
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

Learning Medical Concepts and
Patient Representations

with Deep Neural Networks
for Medical Applications

딥뉴럴네트워크를활용한의학개념및환자표현
학습과의료문제에의응용

BY

Kwak Heeyoung
AUGUST 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Ph.D. DISSERTATION

Learning Medical Concepts and
Patient Representations

with Deep Neural Networks
for Medical Applications

딥뉴럴네트워크를활용한의학개념및환자표현
학습과의료문제에의응용

BY

Kwak Heeyoung
AUGUST 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Learning Medical Concepts and
Patient Representations

with Deep Neural Networks
for Medical Applications

딥뉴럴네트워크를활용한의학개념및환자표현
학습과의료문제에의응용

지도교수정교민

이논문을공학박사학위논문으로제출함

2022년 8월

서울대학교대학원

전기컴퓨터공학부

곽희영

곽희영의공학박사학위논문을인준함

2022년 8월

위 원 장: 최 진 영

부위원장: 정 교 민

위 원: 심 규 석

위 원: 문 태 섭

위 원: 최 윤 재



Abstract

This dissertation proposes a deep neural network-based medical concept and pa-

tient representation learning methods using medical claims data to solve two health-

care tasks, i.e., clinical outcome prediction and post-marketing adverse drug reaction

(ADR) signal detection. First, we propose SAF-RNN, a Recurrent Neural Network

(RNN)-based model that learns a deep patient representation based on the clinical

sequences and patient characteristics. Our proposed model fuses different types of pa-

tient records using feature-based gating and self-attention. We demonstrate that high-

level associations between two heterogeneous records are effectively extracted by our

model, thus achieving state-of-the-art performances for predicting the risk probability

of cardiovascular disease. Secondly, based on the observation that the distributed med-

ical code embeddings represent temporal proximity between the medical codes, we

introduce a graph structure to enhance the code embeddings with such temporal infor-

mation. We construct a graph using the distributed code embeddings and the statistical

information from the claims data. We then propose the Graph Neural Network(GNN)-

based representation learning for post-marketing ADR detection. Our model shows

competitive performances and provides valid ADR candidates. Finally, rather than us-

ing patient records alone, we utilize a knowledge graph to augment the patient repre-

sentation with prior medical knowledge. Using SAF-RNN and GNN, the deep patient

representation is learned from the clinical sequences and the personalized medical

knowledge. It is then used to predict clinical outcomes, i.e., next diagnosis prediction

and CVD risk prediction, resulting in state-of-the-art performances.
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Chapter 1

Introduction

Recently with the accumulation of a vast amount of clinical data, clinicians and re-

searchers have been able to apply many advanced machine learning techniques to

improve the quality of healthcare services. Among the various types of biomedical

data, we focus on sequential clinical data such as Electronic health records (EHRs) or

healthcare claims data. These data include longitudinal patient records accumulated

over a considerable period of time along with the various demographic information.

One of the essential healthcare tasks that can best leverage such data is to predict

future clinical outcomes. Clinical outcome prediction refers to various health risk pre-

diction such as morbidity (i.e., the risk of disease onset), mortality, hospitalization,

and treatment outcomes. A well-developed clinical outcome prediction model can as-

sist healthcare practitioners in making more accurate decisions, hence improving the

quality of healthcare.

Another application where these data can be utilized well is an adverse drug reac-

tion (ADR) signal detection in post-marketing drug surveillance. Most ADR detection

research has been aimed to predict ADRs in pre-marketing phases, using biomed-

ical information sources such as chemical structures, protein targets, and therapeu-

tic indications. Nevertheless, capturing potential ADRs from the entire population in

post-marketing phases is also essential to fully establish the ADR profiles [1]. In post-

1
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Figure 1.1: Data structure of a NHIS-NSC sample.

marketing drug surveillance, one needs to monitor of drugs once they reach the market

after clinical trials. The potential causal relationship between an adverse event and

a drug is called an ‘ADR signal’ when the relation is previously unknown or incom-

pletely documented. To capture ADR signals, it is important to evaluate drugs taken by

individuals over an extended period of time. Therefore, clinical databases with longi-

tudinal patient records can be an important data source for post-marketing ADR signal

detection.

In this dissertation, we use National Health Insurance Service-National Sample

Cohort (NHIS-NSC), the 12-year healthcare claims data [2] to solve two healthcare

tasks, i.e., clinical outcome prediction and post-marketing ADR signal detection.

The basic element for applying deep learning techniques to sequential clinical data

is to represent medical concepts and patients as computable vectors. Unlike text in

which tokens are just sequentially arranged, clinical sequence data have multiple med-

ical codes for each visit and this visit occupies a single time step of the sequence as

depicted in Figure 1.1. Considering these characteristics, it is important how to rep-

resent each medical code and how to model a single visit. Ultimately, how to model

individual patients with multiple visits and demographic information is paramount.

We propose various methods to learn deep patient representations for clinical out-

come prediction, and to enhance medical concept embeddings using graph structure for

post-marketing ADR detection. First, we propose a Recurrent Neural Network (RNN)

2
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Figure 1.2: Deep patient represenation learned upon two different types of patient in-

formation.

model that learns patient representations based on the clinical sequences along with

the fixed patient characteristics, and predicts the risk probability of a cardiovascular

disease onset. The data sample of NHIS-NSC consisted of two different patient infor-

mation, i.e., time-varying sequential information and the fixed patient characteristics

as shown in Figure 1.2. We provide the information about the patient characteristics in

Table 1.1

To fully exploit both temporal records and the patient characteristics together, we

proposed a self-attentive fusion encoder (SAF) through the following research:

• (SCI) H Kwak, J Chang, B Choi, S Park, and K Jung, Interpretable Disease

Prediction Using Heterogeneous Patient Records with Self-Attentive Fusion En-

coder, Journal of the American Medical Informatics Association(JAMIA), July

2021

In this work, we proposed a RNN-based disease prediction model that efficiently

fuses different types of information using self-attention. Self-attention is an attention

mechanism that enables different positions of an input sequence to interact with each

other[17, 18, 19]. It computes the attention scores for each interaction and outputs the

representation of each position of the sequence. In our proposed SAF, self-attention is

applied after the RNN encodes of the temporal sequence, and the patient characteristics

3



Table 1.1: Patient characteristics extracted from NHIS-NSC

DB Category
# of

variables
Description

Qualification DB 4
Sex, age group, income-level and

residential area

Health Check-up DB

4
Body measurement (body mass index,

waist circumference and blood pressure)

11

Blood test (fasting blood glucose level,

total cholesterol level, gamma-GTP and

etc.)

11
Patient and family history of major

diseases (hypertension, cancer, and etc.)

5
Surveys on smoking, drinking and

physical activity

are combined with feature-based gating. We demonstrate that high-level associations

between two heterogeneous patient records are effectively extracted during the process

of feature-based gating and the computation of self-attention.

In a comparison with other fusion mechanisms, we show that our SAF-RNN suc-

cessfully combines two pieces of heterogeneous information and therefore signifi-

cantly increases the predictability. We further explain the obtained results by showing

the relative importance of each time step in the temporal sequence for affecting the

risk probability. Hence, our model provides interpretability for the predictions so that

they can be understood by a human.

In the previous study, additional performance improvements were made by rep-

resenting the medical codes in a distributed code representation. This confirms that

the distributed representation of medical code contains the information necessary to

process temporal information in patient records. We therefore, introduced a graph

4



structure in the subsequent study to enhance such temporal information. We con-

structed a graph using the similarity between the distributed vectors of medical code

and the statistical information between medical codes. We then obtained the medical

code representations with the enhanced temporal information using the Graph Neural

Networks(GNN)-based representation learning.

Based on the obtained medical code representations, we proposed a model for

detecting potential ADR signals of post-marketing drugs. As GNN models have been

demonstrated [3, 4] their power to solve many tasks with graph-structured data, we

used GNN-based approach for ADR detection through the following research:

• H Kwak, M Lee, S Yoon, J Chang, S Park, K Jung, Drug-disease Graph: Pre-

dicting Adverse Drug Reaction Signals via Graph Neural Network with Clin-

ical Data, Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD), May 2020, Singapore

This study is the first to propose a method of simultaneously detecting ADR sig-

nals for every possible drugs with the graph-structured clinical records. The proposed

model empirically showed competitive ADR prediction performance on the side effect

resource database (SIDER). It especially predicted ADR candidates that do not exist

in the existing ADR database, showing its capability to supplement the ADR database.

The constructed graph is a heterogeneous graph with drug and disease nodes, as it

is depicted in Figure 1.3. The corresponding graph construction only requires simple

data processing and well-established medical terminologies. Therefore, our work does

not demand case-by-case feature engineering that requires expertise, and thereby the

detection for the whole drug candidates can be fully automated.

Finally, rather than just learning patient representations using patient records alone,

we utilized Semantic Medline Knowledge Graph (SemMed KG) that specifies relation-

ships between medical entities to augment the deep patient representation with prior

medical knowledge. Here, a personalized knowledge graph is made by extracting only

the subgraph of the SemMed KG consisting of the medical code in the patient’s record.

5



Figure 1.3: Heterogeneous graphs consisting of drug and disease nodes

Based on the personalized KG, we build the deep patient representations upon the per-

sonalized medical knowledge using GNNs. Along with the temporal information, the

deep patient representation is used to predict some clinical outcomes. Specifically, we

evaluated the performances of our model on two tasks, i.e., the next diagnosis predic-

tion and the CVD prediction as in the first study.

Additionally, we seek to harness pre-training for GNNs to fully exploit the logi-

cal rules inherent in the KGs. We perform the KG completion (KGC) task, which is

to predict the plausibility of a given triplet, as a pre-training task to further enhance

the subgraph representation. The SemMed KG expresses various relations between

medical entities, and these relations are strongly associated with other adjacent rela-

tions according to certain logical rules. To encode these logical rules, we utilize the

subgraph representations for the KGC. Just as Masked Language Modeling (MLM)

provides self-supervision for learning the contexts, KGC, which predicts the masked

edges based on the surrounding subgraphs, can provide self-supervision for learning

the structure of the SemMed KG.

To improve the performance of KGC task, we utilize the method, proposed in our

other research:

6



• H Kwak, H Bae, K Jung, Subgraph Representation Learning with Hard Nega-

tive Samples for Inductive Link Prediction, IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), May 2022, Singapore

In this work, we suggest a novel inductive link prediction model, called Subgraph

Infomax (SGI), where the relation embedding is trained to contain more meaningful

information about subgraphs via the mutual information (MI) maximization objective.

Specifically, SGI consists of a GNN-based scoring network for computing the score

of a given triplet and a module for MI maximization. We trained SGI to maximize

the MI between the relation embedding and the subgraph representation. Performing

the ranking evaluation of previously presented SOTA models, GraIL [5], TACT [6],

our model showed superior performances in both inductive versions of Nell-995 and

FB15k-237 KG datasets.

