solving the real security problem in machine learning, in that the companies can-

not gather sufficiently many important but sensitive data, such as genetic or financial

information so that they cannot construct the deep learning model for them because of

the privacy of the data owners. While the inference process does not need a high pre-

cision number system, the training process is affected sensitively by the precision of

the number system. Chen et al. [17] showed that convolutional neural networks (CNN)

learning MNIST could not converge when the model is trained using a 16-bit fixed-

point number system. When the 32-bit fixed-point number system is used to train the

CNN with MNIST, the training performance was slightly lower than the case of using

the single-precision floating-point number system, although all bits except one bit rep-

resenting the sign are used to represent the data in 32-bit fixed-point number system,

which is much better precision than the single-precision floating-point number system,

which is 23-bit precision. Although many works proposed to use low-precision fixed-

41

point numbers in the training procedure, they used additional special techniques, such

as stochastic rounding [40] or the dynamic fixed-point number system [41], which

cannot be supported by the RNS-CKKS scheme until now.

While most of the deep learning systems use single-precision floating-point num-

bers, the maximum precision achieved with the bootstrapping of the CKKS scheme in

the previous papers was about only 20 bits. Considering that the CKKS scheme only

supports fixed-point arithmetic, the 20-bit precision is not large enough to be applied

wholly to the deep learning system. Thus, to apply the RNS-CKKS scheme to deep

learning systems, it is necessary to achieve a precision sufficiently better than the 32-

bit fixed-point precision, which requires a breakthrough for the bootstrapping in the

RNS-CKKS scheme concerning its precision.

In this dissertation, I propose two methods to improve the bootstrapping operation

of the RNS-CKKS scheme. Firstly, a fast algorithm is obtained, called an improved

multi-interval Remez algorithm, obtaining the optimal minimax approximate polyno-

mial of any continuous functions over any union of the finite number of intervals,

which include the modular reduction function and the scaled sine/cosine function over

the union of the approximation regions. Although the previous works have suggested

methods to obtain polynomials that approximate the scaled sine/cosine function well

from the minimax perspective, which are used to approximate the modular reduction

function, these methods cannot obtain the optimal minimax approximate polynomial.

The original multi-interval Remez algorithm is not theoretically proven to obtain

the minimax approximate polynomial, and it is only practically used for two or three

approximation regions in the finite impulse response filter design, while it is needed

to approximate functions over the union of tens of intervals. Furthermore, it takes im-

practically much time if this algorithm is used without further improvement to obtain a

polynomial that can be used for the bootstrapping. To make the multi-interval Remez

algorithm practical, the multi-interval Remez algorithm is modified as the improved

multi-interval Remez algorithm. Then the correctness of the improved multi-interval

42

Remez algorithm is proved, including the original multi-interval Remez algorithm, for

the union of any finite number of intervals. Since it can obtain the optimal minimax

approximate polynomial in seconds, the polynomial can be even adaptively obtained

when some parameters are abruptly changed on processing the ciphertexts so that the

approximate polynomial should be updated. All polynomial approximation methods

proposed in previous works for bootstrapping in the CKKS scheme can be replaced

with the improved multi-interval Remez algorithm, which ensures the best quality of

the approximation. It ensures to use the least degree of the approximate polynomial

for a given amount of error.

Next, the composite function method is proposed to enlarge the approximation

region in the homomorphic modular reduction process using the inverse sine func-

tion. The crucial point in the bootstrapping precision is that the difference between the

modular reduction function and the sine/cosine function gives a significant precision

loss. All previous works have used methods that approximate the modular reduction

function as a part of the sine/cosine functions. This approximation has an inherent ap-

proximation error so that the limitation of the precision occurs. Besides, to ensure that

these two functions are significantly close to each other, the approximation region has

to be reduced significantly. They set the half-width of one interval in the approxima-

tion region as 2−10, which is equal to the ratio of default scaling factor to the scaling

factor used in the bootstrapping. The message has to be scaled by multiplying 2−10 to

make the message into the approximation region, and it is scaled by multiplying 210

at the end of the bootstrapping. Thus, the precision error in the computation for boot-

strapping is amplified by 210, and the 10-bit precision loss occurs. If one tries to reduce

this precision loss by enlarging the approximation region, the approximation error by

the sine/cosine function becomes large, and thus the overall precision becomes lower

than before.

Therefore, it is proposed to compose the optimal approximate polynomial of the

inverse sine function to the sine/cosine function, since composing the inverse sine

43

function to the sine/cosine function extends the approximation region of the modular

reduction function, which makes it possible to improve the precision of the bootstrap-

ping. Note that the inverse sine function in this situation has only one interval in the

approximation region, and thus the small approximate error can be reached with rela-

tively low degree polynomials. The minimax approximate polynomials for the scaled

cosine function and the inverse sine function with sufficiently small minimax error

are obtained by the improved multi-interval Remez algorithm. These polynomials are

applied in the homomorphic modular reduction process by homomorphically evaluat-

ing the approximate polynomial for the scaled cosine function, several double-angle

formulas, and the approximate polynomial for the inverse sine function. This enables

me to minimize the inevitable precision loss by approximating the modular reduction

function to the sine/cosine function.

Since the previous works do not focus on the maximum precision of the boot-

strapping of the RNS-CKKS scheme, the maximum precision of the bootstrapping

is checked with the previous techniques. The detailed relation with the precision of

the bootstrapping and various parameters is analyzed with SEAL library. With the

proposed methods, the approximation error in the bootstrapping of the RNS-CKKS

scheme is reduced by 1/1176∼1/42 (5.4∼10.2-bit precision improvement) for each

parameter setting. While the bootstrapping without the composite function method

has 27.2∼30.3-bit precision at maximum, the bootstrapping with the proposed com-

posite function method has 32.6∼40.5-bit precision, which are better precision than

32-bit fixed-point precision.

3.1 Improved Multi-Interval Remez Algorithm

Since the Remez algorithm works only when the approximation region is one interval,

the multi-interval Remez algorithm is needed for the union of several intervals as an

approximation region. The above Remez algorithm can be extended to the multiple

44

sub-intervals of an interval [34, 61, 65]. The multi-interval Remez algorithm is the

same as Algorithm 5, except Steps 3 and 4. For each iteration, firstly, it is required to

find all of the local extreme points of the error function p − f whose absolute error

values are larger than the absolute error values at the current reference points. Then,

n+ 1 new extreme points are chosen among these points satisfying the following two

criteria:

i) The error values alternate in sign.

ii) A new set of extreme points includes the global extreme point.

These two criteria are known to ensure the convergence to the minimax polynomial,

even though there is no exact proof of its convergence to the best of my knowledge.

However, it is noted that there are many choices of sets of extreme points satisfying

these criteria. In the next subsection, the multi-interval Remez algorithm is modified,

where one of the two criteria is changed.

In this dissertation, an improved multi-interval Remez algorithm is obtained for ob-

taining the optimal minimax approximate polynomial. With this proposed algorithm,

the optimal minimax approximate polynomial can be obtained for continuous func-

tion on the union of finitely many closed intervals to apply the Remez algorithm to

the bootstrapping of the CKKS scheme. The function to be approximated is the nor-

malized modular reduction function defined in only near finitely many integers given

as

normod(x) = x− round(x), x ∈
K−1⋃

i=−(K−1)

[i− ϵ, i+ ϵ],

where K determines the number of intervals in the domain, and normod function cor-

responds to the modular reduction function scaled for both its domain and range.

In addition, Han et al. [44] uses the cosine function to approximate normod(x) to

use double-angle formula for efficient homomorphic evaluation. If the double-angle

45

formula is used ℓ times, it is required to approximate the following cosine function

cos

(
2π

2ℓ

(
x− 1

4

))
, x ∈

K−1⋃
i=−(K−1)

[i− ϵ, i+ ϵ].

To design an approximation algorithm that deals with the above two functions, the

general continuous function defined on an union of finitely many closed intervals is

assumed, which is given as

D =
t⋃

i=1

[ai, bi] ⊂ [a, b] ⊂ R,

where ai < bi < ai+1 < bi+1 for all i = 1, · · · , t− 1.

When the multi-interval Remez algorithm is considered, which approximates a

given continuous function on D with a polynomial having a degree less than or equal

to d, there are two crucial points to be considered. One is to establish an efficient

criterion for choosing new d + 2 reference points among several extreme points. The

other is to make efficient some steps in the improved multi-interval Remez algorithm.

These two issues for the improved multi-interval Remez algorithm are dealt with in

Subsections 3.1.1 and 3.1.3, respectively.

3.1.1 Improved Multi-Interval Remez Algorithm with Criteria for Choos-

ing Extreme Points

It is assumed that the multi-interval Remez algorithm is applied on D and {g1, · · · , gn}

satisfying Haar condition on [a, b] is used as the basis of polynomials. After obtaining

the minimax approximate polynomial regarding the set of reference points for each

iteration, a new set of reference points is chosen for the next iteration. However, there

are many boundary points in D, and all these boundary points have to be considered as

extreme points of the error function. For this reason, there are many cases of selecting

n+1 points among these extreme points. For bootstrapping in the CKKS scheme, there

are many intervals to be considered, and thus there are lots of candidate extreme points.

Since the criterion of the original multi-interval Remez algorithm cannot determine the

46

unique new set of reference points for each iteration, it is necessary to make how to

choose n + 1 points for each iteration to reduce the number of iterations as small

as possible. Otherwise, it requires a large number of iteration for convergence to the

minimax approximate polynomial. On the other hand, if the criterion is not designed

properly, the improved multi-interval Remez algorithm may not converge into a single

polynomial in some cases.

In order to set the criterion for selecting n + 1 reference points, it is needed to

define a simple function for extreme points, µp,f : D → {−1, 0, 1} as follows,

µp,f (z) =

1 p(x)− f(x) is concave at z on D

−1 p(x)− f(x) is convex at z on D

0 otherwise,

where p(x) is a polynomial obtained in that iteration and f(x) is a continuous function

on D to be approximated. The notation µp,f is abused as µ.

Assume that the number of extreme points of p(x) − f(x) on D is finite, and the

set of extreme points is denoted by B = {w1, w2, · · · , wm}. Assume that B is ordered

in increasing order, w1 < w2 < · · · < wm, and then the values of µ at these points are

always 1 or −1. Let S be a set of functions defined as

S = {σ : [n+ 1]→ [m] | σ(i) < σ(i+ 1) for all i = 1, · · · , n},

which means all the ways of choosing n+1 points of the m points. Clearly, S has only

the identity function if n+ 1 = m.

Then, three criteria are set for selecting n+ 1 extreme points as follows:

i) Local extreme value condition. If E is the absolute value of error at points in the

set of reference points, then it is obtained

min
i

µ(xσ(i))(p(xσ(i))− f(xσ(i))) ≥ E.

ii) Alternating condition. µ(xσ(i)) · µ(xσ(i+1)) = −1 for i = 1, · · · , n.

47

iii) Maximum absolute sum condition. Among σ’s satisfying the above two condi-

tions, choose σ maximizing the following value

n+1∑
i=1

|p(xσ(i))− f(xσ(i))|.

It is noted that the local extreme value condition in i) means in particular that the

extreme points are discarded if the local maximum value of p(x)− f(x) is negative or

the local minimum of p(x)− f(x) is positive.

Note that the first two conditions are also included in the original multi-interval

Remez algorithm. The third condition, the maximum absolute sum condition, is the

replacement of the condition that the new set of reference points includes the global

extreme point. The numerical analysis will show that the third condition makes the

proposed improved multi-interval Remez algorithm converge to the optimal minimax

approximate polynomial fast. Although there are some cases in which the global max-

imum point is not included in the new set of reference points chosen by the maxi-

mum absolute sum condition, it is proved that the maximum absolute sum condition is

enough for the improved multi-interval Remez algorithm to converge to the minimax

approximate polynomial in the next subsection.

I propose the improved multi-interval Remez algorithm for the continuous function

on the union of finitely many closed intervals as in Algorithm 8. The local extreme

value condition is reflected in Step 3, and the alternating condition and the maximum

absolute sum condition are reflected in Step 4.

3.1.2 Correctness of Improved Multi-Interval Remez Algorithm

It is required to be proved that the proposed algorithm always converges to the min-

imax approximate polynomial for a given piecewise continuous function on D. This

proof is similar to the convergence proof of the original Remez algorithm on one closed

interval [18, 62], but there are a few more general arguments than the original proof.

48

Algorithm 8 Improved Multi-Interval Remez algorithm
Input : An input domain D =

⋃t
i=1[ai, bi] ⊂ R, a continuous function f on D, an

approximation parameter δ, and a basis {g1, · · · , gn}

Output: The minimax approximate polynomial p for f

Select x1, x2, · · · , xn+1 ∈ D in strictly increasing order.

Find the polynomial p(x) with p(xi)− f(xi) = (−1)iE for some E.

Gather all extreme and boundary points such that µp,f (x)(p(x) − f(x)) ≥ |E| into a

set B.

Find n + 1 extreme points y1 < y2 < · · · < yn+1 with alternating condition and

maximum absolute sum condition in B.

ϵmax ← maxi |p(yi)− f(yi)|

ϵmin ← mini |p(yi)− f(yi)|

if (ϵmax − ϵmin)/ϵmin < δ then
return p(x)

else
Replace xi’s with yi’s and go to line 2.

end

49

This convergence proof includes the proof for both the original multi-interval Remez

algorithm and the improved multi-interval Remez algorithm.

It is needed to be checked that S always contains at least one element σ0 that

satisfies the local extreme value condition and the alternating condition, and has σ0(i0)

for some i0 such that |p(xσ0(i0)) − f(xσ0(i0))| = ∥p − f∥∞. This existence is in fact

the basic assumption of the original multi-interval Remez algorithm, but this existence

is proved for mathematical clarification in the following theorems.

Theorem 3.1.1. Let B and S be the sets defined above. Then, there is at least one

element in S which satisfies the local extreme value condition and the alternating

condition and has σ0(i0) for some i0 such that |p(xσ0(i0))− f(xσ0(i0))| = ∥p− f∥∞.

Proof. Let ai and bi be the boundary points in D defined above and let t1, t2, · · ·

, tn+1 ∈ D be the reference points used to construct pk(x) at the k-th iteration. Without

loss of generality, ti < ti+1 for all i = 1, · · · , n, and the following equation for some

proper positive value E is satisfied as

p(ti)− f(ti) = (−1)i−1E.

Let u2i−1 be the largest point among all aj and t2j’s which are less than or equal to

t2i−1, and let v2i−1 be the smallest point among all bj and t2j’s which are larger than

or equal to t2i−1. Then, firstly, it is proved that there exists at least one local maximum

point c2i−1 of pk(x)−f(x) in [u2i−1, v2i−1], and c2i−1 < t2i < c2i+1 for all possible i.

From the extreme value theorem for continuous function on interval [66], there exists

at least one maximum point of pk(x) − f(x) in [u2i−1, v2i−1], since pk(x) − f(x) is

continuous on D. This value at the maximum point is denoted as c2i−1. Since t2i−1 is

in [u2i−1, v2i−1], pk(c2i−1)−f(c2i−1) ≥ E > −E = pk(t2j)−f(t2j) for all possible

j, and thus c2i−1 cannot be equal to any t2i’s. Since elements appeared more than once

in intervals [u2i−1, v2i−1], i = 1, 2, · · · , ⌊n+2
2 ⌋, are only t2i’s and v2i−1 ≤ t2i ≤ u2i+1

for all possible i, it is proved that c2i−1 < t2i and t2i < c2i+1.

50

Let u2i be the largest point among all aj and c2j−1’s which are less than or equal

to t2i, and let v2i be the smallest point among all bj and c2j−1’s which are larger than

or equal to t2i. Then, it is proved that there exists at least one local minimum point

c2i of pk(x)− f(x) in [u2i, v2i], and ci’s are sorted in strictly increasing order. Again,

from the extreme value theorem for continuous function on interval, there exists at

least one minimum point of pk(x) − f(x) in [u2i, v2i]. This value at the minimum

point is denoted as c2i. Since t2i is in [u2i, v2i], pk(c2i) − f(t2j) ≤ −E < E ≤

pk(c2j−1) − f(c2j−1) for all possible j, and thus c2i cannot be equal to any c2j−1.

Since elements appeared more than once in intervals [u2i, v2i], i = 1, 2, · · · , ⌊n+2
2 ⌋,

are only c2i−1’s and v2i ≤ c2i+1 ≤ u2i+2 for all possible i, Now, it is proved that ci’s

are sorted in strictly increasing order.

Since ci’s are all local extreme points, ci ∈ B for all i. Then, σ′ ∈ S is set such

that xσ′(i) = ci. Since c2i−1’s are local maximum points and c2i’s are local minimum

points, σ′ satisfies alternating condition. Since µ(ci)(p(ci) − f(ci)) ≥ E, σ′ also

satisfies the local extreme value condition. If one of ci has the maximum absolute

value of p− f , it is done.

Assume that all of ci’s do not have the maximum absolute value of pk− f . Let xm

be the global extreme point of pk − f . If there is some k such that ck < xm < ck+1,

either ck or ck+1 has the same value of µ at xm. Then, it is replaced with xm and define

this function as σ0. Since σ0 satisfies all of conditions in Theorem 3.1.1, it is done.

If xm < c1 or xm > cn+1, it is separated into two cases again. If µ(xm) = µ(c1)

(resp. µ(xm) = µ(cn+1)), c1 (resp. cn+1) is just replaced with xm and define this

function as σ0, and σ0 satisfies all these conditions. If µ(xm) ̸= µ(c1) (resp. µ(xm) ̸=

µ(cn+1)), cn+1 (resp. c1) is replaced with xm, and relabel the points to define the new

function σ0. This also satisfies all three conditions. Thus, it is proved.

Remark. This theorem also ensures that m ≥ n+1. If m < n+1, S has to be empty.

This theorem ensures that there is at least one element in S, it can be convinced that

51

m ≥ n+ 1.

Before proving the convergence, it is required to generalize the de La Vallee Poussin

theorem, which was used to prove the convergence of the original Remez algorithm

on an interval. Since the original de La Vallee Poussin theorem [18] only deals with

a single interval, it is generalized in the following theorem that deals with the closed

subset of an interval, whose proof is almost the same as that of the original theorem.

Lemma 3.1.2 (Generalized de La Vallee Poussin Theorem). Let {g1, · · · , gn} be

a set of continuous functions on [a, b] satisfying the Haar condition, and let D be a

closed subset of [a, b]. Let f be a continuous on D, and p be a polynomial such that

p − f has alternately positive and negative values at n + 1 consecutive points xi in

D. Let p∗ be a minimax approximate polynomial for f on D, and e(f) be the minimax

approximation error of p∗. Then,

eD(f) ≥ min
i
|p(xi)− f(xi)|.

Proof. Assume that the above statement is false. Then, there is a polynomial p0 such

that p0 − f has alternately positive and negative values at n+ 1 consecutive points in

D, and

∥p∗ − f∥∞ < |p0(xi)− f(xi)| (3.1)

for all i. Then, p0 − p∗ = (p0 − f) − (p∗ − f) has alternately positive and negative

values at the consecutive xi, which leads to the fact that there is n roots in [a, b]. From

Lemma 2.5.3, p0 − p∗ has to be zero, which is contradiction.

Now, the convergence of Algorithm 8 is proved.

Theorem 3.1.3. Let {g1, · · · , gn} be a set of functions satisfying the Haar condition

on [a, b], D be the multiple sub-intervals of [a, b], and f be a continuous function

on D. Let pk be an approximate polynomial generated in the k-th iteration of the

52

improved multi-interval Remez algorithm, and p∗ be the optimal minimax approximate

polynomial of f . Then, as k increases, pk converges uniformly to p∗ as in the following

inequality

∥pk − p∗∥∞ ≤ Aθk,

where A is a non-negative constant and 0 < θ < 1.

Proof. Let {x(0)1 , · · · , x(0)n+1} be the initial set of reference points and {x(k)1 , · · · , x(k)n+1}

be the new set of reference points chosen at the end of iteration k. Let rk = pk − f

be the error function of pk and r∗ = p∗ − f be the error function of p∗. Since pk is

generated such that the absolute values of the error function rk at the reference points

x
(k−1)
i , i = 1, 2, · · · , n+ 1 are the same. For k ≥ 1,

αk = min
i
|rk(x

(k−1)
i)| = max

i
|rk(x

(k−1)
i)|,

βk = ∥rk∥∞,

γk = min
i
|rk(x

(k)
i)|. (3.2)

Define β∗ = ∥r∗∥∞. β∗ ≥ γk is satisfied from Lemma 3.1.2, βk ≥ β∗ by defini-

tion of p∗, and γk ≥ αk by the local extreme value condition for new set of reference

points. Then,

αk ≤ γk ≤ β∗ ≤ βk.

Let c(k) = [c
(k)
1 , · · · , c(k)n]T be the coefficient vector of pk. Then, c(k) is the solu-

tion vector of the following system of linear equations

(−1)i+1h(k) +
n∑

j=1

c
(k)
j gj(x

(k−1)
i) = f(x

(k−1)
i), i = 1, · · · , n+ 1 (3.3)

for the n + 1 unknowns h(k) and c
(k)
j ’s, and |h(k)| = αk. From Theorem 2.5.5, it

is assured that the system of linear equations in (3.3) is nonsingular, which can be

53

rewritten as in the matrix equation for k + 1, instead of k,
1 g1(x

(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

h(k+1)

c
(k+1)
1

...

c
(k+1)
n

 =

f(x

(k)
1)

f(x
(k)
2)
...

f(x
(k)
n+1)

 . (3.4)

From Cramer’s rule, h(k+1) is as follows,

h(k+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

f(x
(k)
1) g1(x

(k)
1) · · · gn(x

(k)
1)

f(x
(k)
2) g1(x

(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

f(x
(k)
n+1) g1(x

(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
/

∣∣∣∣∣∣∣∣∣∣∣∣

1 g1(x
(k)
1) · · · gn(x

(k)
1)

−1 g1(x
(k)
2) · · · gn(x

(k)
2)

...
...

. . .
...

(−1)n g1(x
(k)
n+1) · · · gn(x

(k)
n+1)

∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.5)

Let M (k)
i be the minor of the matrix in (3.4) removing the first column and the i-th

row. Then, (3.5) can be written as

h(k+1) =

∑n+1
i=1 f(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

. (3.6)

If f is replaced by any polynomial p =
∑n

j=1 c
′
jgj in (3.4), the minimax approxima-

tion on {x(k)1 , · · · , x(k)n+1} is p itself. This leads to∑n+1
i=1 pk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

= 0. (3.7)

By substracting (3.6) from (3.7), and rk = pk − f ,

−h(k+1) =

∑n+1
i=1 rk(x

(k)
i)M

(k)
i (−1)i+1∑n+1

j=1 M
(k)
j

.

By the fact that rk(x
(k)
i)’s alternate in sign by the alternating condition for new set of

reference points, and all minors Mi have the same sign by Lemma 2.5.8,∣∣∣∣∣
n+1∑
i=1

rk(x
(k)
i)(−1)iM (k)

i

∣∣∣∣∣ =
n+1∑
i=1

|rk(x
(k)
i)||M (k)

i |

54

αk+1 = |h(k+1)| =
∑n+1

i=1 |M
(k)
i ||rk(x

(k)
i)|∑n+1

j=1 |M
(k)
j |

. (3.8)

Now let

θ
(k)
i =

|M (k)
i |∑n+1

j=1 |M
(k)
j |

.

Since αk+1 is weighted average of |rk(x
(k)
i)| by θ

(k)
i ’s as weights, αk+1 ≥ γk is

satisfied from (3.2). Note that αk ≤ γk ≤ αk+1, and thus αk is a non-decreasing

sequence. This fact is used in the last part of the proof.

Note that there are some n + 1 alternating points, where the approximate error

values alternate, including the global extreme point by Theorem 3.1.1, and the approx-

imate error values at x(k)1 , · · · , x(k)n+1 have the maximum absolute sum by the maxi-

mum absolute sum condition for new set of reference points. That is,
∑n+1

i=1 |rk(x
(k)
i)|

is larger than or equal to sum of any n+1 absolute error values including βk and thus,
n+1∑
i=1

|rk(x
(k)
i)| ≥ βk. (3.9)

First, it will be proved that θ(k)i is larger than a constant 1− θ > 0 throughout the

iterations. It is known that Mi ̸= 0 for all i from the Haar condition. The following

inequality is firstly proved,

x
(k)
i+1 − x

(k)
i ≥ ϵ > 0, i = 0, · · · , n, (3.10)

where ϵ does not depend on k. Assume that (3.10) is not true. Let x(k) = (x
(k)
1 , · · · , x(k)n+1)

be a sequence defined on Dn+1. Then x(k) has its subsequence such that mini |x(k)i+1−

x
(k)
i | converges to zero. Since Dn+1 is a closed and bounded subset of Rn+1, it is a

compact set, and thus this subsequence also has its subsequence converging to a point

(x∗1, · · · , x∗n+1). Since mini |x∗i+1 − x∗i | = 0, there is some i such that x∗i = x∗i+1.

Let p be the minimax polynomial of f on (x∗1, · · · , x∗n+1). Since there is actually less

than or equal to n points, p is the approximate polynomial generated by the Lagrange

interpolation, and thus

p(x∗i) = f(x∗i), i = 1, · · · , n+ 1.

55

It is known that α1 > 0 by the fact that αk is weighted average of absolute ap-

proximation errors at the previous set of reference points. Then, there exists a number

δ > 0 such that whenever |y1 − y2| < ϵ and y1, y2 ∈ D,

|(p− f)(y1)− (p− f)(y2)| < α1

because p−f is a continuous function on the compact set, and thus it is also uniformly

continuous. Since there is a subsequence of (x(k)1 , · · · , x(k)n+1) converging to x(k) =

(x∗1, · · · , x∗n+1), there is some k0 such that

|x(k0)i − x∗i | < δ, i = 1, · · · , n+ 1.

Then,

|(p− f)(x
(k0)
i)− (p− f)(x∗i)| = |p(x

(k0)
i)− f(x

(k0)
i)| < α1

because (p − f)(x∗i) = 0. In fact, p is not the minimax approximate polynomial in

regard to the k-th set of reference points {x(k0)1 , · · · , x(k0)n+1}. Since αk+1 is the error

value of the minimax approximate polynomial on {x(k0)1 , · · · , x(k0)n+1},

αk+1 ≤ max
i
|p(x(k0)i)− f(x

(k0)
i)| < α1.

This contradicts the fact that αk is non-decreasing sequence, and thus (3.10) is satis-

fied.

Now, it will be proved that θ(k)i is larger than a constant 1− θ. Consider the subset

D′ of Dn+1 such that for (y1, · · · , yn+1) ∈ D′, yi+1−yi ≥ ϵ. it can be easily seen that

D′ is a closed and bounded subset in Rn+1, and thus D′ is a compact set. Then, |Mi|,

which is the same function as |M (k)
i | except that the inputs are yi’s instead of x(k)i ’s, is

a continuous function on Dn+1, so is on D′, and thus there is an element at which |Mi|

has the mininum value on D′ from the extreme value theorem. From the Haar condition

in Definition 2.5.1, |Mi| cannot be zero because yi’s are distinct and the minimum

value of |Mi| is not zero. Since the finite number of functions |Mi|’s are considered,

56

the lower bound of all |Mi|’s is bigger than zero. In addition, since
∑n+1

j=1 |Mj | is also

a continuous function on D′, there is an upper bound of
∑n+1

j=1 |Mj | on D′ from the

extreme value theorem. This leads to the fact that θi’s are lower-bounded beyond zero.

From γk+1 ≥ αk+1, (3.8), and (3.9),

γk+1 − γk ≥ αk+1 − γk

=
n+1∑
i=1

θ
(k)
i (|rk(x

(k)
i)| − γk)

≥ (1− θ)(βk − γk) (3.11)

≥ (1− θ)(β∗ − γk). (3.12)

From (3.12),

β∗ − γk+1 = (β∗ − γk)− (γk+1 − γk)

≤ (β∗ − γk)− (1− θ)(β∗ − γk)

= θ(β∗ − γk).

Then, the following inequality is obtained for some nonnegative B as

β∗ − γk ≤ Bθk. (3.13)

From (3.11) and (3.13),

βk − β∗ ≤ βk − γk

≤ 1

1− θ
(γk+1 − γk)

≤ 1

1− θ
(β∗ − γk)

≤ 1

1− θ
Bθk

≤ Cθk. (3.14)

From Theorem 2.5.9, there is a constant γ > 0 such that

∥p∗ − f∥∞ + γ∥pk − p∗∥∞ ≤ ∥pk − f∥∞.

57

Since βk = ∥pk − f∥∞, β∗ = ∥p∗ − f∥∞, and (3.14), the proof is completed by the

following inequality

∥pk − p∗∥∞ =
βk − β∗

γ

≤ Aθk

for nonnegative constant A.

Remark. The maximum sum condition is used in the inequality (3.11). Note that

the inequality (3.11) can be satisfied if the global extreme point is included to the new

set of reference points as in the original multi-interval Remez algorithm, instead of the

maximum absolute sum condition in the improved multi-interval Remez algorithm.

Thus, this proof naturally includes the convergence proof of the original multi-interval

Remez algorithm.

From the proof, it is known that the convergence rate of αk determines the con-

vergence rate of the algorithm. Since αk is always lower than β∗ and non-decreasing

sequence, it is desirable to obtain αk as large as possible for each iteration. The max-

imum sum condition is more effective than the global extreme point inclusion con-

dition; The global extreme point inclusion condition cannot care about the reference

points other than the global extreme point, but the maximum sum condition cares for

all the reference points to be large. This can give some intuition for the effectiveness

of the maximum sum condition.

3.1.3 Efficient Implementation of Improved Multi-Interval Remez Algo-

rithm

In this subsection, it is required to consider the issues in each step of Algorithm 8 and

suggest how to implement Steps 1, 2, 3, and 4 of Algorithm 8 as follows.

58

Initialization:

Depending on the initialization method, there can be a large difference in the number

of iterations required. Therefore, the closer the polynomial produced by initializing the

initial reference points to the optimal minimax approximation polynomial, the fewer

iterations are required. The node setting method of Han et al. [44] is used to effectively

set the initial reference points in the improved multi-interval Remez algorithm. Since

Han et al.’s node setting method was for polynomial interpolation, it chooses the d+1

number of nodes when the approximate polynomial of degree d is needed. Instead,

if it is required to obtain the optimal minimax approximate polynomial of degree d,

the d + 2 number of nodes are chosen with Han et al.’s method as if the approximate

polynomial of degree d+ 1 is needed, and uses them for the initial reference points.

Finding Approximate Polynomial:

A naive approach is finding coefficients of the approximate polynomial with power

basis at the current reference points for the continuous function f(x), i.e., cj’s can be

obtained in the following equation

d∑
j=0

cjx
j
i − f(xi) = (−1)iE,

where E is also an unknown variable in this system of linear equations. However, this

method suffers from the precision problem for the coefficients. It is known that as

the degree of the basis of approximate polynomial increases, the coefficients usually

decrease, and it is required to set higher precision for the coefficients of the higher

degree basis. Han et al. [44] use the Chebyshev basis for this coefficient precision

problem since the coefficients of a polynomial with the Chebyshev basis usually have

the almost same order. Thus, the Chebyshev basis is used instead of the power basis.

59

Obtaining Extreme Points:

Since a tiny minimax approximation error is dealt with, it is required to obtain the

extreme points as precisely as possible. Otherwise, the extreme point for the minimax

approximate polynomial cannot be reached precisely, and then the minimax approxi-

mation error obtained with this algorithm becomes large. Basically, to obtain the ex-

treme points, p(x)−f(x) can be scanned with a small scan step and obtain the extreme

points where the increase and decrease are exchanged. A small scan step increases the

accuracy of the extreme point but causes a long scan time accordingly. To be more spe-

cific, it takes approximately 2ℓ proportional time to find the extreme points with the

accuracy of ℓ-bit. Therefore, it is necessary to devise a method to obtain high accuracy

extreme points more quickly.

In order to obtain the exact point of the extreme value, a method of finding the

points is used where the increase and decrease are exchanged and then finding the

exact extreme point using a kind of binary search. Let r(x) = p(x) − f(x) and sc

be the scan step. If xi,0 can be found where µ(xi,0)r(xi,0) ≥ |E|, and (r(xi,0) −

r(xi,0 − sc))(r(xi,0 + sc) − r(xi,0)) ≤ 0, the i-th extreme points are obtained using

the following process successively ℓ times,

xi,k = argmax
x∈{xi,k−1−sc/2k,xi,k−1,xi,k−1+sc/2k}

|r(x)|, k = 1, 2, · · · , ℓ,

where the i-th extreme point xi is set to be xi,ℓ. Then, the extreme point is obtained

with O(log(sc) + ℓ)-bit precision. Since sc needs not to be a too small value, the

extreme point can be found with arbitrary precision with linear time to precision ℓ. In

summary, it is proposed that the ℓ-bit precision of the extreme points can be obtained

by the linear time of ℓ instead of 2ℓ.

This procedure for each interval in the approximation region can be performed

independently with each other, and thus it can be performed effectively with several

threads. Since this step is the slowest step among any other steps in the improved

multi-interval Remez algorithm, the parallel processing for this procedure is desirable

60

to make the whole algorithm much fast.

One can say that the Newton method is more efficient than the binary search

method in finding the extreme points because one may just find the roots of the deriva-

tive of p(x) − f(x). However, the extreme points are very densely distributed in this

situation, and thus the Newton method may not be stably performed. Even if only one

extreme point is missed, the algorithm can act in an undefined manner. The binary

search method is fast enough and finds all of the extreme points very robustly, and

thus the binary search is used instead of the Newton method.

Obtaining New Reference Points:

When the new reference points satisfying the local extreme value condition are found,

the alternating condition, and maximum absolute sum condition, there is a naive ap-

proach: among local extreme points which satisfy the local extreme value condition,

find all d + 2 points satisfying the alternating condition and choose the n + 1 points

which have the maximum absolute sum value. If there are m local extreme points, it

is required to investigate
(

m
d+2

)
points, and this value is too large, making this algo-

rithm impractical. Thus, it is required to find a more efficient method than this naive

approach.

I propose a very efficient and provable algorithm for finding the new reference

points. The proposed algorithm always gives the d+2 points satisfying the three crite-

ria. It can be considered as an elimination method in that some elements are eliminated

for each iteration in the proposed algorithm until n+ 1 points are obtained. It is clear

that as long as m > d + 2, at least one element which may not be included in the

new reference points can be found. This proposed algorithm is given in Algorithm 9.

Algorithm 9 takes O(m logm) running time, which is a quasi-linear time algorithm.

It is noted that there are always some points in all situations such that it can be

ensured that if a set of d + 2 points is chosen including these points satisfying the

alternating condition, there exists the other set of d + 2 points without these points

61

which satisfies the alternating condition and whose absolute sum is larger. Algorithm

3 finds these points until the number of the remaining points is d+ 2.

To understand the last part of Algorithm 9, the example can be given that if the

extreme point x2 is removed, T = {|r(x1)| + |r(x2)|, |r(x2)| + |r(x3)|, |r(x3)| +

|r(x4)|, · · · } is changed to T = {|r(x1)| + |r(x3)|, |r(x3)| + |r(x4)|, · · · }. It is as-

sumed that whenever an element is removed in the ordered set B in Algorithm 9, the

remaining points remain sorted and indices are relabeled in increasing order. When

the values to remove some extreme points are compared, there are the cases that the

compared values are equal or the smallest element is more than one. In such cases, one

of these elements is randomly removed. The correctness of Algorithm 9 is proven in

the following theorem.

Theorem 3.1.4. Algorithm 9 always returns the n+1 points satisfying the alternating

condition and the maximum absolute sum condition.

Proof. Let Binit = {t′1, t′2, · · · , t′m} be the initial elements in B, and let t′ℓ be an ele-

ment removed in the first while statement. It is first shown that each element removed

in the first while statement in Algorithm 9 is not included in the new reference; that

is, if the subset A of Binit having n + 1 elements satisfies alternating condition and

contain this removed element, there is another subset A′ of B having n + 1 elements

satisfying alternating condition, not containing the removed element, and having ab-

solute sum larger than or equal to A. Since it is removed in the first while statement,

there is an element t′ℓ′ such that |r(t′ℓ′)| ≥ |r(t′ℓ)|, µ(t′ℓ′) = µ(t′ℓ), and |ℓ′ − ℓ| = 1.

Clearly, A cannot contain t′ℓ′ , because A satisfies the alternating condition. Let A′ be

the same set as A except that t′ℓ is replaced with t′ℓ′ . Then A′ also satisfies alternating

condition, does not contain t′ℓ, and has absolute sum larger than or equal to that of A.

It is observed that at the end of the first while statement, B itself satisfies the

alternating condition. Then it is required to prove that elements removed in the second

while statement in Algorithm 9 are not included in the new reference points. In other

words, if the subset A of Binit having n+1 elements satisfies the alternating condition

62

Algorithm 9 New Reference
Input : An increasing ordered set of extreme points B = {t1, t2, · · · , tm} with m ≥

d+ 2, and the degree of the approximate polynomial d.

Output: d+2 points in B satisfying alternating condition and maximum absolute sum

condition.

i← 1

while ti is not the last element of B do
if µ(ti)µ(ti+1) = 1 then Remove from B one of two points ti, ti+1 having the

smaller value among {|r(ti)|, |r(ti+1)|}.

else i← i+ 1

end

if |B| > d + 3 then Calculate all |r(ti)| + |r(ti+1)| for i = 1, · · · , |B| − 1 and sort

and store these values into the array T .

while |B| > d+ 2 do
if |B| = d + 3 then Remove from B one of two points t1, t|B| having less value

among {|r(t1)|, |r(t|B|)|}.

else if |B| = d+4 then Insert |r(t1)|+ |r(t|B|)| into T and sort T . Remove from

B the two elements having the smallest value in T .

else
if t1 or t|B| is included in the smallest element in T then Remove from B only

t1 or t|B|.

else Remove from B the two elements having the smallest element in T .

Remove from T all elements related to the removed extreme points, and insert

into T the sum of absolute error values of the two newly adjacent extreme

points.

end

end

63

and contains these removed elements, there is another subset A′ of B having n + 1

elements satisfying alternating condition, not containing these removed elements, and

having absolute sum larger than or equal to A. Let t′ℓ be an element removed in the

second while statement.

Then, there are three cases: at the time of removal of t′ℓ, the remaining set B can

have n + 2, n + 3, or larger than n + 3 elements as in Algorithm 9. Each case is

considered separately. By the induction argument, it is assumed that the remaining set

B in each iteration has n+ 1 points that satisfy the alternating condition and have the

maximum absolute sum among all possible n+1 points in Binit. In other words, it can

be assumed that if there are n + 1 points in Binit that satisfy the alternating condition

and contain at least one of the removed elements before that time, there are n+1 points

in the remaining set B at that time such that they satisfy the alternating condition and

have absolute sum larger than or equal to the previous ones. This inductive assumption

makes me consider only the remaining set B at that iteration instead of all Binit in the

proof.

i) Case of n+ 2: If the remaining set B has n+ 2 elements at the time of removal

of t′ℓ, elements in B at that time are labeled as t1, t2, · · · , tn+2, and t′ℓ is labeled

as t1 or tn+2. Then, |r(t)| at one of the two points t1 and tn+2, which is not t′ℓ

has the value of |r(x)| larger than or equal to the value at t′ℓ. This element is

denoted as t′ℓ′ . If there is a subset A of n+ 1 points in the remaining set B that

satisfy alternating condition and contain t′ℓ, the element t′ℓ′ must not be in these

n+1 points due to alternating condition. Let A′ be the same set as A except that

t′ℓ is replaced with t′ℓ′ . Then, A′ also satisfies the alternating condition, does not

contain t′ℓ, and has absolute sum larger than or equal to that of A.

ii) Case of n+ 3: If the remaining set B has n+ 3 elements at the time of removal

of t′ℓ, the elements in B at that time are labeled as t1, t2, · · · , tn+3, and it is

required to remove two elements. Then, there must be a different element t′p

64

which is also removed at the time of removal of t′ℓ. {t′ℓ, t′p} can be {ti, ti+1} for

some i or {t1, tn+3} as in Algorithm 9. Since all of the subsets of B having n+1

elements that satisfy the alternating condition are the cases of B\{ti, ti+1} for

some i or B\{t1, tn+3}, one subset of B with the alternating condition that has

the maximum absolute sum has to be B\t′ℓ, t′p. Therefore, the resulting subset

can be obtained by removing these two elements.

iii) Case of larger than n+ 3: If the remaining set B has elements larger than n+ 3

elements at the time of removal of t′ℓ, the elements in B at that time are labeled

as t1, t2, · · · , tj , where j > n + 3. Then, there are two cases: One is that t′ℓ is

labeled as t1 or tj , and the other is not the first case.

(a) If t′ℓ is labeled as t1 or tj , let t′p be the adjacent element in B. If the subset

A in B that satisfies the alternating condition and contains t′ℓ also contains

t′p, there is at least one pair of adjacent elements t′ℓ′ and t′p′ in B that is

not contained in A, since A satisfies the alternating condition and more

than three elements are removed from B. Note that |r(t′ℓ′)| + |r(t′p′)| ≥

|r(t′ℓ)| + |r(t′p)|. Let A′ be the same set as A except that t′ℓ and t′p are

replaced with t′ℓ′ and t′p′ . A
′ also satisfies alternating condition, does not

contain t′ℓ, and has absolute sum larger than or equal to that of A.