After pre-training SGI with the KGC training objective on SemMed KGs, we used

subgraph representations encoded with the SGI model for the clinical outcome predic-

tion. As a result, it showed better CVD prediction performances in the case of using

personalized KG representation together with SAF-RNN than in the case of using

SAF-RNN alone. This behavior was also observed in the next diagnosis prediction.

The remainder of this dissertation is organized as follows. Chapter 2 provides a

background on medical concept embeddings and deep patient representation in clini-

cal outcome prediction. In Chapter 3, we explain the method to fuse two heterogeneous

patient records . Chapter 4 explains a model for the post-marketing ADR signal detec-

tion that uses the medical concept embeddings, enhanced with the graph structure.

Further investigation on the knowledge-enhanced deep patient representation for clin-

ical event prediction is discussed in Chapter 5. Finally, the dissertation is concluded in

Chapter 6.

7



Chapter 2

Background

This dissertation presents our research on deep neural network-based models for var-

ious healthcare tasks. To build a deep neural network model that deals with discrete

information in the clinical visits, i.e., the sequence of medical codes, we first need

to understand how to represent the medical concepts, each clinical visit, and the pa-

tient. In this chapter, we introduce widely-used techniques for medical representations,

which are the building blocks in developing a healthcare AI model.

2.1 Medical Concept Embedding

To represent medical concepts such as diagnosis, medication, and procedure, medical

codes are used for encoding Electronic Health Records (EHR) and the claims data.

For example, ICD-10 (International Classification of Diseases, 10th revision), pub-

lished by the United States for classifying diagnoses and reasons for visits in all health

care settings, is the most commonly-used diagnosis code. We use National Health

Insurance Service-National Sample Cohort (NHIS-NSC) data, and the concepts of di-

agnosis and medication in NHIS-NSC are represented in the form of KCD (Korean

Standard Classification of Diseases) codes, which is the Korean translation of ICD-10,

and ATC (Anatomical Therapeutic Chemical Classification System) codes.

8



Just as words and phrases in text data are embedded into computable vectors for

NLP applications, medical concepts are mapped to vector representations to apply

deep learning techniques to clinical data; we call them medical concept/code embed-

dings. The medical concept embedding greatly influences the performance of clinical

prediction models as it is the primary input feature for the model. We introduce essen-

tial techniques for medical code-level representations, i.e., Multi-hot code representa-

tion, Grouped code representation, and distributed code representation.

One-hot/ Grouped Code Representation

The naive approach for encoding medical codes is one-hot encoding, which is to rep-

resent categorical variables as binary vectors; all the components are marked with zero

except the index of the variable, marked with 1. Since clinical sequence data have

multiple medical codes for a single clinical visit, each visit is often represented by

multi-hot vectors. However, most medical codes are composed of categorical vari-

ables with hierarchical structures. There are many well-constructed ontologies in the

medicine area, such as International Classification of Diseases (ICD), Clinical Classifi-

cations Software (CCS) [7] , Systematized Nomenclature of Medicine-Clinical Terms

(SNOMED-CT) [8]. To leverage the medical knowledge that can be induced from

these structures, medical concepts are often represented as the grouped one-hot vec-

tors as in 2.1. The one-hot vector format is adopted to represent each categorical in-

formation of medical codes. We utilize the hierarchical structure of categorical codes

(i.e. ATC and ICD-10 codes) by adopting the one-hot vector format. Since there are

multiple categories for each code, it is shown as a concatenation of one-hot vectors,

thus, a multi-hot vector.

Distributed Code Representation

Alternatively, medical concept vectors based on distributed code representations were

proposed and helped clinical prediction models obtain performance gain. Most large-

9



Figure 2.1: Example of grouped code representations.

Figure 2.2: Two approaches for distributed code representations

scale clinical databases including NHIS-NSC, are collected in the form of longitudinal

visit records of the patients. Therefore, unsupervised methods for word representations

using the huge text corpus can be adopted. Choi et al. first used word2vec model,

a widely-used word embedding technique in natural language processing, to learn the

latent representation of medical codes in EHR data, in a way that captures the temporal

proximity between them [9].

Word2vec suggested by Mikolov et al. (2013) [10], introduces two model architec-

tures called continuous bag-of-words (CBOW) and skip-gram for computing continu-

ous vector representations of a word based on the surrounding context. The difference

between two approaches is depicted in Figure 2.2. Word2vec showed improved per-

formances in evaluating syntactic and semantic similarities between words. Similarly,

distributed code representations embed contextually similar medical codes close to
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each other in the embedding space. To build a DNN-based clinical prediction model,

we can either use distributed code vectors as the initial weights of the embedding layer

or use the pre-trained code vectors as the building blocks to represent a single clinical

visit.

Now, we explain how to process the patient’s longitudinal records for applying

skip-gram model. In the patient’s longitudinal records, each patient can be treated as a

sequence of hospital visits {v(n)1 , v
(n)
2 , ..., v

(n)
Tn

} where n represents each patient in the

data, and Tn is the total number of visits of the patient. The ith visit can be denoted

as v(n)i = {Pi(n),Di
(n)} where Pi(n) is the set of prescribed codes and Di

(n) is the set

of diagnosed codes in the ith visit. Within a set of codes, codes are listed in arbitrary

order. The size of each set is variable since the number of prescribed/diagnosed codes

varies from visit to visit. With these sets of codes, we form a drug sequence Seqdrug(n)

and a disease sequence Seqdisease(n) of nth patient by listing each of the codes in a

temporal order, as it is described below (Here, we leave out the symbol n):

Seqdrug = {p1, p2 , ... , pTp} , px ∈ Pi,

Seqdisease = {d1, d2 , ... , dTd} , dy ∈ Di,
(2.1)

where px ∈ RVp and dy ∈ RVd are the one-hot vectors representing each of the medical

codes in the sequences. Vp and Vd are the vocabulary size of the whole prescription

and diagnosis codes within the data, respectively. Tp and Td represent the total number

of prescription/diagnosis codes of the patient’s record. In this way, we can build a

corpus consisting of Seqdrug or Seqdisease. With Seqdrug or Seqdisease, we can apply

the Skip-gram model with negative sampling scheme.

2.2 Encoding Sequential Information in Clinical Records

Predicting future clinical events such as morbidity (i.e., the risk of disease onset), mor-

tality, hospitalization, and treatment outcomes is an essential healthcare task. With the

help of a vast amount of clinical data, many advanced machine learning techniques
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have been used to develop effective prediction models. A well-developed prediction

model using various deep learning approach can assist healthcare practitioners in mak-

ing more accurate decisions, hence improving the quality of healthcare AI.

One prominent method for obtaining a patient representation is first expressing an

entire longitudinal patient record as a sequence of medical concept vectors and then

applying deep architectures [9, 11, 12, 13, 14, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26]. During this process, medical concept representations are either pre-trained or

jointly learned during the process of end-to-end learning.

For learning a deep patient representation, Convolutional Neural Networks(CNNs)

have been employed in several works [26, 21, 22, 23]. They transform a medical record

into a temporal matrix or a sequence of discrete clinical event codes and perform a con-

volutional operation over them. However, the most popular architectures for learning

a patient representation are an RNN and its variants since they are developed to model

the sequential data. Much research on clinical event prediction has yielded a recurrent

neural network (RNN)-based approach to capture the temporal patterns within longi-

tudinal patient records [9, 11, 12, 13, 14, 27, 15, 16, 17, 18, 19, 20].

Choi et al. trained a GRU-RNN on sequences of pretrained medical concept vec-

tors to predict future diagnoses or the onset of heart failure [9, 11, 12]. Pham et al.

used an LSTM-RNN for predicting the next diagnosis and intervention for specific

groups of patients [13]. More recent work on clinical event prediction has incorpo-

rated an attention mechanism with RNNs to interpret the prediction results [27, 15,

16, 17, 18, 19, 20]. An attention mechanism allows a model to place more atten-

tion weights on the parts of the model that are more relevant to the given predic-

tion [28, 29, 30]. Choi et al. were the first to utilize an attentional RNN model for

identifying significant visits and features for heart failure prediction task [27]. Other

studies [15, 16, 17, 18] also used attentional RNN models to measure the importance

of features of various levels and of various types (i.e., the medical code-level, hospi-

tal visit-level, within/between subsequences-level, and multichannel attention). Self-
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attention has also been employed to capture the relations between different visiting

events [19] and medical codes [20].
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Chapter 3

Deep Patient Representation with Heterogeneous Infor-

mation

Predicting future clinical events such as morbidity (i.e., the risk of disease onset), mor-

tality, hospitalization, and treatment outcomes is an essential healthcare task. With the

help of a vast amount of clinical data, many advanced machine learning techniques

have been used to develop effective prediction models. A well-developed prediction

model can then assist healthcare practitioners in making more accurate decisions,

hence improving the quality of healthcare.

Electronic health records (EHRs) or healthcare claims data are commonly used

since they include various patient information, such as longitudinal patient records

accumulated over a considerable period of time. Much research on clinical event pre-

diction has yielded a recurrent neural network (RNN)-based approach to capture the

temporal patterns within longitudinal patient records [9, 11, 12, 13, 14, 27, 15, 16,

17, 18, 19, 20]. In addition to temporal patient records, many studies also often uti-

lize patient characteristics (i.e., demographic profiles or health examination results)

for prediction purposes. However, these studies incorporate patient characteristics into

the model simply by concatenating them to the inputs or by hidden representation [14,

21, 22, 23, 24].
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To fully exploit both temporal records and the patient characteristics together, we

propose a self-attentive fusion encoder (SAF) for an RNN-based disease prediction

model that efficiently fuses different types of information using self-attention. Specif-

ically, we propose SAF-RNN, which applies an SAF module to the GRU-RNN model

to predict cardiovascular disease (CVD) events using the medical histories of general

patients from healthcare claims data. Self-attention is an attention mechanism that en-

ables different positions of an input sequence to interact with each other [31, 32, 33].

It computes the attention scores for each interaction and outputs the representation of

each position of the sequence. In our proposed SAF, self-attention is applied after the

RNN encodes of the temporal sequence, and the patient characteristics are combined

with feature-based gating. We demonstrate that high-level associations between two

heterogeneous patient records are effectively extracted during the process of feature-

based gating and the computation of self-attention.

The experimental results on a general patient dataset show that the proposed method

achieves superior AUROC and AUPRC performances on CVD prediction compared to

all other methods. In a comparison with other fusion mechanisms, we show that our

SAF-RNN successfully combines two pieces of heterogeneous information and there-

fore significantly increases the predictability. We further explain the obtained results

by showing the relative importance of each time step in the temporal sequence for

affecting the risk probability. Hence, our model provides interpretability for the pre-

dictions so that they can be understood by a human. Additionally, we performed a

sensitivity analysis to examine the model’s sensitivity to the most obvious factors (e.g,

outpatient CVD diagnosis before CVD admission) by masking them. We show that our

model consistently outperforms the other methods, even in this challenging setting.
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3.1 Related Work

Patient Representation Learning and Clinical Outcome Prediction

Recently, there have been many efforts to apply DL methods to understand medical

data such as EHRs. Many of these studies learn deep patient representations from

medical data so that the learned representations are projected into a vector space. The

qualities of the derived patient representations are then evaluated on clinical outcome

prediction tasks [34]. Such research includes predicting the risks of disease onset, mor-

tality, and any future events that can be encountered by the patient, such as readmis-

sion, multilabel diagnoses in the next encounter, transfer to the ICU, etc [9, 11, 12,

13, 14, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].

One prominent method for obtaining a patient representation is first expressing

an entire longitudinal patient record as a sequence of medical concept vectors and

then applying deep architectures such as Convolutional Neural Networks (CNNs) [9,

11, 12, 13, 14, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. The most popular

architectures for learning a patient representation are an RNN and its variants since

they were developed to model sequential data. Choi et al. trained a GRU-RNN on

sequences of pretrained medical concept vectors to predict future diagnoses or the

onset of heart failure [9, 11, 12]. Pham et al. used an LSTM-RNN for predicting the

next diagnosis and intervention for specific groups of patients [13].

More recent work on clinical event prediction has incorporated an attention mech-

anism with RNNs to interpret the prediction results [27, 15, 16, 17, 18, 19, 20]. An

attention mechanism allows a model to place more attention weights on the parts of the

model that are more relevant to the given prediction [28, 29, 30]. Choi et al. were the

first to utilize an attentional RNN model for identifying significant visits and features

for heart failure prediction task [27]. Other studies [15, 16, 17, 18] also used attentional

RNN models to measure the importance of features of various levels and of various

types (i.e., the medical code-level, hospital visit-level, within/between subsequences-
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Figure 3.1: Standard approach to incorporate the patient characteristics.

level, and multichannel attention). Self-attention has also been employed to capture the

relations between different visiting events [19] and medical codes [20]. Our work also

utilizes self-attention to facilitate the interpretation of the obtained results. However,

the main purpose of using self-attention in our model is to fuse heterogeneous patient

records adeptly.

Using Heterogeneous Patient Records in Clinical Event Prediction

There have been several attempts to use patient characteristics such as demographic

profiles and health examination results to predict clinical events. Studies such as [14,

21, 22, 23, 24] used patient characteristics, together with other clinical information.

Esteban et al. classified patient data into static and dynamic features and combined

these two types of features into an input for an RNN model to predict the complica-

17



tions related to kidney transplantation [14]. Lin et al. proposed a neural network model

that predicts hypertension by combining the demographic information with initial sig-

natures and laboratory results, such as heart rates and sodium and creatine levels [22].

Heo et al. additionally used health examination information in an X-ray based deep

learning diagnostic model [23]. The model proposed by Finneas et al. encodes the

clinical records during the most recent several hours with CNNs and combines these

records with demographic information to make predictions about critical risks [24].

However, far too little attention has been paid to the fusion of heterogeneous infor-

mation, and all of these previous studies have simply concatenated different feature

vectors. The most standard approach to incorporate patient characteristics is depicted

in 3.1. On the other hand, our research effectively combines temporal patient records

with patient characteristics using a self-attentive fusion mechanism.

Attention-based Fusion Mechanism in Multimodal Deep Learning

The methodologies used to fuse different information channels can also be found in the

field of multimodal deep learning. In multimodal deep learning, multiple modalities

are fused for a single prediction task, such as speech emotion recognition [30], which

uses audio, visual and textual data, and visual question answering(VQA) [35]. Recent

approaches in these areas have introduced attention mechanism to capture the high-

level associations between multiple heterogeneous data [36, 37, 38, 39]. In the VQA

domain, Yu et al. used a co-attention learning module to jointly learn the attention for

both images and questions [36, 37]. While [36] used self-attention only for question

embedding [37], modeled self-attention for both questions and images. For speech

emotion recognition, [38] employed a GRU-RNN for each modality (i.e., acoustic,

textual and visual) and fused them using attention. [39] suggested a self-attentive

feature-level fusion method that applies self-attention after fusing the audio and textual

features. Similar to these works on multimodal deep learning, we fused heterogeneous

patient records using self-attention with feature-level gating.
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3.2 Problem Statement

We aimed to predict the patient-specific risks of CVD events in the next visit given a

2-year clinical visit history and patient characteristics. We defined the problem as fol-

lows: Given one patient’s record denoted as X = (x, x̃), where x = (x1,x2, . . . ,xT )

is a sequence of clinical visits and x̃ denotes the patient characteristics, the goal was

to estimate the risk probability ŷ of the patient (here, we leave out the notation for

each patient). The labels were given as values of 0 and 1, where y = 1 indicates that

the patient had the disease. xi is a set of prescriptions and diagnosis codes for the ith

visit, and the sequence X was pre-trained to obtain a computable input vector v, which

is described in the following subsubsection. To express the patient characteristics x̃,

we used the patient’s demographic profile (e.g., age, sex, residential area and income

level) and their most recent health examination results. We encoded the patient charac-

teristics into a one-hot vector form. More information about the patient characteristics

is in Table 1.1.

Pre-trained Representations of the Medical Codes

In a patient’s longitudinal visit sequence, each visit can be represented as a set of diag-

nosed disease codes and prescribed medication codes. These multiple medical codes

can be represented in the form of multi-hot encoded binary vectors, for which the di-

mensionality is the total number of unique medical codes. However, this naı̈ve repre-

sentation cannot capture the temporal proximity between the medical codes in sequen-

tial records. Hence, to capture the temporal proximity between the medical codes and

facilitate vector computation, we encoded each diagnosis and prescription code into

a low-dimensional real-valued vector space. Motivated by the successful applications

of Skip-gram in constructing medical concept vectors [9, 11, 12], we used Skip-gram,

a widely-used word embedding technique [10], to learn representations for medical

codes. The details of the learning process of Skip-gram embeddings are described in
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Chapter 2. Then, we represented each clinical visit as a sum of the learned Skip-gram

embeddings of each medical code within the visit, as follows:

vi = [
∑
px∈Pi

v(px),
∑
dy∈Di

v(dy)], (3.1)

where [·, ·] represents the vector concatenation; Pi is the set of prescription codes, and

Di is the set of diagnosis codes in the ith visit. v(c) is the Skip-gram embedding of a

medical code c.

The Operational Definition for a Diagnosis of Cardiovascular Disease (CVD)

In this study, we operationally defined a CVD diagnosis as CVD events resulting in

hospitalization or death, following the previous works that use the same data source [9,

11, 12]. A CVD event was defined as 2 or more days of hospitalization or death due

to the International Classification of Diseases, Tenth Revision (ICD-10) codes pertain-

ing to CVD. Upon admission, the Korean National Health Insurance Service (NHIS)

requires physicians to designate ICD-10 codes for which the patient was hospitalized.

Causes of death were also determined by ICD-10 codes. The qualifying ICD-10 codes

corresponding to CVD were divided into coronary heart disease(CHD) and stroke in

accordance with the AHA guidelines [11]. The qualifying IDC-10 codes are shown in

Table 3.1. The frequency of each ICD-10 code within total cases is provided in the last

column. In Table 3.2, we additionally reported the frequency of few codes which may

present similar symptoms as a stroke.

3.3 Method

3.3.1 RNN-based Disease Prediction Model

In our model, the patient records were processed in three steps: (1) First, we encoded

the time-dependent visit history into a sequence of hidden representations. (2) Second,

to obtain the global representation of the entire set of patient records, we used an SAF
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Table 3.1: A list of qualifying ICD-10 codes.

Disease

Category

ICD-10

Code
Description

Frequency

(%)

Coronary

heart

disease

I20 Angina pectoris 35.1

I21 Acute myocardial infarction 7.5

I22 Subsequent myocardial infarction 0.1

I23
Certain current complications following acute

myocardial
0.1

I24 Other acute ischemic heart diseases 0.5

I25 Chronic ischemic heart diseases 6.5

Stroke

I60 Subarachnoid haemorrhage 3.5

I61 Intracerebral haemorrhage 4.2

I62 Other nontraumatic intracranial haemorrhage 1.3

I63 Cerebral infarction 26.7

I64
Stroke, not specified as haemorrhage or in-

farction
1.2

I65
Occlusion and stenosis of precerebral arteries,

not resulting in cerebral infarction
1.7

I66
Occlusion and stenosis of cerebral arteries,

not resulting in cerebral infarction
1.5

I67 Other cerebrovascular diseases 6.6

I68
Cerebrovascular disorders in diseases classi-

fied elsewhere
0.1

I69 Sequelae of cerebrovascular disease 3.5
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Table 3.2: Frequencies of unusual conditions.

ICD-10

Code
Description

Frequency

(%)

167.1 Cerebral aneurysm, nonruptured 2.6

167.3 Progressive vascular leukoencephalopathy 0.0

167.4 Hypertensive encephalopathy 0.3

167.7 Cerebral arteritis, NEC 0.0

168.0 Cerebral amyloid angiopathy 0.0

168.1 Cerebral arteritis in other diseases classified else-

where

0.0

168.2 Cerebral arteritis in infectious and parasitic diseases

classified elsewhere

0.0

module that fuses the hidden representations of the visits and the patient characteris-

tics. (3) Finally, we used the obtained global representation for binary classification.

The entire architecture of our model is shown in 3.2. To capture the temporal re-

lations between the clinical events in each of the visits, we used an RNN model to

process the visit history given as the sequence of the visit embedding vectors, which is

v = (v1,v2, . . . ,vT ). The RNN model updates the visit representations with respect

to the informative events that occurred in the past. The high-level representation of a

hidden state is computed as follows:

hi = RNN(vi,h(i−1)). (3.2)

We specifically implemented the Bi-directional GRU(Gated Recurrent Units)-RNN

model to address the problem of long-term dependencies.
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Figure 3.2: The architecture of the SAF-RNN model.

3.3.2 Self-Attentive Fusion (SAF) Encoder

Next, to obtain the global representation of the patient’s history, considering the patient

characteristics, we applied the SAF encoder. As depicted in Figure 3.1, a previously

dominant method to incorporate patient characteristics was a simple concatenation of

the RNN features with the vector encoding the patient characteristics. However, this

approach does not consider the complex relations between two heterogeneous patient

records. On the other hand, our proposed SAF encoder captures the relations between

patient characteristics and the RNN hidden states from different time steps by using

the self-attention after the feature-based gating. First, the patient characteristics x̃ is

fused with each of the visit representations hi during the feature-based gating. Here,

the hypernetwork is fed with the concatenation of x̃ and each hi, yielding an element-

wise gating that is applied to hi. A gate function fg with a sigmoid activation function
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σ generates a mask vector for hi, conditioned on x̃. Formally:

si = fg(hi, x̃) = σ(W ⊺
g [hi, x̃] + bg)⊙ hi, (3.3)

whereWg and bg are learnable parameters. After the salient features of hi are selected

with respect to the patient characteristics, the self-attention mechanism is applied over

the updated visit representations si. Self-attention, also known as intra-sequence atten-

tion, computes the compositional relationships between visits within a sequence. Here,

we use a bilinear function fa to measure the alignment between the query input si and

the key input st. The alignment e(i,t) is computed with a learnable weight matrix Wa

as shown below:

e(i, t) = fa(si, st) = s⊺iWast (3.4)

Then we compute the normalized attention score α(1)
(i,t) across the inputs and obtain

each visit representation ci as a weighted sum:

α
(1)
(i,t) =

exp(ei,t)∑T
j=1 exp(ei,j)

(3.5)

ci =
T∑
t=1

α
(1)
(i,t)st (3.6)

Lastly, we apply logistic regression to the final visit representation cT . It produces

the scalar value ŷ, which estimates the patient-specific risk score for a disease diagno-

sis in the next visit.