If A does not contain t′p, the adjacent element of t′p which is not t′ℓ cannot

be contained in A, since A satisfies the alternating condition. Let t′ℓ′ be the

adjacent element of t′p. Note that |r(t′ℓ′)|+|r(t′p)| ≥ |r(t′ℓ)|+|r(t′p)|. Let A′

be the same set with A except that t′ℓ is replaced with t′ℓ′ . A
′ also satisfies

the alternating condition, does not contain t′ℓ, and has absolute sum larger

than or equal to that of A.

(b) If t′ℓ is not labeled as t1 or tj , the adjacent element t′p of t′ℓ in B where

|r(t′ℓ)| + |r(t′p)| is the smallest value in T cannot be t1 or tj . If this is

the case, t′ℓ cannot be removed but t′p is removed in that iteration. If the

65

alternated subset A in B that contains t′ℓ also contain t′p, there is at least

one pair of adjacent elements t′ℓ′ and t′p′ in B that is not contained in A.

Note also that |r(t′ℓ′)|+ |r(t′p′)| ≥ |r(t′ℓ)|+ |r(t′p)|. Let A′ be the same set

as A except that t′ℓ and t′p are replaced with t′ℓ′ and t′p′ . A
′ also satisfies the

alternating condition, does not contain t′ℓ, and has absolute sum larger than

or equal to that of A.

If A does not contain t′p, there is the adjacent element of t′p which is not t′ℓ,

since t′p is not t1 or tj . Let t′ℓ′ be adjacent element of t′p. Then, t′ℓ′ cannot

be contained in A, since A satisfies the alternating condition. Note that

|r(t′ℓ′)| + |r(t′p)| ≥ |r(t′ℓ)| + |r(t′p)|. Let A′ be the same set as A except

that t′ℓ is replaced with t′ℓ′ . A
′ also satisfies alternating condition, does not

contain t′ℓ, and has absolute sum larger than or equal to that of A.

Thus, the theorem is proved.

3.1.4 Numerical Analysis with Improved Multi-Interval Remez Algorithm

This subsection shows the numerical analysis of the improved multi-interval Remez

algorithm for its efficiency and the optimal minimax approximation error.

Maximum Sum Condition:

Table 3.1 shows the number of iterations required to converge to the optimal mini-

max approximate polynomial in the multi-interval Remez algorithm and the improved

multi-interval Remez algorithm. The initial set of reference points is selected uni-

formly in each interval since it is desirable to observe their performances in the worst

case. While selecting new reference points is not unique for each iteration in the multi-

interval Remez algorithm, the improved multi-interval Remez algorithm selects the

new reference points uniquely for each iteration. Thus, when the multi-interval Remez

algorithm is analyzed, the new reference points are randomly selected for each iter-

ation among the possible sets of reference points that satisfy the local extreme value

66

condition and the alternating condition and have the global extreme point. The approx-

imation parameter δ is set in Algorithm 8 as 2−40 and repeat this simulation 100 times.

It shows that the improved multi-interval Remez algorithm is much better to reduce

the iteration number of the Remez algorithm.

Note that the number of iterations depends on the initial set of reference points.

In fact, the uniformly distributed reference points are not desirable as an initial set of

reference points because these reference points are far from the converged reference

points. In fact, the improved multi-interval Remez algorithm with the initialization

method explained in the previous subsection only needs 4∼14 iterations. The overall

running time of the improved multi-interval Remez algorithm with the method in the

previous subsection is 1∼3 seconds by PC with AMD Ryzen Threadripper 1950X

16-core CPU @ 3.40GHz.

Table 3.1: Comparison of iteration numbers between the improved multi-interval Re-

mez algorithm and the multi-interval Remez algorithm for δ = 2−40

degree

of approx.

poly.

modified

Remez algorithm

multi-interval

Remez algorithm

average
standard

deviation
max min

79 28 60.0 9.38 82 41

99 8 17.1 3.34 28 11

119 26 53.4 8.10 79 37

139 39 60.3 4.71 79 48

159 39 72.1 9.71 98 42

179 48 72.3 9.72 105 53

199 56 80.4 7.28 94 60

67

-40

-35

-30

-25

-20

-15

-10

-5

0

40 60 80 100 120

lo
g
(e

rr
o
r)

degree

Han et al.

optimal

(a) Modular reduction function

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

25 30 35 40 45

lo
g
(e

rr
o
r)

degree

Han et al.

optimal

(b) Cosine function with scaling number two

Figure 3.1: Comparison of minimax approximatio error between the previous approx-

imation method and the improved multi-interval Remez algorithm.

Minimax Error:

The optimal minimax approximate polynomials for the modular reduction function

and the scaled cosine function with the scaling number two are obtained. Fig. 6.2(a)

shows the minimax approximation error of the approximate polynomial of the mod-

ular reduction function derived by the improved multi-interval Remez algorithm and

the minimax approximation error of the previous homomorphic modular reduction

method with scaling number zero in [44], compared to the modular reduction func-

tion. That is, let p1(x) be the optimal minimax approximate polynomial of the normod

function and let q1(x) be the approximate polynomial obtained by Han et al.’s method

with scaling number zero when the half-width of approximation region is 2−10. Then,

maxx∈D |p1(x)−normod(x)| and maxx∈D |q1(x)−normod(x)| are compared in Fig.

6.2(a). Note that while the minimax approximation error of the approximate polyno-

mial of the modular reduction function decreases steadily as the degree of the approx-

imate polynomial increases, the minimax approximation error of the previous method

does not decrease when the degree is larger than 76 because of the approximation error

between the modular reduction function and the sine/cosine function.

Fig. 6.2(b) shows the minimax approximation error of the composition of the

68

approximate polynomial of the scaled cosine function with scaling number two de-

rived by the improved multi-interval Remez algorithm and two double angle formu-

las and the minimax approximation error of method in [44], compared to the co-

sine function. That is, let p2(x) be the optimal minimax approximate polynomial of

cos
(
π
2 (x− 1/4)

)
and let q2(x) be the approximate polynomial obtained by Han et

al.’s method with scaling number two when the half-width of approximation region is

2−3. If r(x) = 2x2 − 1, then maxx∈D |r ◦ r ◦ p2(x) − sin(2πx)| and maxx∈D |r ◦

r ◦ q2(x)− sin(2πx)| are compared in Fig. 6.2(b). The proposed method improves the

minimax approximation error by 2.3 bits on average, and by 5 bits at maximum for the

same degree of the approximate polynomial. This improvement leads to a reduction of

1∼2 degrees for the given minimax approximation error.

In fact, the approximate polynomial for the modular reduction function cannot

yet be used in the bootstrapping of the RNS-CKKS scheme because of the huge co-

efficients. It is a very unstable polynomial to evaluate in the RNS-CKKS scheme in

that these large coefficients amplify the approximation error in the message. It is an

interesting open problem to stably use the minimax approximate polynomial of the

modular reduction function in the RNS-CKKS scheme. Instead of using the unstable

minimax approximate polynomial of the modular reduction function, the modular re-

duction function is approximated with a composition of several stable polynomials in

Section 3.2.

3.2 Composite Function Approximation for CKKS Bootstrap-

ping

3.2.1 Numerical Analysis of Message Precision in Bootstrapping with

Improved Multi-Interval Remez Algorithm in SEAL Library

Since the previous researches for the bootstrapping of the RNS-CKKS scheme did not

deal deeply with its message precision, the message precision for the bootstrapping

69

is numerically analyzed with improved multi-interval Remez algorithm of the RNS-

CKKS scheme by changing several parameters: the degree d of the approximate poly-

nomial of the scaled cosine function, the bit-length difference δdiff = log∆boot−log∆

between the default scaling factor and the bootstrapping scaling factor, the bootstrap-

ping scaling factor ∆boot, and the number of the slots. it is assumed that the range

of the real part and the imaginary part of the messages to be bootstrapped is [−1, 1].

The bootstrapping precision is measured as − log2(er + ei)/2, where er and ei are the

average error of the real part and the imaginary part of all slots, respectively.

Numerical analysis in this subsection is conducted in PC with Intel(R) Xeon(R)

Silver 4210 CPU @ 2.20GHz single-threaded, and the SEAL library version 3.5.9

[67] is used. The double angle formula for the cosine function is assumed to be used

twice. The improved multi-interval Remez algorithm is used to obtain the optimal

minimax approximate polynomial in all simulations, rather than polynomial approxi-

mation methods in the previous papers, [16, 20, 44]. The polynomial modulus degree

is set to be 216, the secret key Hamming weight is set to be 192, the value of K is

set to be 25, and the maximum modulus for the ciphertext is set to be 21553, which

satisfies the 128-bit security as in [8]. The COEFFTOSLOT and SLOTTOCOEFF pro-

cedures in [16] with two level consumption are used in all simulations. The scaling

factor management method and the delayed rescaling method in [50] is applied, and

the depth consumption of the polynomial evaluation is optimized by Bossuat et al.’s

evaluation method [8]. The input messages are sampled by the uniform distribution

over the bootstrapping range.

Degree of Approximate Polynomial:

Table 3.2 shows the message precision of the bootstrapping with the improved multi-

interval Remez algorithm when the degree of the approximate polynomial for the

scaled cosine function is changed. The value of log δdiff is 12, log∆boot is 60, and

the number of the slots is 28 in this simulation. The approximation error means the

70

minimax error of the approximate polynomial for the scaled cosine function, and the

bootstrapping error means the average error for each slot when the bootstrapping is

performed with the library. When the scaling factor is changed from the bootstrapping

scaling factor to the default scaling factor, the message and its error are multiplied

by δdiff . Both the bootstrapping error before changing the scaling factor and that after

changing the scaling factor are shown. Although the approximation error continues

to decrease as the degree of the approximate polynomial increases, the bootstrapping

error does not decrease below a certain value. This bound is caused by either the differ-

ence between the modular reduction function and the cosine function or the rescaling

error, depending on the situation. Thus, the message precision cannot be raised in-

finitely by using a high degree approximate polynomial. The actual lower bound of the

bootstrapping error before changing the scaling factor is denoted by emin in this sub-

section, and then the lower bound of the bootstrapping error after changing the scaling

factor is eminδdiff .

Table 3.2: Message precision of the bootstrapping with the improved multi-interval

Remez algorithm for various degrees of the approximate polynomials

degree

of approx.

poly.

approximation error

by the optimal minimax

polynomial

bootstrapping error message

precision

(bits)

before changing

scaling factor

emin

after changing

scaling factor

eminδdiff

60 1.77× 10−11 2.83× 10−10 1.16× 10−6 19.7

62 5.26× 10−13 8.50× 10−12 3.48× 10−8 24.8

64 3.07× 10−14 6.17× 10−13 2.53× 10−9 28.6

66 1.56× 10−15 3.76× 10−13 1.54× 10−9 29.2

68 6.59× 10−17 3.76× 10−13 1.54× 10−9 29.2

71

Value of δdiff:

The bit length difference between the default scaling factor ∆ and the bootstrapping

scaling factor ∆boot, which will be denoted as δdiff = log∆boot − log∆, is closely

related to the message precision. The value of δdiff is usually chosen as 10 bits to lower

the difference between the modular reduction function and the sine/cosine function

since the half-width of each interval in the approximation region is 2−δdiff .

It causes loss to the message precision of the bootstrapping. In the bootstrapping

procedure, it is required to divide the message by 2δdiff so that it can be included in the

approximation region and multiply 2δdiff at the end of the bootstrapping. If the precision

error until multiplying 2δdiff is e, the final error becomes 2δdiffe. e cannot be reduced

below a certain error value because of the rescaling error dealt with in the previous

subsection. If this lower bound is denoted as eb = 2−δb , the message precision will be

δb − δdiff .

Because δdiff has a significant effect on both the message precision of the boot-

strapping and the message precision of the intended operation in the application, it is

desirable to reduce the δdiff to prevent this precision loss. However, the difference be-

tween the sine/cosine function and the modular reduction function is somewhat domi-

nant, and this difference becomes more dominant as δdiff increases.

Table 3.3 shows the maximum message precision of the bootstrapping with im-

proved multi-interval Remez algorithm for various δdiff . The degree of the approximate

polynomials for each case is set to be large enough to reach the minimum approximate

error emin, and the scaling factor and the number of slots are fixed to be 60 and 28,

respectively.

The bootstrapping error after changing the scaling factor is eminδdiff . As δdiff de-

creases, emin increases rapidly so that the eminδdiff grows. This is because the dif-

ference between the modular reduction function and the cosine function becomes

larger when the approximation region is enlarged. It can be naively expected that the

bootstrapping error can be decreased infinitely when log δdiff is increased, because

72

|ϵ − sin ϵ| = O(ϵ3). However, if the δdiff is larger than 16, the value of emin does not

decrease, and thus eminδdiff increases. This lower bound of emin is caused by the rescal-

ing error and the homomorphic linear transform in the bootstrapping. This bound of

emin is related to the bootstrapping scaling factor ∆boot and the number of slots, which

will be dealt with in the following paragraphs.

Note that it is not required to use the scaling factor ∆boot/δdiff after bootstrapping.

If a scaling factor 2−ℓ∆boot/δdiff is used, the bootstrapping error is amplified by ℓ-bit

and the range of the message becomes [−2ℓ, 2ℓ]. Indeed, there are many cases that

large range of the message is more important than low bootstrapping error, and thus

users can control the scaling factor after bootstrapping concerning the range and the

bootstrapping error they want to use.

Table 3.3: Message precision of the bootstrapping with the improved multi-interval

Remez algorithm for various values of log δdiff

log δdiff
bootstrapping error message

precision

(bits)

before changing

scaling factor

emin

after changing

scaling factor

eminδdiff

3 2.55× 10−5 2.04× 10−4 12.3

7 7.45× 10−9 9.53× 10−7 20.0

10 1.32× 10−11 1.35× 10−8 26.1

11 1.64× 10−12 3.36× 10−9 28.1

12 3.76× 10−13 1.54× 10−9 29.2

13 2.88× 10−13 2.36× 10−9 28.7

14 2.77× 10−13 4.54× 10−9 27.7

73

Bootstrapping Scaling Factor:

Table 3.4 shows the maximum message precision for various bootstrapping scaling

factors when the number of slots is 28. The degree of the approximate polynomial and

the value of δdiff are set to reach the lower bound of emin for each bootstrapping scaling

factor and to minimize the value of eminδdiff , which determines the actual message

precision of the bootstrapping. The second column in Table 3.4 shows the lower bound

of emin, the third column shows the value of δdiff which minimizes eminδdiff , and the last

column shows the maximum message precision with the corresponding bootstrapping

scaling factor.

The maximum message precision of the bootstrapping in the RNS-CKKS scheme

decreases as the bootstrapping scaling factor decreases. This means that it is required

to use as large a bootstrapping scaling factor as possible when precise bootstrapping

is needed. Since the bootstrapping scaling factor is related to the multiplicative depth,

this gives the trade-off between the depth and the precision.

Note that the bit-length of scaling factors can be different for each level, and thus

it is required to use the same scaling factor throughout the bootstrapping. This fact is

used in Bossuat et al.’s work [8].

Number of Slots:

Table 3.5 shows the maximum message precision for various numbers of slots when

the bootstrapping scaling factor is 60, the maximum scaling factor. The degree of the

approximate polynomials and δdiff are set to the same as Table 3.4. The error analysis

in [20] shows that the approximation error in SLOTTOCOEFF step is amplified more

as more slots are used. The result of Table 3.5 corresponds to this error analysis. This

gives the trade-off between the number of slots and the message precision. Note that

all precision is less than 32-bit precision. These precision results will be improved

in the next subsection by using the composite function method with the inverse sine

function.

74

Table 3.4: Maximum message precision of the bootstrapping with the improved multi-

interval Remez algorithm for various bootstrapping scaling factors

log∆boot log δdiff
bootstrapping error message

precision

(bits)

before changing

scaling factor

emin

after changing

scaling factor

eminδdiff

50 9 3.30× 10−10 1.69× 10−7 22.5

54 10 2.21× 10−11 2.27× 10−8 25.4

57 11 2.88× 10−12 5.90× 10−9 27.3

60 12 3.71× 10−13 1.52× 10−9 29.3

Note that log δdiff is not high when the number of slots is large, although this

log δdiff value does not ensure the high precision as the difference between the modular

reduction function and the sine/cosine function is rather high. This phenomenon is

because the coefficients of the message polynomial is very small when the number of

slots is large as discussed in [8]. Thus, the approximation region for the cosine function

can be generally much less than 1/δdiff .

Table 3.5: Maximum message precision of the bootstrapping with improved multi-

interval Remez algorithm for various numbers of slots

log n
degree

of approx.

poly.

log δdiff
bootstrapping error message

precision

(bits)

remaining

modulus

running

time (s)before changing

scaling factor

emin

after changing

scaling factor

eminδdiff

5 67 14 4.52× 10−14 7.42× 10−10 30.3 653 91.9

8 66 12 3.71× 10−13 1.52× 10−9 29.3 653 133.6

10 66 11 1.34× 10−12 2.75× 10−9 28.4 653 189.3

12 66 9 8.46× 10−12 4.33× 10−9 27.8 653 287.0

14 66 8 2.46× 10−11 6.31× 10−9 27.2 653 461.0

75

At first glance, it seems to be the best method to use the optimal minimax approx-

imate polynomials for the modular reduction function. However, it can be seen that

some of the coefficients of the optimal minimax approximate polynomials with regard

to the Chebyshev basis are so large that the amplified approximate errors by these co-

efficients totally distort the messages in the ciphertext. On the other hand, the optimal

minimax approximate polynomial coefficients of the scaled sine/cosine functions with

more than one scale number are small enough not to distort the messages. Thus, the ap-

proximation of the modular reduction function by the sine/cosine function is essential

for the correctness of the RNS-CKKS scheme.

When one adhere to the approximation by the scaled sine/cosine function, the dif-

ference of the modular reduction function and the sine/cosine function is a crucial

obstacle, which is mentioned as an important open problem in Han et al.’s paper [44].

This difference is sharply increased as the approximation region of the modular reduc-

tion function becomes longer, and this prevents me from reducing δdiff .

3.2.2 Composite Function Approximation of Modular Reduction Func-

tion by Inverse Sine Function

I propose a simple and novel method for solving this problem, which is called the

composite function approximation method. In short, the optimal minimax approximate

polynomial of the sine/cosine function is composed with the approximate polynomial

of the inverse sine function. It is easy to check that if there are two functions f and g

for 0 < ϵ < 1
4 as

f :

∞⋃
k=−∞

[2π(k − ϵ), 2π(k + ϵ)]→ [− sin 2πϵ, sin 2πϵ], f(x) = sinx

g : [− sin 2πϵ, sin 2πϵ]→ [−2πϵ, 2πϵ], g(x) = arcsinx,

then the following equation holds as

x− 2π · round
(x

2π

)
= (g ◦ f)(x), x ∈

∞⋃
k=−∞

[2π(k − ϵ), 2π(k + ϵ)].

76

If t = x
2π is substituted, then

normod(t) =
1

2π
(g ◦ f)(2πt), t ∈

∞⋃
k=−∞

[k − ϵ, k + ϵ].

If both f and g are approximated with the optimal minimax approximate polyno-

mials derived by the improved multi-interval Remez algorithm, the modular reduction

function can be approximated with any small approximate error by the composition

of f and g. Note that g(x) can be approximated very well with some approximate

polynomials of a small degree since the domain of g(x) is only one interval. Indeed,

the cosine approximation with double-angle formula in [44] can be regarded as the

special case of the proposed composite function approximation, in that they approxi-

mate g(x) with x, that is, the identity function. Note that the cosine function in [44] is

merely a parallel shift of the sine function. Thus, it is said that they approximate the

sine function instead of the cosine function.

The sine function f was evaluated by composing the scaled cosine function and

several double-angle formulas in [44]. If the number of the used double-angle formula

is ℓ, then the functions h1, h2, and h3 are defined as

h1(x) = cos

(
2π

2ℓ

(
x− 1

4

))
, h2(x) = 2x2 − 1, h3(x) =

1

2π
arcsin(x).

Then, the normod function, which is equivalent to the modular reduction function, can

be represented as

normod(x) = h3 ◦ hℓ2 ◦ h1(x).

Thus, if h̃1 is the optimal minimax approximate polynomial of h1 and h̃3 is that of h3,

normod function can be approximated by the composition of several polynoimals as

normod(x) ≈ h̃3 ◦ hℓ2 ◦ h̃1(x).

With this method, the modular reduction function can be approximated by the com-

position of several polynomials at arbitrary precision. This enables me to reduce δdiff

to 3 and reach the message precision of δb−δdiff , which is the best precision mentioned

77

in the previous subsection. The next subsection shows that this high precision can be

indeed reached in the SEAL library.

3.2.3 Simulation Result with SEAL Library

This subsection demonstrates that the composite function method can improve the

message precision in the RNS-CKKS scheme. The simulation environment is the same

as the simulation in Subsection 3.2.1.

Table 3.6 shows that the value of emin with the composite function method does

not change. The degrees of approximate polynomials of the scaled cosine function and

inverse sine function are set to minimize emin, and these degrees are shown in Table

3.6. In contrast to the result in Table 3.3, all of the values of emin in Table 3.6 are almost

the same as the minimum value of emin in Table 3.3 regardless of δdiff . Since emin is

fixed with the minimum value, the bootstrapping precision, which is determined by

eminδdiff , is increased as δdiff decreases.

Table 3.6: Maximum message precision of the bootstrapping with improved multi-

interval Remez algorithm and composite function method for various δdiff

log δdiff
bootstrapping error message

precision

(bits)

before changing

scaling factor

emin

after changing

scaling factor

eminδdiff

3 2.93× 10−13 2.34× 10−12 38.6

7 2.90× 10−13 3.71× 10−11 34.6

10 2.85× 10−13 2.92× 10−10 31.7

11 3.21× 10−13 6.58× 10−10 30.5

12 2.88× 10−13 1.18× 10−9 29.7

Table 3.7 shows the maximum precision of the bootstrapping with the improved

78

multi-interval Remez algorithm and composite function method for various slots. The

δdiff value and log∆diff value are set to be 3 and 60, respectively. The maximum mes-

sage precision is increased by 5.4-10.2 bits and becomes 32.6-40.5 bit precision. All of

the message precision is larger than the 32-bit precision. Thus, the bootstrapping of the

RNS-CKKS scheme is made more reliable enough to be used in practical applications.

The half-width of the approximation region has to be 2−δdiff when the range of real

and imaginary part of the messages is assumed to be the same as that of the coeffi-

cients of the message polynomial. However, when the messages are sampled from the

uniform distribution over the range, the coefficients are significantly reduced so that

the approximation region may be reduced as discussed in [8]. ϵ denotes the half-width

of each approximation region for each number of slots, and this value is numerically

set to have no effect on the bootstrapping. If one wants to be conservative on the dis-

tribution of the message and the range of the coefficients, they may set ϵ to be 2−δdiff .

Although the inverse sine approximation procedure is added, the overall running

time of the bootstrapping is similar or reduced. Note that the more depth level left in

a ciphertext, the more time homomorphic evaluation takes. Since more depth level is

consumed in the inverse sine approximation procedure, the ciphertexts in the SLOTTO-

COEFF procedure have less remaining depth level. Thus, the running time of the SLOT-

TOCOEFF procedure in the new bootstrapping is less than that in the original one. The

remaining modulus bit length is reduced because of the additional depth consumption

of the inverse sine approximation procedure. This additional depth consumption can

be seen as a trade-off for the high precision.

79

Ta
bl

e
3.

7:
M

ax
im

um
m

es
sa

ge
pr

ec
is

io
n

of
th

e
bo

ot
st

ra
pp

in
g

w
ith

co
m

po
si

te
fu

nc
tio

n
m

et
ho

d
fo

rv
ar

io
us

nu
m

be
ro

fs
lo

ts

lo
g
n

lo
g
1
/
ϵ

de
g.

of

ap
p.

po
ly

.

of
co

s.

de
g.

of

ap
p.

po
ly

.

of
in

v.

si
ne

bo
ot

st
ra

pp
in

g
er

ro
r

m
es

sa
ge

pr
ec

i-

si
on

(b
its

)

re
m

a-

in
in

g

m
od

u-

lu
s

ru
n-

ni
ng

tim
e

(s
)

be
fo

re
ch

an
gi

ng

sc
al

in
g

fa
ct

or

e m
in

af
te

rc
ha

ng
in

g

sc
al

in
g

fa
ct

or

e m
in
δ d

iff

5
4

71
15

7
.9
3
×
10

−
1
4

6.
34
×
10

−
1
3

40
.5

47
3

94
.7

8
6

70
9

2
.9
3
×
10

−
1
3

2.
34
×
10

−
1
2

38
.6

47
3

13
3.

2

10
9

69
7

1
.1
4
×
10

−
1
2

9.
13
×
10

−
1
2

36
.7

53
3

18
8.

9

12
10

69
5

4
.8
4
×
10

−
1
2

3.
87
×
10

−
1
1

34
.5

53
3

27
3.

9

14
10

68
5

1
.9
7
×
10

−
1
1

1.
53
×
10

−
1
0

32
.6

53
3

45
1.

5

80

Chapter 4

PRIVACY-PRESERVING DEEP NEURAL NETWORK

The privacy-preserving issue is one of the most practical problems for machine learn-

ing recently. Fully homomorphic encryption (FHE) is the most appropriate tool for

privacy-preserving machine learning (PPML) to ensure strong security in the crypto-

graphic sense and satisfy the succinctness of communication. FHE is an encryption

scheme in which ciphertexts can be processed with any deep Boolean or arithmetic

circuits without access to the data. The security of FHE is usually defined as the indis-

tinguishability under chosen-plaintext attack (IND-CPA) security, which is a standard

cryptographic security definition. If the client sends the public keys and encrypted

data with an FHE scheme to the PPML server, the server can perform all the computa-

tions required in the desired service before sending the encrypted output to the client.

Therefore, the application of FHEs to PPML has been extensively researched before

now.

The most successful PPML model on homomorphically encrypted data prior to

now was constructed using the Fast Fully Homomorphic Encryption over the Torus

homomorphic encryption scheme (TFHE) by Lou and Jiang [60], but it used the lev-

eled version of the TFHE scheme without bootstrapping rather than an FHE version.

In other words, they chose in advance the parameters that can be used to perform

the desired network without bootstrapping. If it is desirable to design a deeper neural

81

network with the leveled homomorphic encryption scheme, impractically large param-

eters must be used, which causes a heavy runtime or memory overhead. Furthermore,

because the packing technique cannot be applied easily in the TFHE scheme, it can

cause additional inefficiency with regard to the running time and memory overhead if

it is desirable to process many data simultaneously. Thus, it is desirable to use FHE

with moderate parameters and bootstrapping, which naturally supports the packing

technique in the PPML model.

Applicable FHE schemes with this property are word-wise FHE schemes, such as

the Brakerski-Fan-Vercauteren (BFV) scheme [33] or Cheon-Kim-Kim-Song (CKKS)

scheme [19, 21]. In particular, the CKKS scheme has gained considerable interest as a

suitable tool for PPML implementation because it can deal with encrypted real num-

bers naturally. However, these schemes support only homomorphic arithmetic opera-

tions such as homomorphic addition and homomorphic multiplication. Unfortunately,

popular activation functions are usually non-arithmetic functions, such as ReLU, sig-

moid, leaky ReLU, and ELU. Thus, these activation functions cannot be directly eval-

uated using a word-wise FHE scheme. When previous machine learning models using

FHE replaced the non-arithmetic activation function with simple polynomials, these

models were not proven to show high accuracy for advanced classification tasks be-

yond the MNIST dataset.

Although many machine learning models require multiple deep layers for high

accuracy, there is no choice but to use a small number of layers in previous FHE-

based deep learning models until the fast and accurate bootstrapping techniques of

FHE schemes have very recently become available. The bootstrapping technique trans-

forms a ciphertext that cannot further support homomorphic multiplication into a fresh

ciphertext by extending the levels of the ciphertext [20, 35]. However, the bootstrap-

ping technique has been actively improved with regard to algorithmic time complexity

[8, 16, 44], precision [56], and implementation [48], making bootstrapping more prac-

tical. The PPML model with many layers must be implemented using a precise and

82

efficient bootstrapping technique in the FHE. In addition, because the training process

is generally quite expensive as it requires many images and a large running time, it

is more desirable to use the pre-trained parameters trained for the original standard

plaintext machine learning model without any additional training process.

For the first time, the ResNet-20 model for the CIFAR-10 dataset [53] is imple-

mented using the residue number system CKKS (RNS-CKKS) [21] FHE scheme,

which is a variant of the CKKS scheme using the SEAL library 3.6.1 version [68],

one of the most reliable libraries implementing the RNS-CKKS scheme. In addition,

bootstrapping of the RNS-CKKS scheme is implemented in the SEAL library accord-

ing to [8, 16, 20, 44, 56] to support a large number of homomorphic operations for a

deep neural network, as the SEAL library does not support the bootstrapping opera-

tion. ResNets are historic convolutional neural network (CNN) models that enable a

very deep neural network with high accuracy for complex datasets such as CIFAR-10

and ImageNet. Many high-performance methods for image classification are based on

ResNets because these models can achieve sufficiently high classification accuracy by

stacking more layers. The ReLU function is first applied based on the composition of

minimax approximate polynomials [57] to the encrypted data. Using the results, the

possibility of applying FHE with bootstrapping to the standard deep machine learning

model is shown by implementing ResNet-20 over the RNS-CKKS scheme. The im-

plemented bootstrapping can support a sufficiently high precision to successfully use

bootstrapping in ResNet-20 with the RNS-CKKS scheme for the CIFAR-10 dataset.

Boemer et al. [5] pointed out that all existing PPML models based on FHE or

multi-party computation (MPC) are vulnerable to model-extraction attacks. One of

the reasons for this problem is that previous PPML methods with the FHE scheme

do not evaluate Softmax with the FHE scheme. It simply sends the result before the

Softmax function, and then it is assumed that the client computes Softmax by itself.

Thus, information about the model can be extracted with many input-output pairs to

the client. It is desirable for the server to evaluate the Softmax function with FHE. The

83

Softmax function is first implemented in the machine learning model using the method

in [19], and this is the first implementation of a privacy-preserving machine learning

model based on FHE mitigating the model extraction attack.

The pretrained model parameters is prepared by training the original ResNet-20

model with the CIFAR-10 plaintext dataset and perform privacy-preserving ResNet-

20 with these plaintext pretrained model parameters and encrypted input images. It

is found that the inference result of the proposed privacy-preserving ResNet-20 is

98.43% identical to that of the original ResNet-20. It achieves 92.43%±2.65% classi-

fication accuracy, which is close to the original accuracy of 91.89%. Thus, it is verified

that the proposed implemented PPML model successfully performs ResNet-20 on en-

crypted data, even with the model parameters trained for the plaintext model.

HE-friendly Network

Some previous works re-designed the machine learning model to be compatible with

the HE scheme by replacing the standard activation functions with simple nonlinear

polynomials [2, 26, 30, 37, 45], called the HE-friendly network. Although the highest

classification accuracy of the HE-friendly CNN with the simple polynomial activa-

tion function implemented by word-wise HE is 91.5% for the CIFAR-10 dataset [45],

a better PPML machine learning model has not been demonstrated until now. This

suggests that these machine learning models are usually successful only for a simple

dataset and cannot achieve sufficiently high accuracy for an advanced dataset. Be-

cause the choice of activation functions is sensitive in the advanced machine learning

model, it may not be desirable to replace the standard and famous activation functions

with simple arithmetic functions. Moreover, an additional pre-training process must

be conducted before the PPML service is provided. Because the training process is

quite time-consuming and requires a large amount of data, it is preferable to use the

standard model parameters of ResNets and VGGNets trained for plaintext data when

the privacy of the testing dataset has to be preserved.

84

Hybrid Model with FHE and MPC

Some previous studies evaluated non-arithmetic activation functions using the multi-

party computation technique to implement the standard well-known machine learn-

ing model that preserves privacy [5–7, 49, 64]. Although this method can accurately

evaluate even non-arithmetic functions, the privacy of the model information can be

disclosed. In other words, the client should know the activation function used in the

model, which is undesirable for PPML servers. In addition, because communication

with clients is not succinct, clients must be involved in the computation, which is not

desirable for clients.

PPML with Leveled Homomorphic Encryption

Some studies have used a leveled homomorphic encryption scheme to implement a

standard machine learning model. A representative example is the work of Lou and

Jiang [60], which implements ResNet-20 for the CIFAR-10 dataset or ResNet-18 for

the ImageNet dataset with a leveled version of the TFHE scheme. When using a lev-

eled homomorphic encryption scheme, parameters should be set capable of depth con-

sumption for the desired circuit. Thus, to homomorphically evaluate deeper circuits,

large parameters must be set. This property of the leveled homomorphic encryption

scheme makes it difficult to evaluate a more deep learning model because the required

parameters may be impractical to the general computing environment. Furthermore,

the running time of each homomorphic encryption becomes larger, and thus, the total

running time can be asymptotically larger than the linear time with the circuit depth.

However, the FHE scheme uses practical parameters with a fixed size regardless of

the circuit depth, and the total running time can be linearly proportional to the circuit

depth. Therefore, for practical deep-learning models with large circuit depths, the im-

plementation of a deep-learning model using the FHE scheme is an important research

topic.

85

4.1 Building Blocks for Privacy-Preserving ResNet Models

To implement the ResNet-20 model with the RNS-CKKS scheme, three new points

must be considered: binary tree-based implementation for polynomial evaluation, nat-

ural implementation for the strided convolution, and implementation of the Softmax

function.

4.1.1 Binary Tree Based Implementation of Polynomial Evaluation

For a more intuitive and systematic implementation, the baby-step giant-step poly-

nomial evaluation algorithm is modified using a binary tree data structure. There is a

precomputation process for recursively dividing by the division algorithm for the poly-

nomial, which is shown in Algorithm 10. The output of DividePoly is a binary tree

useful in the homomorphic polynomial evaluation process.

Algorithm 11 shows the binary tree-based baby-step giant-step polynomial evalu-

ation algorithm. For optimal depth consumption, the leftmost leaf node may be further

divided as by Bossuat et al.[8] in lines 3–13. The giant step degree is generalized as an

arbitrary integer rather than a power-of-two integer, as in [55].

Then, Lines 15–18 homomorphically evaluate the polynomial in the non-leaf nodes

and leaf nodes. Tn(x) denotes the nth Chebyshev polynomial. The Chebyshev poly-

nomials have the following recursive formula:

Tm+n(x)− Tm−n(x) = 2Tm(x)Tn(x)

, where m ≥ n. When the Chebyshev polynomials are homomorphically evaluated in

lines 15 and 17, the formula m = n is used, where T0(x) is 1. When other Chebyshev

polynomials are homomorphically evaluated in line 16, m is set as the largest power-

of-two integer less than the degree, and n as the difference between the degree and

m.

Lines 19–26 reduce the binary tree until it has only the root node by homomorphi-

cally evaluating the polynomials for non-leaf nodes with two leaf nodes. This imple-

86

mentation is essentially the same as the method in [8]; however, it is easier to design

the implementation for the algorithm.

Lee et al. [55] suggested a method for polynomials with only odd-degree terms.

They observed that, if k is even, there is no need to evaluate the Chebyshev polynomi-

als with an even degree that is not a power-of-two integer in Line 16. If OddPolyEval

is denoted rather than PolyEval in the following subsection, these polynomial evalu-

ation processes are omitted.

Algorithm 10 DividePoly(p; k)

Input : A degree-d polynomial p, a giant step parameter k

Output: A binary tree P with leaf having polynomials

if d < k then
return a binary tree P with a single root node having p

else
Find m such that k · 2m−1 < d ≤ k · 2m.

Generate a binary tree P with a single root node having Tk·2m−1 .

Divide p by Tk·2m−1 to obtain the quotient q and the remainder r.

Generate a binary tree Q using DividePoly(q; k).

Generate a binary tree R using DividePoly(r; k).

Append Q,R to the left child and the right child of the root in P , respectively.

return P

end

4.1.2 Strided Convolution

Juvekar et al. [49] proposed an efficient convolution operation for a packing struc-

ture in an FHE scheme. They also proposed a strided convolution operation on the

homomorphic encryption scheme by decomposing the strided convolution into a sum

of nonstrided convolutions. However, their proposed strided convolution operation is

not natural for the packing structure in the RNS-CKKS scheme. Furthermore, the fol-

87

Algorithm 11 PolyEval(ct, p; k)

Input : A ciphertext ct = Enc(x), a degree-d polynomial p

Output: A ciphertext of p(x)

Generate a binary tree P using DividePoly(p; k).

l← ⌈log k⌉ − 1

if P is a full binary tree and the leftmost leaf polynomial has degree more than 2l then
p0 ← the leftmost leaf polynomial

V ← the leftmost leaf node

while the polynomial in V has degree more than 2l do
Replace p0 with T2l in V .

Divide p0 by T2l to obtain the quotient q and the remainder r.

Append q, r to the left child and the right child of V .

V ← the left child of V

l← l − 1

end

end

l← ⌈log k⌉ − 1

Homomorphically evaluate T2(x), T4(x), · · · , T2l(x) using T2n(x) = 2Tn(x)
2 − 1.

Homomorphically evaluate other Tn(x) for 3 ≤ n ≤ k.

Homomorphically evaluate T2k(x), · · · , T2m−1·k(x).

Evaluate all of leaf node polynomials using the pre-computed ciphertexts.

while P has only a root node do
V ← one of the non-leaf nodes that have two leaf child

ctT ← ciphertext for the polynomial (T (x)) in V (pre-computed in Line 15, 17)

ctq ← ciphertext for the polynomial (q(x)) in left child of V

ctr ← ciphertext for the polynomial (r(x)) in right child of V

ctT ← ctq ⊗ ctT ⊕ ctr

Replace T (x) with q(x)T (x) + r(x) in node V and remove the childs of V

end

return ctp for input polynomial p(x)

88

(a) Plaintext

(b) Ciphertext

Figure 4.1: Stride-2 convolution.

lowing operations after their strided convolution are difficult to perform on the RNS-

CKKS scheme.

I propose an efficient and natural method for strided convolution in the RNS-CKKS

scheme. Instead of decomposing the strided convolution, the output of the strided con-

volution is regared as part of the non-strided convolution, as in fact the output data

for the non-strided convolution includes the output data for the strided convolution. If

non-strided convolution is performed, there are some gaps between the required output

data for the strided convolution, which is not completely uniform in the regular sense.

Thus, after performing the non-strided convolution, homomorphic scalar multiplica-

tion is performed with a window kernel that reflects these gaps. The slot structure of

the output data of the strided convolution in the output slots of the nonstrided convo-

lution is shown in Fig. 4.1.

It is also found that this slot structure with regular gaps is compatible with the

following ReLU functions, non-strided convolution operations, and even strided con-

volution operations. Because the ReLU function is evaluated component-wise, this slot

structure does not consider the ReLU function. The non-strided convolution to the slot

structure after the proposed strided convolution can be performed with Gazelle’s con-

89

volution method [49], with all rotation steps doubled. Additional strided convolution

to the slot structure after the strided convolution can be performed with the non-strided

convolution for this slot structure, followed by additional filtering. With these convo-

lution methods, non-strided and strided convolution operations can be performed, even

after several strided convolutions.

In ResNet-20, convolution with a stride of one or two is only be used, and thus

it is assumed that the strided convolution is convolution with stride two. Each con-

volution operation should be given an additional parameter slotstr, which represents

the slot structure for meaningful data in the input ciphertext of each convolution. The

parameter slotstr is stored in each ciphertext for each channel and initialized with

zero, and it is added by one only when the strided convolution is performed. If the

non-strided convolution is performed, Gazelle’s convolution method is applied with

the steps multiplied by 2slotstr. If the strided convolution is performed, the same pro-

cedure is performed as the non-strided convolution, except for the following filtering.

A specific algorithm for the strided convolution is presented in Subsection 4.2.3.

4.1.3 Approximation for Softmax

The inverse function of the Softmax function is unstable, that is, if one tries to recover

the inputs to Softmax from the erroneous Softmax outputs, the recovered input may

be quite different because of the amplification of noise in the output. Various inher-

ent noises in homomorphic computations occur in the RNS-CKKS scheme, and thus,

the input to Softmax will be difficult to recover. Thus, the Softmax function is im-

plemented in the proposed privacy-preserving ResNet-20 implementation for security

against the model extraction attack. The Softmax function is exi/
∑T−1

j=0 exj for each

i = 0, · · · , T − 1, where T denotes the number of classification types. Because the

Softmax function was not implemented in previous works for the PPML with homo-

morphic encryption, the approximation method for the Softmax function should be

newly designed. There are two non-arithmetic operations in the Softmax function: an

90

exponential function and an inverse function.

Different approximation techniques is used for these non-arithmetic functions be-

cause of the differences in the characteristics of the input values. The absolute input

values of the exponential function are dozens, but the output values of that function

are unstable. However, the input values of the inverse function are unstable because

each scale of the input value is different from the input value. Based on these charac-

teristics, the following approximation methods are chosen, and the entire algorithm is

suggested in Subsection 4.2.7.

Exponential Function

If the exponential functions are simply approximated on a desired interval, the ap-

proximation may not be accurate, because the scales of the output for the exponential

function can be too varied. Assume that it is required to approximate the exponential

function ex in [−B,B]. Then, the function is regarded as (ex/B)B . Note that ey can

be approximated in [−1, 1] when y = x/B is set, and the exponential function in this

interval is easy to approximate. Thus, the exponential function in [−1, 1] is approxi-

mated using the least-squares method, and it is found that the approximate polynomial

with degree 12 can approximate sufficiently precisely. Then, when the exponential

function is homomorphically evaluated in [−B,B], the input is divided by B, evaluate

the approximate polynomial for the exponential function, and exponentiate it with B.

If B is set as a power-of-two integer, the exponentiation with B can be implemented

by repeated squaring.