ŷ = σ(W ⊺cT + b) (3.7)

3.4 Dataset and Experimental Setup

3.4.1 Dataset

NHIS-NSC as the Primary Data Source

We obtained data from the Sample Cohort Database (NHIS-NSC), a nationwide population-

based cohort established by the National Health Insurance Service (NHIS) of South
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Korea [40]. The NHIS-NSC provides a wide variety of information about the demo-

graphic profiles, medical insurance claims, and health examinations of one million

patients sampled from 2002 to 2013. It is considered representative of the entire Ko-

rean population because 97% of the population is obliged to enroll in national health

insurance, which covers all forms of health care services. Moreover, the NHIS-NSC

uses systematic stratified random sampling to create a highly representative sample.

The groups from which the samples are taken divide the entire population based on

the shared characteristics such as age, sex, region, and income level. Notably, medi-

cal insurance claims in the NHIS-NSC provide a sequence of clinical records for each

patient, consisting of the diagnoses, medication prescriptions, and procedures given

during each clinical visit.

Data Processing

To train and test our model on the general patient population, we extracted samples

from the NHIS-NSC by adopting a case/control design with incidence density sam-

pling. In the incidence density sampling process, the selection of controls is decided

by the diagnosis dates of cases. A diagnosis date is the day of the visit during which

a CVD diagnosis was made. We operationally defined a CVD diagnosis as a CVD

event resulting in hospitalization or death by following the previous works that used

the same data source [41, 42, 43]. The results of our analysis should be interpreted

with the awareness of the broad definition of CVD used for case sampling. The defini-

tion includes conditions such as ”Cerebral aneurysm, nonruptured” and ”Hypertensive

encephalopathy,” which may present similar symptoms as a stroke. However, these

diseases are uncommon and represent only 2.9% of cases used in the analysis.

Among the cohort participants, patients who were diagnosed with CVD before

2007 were excluded from the analysis. Cases were sampled between 2007 and 2013.

For each case, approximately nine controls were sampled from a pool of participants

who had not been diagnosed with CVD prior to the case’s event date. Age, sex and

25



number of visits within two years were matched between the cases and the controls

using nearest neighbor matching. The same diagnosis date was assigned to all controls,

and all the clinical records of the selected cases and controls during the time window

of two years before the diagnosis date were collected. We named this time window as

an observation period because the model makes decisions based on the observations

during this period. The participants were 40–90 years of age on the diagnosis date. We

also avoided selection bias by death when extracting the controls, which could occur

if ill people had already died and so were not selected as cases. Thus, we excluded the

patients who died within one month of the diagnosis date. [12, 11, 9]

3.4.2 Experimental Design

In this research, we extracted the visit data of 75,604 patients from the NHIS-NSC

data, following the strategy described in the subsubsection ‘Data Preprocessing.’ Con-

sequently, 7,981 cases and 67,623 controls were extracted with diagnosis and prescrip-

tion codes. The average visit length for each patient was approximately 57, and the

total numbers of unique codes were 1,628 and 1,502 for diagnoses and prescriptions,

respectively. Then, we designed more tailored experimental settings as follows. [15,

27, 14, 13] An immediate outpatient CVD diagnosis before CVD admission is not a

cause for CVD admission; rather, it should be considered as a point of the first contact

in the natural course of CVD detection. However, because our operational definition

of CVD was CVD with inpatient admission, cases very often had CVD outpatient

visits immediately prior to admission. With such highly-correlated cases, the model

was incentivized to predict based on CVD outpatient diagnosis rather than looking at

other non-obvious factors. [22, 21, 20, 19, 18, 17, 16] Thus, we cleaned our data by

masking all medical data, including CVD outpatient diagnosis codes, within the 7 days

(and 14 days) prior to CVD admission on the diagnosis date. We defined this data as

the MASKED 7 and MASKED 14 dataset, in contrast to the original RAW dataset.

For each dataset, we used 80% of the data for training, 10% for validation, and the
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remaining 10% for testing. [30, 29, 28, 26, 25, 34, 33, 32, 31, 24, 23]

Baselines

We trained six classification models as the baselines – a regularized logistic regression

(LR), a multi-layer perceptron (MLP), a vanilla-GRU model (RNN), and three variants

of the GRU models, including Patient2Vec [23]. Instead of the time-varying sequence

vectors, the aggregated counts of medical codes were used as inputs for the LR and

MLP models. Also, a sum of the embedding vectors of the documented medical codes

was concatenated to the input. [10, 43, 42, 41, 40, 39, 38, 37, 36, 35] We denoted

the GRU variants that learned the attention weights for each RNN hidden state using

location-based attention(LA) as attentional RNNs (ARNN). The GRU variant that used

the bilinear self-attention was denoted as RNN-SA. The models that concatenated the

patient characteristics before the last prediction are indicated with a suffix ‘(+concat).’

Patient2Vec [23] is an ARNN-based state-of-the-art model. We trained the MLP model

with two hidden layers, and all the GRU-based models had two layers with residual

connections between layers. We trained Patient2vec using the default implementation

in the original work. Patient2Vec used the same training scheme as that of our model,

which used the pretrained Skip-gram embedding vectors. Hyperparameters such as the

L2 regularization coefficient and drop-out rates were optimized, but the time interval

required for constructing subsequences was the same as that in the original work. The

hidden dimension size was set to 100 for all the models, and we trained them until

early stopping criteria were met.

3.4.3 Implementation Details

We implemented and trained the models using python Tensorflow 1.14.0. We used

Adam optimizer trained with the mini-batch of 64 patients.
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3.5 Experimental Results

3.5.1 Evaluation of CVD Prediction

We reported the model performances on the test set in terms of the area under the

ROC curve (AUROC) and the area under the precision-recall curve (AUPRC) results.

The average performances obtained on the RAW and MASKED datasets are shown

in Table 3.3 and Table 3.4. The GRU-based models clearly outperformed the other

conventional machine learning models. These results represent the ability of RNN

models to discover complex relationships within the patient history. The attention-

based models generally performed better than the vanilla GRU model. Patient2Vec

from [23] also achieved fairly high performances. The performance of SAF-RNN was

significantly higher than that of the other attention-based models, showing that it can

leverage patient characteristics for prediction purposes. Furthermore, the other models

did not benefit from concatenating the patient characteristics.

3.5.2 Sensitivity Analysis

Almost all the models’ performances were decreased on the MASKED sets as the mod-

els cannot exploit the strong CVD signals immediately prior to the diagnosis date. LR

and MLP-based models did not change much since they make predictions upon the ag-

gregated counts of medical codes, which are relatively consistent across two datasets.

Therefore, we verify that the models make prediction based on CVD outpatient diag-

nosis immediately before admission when provided with the highly-correlated cases.

However, the SAF-RNN still showed its ability to leverage the patient characteristics,

significantly outperforming the other models. Figure 3.3 also shows the performance

degradation of the models on the MASKED sets. Here, SAF-RNN clearly displayed

its robustness against eliminating the highly-correlated cases, demonstrating its ability

to focus on more diverse factors.
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Table 3.3: AUROC performances for predicting CVD on dataset RAW and MASKED

(7 days and 14 days)

Model RAW MASK 7d MASK 14d

Without

Patient

Characteristics

LR 0.741±0.001 0.679±0.003 0.668±0.007

MLP 0.782±0.003 0.733±0.004 0.702±0.006

RNN 0.823±0.001 0.779±0.004 0.749±0.004

ARNN 0.826±0.002 0.775±0.003 0.750±0.002

RNN-SA 0.830±0.000 0.778±0.003 0.778±0.003

With

Patient

Characteristics

LR(+concat) 0.756±0.001 0.695±0.003 0.692±0.003

MLP(+concat) 0.781±0.003 0.744±0.003 0.725±0.005

RNN(+concat) 0.826±0.003 0.770±0.002 0.743±0.003

ARNN(+concat) 0.827±0.003 0.773±0.003 0.747±0.005

RNN-SA(+concat) 0.830±0.001 0.774±0.004 0.745±0.004

Patient2Vec[15] 0.819±0.003 0.771±0.005 0.744±0.008

SAF-RNN 0.839±0.000 0.784± 0.001 0.760± 0.001
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Table 3.4: AUPRC performances for predicting CVD on dataset RAW and MASKED

(7 days and 14 days).

Model RAW MASK 7d MASK 14d

Without

Patient

Characteristics

LR 0.477±0.002 0.379±0.005 0.343±0.005

MLP 0.490±0.005 0.393±0.005 0.479±0.006

RNN 0.655±0.004 0.529±0.004 0.509±0.004

ARNN 0.653±0.003 0.529±0.003 0.490±0.003

RNN-SA 0.654±0.003 0.530±0.002 0.490±0.002

With

Patient

Characteristics

LR(+concat) 0.493±0.001 0.395±0.003 0.382±0.004

MLP(+concat) 0.502±0.005 0.411±0.004 0.382±0.004

RNN(+concat) 0.647±0.004 0.528±0.003 0.491±0.005

ARNN(+concat) 0.649±0.005 0.528±0.003 0.492±0.006

RNN-SA(+concat) 0.650±0.001 0.531±0.004 0.494±0.004

Patient2Vec[15] 0.643±0.006 0.528±0.006 0.488±0.005

SAF-RNN 0.661± 0.001 0.540± 0.001 0.501± 0.002
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3.5.3 Ablation Studies

Table 3.5: AUROC performances of different fusion methods

Models RAW MASK 7d

SAF-RNN (RNN+gating+SA) 0.839±0.000 0.784±0.001

\gating RNN+concat+SA 0.828±0.001 0.773±0.001

RNN-SA(+concat) 0.830±0.001 0.774±0.004

\SA RNN+gating+LA 0.830±0.002 0.779±0.004

ARNN(+gating) 0.826±0.001 0.777±0.001

Table 3.6: AUPRC performances of different fusion methods

Models RAW MASK 7d

SAF-RNN (RNN+gating+SA) 0.661±0.001 0.540±0.001

\gating RNN+concat+SA 0.649±0.001 0.538±0.003

RNN-SA(+concat) 0.650±0.001 0.531±0.004

\SA RNN+gating+LA 0.649±0.001 0.540±0.007

ARNN(+gating) 0.648±0.002 0.539±0.004

We also conducted ablation studies to demonstrate the effect of each part of the

SAF module. We eliminated the gating mechanism and self-attention, individually. We

first replaced the gating mechanism with a simple concatenation. In RNN+concat+SA,

the patient characteristics were concatenated to each of the RNN hidden states, and

then, self-attention was applied. In RNN-SA(+concat), self-attention was employed

before the information fusion, and then, the patient characteristics were combined us-

ing concatenation. Secondly, RNN+gating+LA and ARNN(+gating) used the gating

mechanism to incorporate the patient characteristics but did not use self-attention. Al-

though the high performances of these models demonstrate the strong abilities of the

self-attention and gating mechanisms, the results imply that SAF-RNN is the most
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effective method for information fusion.

3.6 Further Investigation

3.6.1 Case Study: Patient-Centered Analysis

We showed the interpretability of our model by assessing the importance of each clin-

ical visit for a selected CVD case. Given all the attention weights, we considered the

visits with higher attention weights to be more critical to CVD diagnoses since they

had a greater impact on the final prediction results. We illustrate the visit-level at-

tention weights provided by SAF-RNN and ARNN(+concat) in 3.4. Consequently,

the compared models showed a difference in the attention weight distributions. Both

models produced the highest attention weight for the 3rd visit since the diagnosis code

indicating hypertension, one of the strongest CVD risk factors, appeared during the 3rd

visit. However, SAF-RNN paid comparably high attention to the 4th visit, whereas the

ARNN(+concat) put most of its attention on the 3rd visit. The prescription of Olme-

sartan (which occurred during the 4th visit) is highly associated with CVD since it

is used to treat hypertension. Provided with the same patient characteristics show-

ing high blood pressure, our SAF-RNN model focused on the 4th visit more than

the ARNN(+concat) model did. Another distinct feature in the 4th visit was the code

indicating hyperglyceridemia, a well-documented CVD risk factor. Considering the

extremely high cholesterol and LDL levels of the patient, which is related to hyper-

glyceridemia, this result shows that SAF-RNN revealed the informative parts of the

patients’ history by efficiently fusing heterogeneous information.

3.6.2 Data-Driven CVD Risk Factors

To further examine the interpretability of our model, we extracted CVD risk factors

using the calculated attention weights. We applied a code-level attention mechanism

along with the visit-level attention to measure the extent to which medical codes af-
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fected the model’s prediction. The code-level attention mechanism was implemented

as in previous works [27, 17], although it resulted in a slight performance degradation(-

2.28%) compared to the original SAF-RNN model. Using both code-level and visit-

level attention weights, we computed the average attention given by the model to each

code. Using both code-level attention weight and visit-level attention weight, we de-

fined the average model’s attention wj paid on each code j as follows:

wj =
1

|Pj |
∑
x∈Pj

∑
i exp(α

(x)
i β

(x)
ij )∑

i′
∑

j′ exp(α
(x)
i′ β

(x)
i′j′)

· p̂(x), (3.8)

where Pj is a group of patients with code j in the records. α(x)
i denotes the visit-level

attention weight assigned to the ith visit and β
(x)
ij denotes the code-level attention

weight assigned to the code j in the ith visits of patient x. The normalized product

of two attention weights is averaged across all the patients in Pj , weighted by the

predicted risk probability p̂(x) for each patient.

We considered the medical codes with the greatest attention values as the CVD

risk factors that the model learned. As a result, the top-10 diagnosis and prescription

codes are listed in Table 3.7 and Table 3.8, respectively. The diagnosis codes directly

indicating CVD were excluded from these tables. The relevance of each code to CVD

was judged by a physician, who was given categories of ‘relevant,’ ‘possibly relevant,’

and ‘irrelevant.’ All of the extracted diagnosis codes were considered ‘relevant’ to

CVD except for one code indicating the umbrella term. Additionally, the extracted

medication codes were considered ‘relevant’ or ‘possibly relevant’ to CVD, confirming

the interpretability of SAF-RNN. These observations show a potential application of

SAF-RNN in identifying CVD risk factors.

3.7 Conclusion

In this work, we proposed an interpretable disease prediction model that efficiently

fuses heterogeneous patient records using self-attentive fusion encoder. We demon-
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strated the model’s ability to learn representations for heterogeneous patient records

in various experimental settings, and the constructed model consistently achieved su-

perior performances. An analysis on attention weights also indicated the degree to

which medical codes can affect the model prediction, hence providing interpretability.

Table 3.7: Top-10 diagnosis-related risk factors judgement

Top-10

ICD-10 codes

Model’s attention

(# of occurrences)

Relevancy

to CVD
Reason

Chronic kidney disease 0.080 (309) relevant risk factor for CVD

Other cardiac arrhythmias 0.049 (133) relevant risk factor for CVD

Atrial fibrillation and flutter 0.039 (140) relevant risk factor for CVD

Pain in throat and chest 0.027 (782) relevant
symptom of CVD

(myocardial infarction)

Dementia in Alzheimer’s

disease
0.027 (169) relevant has similar risk factors

Heart failure 0.026 (276) relevant risk factor for CVD

Medical observation and

evaluation for suspected

diseases and conditions

0.023 (194) irrelevant
umbrella term for

diagnostic process

Recurrent depressive disorder 0.022 (116) relevant risk factor for CVD

Secondary hypertension 0.021 (109) relevant risk factor for CVD

Hypertensive heart disease 0.019 (523) relevant risk factor for CVD

Fracture of lower leg,

including ankle
0.019 (171) relevant

immobility from this may

increase risk of CVD

Paroxysmal tachycardia 0.018 (117) relevant risk factor for CVD

Intracranial injury 0.016 (129) relevant
immobility from this may

increase risk of CVD
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Essential (primary)

hypertension
0.015 (5961) relevant risk factor for CVD

Headache 0.014 (941) relevant symptom of CVD

Table 3.8: Top-10 medication-related risk factors judgement

Top-10 generic

medication codes

Model’s attention

(# of occurrences)

Relevancy

to CVD
Reason

diltiazemHCl 0.120 (197) relevant
used for treating angina

(chest pain)

nitroglycerindiluted 0.078 (272) relevant
used for treating angina

(chest pain)

nicorandil(e) 0.074 (221) relevant
used for treating angina

(chest pain)

isosorbidedinitrate 0.072 (199) relevant
used for treating angina

(chest pain)

clopidogrel 0.056 (299) relevant

used for treatment

of ischemic stroke or my-

ocardial infarctions, may

also cause bleeding which

may result in hemorrhagic

stroke
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buflomedilpyridoxalphosphate 0.046 (165) relevant

a va-

soactive drug which was

suspended in 2011 for in-

creased cardiac toxicity

candesartancilexetil 0.041 (209) relevant

an-

tihypertensive drug which

may be indicative of hy-

pertension patients with

increased risk of CVD

venlafaxinHCl 0.040 (159)
possibly

relevant

SNRI antidepressant drug

which may increase sym-

pathetic pathways leading

to increased heart rate and

blood pressure

trimetazidine(2)HCl 0.033 (573) relevant
used for treating angina

(chest pain)

isosorbidemononitrate 0.031 (197) relevant
used for treating angina

(chest pain)

ramipril 0.022 (178) relevant

an-

tihypertensive drug which

may be indicative of hy-

pertension patients with

increased risk of CVD
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benidipineHCl 0.019 (156) relevant

an-

tihypertensive drug which

may be indicative of hy-

pertension patients with

increased risk of CVD

fluvastatin 0.019 (160) relevant

used to treat dys-

lipidemia, which may be

indicative of dyslipidemic

patients who are at higher

risk of CVD

cholinealfoscerate 0.019 (232)
possibly

relevant

used

to treat cognitive impair-

ment which may be a sig-

nal for preclinical symp-

toms of stroke

cilostazol 0.018 (459) relevant

used

for treatment of intermit-

tent claudication which is

indicative of vascular dis-

ease with higher risk of

CVD
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Figure 3.3: CVD prediction performances for different datasets.
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Figure 3.4: Case study of a selected case using the visit-level attention weights.
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Chapter 4

Graph-Enhanced Medical Concept Embedding

An adverse drug reaction (ADR) is considered to be one of the significant causes of

morbidity and mortality, estimated to be the fourth to sixth highest cause of death

in the United States [44]. Most ADR detection research has been aimed to predict

ADRs in pre-marketing phases, using biomedical information sources such as chem-

ical structures, protein targets, and therapeutic indications. Especially, studies using

graph-structured data have demonstrated the superiority of modeling biomedical in-

teractions as graphs. Nevertheless, capturing potential ADRs from the entire popula-

tion in post-marketing phases is also essential to fully establish the ADR profiles [1].

The potential causal relationship between an adverse event and a drug is called a ‘sig-

nal’ when the relation is previously unknown or incompletely documented. Traditional

ADR signal detection research in post-marketing phases mainly counts on a sponta-

neous and voluntary reporting system that collects spontaneous reports of suspected

drug-related events, such as the WHO Uppsala Monitoring Center [45, 46, 47]. How-

ever, the spontaneous reporting system has inherent limitations such as underreport-

ing [48, 49], selective reporting [47], and the lack of drug usage data. Therefore, recent

studies have attempted algorithmic approaches to detect ADR signals on large clinical

databases such as electronic health records (EHR) and healthcare claims data [1, 50].

Many of these studies apply basic machine learning techniques such as random forest,
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Figure 4.1: Overview of the proposed pipeline for the ADR detection task.

support vector machines, and neural networks. However, fewer studies are using graph-

based approaches on the clinical databases in the field of post-marketing ADR signal

detection. Due to the complex polypharmacy and multiple relations among drugs and

diseases, we expect that graph structure can provide insights to potential ADRs, which

may not otherwise be apparent using disconnected structures.

In this study, we develop a novel graph-based framework for ADR signal detection

using healthcare claims data to construct a Drug-disease graph. Specifically, we use

National Health Insurance Service-National Sample Cohort (NHIS-NSC), the 12-year

healthcare claims data that covers medical histories for one million population [2].

The constructed graph is a heterogeneous graph with drug and disease nodes, as

it is depicted in Figure 4.1. The nodes represent the medicine prescription codes and

disease diagnosis codes derived from the healthcare claims data. To represent the rela-

tions among these codes, we define edge weights using information from the data. For

example, l2-distance between two node embeddings, which are learned from the data,

is used to define the drug-drug and disease-disease edge weights. Also, the conditional

probability computed on the data is used for the drug-disease relationship. As Graph
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Neural Network (GNN) models have been demonstrated [3, 4] their power to solve

many tasks with graph-structured data, showing state-of-the-art performances, we use

GNN-based approach for ADR detection. We verify that GNNs can learn node rep-

resentations that are indicative of various relations between drugs and diseases. Then

our model makes a prediction on whether a drug node and a disease node will have an

ADR relation based on the learned node representations.

To evaluate the performance of the proposed approaches, we conduct experiments

with the newly generated dataset using the side effect resource database (SIDER).

The empirical results demonstrate the superiority of our proposed model, which out-

performs other alternative machine learning algorithms with a significant margin in

terms of the area under the receiver operating characteristic (AUROC) score and the

area under the precision-recall curve (AUPRC) score. Furthermore, our method un-

veils ADR candidates that are examined to be very useful information to the medical

community. Our model uses only simple data processing and well-established medical

terminologies. Therefore, our work does not demand case-by-case feature engineering

that requires expertise.