Inverse Function

Although the exponential function has a range with various scales, the inverse function

in the Softmax function has a domain with various scales. This characteristic makes

the approximation of the inverse function difficult with ordinary polynomial approx-

imation, even with some scaling of the input. In this case, the Goldschmidt division

91

method is appropriate for evaluating the inverse function of the input with various

scales [23, 38]. In the Goldschmidt division method, the following formula is used,

1− x2
n

1− x
=

n−1∏
i=0

(1 + x2
i
).

If |x| < 1, where the left term of the above formula converges to 1/(1 − x) quickly,

even with a small n. When y = 1 − x is substituted, the inverse function 1/y can be

approximated as
∏n−1

i=0 (1 + (1− y)2
i
), when 0 < y < 2. Note that, even if y is close

to zero, the approximated inverse function value is amplified to a very large number.

This characteristic cannot be satisfied by using ordinary polynomial approximation

methods. This characteristic can be used to reserve the role of the Softmax function in

generating a one-hot vector, even when the Softmax function is approximated.

When the range of the input is (0, 2R], the inverse function is considered in the

range of 1/R·1/(y/R). In other words, the input value is multiplied by 1/R, evaluated

by the inverse function with the Goldschmidt division method, and multiplied by 1/R

again. Note that R is a very large number, and the input may be far less than R. Even

if y/R is very close to zero, the Goldschmidt method stably evaluates the inverse

function, as previously mentioned.

Gumbel Softmax Function

If the input value of the Softmax function is large, the bound B for the range of the

exponential function should be so large that the output value exceeds the capacity

of the homomorphic encryption scheme. If the value of R is set to a fixed value for

sufficient precision of the inverse function, the input value of the inverse function can

be larger than 2R. In this case, the Gumbel Softmax technique can be used, which

evaluates the following function instead of the Softmax function:

exi/λ∑T−1
j=0 exj/λ

,

where λ is an additional parameter. If the Gumbel Softmax function is used, the output

vector is still similar to the one-hot vector, and thus the model extraction attack can be

92

sufficiently mitigated. Furthermore, the range of the exponential function is reduced

from B to B1/λ and the input of the inverse function is included in (0, 2R].

4.1.4 Position of Bootstrapping

Because the bootstrapping operation is first used in a machine learning model, it is re-

quired to consider performing the bootstrapping operation in the middle of the ResNet-

20 model. In this subsection, several factors affecting the efficiency of the bootstrap-

ping operation are analyzed.

The key-switching operation is the heaviest operation in the homomorphic op-

erations in the RNS-CKKS scheme; thus, the nonscalar multiplication, rotation, and

complex conjugation requiring the key-switching operation are far heavier than the

addition and scalar multiplication. Therefore, the number of key-switching operations

roughly determines the total number of operations.

There is a major additional factor affecting the total number of operations and the

level of ciphertext for the key-switching operation. The key-switching operation in-

cludes the decomposing, multi-sum, and mod-down operations. While the mod-down

operation is linear with the level of the input ciphertext, the decomposing operation and

multi-sum operation are quadratic with the level of the input ciphertext. Because the

most time-consuming operation among the three procedures is the decomposing op-

eration, the key-switching operation is a quadratic function with level. This quadratic

property shows the large effect of the ciphertext level on the key-switching operation

and total number of operations.

This quadratic property is numerically confirmed using the SEAL library, as shown

in Fig. 4.2. Fig. 4.2 shows the running time of the rotation operation for the various

levels of the input ciphertext, where the most part of the rotation operation is the key-

switching operation, and it also shows the graph of the square root of the running time

to represent the quadratic property more clearly. The square root of the running time

is almost a linear function with level, which confirms the quadratic property. Thus, the

93

sum of the squared level of each input ciphertext of each key-switching operation can

be simulated much more closely than the number of key-switching operations.

Although the most time-consuming operation in ResNet-20 is the bootstrapping

operation, the level of the ciphertexts for each key-switching operation in the boot-

strapping is fixed, regardless of the structure of ResNet-20. Thus, it is desirable to

compare the number of key-switching operations of the convolution and ReLU func-

tions. it is noted that the number of key-switching operations in the convolution oper-

ation is significantly higher than that in the ReLU function because of the numerous

rotation operations in the convolution operation.

This suggests that it is desirable to perform bootstrapping immediately after the

convolution operation. Then, the convolution operation is performed at the lowest level

of the ciphertext, and many rotation operations in the convolution operation are signif-

icantly reduced. A numerical comparison of this analysis is presented in Section 5.4.

4.2 Implementation Details of ResNet-20 on RNS-CKKS

4.2.1 Structure

Fig. 4.3 shows the structure of the ResNet-20 model and Table 4.1 shows the speci-

fication of the ResNet-20. With this structure, the proposed implemented structure is

designed for ResNet-20 using the RNS-CKKS scheme, as shown in Fig. 4.4, where

it consists of convolution (Conv), batch normalization (BN), ReLU, bootstrapping

(Boot), average pooling (AP), fully connected layer (FC), and Softmax. This model

is virtually identical to the original ResNet-20 model, except that bootstrapping proce-

dures are added. These procedures are described in the following subsections.

94

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

R
u

n
n

in
g

 t
im

e
(s

)

Ciphertext modulus (level + 1)

(a) Trot-(ℓ+ 1) graph

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

S
q

u
ar

e
ro

o
t

o
f

ru
n

n
in

g
 t

im
e

Ciphertext modulus (level + 1)

(b)
√
Trot-(ℓ+ 1) graph

Figure 4.2: Running time for the rotation operation for various number of ciphertext

modulus with N = 216 (a) Trot-(ℓ+ 1) graph (b)
√
Trot-(ℓ+ 1) graph.

95

Table 4.1: The specification of the ResNet-20 (CIFAR-10)

Layer Input Size #Inputs Filter Size #Filters Output Size #Outputs

Conv1 32× 32 3 3× 3 16 32× 32 16

Conv2

2-1 32× 32 16 3× 3 16 32× 32 16

2-2 32× 32 16 3× 3 16 32× 32 16

2-3 32× 32 16 3× 3 16 32× 32 16

Conv3

3-1-1 32× 32 16 3× 3 32 16× 16 32

3-1-2 16× 16 32 3× 3 32 16× 16 32

3-1-s 32× 32 16 1× 1 32 16× 16 32

3-2 16× 16 32 3× 3 32 16× 16 32

3-3 16× 16 32 3× 3 32 16× 16 32

Conv4

4-1-1 16× 16 32 3× 3 64 8× 8 64

4-1-2 8× 8 64 3× 3 64 8× 8 64

4-1-s 16× 16 32 1× 1 64 8× 8 64

4-2 8× 8 64 3× 3 64 8× 8 64

4-3 8× 8 64 3× 3 64 8× 8 64

Average Pooling 8× 8 64 8× 8 64 - 64

Fully Connected 64× 1 1 - - - 10

96

Figure 4.3: Structure of ResNet-20.

Figure 4.4: Proposed structure of ResNet-20 over RNS-CKKS scheme.

4.2.2 General Setting for RNS-CKKS Scheme

Parameters

The ciphertext polynomial degree is set to 216, and the secret key Hamming weight

is set to 64. The bit lengths of the base modulus (q0), special modulus, and default

modulus are set to 60, 60, and 50, respectively. The bit length of the modulus in the

bootstrapping range is the same as that of q0. The numbers of levels for the general

homomorphic operations and bootstrapping are set to 11 and 13, respectively. The

maximum bit length of the modulus is 1450, which satisfies the 111.6-bit security. The

security level λ is computed based on Cheon et al.’s hybrid dual attack [22], which is

97

the fastest attack on the LWE with a sparse key. Table 4.2 lists the parameters.

Table 4.2: RNS-CKKS parameter settings

λ
Hamming

Degree
Modulus

q0
Special Scaling Evaluation Bootstrapping

Weight Q Prime Factor Level Level

111.6 64 216 1450 bits 60 bits 60 bits 50 bits 11 13

Data Packing

The message is a 32×32×3 CIFAR-10 RGB image, and one single image is processed

at a time. 215 message slots are used in one ciphertext with the proposed parameters,

which is a half of polynomial degree. Rather than using the full slots of the ciphertext,

the sparse packing method [20] is employed to pack a channel of a CIFAR-10 image

in one ciphertext using only 210 sparse slots. This is because the bootstrapping of

sparsely packed ciphertext takes much less time than that of fully packed ciphertext,

and convolution operations can be performed more smoothly with minimal rotation

operations.

In the proposed implementation, it is not sufficient to have ciphertexts composing

the encrypted data, but it is required to store the slot structure parameter generated

by the strided convolution. For ease of understanding, the dimensions of the tensor

are also stored in the encrypted tensor. An encrypted tensor Tensorct for a tensor in

Rℓ×ℓ×h is in the form of ({ctk}k, ℓ, slotstr, h), where {ctk}k is an array of ciphertexts

comprising the encrypted tensor, and slotstr is the slot structure parameter. Algorithm

12 shows the detailed algorithm for encrypting image tensors.

Data Range and Precision

Any polynomial can approximate continuous functions only in certain bounded sets.

If even one value in the message slots exceeds this bounded set, the absolute value of

the output diverges to a large value, leading to complete classification failure. Because

98

Algorithm 12 EncTensor(A ∈ RL×L×H)

Input : A tensor A ∈ RL×L×H

Output: An encrypted tensor Tensorct

for k = 0 to H − 1 do
vk ← 0 ∈ RL2

for i = 0 to L− 1 do

for j = 0 to L− 1 do
x← i · L+ j

vk[x]← A[i, j, k]

end

end

ctk ← Enc(vk;N,L2)

end

return ({ctk}k=0,··· ,H−1, L, 0, H)

FHE can only handle arithmetic operations, polynomial approximation should be used

for non-arithmetic operations, such as the ReLU function, bootstrapping, and Softmax

functions. Therefore, the inputs for these procedures should be within the bounded ap-

proximation region. the absolute input values for ReLU are analyzed, bootstrapping,

and Softmax when performing ResNet-20 with several images. Because the observed

maximum absolute input value for these procedures is 37.1, it is conjectured that the

absolute input values for these procedures are less than 40 with a very high probabil-

ity. This observation is used in the implementation of each procedure. it is empirically

found that the precision of the approximate polynomial or the function should be at

least 16bits below the decimal point; thus, each non-arithmetic function is approxi-

mated with 16-bit average precision.

Optimization for Precision of Homomorphic Operations

Several methods is applied to reduce the rescaling and relinearization errors and ensure

the precision of the resultant message, such as scaling factor management in [50], lazy

99

rescaling, and lazy relinearization [4, 58]. Lazy rescaling and relinearization can also

be applied to reduce the computation time, as they require significant computation

owing to the number-theoretic transformation (NTT) and gadget decomposition.

4.2.3 Convolution and Batch Normalization

Most of the operations in ResNet-20 are convolutions with zero-padded inputs to main-

tain their size. I use the packed single-input single-output (SISO) convolution with

stride 1 used in Gazelle [49]. Strided convolution with stride 2 is also required to

perform downsampling, and it is performed by the method proposed in Subsection

4.1.2. Algorithm 13 shows the detailed algorithm for convolution, which includes both

non-strided convolution and strided convolution. Non-strided convolution is performed

when str is 1, and strided convolution is performed when str is 2. Each rotation step is

multiplied by the value of slotstr, as discussed in Subsection 4.1.2.

Because the batch normalization procedure is a simple linear function with con-

stant coefficients, it can be implemented using homomorphic addition and homomor-

phic scalar multiplication.

4.2.4 ReLU

For the first time, the ReLU function in ResNet-20 is implemented with the RNS-

CKKS scheme using the composition of the minimax polynomial approximation pro-

posed by Lee et al.[57]. To find an appropriate precision value, a ResNet-20 simulation

over the RNS-CKKS scheme is repeatedly performed while changing the precision,

and it is found that the minimum 16-bit precision shows good performance on aver-

age.

To synthesize the sign function for the ReLU approximation, the composition of

the small minimax approximate polynomials is generated with precision parameter

α = 12 using three minimax approximate polynomials with degrees 7, 15, and 27.

Algorithm 14 generates composite polynomials approximating the sign function [54].

100

Algorithm 13 Conv(Tensorct,W, stride)

Input : An encrypted tensor Tensorct = ({ctk}k=0,··· ,t−1, ℓ, slotstr, t), weight pa-

rameters W ∈ Rc×c×t×t′ (c is an odd integer), and the stride of the convolu-

tion operation str

Output: An output encrypted tensor Tensorct′

L← ℓ · slotstr

for h = 0 to t′ − 1 do
ct′h ← 0

for k = 0 to t− 1 do

for (i, j) = (0, 0) to (c− 1, c− 1) do
w ← 0 ∈ RL2

for (i′, j′) = (0, 0) to (ℓ− 1, ℓ− 1) do

if 0 ≤ i′ + i− ⌊c/2⌋ ≤ ℓ− 1 and 0 ≤ j′ + j − ⌊c/2⌋ ≤ ℓ− 1 then
w[(i′ · L+ j′) · slotstr · str]←W [i, j, k, h]

end

end

r ← (i− ⌊c/2⌋) · L+ (j − ⌊c/2⌋)

ct′h ← ct′h ⊕ (w ⊙ rot(ctk, r · slotstr))
end

end

end

return ({ct′h}h=0,··· ,t′−1, ℓ/str, slotstr · str, t′)

101

GenMinimax(f, d,D) in Algorithm 14 is an algorithm that generates the minimax

approximate polynomial with degree d for function f on domain D, and this algorithm

is implemented using the multi-interval Remez algorithm [56]. Range(f,D) denotes

the range of f in the domain D.

Algorithm 15 shows the homomorphic evaluation method for the ReLU function

using the composite polynomials generated by Algorithm 14 as the input. After ho-

momorphically evaluating the pi’s in order, x(1 + sign(x))/2 is homomorphically

evaluated.

This composition of polynomials ensures that the average approximation precision

is approximately 16-bit precision. The homomorphic evaluation of the polynomials is

performed using the odd baby-giant method in [55] and the optimal level consump-

tion method in [8]. Because the homomorphic evaluation of polynomial compositions

consumes many depths, it is impossible to complete it without bootstrapping. Thus,

bootstrapping is used twice in a layer, once in the middle, and once at the end of eval-

uating the ReLU function.

Algorithm 14 GenSignPoly(α, {di}i)
Input : Precision parameter of sign function α, sequence of composite polynomial

degrees {di}i=0,··· ,s−1

Output: Sequence of composite polynomials for sign function {pi}i=0,··· ,s−1 where

ps−1 ◦ · · · ◦ p0(x) ≈ sign(x)

for i = 0 to s− 1 do

if i = 0 then
D0 ← [−1,−2−α] ∪ [2−α, 1]

else
Di ← Range(pi−1, Di−1)

end

pi ← GenMinimax(sign, di, Di)

end

102

Algorithm 15 ReLU(Tensorct, {pi}i)
Input : An encrypted tensor Tensorct = ({ctk}k=0,··· ,t−1, ℓ, slotstr, t), sequence of

composite polynomials for sign function {pi}i=0,··· ,s−1

Output: An activated encrypted tensor with ReLU Tensorct′

for k = 0 to t− 1 do
ct′k ← ctk

for i = 0 to s− 1 do
ct′k ← OddPolyEval(ct′k, pi)

end

ct′k ← (0.5⊙ ctk)⊗ (1 + ct′k)

end

4.2.5 Bootstrapping

Because it is required to consume many depths to implement ResNet-20 in the RNS-

CKKS scheme, many bootstrapping procedures are required to ensure sufficient homo-

morphic multiplications. For the first time, the bootstrapping technique is applied to

perform deep neural networks such as ResNet-20 on encrypted data and prove that

the FHE scheme with state-of-the-art bootstrapping can be successfully applied to

privacy-preserving deep neural networks. Because the SEAL library does not support

any bootstrapping technique, the most advanced bootstrapping with the SEAL library

[8, 48, 56] is implemented. COEFFTOSLOT and SLOTTOCOEFF are implemented us-

ing a collapsed FFT structure [16] with a depth of 2. The MODREDUCTION is im-

plemented using the composition of the cosine function, two double-angle formulas,

and the inverse sine function [44, 56], where the cosine function and the inverse sine

function are approximated using the multi-interval Remez algorithm as in [56].

The most crucial issue when using bootstrapping in the RNS-CKKS scheme is

bootstrapping failure. More than a thousand bootstrapping procedures are required in

the proposed model, and the result of the entire neural network can be largely distorted

if even one of the bootstrapping procedures fails. Bootstrapping failure occurs when

one of the slots in the input ciphertext of the MODREDUCTION procedure is not within

103

the approximation region. The approximation interval can be controlled by bootstrap-

ping parameters (K, ϵ), where the approximation region is ∪K−1
i=−(K−1)[i − ϵ, i + ϵ]

[20]. While parameter ϵ is related to the range and precision of the input message data,

parameter K is related to the values composing the ciphertext and is not related to

the input data. Because the values contained in the ciphertext are not predictable, it is

required to investigate the relationship between the bootstrapping failure probability

and the parameter K.

Table 4.3: Boundary of approximation region given key Hamming weight and failure

probability of modular reduction

Pr(|Ii| ≥ K) h = 64 h = 128 h = 192

2−23 [8] 12 17 21

2−30 14 20 24

2−40 16 23 28

It is described how bootstrapping failure affects the entire ResNet evaluation and

propose a method to reduce the bootstrapping failure probability. As CKKS bootstrap-

ping is based on the sparsity of the secret key, there is a failure probability of boot-

strapping.

The decryption formula for a ciphertext (a, b) of the CKKS scheme is given as

a · s + b = m + e (mod q) for secret key s; hence, a · s + b ≈ m + q · I (mod Q),

where the Hamming weight of s is h. As the coefficients of a and b are in [− q0
2 ,

q0
2),

the coefficients of a · s + b have an absolute value less than q0(h+1)
2 . However, based

on the ring-LWE assumption, the coefficients of a · s + b follow a scaled Irwin-Hall

distribution and it is assumed that the coefficients of I < K = O(
√
h) [58]. Because

the modular reduction function is approximated in the domain ∪K−1
i=−(K−1)[i− ϵ, i+ ϵ],

If a coefficient of I has a value greater than or equal to K, the modular reduction

returns a useless value and thus fails. This is why the approximated modular reduction

in the previous CKKS bootstrapping has a certain failure probability.

104

Even though O(
√
h) is a reasonable upper bound for a single bootstrapping, it is

not sufficient when the number of slots is large and there are many bootstrappings. Let

p be the probability of modular reduction failure, Pr(|Ii| ≥ K). If there are n slots in

the ciphertext, then there are 2n coefficients to perform modular reduction. Hence, the

failure probability of single bootstrapping is 1 − (1 − p)2n ≈ 2n · p. Similarly, when

Nb bootstrappings exist in the evaluation of the entire network, the failure probability

of the entire network is 2Nb · n · p. As there are many slots in the ciphertext and

thousands of bootstrapping are performed, the failure probability is very high when

using previous approximate polynomials.

In Table 4.3, several bounds are presented for the input message and its failure

probability. A larger bound means that a higher degree of the approximate polynomial

is required; hence, more computations are required. Using the new bound for the ap-

proximation in Table 4.3, a trade-off can be offered between the evaluation time and

failure probability of the entire network. Following [8, 58], the approximated modular

reduction in the CKKS bootstrapping thus far has a failure probability≈ 2−23, but it is

not sufficiently small because it is required to perform many bootstrapping procedures

for ResNet-20. Thus, the bootstrapping failure probability is set to less than 2−40 in

the proposed implementation. The Hamming weight of the secret key is set to 64, and

(K, ϵ) = (17, 2−10). The corresponding degree for the minimax polynomial for the

cosine function is 45, and that of the inverse sine function is 1, which is obtained using

the multi-interval Remez algorithm [56]. The number of double-angle formulas ℓ is set

to two.

4.2.6 Average Pooling and Fully Connected Layer

The size of the tensor after all convolutional layers are performed is 8 × 8 × 64. The

average pooling is performed on each channel to obtain a vector of length 64 and

a fully connected layer to obtain a vector of length 10. The form of the output for

average pooling is an array of ciphertexts with a length of 64, and each element of the

105

ciphertext array has corresponding data in the first slot. Because all data are separated

into other ciphertexts, no rotation operation is required when the fully connected layer

is performed. Algorithm 16 shows the detailed procedures for average pooling and the

fully connected layers.

Algorithm 16 AvgPoolFullCon(Tensorct,W)
Input : An encrypted tensor Tensorct = ({ctk}k=0,··· ,t−1, ℓ, slotstr, t), weight pa-

rameters for fully connected layer W ∈ RT×t

Output: An array of ciphertexts {ct′k}k=0,··· ,T−1

for k = 0 to t− 1 do
c̄tk ← ctk

for i = 0 to log ℓ− 1 do
tmpct← rot(¯ctk, slotstr · 2i)

c̄tk ← c̄tk ⊕ tmpct

end

for j = 0 to log ℓ− 1 do
tmpct← rot(¯ctk, slotstr · ℓ · 2i)

c̄tk ← c̄tk ⊕ tmpct

end

end

for u = 0 to T − 1 do
ct′u ← 0

for k = 0 to t− 1 do
ct′u ← ct′u ⊕ (W [u, k]⊙ c̄tk)

end

end

return {ct′k}k=0,··· ,T−1

106

4.2.7 Softmax

The Softmax method proposed in Subsection 4.1.3 is used. The bound parameters B

and R are set to 64 and 104, respectively, and the Gumbel Softmax parameter λ is set

to 4. The approximation parameter in Goldschmidt’s division algorithm is set to 16.

Although a parameter B greater than 40 is sufficient, as discussed in Subsection 4.1.3,

The value 64 is used because a power-of-two B is better for implementation. T is the

number of classification types, which is 10 for the CIFAR-10 dataset. Algorithm 17

shows the detailed procedure for the Softmax function.

Because the Softmax function consumes many depths, several bootstrapping op-

erations are used in the middle of the process. Bootstrapping is performed for each

ciphertext just before the beginning of the Softmax function, just before the inverse

function, and after eight iterations of the Goldschmidt division process.

4.3 Multiplexed Convolution

4.3.1 Comparison of Bootstrapping Runtime for Several Data Packing

Methods

Since the most time-consuming component in the implementation of standard ResNet

on the RNS-CKKS scheme is bootstrapping, it is desirable to reduce the bootstrapping

runtime. The required number of KSOs and the runtime for bootstrapping according

to the number of slots are presented in Table 4.4, where the runtime is obtained using

the same parameters and simulation environments of Section 4.7. To reduce the total

bootstrapping runtime, intermediate data should be packed into ciphertexts as com-

pact as possible during the inference stage. In addition, the gap between valid data

is increased by a factor of s after each strided convolution, leading to a reduction of

packing density by a factor of s2, but this low packing density should be resolved to

effectively reduce the bootstrapping runtime.

In this section, it is attempted to remove this gap by packing these sparsely packed

107

Algorithm 17 Softmax(Tensorct, B,R, λ)

Input : An array of ciphertext {ctk}k=0,··· ,T−1, bound parameter B,R (B is a power-

of-two integar), power-of-two Gumbel parameter λ, Goldschmidt approxima-

tion parameter d

Output: An encrypted one-hot vector {ct′k}k=0,··· ,T−1

pexp ← GenApproxPoly(ex, [−1, 1])

c̃t← 0

for k = 0 to T − 1 do
ct′k ← 1/B ⊙ ctk

ct′k ← polyeval(ct′k, pexp)

for i = 0 to logB − log λ do
ct′k ← ct′k ⊗ ct′k

end

c̃t← c̃t⊕ ct′k

end

c̃t← 2⊖ 1/R⊙ c̃t

tmpct← c̃t⊖ 1

for j = 0 to d− 1 do
tmpct← tmpct⊗ tmpct

c̃t← c̃t⊗ (1⊕ tmpct)

end

for k = 0 to T − 1 do
ct′k ← ctk ⊗ c̃t

end

return {ct′k}k=0,··· ,T−1

108

boot log2(#slots) 10 11 12 13 14 15

#KSOs 63 70 77 84 91 94

runtime 72s 80s 86s 96s 112s 140s

Table 4.4: The number of KSOs and bootstrapping runtime according to various num-

ber of slots for bootstrapping

data in a compact manner. Several data packing methods are compared. It is assumed

that the data of size less than nt is packed in a ciphertext using RS packing so that RS

bootstrapping can be used.

Gap packing Since gap packing packs only one channel data into one ciphertext,

the required number of bootstrapping operations will be the same as the number of

channels. Thus, an unnecessarily large number of KSOs are required.

Gap packing with multiple channels The gap packing can be improved by packing

data of multiple channels into one ciphertext as much as possible. Although this pack-

ing can reduce the number of bootstrappings a lot, there are still many dummy slots as

shown in Figure 4.5(c). For CNNs with many strided convolutions, the total bootstrap-

ping runtime will increase exponentially with the number of strided convolutions.

Multiplexed packing Recently, HEAR [51] used a new data packing method, re-

ferred to multiplexed packing herein. In this packing method, plaintext tensors of

hi × wi size for k2i channels are first mapped to one larger multiplexed tensor of

size kihi × kiwi. Then, several multiplexed tensors are encrypted in one ciphertext.

Although multiplexed packing was proposed to deal with the pooling of HE-friendly

CNNs and speed up convolution in [51], it is repurposed to reduce the bootstrapping

runtime of CNNs with strided convolutions. Figure 4.6 describes multiplexed packing

with hi = wi = 4 and ki = 2. The formal description of multiplexed packing can be

seen in Section 4.4.4.

109

(a) SISO Convolution for plaintext data

##

##

##

##

####

(b) SISO Convolution on HE for
##

##

##

##

####

(c) SISO Convolution on HE for

0 0 0 0

0

0

0

0 0 0 0

0 0 0 0

0

0

0

0

0

0 0

0 0 0 0

0 0 0 0

0

0

0

00

0 0 0 0

0 0 0 0

0 0 0 00

0

0 0

0

Figure 4.5: SISO convolution on HE [49].

1

(a) Multiplexed packing

(b) Simplified representation of multiplexed packing

2 3 4 1 2

3 4

Figure 4.6: Multiplexed packing MultPack when hi = wi = 4 and ki = 2.

Figure 4.7 illustrates several packing methods for ki = 2, where cn = nt

k2i hiwi
. Ta-

ble 4.5 shows the required number of bootstrappings for implementation of ResNet-20

when each data packing method is used. The number of KSOs for total bootstrappings

in ResNet-20 inference is also presented, and it is substantially reduced by multiplexed

packing.

Thus, it is required that the corresponding plaintext data be packed in the ciphertext

using multiplexed packing during ResNet inference. Then, it is required to design a

homomorphic convolution that takes an input ciphertext of multiplexed input tensor

110

and outputs a ciphertext of multiplexed output tensor.

1 ##
##

2 ##
##

##
##

1 ##
##

2 ##
##

##
##

##
##

##
##

##
##

1 2
3 4

5 6
7 8

(a) Gap packing

(b) Gap packing with multiple channels

(c) Multiplexed packing

Figure 4.7: Comparison of several data packing methods.

4.3.2 Multiplexed Parallel Convolution on Fully Homomorphic Encryp-

tion

In this subsection, the homomorphic convolution algorithms are proposed so that take a

ciphertext having multiplexed input tensor and output a ciphertext having multiplexed

output tensor. HEAR [51] proposed such a convolution algorithm that supports stride

one (i.e., s = 1). HEAR performs homomorphic convolution on multiple input chan-

nels simultaneously, adds SISO convolution results for all input channels, and collects

only valid values by multiplying dummy slots by zero. This convolution algorithm is

generalized to support the strided convolutions (i.e., s ≥ 2). it is proposed to select and

collect the valid values for the output gap ko = ski instead of the input gap ki. Then,

the output ciphertext has the plaintext output of strided convolution in the form of mul-

tiplexed tensor for ko = ski. This convolution algorithm is denoted as MultConv and

Figure 4.8 describes the procedure of MultConv when s = 2.

Unlike previous works for HE-friendly networks not relying on bootstrapping, a

large number of full slots are required, which is usually larger than the data size, to

support bootstrapping and precise APRs. First, packing data is considered into cipher-

text using RS packing so that RS bootstrapping can be used. Then, it is noted that one

111

before before after
total ResNet-20

log2(#slots) Str conv1 Str conv2 Str conv2

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

10 16 0 0 32 0 0 64 0 0 672 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 1 0 0 6

13 0 0 0 0 0 1 0 0 0 0 0 6

14 0 1 1 0 0 0 0 0 0 0 6 6

15 0 0 0 0 1 0 0 2 0 0 18 0

total #KSOs 42,336 2,238 1,512

Table 4.5: The number of bootstrappings for implementation of ResNet-20 accord-

ing to various data packing methods. (a), (b), and (c) imply gap packing,

gap packing with multiple channels, and multiplexed packing, respectively.

Str conv1 and Str conv2 denote the first and the second strided convolutions

(s = 2) in ResNet-20, respectively.

112

Fi
gu

re
4.

8:
M

ul
tip

le
xe

d
co

nv
ol

ut
io

n
al

go
ri

th
m

fo
rm

ul
tip

le
xe

d
in

pu
tt

en
so

rf
or

s
=

2,
k
i
=

2,
an

d
h
i
=

w
i
=

4.

113

1 2
3 4

(1,1) (1,2)
(1,3) (1,4)

rotation and sum

SISO convolution

zero out & rotation

(1,5) (1,6)
(1,7) (1,8)

(2,1) (2,2)
(2,3) (2,4)

(2,5) (2,6)
(2,7) (2,8)

5 6
7 8

1 2
3 4

5 6
7 8

1 ##
##

##
##

2 ##
##

##
##

1 0
0 0

0 0
0 0

0 2
0 0

0 0
0 0

1 2
3 4

5 6
7 8

1 2
3 4

5 6
7 8

(9,1) (9,2)
(9,3) (9,4)

(9,5) (9,6)
(9,7) (9,8)

(10,1)(10,2)
(10,3)(10,4)

(10,5)(10,6)
(10,7)(10,8)

9 ##
##

##
##

10 ##
##

##
##

0 0
0 0

0 0
0 0

9 0
0 0

1 2
3 4

29 30
31 32

0 0
0 0

rotation & sum
1 2
3 4

29 30
31 32

Figure 4.9: Multiplexed parallel convolution algorithm when ki = 2 and co = cn =

32.

input channel is repeatedly used for SISO convolutions for multiple output channels.

A multiplexed parallel convolution algorithm is proposed, denoted as MultParConv,

that simultaneously performs SISO convolutions for multiple output channels, which

consider the input packed by RS packing as just several independent inputs. This al-

gorithm reduces the convolution runtime of MultConv while still compatible with

RS bootstrapping. Figure 4.9 shows the procedure of MultParConv using simplified

representation of multiplexed packing.

The detailed algorithms of MultConv and MultParConv are presented in Sec-

tion 4.4.5. Each execution of MultConv and MultParConv requires fhfw − 1 +

co(2⌈log2 ki⌉+ ⌈log2 ti⌉+1) and fhfw− 1+ q(2⌈log2 ki⌉+ ⌈log2 ti⌉)+ co+log2 po

rotations, respectively, where ti = ⌈ ci
k2i
⌉, to = ⌈ co

k2o
⌉, pi = 2

⌊log2(
nt

k2
i
hiwiti

)⌋
, po =

2
⌊log2(

nt
k2ohowoto

)⌋
, and q = ⌈ copi ⌉. Then, the total required rotations for MultConv and

MultParConv in ResNet-20 inference are 4,360 and 1,657, respectively, which im-

plies that MultParConv requires 62% fewer rotations (i.e., number of KSOs) than

MultConv.

114

4.4 Details of Multiplexed Convolution

4.4.1 Notations and Description of Parameters

In this subsection, specific notations and description of parameters are provided. x is

used to denote a vector in Rn for some integer n. For x = (x0, x1, · · · , xn−1), ⟨x⟩r de-

notes the cyclically shifted vector of x by r to the left, that is, (xr, xr+1, · · · , xn−1, x0, · · · , xr−1).

x · y denotes the component-wise multiplication (x0y0, · · · , xn−1yn−1). For an inte-

ger a ∈ Z, the remainder of a divided by q is denoted by a mod q. For a real number

x ∈ R, ⌈x⌉ denotes the least integer greater than or equal to x, and ⌊x⌋ denotes the

greatest integer less than or equal to x.

In this dissertation, various parameters such as

hi, ho, wi, wo, ci, co, fh, fw, s, ki, ko, ti, to, pi, po, and q are used, and the values

of these parameters are determined differently for each component such as con-

volution, batch normalization (or convolution/batch normalization integration in

Subsection 4.6.1), downsampling, and average pooling. The specific values of

parameters that are used in the simulation can be seen in Table 4.6.

4.4.2 Mapping of Three-Dimensional Tensor to One-Dimensional Vector

It is often necessary to map three-dimensional tensor A ∈ Rhi×wi×ci to one-

dimensional vector in Rnt to perform convolutions on the HE scheme, and A can

be the original tensor or (parallelly) multiplexed tensor defined in Subsection 4.4.5.

The following is the definition of V ec function that is used to map tensor A to a vector

in Rnt ,

V ec(A) = y = (y0, · · · , ynt−1) ∈ Rnt such that

yi =

A⌊(i mod hiwi)/wi⌋,i mod wi,⌊i/hiwi⌋, 0 ≤ i < hiwici,

0, otherwise.

Figure 4.10 describes this V ec function.

115

component fh fw s hi ho wi wo ci co ki ko ti to pi po q

ConvBN1 3 3 1 32 32 32 32 3 16 1 1 3 16 8 2 2

ConvBN2 xa 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8

ConvBN2 xb 3 3 1 32 32 32 32 16 16 1 1 16 16 2 2 8

ConvBN3 xa
x = 1 3 3 2 32 16 32 16 16 32 1 2 16 8 2 4 16

otherwise 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8

ConvBN3 xb 3 3 1 16 16 16 16 32 32 2 2 8 8 4 4 8

ConvBN4 xa
x = 1 3 3 2 16 8 16 8 32 64 2 4 8 4 4 8 16

otherwise 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8

ConvBN4 xb 3 3 1 8 8 8 8 64 64 4 4 4 4 8 8 8

ConvBN s1 1 1 2 32 16 32 16 16 32 1 2 16 8 2 4 16

ConvBN s2 1 1 2 16 8 16 8 32 64 2 4 8 4 4 8 16

Downsamp1 - - - 32 16 32 16 16 32 1 2 16 8 2 4 -

Downsamp2 - - - 16 8 16 8 32 64 2 4 8 4 4 8 -

Table 4.6: Parameters that are used in each ConvBN or Downsamp process

Figure 4.10: V ec function that maps a given tensor in Rhi×wi×ci to a vector in Rnt .

116

In this dissertation, nt = 215 is used, and this allows that all tensors to be en-

crypted can be packed into one ciphertext, that is, hiwici ≤ nt for each tensor

A ∈ Rhi×wi×ci . In several figures in this dissertation, a three-dimensional tensor A

is often identified as V ec(A) or the corresponding ciphertext Enc(V ec(A)). In addi-

tion, for a three-dimensional tensor A, the rotation of ciphertext of V ec(A), that is,

Rot(Enc(V ec(A)); r) for some nonnegative integer r is refered to as rotation of ten-

sor A. When a tensor is rotated, each element moves to the left, but it goes up when it

reaches the leftmost point, and it moves to the front page when it reaches the top left-

most point. Furthermore, for two tensors A and B, homomorphic addition, subtraction,

and multiplication of Enc(V ec(A)) and Enc(V ec(B)) are referred to as those of A

and B, respectively.

4.4.3 Batch Normalization on Homomorphic Encryption

Batch normalization [46] should be performed for the output tensor of convolution. As

in convolution, hi, wi, and ci are parameters representing the size of the input tensor,

and ho, wo, and co are parameters representing the size of the output tensor in batch

normalization. That is, batch normalization outputs a tensor A′ ∈ Rho×wo×co for some

input tensor A ∈ Rhi×wi×ci . hi = ho, wi = wo, and ci = co are satisfied for batch

normalization.

The weight, running variance, running mean, and bias of batch normalization are

denoted by T, V,M, I ∈ Rci . A constant vector C = (C0, C1, · · · , Cci−1) ∈ Rci is

considered such that Cj =
Tj√
Vj+ϵ

for 0 ≤ j < ci, where ϵ is an added value for

numerical stability. Then, batch normalization can be seen as evaluating the equation

Cj · (Ai1,i2,j −Mj) + Ij for 0 ≤ i1 < hi, 0 ≤ i2 < wi, and 0 ≤ j < ci.

For the description of batch normalization on HE, it is required to define C, M ,

and I ∈ Rhi×wi×ci first. C, M , and I are defined as Ci1,i2,j = Cj , Mi1,i2,j = Mj , and

Ii1,i2,j = Bj for 0 ≤ i1 < hi, 0 ≤ i2 < wi, and 0 ≤ j < ci, respectively. Then, batch

normalization can be performed using the equation V ec(C) · (V ec(A)− V ec(M)) +

117

V ec(I) = V ec(C)·V ec(A)+(V ec(I)−V ec(C)·V ec(M)). This can be implemented

on HE by using one homomorphic addition and scalar multiplication. That is, for the

input tensor ciphertext cta, it is performed that V ec(C)⊙ cta ⊕ (V ec(I)− V ec(C) ·

V ec(M)).

4.4.4 Multiplexed Packing

For ti = ⌈ ci
k2i
⌉, MultPack is the function that maps a tensor A =

(Ai1,i2,i3)0≤i1<hi,0≤i2<wi,0≤i3<ci ∈ Rhi×wi×ci to a ciphertext Enc(V ec(A′)) ∈ Rnt ,

where A′ = (A′
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈ Rkihi×kiwi×ti is a multiplexed

tensor such that

A′
i3,i4,i5 =

A⌊i3/ki⌋,⌊i4/ki⌋,k2
i i5+ki(i3 mod ki)+i4 mod ki

, if k2
i i5 + ki(i3 mod ki) + i4 mod ki < ci,

0, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti.

This multiplexed packing method is a generalized version of raster scan packing

method, and it is the same as raster scan packing method using V ec when ki = 1.

Each corresponding plaintext tensor is required to be packed into the ciphertext slots

using the multiplexed packing method throughout the entire CNN, where the value of

gap ki can be changed.

4.4.5 Convolution Algorithms for Multiplexed Tensor

Multiplexed Convolution

For description of MultConv algorithm, some definitions and a subroutine algorithm

are required.

The filter (weight tensor) of the convolution is U ∈ Rfh×fw×ci×co . First,

MultWgt(U ; i1, i2, i) function that maps a weight tensor U ∈ Rfh×fw×ci×co to an

element of Rnt is defined. Before the definition of MultWgt, three-dimensional mul-

tiplexed shifted weight tensor U ′(i1,i2,i) = (U
′(i1,i2,i)
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈

118

Rkihi×kiwi×ti for given i1, i2, and i, where 0 ≤ i1 < fh, 0 ≤ i2 < fw, and 0 ≤ i < co

is defined as follows:

U
′(i1,i2,i)
i3,i4,i5

=

0, if k2i i5 + ki(i3 mod ki) + i4 mod ki ≥ ci

or ⌊i3/ki⌋ − (fh − 1)/2 + i1 /∈ [0, hi − 1]

or ⌊i4/ki⌋ − (fw − 1)/2 + i2 /∈ [0, wi − 1],

Ui1,i2,k2
i i5+ki(i3 mod ki)+i4 mod ki,i

, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti. Then, MultWgt function is

defined as MultWgt(U ; i1, i2, i) = V ec(U ′(i1,i2,i)).

In addition to the weight tensor, it is also required to define multiplexed selecting

tensor S′(i) = (S
′(i)
i3,i4,i5

)0≤i3<koho,0≤i4<kowo,0≤i5<to ∈ Rkoho×kowo×to , which is used

to select valid values in MultConv algorithm, where to = ⌊ cok2o ⌋. Multiplexed selecting

tensor S′(i) is defined as follows:

S
′(i)
i3,i4,i5

=

1, if k2oi5 + ko(i3 mod ko) + i4 mod ko = i

0, otherwise,

for 0 ≤ i3 < koho, 0 ≤ i4 < kowo, and 0 ≤ i5 < to.

SumSlots is a useful subroutine algorithm that adds m slot values spaced apart

by p. Algorithm 18 shows the SumSlots algorithm. Then, Algorithm 19 describes

the proposed multiplexed convolution algorithm, MultConv using MultWgt func-

tion, multiplexed selecting tensor S′(i), and SumSlots algorithm. Here, ctzero is a

ciphertext of all-zero vector 0 ∈ Rnt .

Multiplexed Parallel Convolution

I propose a multiplexed parallel packing method MultParPack that packs pi identi-

cal multiplexed tensors into one ciphertext for pi = 2
⌊log2(

nt
k2
i
hiwiti

)⌋
. Figure 4.11 de-

scribes how to perform multiplexed parallel packing of 3×3×ci input tensor for given

119

Algorithm 18 SumSlots(cta;m, p)

1: Input: Tensor ciphertext cta, number of added slots m, and gap p

2: Output: Tensor ciphertext ctc

3: ct
(0)
b ← cta

4: for j ← 1 to ⌊log2m⌋ do

5: ct
(j)
b ← ct

(j−1)
b ⊕Rot(ct

(j−1)
b ; 2j−1 · p)

6: end for

7: ctc ← ct
(⌊log2 m⌋)
b

8: for j ← 0 to ⌊log2m⌋ − 1 do

9: if ⌊m/2j⌋ mod 2 = 1 then

10: ctc ← ctc ⊕Rot(ct
(j)
b ; ⌊m/2j+1⌋ · 2j+1p)

11: end if

12: end for

13: Return ctc

gap ki = 2 and number of copies pi. For the input tensor A ∈ Rhi×wi×ci , this func-

tion first obtains a multiplexed tensor A′ ∈ Rkihi×kiwi×ti such that MultPack(A) =

Enc(V ec(A′)) and simply places pi copies of A′ in sequence. This extended tensor

is mapped to a vector in Rnt using V ec function and then encrypted into a cipher-

text. If k2i hiwiti ∤ nt, some zeros are filled between pi copies of A′. The definition of

MultParPack function is given as:

MultParPack(A) =

pi−1⊕
j=0

Rot(MultPack(A); j(nt/pi)).