4.1 Related Work

There have been numerous studies on ADR prediction in pre-marketing phases, at-

tempting graph-based approaches on biomedical information sources [51, 52, 53, 54].

These studies predicted potential side-effects of drug candidate molecules based on

their chemical structures [52] and additional biological properties [51]. Although such

studies may play important roles in preventing ADRs in pre-marketing phases, captur-

ing potential ADRs in real-world use cases has been considered very important.

A spontaneous and voluntary reporting system has been an important data source

of the real world drug usages. Most of the traditional ADR signal detection research

used voluntary reporting systems with disproportionality analysis (DA), which mea-
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sures disproportionality of observed drug-adverse event pairs existing in data and

the null expectations [45, 46, 47]. Recently, large-scale clinical databases such as

EHR (Electronic Health Records) or healthcare claims data have gained popularity

as an alternative or additive data source in ADR signal detection research. Much

of the studies applied machine learning techniques such as support vector machine

(SVM), random forest (RF), logistic regression (LR) and other statistical machine

learning methods to model the decision boundary to detect ADR in post-marketing

phases [1, 55, 56, 50, 57].

More recently, researchers explored neural network-based models over clinical

databases. Shang et al. [58] combined graph structure with the memory network to

recommend a personalized medication. The longitudinal electronic health records and

drug-drug interaction information were embedded as a separate graph to be jointly

considered for the recommendation. There also exists research for the recommenda-

tion, but the architectures are limited to the single use of instance symptoms [59, 60],

or patient history [61]. However, none of these research explored graph neural network

model for predicting the ADR reactions in the post-marketing phase.

4.2 Problem Statement

The task is to predict the potential causal relationship between a given drug and a

disease pair, which represents the prescription code and the diagnosis code in clinical

data. To consider the various relationships between drugs and diseases, we convert our

clinical data into a novel graph structure that consists of drug and disease nodes. The

node representations and the edge weights are given according to the information re-

trieved from the clinical data NHIS-NSC in this study. We first learn a node embedding

that reflects the temporal proximity between homogeneous nodes, i.e., drug-drug and

disease-disease node pairs. In order to model the proximity between two codes, we

form drug/disease sequences from patients’ records.
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After the drug-disease graph is constructed, we build a GNN model that predicts

the signal of side effects between any pairs of drug and disease. The side effect labels,

which are taken from the SIDER database, are given to a subset of drug-disease pairs

in graph G. We define the label function l : V SIDER
drug × V SIDER

dis → {0 , 1} as follows:

l(v, w) =

 1 if (v, w) ∈ ESIDER,

0 otherwise,
(4.1)

where V SIDER
drug and V SIDER

dis are the subsets of Vdrug and Vdis registered in the SIDER

database respectively, and ESIDER is the set of drug-disease pairs that are known to

have side effect relation according to the SIDER database.

4.3 Method

4.3.1 Code Embedding Learning with Skip-gram Model

Most large-scale clinical databases including NHIS-NSC, are collected in the form of

longitudinal visit records of the patients. In this section, we explain how we process

the patient’s longitudinal records as sequential data and apply skip-gram model to learn

the code embeddings.

Definition 1 (Drug/Disease Sequence) In the patient’s longitudinal records, each pa-

tient can be treated as a sequence of hospital visits {v(n)1 , v
(n)
2 , ..., v

(n)
Tn

} where n rep-

resents each patient in the data, and Tn is the total number of visits of the patient. The

ith visit can be denoted as v(n)i = {Pi(n),Di
(n)} where Pi(n) is the set of prescribed

codes and Di
(n) is the set of diagnosed codes in the ith visit. Within a set of codes,

codes are listed in arbitrary order. The size of each set is variable since the number

of prescribed/diagnosed codes varies from visit to visit. With these sets of codes, we

form a drug sequence Seqdrug(n) and a disease sequence Seqdisease(n) of nth patient

by listing each of the codes in a temporal order, as it is described below (Here, we
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leave out the symbol n):

Seqdrug = {p1, p2 , ... , pTp} , px ∈ Pi,

Seqdisease = {d1, d2 , ... , dTd} , dy ∈ Di,
(4.2)

where px ∈ RVp and dy ∈ RVd are the one-hot vectors representing each of the medical

codes in the sequences. Vp and Vd are the vocabulary size of the whole prescription and

diagnosis codes within the data, respectively. Tp and Td represent the total number of

prescription/diagnosis codes of the patient’s record. In this way, we can build a corpus

consisting of Seqdrug or Seqdisease, in which the proximity-based code embedding

learning can be implemented.

We use Skip-gram [10] model to learn the latent representation of medical codes

in our data, in a way that captures the temporal proximity between them. With Seqdrug
or Seqdisease, we use the context window size of 16, meaning 16 codes behind and 16

codes ahead, and apply the Skip-gram learning with negative sampling scheme. As a

result, we project both diagnosis codes and prescription codes into the separate lower-

dimensional spaces, where codes are embedded close to one another that are in close

proximity to them. The trained Skip-gram vectors are then used as the proximity-based

code embeddings.

4.3.2 Drug-disease Graph Construction

Here, we describe how we construct our unique Drug-disease graph from NHIS-NSC.

In Definition 2, we explain the concept of the Drug-disease graph. Then, we explain

the node representations and edge connections.

Definition 2 (Drug-disease Graph) We construct a single heterogeneous graph G=(V, E)

consisting of drug and disease nodes, where V =Vdrug ∪ Vdis is the union of drug and

disease nodes, and E = Edrug∪Edis∪Einter is the union of homogeneous edges Edrug and

Edis (i.e. consisting of same type of nodes) and heterogeneous edges Einter (i.e. consist-

ing of different types of nodes).

45



To represent vdrug ∈ Vdrug and vdis ∈ Vdis, we jointly use proximity-based node repre-

sentation along with category-based node representation. Proximity-based node repre-

sentation is obtained by initial Skip-gram code embedding as in section 4.3.1. We de-

note a proximity-based drug node as v′drug and a disease node as v′dis. Category-based

node representation is designed to represent the categorical information of medical

codes. We utilize the hierarchical structure of categorical codes (i.e. ATC and ICD-

10 codes) by adopting the one-hot vector format. Since there are multiple categories

for each code, the category-based node representation is shown as a concatenation of

one-hot vectors, thus, a multi-hot vector. Finally, the initial node representation of the

Drug-disease graph are represented as the concatenation of the proximity-based node

embeddings and the category-based node embeddings. Following are the definitions

for the drug and disease node representations.

Definition 3 (Node Representations)

v′′drug = {v1drug||v2drug||v3drug||v4drug||v5drug},

v′′dis = {v1dis||v2dis},

vdrug = {v′drug || v′′drug},

vdis = {v′dis || v′′dis},

(4.3)

where v′′drug is a category-based drug node, v′′dis is a category-based disease node,

vdrug is an initial drug node, vdis is an initial disease node, and || is a vector concate-

nation function. Each vidrug represents the each level in the ATC code structure and

v′′drug ∈R104. Because the ATC code structure is represented in 5 levels, a drug node

vector is also represented as the concatenation of 5 one-hot vectors. Similarly, each vidis
represents each of the first two levels in the ICD-10 code structure and v′′dis ∈R126. We

only use two classification levels of the ICD-10 code structure, therefore, the disease

node vector is represented as the concatenation of 2 one-hot vectors.
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For homogeneous edges like Edrug and Edis, we view the relationships between ho-

mogeneous nodes as the temporal proximity of two entities, meaning that two nodes

are likely to be close together in the records. Therefore, using the proximity-based

node embeddings, we compute l2-distance between two node embeddings to estimate

the temporal proximity. For heterogeneous edges, which are the edges connecting drug

nodes and disease nodes, are given as the conditional probability of drug prescription

given the diagnosed disease. The definitions of the two types of edges are given as

follows:

Definition 4 (Homogeneous Edges) For any node i, j ∈ Vdrug (or Vdis), the edge

weight wij between two nodes are defined using Gaussian weighting function as fol-

lows:

wij =

 exp(−∥v′i−v′j∥
2

2θ2
) if ∥v′i − v′j∥ ≤ threshold,

0 otherwise,
(4.4)

for some parameters threshold and θ. v′i and v′j are the proximity-based node em-

beddings of two nodes i and j. Later, we additionally use edge-forming thresholds to

control the sparsity of the graph.

Definition 5 (Heterogeneous Edges) For any drug node i ∈ Vdrug and any disease

node j ∈ Vdis, the edge weight wij between two nodes are given as:

wij =
nij
nj
, (4.5)

where nij is number of patients’ histories in the NHIS-NSC database that is recorded

with a diagnosis j and a prescription i in tandem. nj is the number of patients’ histories

with the diagnosis j.

4.3.3 A GNN-based Method for Learning Graph Structure

We aggregate neighborhood information of each drug/disease node from the con-

structed graph using the Graph Neural Network (GNN) framework. In each layer of
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GNN, the weighted sum of neighboring node features in the previous layer is computed

to serve as the node features (after applying a RELU nonlinearity σ) as follows:

zi
(l+1) = σ(

∑
j∈N (i)

α
(l)
ij Wzj

(l)), (4.6)

where N (i) denotes the set of neighbors of ith node, zi(l) denotes feature vector of

ith node at lth layer, W denotes a learnable weight matrix and α(l)
ij denotes the nor-

malized edge weight between ith and jth nodes at the lth layer. In the first layer, the

initial drug/disease node representations are each passed through a nonlinear projec-

tion function to match their dimensions.

We use two weighting schemes for α(l)
ij . The first variant follows the definition in

[3], and the weight is defined as follows:

αij =
wij√
didj

, (4.7)

where di and dj are the degree of nodes i and j respectively, and wij are the edge

weights defined in section 4.3.2. The weights are fixed for all layers. The second

weighting scheme instead learns the weighting scheme using attention mechanism [4]

as follows:

α
(l)
ij =

exp(g(zi
(l), zj

(l)))∑
k∈N (i) exp(g(zi

(l), zk(l)))
, (4.8)

where g is a single fully-connected layer with LeakyReLU nonlinearity that takes a

pair of node features as input. In the rest of this paper, we call the network with the

first weighting scheme as GCN and the network with the second scheme as GAT.

We predict the ADR signal of a drug-disease pair using the learned embeddings

from the GNN model with a single bilinear layer as follows:

ŷij = σ(zi
(L)Wpzj

(L) + b), (4.9)

whereWp, b are the learnable weights, and v(L)i , v(L)j are the node features of drug node

i and disease node j at the last GNN layer. The whole model is trained by minimizing

the cross-entropy loss.
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4.4 Dataset and Experimental Setup

4.4.1 Dataset

Healthcare claims dataset

For this study, we obtain data from the Sample Cohort Database (NHIS-NSC), a

healthcare claims data established by national health insurance (NHI) of South Ko-

rea. The NHIS-NSC is a retrospective cohort data from a population of one million

patients sampled from 2002 to 2013, providing longitudinal observations of patient’s

diagnosis, medication prescription, and procedures. With this data, we extract target

drugs and diseases and compute the statistics between any pairs of the drug-disease

combinations. These statistics are used in determining edges in the drug-disease graph.