Each corresponding plaintext tensor is required to be packed into the ciphertext

slots using the multiplexed parallel packing method during the entire CNN. A multi-

plexed parallel convolution algorithm is proposed, MultParConv, which is an im-

proved algorithm of MultConv. MultParConv takes a parallelly multiplexed tensor

for gap ki as an input and outputs a parallelly multiplexed tensor for output gap ko.

Let q = ⌈ copi ⌉. Then, while the previous multiplexed convolution algorithm MultConv

120

Algorithm 19 MultConv(ct′a, U)

1: Input: Multiplexed tensor ciphertext ct′a and weight tensor U

2: Output: Multiplexed tensor ciphertext ct′d

3: ct′d ← ctzero

4: for i1 ← 0 to fh − 1 do

5: for i2 ← 0 to fw − 1 do

6: ct′(i1,i2) ← Rot(ct′a; k
2
iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))

7: end for

8: end for

9: for i← 0 to co − 1 do

10: ct′b ← ctzero

11: for i1 ← 0 to fh − 1 do

12: for i2 ← 0 to fw − 1 do

13: ct′b ← ct′b ⊕ ct′(i1,i2) ⊙MultWgt(U ; i1, i2, i)

14: end for

15: end for

16: ct′c ← SumSlots(ct′b; ki, 1)

17: ct′c ← SumSlots(ct′c; ki, kwi)

18: ct′c ← SumSlots(ct′c; ti, k
2hiwi)

19: ct′d ← ct′d⊕Rot(ct′c;−⌊i/k2o⌋k2ohowo−⌊(i mod k2o)/ko⌋kowo−(i mod ko))⊙

V ec(S′(i))

20: end for

21: Return ct′d

121

gap

copies

Figure 4.11: Multiplexed parallel packing method MultParPack when k2i hiwiti |

nt.

performs multiplication by weight and summing up co times, multiplexed parallel con-

volution algorithm MultParConv performs only q times, reducing the required num-

ber of rotations to about 1/pi.

Before description of MultParConv in detail, it is required to define

ParMultWgt(U ; i1, i2, i3) that maps weight tensor U ∈ Rhi×wi×ci×co to an ele-

ment of Rnt . To define ParMultWgt, parallelly multiplexed shifted weight tensor

U ′′(i1,i2,i3) = (U
′′(i1,i2,i3)
i5,i6,i7

)0≤i5<kihi,0≤i6<kiwi,0≤i7<tipi ∈ Rkihi×kiwi×tipi should be

defined first for 0 ≤ i1 < fh, 0 ≤ i2 < fw, and 0 ≤ i3 < q as follows:

U
′′(i1,i2,i3)
i5,i6,i7

=

0, if k2

i (i7 mod ti) + ki(i5 mod ki) + i6 mod ki ≥ ci

or ⌊i7/ti⌋ + pii3 ≥ co

or ⌊i5/ki⌋ − (fh − 1)/2 + i1 /∈ [0, hi − 1]

or ⌊i6/ki⌋ − (fw − 1)/2 + i2 /∈ [0, wi − 1],

U
i1,i2,k2

i
(i7 mod ti)+ki(i5 mod ki)+i6 mod ki,⌊i7/ti⌋+pii3

, otherwise,

for 0 ≤ i5 < kihi, 0 ≤ i6 < kiwi, and 0 ≤ i7 < tipi. Then, ParMultWgt is defined

as ParMultWgt(U ; i1, i2, i3) = V ec(U ′′(i1,i2,i3)). The multiplexed selecting tensor

S′(i) defined in Subsection 4.3.1 is also used in MultParConv.

Then, Algorithm 20 shows the proposed multiplexed parallel convolution algo-

rithm MultParConv, where to = ⌊ cok2o ⌋ and po = 2
⌊log2(

nt
k2ohowoto

)⌋
.

122

Algorithm 20 MultParConv(ct′′a, U)

1: Input: Parallelly multiplexed tensor ciphertext ct′a and weight tensor U

2: Output: Parallelly multiplexed tensor ciphertext

3: ct′′d ← ctzero

4: for i1 ← 0 to fh − 1 do

5: for i2 ← 0 to fw − 1 do

6: ct′′(i1,i2) ← Rot(ct′′a; k
2
iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))

7: end for

8: end for

9: for i3 ← 0 to q − 1 do

10: ct′′b ← ctzero

11: for i1 ← 0 to fh − 1 do

12: for i2 ← 0 to fw − 1 do

13: ct′′b ← ct′′b ⊕ ct′′(i1,i2) ⊙ ParMultWgt(U ; i1, i2, i3)

14: end for

15: end for

16: ct′′c ← SumSlots(ct′′b ; ki, 1)

17: ct′′c ← SumSlots(ct′′c ; ki, kiwi)

18: ct′′c ← SumSlots(ct′′c ; ti, k
2
i hiwi)

19: for i4 ← 0 to min(pi − 1, co − 1− pii3) do

20: i← pii3 + i4

21: ct′′d ← ct′′d ⊕ Rot(ct′′c ;−⌊i/k2o⌋k2ohowo + ⌊nt/pi⌋(i mod pi) −

⌊(i mod k2o)/ko⌋kowo − i mod ko)⊙ V ec(S′(i))

22: end for

23: end for

24: for j ← 0 to log2 po − 1 do

25: ct′′d ← ct′′d ⊕Rot(ct′′d;−2j(nt/po))

26: end for

27: Return ct′′d

123

4.4.6 Multiplexed Parallel Batch Normalization, Downsampling, and Av-

erage Pooling

In Subsection 4.3.2, multiplexed parallel convolution algorithm is proposed,

MultParConv that works for an input parallelly multiplexed tensor. Besides con-

volution, the ResNet model has also batch normalization and average pooling. For the

CIFAR-10 dataset, the ResNet model also has downsampling. Batch normalization, av-

erage pooling, and downsampling should be implemented to be also compatible with

the multiplexed parallel packing method. Thus, new batch normalization, downsam-

pling, and average pooling algorithms that work for an input ciphertext having plain-

text tensor using MultParPack are described in this subsection.

Multiplexed Parallel Batch Normalization

I propose an algorithm ParMultBN that performs batch normalization for a given

input parallelly multiplexed tensor. To this end, it is required to define new function

ParBNConst that maps batch normalization constant vectors C,M, I ∈ Rci (ex-

plained in Subsection 4.4.3) to a vector in Rnt properly. For a given input constant

vector H ∈ Rci , ParBNConst outputs a vector h′′ = (h′′0, h
′′
1, · · · , h′′nt−1) ∈ Rnt

satisfying

h′′j =

{
0, if j mod (nt/pi) ≥ k2

i hiwiti or k2
i i3 + ki(i1 mod ki) + i2 mod ki ≥ ci

H
k2
i
i3+ki(i1 mod ki)+i2 mod ki

, otherwise,

for 0 ≤ j < nt, where i1 = ⌊((j mod (nt/pi)) mod k2i hiwi)/kiwi⌋, i2 =

(j mod (nt/pi)) mod kiwi, and i3 = ⌊(j mod (nt/pi))/k
2
i hiwi⌋. ParMultBN that

performs batch normalization using this ParBNConst function is proposed, and Al-

gorithm 21 describes the proposed ParMultBN .

124

Algorithm 21 ParMultBN(ct′′a, C,M, I)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a and batch normalization con-

stant vectors C,M, I ∈ Rc
i

2: Output: Parallelly multiplexed tensor ciphertext ct′′b

3: c′′ ← ParBNConst(C), m′′ ← ParBNConst(M), i′′ ← ParBNConst(I)

4: ct′′b ← c′′ ⊙ ct′′a ⊕ (i′′ − c′′ ·m′′)

5: Return ct′′b

Multiplexed Parallel Downsampling

ResNet models for the CIFAR-10 dataset require two downsampling processes.

DownSamp algorithm that performs downsampling for a given input paral-

lelly multiplexed tensor is proposed. This prevents the density of valid val-

ues from decreasing after downsampling. To specifically describe the proposed

downsampling algorithm, it is required to define downsampling selecting ten-

sor S′′(i1,i2) = (S
′′(i1,i2)
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti ∈ Rkihi×kiwi×ti , which

is used to select 4ki valid values. Downsampling selecting tensor S′′(i1,i2) =

(S
′′(i1,i2)
i3,i4,i5

)0≤i3<kihi,0≤i4<kiwi,0≤i5<ti for 0 ≤ i1 < ki and 0 ≤ i2 < ti is defined

as follows:

S
′′(i1,i2)
i3,i4,i5

=

1, if (⌊i3/ki⌋) mod 2 = 0

and (⌊i4/ki⌋) mod 2 = 0

and i3 mod ki = i1

and i5 = i2

0, otherwise,

for 0 ≤ i3 < kihi, 0 ≤ i4 < kiwi, and 0 ≤ i5 < ti. Algorithm 22 describes the

proposed downsampling algorithm DownSamp.

125

Algorithm 22 Downsamp(ct′′a)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a

2: Output: Parallelly multiplexed tensor ciphertext ct′′c

3: ct′′c ← ctzero

4: for i1 ← 0 to ki − 1 do

5: for i2 ← 0 to ti − 1 do

6: i3 ← ⌊((kii2 + i1) mod 2ko)/2⌋

7: i4 ← (kii2 + i1) mod 2

8: i5 ← ⌊(kii2 + i1)/2ko⌋

9: ct′′b ← ct′′a ⊙ V ec(S′′(i1,i2))

10: ct′′c ← ct′′b ⊕Rot(ct′′b ; k
2
i hiwi(i2 − i5) + kiwi(i1 − i3)− kii4)

11: end for

12: end for

13: ct′′c ← Rot(ct′′c ;−k2ohowoti/8)

14: for j ← 0 to log2 po − 1 do

15: ct′′c ← ct′′c ⊕Rot(ct′′c ;−2jk2ohowoto)

16: end for

17: Return ct′′c

126

Algorithm 23 AvgPool(ct′′a)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a

2: Output: One-dimensional array ciphertext ctb

3: ctb ← ctzero

4: for j ← 0 to log2wi − 1 do

5: ct′′a ← Rot(ct′′a; 2
j · ki)

6: end for

7: for j ← 0 to log2 hi − 1 do

8: ct′′a ← Rot(ct′′a; 2
j · k2iwi)

9: end for

10: for i1 ← 0 to ki − 1 do

11: for i2 ← 0 to ti − 1 do

12: ctb ← ctb ⊕Rot(ct′′a; k
2
i hiwii2 + kiwii1 − ki(kii2 + i1))⊙ s̄′(kii2+i1)

13: end for

14: end for

15: Return ctb

127

Average Pooling

When the average pooling is reached after performing all convolutions, batch nor-

malizations, and APRs in the ResNet model, there is a ciphertext that contains data

packed using MultParPack. The data of ciphertext packed by this multiplexed pack-

ing method is arranged in a complex order in one dimension, which limits execution

of fully connected layer. Thus, an average pooling algorithm AvgPool that not only

performs average pooling but also rearranges indices is proposed.

Figure 4.12: Rearranging process that selects and places k2i ti valid values sequentially

in AvgPool algorithm.

Average pooling is the process that obtains a vector of Rci by computing the av-

erage value for hiwi values for an input tensor of Rhi×wi×ci . To this end, hiwi values

can be added using rotations and additions of tensors. Dividing by hiwi can be per-

formed instead in the process of multiplying selecting vector. Then, in each page, only

k2i values are valid out of the k2i hiwi values, and the rest are the invalid garbage values.

Only k2i ti valid values are placed sequentially in one-dimensional vector. For this rear-

ranging process, it is required to define selecting vector s̄′(i3) = (s̄
′(i3)
j)0≤j<nt ∈ Rn,

which is defined as follows:

128

s̄
′(i3)
j =

1

hiwi
, if j − kii3 ∈ [0, ki − 1]

0, otherwise,

for 0 ≤ j < nt and 0 ≤ i3 < kiti. Algorithm 23 shows the proposed average pooling

algorithm that uses this selecting vector. Figure 23 describes the rearranging process

that selects and places k2i ti valid values sequentially in Algorithm 23.

4.4.7 Convolution/Batch Normalization Integration Algorithm

For a given input ciphertext ctx, scaling processes, convolution, and batch normaliza-

tion are processed by evaluating ctx ⊙ (B · 1), MultParConv(ctx, U), c′′ ⊙ ctx ⊕

(i′′ − c′′ ·m′′), and ctx ⊙ (1
B · 1) functions sequentially, where 1 is all-one vector in

Rn. Considering MultParConv is a linear function, these operations are equivalent

to evaluating

(c′′ ⊙MultParConv(ctx, BU)⊕ (i′′ − c′′ ·m′′))⊙ (
1

B
· 1)

= c′′ ⊙MultParConv(ctx, U)⊕ 1

B
(i′′ − c′′ ·m′′).

Here, if MultParConv(ctx, U) is performed while replacing the original select-

ing tensor V ec(S′(i)) by ParBNConst(C)·V ec(S′(i)), c′′⊙MultParConv(ctx, U)

can be performed without additional level consumption. In addition, computation of
1
B (i′′ − c′′ · m′′) requires no additional level consumption since it simply requires

operations for plaintext vectors. Thus, scaling processes, convolution, and batch nor-

malization are performed with only two level consumptions. Algorithm 24 describes

the proposed convolution/batch normalization integration algorithm that uses level op-

timization technique.

129

Algorithm 24 MultParConvBN(ct′′a, U, C,M, I)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a, weight tensor U , and batch

normalization constant vectors C,M, I

2: Output: Parallelly multiplexed tensor ciphertext ct′′d

3: ct′′d ← ctzero

4: for i1 ← 0 to fh − 1 do

5: for i2 ← 0 to fw − 1 do

6: ct′′(i1,i2) ← Rot(ct′′a; k
2
iwi(i1 − (fh − 1)/2) + ki(i2 − (fw − 1)/2))

7: end for

8: end for

9: for i3 ← 0 to q − 1 do

10: ct′′b ← ctzero

11: for i1 ← 0 to fh − 1 do

12: for i2 ← 0 to fw − 1 do

13: ct′′b ← ct′′b ⊕ ct′′(i1,i2) ⊙ ParMultWgt(U ; i1, i2, i3)

14: end for

15: end for

16: ct′′c ← SumSlots(ct′′b ; ki, 1)

17: ct′′c ← SumSlots(ct′′c ; ki, kiwi)

18: ct′′c ← SumSlots(ct′′c ; ti, k
2
i hiwi)

19: for i4 ← 0 to min(pi − 1, co − 1− pii3) do

20: i← pii3 + i4

21: ct′′d ← ct′′d ⊕ Rot(ct′′c ;−⌊i/k2o⌋k2ohowo + ⌊nt/pi⌋(i mod pi) −

⌊(i mod k2o)/ko⌋kowo − i mod ko)⊙ (ParBNConst(C) · V ec(S′(i)))

22: end for

23: end for

24: for j ← 0 to log2 po − 1 do

25: ct′′d ← ct′′d ⊕Rot(ct′′d;−2j(nt/po))

26: end for

27: ct′′d ← ct′′d ⊖
1
B (c′′ ·m′′ − i′′)

28: Return ct′′d
130

4.5 Catastrophic Divergence from Imaginary Error and

Imaginary-Removing Bootstrapping

In this section, an imaginary-removing bootstrapping is proposed, which makes it pos-

sible to implement VDSCNNs. The most sensitive component in ResNet implementa-

tion with many layers on the RNS-CKKS scheme is the APR. Since the RNS-CKKS

scheme actually deals with complex numbers, precision noise during each homomor-

phic operation occurs not only in the real part of each data but also in the imaginary

part. It can be found that the results of the APR in the real part can completely diverge

if the accumulated noise in the imaginary part is not small enough.

I adopt the APR consisting of the composition of minimax approximate polynomi-

als for piecewise sign functions [54]. Assume that p1 and p2 are sequential component

minimax approximate polynomials in this order. If the range within the approximation

domain of p1 is [−1 − b,−1 + b] ∪ [1 − b, 1 + b], the approximation domain of p2

is designed to be this range. Since the minimax approximate polynomial usually di-

verges when the input value is outside the approximation domain, the result value of

p2 will diverge greatly and lead to a failure of APR if the result value of p1 is outside

of [−1− b, 1 + b].

Consider the neighborhood of the local maximum point x0 such that p1(x0) = 1+

b. p1(x) can be approximated by the second Taylor polynomial Tp1,2(x) = p1(x0) −

a(x − x0)
2 for positive real number a near x0, which is also valid in the complex

domain. When the value of x − x0 is a pure imaginary number, the value of Tp1,2(x)

is always greater than p1(x0) = 1 + b. Thus, there exist some values of x such that

Re(p1(x)) is outside of [−1 − b, 1 + b] when allowing imaginary noise, which leads

to a failure in the whole ResNet inference.

Hence, to stably perform ResNet with many layers, it is important to remove

the imaginary part of the input of each APR. It is proposed to apply the imaginary-

removing bootstrapping operation before the APR. The formula Re(x) = x/2 + x/2

131

is homomorphically evaluated by halving all coefficient values in SlotToCoeff oper-

ation in the bootstrapping and homomorphically computing v + v̄. This additional

operation costs only one KSO for homomorphic conjugation, and no additional level

is consumed.

Figure 4.13 shows the mean of absolute values of imaginary parts after each layer

using normal and imaginary-removing bootstrappings for one instance of ResNet-110

inference. It is observed that the diverging phenomenon occurs after the 69th layer

due to the accumulated noise in the imaginary part. This catastrophic divergence oc-

curs for 12 images out of 50 tested images (i.e., 24% of tested images). The pro-

posed imaginary-removing bootstrapping makes the noise of imaginary parts remain

much smaller during deeper ResNet inference, and it can be confirmed that imaginary-

removing bootstrapping never causes this diverging phenomenon when conducting

simulations for a various number of layers and test images as in Section 4.7. It is

worth mentioning that this divergence problem of VDSCNNs on FHE and its solution

are addressed for the first time.

4.6 Implementation of Privacy-Preserving ResNet Models

4.6.1 Optimization of Level Consumption

In the proposed implementation, convolution, batch normalization, bootstrapping, and

APR are repeatedly performed in this order. Since the bootstrapping and APR work

only for input values in [−1, 1], it is required to do scaling by 1/B before bootstrapping

and by B after the APR. Sufficiently large B is set to maintain all the computed values

within [−B,B]. B = 40 and B = 65 are set for the CIFAR-10 and CIFAR-100

datasets, respectively, and each value of B is obtained by adding some margin to the

maximum value of all used values.

I propose a method of reducing level consumption by integrating computations,

as shown in Figure 4.14. The constant of batch normalization (i.e., a) is multiplied

132

-11

-9

-7

-5

-3

-1

0 10 20 30 40 50 60 70 80 90 100 110 120

normal bootstrapping

imaginary-removing bootstrapping

layer

m
e
a
n
 o

f a
b
so

lu
te

 v
a
lu

e
s

o
f
im

a
g
in

a
ry

 p
a
rt
s

approximate ReLU failure

Figure 4.13: Mean of absolute values of imaginary parts after each layer when per-

forming ResNet-110 inference using the normal bootstrapping and the

proposed imaginary-removing bootstrapping.

during the selecting procedure in convolution instead of batch normalization, and then

add a modified constant vector by taking into account the value of B during batch

normalization. By these judicious integrations, three levels can be saved. Figure 4.14

describes this level optimization technique, and the proposed convolution/batch nor-

malization integration algorithm, denoted as MultParConvBN , is presented in Sub-

section 4.4.7.

4.6.2 The Proposed Architecture for ResNet on the RNS-CKKS Scheme

Parameter Setting

The polynomial degree is set to N = 216 and the number of full slots is nt = 215.

Some parameters are optimized to achieve a higher security level. First, the Hamming

weight of the secret key is set to 192, which is larger than 64 used in many previous

works because larger Hamming weight of secret key increases available modulus bits.

In addition, base modulus, special modulus, and bootstrapping modulus are set to 51-

133

selecting

level optimization selecting

Figure 4.14: Level optimization by integrating computations.

bit prime instead of 60-bit prime, and default modulus are set to 46-bit prime instead

of 50-bit prime. Even if the length of the modulus bits is reduced, high accuracy of

bootstrapping or APR can be achieved. Based on the hybrid dual attack for the learning

with errors (LWE) problem with the sparse secret key [22], the total modulus bit length

for 128-bit security is 1,553 bits.

The RS bootstrappings with n = 214, 213, and 212 are used since data in each

input ciphertext for the bootstrapping is less than nt = 215. CoeffToSlot and Slot-

ToCoeff procedures are performed with level collapsing technique with three levels.

The degrees of the approximate polynomials for the cosine function and the inverse

sine function are 59 and 1, respectively, and the number of the double-angle formula

is two. The total level consumption is 14 in the bootstrapping, and the total modulus

consumption is 644. The imaginary-removing bootstrappings for n = 214, 213, and

212 are refered to as Boot14, Boot13, Boot12, respectively.

I use the approximate homomorphic ReLU algorithm that uses APRs using a com-

position of minimax approximate polynomial as in [54, 57]. The precision parameter

α = 13 and set of degrees {15, 15, 27} are used. The homomorphic ReLU algorithm

for these parameters is refered to as AppReLU(ctx). The ℓ1-norm approximation error

of AppReLU is less than 2−13, and this marginal error enables me to use the pre-trained

134

parameters of standard ResNet models. That is, it is not needed to train/retrain contrary

to a nonstandard HE-friendly network.

The Proposed Structure of ResNet on the RNS-CKKS Scheme

The 32 × 32 CIFAR-10 and CIFAR-100 images is used for the evaluation. Down-

sampling and average pooling algorithms that support multiplexed tensors are de-

vised. These algorithms are refered to as Downsamp and AvgPool, presented in

Subsection 4.4.6. The fully connected layer using the diagonal method in [42] is

used. ResNet-20/32/44/56/110 on the RNS-CKKS scheme are implemeneted using

MultParConvBN , AppReLU , Boot, AvgPool, Downsamp, and fully connected

layer. Figure 4.15 shows the proposed ResNet structure on the RNS-CKKS scheme,

where MultParConvBN is simply referred to as ConvBN . The parameters used in

ConvBN and Downsamp are presented in Table 4.6.

While two sequential bootstrappings are required to perform APR, convolution,

and batch normalization in one layer without this optimization, only single use of

bootstrapping is necessary for the proposed implementation because the required level

consumption for convolution, batch normalization, and bootstrapping are reduced a

lot. In addition, the proposed architecture for ResNet uses a 1,501-bit modulus, and

thus, it achieves the standard 128-bit security level.

4.7 Simulation Results

In this section, numerical results of the proposed architecture for ResNet are presented.

The numerical analyses are conducted on the representative RNS-CKKS scheme li-

brary SEAL [68] on AMD Ryzen Threadripper PRO 3995WX at 2.096 GHz (64 cores)

with 512 GB RAM, running the Ubuntu 20.04 operating system. The CIFAR-10 and

CIFAR-100 datasets are employed for evaluation, which are both composed of 50,000

images for training and 10,000 images for testing [53]. Pre-trained parameters are used

135

Figure 4.15: Structure of the proposed ResNet-20/32/44/56/110 on the RNS-CKKS

scheme. The input image is packed in ctA in a raster scan fasion and

using RS packing.

for standard ResNet-20/32/44/56/110.

4.7.1 Latency

First, ResNet-20/32/44/56/110 are performed using the proposed architecture on the

RNS-CKKS scheme. 3,306 KSOs are required for ResNet-20, which is 116× smaller

than 384,160 without the proposed techniques and optimizations. Table 4.7 shows the

classification runtime for one CIFAR-10/CIFAR-100 image using ResNet models on

the RNS-CKKS scheme. Due to the large reduction of the number of KSOs, while

the previous implementation takes 10,602s with 64 CPU threads to perform ResNet-

20 on the RNS-CKKS scheme, the proposed implementation takes 2,271s to perform

ResNet-20 even with one CPU thread, which is 4.67× reduction in latency. Consider-

ing that the proposed implementation only uses one CPU thread, more than 100× and

1000× lower latency can be expected on GPU and hardware accelerators, respectively

136

co
m

po
ne

nt

C
IF

A
R

-1
0

C
IF

A
R

-1
00

w
/o

m
ul

t.
co

nv
.

pr
op

os
ed

pr
op

os
ed

(6
4

th
re

ad
s)

(s
in

gl
e

th
re

ad
)

(s
in

gl
e

th
re

ad
)

R
es

N
et

-2
0

R
es

N
et

-2
0

R
es

N
et

-3
2

R
es

N
et

-4
4

R
es

N
et

-5
6

R
es

N
et

-1
10

R
es

N
et

-3
2

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

ru
nt

im
e

pe
rc

en
t

C
on

vB
N

-
-

34
6s

15
.2

%
54

7s
14

.7
%

75
1s

14
.3

%
96

0s
14

%
1,

85
5s

14
%

54
2s

13
.7

%

A
pp

R
eL

U
-

-
25

7s
11

.3
%

40
6s

10
.9

%
58

3s
11

.2
%

76
2s

11
.1

%
1,

47
5s

11
.1

%
51

0s
12

.9
%

B
oo

t
-

-
1,

65
1s

72
.6

%
2,

76
0s

74
.0

%
3,

87
4s

74
.1

%
5,

11
3s

74
.6

%
9,

93
6s

74
.8

%
2,

86
4s

72
.7

%

D
ow

ns
am

p
-

-
5s

0.
2%

5s
0.

1%
5s

0.
09

%
5s

0.
07

%
5s

0.
04

%
-

-

A
vg

Po
ol

-
-

2s
0.

1%
2s

0.
06

%
2s

0.
05

%
2s

0.
04

%
2s

0.
02

%
2s

0.
05

%

FC
la

ye
r

-
-

10
s

0.
4%

10
s

0.
3%

10
s

0.
2%

10
s

0.
1%

10
s

0.
08

%
24

s
0.

6%

to
ta

l
10

,6
02

s
10

0%
2,

27
1s

10
0%

3,
73

0s
10

0%
5,

22
4s

10
0%

6,
85

2s
10

0%
13

,2
82

s
10

0%
3,

94
2s

10
0%

Ta
bl

e
4.

7:
C

la
ss

ifi
ca

tio
n

ru
nt

im
e

fo
ro

ne
C

IF
A

R
-1

0/
C

IF
A

R
-1

00
im

ag
e

us
in

g
R

es
N

et
on

th
e

R
N

S-
C

K
K

S
sc

he
m

e

137

model runtime
amortized

runtime

CIFAR-10

w/o mult. conv.

ResNet-20 10,602s 10,602s(one image,

64 threads)

ResNet-20 3,973s 79s

proposed ResNet-32 6,130s 122s

(50 images, ResNet-44 8,983s 179s

50 threads) ResNet-56 11,303s 226s

ResNet-110 22,778s 455s

CIFAR-100

proposed

ResNet-32 6,351s 127s(50 images,

50 threads)

Table 4.8: Classification (amortized) runtime for multiple CIFAR-10/CIFAR-100 im-

ages using ResNet models on the RNS-CKKS scheme

[48, 52].

I also succeed in implementing the standard ResNet-32/44/56/110 on the RNS-

CKKS scheme for the first time. Table 4.7 shows that the runtime increases linearly

with the number of layers, which is quite difficult to be expected in leveled HEs.

4.7.2 Amortized Runtime

Since servers should classify multiple images of clients in many cases, not only the

latency but also the amortized runtime for multiple images, i.e., runtime per image,

is important. Since the proposed implementation requires only one thread, multiple

threads allow me to classify multiple images simultaneously. Table 4.8 shows the run-

time and amortized runtime of classification for multiple CIFAR-10/CIFAR-100 im-

ages using ResNet models on the RNS-CKKS scheme. The proposed implementation

138

dataset model
#test

#success
backbone obtained

images accuracy accuracy

ResNet-20 10,000 9,132 91.52% 91.31%

CIFAR ResNet-32 10,000 9,240 92.49% 92.4%

-10 ResNet-44 2,000 1,852 92.76% 92.6%*

ResNet-56 2,000 1,856 93.27% 92.8%*

ResNet-110 2,000 1,858 93.5% 92.9%*

CIFAR
ResNet-32 10,000 6,943 69.5% 69.43%

-100

Table 4.9: Classification accuracies for CIFAR-10/CIFAR-100 images using ResNet

models on the RNS-CKKS scheme. An asterisk (*) implies that not all

10,000 test images have been tested

of ResNet-20 takes 3,973s to classify 50 images using 50 threads, which corresponds

to amortized runtime 79s. This is 134× faster than the amortized runtime 10,602s

without proposed techniques and optimizations.

4.7.3 Accuracy

Table 4.9 presents the classification accuracies for CIFAR-10/CIFAR-100 images us-

ing ResNet models on the RNS-CKKS scheme. Thanks to resolving the catastrophic

divergence phenomenon by the proposed imaginary-removing bootstrapping, all the

obtained accuracies for ResNet-20/32/44/56/110 are very close to those of backbone

CNNs. This implies that the proposed implementation of VDSCNNs on the RNS-

CKKS scheme can benefit from high accuracies of various pre-trained VDSCNNs that

have widely been developed already.

139

Chapter 5

HIERARCHICAL GALOIS KEY GENERATION

Among various FHE schemes, Brakerski/Fan-Vercauteran (BFV) [12, 33] and Cheon-

Kim-Kim-Song (CKKS) [19,21] schemes are two of the most practical FHE schemes.

They can support arithmetic operations for integer or complex numbers in the single-

instruction multiple-data (SIMD) manner. Thus, several data can be encrypted in one

ciphertext, and one homomorphic operation can simultaneously perform component-

wise operations on these multiple message data. The BFV scheme deals with integer

data and supports exact computation on the encrypted integer data, and it fits the sit-

uation requiring exact computation. On the other hand, since the CKKS scheme deals

with real or complex number data and supports approximate computation on the en-

crypted real or complex data, it fits the situation allowing approximate computation.

The BFV and CKKS schemes also support rotation operation which corresponds

to a cyclic shift of message data within ciphertext. Many applications that require im-

portant operations such as bootstrapping, matrix multiplication, and convolution in

convolutional neural networks can be achieved using this rotation. However, one of

the main obstacles for using these applications using homomorphic encryption in the

client-server system is heavy Galois keys. The Galois keys is evaluation keys for the

homomorphic rotation operation, which is the cyclic shift operations for rows of the

encrypted matrix in one ciphertext of the BFV scheme and for encrypted message vec-

140

tor in that of the CKKS scheme. The homomorphic rotation operation is inevitable

if it is required to operate data with different positions in one ciphertext, such as the

bootstrapping [8, 16, 20, 56, 58], the matrix multiplication [47], and the convolution in

convolutional neural networks [49]. Since different Galois keys are required for all the

different cyclic shift values for the homomorphic rotation operation, the number and

the total size of Galois keys can be significantly large for the complex computational

model. For example, if the standard ResNet-20 network for the CIFAR-10 dataset is

implemented with pre-trained parameters with the CKKS scheme with the polyno-

mial modulus degree N = 216, the server requires 265 Galois keys, which occupies

105.6GB of memory in the server. If the ResNet-18 network for the ImageNet dataset

is designed using the same techniques, 617 Galois keys are required and it occupies

197.6GB of memory in the server.

In conventional homomorphic encryption schemes, clients with secret keys had

to generate Galois keys for all necessary cyclic shift values, and thus lots of Galois

keys impose a heavy burden on both servers and clients. First, clients do not have

large computational resources in general, and thus requiring the clients to generate

all of these Galois keys imposes a substantial computational burden on the clients.

In addition, considerable communication amount between the client and the server is

required because the client should send all generated Galois keys to the server.

On the other hand, the server may not want to release the information of the re-

quired subset of Galois keys for the requested services because it can leak some in-

formation about the computation model of the server. Further, since a great deal of

memory is used to store Galois keys of clients, the server dealing with a large num-

ber of clients requires lots of memory resources only to keep their Galois keys. The

server may want to efficiently use memory resources by temporarily removing some

inert Galois keys according to the services required by the client. Since the server does

not have a secret key and permission to generate the Galois keys, it should ask clients

to generate and send the required Galois keys to the server again if the server needs

141

them for new services requested by the client. Otherwise, the server should store all

the Galois keys received from the clients, which prevents the server from using memo-

ries efficiently. Therefore, a new Galois key generation scheme needs to be developed,

enabling flexible management of the Galois keys in the client-server systems.

In the BFV and CKKS schemes, it is observed that the Galois keys can be gener-

ated from other Galois keys using key-switching operation. The crucial observation is

that the Galois key can be regarded as a set of ciphertexts. If the key-switching oper-

ation is performed to each ciphertext in a Galois key, new Galois key for other cyclic

shift can be derived. Since the key-switching operation requires a key-switching key

with larger modulus (i.e., in the higher key level) than the ciphertext, the key-switching

key for this Galois key generation should have higher level than the newly generated

Galois key. This high-level key-switching key is also in the form of the Galois key, and

thus it can also be generated by another higher-level key-switching key. Thus, a chain

of Galois keys for various levels can be defined, where each Galois key may be used

as a key-switching key for generating a lower-level Galois key.

From the above observations, a hierarchical Galois key generation system is pro-

posed, which makes it possible to generate a lower-level Galois key using higher-level

Galois key in the server. In this system, clients can generate only a small set of the

highest-level Galois keys such as Galois keys for only power-of-2 cyclic shifts. Then

they send the small set of Galois keys to the key management server (KMS) or the

server. The server can generate a large set of lower-level Galois keys using the received

set of Galois keys without any help from the clients and finally, a set of level-zero Ga-

lois keys is generated, which corresponds to the set of conventional Galois keys for

the cyclic shifts of message data within a ciphertext in the server. In the server, inert

Galois keys can be temporarily removed and re-generated only when needed to ef-

ficiently manage the storage of Galois keys. This proposed method can significantly

reduce the computational burdens of the client, the communication cost between the

client and server, and storage cost of all Galois keys in the server. To further optimize

142

Secret key

Enc. key

Mult. key

Conj. key

Public key set
from client

Client

Server

Level-2
Galois keys

Key
generation Public key and Galois keys

transmission from client

Key Management
Server

Level-1
Galois keys

Enc. key

Mult. key

Conj. key

Public key set
from client

Level-2
Galois keys

Delegated Galois key generation
for level-1 Galois keys

(a) Public key and level-2 Galois key tranmission from the client and preparation for faster

level-0 Galois key generation by generating level-1 Galois keys in advance

Level-0
Galois keys

Client

Server

Enc. key

Mult. key

Conj. key

Public key set
for server

Ciphertext
transmission

Faster delegated Galois key generation

Key Management
Server

Level-1
Galois keys

Ciphertext

Public key and Galois keys
transmission to server

(b) Faster Galois key generation from public key and level-1 Galois keys

Figure 5.1: Efficient Galois key management in three-level hierarchical Galois key

generation.

143

this Galois key generation, several optimization techniques also proposed, such as the

hoisted Galois key generation and the reduction to graph-theoretic algorithms.

A general protocol capable of efficient Galois key management is presented, re-

flecting the activity of the clients using multi-level Galois key generation scheme.

When a client frequently uses the service, it is important to generate the desired Galois

keys quickly so that the service should not be delayed due to the Galois key generation.

On the other hand, in the case of clients who do not use the service frequently, it may

be better to store only the minimal Galois key set and reserve memory in the server

for other services to active users. However, it is also required to prepare the inert client

to become an active client at any time. In Figure 5.1 of three-level Galois key gener-

ation scheme, the client generates and transmits the minimum number of the level-2

Galois keys, and the server generates and retains an appropriate number of the level-1

Galois keys from the level-2 Galois keys reflecting how often the client uses services,

where server and KMS can be collocated. With these level-1 Galois keys, the server

can generate the level-0 Galois keys more efficiently. The role of the level-1 Galois

keys is to give a trade-off between the efficiency of generating the level-0 Galois keys

when requested and the memory used for storing Galois keys, and these level-1 Galois

keys can be updated only by the server without any help from the client. The proposed

protocol can enable this fine key management system to adjust in detail the trade-off

between the memory usage of the Galois keys and the computational complexity of

Galois key generation in the clients and the server.

The simulation is conducted with the proposed Galois key generation system

for ResNet models with an appropriate computing environment for the client-server

model. If a three-level hierarchical Galois key system is used, the Galois key size

generated and transmitted by the client can be reduced from 105.6GB for 265 Galois

keys to 3.4GB for 8 Galois keys for the ResNet-20 for CIFAR-10, and reduced from

197.6GB for 617 Galois keys to 3.9GB for 8 Galois keys for the ResNet-18 for Ima-

geNet. While the generation of Galois keys for the ResNet-20 and the ResNet-18 by

144

the client takes 368.5s and 786.0s in the conventional system, it is reduced to 12.1s

(30×) and 15.7s (50×) in the three-level hierarchical Galois key system, respectively.

The server with GPU accelerator only needs 25.3s and 22.0s to generate all required

Galois keys in the online phase.

5.1 Hierarchical Galois Key System

In this section, an overview of the proposed hierarchical Galois key system are pro-

vided. Specific procedures in this system will be described in Sections 5.2 and 5.3.

5.1.1 Definition of Hierarchical Galois Key System

The hierarchical Galois key system is defined in the cloud computing using FHE. In a

k-level hierarchical Galois key system, there are k sets of Galois keys with a hierarchy

from a key level k−1 to 0, where the conventional Galois key corresponds to the Galois

key in the key level 0 with k = 1. Each Galois key can be used to generate Galois keys

in the lower levels. The additional algorithms for the hierarchical Galois key system

are InitGalKeyGen and GalKeyGen. The algorithm InitGalKeyGen generates a set of

Galois keys in the highest key level using the secret key, which is performed by the

client who has the secret key. The algorithm GalKeyGen generates a set of Galois keys

in the intermediate key levels or the zero key level using the public key and the set

of Galois keys in the higher key level. This algorithm is performed by the server or

the key management server (KMS) having no secret key. Now, it is assumed that the

public key and hierarchical Galois keys are managed by the KMS collocated with or

separated from the server, and all protocols in the dissertation also make sense when

the KMS and the server are united. These two algorithms are defined as follows, where

k denotes the total number of key levels for the hierarchical Galois key system.

• InitGalKeyGen(s, Tk−1) → {gk
(k−1)
i }i∈Tk−1

: Given a secret key s and a set of

cyclic shifts Tk−1, generate the Galois keys with cyclic shifts in Tk−1 in the

145

highest key level in the client.

• GalKeyGen(ℓ,Uℓ, {gk
(ℓi)
i }i∈Uℓ

, pk, Tℓ) → {gk
(ℓ)
i }i∈Tℓ : Given a public key pk,

a set of the Galois keys {gk(ℓi)i }i∈Uℓ
with cyclic shifts in Uℓ in the key level ℓi

higher that ℓ, and a set of cyclic shifts Tℓ, generate the Galois keys with cyclic

shifts in Tℓ in key level ℓ in the KMS.

The Galois key gk
(ℓ)
i denotes the Galois key for the cyclic shift i in the message

vector in the key level ℓ, whose specific definition will be dealt with in Section 5.2.

Although the public key pk is represented separately from the Galois keys, the Galois

keys are also public in that these keys can open to the public. The set of cyclic shifts

for each key level, which is an integer set, is denoted by T0, · · · , Tk−1, respectively.

These sets are pairwisely disjoint. The set of cyclic shifts for each key level higher

than ℓ whose Galois keys are generated in advance, is denoted by Uℓ. If all desired

Galois keys in the key level higher than ℓ are all generated, Uℓ equals to
⋃k−1

i=ℓ+1 Ti.

The conventional Galois key system can be seen as a special case of the proposed

hierarchical Galois key system, where there is only the algorithm InitGalKeyGen, and

the number of key levels in the hierarchy is one.

5.1.2 Galois Key Generation Protocol in Hierarchical Galois Key System

A detailed Galois key generation protocol is proposed with a general hierarchical Ga-

lois key system. In this system, the server or the key management server can finely

control the trade-off between the memory usage and the latency of the Galois key gen-

eration for required services according to how often the client uses the services. If the

client requests the service more often, the server wants to provide the service to these

types of clients as fast as possible and is willing to use more memory for it. To this end,

the required Galois keys should be generated fast with a reduced computation amount

just after the required service is determined from the request of the client. The more

Galois keys in the key levels higher than zero, the smaller computation amount to gen-

146

erate the level-zero Galois keys in the server for specific services, but more memory is

required in the server. In the environment of the limited computational resource in the

client and the limited memory resource in the server, it is required to finely manage

this trade-off for the Galois keys.

It is assumed that it is not known when and what model the client will request

the service to the server after the key generation and transmission. The offline phase

is defined as the generation of Galois key set in the key level k − 1 in the client

and intermediate Galois key sets of the key levels k − 2, · · · , 2, 1 in the server before

determination of required services, and online phase as the generation of the level-zero

Galois keys required for the service requested by the client. The specific protocols are

described in Algorithm 25.

5.2 Proposed Hierarchical Galois Key Generation for BFV

and CKKS Schemes

In this section, the hierarchical Galois key system for BFV and CKKS schemes is

proposed. The BFV and CKKS schemes differ only in the packing structure, the de-

cryption method, and the role of each operation for the encrypted data, but the key-

switching operation itself is completely the same. Thus, I will deal with them at once.

The term ciphertext is used as a pair of ring elements (b, a) ∈ R2
q for some modulus

q. A ciphertext (b, a) ∈ R2
q is defined to be a valid ciphertext of m with the secret key s

if b+a ·s = m+e mod q, where e is a polynomial with small coefficients compared

to q.

Let Q =
∏dnum−1

i=0 Qi be a product of several coprime positive integers Qi’s, and

P be a positive integer which is coprime to and larger than Qi’s. A Galois key gkr =

{gkr,i}i=0,··· ,dnum−1 for cyclic shift r with the secret key polynomial s ∈ R is defined

to be valid if each gkr,i = (br,i, ar,i) ∈ R2
PQ is a valid ciphertext of P · Q̂i · [Q̂−1

i]Qi ·

s(X5r) with the secret key s, where Q̂i =
∏

j ̸=iQj . This can be used for the key-

147

Algorithm 25 Key Management of Hierarchical Galois Key System with the k Key

Levels
Input: Encryption parameters params for k-level Galois key system (client and

server), a set of cyclic shifts for Galois keys in the highest key level Tk−1

(client), sets of cyclic shifts for Galois keys in the intermediate key levels

Tk−2, · · · , T1 (server), and a homomorphic service S (server)

Output: A set of Galois keys {gk(0)i }i∈T0 (server)

Key generation and transmission in client

1. sk ← SecGen(1λ, params)

2. pk ← PubGen(sk)

3. {gk(k−1)
i }i∈Tk−1

← InitGalKeyGen(s, Tk−1)

4. Transmit (pk, {gk(k−1)
i }i∈Tk−1

) to the server and let G = {gk(k−1)
i }i∈Tk−1

Offline phase: generating Galois keys in the key level ℓ for frequent users

1. {gk(ℓ)i }i∈Tℓ ← GalKeyGen(ℓ,Uℓ, {gk
(ℓi)
i }i∈Uℓ

, pk, Tℓ)

2. G ← G ∪ {gk(ℓ)i : i ∈ Tℓ}

Offline phase: removal of Galois keys in the key level lower than ℓ for non-

frequent user

1. G ← {gk(ℓi)i ∈ G : i ∈
⋃k−1

j=ℓ Tj , ℓi ≥ ℓ}

Online phase: Galois key generation in server

1. T0 ← ExtractGalSet(S)

2. {gk(0)i }i∈T0 ← GalKeyGen(0,Uℓ, {gk
(1)
i }i∈Tℓ , pk, T0)

148

switching operation to the ciphertext in the modulus q, where q is a divisor of Q. Q is

called the evaluation modulus and P the special modulus.

These Galois keys are used in the rotation operation. The rotation operation in

the BFV scheme is an operation mapping (vi,j) 7→ (vi,(j+r)) while encrypted, where

the addition operation of the subscript is in modulo N/2 and N is the polynomial

modulus degree. The rotation operation of the CKKS scheme is an operation mapping

(vi) 7→ (vi+r) while encrypted. In terms of ring elements, these operations can be

unified as operations mapping m(X) 7→ m(X5r). For these operations, an operation

of (b(X), a(X)) 7→ (b(X5r), a(X5r)) is first performed. This processed ciphertext

satisfies b(X5r) + a(X5r) · s(X5r) ≈ m(X5r), which means that it is a ciphertext of

a plaintext polynomial m(X5r) with the secret key s(X5r). it is required to convert

this ciphertext to a ciphertext of the same plaintext with the original secret key. This is

done by taking the key-switching operation from s(X5r) to s(X) using Galois key for

cyclic shift r.

5.2.1 Hierarchical Special Modulus

The crucial idea in the proposed hierarchical Galois key is to apply the key-switching

algorithm to the public key or the existing Galois keys in the corresponding key level,

and the key-switching keys that are needed for this key-switching algorithm are the

higher-level Galois keys. Since the key-switching operation requires a key-switching

key with a larger modulus than that of ciphertexts, the larger modulus for the Galois

key is set in the higher key level than that for the public key or the Galois keys to be

key-switched.

Let Q0 be the maximum modulus for the ciphertext, and let Pℓ be the additional

modulus for the Galois keys in the key level ℓ compared to that in the key level ℓ− 1,

which is called the hierarchical special modulus for the key level ℓ. The modulus Pℓ

is regarded as a special modulus in the key level ℓ, but it is regarded as a divisor of

the evaluation modulus in the higher key level than ℓ. The modulus for the level-ℓ

149

Galois keys is PℓQℓ, where Qℓ = Q0
∏ℓ−1

i=0 Pi. The conventional special modulus cor-

responds to P0, which is the hierarchical special modulus for the key level 0. Each hier-

archical special modulus can be set independently from each other. hdnumℓ is defined

as the number of the RNS moduli in Qℓ decomposed for the key-switching operation

in the key level ℓ. Pℓ is chosen to be larger than all the hdnumℓ decomposed moduli in

Qℓ.

In the previous schemes, the number of RNS modulus is equally decomposed with

dnum regardless of the size of each RNS modulus. However, in the CKKS scheme,

the size of each RNS modulus is different from each other according to the required

precision for each level, and the special modulus is not ensured to be a minimum size.

Since the size of the special modulus can affect the security level of the scheme, it is

desirable to minimize the size of the special modulus. An algorithm is proposed for

obtaining the list of special modulus for the Galois key in each key level in Algorithms

26 and 27.

Given RNS moduli for ciphertexts and the decomposition numbers for each key

level hdnumi, the HModulusSelection algorithm chooses the set of RNS moduli for

each hierarchical special modulus. The ModulusSelection algorithm is designed to

minimize the bit-length of each special modulus, and it is used as a subroutine algo-

rithm in the HModulusSelection algorithm as in Algorithm 27. The value maxmod is

the maximum bit-length for each RNS primes, and this value is usually 60 for 64-bit

computing system. The optimization for each modulus is meaningful for the security

because the modulus for the highest-level Galois keys directly determines the security

level. The RNS moduli for ciphertexts in each level are determined from the requested

services by the client, in particular from the required precision for homomorphic mul-

tiplication in each level. This algorithm is also desirable to be used for the conventional

FHE scheme using the special modulus without the hierarchical Galois key scheme.

The correctness of the algorithm is formalized in the following theorem, which will be

proved in Section 5.5.

150

Theorem 5.2.1. Algorithm 26 outputs the list of indices I = {u0 =

0, u1, · · · , udnum−1} such that 0 = u0 < u1 < · · · < udnum−1 ≤ L and minimizes

the following formula

max

u1−1∑
i=u0

log qi,

u2−1∑
i=u1

log qi, · · · ,
L∑

i=udnum−1

log qi

 .

The notation for the modulus is set as follows. The list of moduli for ciphertexts

is denoted as C = {q0, · · · , qL}, where L is the maximum level of the ciphertext.

The additional list of moduli for the key level ℓ is denoted as Bℓ and its elements

are denoted as {qLℓ−1+1, · · · , qLℓ
}, where Lℓ is the number of extended levels in C ∪⋃ℓ

j=0 Bj . The list of moduli for C ∪
⋃ℓ

j=0 Bj can be denoted as {q0, · · · , qLℓ
}. Let

Iℓ = {uℓ,0 = 0, uℓ,1, · · · , uℓ,hdnumℓ−1} be the list of the indices of boundary position

derived by HModulusSelection. Then, Qℓ,i denotes
∏uℓ,i+1−1

t=uℓ,i
qt for 0 ≤ ℓ ≤ k − 1

and 0 ≤ i ≤ hdnumℓ − 1 and Q̂ℓ,i denotes
∏

j ̸=iQℓ,j .

5.2.2 Generation of Public Key and Galois Keys in Client

The conventional schemes generate a public key (b, a) with the modulus Q =
∏L

i=0 qi

because the special modulus is only used in the key-switching operation. In contrast,

the proposed hierarchical Galois key generation scheme generates a public key (b, a)

with Qk−1 =
∏Lk−2

i=0 qi to prepare to use it to generate Galois keys with key levels

smaller than k − 1. The Galois keys with the highest key level are generated by the

client. The set of cyclic shifts Uℓ of Galois keys in the key level higher than ℓ should be

the set that can generate all cyclic shifts Tℓ of Galois keys with the key level ℓ by the

sum allowing repetition. The small size of Tk−1 for the highest key level can reduce

the computational burden and the communication cost of the client.

In the InitGalKeyGen operation for the proposed scheme, a single highest-level Ga-

lois key for cyclic shift r with the secret key polynomial s ∈ R is the form of gk(k−1)
r =

{gk(k−1)
r,i }i=0,··· ,hdnumk−1−1, where gk

(k−1)
r,i = (b

(k−1)
r,i , a

(k−1)
r,i) ∈ R2

Qk−1Pk−1
such that

151

Algorithm 26 ModulusSelection

Input: A list of modulus {q0, · · · , qL}, decomposition number dnum

Output: Log of minimum special modulus logP , the list of boundary indices I =

{u0 = 0, u1, · · · , udnum−1}

if dnum = 1 then
return

∑L
i=0 log qi and {0}

else

Find j minimizing the value
∣∣∣∑j

i=0 log qi −
dnum−1
dnum

∑L
i=0 log qi

∣∣∣.
Perform ModulusSelection with {q0, · · · , qj} and dnum− 1 to output uj and Ij .

vj ←
∑L

i=j+1 log qi

if uj = vj then return uj and Ij ∪ {j + 1} ;

else if uj > vj then

while uj ≥ vj do
j ← j − 1

Perform ModulusSelection with {q0, · · · , qj} and dnum − 1 to output uj

and Ij .

vj ←
∑L

i=j+1 log qi

if uj+1 > vj then return vj and Ij ∪ {j + 1} ;

else return uj+1 and Ij+1 ∪ {j + 2} ;

else

while uj ≤ vj do
j ← j + 1

Perform ModulusSelection for {q0, · · · , qj} and dnum−1 to output uj and

Ij .

vj ←
∑L

i=j+1 log qi

if uj > vj−1 then return vj−1 and Ij−1 ∪ {j} ;

else return uj and Ij ∪ {j + 1} ;

152

Algorithm 27 HModulusSelection

Input: A list of modulus for ciphertexts C = {q0, · · · , qL}, hierarchical decomposi-

tion number hdnumℓ for each ℓ, 0 ≤ ℓ ≤ k − 1, the maximum bit-length of

RNS modulus maxmod

Output: The lists of hierarchical special modulus Bℓ for each ℓ, 0 ≤ ℓ ≤ k − 1 and

the lists of boundary indices Iℓ for each ℓ, 0 ≤ ℓ ≤ k − 1

for ℓ = 0 to k − 1 do
Perform ModulusSelection for C ∪

⋃ℓ−1
j=0 Bj and hdnumℓ to output logPℓ and Iℓ.

mℓ ←
⌈

logPℓ
maxmod

⌉
Sample mℓ primes with a bit-length of logPℓ/mℓ and insert them to Bℓ.

a
(k−1)
r,i ← RQk−1Pk−1

and b
(k−1)
r,i = −a(k−1)

r,i ·s+e
(k−1)
r,i +Pk−1 ·Q̂k−1,i ·[Q̂−1

k−1,i]Qk−1,i
·

s(X5r) for e(k−1)
r,i ← χ. The RNS bases for gkr,i are C ∪

⋃k−1
j=0 Bj . Note that the dis-

tribution and the form of the Galois keys generated by the client is the same as those

in the conventional Galois key generation.

5.2.3 GalToGal and PubToGal Operations

Two types of operations are required to make the level-ℓ Galois keys for ℓ less than

k − 1. One is the operation PubToGal, which generates a level-ℓ Galois key from the

public key, and the other is the operation GalToGal, which generates a level-ℓ Galois

key from the existing level-ℓ Galois keys for the other cyclic shifts. The combination

of PubToGal operation and GalToGal operation will generate all Galois keys with only

the public key and Galois keys in the key level higher than ℓ.

Let the shift-r Galois key be defined as the Galois key for cyclic shift r, and let

(r, ℓ) Galois key be defined as the Galois key for cyclic shift r in the key level ℓ. For

the convenience of explanation, the operation GalToGal will be first explained. The

operation GalToGal is an operation that generates a (r+ r′, ℓ) Galois key from a (r, ℓ)

Galois key in the key level ℓ with a shift-r′ Galois key in the key level higher than ℓ.

To understand this operation, keep in mind that rotation operation is a map m(X) 7→

153

m(X5r) from the perspective of the plaintext polynomial. In other words, the rotation

operation can be seen as an operation that generates a ciphertext of m(X5r) from a

ciphertext of m(X) [19]. It is noted that the Galois key for cyclic shift r is a set of

ciphertexts gk
(ℓ)
r = {gk(ℓ)r,i }i=0,··· ,hdnumℓ−1, where gk

(ℓ)
r,i = (b

(ℓ)
r,i , a

(ℓ)
r,i) ∈ R2

QℓPℓ
and

b
(ℓ)
r,i = −a(ℓ)r,i · s + e

(ℓ)
r,i + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
· s(X5r). Each gk

(ℓ)
r,i is a ciphertext of

Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

· s(X5r). If the rotation operation is performed with cyclic shift r′

on gk
(ℓ)
r,i , the output is a ciphertext of the following polynomial,

Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

· s((X5r
′
)5

r
)

= Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

· s(X5r+r′
).

This rotation operation requires an (r′, ℓ′) Galois key gk
(ℓ′)
r′ , where ℓ′ higher than ℓ. If

this output is defined as gk(ℓ)r+r′,i, the set gk(ℓ)r+r′ = {gk
(ℓ)
r+r′,i}i=0,··· ,hdnumℓ−1 is a valid

(r + r′, ℓ) Galois key.

This operation is called GalToGal, as shown in Algorithm 28. The following the-

orem shows the correctness of GalToGal operation, which will be proved in Section

5.5.

Theorem 5.2.2. The output of Algorithm 28 is a valid Galois key for the rotation

operation for cyclic shift r + r′.

Next, the operation PubToGal will be described. Note that the above operation is

useful only when some Galois keys exist. However, since the server does not receive

any Galois keys in the key level lower than k − 1 from the client, the Galois key

should be generated first with the public key and Galois keys in the higher levels in the

server. To this end, a formal shift-0 Galois key can be thought of. If a shift-0 Galois

key can be generated from a public key, a shift-r′ Galois key can be generated by

adding a GalToGal operation to the shift-0 Galois key for cyclic shift r′. By definition,

the shift-0 Galois key should be the form of gk
(ℓ)
0 = {gk(ℓ)0,i}i=0,··· ,hdnumℓ−1, where

gk
(ℓ)
0,i = (b

(ℓ)
0,i , a

(ℓ)
0,i) ∈ R2

QℓPℓ
and b

(ℓ)
0,i = −a

(ℓ)
0,i · s+ e

(ℓ)
0,i + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
· s.

154

To generate gk
(ℓ)
0,i from the public key (b, a) ∈ R2

Qk−1
, the public key is reduced

to (b′, a′) = (b mod QℓPℓ, a mod QℓPℓ) ∈ R2
QℓPℓ

by simply extracting values for

corresponding RNS moduli. Then, b(ℓ)0,i = b′ and a
(ℓ)
0,i = a′+Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
. Then,

it is obtained b
(ℓ)
0,i = −a

(ℓ)
0,i · s + e

(ℓ)
0,i + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
· s. If (b(ℓ)0,i , a

(ℓ)
0,i) as gk(ℓ)0,i ,

the set gk(ℓ)0 = {gk(ℓ)0,i}i=0,··· ,hdnumℓ−1 is a valid formal (0, ℓ) Galois key. Then a shift-r

Galois key can be generated by performing a GalToGal operation on it with the (r, ℓ)

Galois key.

In addition, the operations can be optimized further by combining the decomposi-

tion processes in the key-switching operation. Trivially, the decomposition process is

performed hdnumℓ times if all the key-switching operations are performed in a black-

box manner like GalToGal. Since the decomposition process is the heaviest operation

in the key-switching operation [8], reducing the number of these processes is desirable.

Rather than performing the decomposition process after adding Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

to a′ for each i, the decomposition process is performed to a′ only once and add

[Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j to the j-th decomposed component for each i, where this

added value can be pre-computed. Since the number of the decomposition processes

is reduced to one, this optimization effectively improves the running time perfor-

mance. The PubToGal operation is shown in Algorithm 29. The correctness of this

optimization is shown in the following theorem, which will be proved in Section 5.5,

where PℓQℓ = Qℓ+1 = (
∏µ−2

j=0 Qℓ′,j) · Q̄ℓ′,µ−1, Q̄ℓ′,µ−1 is a divisor of Qℓ′,µ−1, and

µ ≤ hdnumℓ′

Theorem 5.2.3. The output of Algorithm 29 is a valid Galois key for the rotation

operation for cyclic shift r.

5.2.4 Galois Key Generation in the Lower Key Level

The desired level-ℓ Galois keys can be generated with only the public key and the

Galois keys in the key level higher than ℓ through GalToGal and PubToGal described

155

Algorithm 28 GalToGal

Input: An (r, ℓ) Galois key, gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

and an (r′, ℓ′) Galois key, where ℓ′ is higher than ℓ, gk
(ℓ′)
r′ =

{(b(ℓ
′)

r′,i , a
(ℓ′)
r′,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′

Output: An (r + r′, ℓ) Galois key, gk
(ℓ)
r+r′ = {b(ℓ)r+r′,i, a

(ℓ)
r+r′,i}i=0,··· ,hdnumℓ−1 ∈

(R2
QℓPℓ

)hdnumℓ

for i = 0 to hdnumℓ − 1 do

(b̃, ã)← (b
(ℓ)
r,i (X

5r
′
), a

(ℓ)
r,i (X

5r
′
))

(b
(ℓ)
r+r′,i, a

(ℓ)
r+r′,i)← key-switching operation to (b̃, ã) with the Galois key gk

(ℓ′)
r′ .

return {(b(ℓ)r+r′,i, a
(ℓ)
r+r′,i)}i=0,··· ,hdnumℓ−1

in Algorithm 30. It is assumed that a cyclic shift r of a required Galois key can be

represented as r0 + · · · + rt−1, where each ri is an element in Uℓ, and I deal with the

case when only one level-ℓ Galois key is generated. To generate the (r, ℓ) Galois key,

The operation PubToGal is performed with the shift-r0 Galois key and the public key.

Then, a GalToGal operation is performed iteratively with the shift-ri Galois key and the

shift-
∑i−1

j=0 rj Galois key to generate a shift-
∑i

j=0 rj Galois key for i = 1, · · · , t− 1,

which outputs the (r, ℓ) Galois key at last. The generation algorithm for one Galois

key is described in Algorithm 30.

It is usually required to generate a bundle of Galois keys rather than only one

Galois key for a specific service. The more efficient method is dealt with for the case

when I need to make a set of Galois keys at once in Section 5.3.

5.2.5 Security Issues

One can be concerned that the server may be able to obtain some information about the

secret key using the fact that the Galois keys for any cyclic shifts can be generated by

the server indefinitely. However, according to the argument often used in the simulation

paradigm in cryptography, if any new information can be efficiently obtained from

existing information, this new information is considered to tell me nothing beyond the

156

Algorithm 29 PubToGal

Input: A public key (b, a) ∈ R2
Qk−1

, a (r, ℓ′) Galois key, gk
(ℓ′)
r =

{b(ℓ
′)

r,j , a
(ℓ′)
r,j }j=0,··· ,hdnumℓ′−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ , and the key level ℓ

Output: A (r, ℓ) Galois key, gk(ℓ)r = {b(ℓ)r,i , a
(ℓ)
r,i }i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

(b′, a′)← ([b(X5r)]QℓPℓ
, [a(X5r)]QℓPℓ

) ∈ R2
QℓPℓ

Decompose a′ into a vector (a0, · · · , aµ−1) ∈ Rµ
Pℓ′Qℓ+1

, where aj = [a′]Qℓ′,j +Qℓ′,j ·

ẽj for small ẽj’s for 0 ≤ j ≤ µ− 2 and aµ−1 = [a′]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1 for small

ẽµ−1.

for i = 0 to hdnumℓ − 1 do
(b̄, ā)← (0, 0) ∈ R2

Pℓ′Qℓ′

for j ← 0 to µ− 1 do

if j = µ− 1 then
(b̄, ā) ← (b̄, ā) + (aµ−1 + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Q̄ℓ′,µ−1

) ·

([b
(ℓ′)
r,µ−1]Pℓ′Qℓ+1

, [a
(ℓ′)
r,µ−1]Pℓ′Qℓ+1

)

else
(b̄, ā) ← (b̄, ā) + (aj + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Qℓ′,j) ·

([b
(ℓ′)
r,j]Pℓ′Qℓ+1

, [a
(ℓ′)
r,j]Pℓ′Qℓ+1

)

(b
(ℓ)
r,i , a

(ℓ)
r,i)← (⌊P−1

ℓ′ · b̄⌉, ⌊P
−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1
= R2

PℓQℓ

b
(ℓ)
r,i ← b

(ℓ)
r,i + b′

return {(b(ℓ)r,i , a
(ℓ)
r,i)}i=0,··· ,hdnumℓ−1

157

existing information [59]. Thus, even if new Galois keys are generated indefinitely

with the proposed algorithms from the Galois keys sent by the client, these new Galois

keys do not give the server any new information beyond the public keys and the Galois

keys in the highest key level sent by the client.

Thus, it is only required to consider the security of the public key and the Galois

keys at the highest key level sent by the client. As mentioned in Section 5.2.2, the

generating method for the public key and the Galois key in the highest key level by

the client is exactly the same as those of the conventional FHE schemes. Just as the

conventional FHE schemes are based on the circular security assumption, the proposed

hierarchical Galois key generation scheme also requires the circular security assump-

tion. The public key is an element of R2
Qk−1

, and the Galois key in the highest key

level is an element of (RQk−1Pk−1
)2)hdnumk−1 . Since the main factor that affects the

security level is the maximum modulus bit-length of rings, the value of Qk−1Pk−1 is

the main factor for security. For a given polynomial modulus degree N and the secret

key Hamming weight h, the maximum modulus bit length can be given to guarantee

the security level λ [8, 22], and the bit-length of Qk−1Pk−1 should not exceed this bit

length.

5.3 Efficient Generation Method of Galois Key Set

In the previous section, I dealt with the specific algorithms needed to make a Galois

key in the lower key level using Galois keys in the higher key level. However, I of-

ten require many Galois keys at once, especially for certain services requested by the

client. Thus, it is necessary to efficiently generate a set of Galois keys using the Galois

keys in the higher key level. I need to reduce the number of these GalToGal operations

and PubToGal operations to efficiently generate hierarchical Galois keys. Note that

there are many intermediate Galois keys in the hierarchical Galois key system. Given

a certain fixed set of Galois keys in the higher key level, the key problem is how to

158

Algorithm 30 GalKeyGen for one Galois key

Input: A public key (b, a) ∈ R2
Qk−1

, a set of Galois keys GUℓ
= {gk(ℓr)r =

{(b(ℓr)r,i , a
(ℓr)
r,i)}i=0,··· ,hdnumℓr−1 ∈ (R2

QℓrPℓr
)hdnumℓr |r ∈ Uℓ} for cyclic shift

generator set Uℓ in the key level higher than ℓ, and a cyclic shift r =
∑t−1

u=0 ru

for ru ∈ Uℓ
Output: An (r, ℓ) Galois key, gk(ℓ)r = {b(ℓ)r,i , a

(ℓ)
r,i }i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

{(b(ℓ)r0,i
, a

(ℓ)
r0,i

)i=0,··· ,hdnumℓ} ← PubToGal with the public key and the (r0, ℓr0) Galois

key

for h = 1 to t− 1 do

{(b(ℓ)∑h
j=0 rj ,i

, a
(ℓ)∑h

j=0 rj ,i
)i=0,··· ,hdnumℓ} ← GalToGal with

{(b(ℓ)∑h−1
j=0 rj ,i

, a
(ℓ)∑h−1

j=0 rj ,i
)i=0,··· ,hdnumℓ} and the (rh, ℓrh) Galois key

return gkℓr = {(b
(ℓ)
r,i , a

(ℓ)
r,i)i=0,··· ,hdnumℓ}

minimize the number of operations for generating these intermediate Galois keys by

systematically organizing the generating sequence of the Galois keys.

5.3.1 Reduction to Minimum Spanning Arborescence Problem and Min-

imum Spanning Tree Problem

Given a set Uℓ of specific fixed Galois keys in the higher key level than ℓ, generating

level-ℓ Galois keys with as few operations as possible is desirable. In other words, it

becomes important to use the least amount of operations of GalToGal and PubToGal

by arranging the order in which the Galois keys in the set are generated. I propose

an algorithm that can determine the order of generating Galois keys in the set in the

hierarchical Galois key system to reduce the number of operations.

To this end, I reduce the problem of determining the order of generation of Galois

keys to the minimal spanning arborescence problem, a well-known graph-theoretic

computational problem. First, set the |Tℓ|+ 1 nodes for each element in the Tℓ ∪ {0},

and then set the directed edge weight between any two nodes a, b as the minimum

number of elements in Uℓ required to add up to |a−b| allowing repetition. The method

159

for setting this edge weight will be given in the next subsection. There are some iden-

tical points to the minimum arborescence problem in the ordering of the Galois key

generation problem as follows.

• I need to generate each Galois key only once. This fact is related to the property of

the arborescence that any node has only one path from the root node.

• Each Galois key can be generated by using a GalToGal or a PubToGal from the

public key or existing Galois keys. An edge from the node a to the node b with

weight w means that the (b, ℓ) Galois key can be generated from the (a, ℓ) Galois

key with w operations of GalToGal and PubToGal.

• All Galois keys should be generated from the public key and the higher level Galois

keys. An arborescence has only one root node that is the source of all nodes, and this

root node corresponds to the public key.

• I need to minimize the total number of key-switching operations to generate all Ga-

lois keys. The minimum spanning arborescence problem is to find the arborescence

with the minimum total weight, which corresponds to the total number of PubToGal

operations or GalToGal operations.

Therefore, the graph produced in this way can be seen as a directed graph, and

the key problem is to find a spanning arborescence with a minimum sum of edges,

which is the goal of the minimum spanning arborescence problem. If I find a spanning

arborescence in the graph, I can view the node with zero as a public key and generate

the Galois keys along the obtained tree. The minimum spanning arborescence problem

can be solved by Edmonds’ algorithm [29], and thus an answer to this problem can be

efficiently obtained.

If the Galois keys in the higher key level exist in pairs of different signs of the same

absolute value, a faster and more efficient solution for generating the Galois keys in

the lower key level can be obtained by reducing to another computation problem. If a

160

shift-r1 Galois key can be generated with m operations from a shift-r2 Galois key, I can

generate the shift-r2 Galois key from that of cyclic shift r1 with the higher-level Galois

keys for cyclic shifts having the same absolute value with the different sign. In view

of the corresponding graph, any pairs of two edges (r1, r2) and (r2, r1) exist and have

the same edge weight. Thus, I can replace the directed graph with the undirected graph

with the same nodes in which each edge has the same weight as the corresponding

edge in the directed graph. For the undirected graph, I can reduce this problem to the

minimum spanning tree problem, which can be solved by Prim’s algorithm [63].

It is noted that this solution is not exactly the optimal solution since the insertion

of additional nodes can reduce the operations further. If I set the nodes for all cyclic

shifts (i.e., ±1,±2,±3, · · ·) in the graph, the key problem is to find the minimum

Steiner tree for required cyclic shifts. The Steiner tree in a graph is a tree connecting a

subset of designated nodes, and the problem of finding the Steiner tree is known as an

NP-hard problem. Thus, I choose the near-optimal solution using a more practically

feasible algorithm. Designing a fast algorithm to find the solution closer to the optimal

solution in the proposed situation is an important future work.

5.3.2 Edge Weight for p-ary Galois Keys

A method to compute the edge of each graph have to be considered, where I need to

find a way to represent the difference between two nodes as a sum of the minimum

number of elements in Uℓ, allowing repetition. In general, the server can ask the client

for a well-designed set of Uℓ so that it can be easy to represent any given number

as the desired sum in Uℓ. Rather than proposing the general method for unstructured

Uℓ, I suggest a specific example of key management system with Uℓ with power-of-p

integers within the desired interval. I will discuss how to obtain edges for both cases

when Uℓ consists of power-of-p integers with both signs and when it consists of only

positive power-of-p integers.

The easier case is considered first, a set of positive power-of-p, in which the ro-

161

Algorithm 31 ComputeEdgePos

Input: A power base p for the set Uℓ with only positive numbers and a number t to be

summed

Output: The minimum number of elements in Uℓ summed to t allowing repetition

(t0t1 · · · tℓ−1)(p) ← p-ary representation of t

return
∑ℓ−1

i=0 ti

tation graph is a directed graph. In this case, each edge can be computed as follows.

First, I can find the difference between the end node and the start node of the edge,

and then express this difference in the p-ary representation, and then set the sum of the

digits as the edge weight. This algorithm is described in Algorithm 31 without proof.

Next, I consider the case of power-of-p integers with both signs in which the

rotation graph is an undirected graph as Subsection 5.3.1. In this case, since the

power-of-two integers with different signs can add up to the value, expressing p-

ary representation is not enough to find the optimal solution. Instead, I propose

the following algorithm to obtain the edge weight between any two nodes, which

is efficient enough for the input range. Assume that r is the difference between

the two given nodes. If r is a multiple of p, then recursively output a value of

Alg(r/p), otherwise find r1 such that pr1 ≤ r < p(r1 + 1) and recursively output

min{Alg(r1)+ (r− pr1),Alg(r1+1)+ (p(r1+1)− r)}. This algorithm is described

in Algorithm 32. To help understanding the graph-theoretic algorithms for Galois key

generation in Section 5.3, I depict the corresponding graph and the minimum spanning

tree for Tℓ = {1, 13, 16, 17, 19} and Uℓ = {±1,±2,±4,±8,±16} in Figure 5.2.

5.3.3 Hoisted Galois Key Generation

The previous subsections focus on the reduction of the number of GalToGal and

PubToGal operations. In this subsection, I further reduce the number of the decom-

pose processes by the hoisting technique. The hoisting technique is a method for min-

imizing the number of operations by interchanging or combining operations without

162

0

16

1

13

19

17

1 3

2

2

3 1
2

2

2

1

12

1

1 2

Figure 5.2: Galois key graph for Tℓ = {1, 13, 16, 17, 19} and Uℓ =

{±1,±2,±4,±8,±16}.

Algorithm 32 ComputeEdgeBoth

Input: A power base p for the set S with both signs and the number t to be summed

Output: The minimum number of elements in S summed to t allowing repetition

if p|t then
return ComputeEdgeBoth(p, t/p)

else
r ← ⌊|t|/p⌋

if r = 0 then
return |t|

else
return min{ComputeEdgeBoth(p, r)+ (|t| − pr),ComputeEdgeBoth(p, r+

1) + (p(r + 1)− |t|)}

163

changing functionalities. This technique has been used in the linear transformation in

the FHE schemes, and the optimization of the bootstrapping of the FHE schemes is

one of its important applications [8, 43]. I propose the hoisting method for generating

of the Galois key set in the hierarchical Galois key generation systems.

The target situation is when several level-ℓ Galois keys are generated from the

public key or one level-ℓ Galois key with Galois keys in the key level ℓ′ higher than

ℓ. If I want to generate d Galois keys, I can naively perform exactly d PubToGal op-

erations or d GalToGal operations. As I stated in Subsection 5.2.3, the decomposition

process is the most time-consuming process in the key-switching operation, and thus

the decomposition process is desirable to be reduced further. To this end, I postpone

the process of automorphism in line 2 of Algorithm 28 or line 1 of Algorithm 29 to

the last of the operations to combine the decomposition processes into one process.

To maintain the functionality of the operation, I conduct the automorphism inversely

to the Galois keys in the key level higher than ℓ before the inner-product with the de-

composed components. If the source Galois key is the public key, I reduce the number

of decomposition processes from d to one for generating d Galois keys. If the source

Galois key is the other Galois key in the same key level, I reduce the number of de-

composition processes from d · hdnumℓ to hdnumℓ. The hoisted version of GalToGal

and PubToGal operations are described in Algorithms 33 and 34. The whole gener-

ation algorithm is described in Algorithm 35. I use breath-first search when I search

each node in the output arborescence. This search method is desirable for the hoisted

generation of Galois keys.

5.4 Simulation Results with ResNet Models

In this section, I numerically verify the validity of the proposed hierarchical Galois key

generation method with an appropriate computing environment for the client-server

model with the ResNet standard neural network and the CKKS scheme. In the cloud

164

Algorithm 33 HoistedGalToGal

Input: An (r, ℓ) Galois key, gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i)}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

and d (r′α, ℓ
′) Galois keys, where ℓ′ is higher than ℓ, gk

(ℓ′)
r′α

=

{(b(ℓ
′)

r′α,i
, a

(ℓ′)
r′α,i

)}i=0,··· ,hdnumℓ−1 ∈ (R2
Qℓ′Pℓ′

)hdnumℓ′ for α = 0, · · · , d− 1

Output: d (r + r′α, ℓ) Galois keys, gk
(ℓ)
r+r′α

= {b(ℓ)r+r′α,i
, a

(ℓ)
r+r′α,i

}i=0,··· ,hdnumℓ−1 ∈

(R2
QℓPℓ

)hdnumℓ for α = 0, · · · , d− 1

for i = 0 to hdnumℓ − 1 do

Decompose a
(ℓ)
r,j into a vector (a0, · · · , aµ−1) ∈ Rµ

Pℓ′Qℓ+1
, where aj = [a]Qℓ′,j +

Qℓ′,j · ẽj for small ẽj’s for 0 ≤ j ≤ µ− 2 and aµ−1 = [a]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1

for small ẽµ−1.

for α = 0 to d− 1 do
(b̄, ā)← (0, 0) ∈ R2

PℓQℓ

for j ← 0 to µ− 1 do

(b̄, ā)← (b̄, ā) + aj · ([b(ℓ
′)

r′α,j
(X5−r′α)]Pℓ′Qℓ+1

, [a
(ℓ′)
r′α,j

(X5−r′α)]Pℓ′Qℓ+1
)

(b
(ℓ)
r+r′α,i

, a
(ℓ)
r+r′α,i

)← (⌊P−1
ℓ′ · b̄⌉, ⌊P

−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1

b
(ℓ)
r+r′α,i

← b
(ℓ)
r+r′α,i

+ b
(ℓ)
r,i

(b
(ℓ)
r+r′α,i

, a
(ℓ)
r+r′α,i

)← (b
(ℓ)
r+r′α,i

(X5r
′
α), a

(ℓ)
r+r′α,i

(X5r
′
α))

return {b(ℓ)r+r′α,i
, a

(ℓ)
r+r′α,i

}i=0,··· ,hdnumℓ−1 for α = 0, · · · , d− 1

165

Algorithm 34 HoistedPubToGal

Input: A public key (b, a) ∈ R2
Qk−1

, d (rα, ℓ
′) Galois keys, where ℓ′ is higher than ℓ,

gk
(ℓ′)
rα = {(b(ℓ

′)
rα,i

, a
(ℓ′)
rα,i

)}i=0,··· ,hdnumℓ−1 ∈ (R2
Qℓ′Pℓ′

)hdnumℓ′ for α = 0, · · · , d−1,

and the key level ℓ

Output: d (rα, ℓ) Galois keys, gk(ℓ)rα = {b(ℓ)rα,i
, a

(ℓ)
rα,i
}i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

for α = 0, · · · , d− 1

Decompose a into a vector (a0, · · · , aµ−1) ∈ Rµ
Pℓ′Qℓ+1

, where aj = [a]Qℓ′,j +Qℓ′,j · ẽj

for small ẽj’s for 0 ≤ j ≤ µ − 2 and aµ−1 = [a]Q̄ℓ′,µ−1
+ Q̄ℓ′,µ−1 · ẽµ−1 for small

ẽµ−1.

for i = 0 to hdnumℓ − 1 do
(b̄, ā)← (0, 0) ∈ R2

PℓQℓ

for α = 0 to d− 1 do

for j ← 0 to µ− 1 do

if j = µ− 1 then
(b̄, ā) ← (b̄, ā) + (aµ−1 + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Q̄ℓ′,µ−1

) ·

([b
(ℓ′)
rα,j

(X5−rα
)]Pℓ′Qℓ+1

, [a
(ℓ′)
rα,j

(X5−rα
)]Pℓ′Qℓ+1

)

else
(b̄, ā) ← (b̄, ā) + (aj + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Qℓ′,j) ·

([b
(ℓ′)
rα,j

(X5−rα
)]Pℓ′Qℓ+1

, [a
(ℓ′)
rα,j

(X5−rα
)]Pℓ′Qℓ+1

)

(b
(ℓ)
rα,i

, a
(ℓ)
rα,i

)← (⌊P−1
ℓ′ · b̄⌉, ⌊P

−1
ℓ′ · ā⌉) ∈ R2

Qℓ+1

b
(ℓ)
rα,i
← b

(ℓ)
rα,i

+ [b]Qℓ+1

(b
(ℓ)
rα,i

, a
(ℓ)
rα,i

)← (b
(ℓ)
rα,i

(X5rα), a
(ℓ)
rα,i

(X5rα))

return {b(ℓ)rα,i
, a

(ℓ)
rα,i
}i=0,··· ,hdnumℓ−1 for α = 0, · · · , d− 1

166

Algorithm 35 GalKeyGen

Input: A cyclic shift set Tℓ for the key level ℓ, a cyclic shift generator set Uℓ for the

key level higher than ℓ, a set of Galois keys GUℓ
for cyclic shifts in Uℓ in the

key level higher than ℓ, and a public key (b, a) ∈ RQk−1

Output: A set of Galois keys GTℓ for a cyclic shift set Tℓ
V ← T ∪ {0}

E ← {(v, w)|v, w ∈ V }

w(v, w)← the minimum number of elements in S summed to w − v allowing repeti-

tion

G′ = (V,E′)← Edmonds’ algorithm with G = (V,E) ; // It can

be replaced with Prim’s algorithm when Uℓ is symmetric

around zero.

Q[]← empty queue for nodes

GTℓ ← ∅

while Q is not empty do
v ← dequeue from Q

W ← the set of nodes adjacent to v.

if v = 0 then

Generate the set of Galois keys GW = {gk(ℓ)w |w ∈ W} from (b, a) using

PubToGal or HoistedPubToGal
else

Generate the set of Galois keys GW = {gk(ℓ)w |w ∈ W} from gk
(ℓ)
v using

GalToGal or HoistedGalToGal
GTℓ ← GTℓ ∪ GW

Enqueue elements in W to Q.
return GTℓ

167

computing model, the server usually has high-performance computing resources, and

the client has only a general-purpose personal computer. To simulate this environment,

I use a PC with Intel(R) Core(TM) i7-10700 CPU and no accelerator as a client and

a high-performance server with a AMD Ryzen Threadripper PRO 3995WX CPU pro-

cessor and a NVIDIA GeForce RTX 3090 GPU accelerator.

As a representative example of complex computation models, I assume that the ser-

vice requested by the client requires the ResNet-20 model for the CIFAR-10 dataset or

the ResNet-18 model for the ImageNet dataset. In previous chapter, several techniques

for minimizing homomorphic operations for ResNet models with the CKKS scheme

are proposed. I proposed a multiplexed parallel convolution technique, an index-

arranging average pooling technique, to effectively perform ResNet models dealing

with three-dimensional tensor structures on CKKS schemes with one-dimensional vec-

tor structures. They enable efficient computation of each component of the ResNet

model. In addition, when the bootstrapping is performed, sparse-slot bootstrapping

[20] is performed with different slots for different layers, where I can require differ-

ent Galois keys for the bootstrapping operation with different number of sparse slots.

Also, the sparse-secret encapsulation method [9] is assumed to be used for the boot-

strapping with the dense secret key with more reduced running time and higher pre-

cision. I use the baby-step giant-step algorithm for fully connected layers [20]. When

using all of these methods with CKKS algorithms using N = 216 for the polynomial

modulus degree, I found that 265 Galois keys for different cyclic shifts are required

in the ResNet-20 model processing the CIFAR-10 dataset, and the set of cyclic shifts

required to perform the ResNet-20 for the CIFAR-10 dataset is enumerated as follows.

• T ResNet−20
0 = {1, -1, 2, -2, 3, 4, -4, 5, 6, 7, 8, -8, 9, 12, 16, -16, 18, 27, 28,

32, -32, 36, 45, 48, 54, 56, 63, 64, -64, 72, 80, 84, 96, -96, 112, 128, -128, 192,

256, 384, 512, 768, 959, 960, 990, 991, -994, 1008, 1023, 1024, -1024, -1025,

1036, -1056, 1064, -1088, 1092, -1120, 1536, 1952, 1982, 1983, 2016, 2044,

2047, 2048, -2048, 2072, 2078, -2080, 2100, -2112, -2144, 3007, 3024, 3040,

168

3052, 3070, 3071, 3072, -3072, 3080, -3104, 3108, -3136, -3168, 3840, 3904,

3968, 4031, 4032, 4062, 4063, 4080, 4084, 4088, 4092, 4095, 4096, -4096,

4104, -4128, -4131, -4195, 5023, 5024, 5054, 5055, 5087, 5118, 5119, 5120,

-5120, -5152, -5155, -5219, 6047, 6078, 6079, 6111, 6112, 6142, 6143, 6144,

-6144, -6176, -6179, -6243, 7071, 7102, 7103, 7135, 7166, 7167, 7168, -7168,

-7200, -7203, -7267, 7936, 8000, 8064, 8095, 8126, 8127, 8128, 8159, 8176,

8180, 8184, 8188, 8190, 8191, 8192, -8192, -8195, 8200, -8225, -8226, -8227,

-8259, -8290, -8291, 9149, 9183, 9184, 9213, 9215, 9216, -9219, -9249, -9250, -

9251, -9283, -9314, -9315, 10173, 10207, 10208, 10237, 10239, 10240, -10240,

-10243, -10273, -10274, -10275, -10307, -10338, -10339, 11197, 11231, 11232,

11261, 11263, 11264, -11264, -11267, -11297, -11298, -11299, -11331, -11362,

-11363, 12221, 12255, 12256, 12285, 12287, 12288, -12288, -12321, -12385,

13214, 13216, 13246, 13278, 13279, 13280, 13310, 13311, 13312, -13345, -

13409, 14238, 14240, 14270, 14302, 14303, 14304, 14334, 14335, 14336, -

14336, -14369, -14433, 15262, 15264, 15294, 15326, 15327, 15328, 15358,

15359, 15360, -15393, -15457, 15872, 16000, 16128, 16256, 16286, 16288,

16318, 16350, 16351, 16352, 16368, 16372, 16376, -16376, 16380, 16382,

16383, 16384}

The set of cyclic shifts required to perform the ResNet-18 for the ImageNet dataset

is enumerated as follows.