We represent drugs and diseases in NHIS-NSC data in a form of ATC codes (med-

ication codes) and ICD-10 codes (International Classification of Diseases, 10th revi-

sion). The number of converted ATC and ICD-10 codes are 1,201 and 1,872, respec-

tively.

Adverse drug reaction dataset

As a labeled dataset, we use Side Effect Resource (SIDER) database which contains

139,756 drug-side effect pairs over 1,430 drugs and 5,868 side effects. These were ex-

tracted from public information on recorded adverse drug reactions using natural lan-

guage processing techniques. To leverage medical and pharmacological knowledge,

we extract drug and side effect information in a form of categorical codes (i.e. ATC

and ICD-10 codes) with hierarchical structures. Since drug and side effect information

in SIDER are represented as STITCH (Search Tool for Interactions of CHemicals)

compound identifiers and UMLS (Unified Medical Language System) concept identi-

fiers, we convert them to ATC and ICD-10 codes. The number of converted ATC and

ICD-10 codes are 562 and 931, respectively.
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Table 4.1: Summary statistics of the constructed graph and datasets

Edge-forming threshold Low High

# Drug nodes 1,201

# Labeled drug-dis pairs in train 37,016

# Labeled drug-dis pairs in test 6,092

# Disease nodes 10,117

# Drug2drug-Edges 19,918 7,199

# Drug2dis-Edges 1,306

# Dis2dis-Edge 401,801

Data preprocessing

As we get the labels from the SIDER database and the edge weight from the NHIS-

NSC database, we retrieve the drug and disease nodes over the joint set of two databases.

The resulting dataset is composed of 607 drugs and 556 diseases, and the number of

positive samples, indicating the drug-side effect relationships, are 28,746 pairs. A neg-

ative sample is defined as a combination of drugs and diseases over the dataset, where

the known 28,746 positive samples are excluded. We randomly select negative sam-

ples, setting the size of negative samples same as the size of positive samples.

4.4.2 Experimental Design

Since we extract those combinations from the SIDER database, it is plausible to believe

that they have not been reported as ADRs. Although the labels are only given to the

drug-disease pairs over the joint set of two databases, we make use of all the drugs

and diseases in NHIS-NSC as graph nodes to utilize the relations among the drugs and

diseases.

To predict the link between the drugs and diseases, we split drug-disease pairs

from the ADR dataset into training, validation, and test sets, ensuring that the classes

of diseases included in each set do not overlap. The reason we split the data without
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overlapping disease classes is to increase the usability of the ADR signal detection

model. It is also because only a few classes of diseases exist in our dataset, and there-

fore there could be a data leakage if the same disease class exists in both training and

validation. The class of disease means the classification up to the third digit of ICD-10

codes. Note that we make the inference very difficult by not letting the model know

which classes of diseases are linked with drugs as ADRs. We use 80% of data for

training, 10% for validation, and the remaining 10% for testing.

To control the sparsity of a graph, we build two types of graphs where the edge-forming

threshold is either low or high. When the edge-forming threshold is low, the graph has

more edges, having more information as a result. We examine whether it is beneficial

or detrimental to have more edge information. We distinguish two graphs by setting

the thresholds for Edrug differently. The summary statistics of the constructed graphs

and datasets are provided in Table 4.1.

Baselines

To verify the performance of the GNN approach, we compare GNN models with

DeepWalk approach and non-graph-based ML techniques. DeepWalk [62] is an un-

supervised graph embedding method that uses random walks on graphs. In DeepWalk

approach, we use the DeepWalk embeddings, pre-trained by the DeepWalk model.

We apply vanilla GCN and its variants to examine the effect of considering the edge

types. The followings are the models used for the graph embedding learnings. All the

neural-network-based models use two layers with a hidden dimension of 300.

• LR is a logistic regression (LR) approach with information of the graph topol-

ogy. The vector composed of initial node representations of the node itself and

its neighbor nodes are input to the LR model. The number of neighbors is limited

to 10.

• NN is a 2-layer fully-connected neural network which is solely based on the
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initial node representations.

• DW directly feeds the input, which is the concatenation of the DeepWalk em-

bedding and the initial node representation, to the prediction layer.

• DW + NN is a 2-layer fully-connected neural network that uses the concatena-

tion of the DeepWalk embedding and the initial node representation as its input.

• DW + GCN is a 2-layer GCN model that uses the concatenation of DeepWalk

embedding and the initial node representation as its input.

• GCNlow is a graph convolution network, a representative GNN model that uses

graph convolutions [3].

• GATlow is a GNN that applies the attention mechanism on the node embeddings.

Here we use GAT with two layers, where the number of heads are (4,4) for each

layer.

• adrGCNlow is an adapted version of GCN, that uses separate GCN layers ac-

cording to the edge types and then aggregate them.

• GCNhigh,GAThigh, adrGCNhigh are the GCN models applied to the sparser

graph, i.e. the edge-forming threshold is high.

4.4.3 Implementation Details

We implement all the baselines and our proposed models with PyTorch 0.4.14. For

training models, we use Adam optimizer with a mini-batch of 32 (drug, disease) tuples.

We train on 1 GPU (1080Ti) for 20 epochs, with an early stopping and a learning rate

of 0.0001. We use the area under the receiver operating characteristic curve (AUROC)

in the test sets as a measure for comparing the performance of all the methods. We use

Adam Optimizer with the learning rate of 0.0001.
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Table 4.2: Model AUROC and AUPRC performances (including 95% CI)

Model AUROC AUPRC

LR 0.631 ± 0.006 0.585 ± 0.007

NN 0.739 ± 0.005 0.701 ± 0.006

DW 0.728 ± 0.004 0.709 ± 0.004

DW + NN 0.772 ± 0.005 0.758 ± 0.005

DW + GCNlow 0.794 ± 0.003 0.768 ± 0.003

GCNlow 0.795 ± 0.006 0.775 ± 0.006

GATlow 0.732 ± 0.005 0.686 ± 0.009

adrGCNlow 0.755 ± 0.008 0.726 ± 0.009

GCNhigh 0.784 ± 0.006 0.761 ± 0.008

GAThigh 0.733 ± 0.008 0.692 ± 0.009

adrGCNhigh 0.756 ± 0.004 0.732 ± 0.006

4.5 Experimental Results

4.5.1 Evaluation of ADR Detection

As shown in Table 4.2, the proposed graph-based approaches surpass all the non-

graph-based approaches. The best AUROC performance is achieved when GCN is

applied with the low edge-forming threshold. The results show that the GCN model

efficiently leverages the information from sufficiently selected edges. To compare the

performances of graph-based methods, we plot the learning curves as in Figure 4.2.

The performances of DeepWalk-based approaches increases as the more advanced

neural architecture is applied. This result shows that the graph structure learned by

DW does not provide sufficient information to predict ADR signals. Also, slow con-

vergence of DW + GCN, compared to DW and DW + NN, implies that GNN uses

more information in this graph.

To see the robustness of the proposed method, we also examine whether our model
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Figure 4.2: Learning curves of the models using DeepWalk embeddings.

works well for the infrequent drug-ADR pairs. We evaluate model performance for the

infrequent drug-ADR pairs, which are labeled as ’rare’ or ’post-marketing’ in SIDER.

As a result, the best average test accuracy in infrequent drug-ADR pairs is achieved

with adrGCNhigh (0.746), demonstrating that using multiple GCNs according to the

edge types is useful to detect rare symptoms. According to the SIDER database, the

ADRs with ‘rare‘ or ‘post-marketing‘ labels are reported with frequencies under 0.01.

4.5.2 Newly-Described ADR Candidates

To verify the power of the graph-based approach to discover ADR candidates which

are unseen in the dataset, we extract the drug-disease pairs which are predicted to be

positive with high probability — over 0.97 but labeled as negative (false positive). To

demonstrate the genuine power of graph-based methods, we exclude the candidates

that are also positively predicted by the baseline neural network, which does not use

relational information. As a result, clinical experts (M.D.) confirm that there exist pairs

that are clearly considered to be real ADRs. The pairs are listed in Table 4.3.

Many of the discovered pairs, including umbrella terms like edema, are rather

symptoms and signs than diseases. This can be explained by the fact that the SIDER

database is less comprehensive to cover all the specific symptoms, that can be in-

duced by taking medicine. Especially, cardiac murmur and abnormal reflex are fre-
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Table 4.3: Newly-described drug-ADR pairs predicted by the proposed method

Drug name ADR symptom Probability

Dasatinib Cardiac murmur 0.985

Hydroxycarbamide Abnormal reflex 0.981

Alendronic acid Tetany 0.978

Ibandronic acid Unspecified edema 0.976

Etidronic acid Abnormal reflex 0.972

quent symptoms, but it is reasonable to say that the suggested pairs are ADRs. For

example, Dasatinib is used to treat leukemia and can have significant cardiotoxicity,

which can lead to cardiac murmurs. Hydroxycarbamide is a cytotoxic drug used for

certain types of cancer, and it is known that cytotoxic medications can cause elec-

trolyte imbalance leading to abnormal reflex.

There are also significant pairs such as alendronic acid and tetany in the third row.

Severe and transient hypocalcemia is a well-known side-effect of bisphosphonates,

which can lead to symptoms of tetany. Alendronic acid is classified as bisphospho-

nates, and therefore, tetany can be described as ADR of alendronic acid. Ibandronic

acid and etidronic acid in the last two rows are also bisphosphonates, and the paired

symptoms are relevant to the usage of bisphosphonates. Unspecified edema may sig-

nify bone marrow edema caused by bisphosphonate use, and electrolyte imbalance,

which can lead to abnormal reflex, can be caused by etidronic acid use. All these ex-

planations show that the ADR pairs we extract are based on various relations among

drugs and diseases.

4.6 Conclusion

In this study, we propose a novel graph-based approach for ADR detection by con-

structing a graph from the large-scale healthcare claims data. Our model can capture

various relations among drugs and diseases, showing improved performance in pre-
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dicting drug-ADR pairs. Furthermore, our model even predicts drug-ADR pairs that

do not exist in the established ADR database, showing that it is capable of supplement-

ing the ADR database. The explanation by clinical experts verifies that the graph-based

method is valid for ADR detection. In this study, we only make inferences within the

labeled dataset, yet we plan to make inferences on unlabeled data to discover unknown

ADR pairs, which will be a huge breakthrough in ADR detection.
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Chapter 5

Knowledge-Augmented Deep Patient Representation

In this work, we aim to predict clinical outcomes using National Health Insurance

Service-National Sample Cohort (NHIS-NSC), augmented with expertise knowledge.

Although many deep learning techniques have demonstrated state-of-the-art perfor-

mances in modeling patient representation for clinical outcome prediction, only a lim-

ited part of the data is used for training. This is because there are many overlapping

parts in EHR or the claims data, as doctors tend to label existing symptoms on the vis-

its of the same patient. For example, when we sample 87,384 Cardiovascular Disease

(CVD) cases and controls, about 87% of the total diagnosis codes of each patient are

repeated on average.