• T ResNet−18
0 = {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, -8, -9, -10, -11, -12,

-13, -14, -15, 16, -16, -17, -18, -19, -20, -21, -22, -23, 24, -24, -25, -26, -27, -28,

-29, -30, -31, 32, -32, 39, 64, 78, 96, 117, 128, 156, 160, 192, 195, 221, 222,

224, -224, -225, -226, -227, -228, -229, -230, -231, -232, -233, 234, -234, -235,

-236, -237, -238, -239, -240, -241, -242, -243, -244, -245, -246, -247, -248, -249,

-250, -251, -252, -253, -254, -255, 256, -256, 273, 312, 351, 384, 390, 429, 445,

448, -448, -449, -450, -451, -452, -453, -454, -455, -456, -457, -458, -459, -460,

-461, -462, -463, -464, -465, -466, -467, 468, -468, -469, -470, -471, -472, -473,

169

-474, -475, -476, -477, -478, -479, 507, 512, -512, 546, 576, 585, 624, 663, 669,

-672, -673, -674, -675, -676, -677, -678, -679, -680, -681, -682, -683, -684, -685,

-686, -687, -688, -689, -690, -691, -692, -693, -694, -695, -696, -697, -698, -699,

-700, -701, 702, -702, -703, 741, 768, -768, 780, 819, 858, 896, -896, 897, -897,

-898, -899, -900, -901, -902, -903, -904, -905, -906, -907, -908, -909, -910, -

911, -912, -913, -914, -915, -916, -917, -918, -919, -920, -921, -922, -923, -924,

-925, -926, -927, 936, 960, 975, -999, 1014, 1024, -1024, 1053, 1092, -1120,

-1121, -1122, -1123, -1124, -1125, -1126, -1127, -1128, -1129, -1130, 1131,

-1131, -1132, -1133, -1134, -1135, -1136, -1137, -1138, -1139, -1140, -1141,

-1142, -1143, -1144, -1145, -1146, -1147, -1148, -1149, -1150, -1151, 1152,

1170, 1209, 1248, 1287, 1326, 1344, -1344, -1345, -1346, -1347, -1348, -1349,

-1350, -1351, -1352, -1353, -1354, -1355, -1356, -1357, -1358, -1359, -1360,

-1361, -1362, -1363, -1364, 1365, -1365, -1366, -1367, -1368, -1369, -1370, -

1371, -1372, -1373, -1374, -1375, 1404, 1443, 1482, 1536, -1568, -1569, -1570,

-1571, -1572, -1573, -1574, -1575, -1576, -1577, -1578, -1579, -1580, -1581,

-1582, -1583, -1584, -1585, -1586, -1587, -1588, -1589, -1590, -1591, -1592,

-1593, -1594, -1595, -1596, -1597, -1598, -1599, 1728, 1792, -1792, -1793, -

1794, -1795, -1796, -1797, -1798, -1799, -1800, -1801, -1802, -1803, -1804,

-1805, -1806, -1807, -1808, -1809, -1810, -1811, -1812, -1813, -1814, -1815,

-1816, -1817, -1818, -1819, -1820, -1821, -1822, -1823, 1920, -2016, -2017,

-2018, -2019, -2020, -2021, -2022, -2023, -2024, -2025, -2026, -2027, -2028,

-2029, -2030, -2031, -2032, -2033, -2034, -2035, -2036, -2037, -2038, -2039,

-2040, -2041, -2042, -2043, -2044, -2045, -2046, -2047, 2048, 2112, -2240, -

2241, -2242, -2243, -2244, -2245, -2246, -2247, -2248, -2249, -2250, -2251,

-2252, -2253, -2254, -2255, -2256, -2257, -2258, -2259, -2260, -2261, -2262,

-2263, -2264, -2265, -2266, -2267, -2268, -2269, -2270, -2271, 2304, -2464,

-2465, -2466, -2467, -2468, -2469, -2470, -2471, -2472, -2473, -2474, -2475,

-2476, -2477, -2478, -2479, -2480, -2481, -2482, -2483, -2484, -2485, -2486,

170

Table 5.1: Encryption parameters in the CKKS scheme for ResNet models

Parameters
ResNet-20

for CIFAR-10

ResNet-18

for ImageNet

Polynomial modulus degree 216 217

Secret key Hamming weight 215 216

Gaussian error stand. dev. 3.2 3.2

Minimum security level 128-bit 128-bit

Maximum modulus bit-length 1792 3220

-2487, -2488, -2489, -2490, -2491, -2492, -2493, -2494, -2495, 2496, 2688, -

2688, -2689, -2690, -2691, -2692, -2693, -2694, -2695, -2696, -2697, -2698,

-2699, -2700, -2701, -2702, -2703, -2704, -2705, -2706, -2707, -2708, -2709,

-2710, -2711, -2712, -2713, -2714, -2715, -2716, -2717, -2718, -2719, 2880,

-2912, -2913, -2914, -2915, -2916, -2917, -2918, -2919, -2920, -2921, -2922,

-2923, -2924, -2925, -2926, -2927, -2928, -2929, -2930, -2931, -2932, -2933,

-2934, -2935, -2936, -2937, -2938, -2939, -2940, -2941, -2942, -2943, 3072,

-3136, -3137, -3138, -3139, -3140, -3141, -3142, -3143, -3144, -3145, -3146,

-3147, -3148, -3149, -3150, -3151, -3152, -3153, -3154, -3155, -3156, -3157,

-3158, -3159, -3160, -3161, -3162, -3163, -3164, -3165, -3166, -3167, -3360,

-3361, -3362, -3363, -3364, -3365, -3366, -3367, -3368, -3369, -3370, -3371,

-3372, -3373, -3374, -3375, -3376, -3377, -3378, -3379, -3380, -3381, -3382,

-3383, -3384, -3385, -3386, -3387, -3388, -3389, -3390, -3391, 3584, -3584,

4096, 5120, 6144, 7168, -7168, 8192, -8192, 14336, 16384, -16384, 21504, -

22528, 24576, -24576, 28672, -29696, 32768}

The CKKS scheme is used for the simulation, and the parameters of the CKKS

scheme I use for the simulation are shown in Table 5.1. The lattigo library [1] is

used for the simulation, and the CUDA library by NVIDIA is used for GPU acceleration

of the Galois key generation. The Galois key generation with the GPU processor is

171

Table 5.2: Modulus bit-lengths and decomposition numbers for each Galois key gen-

eration scheme in ResNet-20 for CIFAR-10

Galois key

generation
Modulus bit-length

Decomposition

number

Conventional
(logQ0, logP0)

= (1345, 129)
12

Two-level
(logQ0, logP0, logP1)

= (1345, 129, 158)
(12, 11)

Three-level
(logQ0, logP0, logP1, logP2)

= (1345, 129, 158, 160)
(12, 11, 11)

implemented based on [48]. In the server, algorithms for the preparation of Galois key

generation are executed on the CPU processor and all actual Galois key generation

is computed by the GPU processor. The running time for Galois key generation by

the client, the communication amount between the client and the server, the required

storage for Galois keys in the server, and the running time for Galois key generation

by the server are measured and presented in this section.

In the conventional CKKS scheme, the client generates all the required Galois keys

and transmits them to the server. In the two-level hierarchical Galois key scheme, the

client generates the quaternary level-1 Galois key set with both signs and transmits

them to the server, where the set of the cyclic shifts is {±1,±4,±16, · · · ,±212}.

Then, the server generates the required Galois keys for the ResNet models from this

quaternary level-1 Galois key set. In the three-level hierarchical Galois key scheme,

the client generates the 16-ary level-2 Galois key set with both signs and transmits

them to the server, where the set of the cyclic shifts is {±1,±16,±256,±212}. If

the server needs to give services to the client immediately, the server generates the

required Galois keys for the ResNet models from this 16-ary level-2 Galois key set. If

the services do not need to be given to the client immediately and does not determined

172

Table 5.3: Modulus bit-lengths and decomposition numbers for each Galois key gen-

eration scheme in ResNet-18 for ImageNet

Galois key

generation
Modulus bit-length

Decomposition

number

Conventional
(logQ0, logP0)

= (1465, 392)
4

Two-level
(logQ0, logP0, logP1)

= (1465, 392, 637)
(4, 3)

Three-level
(logQ0, logP0, logP1, logP2)

= (1465, 392, 637, 637)
(4, 3, 4)

just after receiving the level-2 Galois keys, the server can generate more level-1 Galois

keys for faster Galois key generation in the offline phase before the services so that

level-2 Galois keys and level-1 Galois keys constitutes a quaternary Galois key set.

Then, the server generates the required level-0 Galois keys for the ResNet models from

this quaternary level-2 and level-1 Galois key set just after the services are requested,

which is the online phase. Tables 5.2 and 5.3 show the evaluation modulus in the key

level zero, the hierarchical special moduli for each key level, and each decomposition

number for each key level used in the simulation.

Table 5.4 shows the number of core operations for generation of each Galois key

set for ResNet models using 4-ary or 16-ary Galois key set, and it shows the effec-

tiveness of the hoisted Galois key generation and the Prim’s algorithm. Note that the

total numbers of GalToGal and PubToGal operations are close to the number of Ga-

lois keys. Roughly speaking, 1.04 and 1.07 numbers of key-switching operations for

a Galois key are needed on average if I use 4-ary Galois key generation set, and 1.43

and 1.18 numbers of key-switching operations for a Galois key are needed on average

if I use 16-ary Galois key generation set. It means that most of the Galois keys can be

generated by only one GalToGal or PubToGal operation from other Galois key, which

173

Table 5.4: Number of core operations optimized by hoisted Galois key generation and

Prim’s algorithm

ResNet-20

for CIFAR-10

ResNet-18

for ImageNet

4-ary 16-ary 4-ary 16-ary

No. of Galois Keys 265 617

GalToGal
Total 263 372 649 721

Decompose 149 292 347 529

PubToGal
Total 14 7 14 8

Decompose 1 1 1 1

is the result of Prim’s algorithm.

Note that the number of the decompose processes is effectively reduced compared

to the total numbers of GalToGal and PubToGal operations by the hoisted Galois key

generation. The decompose processes are the most time-consuming process in the key-

switching operation. If I do not use the hoisted Galois key generation method, the

number of the decompose processes is the same as the total number of GalToGal and

PubToGal operations. For example, in the two-level Galois key generation for the

ResNet-20, it takes 35.0s to generate all Galois keys using 4-ary level-1 Galois keys if

I do not use the hoisted method. If I use the hoisted method, it takes 24.4s to generate

all Galois keys with the same level-1 Galois keys, which is reduced by 31.4%.

Table 5.5 shows the various performances with the ResNet-20 for the CIFAR-

10 dataset when using the conventional system, the two-level Galois key generation

system, and the three-level Galois key generation system. As the number of Galois

keys generated by the client is reduced to only 15 in the two-level system, the running

time required for the client to generate level-1 Galois keys is reduced to 20.9s, and the

size of the total level-1 Galois keys to be transmitted is also reduced to 6.0GB. It shows

that the computational and communication burden of the client is significantly reduced,

174

Ta
bl

e
5.

5:
Si

m
ul

at
io

n
re

su
lts

w
ith

va
ri

ou
s

G
al

oi
s

ke
y

sy
st

em
w

ith
R

es
N

et
-2

0
fo

rC
IF

A
R

-1
0

da
ta

se
t

R
un

ni
ng

tim
e

by
cl

ie
nt

(s
ec

)

C
om

m
un

ic
at

io
n

co
st

(G
B

)

R
un

ni
ng

tim
e

by
se

rv
er

(o
ffl

in
e,

se
c)

M
em

or
y

us
ag

e

by
se

rv
er

(o
ffl

in
e,

G
B

)

R
un

ni
ng

tim
e

by
se

rv
er

(o
nl

in
e,

se
c)

M
em

or
y

us
ag

e

by
se

rv
er

(o
nl

in
e,

G
B

)

C
on

ve
nt

io
na

l
36

8.
5

10
5.

6
-

10
5.

6
-

10
5.

6

Tw
o-

le
ve

ls
ys

te
m

20
.9

6.
0

-
6.

0
24

.4
10

5.
6

T
hr

ee
-l

ev
el

sy
st

em
(w

/o
of

fli
ne

)
12

.1
3.

4
-

3.
4

44
.0

10
5.

8

T
hr

ee
-l

ev
el

sy
st

em
(w

/o
ffl

in
e)

12
.1

3.
4

3.
5

6.
2

25
.3

10
5.

8

175

Ta
bl

e
5.

6:
Si

m
ul

at
io

n
re

su
lts

w
ith

va
ri

ou
s

G
al

oi
s

ke
y

sy
st

em
w

ith
R

es
N

et
-1

8
fo

rI
m

ag
eN

et
da

ta
se

t

R
un

ni
ng

tim
e

by
cl

ie
nt

(s
ec

)

C
om

m
un

ic
at

io
n

co
st

(G
B

)

R
un

ni
ng

tim
e

by
se

rv
er

(o
ffl

in
e,

se
c)

M
em

or
y

us
ag

e

by
se

rv
er

(o
ffl

in
e,

G
B

)

R
un

ni
ng

tim
e

by
se

rv
er

(o
nl

in
e,

se
c)

M
em

or
y

us
ag

e

by
se

rv
er

(o
nl

in
e,

G
B

)

C
on

ve
nt

io
na

l
78

6.
0

19
7.

6
-

19
7.

6
-

19
7.

6

Tw
o-

le
ve

ls
ys

te
m

18
.4

4.
6

-
4.

6
22

.0
19

7.
4

T
hr

ee
-l

ev
el

sy
st

em
(w

/o
of

fli
ne

)
15

.7
3.

9
-

3.
9

42
.1

19
9.

0

T
hr

ee
-l

ev
el

sy
st

em
(w

/o
ffl

in
e)

15
.7

3.
9

1.
8

6.
1

22
.0

19
8.

9

176

and a large part of computations goes to the high-performance server, which balances

the computation tasks and the communication amount according to the environment.

As the number of Galois keys generated by the client is reduced to 8 in the three-level

system, the running time to generate the level-2 Galois keys and the communication

amount required for transmission of these keys are more reduced. For the case when

services have not yet been requested just after the server received the level-2 Galois

keys from the client, the level-1 Galois keys can be generated in advance to reduce

the actual required level-0 Galois key generation time for 3.5s and with the required

memory of 6.2GB for storing level-2 and level-1 Galois keys. The running time to

generate the level-0 Galois keys required for ResNet is reduced to 25.3s with the level-

2 and level-1 Galois keys. Therefore, the computational and communication amount

in the client and the amount of computation for the online phase required to generate

the necessary Galois keys are both improved.

The simulation also investigate the case when using Lee et al.’s idea to implement

the ResNet-18 model for the larger ImageNet dataset. Because of the larger image and

channel size in the dataset, 617 cyclic shifts are required for the polynomial modulus

degree N = 217. Table 5.6 shows the various performances with the ResNet-18 for the

ImageNet dataset. The effectiveness of the proposed hierarchical Galois key system

can be validated also for the ResNet models with the ImageNet dataset in the same

manner as the case of ResNet-20 model for the CIFAR-10 dataset.

5.5 Correctness Proofs

To prove Theorem 5.2.1, I need the following three lemmas. After proving the lemmas,

I prove Theorem 5.2.1 using these lemmas.

Lemma 5.5.1. For any positive numbers v0, · · · , vL and integer m ≥ 1, let αm(j) be

177

the function defined as

αm(j) = min
0=u0<u1<···<um−1≤j

max

u1−1∑
i=0

vi,

u2−1∑
i=u1

vi, · · · ,
j∑

i=um−1

vi

 ,

where I define mini∈I f(i) = ∞ for I = ∅ and any function f . Then, αm(j) is a

monotonously increasing function.

Proof. Assume that α(j) > α(j+1) for some positive numbers (v0, · · · , vL), m ≥ 1,

and j. Let

Uj+1 = {uj+1,0 = 0, uj+1,1, · · · , uj+1,m−1}

be the set of indices minimizing the value

βj+1(u0 = 0, u1, · · · , um−1) = max

u1−1∑
i=0

vi,

u2−1∑
i=u1

vi, · · · ,
j+1∑

i=um−1

vi

 .

If I replace the last term
∑j+1

i=um−1
vi with

∑j
i=um−1

vi, this minimum value decreases

as vi > 0, and thus I have αm(j + 1) ≥ βj(uj+1,0 = 0, uj+1,1, · · · , uj+1,m−1). Be-

cause of the definition of αm(j), I also have βj(uj+1,0 = 0, uj+1,1, · · · , uj+1,m−1) ≥

f(j). Therefore, I have αm(j) ≤ αm(j + 1), which contradicts the assumption.

Lemma 5.5.2. Let f, g : Z∩ [0, L]→ Z+ be functions satisfying the following condi-

tions.

1. f(0) = g(L) = 0.

2. f(L), g(0) > 0.

3. f is a monotonously increasing function.

4. g is a strictly decreasing function.

Then, there is a value ℓ ∈ Z ∩ [0, L) such that f(n) ≤ g(n) for n in [0, ℓ], f(n) >

g(n) for n in [ℓ + 1, L], and min{g(ℓ), f(ℓ + 1)} is the minimum value of h(n) =

max{f(n), g(n)} in [0, L].

178

Proof. Let s(n) = g(n)− f(n), and then s(n) is a strictly decreasing function. Since

s(0) > 0, s(L) < 0, there is an integer ℓ ∈ Z∩ [0, L) such that s(ℓ) ≥ 0, s(ℓ+1) < 0.

Since s(n) is a strictly decreasing function, s(n) ≥ s(ℓ) ≥ 0, f(n) ≤ g(n) for

n ≤ ℓ, and s(n) ≤ s(ℓ + 1) < 0, f(n) > g(n) for n ≥ ℓ + 1. Note that h(n) =

g(n) for n ≤ ℓ and h(n) = f(n) for n ≥ ℓ + 1. Since g(n) is strictly decreasing,

h(n) is strictly decreasing in n ≤ ℓ, and thus h(n) ≥ h(ℓ) = g(ℓ). Since f(n) is

monotonously increasing, h(n) is monotonously increasing in n ≥ ℓ + 1, and thus

h(n) ≥ h(ℓ + 1) = f(ℓ + 1). Therefore, min{g(ℓ), f(ℓ + 1)} is the minimum value

of h(n) = max{f(n), g(n)} in [0, L].

Lemma 5.5.3. For positive numbers v0, · · · , vL and integer m > 1, the function

αm(j) is defined as Lemma 5.5.1. Then, the following equation is satisfied as

αm(L) = min
0<u≤L

{
max

{
αm(u− 1),

L∑
i=u

vi

}}
.

Proof. Let αm,u(j) be defined as

αm,u(j) = min
0<u1<···<um−2<u≤j

{
max

{
u1−1∑
i=0

vi,

u2−1∑
i=u1

vi, · · · ,
j∑

i=u

vi

}}
. (5.1)

If a set A is decomposed into a union of disjoint sets Ai for index set I , that is,

A =
⊔

i∈I Ai, I have minx∈A f(x) = mini∈I(minx∈Ai f(x)). Since the following

set formula holds

{(u1, · · · , um−1) : 0 < u1 < · · · < um−1 ≤ L}

=
L⊔

u=1

{(u1, · · · , um−2, u) : 0 < u1 < · · · < um−2 < u ≤ L},

we have αm(L) = min0≤u≤L αm,u(L). I want to show that for all u, 0 ≤ u ≤ L, I

have

αm,u(L) = max

{
αm−1(u− 1),

L∑
i=u

vi

}
. (5.2)

179

If I fix u in (5.2), the term
∑L

i=u vi in the right side of (5.2) is a constant. I now consider

the two cases; one case is when αm−1(u − 1) ≤
∑L

i=u vi, and the other case is when

αm−1(u− 1) >
∑L

i=u vi.

1. αm−1(u− 1) ≤
∑L

i=u vi: For the left side of (5.2), I know αm,u(L) ≥
∑L

i=u vi

since the term in the min function in (5.1) is always larger than
∑L

i=u vi

when j = L. If αm−1(u − 1) ≤
∑L

i=u vi, there is an index set {u0 =

0, u1, u2, · · · , um−2} such that

max

{
u1−1∑
i=0

vi,

u2−1∑
i=u1

vi, · · · ,
u−1∑

i=m−2

vi

}
≤

L∑
i=u

vi.

With this indices, the term in the min function in (5.1) is
∑L

i=u vi when j = L.

Thus, αm,u(L) ≤
∑L

i=u, and thus αm,u(L) =
∑L

i=u. Since the right side of

(5.2) is
∑L

i=u, (5.2) holds.

2. αm−1(u−1) >
∑L

i=u vi: In this case, for all index sets {u0 = 0, u1, · · · , um−2}

such that u0 < u1 < · · · < um−2 ≤ u− 1, the following inequality holds

max

{
u1−1∑
i=0

vi,

u2−1∑
i=u1

vi, · · · ,
u−1∑

i=m−2

vi

}
>

L∑
i=u

vi.

Then (5.1) for j = L holds even if I remove the last term
∑L

i=u vi, where

the right term becomes exactly αm−1(u − 1). Since the right side of (5.2) is

αm−1(u− 1), (5.2) holds.

Theorem 5.5.4. (Restatement of Theorem 5.2.1) Algorithm 26 outputs the list of in-

dices I = {u0 = 0, u1, · · · , udnum−1} such that 0 = u0 < u1 < · · · < udnum−1 ≤ L

and minimizes the following formula

max

u1−1∑
i=u0

log qi,

u2−1∑
i=u1

log qi, · · · ,
L∑

i=udnum−1

log qi

 .

180

Proof. I now prove Theorem 5.5.4 by induction with dnum.

1. dnum = 1: The equality trivially holds.

2. dnum > 1: Assume that the equality holds for dnum − 1. If I set vi =

log qi, αdnum−1(j) is a monotonously increasing function. If I define γ(j) =∑L
i=j+1 log qi, γ(j) is a strictly decreasing function as vi > 0 for all i. Since the

function αdnum−1 and γ satisfy the conditions in Lemma 5.5.2, there is an integer

ℓ ∈ Z ∩ [0, L) such that αdnum−1(n) ≤ γ(n) for n ∈ [0, ℓ], αdnum−1(n) > γ(n)

for n ∈ [ℓ + 1, L], and the minimum value of h(n) = max{αdnum−1(n), γ(n)}

is min{γ(ℓ), αdnum−1(ℓ+ 1)}.

If j = j0 in line 4 of Algorithm 26 satisfies αdnum−1(j0) = γ(j0), I have

j0 = ℓ, and the value αdnum−1(j0) = γ(j0) is the minimum value of h(n).

If αdnum−1(j0) > γ(j0), I have j0 ≥ ℓ + 1. I can find ℓ at the point when

αdnum−1(j) ≤ γ(j) first holds as j decreases from j0 by 1. Then, the value

min{αdnum−1(ℓ + 1), γ(ℓ)} is the minimum value of h(n). If αdnum−1(j0) <

γ(j0), I have j0 ≤ ℓ. I can find ℓ′ = ℓ+ 1 at the point when αdnum−1(j) > γ(j)

first holds as j increases from j0 by 1. Then, the value min{αdnum−1(ℓ
′), γ(ℓ′ −

1)} = min{αdnum−1(ℓ+ 1), γ(ℓ)} is the minimum value of h(n).

For all cases, I can find the minimum value of h(n). This minimum value is

actually the minimum value of f(u0 = 0, · · · , udnum−1) by Lemma 5.5.3, which

proves the theorem.

Next, I prove Theorem 5.2.2.

Theorem 5.5.5. (Restatement of Theorem 5.2.2) The output of Algorithm 28 is a valid

Galois key for the rotation operation for cyclic shift r + r′.

Proof. The proof for ℓ′ = ℓ + 1 is given. The proof for ℓ′ > ℓ + 1 is the same as the

181

case of ℓ′ = ℓ+ 1 by Theorem 2.2. A Galois key

gk(ℓ)r = {(b(ℓ)r,i , a
(ℓ)
r,i)}i=0,··· ,hdnumℓ−1 ∈ (RQℓP

2
ℓ
)hdnumℓ

for cyclic shift r in the key level ℓ is valid if and only if

b
(ℓ)
r,i + a

(ℓ)
r,i · s = Pℓ · Q̂ℓ · [Q̂−1

ℓ]Qℓ
· s(X5r) + e

(ℓ)
r,i

for small errors e(ℓ)r,i . If I perform

(b̃r,i, ãr,i)← (b
(ℓ)
r,i (X

5r
′
), a

(ℓ)
r,i (X

5r
′
))

as in line 2 of Algorithm 28, I have

b̃r,i + ãr,i · s(X5r
′
) = b

(ℓ)
r,i (X

5r
′
) + a

(ℓ)
r,i (X

5r
′
) · s(X5r

′
)

= Pℓ · Q̂ℓ · [Q̂−1
ℓ]Qℓ

· s((X5r
′
)5

r
) + e

(ℓ)
r,i (X

5r
′
)

= Pℓ · Q̂ℓ · [Q̂−1
ℓ]Qℓ

· s(X5r+r′
) + e

(ℓ)
r,i (X

5r
′
).

If I perform the key-switching operation to (b̃r,i, ãr,i) from s(X5r
′
) to s(X) as in

line 3 of Algorithm 28, the output (b(ℓ)r+r′,i, a
(ℓ)
r+r′,i) satisfies

b
(ℓ)
r+r′,i + a

(ℓ)
r+r′,i · s = b̃r,i + ãr,i · s(X5r

′
) + e′r,i

= Pℓ · Q̂ℓ · [Q̂−1
ℓ]Qℓ

· s(X5r+r′
) + e

(ℓ)
r,i (X

5r
′
) + e′r,i

for small errors e′r,i generated from the key-switching operation. Since e(ℓ)r,i (X
5r

′
)+e′r,i

is a small polynomial,

gk
(ℓ)
r+r′ = {b

(ℓ)
r+r′,i, a

(ℓ)
r+r′,i}i=0,··· ,hdnumℓ−1

is a valid Galois key for cyclic shift r + r′ in the key level ℓ.

To use the Galois key gk
(ℓ′)
r′ ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′ in this key-switching operation,

the modulus of the ciphertext to be key-switched should be a divisor of Qℓ′ . Note that

Qℓ = Pℓ−1Qℓ−1 for all ℓ. If the key level ℓ is less than ℓ′, PℓQℓ is a divisor of Qℓ′ .

Therefore, (b̃r,i, ãr,i) can be key-switched by gk
(ℓ′)
r′ .

182

Next, I prove Theorem 5.2.2.

Theorem 5.5.6. (Restatement of Theorem 5.2.3)The output of Algorithm 29 is a valid

Galois key for the rotation operation for cyclic shift r.

Proof. The proof for ℓ′ = ℓ + 1 is given. The proof for ℓ′ > ℓ + 1 is the same as the

case of ℓ′ = ℓ+ 1 by Theorem 2.2. A public key (b, a) ∈ R2
Qk−1

is valid if and only if

b+ a · s = e

for small e ∈ RQk−1
. Note that ℓ is less than k− 1, and PℓQℓ is a divisor of Qk−1. If I

perform

(b′, a′)← ([b(X5r)]PℓQℓ
, [a(X5r)]PℓQℓ

) ∈ R2
PℓQℓ

as in line 1 of Algorithm 29, I have

b′ + a′ · s(X5r) = b(X5r) + a(X5r) · s(X5r) = e(X5r) ∈ RPℓQℓ
.

If I decompose a′ into a vector (a0, · · · , ahdnumℓ′−1) ∈ R
hdnumℓ′
Pℓ′Qℓ′

using ModUp

opeation, I have aj = [a′]Qℓ′,j + Qℓ′,j · ẽj for small ẽj’s, rather than [a′]Qℓ′,j . The

reason for this is the fast basis conversion technique [3], which omits the modular re-

duction by the product of moduli in the CRT merge process to remove the need for

transforming to non-RNS representation.

On the other hand, the Galois key

gk(ℓ
′)

r = {b(ℓ
′)

r,j , a
(ℓ′)
r,j }j=0,··· ,hdnumℓ′−1 ∈ (R2

Qℓ′Pℓ′
)hdnumℓ′

for cyclic shift r in the key level ℓ′ satisfies

b
(ℓ′)
r,j + a

(ℓ′)
r,j · s = Pℓ′ · Q̂ℓ′,j · [Q̂−1

ℓ′,j]Qℓ′,j · s(X
5r) + e

(ℓ′)
r,j

for small errors e(ℓ
′)

r,j . lines 4-7 compute

hdnumℓ′−1∑
j=0

(aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j) · (b
(ℓ′)
r,j , a

(ℓ′)
r,j) ∈ R2

Qℓ′Pℓ′
,

183

which I denote as (b̄(ℓ)r,i , ā
(ℓ)
r,i). The term aj + [Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Qℓ′,j can be arranged

as

aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

=[a′]Qℓ′,j +Qℓ′,j · ẽj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

=[a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j +Qℓ′,j · e′i,j +Qℓ′,j · ẽj

=[a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj),

where Qℓ′,j · e′i,j denotes the difference between [a′]Qℓ′,j + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

and [a′ +Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j . The difference occurs because these operations are

performed in RPℓ′Qℓ′ , rather than RQℓ′,j . Since [a′]Qℓ′,j and [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

are positive integer polynomials less than Qℓ′,j , [a′]Qℓ′,j + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

is a positive integer polynomial less than 2Qℓ′,j . The polynomial [a′ + Pℓ · Q̂ℓ,i ·

[Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j is a positive integer polynomial less than Qℓ′,j , and [a′]Qℓ′,j + [Pℓ ·

Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j and [a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j are the same in modulo Qℓ′,j .

Thus, the difference is the multiple of Qℓ′,j so that it has the form of Qℓ′,j · e′i,j , and

e′i,j is polynomials having zero or one as its coefficients.

184

If I compute b̄
(ℓ)
r,i + ā

(ℓ)
r,i · s, I have

b̄
(ℓ)
r,i + ā

(ℓ)
r,i · s

=

hdnumℓ′−1∑
j=0

(aj + [Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j) · (b
(ℓ′)
r,j + a

(ℓ′)
r,j · s)

=

hdnumℓ′−1∑
j=0

([a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj))·

(Pℓ′ · Q̂ℓ′,j · [Q̂−1
ℓ′,j]Qℓ′,j · s(X

5r) + e
(ℓ′)
r,j)

= Pℓ′ ·

(hdnumℓ′−1∑
j=0

[a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

]Qℓ′,j

· Q̂ℓ′,j · [Q̂−1
ℓ′,j]Qℓ′,j · s(X

5r)

)
+ ([a′ + Pℓ · Q̂ℓ,i · [Q̂−1

ℓ,i]Qℓ,i
]Qℓ′,j +Qℓ′,j · (e′i,j + ẽj)) · e(ℓ

′)
r,j

= Pℓ′ · (a′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

) · s(X5r) + Ei,j

= Pℓ′ · (−b′ + Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

· s(X5r) + e(X5r)) + Ei,j ,

where Ei,j denotes the remaining error term.

If I perform ModDown operation to (b̄
(ℓ)
r,i , ā

(ℓ)
r,i) to divide the terms and the modulus

by Pℓ′ and add (b′, 0), which I denotes (b(ℓ)r,i , a
(ℓ)
r,i), I have

b
(ℓ)
r,i + a

(ℓ)
r,i · s

= Pℓ · Q̂ℓ,i · [Q̂−1
ℓ,i]Qℓ,i

· s(X5r) + e(X5r) + ⌊P−1
ℓ′ · Ei,j⌉.

Since I choose Pℓ′ as larger than Qℓ′,j for all j, the term ⌊P−1
ℓ′ · Ei,j⌉ is only small

error. Thus,

gk(ℓ)r = {b(ℓ)r,i , a
(ℓ)
r,i }i=0,··· ,hdnumℓ−1 ∈ (R2

QℓPℓ
)hdnumℓ

is a valid Galois key for cyclic shift r in the key level ℓ.

185

Chapter 6

MODIFIED SHELL SORT FOR FHE

When processing large amounts of ciphertexts in cloud systems, it is frequently re-

quired to process the sorted data rather than unaligned data. Thus, one of the most

essential operations on the FHE data is the sorting algorithm, which is generally used

as a subroutine algorithm of many algorithms. However, most sorting algorithms are

not suitable for the FHE data. For example, because the quick sort algorithm, one of

the most popularly used sorting algorithms, is not oblivious, it cannot be used on the

FHE data. Although numerous studies have been conducted to render the quick sort

algorithm oblivious, its running time complexity becomes O(n2), where n is the input

array length. Its actual running time is even longer than that of the bubble sort, which

is considered to have the longest running time among all the known sorting algo-

rithms. Therefore, modifying conventional sorting algorithms to make them suitable

for the FHE data is necessary. Several studies have been conducted for this purpose

[13, 15, 31].

Since the oblivious sorting algorithm can be applied for encrypted data with the

FHE, Emmadi et al. [31] compared several oblivious algorithms for sorting the FHE

data. I can divide sorting algorithms for the FHE data into two classes of oblivious

sorting algorithms: in-place algorithm and recursive algorithm. The bubble sort and

insertion sort are basic in-place oblivious algorithms, and the bitonic sort and odd-even

186

merge sort are recursive oblivious algorithms. The recursive oblivious algorithms are

much better than the in-place oblivious algorithms in the aspect of both the asymptotic

performance and practical performance.

However, the recursive algorithms may have inefficiency in some cases. Since

many function calls are caused in the recursive algorithms and the amount of mem-

ory for the ciphertext array is quite big, the total transmission of data in the memory

bus must be somewhat large. When the bandwidth of the memory bus is restricted, this

transmission time can be a bottleneck for sorting with encrypted data. This situation

can occur in lightweight IoT devices, whose memory or bandwidth cannot be large

enough. For this reason, it is desirable to devise an efficient in-place sorting algorithm

for the FHE data. The Shell sort [69,70], which is one of the oldest sorting algorithms,

is the generalized version of the insertion sort. The Shell sort algorithm is an in-place

algorithm, which is fast and easy to implement, and thus, many systems use it as a

sorting algorithm.

It is known that Shell sort uses insertion sort as a subroutine algorithm, and inser-

tion sort can be performed on the FHE data [14, 15]. However, the Shell sort should

be modified to be used in the FHE setting. If I do not allow any error in sorting, then

insertion sort is expected to be quite conservative, i.e., the number of operations for

sorting must be set for the worst case, because the insertion sort algorithm in the FHE

setting is an oblivious algorithm. Thus, if I use insertion sort in the Shell sort, the run-

ning time complexity of Shell sort in the FHE setting must be O(n2), which makes

the use of Shell sort ineffective. Therefore, it is important to devise a sorting algorithm

that is better than the Shell sort on the FHE data in terms of running time complexity.

Goodrich [39] suggested an asymptotically optimal randomized oblivious Shell

sort. He proved that its running time complexity is O(n log n) and sorting failure prob-

ability (SFP) is O(1/nb) for some constant b ≥ 1, where n is the length of an array.

While it is pretty efficient in the asymptotic sense, there are two points to be consid-

ered. First, the analytically induced SFP is an inverse polynomial of the length of an

187

array. When I sort the array having a small length with this algorithm, the induced SFP

may not be the practically allowable value. Further, the inverse polynomial SFP is not

considered a small probability in the asymptotic sense. Since users are often conser-

vative with the SFP in the sorting, the exponentially decaying SFP is more desirable.

Second, it can be inefficient for the array of the small length. For lowering the SFP,

many processes are required in the randomized Shell sort. This causes rather large ad-

ditional operations for an array with a small length. Considering that the running time

of the homomorphic operations in the FHE is quite large, sorting a large number of

encrypted data is not a practical situation yet. Thus, it can be desirable to devise an

oblivious variant of Shell sort which is practically efficient and has truly negligible

SFP, which is independent of the array length.

On the other hand, it is known [14] that I can reduce the running time of insertion

sort on the FHE data by allowing very small sorting failure probability using what is

known as the window technique. According to this technique, in each insertion sort,

instead of inserting the ith element into the subarray of (a1, a2, · · · , ai−1), I insert the

ith element into the subarray (ai−k, ai−k+1, · · · , ai−1) of length k, called the window

length, immediately to the left of the ith element. I call this subarray a “window”

with window length k. This technique is used to reduce the number of bootstrapping

operations in [14]. Since the insertion sort is the subroutine algorithm for the Shell sort,

the window technique is adequate to be applied to the Shell sort. However, the effective

application of the window technique in the Shell sort for homomorphic encryption has

not been proposed.

In this section, I devise a method to modify the Shell sort in the FHE setting using

the window technique, which is proved to be effective in the theoretical aspect and

the practical aspect. It is referred to as a “modified Shell sort”. The window technique

in [15] is applied to each subroutine insertion sort in the modified Shell sort for FHE

setting. I note that the role of the window technique in the algorithm is different from

the original use of the window technique. The proposed algorithm does not reduce the

188

bootstrapping itself compared to the number of the homomorphic gates, but I reduce

the number of the comparison operations with the window technique. For this reason,

the homomorphic comparison operation in the proposed sorting algorithm does not

generate a comparison error.

For theoretical view, the running time complexity of the modified Shell sort is

O(n3/2
√
α+ log log n) with SFP 2−α when the gap sequence is powers-of-two, which

is close to the average-case time complexity O(n3/2) of the original Shell sort. The

value of α is the additional parameter that controls the trade-off between the running

time and the SFP. This trade-off is quite effective because the SFP is decreased expo-

nentially with α but the running time is proportional only to
√
α. To this end, I use the

exact distribution of window lengths of subarrays in each gap for successful sorting

in the Shell sort. If the length of the subarray for the insertion sort in some gap is s,

it is discovered that the average of the required window length for successful sorting

is proportional to
√
s, and the right tail of its probability distribution is very thin. In

the sorting process, the window length is provided as a constant multiple of
√
s, which

ensures a negligible SFP. If the window length is close to β
√
s, the SFP decays as

e−β2
, which signifies a very fast-decaying function. Therefore, with a fixed negligible

SFP, I can set a small window length so that the running time is asymptotically faster

than that of the naive version of the Shell sort on the FHE data.

For the practical view, the running time of the modified Shell sort is effectively

reduced even in the small arrays, compared to the basic in-place sorting algorithms on

the FHE data, bubble sort, and insertion sort.

In this work, I address only the gap sequence of powers of two in the analysis of the

modified Shell sort, i.e., 2h, h = 1, 2, 3, · · · . Although this gap sequence is not optimal

in terms of running time complexity, I first analyze the running time complexity of

the modified Shell sort on the FHE data, which is important for the FHE in cloud

systems. The performance of the modified Shell sort is numerically compared with

the cases of near-optimal window lengths obtained through convex optimization and

189

Ciura’s optimal gap sequence [27], which was evaluated numerically as an optimal gap

sequence in the non-FHE settings. Although I do not analyze this case, the method of

deriving the near-optimal window length in the modified Shell sort functions well for

Ciura’s optimal gap sequence.

The convex optimization method is suggested to derive a tighter window length.

In other words, the window length obtained by the convex optimization method makes

the running time of the modified Shell sort to be less than that of the case employing the

analytical method in the modified Shell sort. The running time of the proposed mod-

ified Shell sort is compared with that of the conventional algorithms with the TFHE

scheme, and it is shown that this modified Shell sort has the best performance in run-

ning time among in-place sorting algorithms on the TFHE scheme.

Thus, my contributions are summarized as follows:

• I propose a modified Shell sort with an additional parameter α on the FHE

data, and derive its theoretical trade-off between the running time complexity

O(n3/2
√
α+ log log n) and the SFP 2−α when the gap sequence is power-of-

two sequence.

• The near-optimal window length of each gap in the modified Shell sort is derived

via the convex optimization technique.

• The numerical simulation with TFHE homomorphic encryption scheme is per-

formed, and the modified Shell sort with Ciura’s gap sequence is proven to have

the best running time performance in the practical situation among the in-place

sorting algorithms for the FHE setting.

6.1 Modification of Shell Sort over FHE

As insertion sort can be performed on the FHE data, the Shell sort, which uses the

insertion sort as a subroutine algorithm, can also be performed on the FHE data. The

190

Algorithm 36 FHEShellSort(A[1 : n])
Input : An encrypted array A[1 : n] with n elements, gap sequence G[1 : p] with

decreasing order, and α

Output: Sorted array of encrypted data A[1 : n] without sorting failure

for ℓ← 1 to p do
g ← G[ℓ]

for i← g + 1 to n do

for j ← ⌈ ig ⌉ − 1 to 1 do
SortTwo(A[i− gj], A[i])

end

end

end

Shell sort using the FHE variant insertion sort as subroutine algorithms is shown in

Algorithm 36. However, if the Shell sort is to be employed without any sorting fail-

ure in the FHE setting, it is expected to be pretty conservative. In other words, as I

need to consider the worst case for each gap, its running time complexity becomes

O(n2), which does not provide any advantage in comparison with a simple insertion

sort. This is because the FHE variant insertion sort cannot be performed adaptively

with the intermediate situations. Thus, designing the Shell sort with a negligible SFP

and a running time complexity close to the original average-case time complexity is

necessary.

To this end, I employ the window technique [14, 15] in the Shell sort. During the

insertion sort in each gap, instead of searching the position of each element in the

whole partially sorted array, I search for its position in the partially sorted subarray

of a certain window length, located to the left of the pivot element, as shown in Fig.

6.1. Fig. 6.1 shows an example of the modified Shell sort using the window technique,

where the gap is 4 and the window length is 2. Subarrays consisting of elements that

are separated by the gap are sorted using the insertion sort. To sort each subarray, it is

compared only with the elements that are located to its left, within a distance equal to

191

the window length from the pivot element to be inserted, which is called the modified

Shell sort.

The proposed modified Shell sort is described in Algorithm 37. As the minimum

and maximum functions can be computed without knowing their plaintext in the FHE

setting, neither of the operations in Algorithm 37 require any knowledge of the con-

tents of elements in the array A[i]. Thus, Algorithm 37 can be executed in the FHE

setting. In designing this algorithm, deciding the window length in each gap for suc-

cessfully sorting each subarray in the Shell sort for the given SFP 2−α is not a trivial

problem. Along with the design of the window length for each gap, I propose a modi-

fied Shell sort with an additional parameter α.

It is proved that the running time complexity of the modified Shell sort is de-

termined to be O(n3/2
√
α+ log log n) with an SFP of 2−α for powers-of-two gap

sequence, which consists of all powers of two less than the length of the array. Note

that the average-case time complexity of the classical Shell sort with powers-of-two

gap sequence is O(n3/2) [32]. The parameter α is determined only from the SFP, re-

gardless of the input length n. In fact, α is considerably smaller than n and should be

larger than or equal to
√
6 log e − 1 ≃ 2.534, the derivation of which is provided in

a subsequent section of this dissertation. It is noted that the proposed modified Shell

sort considers the trade-off between the running time complexity and the SFP.

Before analyzing the running time complexity and the sorting failure probability

of the modified Shell sort with power-of-two gap sequence, I introduce the main idea

of the analysis to help readers to understand the following theorems and lemmas.

Lemma 6.2.1 and 6.2.2 deal with the useful properties of the intermediate arrays

to make it easy to induce the exact number of acceptable arrays for a certain window

length, which is dealt with in Lemma 6.2.3 and Theorem 6.2.4. Theorem 6.2.4 is the

special case of Lemma 6.2.3 that matches my aim.

While the number of acceptable arrays is represented with some binomial coeffi-

cients, the resultant running time complexity has to be represented with some analytic

192

gap = 4

subarray

window length = 2

pivot element

Figure 6.1: Modified Shell sort using the window technique.

function. To this end, Lemma 6.2.5 and 6.2.6 relate some formulas with binomial co-

efficients with some exponential function. With the help of these lemmas, Theorem

6.2.7 suggests the running time complexity and the sorting failure probability of the

modified Shell sort.

Algorithm 37 ModifiedShellSort(A[1 : n], α)
Input : An encrypted array A[1 : n] with n elements, gap sequence G[1 : p] with

decreasing order, and α

Output: Sorted array of encrypted data A[1 : n] with SFP 2−α

c← α+ 1 + log log n

for ℓ← 1 to p do
g ← G[ℓ]

k ← min
{⌈√

⌈ n
2g ⌉ · (c+ ℓ) · 1

log e

⌉
,
⌈

n
2g

⌉}
for i← g + 1 to n do

u← min
{
k, ⌈ ig ⌉ − 1

}
for j ← u to 1 do

SortTwo(A[i− gj], A[i])

end

end

end

Remark. I assume that the modified Shell sort is performed with the bootstrapped

homomorphic gate, a homomorphic boolean gate followed by the bootstrapping. The

193

bootstrapping always removes the noise in the ciphertext, and thus I do not have to

consider the noise amplification in the ciphertext when processing any homomorphic

evaluations. In addition, the ciphertext size does not grow in the fully homomorphic

encryption scheme, and I also do not have to consider the amplification of the cipher-

text size. Thus, I focus on the validity of the modified Shell sort itself in the following

analysis. If I use the leveled homomorphic encryption instead of the FHE, the analysis

for the noise growth or the ciphertext size growth will be needed, and this analysis

becomes an interesting future work.

6.2 Analysis of Modified Shell Sort

6.2.1 Probability Distribution of Required Window Length

In this subsection, I derive the probability distribution of required window length in

each gap required for successfully sorting each subarray in the Shell sort. This prob-

ability distribution is essential in determining the window length of each gap in the

modified Shell sort, because the properties of the tail of the probability distribution

must be used to obtain the required window length.

The array of n elements is denoted by its index vector (a1, a2, · · · , an), which is

a permuted vector of (1, 2, · · · , n). If I handle the real data, I map each datum to its

respective index in {1, 2, · · · , n}. Moreover, I assume that n is an even integer. If n is

odd, the same analysis can be applied, with an additional dummy element inserted in

the rightmost position with the largest element. Several lemmas are needed for devising

the main theorem of the probability distribution for the required window length.

Before obtaining the probability distribution, the meaning of the probability dis-

tribution in this subsection has to be clarified. For each permutation of (1, 2, · · · , n),

the required window length is defined as the minimum window length such that the in-

sertion sort with the window length returns a perfectly sorted array. The required win-

dow length is a random variable when the sample space is the set of all permutations

194

of (1, 2, · · · , n) or its subset. For analyzing the modified Shell sort, I am interested

in the case when the sample space is the set of all permutations (a1, a2, · · · , an) of

(1, 2, · · · , n) which satisfy ai < ai+2.

While the analysis of the conventional Shell sort is performed for an average num-

ber of operations, the analysis of the window length in the modified Shell sort involves

the maximum number of insertion operations for each subarray.

It is assumed that the gap sequence is powers of two, i.e., 2⌊logn⌋, 2⌊logn⌋−1,

· · · , 22, 2, 1. With this gap sequence, each subarray that is sorted using insertion sort

has the following structure. The elements in odd positions of the subarray for a gap 2h

are already sorted and the elements in even positions are also sorted for a gap 2h using

the previous insertion sort for a gap 2h+1. I analyze the insertion sort under this special

situation.

The following Lemma 6.2.1 and Lemma 6.2.2 suggest that the required window

length of a permuted vector (a1, a2, · · · , a2m) of (1, 2, · · · , 2m) is equal to the max-

imum distance of the current position and the right position in this situation. After

Lemma 6.2.1 and Lemma 6.2.2, I identify these two notions as equivalent notions.

Lemma 6.2.1. Let a = (a1, a2, · · · , a2m) be a subarray in each gap in the Shell sort

with a gap sequence 2h, which is permuted from (1, 2, · · · , 2m), satisfying ai < ai+2

for i = 1, 2, · · · , 2m− 2. Let M(a) = max1≤i≤2m |ai − i|. Then there exists an even

integer j and an odd integer k such that

M(a) = |aj − j| = |ak − k|

and (aj − j)(ak − k) ≤ 0.

195

Proof. Let M1,M2,M3, and M4 be defined as

M1 = max
1≤i≤m

(a2i−1 − (2i− 1))

M2 = − min
1≤i≤m

(a2i−1 − (2i− 1))

M3 = max
1≤i≤m

(a2i − 2i)

M4 = − min
1≤i≤m

(a2i − 2i).

It is clear that at least one of M1 and M2 as well M3 and M4 is a non-negative integer.

If I establish that M1 = M4 and M2 = M3, the lemma can be proved by the following

argument. If M1 ≥ M2, I obtain M(a) = M1 = M4 ≥ M2 = M3, and thus, there

exist an odd index j and an even index k, such that M(a) = aj − j = −(ak − k). If

M1 < M2, M(a) = M2 = M3 ≥ M1 = M4 holds, then there exist an odd index j

and an even index k, such that M(a) = −(aj − j) = ak − k. Thus, it is sufficient to

prove that M1 = M4 and M2 = M3.

To show M1 = M4 and M2 = M3, I prove the following four inequalities; M1 ≥

M4, M1 ≤M4, M2 ≥M3, and M2 ≤M3.

i) Firstly, I show that M1 ≥ M4. Consider an index l, such that a2l − 2l =

min1≤i≤m(a2i − 2i), which is −M4. I establish this case for a2ℓ = 2m or

a2ℓ < 2m.

i)-1 If a2l = 2m, l must be m, as 2m is the largest element. Thus, I obtain

min1≤i≤m(a2i − 2i) = 0 and a2i ≥ 2i for all i, 1 ≤ i ≤ m, which

implies that 1 cannot be in the even index and must be in the first index,

and a1 − 1 = 0. Therefore, M1 = max1≤i≤m(a2i−1 − (2i − 1)) ≥ 0 =

−min1≤i≤m(a2i − 2i) = M4.

i)-2 If a2l < 2m, I show that a2l+1 must be in the odd index. Let a2l+1 be in

the even index; this implies that a2l + 1 = a2l+2, because all the elements

in the even indices are already sorted. Then, I obtain a2l+2 − (2l + 2) =

196

(a2l +1)− (2l+2) = a2l− 2l− 1 < a2l− 2l, which is a contradiction to

the assumption that a2l − 2l is the minimum value, and thus, a2l + 1 must

be in the odd index. Among {1, 2, · · · , a2l − 1}, l − 1 elements have to

be placed in the even indices in the left-side of a2l. The remaining a2l − l

elements must be placed in the odd indices in the increasing order from

the first index 1. Thus, the index of a2l + 1 must be 2(a2l − l) + 1. As

a2(a2l−l)+1−(2(a2l−l)+1) = (a2l+1)−(2(a2l−l)+1) = 2l−a2l, I obtain

M1 = max1≤i≤m(a2i−1−(2i−1)) ≥ 2l−a2l = −min1≤i≤m(a2i−2i) =

M4.

ii) I then show that M2 ≥ M3. Consider an index l, such that a2l − 2l =

max1≤i≤m(a2i − 2i), which is M3. I establish this case for a2ℓ = 1 or a2ℓ > 1.

ii)-1 If a2l = 1, l must be 1, as 1 is the smallest element, and therefore,

max1≤i≤m(a2i − 2i) = −1. As a2i − 2i ≤ −1 for all i, 1 ≤ i ≤ m,

2m cannot belong to the even index. Thus, 2m must be in the (2m− 1)-th

index, and a2m−1−(2m−1) = 1. Therefore, M2 = −min1≤i≤m(a2i−1−

(2i− 1)) ≥ −1 = max1≤i≤m(a2i − 2i) = M3.

ii)-2 If a2l > 1, I show that a2l − 1 must be in the odd index. Let a2l − 1

be in the even index. I have a2l − 1 = a2l−2, because all the elements

in the even indices are already sorted. Then, I obtain a2l−2 − (2l − 2) =

(a2l− 1)− (2l− 2) = a2l− 2l+1 > a2l− 2l, which is a contradiction to

the assumption that a2l − 2l is the maximum value, and thus, a2l − 1 must

be in the odd index. Among {1, 2, · · · , a2l − 2}, l− 1 elements need to be

placed in the even indices in the left-side of a2l. The remaining a2l− l− 1

elements have to be placed in the odd indices from the first index 1. Thus,

the index of a2l−1 must be 2(a2l−l)−1. As a2(a2l−l)−1−(2(a2l−l)−1) =

(a2l−1)−(2(a2l−l)−1) = 2l−a2l, I obtain M2 = −min1≤i≤m(a2i−1−

(2i− 1)) ≥ −(2l − a2l) = max1≤i≤m(a2i − 2i) = M3.

197

Similarly, I can establish that M1 ≤ M4 and M2 ≤ M3 by swapping the even

indices with the odd indices. Therefore, I can prove that M3 = max1≤i≤m(a2i −

2i) ≥ −min1≤i≤m(a2i−1 − (2i − 1)) = M2, and M4 = −min1≤i≤m(a2i − 2i) ≥

max1≤i≤m(a2i−1 − (2i− 1)) = M1. Therefore, I establish that M1 = M4 and M2 =

M3.

Lemma 6.2.2. Let a = (a1, a2, · · · , a2m) be a subarray in the Shell sort with a

gap sequence 2h, which is permuted from (1, 2, · · · , 2m) satisfying ai < ai+2 for

i = 1, 2, · · · , 2m − 2. Let W (a) be the required minimum window length to sort the

subarray successfully. Then, I have

W (a) = max
1≤i≤2m

(i− ai).

Proof. When I insert ai into the partially sorted subarray, the following scenarios can

be given; if ai < i, I require a window length of i− ai, and if ai ≥ i, ai stays in place

regardless of the window length.

Consider the first case, where ai < i. First, I assume that i is even. Consider the

elements to the left of ai. From the condition ai < ai+2, it is clear that all the elements

in even indices to the left of ai are less than ai. As there are i/2 − 1 even indices to

the left of ai, the remaining ai − i/2 elements in {1, 2, · · · , ai − 1} have to be placed

in odd indices in increasing order from the leftmost odd index. As the number of odd

indices to the left of ai is i/2 and i/2 > ai − i/2, all the elements less than ai are

located to the left of ai.

Then, it is assumed that i is odd. The proof is almost the same as that for the

scenario in which i is even. As there are (i − 1)/2 odd indices to the left of ai, the

remaining ai− (i+1)/2 elements in {1, 2, · · · , ai−1}must be placed in even indices

from the first even index, in increasing order. As the number of even indices to the left

of ai is (i − 1)/2 and (i − 1)/2 > ai − (i + 1)/2, all the elements less than ai are

located to the left of ai.

Thus, I prove that all the elements less than ai are located to the left of ai. The

198

partially sorted subarray, therefore, must include the elements {1, 2, · · · , ai − 1} in

the indices {1, 2, · · · , ai − 1} in the appropriate order. This implies that ai moves to

the index ai, and thus, I require a minimum window length of i− ai.

Consider the second case, in which ai ≥ i. It is evident that i/2 ≤ ai − i/2, when

i is even, and (i − 1)/2 ≤ ai − (i + 1)/2, when i is odd. This implies that all the

elements to the left of ai are less than ai. Thus, the partially sorted subarray in the

indices {1, 2, · · · , i − 1} comprises elements smaller than ai. Therefore, ai does not

move to the left but stays in its position, regardless of the window length.

From Lemma 6.2.1, it is noted that M(a) is equal to W (a). Lemma 6.2.3 is needed

to obtain the exact number of the arrays whose required window length is some non-

negative number k. Theorem 6.2.4 corresponds to the conclusion of this subsection,

and this can be obtained by only considering the special case of Lemma 6.2.3.

Lemma 6.2.3. Let pk(n,m) be the number of distinct arrays (a1, a2, · · · , am) of

length m, whose elements from {1, 2, · · · , n} are sorted in increasing order, ai <

ai+1, and max1≤i≤m |ai − 2i| ≤ k is satisfied for a positive integer k and n ≥ m. Let

(b0, b1, · · ·) and (c0, c1, · · ·) be the two arrays defined as

b0 = c0 = 0

bi+1 =

bi + (k + 1) if i is even

bi + (k + 2) if i is odd

ci+1 =

ci + (k + 2) if i is even

ci + (k + 1) if i is odd.

For 2m− k ≤ n ≤ 2m+ k, I obtain

pk(n,m) =

(
n

m

)
−

∑
1≤bi≤m

(−1)i+1

(
n

m− bi

)

−
∑

1≤ci≤m

(−1)i+1

(
n

m+ ci

)
. (1)

199

Proof. It is clear that pk(1, 1) = 1 for all k ≥ 1, and pk(n, 1) = n for n ≤ k + 2. As

the element am in the last index must be 2m−k ≤ am ≤ 2m+k from max1≤i≤m |ai−

2i| ≤ k, the following can be determined from the condition 2m−k ≤ am ≤ 2m+k:

i) For n < 2m− k,

pk(n,m) = 0,

because the minimum possible value of am must be 2m− k.

ii) For n > 2m+ k + 1,

pk(n,m) = pk(2m+ k,m),

because the maximum possible value of am must be 2m+ k.

iii) For 2m− k ≤ n ≤ 2m+ k + 1,

I derive the recurrence relation of pk(n,m) using the following three cases:

iii)-1 For n = 2m+ k + 1,

It is easy to derive that

pk(2m+ k + 1,m) = pk(2m+ k,m). (2)

Note that this case can be included in ii). Although this separation of the

case appears unnatural, it enables me to analyze pk(n,m) well.

iii)-2 For 2m− k + 1 ≤ n ≤ 2m+ k,

If the element in the last index m is n, the elements in the remaining indices

should be selected from {1, 2, · · · , n−1}, and thus, there are pk(n−1,m−

1) possible arrays. If the element in the last index m is not n, the element

n cannot be located in one of the indices {1, 2, · · · ,m − 1}, because the

elements are sorted in increasing order. Thus, {1, 2, · · · , n− 1} should be

located in the indices {1, 2, · · · ,m}, and there are pk(n − 1,m) possible

arrays. Therefore, I obtain

pk(n,m) = pk(n− 1,m) + pk(n− 1,m− 1). (3)

200

iii)-3 For n = 2m− k,

I obtain

pk(2m− k,m) = pk(2m− k − 1,m− 1), (4)

because the element 2m− k must be located in the index m.

Let qk(n,m) be the right-hand side in (1). Then, I prove that qk(2m+k+2,m) = 0

and qk(2m− k − 1,m) = 0. First, qk(2m+ k + 2,m) can be written as

j∑
i=1

(−1)i
(
2m+ k + 2

m+ ci

)
+

j∑
i=1

(−1)i−1

(
2m+ k + 2

m− bi−1

)
. (5)

As (m+ ci)+ (m− bi−1) = 2m+k+2,
(
2m+k+2
m+ci

)
=
(
2m+k+2
m−bi−1

)
holds, and qk(2m+

k + 2,m) is equal to 0.

Next, qk(2m− k − 1,m) can be written as

j∑
i=1

(−1)i−1

(
2m− k − 1

m+ ci−1

)
+

j∑
i=1

(−1)i
(
2m− k − 1

m− bi

)
. (6)

As (m+ ci−1)+ (m− bi) = 2m−k− 1,
(
2m−k−1
m+ci−1

)
=
(
2m−k−1
m−bi

)
holds, and qk(2m−

k − 1,m) is equal to 0.

It is proved that pk(n,m) = qk(n,m) when 2m − k ≤ n ≤ 2m + k + 1. Using

the fact that qk(n,m) is simply a linear combination of binomial coefficients and the

property of the binomial coefficients, I easily know that

qk(n,m) = qk(n− 1,m) + qk(n− 1,m− 1).

When n = 2m+ k + 1, I know that qk(n− 1,m− 1) = 0 from (5). Thus, I have

qk(2m+ k + 1,m) = qk(2m+ k,m).

When n = 2m− k, I know that qk(n− 1,m) = 0 from (5). Thus, I have

qk(2m− k,m) = qk(2m− k − 1,m− 1).

Clearly, pk(1, 1) = qk(1, 1). The recurrence relation of pk(n,m) is identical to that

of qk(n,m) when 2m − k ≤ n ≤ 2m + k + 1 and the initial value is also identical.

201

Therefore, I prove that pk(n,m) = qk(n,m) when 2m− k ≤ n ≤ 2m+ k+1, which

proves it.

Remark: In order to understand intuitionally the proof of Lemma 6.2.3, I add the

additional explanation of proof of Lemma 6.2.3. The recurrence relations (2)-(4) of

pk(n,m) are similar to the Pascal’s triangle
(
n
m

)
=
(
n−1
m

)
+
(
n−1
m−1

)
shown in Fig.

6.2(a), except that the width of the triangle for pk(n,m) is limited, as shown in Fig.

6.2(b) as well as (2) and (4). This recursive relation can then be transformed into

overlapped Pascal’s triangles. Fig. 6.2(c) shows a part of Fig. 6.2(b) near the boundary

of the lower dotted line. Here, I only consider the lower dotted line. I then establish

that this recursive relation near the boundary in Fig. 6.2(c) is equivalent to the situation

of Fig. 6.2(d), which is two overlapped Pascal’s triangles, in which pk(0, 0) = 1 and

pk(0, k + 1) = −1.

First, it can be obtained that the values on the dotted line in Fig. 6.2(d) are always

0, because of the symmetry of Pascal’s triangles. As adding a 0 does not change the

value, the cases of Fig. 6.2(c) and Fig. 6.2(d) are equivalent regarding the area to the

left of the dotted line.

However, the values on both the dotted lines in Fig. 6.2(b) must be 0. To satisfy the

other boundary condition pk(2m+k+2,m) = 0 on the upper dotted line in Fig. 6.2(b),

I consider another Pascal’s triangle translated by−(k+2) with pk(0,−(k+2)) = −1.

If I add these three Pascal’s triangles P−1, P0, and P1 shown in Fig. 6.2(e), there are

zero boundary values on the lines from Q1 to Q2 and from R1 to R2. However, the

boundary value after Q2 or R2 is not equal to 0. To obtain the boundary values on the

lines from Q2 to Q3 and from R2 to R3, I must add the Pascal’s triangles P2 and P−2.

Therefore, I repeat this process, as shown in Fig. 6.2(e). The sequence {bi} in Lemma

6.2.3 is the distance from the initial vertex of P0 to that of Pi, while {ci} is the distance

from the initial vertex of P0 to that of P−i. The initial value at the initial vertex of Pi is

1 if i is even, and −1 if i is odd. Qi is defined as the intersection of the boundaries of

the two Pascal’s triangles starting from the initial vertices of Pi−1 and P−i, and Ri is

202

n

m

(a) Pascal’s triangle for
(
n
m

) (b) pk(n,m) with k = 4 for 2m − k ≤ n ≤

2m+ k

(c) Boundary case of pk(n,m) in (b)
(d) Equivalent diagram of boundary of

pk(n,m) in (b)

(e) pk(n,m) using overlapped Pascal’s triangles

Figure 6.2: pk(n,m) using Pascal’s triangle.

203

defined as the intersection of the boundaries of the two Pascal’s triangles starting from

the initial vertices of Pi and P−(i−1).

It is derived that if the Pascal’s triangles Pi’s, i = · · · ,−1, 0, 1, · · · , are over-

lapped, all of the integer points on the half-lines of
−−→
Q1Q2 and

−−→
R1R2 must be 0s. The

integer points on the upper half-line of
−−→
Q1Q2 exhibit the form n = 2m + k + 2

for all non-negative integers m, and those on the lower half-line of
−−→
R1R2 exhibit the

form n = 2m − k − 1 for all m ≥ k + 1. First, in the case of the points on the

half-line of
−−→
Q1Q2, I consider the integer points on QjQj+1, which can be denoted as

n1 = 2m1 + k + 2 and bi−1 ≤ m1 ≤ bi. Then, I can only consider Pascal’s trian-

gles P−j , · · · , Pj−1. Considering the parallel translation of each Pascal’s triangle, the

overlapped values on the points are defined as

j∑
i=1

(−1)i
(
2m1 + k + 2

m1 + ci

)
+

j∑
i=1

(−1)i−1

(
2m1 + k + 2

m1 − bi−1

)
. (5)

As (m1 + ci) + (m1− bi−1) = 2m1 + k+2,
(
2m1+k+2
m1+ci

)
=
(
2m1+k+2
m1−bi−1

)
holds, and (5)

is equal to 0.

In the case of the points on the half-line of
−−→
R1R2, I consider the integer points

on RjRj+1, which can be denoted as n2 = 2m2 − k − 1 and bi ≤ bi+1. Then, I can

only consider Pascal’s triangles Pj−1, · · · , Pj . The overlapped values on the points are

defined as

j∑
i=1

(−1)i−1

(
2m2 − k − 1

m1 + ci−1

)
+

j∑
i=1

(−1)i
(
2m2 − k − 1

m1 − bi

)
. (6)

As (m2 + ci−1) + (m2− bi) = 2m2− k− 1,
(
2m2−k−1
m1+ci−1

)
=
(
2m2−k−1
m1−bi

)
holds, and (6)

is also equal to 0.

Therefore, I establish that with respect to the region between the two dotted lines

in Fig. 6.2(b), Fig. 6.2(b) is exactly equivalent to the hashed part of Fig. 6.2(e). I obtain

pk(n,m) by adding the values of points of several Pascal’s triangles as in (1), where

the first term is from the central Pascal’s triangle P0; the second term is from the right-

side Pascal’s triangles Pi’s for the positive integer i; and the third term is from the

204

left-side Pascal’s triangles P−i’s for the positive integer i.

From the previous lemmas, I have the following theorem.

Theorem 6.2.4. Let C(2m, k) be the number of the permutations a of {1, 2, · · · , 2m},

such that ai < ai+2 for all possible i, and W (a) ≤ k. Then, I have

C(2m, k) =

(
2m

m

)
−

∑
1≤bi≤m

(−1)i+1

(
2m

m− bi

)

−
∑

1≤ci≤m

(−1)i+1

(
2m

m− ci

)
,

where bi and ci are defined in Lemma 6.2.3.

Proof. As M(a) of the odd indices is equal to that of the even indices from Lemma

6.2.1, I consider only the even indices. Thus, I can consider this situation to be

equivalent to the following simple situation; I consider distinct m elements from

{1, 2, · · · , 2m} randomly, sort them in increasing order, and consider ai − 2i rather

than ai − i. Then, C(2m, k) is identical to pk(2m,m) in Lemma 6.2.3. This is estab-

lished as
(

2m
m+bi

)
=
(

2m
m−bi

)
.

In fact, C(2m, k) denotes the number of arrays for gap 2h, which can be success-

fully sorted using the proposed modified Shell sort with a window length of k. Clearly,

the exact number of arrays with W (a) = k, such that ai < ai+2 for all i can be ob-

tained by computing C(2m, k)− C(2m, k − 1). With this result, I derive the running

time complexity of the modified Shell sort in the next subsection.

6.2.2 Derivation of Running Time Complexity for a Specific SFP

In this subsection, I derive the running time complexity O(n3/2
√
α+ log log n) of the

proposed modified Shell sort with powers-of-two gap sequence, considering the opti-

mal trade-off with the SFP 2−α, in which α is the parameter that controls the window

length of each gap. In the running time complexity, log logn increases gradually as

n increases. Therefore, the running time complexity is approximately proportional to

205

n3/2√α. However, the probability that the output is not successfully sorted decreases

exponentially as α increases. It is noted that the SFP 2−α is not related to the number

of the input data. One of the advantages of the modified Shell sort algorithm is irre-

spective of the number of the input data, and thus I can obtain a trade-off between the

SFP and running time complexity by considering an appropriate α.

It is important to prove the following lemmas to determine the relation between the

binomial coefficients and exponential function. It is a well-known fact from the central

limit theorem in statistics that the closer n is to infinity, the closer a binomial distri-

bution is to a normal distribution. Even though the binomial and normal distributions

are similar, I should establish that some binomial coefficients are upper-bounded by

the probability distribution function of the normal distribution. The following Lemma

6.2.5 is used in the proof of Lemma 6.2.6, and Lemma 6.2.6 is used to prove Theorem

6.2.7.

Lemma 6.2.5. Let f : [a,∞)→ R be a function of some real number a satisfying the

following;

i) lim
x→∞

f(x) = M for some real number M .

ii) There exists a positive integer n, such that the n-th order derivative f (n)(x)

exists on (a,∞), and (−1)nf (n)(x) > 0 for all x ∈ (a,∞).

Then, f(x) > M for all x ∈ [a,∞).

Proof. It is sufficient to show that f (m)(x) → 0 as x → ∞ and (−1)mf (m)(x) is

a monotonically decreasing function for m, 1 ≤ m ≤ n − 1. If this is proved, then

f(x) is a monotonically decreasing function and is larger than the limit value M from

the first condition in Lemma 6.2.5, as f ′(x) is negative for (a,∞). Since it is true

for m = n that (−1)mf (m)(x) > 0, I will prove the following: if it is true for 2 ≤

k ≤ n that (−1)kf (k)(x) > 0, then I have lim
x→∞

f (k−1)(x) = 0, and it is true that

(−1)k−1f (k−1)(x) is a monotonically decreasing function.

206

Let gk(x) = (−1)kf (k)(x). As (−1)k−1f (k)(x) = g′k−1(x) < 0 on (a,∞),

gk−1(x) is a monotonically decreasing function. As a monotonically decreasing func-

tion always converges to a certain value, if it possesses some lower bound, I ob-

tain lim
x→∞

gk−1(x) = T for some T , or lim
x→∞

gk−1(x) = −∞. I assume that

lim
x→∞

gk−1(x) = T for some T ̸= 0, or lim
x→∞

gk−1(x) = −∞. Then, I can deduce

some N ∈ (a,∞), R > 0, such that |gk−1(x)| > R, i.e., f (k−1)(x) > R for all

x > N , or f (k−1)(x) < −R for all x > N .

Consider the case of f (k−1)(x) > R. If I integrate both terms from N to x ∈

(N,∞) iteratively as

f (k−2)(x)− f (k−2)(N) =

∫ x

N
f (k−1)(t)dt

>

∫ x

N
Rdx = R(x−N)

f (k−3)(x)− f (k−3)(N) =

∫ x

N
f (k−2)(t)dt

>

∫ x

N

(
R(x−N) + f (k−2)(N)

)
dx

=
R

2
(x−N)2 + f (k−2)(N)(x−N),

we obtain

f(x) >
R

(k − 1)!
(x−N)k−1 +

k−2∑
i=0

f (i)(N)

i!
(x−N)i,

whose right-hand side tends to infinity, as x → ∞. In this case, f(x) tends to infinity

as well, which contradicts the first condition. If I consider the case of f (m)(x) < −R,

the inequality is changed to

f(x) < − R

(k − 1)!
(x−N)k−1 +

k−2∑
i=0

f (i)(N)

i!
(x−N)i,

whose right-hand side tends to negative infinity, as x→∞. Then f(x) tends to nega-

tive infinity as well, which also contradicts the first condition.

207

Thus, I obtain lim
x→∞

gk−1(x) = 0. As gk−1(x) is a monotonically decreasing func-

tion, gk−1(x) > 0 on (a,∞), which completes the proof.

Lemma 6.2.6 directly uses Lemma 6.2.5. To prove the inequality in Lemma 6.2.6,

I only prove that the condition of Lemma 6.2.5 holds for some function.

Lemma 6.2.6. For any real number α ≥
√
6 and any positive integer n ≥ ⌈α2⌉, the

following inequality holds (
2n

n− ⌈α
√
n⌉

)
< e−α2

(
2n

n

)
.

Proof. It can be derived that(
2n
n

)(
2n

n−⌈α
√
n⌉
) =

(n+ ⌈α
√
n⌉)(n+ ⌈α

√
n⌉ − 1) · · · (n+ 1)

n(n− 1) · · · (n− ⌈α
√
n⌉+ 1)

=

⌈α
√
n⌉−1∏

k=0

(
1 +
⌈α
√
n⌉

n− k

)
.

It should be proved that

⌈α
√
n⌉−1∏

k=0

(
1 +
⌈α
√
n⌉

n− k

)
> eα

2
. (7)

If I consider the logarithm on the left-hand side and change the form, I obtain

⌈α
√
n⌉−1∑

k=0

ln

(
1 +
⌈α
√
n⌉

n− k

)
≥

⌈α
√
n⌉−1∑

k=0

ln

(
1 +

α
√
n− k√

n

)
. (8)

Let f(x) = log
(
1 + α

x

)
. Then, the right-hand side of (8) can be defined as

√
n

⌈α
√
n⌉∑

k=1

1√
n
f(
√
n+

1√
n
− k√

n
),

which is a type of Riemann sum of f(x). As f(x) is a monotonically decreasing func-

tion, the Riemann sum demonstrates its lower bound as the integration of f(x) from

208

√
n+ 1√

n
− ⌈α

√
n⌉√
n

to
√
n+ 1√

n
. As
√
n+ 1√

n
− ⌈α

√
n⌉√
n
≤
√
n+ 1√

n
− α, I obtain

⌈α
√
n⌉−1∑

k=0

ln

(
1 +

α
√
n− k√

n

)

≥
√
n

∫ √
n+ 1√

n

√
n+ 1√

n
− ⌈α

√
n⌉√
n

ln
(
1 +

α

x

)
dx

≥
√
n

∫ √
n+ 1√

n

√
n+ 1√

n
−α

ln
(
1 +

α

x

)
dx. (9)

To integrate right-hand side of (9), let g(x) = x lnx. I then obtain

√
n

∫ √
n+ 1√

n

√
n+ 1√

n
−α

ln
(
1 +

α

x

)
dx

= g(n+ α
√
n+ 1) + g(n− α

√
n+ 1)− 2g(n+ 1).

Let h(x) = g(x2 + αx+ 1) + g(x2 − αx+ 1)− 2g(x2 + 1) in [α,∞). If I prove

lim
x→∞

h(x) = α2, and h(3)(x) < 0 in (α,∞), I obtain h(x) > α2 in [α,∞) using

Lemma 6.2.5. As
√
n ≥ α, I obtain h(

√
n) > α2, which proves (7). I must establish

lim
x→∞

h(x) = α2, and h(3)(x) < 0 in (α,∞). To prove lim
x→∞

h(x) = α2, I consider

eh(x). Using g(x) = x lnx and h(x), I obtain

eh(x) =

(
1− α2x2

(x2 + 1)2

)x2−αx+1(
1 +

αx

x2 + 1

)2αx

.

From lim
x→∞

(
1 +

p

x

)x
= ep, I obtain lim

x→∞
eh(x) = eα

2
, and thus, lim

x→∞
h(x) = α2.

Moreover, h(3)(x) can be computed as

h(3)(x) = −4α2x(x2 − 1){α2(x4 + 4x2 + 1)− 6(x2 + 1)2}
(x2 + 1)2(x2 − αx+ 1)2(x2 + αx+ 1)2

.

As α ≥
√
6, I obtain h(3)(x) < 0 in (α,∞). Thus, I complete the proof.

The following theorem is presented, which is the main theorem of this subsec-

tion. The situation in Theorem 6.2.4 occurs in Theorem 6.2.7, so that I can directly

use Theorem 6.2.4. Then, I use Lemma 6.2.6 to obtain a simple upper bound of the

complicated formula.

209

Theorem 6.2.7. The running time complexity of the proposed modified Shell sort al-

gorithm is obtained as O(n3/2
√
α+ log log n). For α ≥

√
6 log e − 1, its SFP is

upper-bounded by 2−α.

Proof. As the swapping operation in the modified Shell sort algorithm can be per-

formed within a certain constant time, the running time complexity of the modified

Shell sort in Algorithm 37 is determined from the number of swapping operations. Let

S(n) be the number of the swapping operations with an input length n. Then, S(n)

can be upper-bounded as

S(n) ≤ n

⌊logn⌋∑
ℓ=0

kℓ

where the window length kℓ of each gap is defined as⌈√⌈ n

2ℓ+1

⌉
· (α+ 1 + log log n+ ℓ) · 1

log e

⌉
.

Thus, S(n) can be expressed as

S(n) = O

n
3
2

⌊logn⌋∑
ℓ=0

√
α+ log log n+ ℓ+ 1

2ℓ+1

 .

Using
√
a+ b ≤

√
a+
√
b, I obtain that T (n) is

O

n
3
2

√α+ log log n

⌊logn⌋+1∑
ℓ=1

1

2
ℓ
2

+

⌊logn⌋+1∑
ℓ=1

√
ℓ

2
ℓ
2

 .

Thus, I obtain S(n) = O(n3/2
√
α+ log log n), because

∑∞
ℓ=1

1

2
ℓ
2

and
∑∞

ℓ=1

√
ℓ

2
ℓ
2

are

both finite.

At this point, I consider the SFP. Let B denote the event that the output of

the sorting algorithm is not successfully sorted and let Bℓ denote the event that at

least one subarray for the gap 2ℓ is not successfully sorted. As B ⊆
⋃⌊logn⌋

ℓ=0 Bℓ =

210

⋃⌊logn⌋
ℓ=0

(
Bℓ ∩

⋂⌊logn⌋
u=ℓ+1 B

c
u

)
, I obtain

Pr [B] ≤
⌊logn⌋∑
ℓ=0

Pr

Bℓ ∩
⌊logn⌋⋂
u=ℓ+1

Bc
u

≤

⌊logn⌋∑
ℓ=0

Pr

Bℓ

∣∣∣∣ ⌊logn⌋⋂
u=ℓ+1

Bc
u

 ,

where
⋂⌊logn⌋

u=ℓ+1 B
c
u implies the event that the sorting is successful for the gaps

2ℓ+1, · · · , 2⌊logn⌋. All of the subarrays satisfy the condition ai < ai+2 in Theorem

6.2.4, before I perform the insertion sort for the gap 2ℓ. Clearly, there are 2ℓ subarrays

when the gap is 2ℓ, and the length of subarray is less than or equal to 2⌈ n
2ℓ+1 ⌉. Let

mℓ = ⌈ n
2ℓ+1 ⌉, and βℓ =

√
(α+ 1 + log log n+ ℓ) · 1

log e . As βℓ ≥
√
6, the probability

that one subarray of length 2mℓ is not successfully sorted can be upper-bounded as

1−
C(2mℓ, βℓ

√
mℓ)(

2mℓ
mℓ

) ≤ 2

(
2mℓ

mℓ−βℓ
√
mℓ

)(
2mℓ
mℓ

) ≤ 2e−β2
ℓ , (10)

where the second inequality is obtained from Lemma 6.2.6 if mℓ ≥ ⌈β2
ℓ ⌉. If mℓ <

⌈β2
ℓ ⌉, the left term of (10) is 0, and thus (10) trivially holds. I then obtain

⌊logn⌋∑
ℓ=0

Pr

Bℓ

∣∣∣∣ ⌊logn⌋⋂
u=ℓ+1

Bc
u

 ≤ ⌊logn⌋∑
ℓ=0

2ℓ · 2e−β2
ℓ

=
2−α⌊log n⌋

log n
≤ 2−α,

and thus, the theorem is proved.

Remark. Theorem 6.2.7 states that the asymptotic running time complexity of Al-

gorithm 37 is lower than the trivially modified Shell sort in Algorithm 36, which is

O(n2). The reduction of the running time in a concrete sense is rather clear, in that

the number of iterative steps in the last for statement in Algorithm 37 is lower than

that in Algorithm 36. On the other hand, the asymptotic running time of the modified

Shell sort is lower than that of the insertion sort for the FHE setting, but the concrete

211

comparison for them in a practical situation is not clear in this theoretical analysis.

In Section 6.4, I numerically compare their running time using TFHE homomorphic

encryption scheme.

6.3 Near-Optimal Window Length by Convex Optimization

It is necessary to find the shortest window length for the SFP so that the least run-

ning time complexity of the modified Shell sort is obtained. Generally, it is not easy

to derive the optimal window length in closed form. In this section, I obtain the near-

optimal window length using convex optimization [10]. Let βℓ
√
⌈n/2ℓ+1⌉ be the win-

dow length for the gap 2ℓ, and Pr

[
Bℓ

∣∣∣∣⋂⌊logn⌋
u=ℓ+1 B

c
u

]
be the SFP for the gap 2ℓ, when

sorting is successful for the gaps 2ℓ+1, · · · , 2⌊logn⌋. From Theorem 6.2.4 and Lemma

6.2.6, I obtain

Pr

Bℓ

∣∣∣∣ ⌊logn⌋⋂
u=ℓ+1

Bc
u

 ≤ 2ℓe−β2
ℓ .

The objective function that needs to be minimized is the total number of swap

operations, which determines the running time. As the exact running time for-

mula is rather complicated, I consider a tight upper bound of the running time,

n
∑⌊logn⌋

ℓ=0 βℓ
√
⌈n/2ℓ+1⌉, which is used in the proof of Theorem 6.2.7. Let pℓ =

2ℓe−β2
ℓ . Then, I have βℓ =

√
(ℓ+ log(1/pℓ))/ log e. As it is sufficient to minimize∑⌊logn⌋

ℓ=0

√
⌈n/2ℓ+1⌉(ℓ+ log(1/pℓ)), the problem of the near-optimal window length

can be formulated as follows;

minimize

⌊logn⌋∑
ℓ=0

√
⌈n/2ℓ+1⌉(ℓ+ log(1/pℓ))

s.t.

k−1∑
ℓ=1

pℓ ≤ perr.

This formulation implies that the total running time with SFP upper-bounded by

perr needs to be minimized. I can validate that
√
c+ log 1

x is a convex function on

small positive values, where c is a constant. As the weighted sum of convex functions

212

is also a convex function, the objective function is a convex function, and the constraint

is also convex. Thus, this can be termed as a convex optimization problem. As every

convex optimization problem can be solved using numerical analysis, it is easy to

obtain the near-optimal window length. Then, I can deduce pℓ, and the near-optimal

window length is determined to be ⌈
√
⌈n/2ℓ+1⌉(ℓ+ log(1/pℓ))/ log e⌉ for each gap

2ℓ. It is noted that the above formulation is not sufficiently tight, because it still uses

the union bound. Constructing a tighter formulation, which can be solved easily, can

be a focus for future research.

6.4 Simulation Results

The performance of the proposed modified Shell sort is numerically verified using

a personal computer with an AMD Ryzen 9 5950X CPU running at 2.04GHz, and

128GB RAM. First, I validate the running time and SFP when the array length varies.

Then, the running time and SFP are numerically obtained when the parameter α is

varied. Finally, the performance of the modified Shell sort is compared with the cases

corresponding to the near-optimal window length, which is obtained using convex op-

timization, and Ciura’s optimal gap sequence, which has been validated numerically as

an optimal gap sequence in the non-FHE settings. I firstly simulate these sorting algo-

rithms without homomorphic encryption schemes, i.e., in the plaintext region. Since

the use of homomorphic encryption schemes can affect only the running time, the

result of SFP values in this simulation has the same meaning in the case of using ho-

momorphic encryption.

Fig. 6.3 shows the relation between the running time and SFP against various array

lengths for α = 3. It is observed that the array length increases from 50 to 1000. The

input arrays are randomly generated, and 105 input arrays are generated for each array

length. It is observed from Fig. 6.3 that the running time increases in proportion to

n3/2, and the SFP is independent of the array length. This numerical result coincides

213

�

�✁�✂

�✁�✄

�✁�☎

�✁�✆

�✁✝

�✁✝✂

�✁✝✄

�✁��

�✁✂�

�✁✄�

�✁☎�

�✁✆�

✝✁��

✝✁✂�

✝✁✄�

✝✁☎�

✝✁✆�

� ✂�� ✄�� ☎�� ✆�� ✝���

✞
✟
✠

✡
☛
☞✌
✍
✎

✏✑✑✒✓ ✔✕✖✗

✘✙✚✚✛✚✜ ✢✛✣✤

✥✦✧

✥✦✧ ★✩✙✚✪

Figure 6.3: Running time and SFP of the modified Shell sort for varied array lengths.

well with the proposed analysis of the modified Shell sort. Note that the value c =

α+ 1 + log log n increases slightly as the length of the array increases.

Fig. 6.4 shows the relation between the running time and SFP for various α values,

in which g2p denotes the power of the 2-gap sequence, gop denotes Ciura’s optimal

gap sequence [27], and a-win and o-win denote the analytically derived window length

and near-optimal window length derived by convex optimization, respectively. The

input array length is fixed at 1000. Similar to the previous simulation, 105 input arrays

are randomly generated for each α value. Algorithm 37 and the case corresponding to

the Ciura’s optimal gap sequence or near-optimal window length are simulated, with

the near-optimal window length derived using the convex optimization discussed in

Section 6.3.

From Fig. 6.4, it is observed that the running time of Algorithm 37 increases as α

increases and the growth rate decreases. This observation coincides with the proposed

analysis, i.e., the running time is approximately proportional to
√
α. The logarithms

of the SFP values of Algorithm 37 are parallel to that of the SFP bounds. This implies

that the SFP is proportional to 2−α with some small proportional constant.

214

When the gap sequence is replaced with Ciura’s gap sequence, the running time

is reduced by approximately 0.5 ms. Sorting failure is not detected in the case of the

simulation that uses Ciura’s gap sequence. This implies that the order of the SFP of

Ciura’s optimal gap sequence is less than or equal to 10−5. Although the window

lengths of each gap in this dissertation are analytically derived for the power of the

2-gap sequence, a better result is obtained when Ciura’s optimal gap sequence is used.

The value c = α+1+ log log n is numerically found when the SFP value reaches

10−5 for some length of an array, and Table 6.1 shows the values. While the value

c increases slightly as the length of the array increases when the gap sequence is

powers-of-two and the SFP value is fixed, the value c decreases sharply as the length

of the array increases. It suggests that the trade-off in the case of Ciura’s gap sequence

is asymptotically better than the case of the powers-of-two gap sequence. The exact

asymptotical analysis of Ciura’s gap sequence is an open problem.

The near-optimal window length is derived using the convex optimization problem

described in Section 6.3. The running time in this case is marginally reduced compared

with the case using the analytically obtained window length. However, their values

become closer as α increases. The SFP of the case using the near-optimal window

length for the power of the 2-gap sequence is closer to the SFP bound than that of

the case using the analytically obtained window length. Thus, the running time can be

reduced, while the SFP remains less than the SFP bound.

In this subsection, I measure the running time of several sorting algorithms on

encrypted data, including the modified Shell sort algorithm. I implement each sorting

algorithm with the TFHE library [24]. The security parameter in the TFHE scheme is

set to be 128, and the number of bits for each data is set to be 10. Table 6.2 shows the

main parameters used in the simulation satisfying 128-bit security. For the modified

Shell sort, I set the value of c to make the SFP 10−5, and the Ciura’s gap sequence is

used rather than the powers-of-two gap sequence. The unit of each running time result

is in seconds.

215

�✁✂

�✁✄

�✂

✄

✄

✄☎✂

✁

✁☎✂

✆

✆☎✂

✝ ✞ ✁✝ ✁✞

✟✠
✡
☛☞
✌
✍
✎

✏
✑
✒✓
✔
✕

✖ ✗✘✙✚✛

✜✢✣✤✥✦✧★✩✪✫✬✭

✜✢✣✤✥✦✧✮✩✪✫✬✭

✜✢✣✤✮✦✧★✩✪✫✬✭

✜✢✣✤✮✦✧✮✩✪✫✬✭

✯✰✱ ✲✮✳✬✴

✯✰✱✣✤✥✦✧✮✩✪✫✬✭

✯✰✱✣✤✥✦✧★✩✪✫✬✭

Figure 6.4: Running time and SFP of the modified Shell sort for varied α values and

comparison of these values with those obtained from the cases of Ciura’s

optimal gap sequence and near-optimal window length derived by convex

optimization.

Table 6.1: The value c = α+1+log log n for array of various lengths when the Ciura’s

gap sequence is used and the SFP is 10−5

Array length Value c

100 4.93

200 2.73

300 2.04

400 1.41

500 1.26

216

Table 6.2: TFHE parameters with 128-bit security

Ciphertext dimension Noise standard deviation

Ciphertext and

Key-switching key (LWE)
630 2−15

Bootstrapping key

(Ring-LWE)
1024 2−25

The sorting algorithm to be compared with the modified Shell sort is chosen as

follows. Since the modified Shell sort can be the generalized algorithm for the insertion

sort, I choose to compare the insertion sort. The randomized Shell sort [39] is the

most related sorting algorithm to the proposed modified Shell sort, and thus I also

choose it to be compared. These two sorting algorithms are in-place algorithms. For the

recursive sorting algorithm, the odd-even merge sort and the bitonic sort are chosen,

which are the standard oblivious recursive sorting algorithms. These two recursive

algorithms are also used in [31] to compare the sorting algorithm for homomorphic

encryption.

As for the odd-even merge sort and the bitonic sort, the length of the input array

is originally assumed to be a power of two. However, I cannot generally choose the

array length, and thus I perform the simulation with a more general type of numbers

rather than the power-of-two array length. Since the length of the input array in the

simulation is not a power-of-two integer, I add dummy data in the end of the array to

make the input array power-of-two, and these dummy data is assumed to be larger than

the data in the input array. Since these dummy data will not be moved in the sorting, I

ignore the comparison if dummy data is homomorphically compared to other data, in

order to erase the effect of the addition of dummy data. Thus, I can fairly compare the

running time of each sorting algorithm in the case of more general array lengths other

than the power-of-two length.

Table 6.3 shows the running time of several sorting algorithms required to sort an

217

array of encrypted data of length 500. The running time of the modified Shell sort with

Ciura’s gap sequence is far lower than the insertion sort, which is the basic in-place

sorting algorithm. The use of the modified Shell sort is proved to be efficient not only

in the asymptotic sense but also practical sense. Also, although the randomized Shell

sort [39] is asymptotically better than the proposed algorithm, the performance of the

proposed algorithm is better than that of the randomized Shell sort for an array of

length 500.

When I compare the efficient and recursive sorting algorithms, bitonic sort and

odd-even merge sort, the running time of the modified Shell sort is yet larger, but it

is closer than the original insertion sort. This running time performance will depend

on the situation, especially in the IoT device. Since these recursive sorting algorithms

make many function calls recursively and the memory of the input array is quite big,

the transmission time can be a serious problem when the memory bus bandwidth is

not large enough. In this situation, the modified Shell sort will be useful in that it uses

no function calls or almost no additional memories. Even though the running times of

bitonic sort and odd-even merge sort are smaller than that of the modified Shell sort,

the numbers of memory and function calls of the bitonic sort and odd-even merge sort

increases to 5121 and 9729, respectively.

Table 6.4 shows the performance of the modified Shell sort, the insertion sort, and

the bitonic sort for an array of various lengths less than 500. While the running time

of the insertion sort increases fast as the array length increases, the running time of

the modified Shell sort with Ciura’s gap sequence increases not very fast as the array

length increases. This rate is somewhat similar to the rate of the Bitonic sort, whose

running time complexity is better than the proposed modified Shell sort.

218

Table 6.3: Comparison of the running time of several sorting algorithms for array of

length 500

Sorting algorithm
Running time

(sec)

Non-recursive/

Recursive

Number of

function calls

Insertion sort 97889 Non-recursive 1

Rand Shell sort [39] 58583 Non-recursive 1

Modified Shell sort 28576 Non-recursive 1

Odd-even merge sort 13085 Recursive 5121

Bitonic sort 8753 Recursive 9729

Table 6.4: Comparison of the running time in seconds of several sorting algorithms for

array of various lengths

Array length
Modified Shell sort

(in-place)

Insertion sort

(in-place)

Bitonic sort

(recursive)

100 2521 3899 1038

200 7281 15636 2745

300 13352 34988 5066

400 20793 62739 6812

219

Chapter 7

CONCLUSION AND FUTURE WORKS

High Precision Bootstrapping for RNS-CKKS FHE Scheme I proposed the al-

gorithm for obtaining the optimal minimax approximate polynomial for any contin-

uous function on the union of the finite set, including the scaled cosine function on

separate approximation regions. Then I analyzed the message precision of the boot-

strapping with the improved multi-interval Remez algorithm in RNS-CKKS, and its

maximum message precision is measured in the SEAL library. I proposed the compos-

ite function method with inverse sine function to improve the message precision of the

bootstrapping significantly, and thus the improved message precision bootstrapping

has the precision higher than the precision of the 32-bit fixed-point number system,

even when lots of slots are used. Thus, the large-depth operations in advanced appli-

cations, such as training a convolutional neural network for encrypted data, are needed

to be implemented by the RNS-CKKS scheme with the improved message precision

bootstrapping.

Privacy-Preserving Deep Neural Network I constructed an efficient privacy-

preserving VDSCNN model on the RNS-CKKS scheme. First, I minimized the boot-

strapping runtime via multiplexed packing and proposed multiplexed parallel convo-

lution algorithm that works for multiplexed input tensor, which also supports strided

220

convolutions. Further, I addressed the catastrophic divergence problem of VDSCNNs

on the RNS-CKKS scheme and resolved it by the proposed imaginary-removing boot-

strapping. By carefully integrating computations, I effectively reduced the level con-

sumption. The simulation results reported 4.67× lower latency and 134× lower amor-

tized runtime for ResNet-20 inference compared to the implementation without pro-

posed techniques while achieving the 128-bit security. I also successfully implemented

ResNet-32/44/56/110 on the RNS-CKKS scheme for the first time.

Hierarchical Galois Key Generation For the privacy-preserving AIaaS with FHE

in the client-server model, I proposed a hierarchical Galois key generation method for

the first time to significantly reduce the computational and communication costs of the

client and to make the Galois key management with the reduced memory in the server

more efficient. It allows the server to generate the Galois keys for the required cyclic

shifts using the Galois keys in the higher key level without a secret key or any help from

the clients, and it helps the server to use its memory for storing Galois keys efficiently.

With this method, I showed a simple protocol between a client and a server using the

simplest two-level hierarchical Galois key system and a more general protocol capable

of efficient Galois key management reflecting the activity of the clients using a multi-

level hierarchical Galois key system.

I constructed this hierarchical Galois key generation system for the BFV and

CKKS schemes using a key-switching operation applied to the public key. Also, I

proposed a more efficient Galois key generation method by using Edmonds’ algorithm

and Prim’s algorithm when a bundle of Galois keys has to be generated at once. Fi-

nally, I suggested a concrete example of Galois key management protocols by putting

them together.

This proposed system will make the FHE system more flexible in various applica-

tions, especially when efficient memory use is highly required in the cloud computing

system. It can be an important future work that designs a systematic method to perform

221

complex services with limited memory by using the proposed method more efficiently.

Designing a fast algorithm for generating a sequence of Galois keys closer to the opti-

mal solution in the proposed situation is also an important future work.

Modified Shell Sort for FHE In this dissertation, I proposed a modified Shell sort

with an additional parameter α in the FHE setting, and for a gap sequence of powers

of two, I derived the running time complexity O(n3/2
√
α+ log log n), considering a

trade-off with the SFP 2−α. I also established that the running time complexity of the

proposed algorithm is almost the same as the average-case running time complexity of

the original Shell sort, while the SFP is maintained to be minimal. I then obtained the

near-optimal window length of each gap by numerically solving a convex optimiza-

tion problem. I believe that this study plays a significant role in the foundation of the

analysis of the Shell sort in the FHE settings. Using the TFHE encryption scheme,

the running time of the proposed modified Shell sort with Ciura’s gap sequence was

compared with that of the conventional sorting algorithms, and it has the best running

time performance among other in-place sorting algorithms in the FHE setting.

222

Bibliography

[1] Lattigo v3. Online: https://github.com/tuneinsight/lattigo

(Apr 2022), ePFL-LDS, Tune Insight SA

[2] Badawi, A.A., Chao, J., Lin, J., Mun, C.F., Jie, S.J., Tan, B.H.M., Nan, X., Khin,

A.M.M., Chandrasekhar, V.: Towards the Alexnet moment for homomorphic en-

cryption: HCNN, the first homomorphic CNN on encrypted data with GPUs.

IEEE Transactions on Emerging Topics in Computing (2020)

[3] Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like

somewhat homomorphic encryption schemes. In: International Conference on

Selected Areas in Cryptography. pp. 423–442. Springer (2016)

[4] Blatt, M., Gusev, A., Polyakov, Y., Rohloff, K., Vaikuntanathan, V.: Optimized

homomorphic encryption solution for secure genome-wide association studies.

BMC Medical Genomics 13(7), 1–13 (2020)

[5] Boemer, F., Cammarota, R., Demmler, D., Schneider, T., Yalame, H.: MP2ML:

A mixed-protocol machine learning framework for private inference. In: Pro-

ceedings of the 15th International Conference on Availability, Reliability and

Security. pp. 1–10 (2020)

[6] Boemer, F., Costache, A., Cammarota, R., Wierzynski, C.: nGraph-HE2: A high-

throughput framework for neural network inference on encrypted data. In: Pro-

223

ceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homo-

morphic Cryptography. pp. 45–56 (2019)

[7] Boemer, F., Lao, Y., Cammarota, R., Wierzynski, C.: nGraph-HE: a graph com-

piler for deep learning on homomorphically encrypted data. In: Proceedings of

the 16th ACM International Conference on Computing Frontiers. pp. 3–13 (2019)

[8] Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J., Hubaux, J.P.: Efficient boot-

strapping for approximate homomorphic encryption with non-sparse keys. In:

EUROCRYPT 2021. pp. 587–617. Springer (2021)

[9] Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Bootstrapping for ap-

proximate homomorphic encryption with negligible failure-probability by using

sparse-secret encapsulation. Cryptology ePrint Archive (2022)

[10] Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press

(2004)

[11] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-

cryption without bootstrapping. ACM Transactions on Computation Theory 6(3),

13 (2014)

[12] Brakerski, Z.: Fully homomorphic encryption without modulus switching from

classical gapsvp. In: CRYPTO 2012. pp. 868–886. Springer (2012)

[13] Chatterjee, A., Kaushal, M., Sengupta, I.: Accelerating sorting of fully homo-

morphic encrypted data. In: Int. Conf. Cryptology in India. pp. 262–273. Springer

(2013)

[14] Chatterjee, A., Sengupta, I.: Windowing technique for lazy sorting of encrypted

data. In: IEEE Conf. Communications and Network security. pp. 633–637. IEEE

(2015)

224

[15] Chatterjee, A., SenGupta, I.: Sorting of fully homomorphic encrypted cloud data:

Can partitioning be effective? IEEE Trans. Services Computing (2017)

[16] Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate homo-

morphic encryption. In: Advances in Cryptology-EUROCRYPT 2019. pp. 34–54.

Springer (2019)

[17] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu,

Z., Sun, N., et al.: Dadiannao: A machine-learning supercomputer. In: 2014 47th

Annual IEEE/ACM International Symposium on Microarchitecture. pp. 609–622.

IEEE (2014)

[18] Cheney, E.: Introduction to approximation theory. McGraw-Hill (1966)

[19] Cheon, J., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-

metic of approximate numbers. In: Advances in Cryptology-ASIACRYPT 2017.

pp. 409–437. Springer (2017)

[20] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate

homomorphic encryption. In: EUROCRYPT 2018. pp. 360–384 (2018)

[21] Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full RNS variant of approx-

imate homomorphic encryption. In: Proceedings of International Conference on

Selected Areas in Cryptography. pp. 347–368 (2018)

[22] Cheon, J.H., Hhan, M., Hong, S., Son, Y.: A hybrid of dual and meet-in-the-

middle attack on sparse and ternary secret LWE. IEEE Access 7, 89497–89506

(2019)

[23] Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-

parison on homomorphically encrypted numbers. In: ASIACRYPT 2019. pp.

415–445 (2019)

225

[24] chillotti, i., gama, n., georgieva, m., izabachène, m.: TFHE: fast fully homomor-

phic encryption library (august 2016), https://tfhe.github.io/tfhe/

[25] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homo-

morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

[26] Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster cryp-

tonets: Leveraging sparsity for real-world encrypted inference. arXiv preprint,

abs/1811.09953 (2018), http://arxiv.org/abs/1811.09953

[27] Ciura, M.: Best increments for the average case of shellsort. In: Int. Symp. Fun-

damentals of Computation Theory. pp. 106–117. Springer (2001)

[28] Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musu-

vathi, M., Mytkowicz, T.: Chet: an optimizing compiler for fully-homomorphic

neural-network inferencing. In: Proceedings of the 40th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. pp. 142–156

(2019)

[29] Edmonds, J.: Optimum branchings. Journal of Research of the national Bureau

of Standards B 71(4), 233–240 (1967)

[30] van Elsloo, T., Patrini, G., Ivey-Law, H.: SEALion: A framework for neural

network inference on encrypted data. arXiv preprint, abs/1904.12840 (2019),

http://arxiv.org/abs/1904.12840

[31] Emmadi, N., Gauravaram, P., Narumanchi, H., Syed, H.: Updates on sorting of

fully homomorphic encrypted data. In: Int. Conf. Cloud Computing Research and

Innovation (ICCCRI). pp. 19–24. IEEE (2015)

[32] Espelid, T.O.: Analysis of a shellsort algorithm. BIT Numerical Mathematics

13(4), 394–400 (1973)

226

[33] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Report 2012/144 (2020),

https://eprint.iacr.org/2012/144

[34] Filip, S.: A robust and scalable implementation of the Parks-McClellan algorithm

for designing FIR filters. ACM Transactions on Mathematical Software 43(1), 1–

24 (2016)

[35] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing. pp. 169–178

(2009)

[36] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with

errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Advances

in Cryptology-CRYPTO 2013. pp. 75–92. Springer (2013)

[37] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing,

J.: Cryptonets: Applying neural networks to encrypted data with high throughput

and accuracy. In: Proceedings of International Conference on Machine Learning

(ICML). pp. 201–210 (2016)

[38] Goldschmidt, R.E.: Applications of division by convergence. Ph.D. thesis, Mas-

sachusetts Institute of Technology (1964)

[39] Goodrich, M.T.: Randomized shellsort: A simple data-oblivious sorting algo-

rithm. J. ACM 58(6), 27 (2011)

[40] Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with

limited numerical precision. In: International Conference on Machine Learning.

pp. 1737–1746 (2015)

227

[41] Gysel, P., Motamedi, M., Ghiasi, S.: Hardware-oriented approximation of con-

volutional neural networks. In: International Conference on Learning Represen-

tation (2016)

[42] Halevi, S., Shoup, V.: Algorithms in HElib. In: Annual Cryptology Conference.

pp. 554–571. Springer (2014)

[43] Halevi, S., Shoup, V.: Faster homomorphic linear transformations in helib. In:

CRYPTO 2018. pp. 93–120. Springer (2018)

[44] Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.

In: Cryptographers’ Track at the RSA Conference. pp. 364–390. Springer (2020)

[45] Hesamifard, E., Takabi, H., Ghasemi, M.: Cryptodl: Deep neural networks over

encrypted data. arXiv preprint arXiv:1711.05189 (2017)

[46] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In: International conference on machine

learning. pp. 448–456. PMLR (2015)

[47] Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation

and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. pp. 1209–1222 (2018)

[48] Jung, W., Kim, S., Ahn, J.H., Cheon, J.H., Lee, Y.: Over 100x faster boot-

strapping in fully homomorphic encryption through memory-centric optimiza-

tion with GPUs. IACR Transactions on Cryptographic Hardware and Embedded

Systems 2021(4), 114–148 (Aug 2021)

[49] Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A low latency

framework for secure neural network inference. In: Proceedings of the 27th

USENIX Security Symposium. pp. 1651–1669 (2018)

228

[50] Kim, A., Papadimitriou, A., Polyakov, Y.: Approximate homomorphic encryption

with reduced approximation error. Cryptol. ePrint Arch., Tech. Rep. 2020/1118

2020 (2020)

[51] Kim, M., Jiang, X., Lauter, K., Ismayilzada, E., Shams, S.: HEAR: Human ac-

tion recognition via neural networks on homomorphically encrypted data. arXiv

preprint arXiv:2104.09164 (2021)

[52] Kim, S., Kim, J., Kim, M.J., Jung, W., Rhu, M., Kim, J., Ahn, J.H.: BTS:

An accelerator for bootstrappable fully homomorphic encryption. arXiv preprint

arXiv:2112.15479 (2021)

[53] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny

images. CiteSeerX Technical Report, University of Toronto (2009)

[54] Lee, E., Lee, J.W., No, J.S., Kim, Y.S.: Minimax approximation of sign function

by composite polynomial for homomorphic comparison. IEEE Transactions on

Dependable and Secure Computing, accepted for publication (2021)

[55] Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: Optimal minimax polynomial ap-

proximation of modular reduction for bootstrapping of approximate homomor-

phic encryption. Cryptology ePrint Archive, Report 2020/552, Second Version

(2020), https://eprint.iacr.org/2020/552/20200803:084202

[56] Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping

of RNS-CKKS homomorphic encryption using optimal minimax polynomial ap-

proximation and inverse sine function. In: EUROCRYPT 2021 (2021)

[57] Lee, J., Lee, E., Lee, J.W., Kim, Y., Kim, Y.S., No, J.S.: Precise approxima-

tion of convolutional neural networks for homomorphically encrypted data. arXiv

preprint, abs/2105.10879 (2021), http://arxiv.org/abs/2105.10879

229

[58] Lee, Y., Lee, J.W., Kim, Y.S., Kang, H., No, J.S.: High-precision and low-

complexity approximate homomorphic encryption by error variance minimiza-

tion. Cryptology ePrint Archive (2020), accepted to EUROCRYPT 2022

[59] Lindell, Y.: How to simulate it–a tutorial on the simulation proof technique. Tu-

torials on the Foundations of Cryptography pp. 277–346 (2017)

[60] Lou, Q., Jiang, L.: SHE: A fast and accurate deep neural network for encrypted

data. Advances in Neural Information Processing Systems 32, 10035–10043

(2019)

[61] McClellan, J., Parks, T.: A personal history of the Parks-McClellan algorithm.

IEEE Signal Processing Magazine 22(2), 82–86 (2005)

[62] Powell, M.: Approximation theory and methods. Cambridge University Press

(1981)

[63] Prim, R.C.: Shortest connection networks and some generalizations. The Bell

System Technical Journal 36(6), 1389–1401 (1957)

[64] Reagen, B., Choi, W.S., Ko, Y., Lee, V.T., Lee, H.H.S., Wei, G.Y., Brooks, D.:

Cheetah: Optimizing and accelerating homomorphic encryption for private infer-

ence. In: 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA). pp. 26–39. IEEE (2021)

[65] Remez, E.: Sur la détermination des polynômes d’approximation de degré

donnée. Communications of the Kharkov Mathematical Society 10(196), 41–63

(1934)

[66] Rudin, W.: Principles of mathematical analysis, vol. 3. McGraw-Hill New York

(1964)

[67] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL

(Apr 2020), microsoft Research, Redmond, WA.

230

[68] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL

(Nov 2020), microsoft Research, Redmond, WA.

[69] Sedgewick, R.: Analysis of Shellsort and related algorithms. In: European Symp.

Algorithms. pp. 1–11. Springer (1996)

[70] Shell, D.L.: A high-speed sorting procedure. Comm. ACM 2(7), 30–32 (1959)

[71] Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic

encryption over the integers. In: Advances in Cryptology-EUROCRYPT 2010.

pp. 24–43. Springer (2010)

231

초록

완전 동형 암호는 서버가 클라이언트의 암호화된 데이터를 복호화하지 않고 임의

의 연산을 할 수 있도록 하는 암호화 알고리즘이다. 이를 통해 클라이언트는 데이

터에 대한 정보를 유출하지 않고 중요한 데이터를 신뢰하기 어려운 서버에 가공을

위탁할수있다. 2009년에 Gentry가완전동형암호의첫번째설계를성공한이후여

러 종류의 완전동형암호 알고리즘이 제안되고 다양한 측면에서 개선되어 왔지만,

현재의 완전동형암호 알고리즘은 실생활에 적용하기에 효율적이지 않다. 본 연구

에서는완전동형암호알고리즘은실제적용에적합하게만들기위해완전동형암호

알고리즘에대한네가지주요핵심주제인근사동형암호의부트스트래핑,갈루아

키관리,정보보호심층신경망, FHE상에서의대한정렬개선을다룬다.

첫째, 본 연구에서는 RNS-CKKS 알고리즘의 부트스트래핑 연산의 메시지 정

밀도를 향상시킨다. 동형 나머지 연산 과정은 부트스트래핑의 정밀도를 결정하는

가장 중요한 단계 중 하나이기 때문에, 우리는 동형 나머지 연산 과정에 초점을 맞

춘다.우리는먼저함수의최적근사다항식과스케일링된사인/코사인함수를얻는

개선된 다중 간격 Remez 알고리즘을 제안한다. 다음으로, 우리는 부트스트래핑에

사용되는 스케일링 상수와 기본 스케일링 상수의 차이를 줄이기 위해 역사인 함수

를사용하는함수합성방법을제안한다.이러한방법을사용하여각매개변수설정

에대해 RNS-CKKS동형암호의부트스트래핑근사오류를 1/1176∼1/42(5.4∼10.2

비트정밀도향상)만큼줄일수있음을보인다.함수합성을사용하지않는부트스

트래핑의정확도는최대 27.2∼30.3비트를가지는데에반해,함수합성을사용하는

부트스트래핑의정확도는최대 32.6∼40.5비트를가짐을확인한다.

둘째,완전동형암호알고리즘과관련된최첨단기술을사용하여모델을수정하

232

거나 재훈련 과정을 거치지 않고도 평문 상의 모델과 거의 동일한 분류 정확도를

가진 CKKS동형암호상의정보보호 ResNet-20네트워크를구현한다.여기서성능

을더욱향상시키기위해여러채널에대한희소출력데이터를조밀하게구성하는

멀티플렉스병렬컨볼루션을사용하여총부트스트래핑의수행시간을최소화한다.

우리는또한근사 ReLU연산과정동안심층신경망의극심한발산현상을방지하

는허수부노이즈제거부트스트래핑을제안한다.또한레벨소비를최적화하고더

가볍고 최적화된 매개 변수를 사용한다. 시뮬레이션을 통해 기술의 효율성을 보인

결과, 멀티플렉스 병렬 컨볼루션 기술이 없는 구현에 비해 ResNet-20의 추론 수행

시간이 4.67 배 적고 환산 수행 시간 (이미지당 수행 시간)이 134 배 적으며 표준

128비트 보안 수준을 달성한다는 것을 보여준다. 또한 CIFAR-10 데이터셋에 대한

ResNet-32, 44, 56, 110모델과 CIFAR-100데이터셋에대한 ResNet-32를성공적으

로 구현했으며 분류 정확도는 평문 상의 정확도와 유사하다. 최대 분류 정확도는

92.9%로,유사한정보보호인공지능모델중가장높은정확도이다.

셋째, BFV및 CKKS동형암호를사용하는클라이언트와서버의부담을줄이기

위해 동형 암호 알고리즘과 관련된 새로운 개념인 계층적 갈루아 키 생성 방법이

제안된다.제안된방법의주요개념은계층적갈루아키이며,클라이언트가소수의

높은 키 레벨의 갈루아 키를 생성하고 서버로 전송하면, 서버는 공개키와 소수의

높은키레벨의갈루아키집합에서필요한갈루아키를생성할수있다.이제안된

방법은갈루아키생성을위한클라이언트의연산량과갈루아키전송을위한통신

비용을크게줄인다.예를들어, CIFAR-10데이터셋을위한표준 ResNet-20네트워

크와 ImageNet 데이터셋을 위한 ResNet-18 네트워크가 각각 N = 216와 N = 217

를 갖는 CKKS 동형암호 상에서 사전 훈련된 매개 변수로 구현되는 경우, 서버는

각각 265개및 617개의갈루아키를필요로하는데,이키의총용량은 105.6GB및

197.6GB이다. 또한 3단계 계층적 갈루아 키 시스템을 사용할 경우 클라이언트에

의해 생성되고 전송되는 갈루아 키 용량을 CIFAR-10 데이터셋을 위한 ResNet-20

네트워크에 대해서는 105.6GB에서 3.4GB로 줄일 수 있고, ImageNet 데이터셋을

위한 ResNet-18네트워크에대해서는 197.6GB에서 3.9GB로줄일수있다.

넷째,완전동형암호로암호화된데이터에셸정렬알고리즘을사용할수있도록,

233

무시할만큼 작은 정렬 실패 확률을 허용하고 추가 매개 변수 α와 도입하며 수정한

다.간격수열을 2의승수로구성하는경우,입력배열길이가 n인수정된셸정렬은

실행시간복잡도 O(n3/2
√
α+ log log n)와정렬실패확률 2−α의트레이드오프를

갖는것으로확인된다.그것의시간복잡도는평문상의실행시간복잡도O(n3/2)에

가깝고,실행시간을약간증가시키면서정렬실패확률을지수적으로작게만들수

있다.또한수정된셸정렬의최적창길이도볼록함수최적화를통해근사적으로도

출된다.수정된셸정렬에대한수치적인분석을하기위해무작위로생성된배열을

사용하여 검증한다. 수치적인 분석에서는 어떠한 간격 수열에도 수정 알고리즘을

적용할 수 있으며, 실제 성능이 좋은 것으로 알려진 Ciura의 간격 수열을 사용하여

수정된 Shell정렬을수행했을때실질적으로효과적이라는것을알수있다.수정된

셸정렬은 TFHE라이브러리를통해 FHE상에서수행될수있는다른정렬알고리

즘과비교한결과,수정된셸정렬은동형암호상에서추가메모리가필요하지않는

정렬알고리즘중실행시간측면에서최고의성능을갖는것으로나타났다.

keywords: Bootstrapping, Brakerski/Fan-Vercauteran scheme (BFV), Cheon-Kim-

Kim-Song scheme (CKKS), Composite function approximation, Fully homomorhpic

encryption (FHE), Fully homomorphic encryption with torus (TFHE), Hierarchical

Galois key generation, Imaginary-removing bootstrapping, Improved multi-interval

Remez algorithm, Modified Shell sort, Multiplexed convolution, Privacy-preserving

machine learning, ResNet models, RNS-variant CKKS scheme (RNS-CKKS)

student number: 2016-24750

234

	1 INTRODUCTION -
	1.1 Contributions of Dissertation -

	2 PRELIMINARIES -
	2.1 Fully Homomorphic Encryption -
	2.1.1 TFHE Scheme -
	2.1.2 BFV and CKKS Schemes
	2.1.3 RNS-CKKS Scheme -

	2.2 Key-Switching Operation and Galois Key -
	2.3 Bootstrapping of CKKS Scheme -
	2.4 Comparison Operation for FHE -
	2.5 Approximation Theory -
	2.6 Graph-Theoretic Algorithms -

	3 HIGH PRECISION BOOTSTRAPPING FOR RNS-CKKS SCHEME -
	3.1 Improved Multi-Interval Remez Algorithm -
	3.1.1 Improved Multi-Interval Remez Algorithm with Criteria for Choosing Extreme Points -
	3.1.2 Correctness of Improved Multi-Interval Remez Algorithm -
	3.1.3 Efficient Implementation of Improved Multi-Interval Remez Algorithm -
	3.1.4 Numerical Analysis with Improved Multi-Interval Remez Algorithm -

	3.2 Composite Function Approximation for CKKS Bootstrapping -
	3.2.1 Numerical Analysis of Message Precision in Bootstrapping with Improved Multi-Interval Remez Algorithm in SEAL Library -
	3.2.2 Composite Function Approximation of Modular Reduction Function by Inverse Sine Function -
	3.2.3 Simulation Result with SEAL Library -

	4 PRIVACY-PRESERVING DEEP NEURAL NETWORK -
	4.1 Building Blocks for Privacy-Preserving ResNet Models -
	4.1.1 Binary Tree Based Implementation of Polynomial Evaluation -
	4.1.2 Strided Convolution -
	4.1.3 Approximation for Softmax -
	4.1.4 Position of Bootstrapping -

	4.2 Implementation Details of ResNet-20 on RNS-CKKS -
	4.2.1 Structure -
	4.2.2 General Setting for RNS-CKKS Scheme -
	4.2.3 Convolution and Batch Normalization -
	4.2.4 ReLU -
	4.2.5 Bootstrapping -
	4.2.6 Average Pooling and Fully Connected Layer -
	4.2.7 Softmax -

	4.3 Multiplexed Convolution -
	4.3.1 Comparison of Bootstrapping Runtime for Several Data Packing Methods -
	4.3.2 Multiplexed Parallel Convolution on Fully Homomorphic Encryption -

	4.4 Details of Multiplexed Convolution -
	4.4.1 Notations and Description of Parameters -
	4.4.2 Mapping of Three-Dimensional Tensor to One-Dimensional Vector -
	4.4.3 Batch Normalization on Homomorphic Encryption -
	4.4.4 Multiplexed Packing -
	4.4.5 Convolution Algorithms for Multiplexed Tensor -
	4.4.6 Multiplexed Parallel Batch Normalization, Downsampling, and Average Pooling -
	4.4.7 Convolution/Batch Normalization Integration Algorithm -

	4.5 Catastrophic Divergence from Imaginary Error and Imaginary-Removing Bootstrapping -
	4.6 Implementation of Privacy-Preserving ResNet Models -
	4.6.1 Optimization of Level Consumption -
	4.6.2 The Proposed Architecture for ResNet on the RNS-CKKS Scheme

	4.7 Simulation Results -
	4.7.1 Latency -
	4.7.2 Amortized Runtime -
	4.7.3 Accuracy -

	5 HIERARCHICAL GALOIS KEY GENERATION -
	5.1 Hierarchical Galois Key System -
	5.1.1 Definition of Hierarchical Galois Key System -
	5.1.2 Galois Key Generation Protocol in Hierarchical Galois Key System -

	5.2 Proposed Hierarchical Galois Key Generation for BFV and CKKS Schemes -
	5.2.1 Hierarchical Special Modulus -
	5.2.2 Generation of Public Key and Galois Keys in Client -
	5.2.3 GalToGal and PubToGal Operations -
	5.2.4 Galois Key Generation in the Lower Key Level -
	5.2.5 Security Issues -

	5.3 Efficient Generation Method of Galois Key Set -
	5.3.1 Reduction to Minimum Spanning Arborescence Problem and Minimum Spanning Tree Problem -
	5.3.2 Edge Weight for p-ary Galois Keys -
	5.3.3 Hoisted Galois Key Generation -

	5.4 Simulation Results with ResNet Models -
	5.5 Correctness Proofs -

	6 MODIFIED SHELL SORT FOR FHE -
	6.1 Modification of Shell Sort over FHE -
	6.2 Analysis of Modified Shell Sort -
	6.2.1 Probability Distribution of Required Window Length -
	6.2.2 Derivation of Running Time Complexity for a Specific SFP -

	6.3 Near-Optimal Window Length by Convex Optimization -
	6.4 Simulation Results -

	7 CONCLUSION AND FUTUREWORKS -
	Abstract (In Korean) -

<startpage>17
1 INTRODUCTION - 1
 1.1 Contributions of Dissertation - 4
2 PRELIMINARIES - 13
 2.1 Fully Homomorphic Encryption - 13
 2.1.1 TFHE Scheme - 14
 2.1.2 BFV and CKKS Schemes -15
 2.1.3 RNS-CKKS Scheme - 19
 2.2 Key-Switching Operation and Galois Key - 24
 2.3 Bootstrapping of CKKS Scheme - 27
 2.4 Comparison Operation for FHE - 30
 2.5 Approximation Theory - 31
 2.6 Graph-Theoretic Algorithms - 35
3 HIGH PRECISION BOOTSTRAPPING FOR RNS-CKKS SCHEME - 40
 3.1 Improved Multi-Interval Remez Algorithm - 44
 3.1.1 Improved Multi-Interval Remez Algorithm with Criteria for Choosing Extreme Points - 46
 3.1.2 Correctness of Improved Multi-Interval Remez Algorithm - 48
 3.1.3 Efficient Implementation of Improved Multi-Interval Remez Algorithm - 58
 3.1.4 Numerical Analysis with Improved Multi-Interval Remez Algorithm - 66
 3.2 Composite Function Approximation for CKKS Bootstrapping - 69
 3.2.1 Numerical Analysis of Message Precision in Bootstrapping with Improved Multi-Interval Remez Algorithm in SEAL Library - 69
 3.2.2 Composite Function Approximation of Modular Reduction Function by Inverse Sine Function - 76
 3.2.3 Simulation Result with SEAL Library - 78
4 PRIVACY-PRESERVING DEEP NEURAL NETWORK - 81
 4.1 Building Blocks for Privacy-Preserving ResNet Models - 86
 4.1.1 Binary Tree Based Implementation of Polynomial Evaluation - 86
 4.1.2 Strided Convolution - 87
 4.1.3 Approximation for Softmax - 90
 4.1.4 Position of Bootstrapping - 93
 4.2 Implementation Details of ResNet-20 on RNS-CKKS - 94
 4.2.1 Structure - 94
 4.2.2 General Setting for RNS-CKKS Scheme - 97
 4.2.3 Convolution and Batch Normalization - 100
 4.2.4 ReLU - 100
 4.2.5 Bootstrapping - 103
 4.2.6 Average Pooling and Fully Connected Layer - 105
 4.2.7 Softmax - 107
 4.3 Multiplexed Convolution - 107
 4.3.1 Comparison of Bootstrapping Runtime for Several Data Packing Methods - 107
 4.3.2 Multiplexed Parallel Convolution on Fully Homomorphic Encryption - 111
 4.4 Details of Multiplexed Convolution - 115
 4.4.1 Notations and Description of Parameters - 115
 4.4.2 Mapping of Three-Dimensional Tensor to One-Dimensional Vector - 115
 4.4.3 Batch Normalization on Homomorphic Encryption - 117
 4.4.4 Multiplexed Packing - 118
 4.4.5 Convolution Algorithms for Multiplexed Tensor - 118
 4.4.6 Multiplexed Parallel Batch Normalization, Downsampling, and Average Pooling - 124
 4.4.7 Convolution/Batch Normalization Integration Algorithm - 129
 4.5 Catastrophic Divergence from Imaginary Error and Imaginary-Removing Bootstrapping - 131
 4.6 Implementation of Privacy-Preserving ResNet Models - 132
 4.6.1 Optimization of Level Consumption - 132
 4.6.2 The Proposed Architecture for ResNet on the RNS-CKKS Scheme -133
 4.7 Simulation Results - 135
 4.7.1 Latency - 136
 4.7.2 Amortized Runtime - 138
 4.7.3 Accuracy - 139
5 HIERARCHICAL GALOIS KEY GENERATION - 140
 5.1 Hierarchical Galois Key System - 145
 5.1.1 Definition of Hierarchical Galois Key System - 145
 5.1.2 Galois Key Generation Protocol in Hierarchical Galois Key System - 146
 5.2 Proposed Hierarchical Galois Key Generation for BFV and CKKS Schemes - 147
 5.2.1 Hierarchical Special Modulus - 149
 5.2.2 Generation of Public Key and Galois Keys in Client - 151
 5.2.3 GalToGal and PubToGal Operations - 153
 5.2.4 Galois Key Generation in the Lower Key Level - 155
 5.2.5 Security Issues - 156
 5.3 Efficient Generation Method of Galois Key Set - 158
 5.3.1 Reduction to Minimum Spanning Arborescence Problem and Minimum Spanning Tree Problem - 159
 5.3.2 Edge Weight for p-ary Galois Keys - 161
 5.3.3 Hoisted Galois Key Generation - 162
 5.4 Simulation Results with ResNet Models - 164
 5.5 Correctness Proofs - 177
6 MODIFIED SHELL SORT FOR FHE - 186
 6.1 Modification of Shell Sort over FHE - 190
 6.2 Analysis of Modified Shell Sort - 194
 6.2.1 Probability Distribution of Required Window Length - 194
 6.2.2 Derivation of Running Time Complexity for a Specific SFP - 205
 6.3 Near-Optimal Window Length by Convex Optimization - 212
 6.4 Simulation Results - 213
7 CONCLUSION AND FUTUREWORKS - 220
Abstract (In Korean) - 232
</body>