To address this issue, several works have utilized medical knowledge for EHR rep-

resentation learning. There are many well-constructed ontologies in the medicine area,

such as International Classification of Diseases (ICD), Clinical Classifications Soft-

ware (CCS) [7] , Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-

CT) [8], and Human Phenotype Ontology (HPO) [63], and knowledge graphs, such as

Semantic Medline Knowledge Graph (SemMed KG) [64] and KnowLife [65]. The

proposed approaches injecting such medical knowledge for EHR representation learn-

ing showed improved performances on various clinical outcome prediction tasks [66,

67, 68, 69, 70, 71]. The types of medical knowledge and studies using them for clin-
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Table 5.1: Types of medical knowledge and studies using them for clinical prediction

Knowledge Types Model

Ontologies

ICD, CCS
GRAM [66]

KAME [67]

SNOMED-CT Snomed2Vec [71]

HPO KGDAL [69]

General Knowledge Graph

KnowLife DG-RNN [68]

SemMed
MedPath [70]

KA-SAF (Ours)

ical prediction are summarized in Table 5.1. They also demonstrated enhanced in-

terpretability by showing explicit reasoning path or using knowledge graph attention

mechanism.

As an extension of these studies, we propose a method to leverage prior medical

knowledge for clinical outcome prediction. We construct a personalized Knowledge

Graph(KG) for each patient to incorporate patient-specific knowledge from the entire

KG. Here, the personalized KG is created by extracting a subgraph consisting only

of medical codes, i.e., diagnosis and prescription codes, of patient records. Based on

the personalized KG, we build the KG representation using Graph Neural Network

(GNN). The KG representation is then used with the deep patient representation mod-

eled on the patient’s clinical records to predict clinical outcomes. To encode the deep

patient representation, we use Self-Attentive Fusion Encoder (SAF)-based RNN model

(SAF-RNN), which achieved the state-of-the-art performance in our previous work,

described in Chapter 3.

Additionally, we seek to harness pre-training for GNNs to further enhance the

personalized KG representation. We perform KG completion (KGC) task as a pre-

training task, which is to predict the plausibility of a given triplet. Here, we compute

the plausibility score by applying GNN model on the enclosing subgraphs. We expect
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Logical rule: 

[CAUSES, COEXISTS_WITH] 
																																		⇒	CAUSES

h
t

COEXISTS_WITH
CAUSES

r

Enclosing Subgraph

Figure 5.1: Logical rules contained in the enlosing subgraph.

the GNN model to encode the logical rules inherent in the subgraph. The SemMed KG

expresses various relations between medical entities, and these relations are strongly

associated with other adjacent relations according to specific logical rules as depicted

in 5.1.

To improve the performance of KGC task, we utilize the method, proposed in our

other research. In this work, we suggest a novel inductive link prediction model, called

Subgraph Infomax (SGI), where the relation embedding is trained to contain more

meaningful information about subgraphs via the mutual information (MI) maximiza-

tion objective. SGI consists of a GNN-based scoring network for computing the score

of a given triplet and a module for MI maximization. We trained SGI to maximize the

MI between the relation embedding and the subgraph representation. After pre-training

the GNN encoder with the KGC training objective on SemMed KGs, the GNN encoder

is further fine-tuned via the supervision coming from clinical outcome prediction.

We evaluate the performances of our model on two tasks, i.e., the next diagnosis

prediction and the CVD prediction. As a result, it shows improved prediction perfor-

mances than in the case of using SAF-RNN alone. The performances are further im-

proved when we pre-train the GNN encoder with KGC training objective using SGI,

showing the enhanced KG representation.
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5.1 Related Work

5.1.1 Incorporating Prior Medical Knowledge for Clinical Outcome Pre-

diction

There are several works that suggest incorporating prior medical knowledge to fa-

cilitate EHR and patinet representation learning. GRAM [66] , for example, learns

the embedding of a medical code by attending over each hierarchical information ex-

tracted from medical ontologies for sequential diagnoses prediction and heart fail-

ure prediction tasks. KAME [67] also proposes an attention mechanism to further ex-

ploit high-level knowledge to improve the diagnosis prediction task. Like these studies

that mainly use the hierarchical information from medical ontologies, some studies

that use knowledge graphs that explain the direct relationship between entities have

been suggested. DG-RNN and KGDAL leverage the medical knowledge graphs called

KnowLife and HPO, respectively [68, 69]. DG-RNN uses the knowledge graph at-

tention mechanism to learn the medical code embedding for heart failure prediction.

KGDAL also suggests knowledge-based attention mechanism for mortality prediction

of critically ill patients with acute kidney injury requiring dialysis. However, these two

works do not leverage the personalized KG.

Similar to our work, MedPath [70] extracts a personalized medical knowledge

graph for each patient and enhances the patient representation learning with prior med-

ical knowledge. However, there are two main differences between two works. First,

MedPath only uses the medical concept corresponding to the diagnosis code to inter-

pret the disease progression path. On the other hand, our work uses both diagnosis

and prescription codes to fully utilize the potential of SemMed KG. Secondly, Med-

Path uses different initial concept vectors for each of the EHR encoder and the graph

encoder, using TransE [72] embedding as the initial node embedding for the graph

encoder. All the previous works leveraging KGs apply knowledge graph embedding

methods such as TransE on the entire KGs to obtain medical concept embeddingsTo
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the best of our knowledge, our work first uses the same medical concept embedding as

the initial node embedding of KG in this literature.

5.1.2 Inductive KGC based on Subgraph Learning

Knowledge Graphs (KGs) have been very useful for many information retrieval (IR)-

related tasks such as query answering, entity linking, and knowledge-augmented ques-

tion answering. However, due to the incompleteness problem of the KGs, there has

been an increasing interest in Knowledge Graph Completion (KGC) task. KGC is a

link prediction task to predict missing edges in KG, and can be seen as a question of

whether a given triplet is valid or not. Especially, the evolving nature of KGs has led

to active research on inductive link prediction, where one needs to make inferences on

triplets with entities that are not seen during training.

Recently, many inductive KGC studies have tried inducing the logical rules con-

tained in a local subgraph to learn entity-independent semantics [73, 5, 6, 74]. Since

Zhang & Chen [75] have theoretically proven that the enclosing subgraphs surround-

ing the target triplets are informative for link prediction, several subsequent studies

have suggested graph representation learning to encode the logical rules within the

local subgraphs [5, 6, 74].

5.2 Method

5.2.1 Extracting Personalized KG

Selecting Medical Knowledge Graph

To augment the patient’s records with medical knowledge, it is essential to select the

appropriate KG. We select the KG based on two criteria., (1) compatibility between

medical concept identifiers and (2) ability to express rich relationships between medi-

cal concepts.

61



We first need to search for KGs in which the concept identifiers that compose

the KG can be mapped with the medical codes in NHIS-NSC data. The diagnosis

and prescription codes in NHIS-NSC are represented in ICD-10 codes (International

Classification of Diseases, 10th revision) and ATC codes (Anatomical Therapeutic

Chemical Classification System). The SNOMED-CT codes in SNOMED-CT and the

UMLS Concept Unique Identifiers (CUIs) in SemMed KG have similar properties to

ICD-10 and ATC codes in that they can express clinical information in EHRs, and,

therefore, can be mapped to each other.

Secondly, in order to incorporate knowledge related to the clinical outcome predic-

tion, a KG representing rich relationships between medical concepts is needed. Specif-

ically, we explore a KG with the relation types that represent causal or temporal rela-

tions. We select SemMed KG as it satisfies all the above conditions.

Mapping concept identifiers in SemMed KG with the medical codes

To extract personalized KGs from the original SemMed KG using the medical codes

in each patient’s records, we map concept identifiers in SemMed KG with the medical

codes in NHIS-NSC. For diagnosis code, we map the ICD-10 codes with UMLS CUIs

using the mapping table provided by the UMLS metathesaurus. We also map the ATC

codes in NHIS-NSC by converting them into SNOMED-CT concepts and then con-

vering SNOMED-CT concepts into UMLS CUIs. Here, we use only the overlapping

parts between two sources.

Subgraph Extraction

SemMed KG contains information about approximately 96.3 million predications (re-

lations) among medical entities from all PubMed citations (about 29.1 million cita-

tions) [63, 64]. We use only 19 relation types that connect entities contained in the

domains of ‘Pharmacologic Substance’ and ‘Disease or Syndrome’. The predicates

(relation types) we use are given in a Table 5.2. Also, the example of the extracted

62



Table 5.2: Relation types in extracted personalized KGs
Predicate Types

’COMPLICATES’, ’COEXISTS WITH’, ’MANIFESTATION OF’, ’ISA’,

’LOCATION OF’, ’TREATS’, ’INHIBITS’,

’PRECEDES’, ’AFFECTS’, ’PART OF’, ’AUGMENTS’,

’PREVENTS’, ’ASSOCIATED WITH’,

’PRODUCES’, ’CAUSES’, ’DISRUPTS’, ’OCCURS IN’,

’PREDISPOSES’, ’DIAGNOSES’

Figure 5.2: Exmaples of an extracted knowledge triplet from SemMed KG.

knowledge triplet is given in Figure 5.2. We extract each enclosing subgraph by fol-

lowing process.

First, we select a set of nodesN that indicates the diagnosis and prescription codes

of each patient. Then, we extract the direct triplets between the two nodes u, v ∈ N in

this set. We denote this set of edges as E(N). To also consider the 2-hop path between

two nodes u, v, we extract all the 1-hop neighbors of each u, v ∈ N . We denote them

as N (u) and N (v). After retrieving triplets from E({N (u)∪N (v), ∀u, v ∈ N}), we

exclude the triplets in E({N (u) ∩ N (v),∀u, v ∈ N}). Finally, we use the resulting

subgraph together with E(N).
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5.2.2 KA-SAF: Knowledge-Augmented Self-Attentive Fusion Encoder

Based on the personalized KG, we build the KG representation using GNN-encoder.

The KG representation is then augmented to the deep patient representation built upon

the patient’s clinical records. To encode the deep patient representation, we use SAF-

RNN, which achieved the state-of-the-art performance in our previous work, described

in Chapter 3.

RNN-based Disease Prediction Model

In our model, the patient records were processed in three steps: (1) First, we encoded

the time-dependent visit history into a sequence of hidden representations. (2) Second,

to obtain the global representation of the entire set of patient records, we used an SAF

module that fuses the hidden representations of the visits and the patient characteris-

tics. (3) Finally, we used the obtained global representation for binary classification.

To capture the temporal relations between the clinical events in each of the visits, we

used an RNN model to process the visit history given as the sequence of the visit em-

bedding vectors, which is v = (v1,v2, . . . ,vT ). The RNN model updates the visit

representations with respect to the informative events that occurred in the past. The

high-level representation of a hidden state is computed as follows:

hi = RNN(vi,h(i−1)). (5.1)

We specifically implemented the Bi-directional GRU(Gated Recurrent Units)-RNN

model to address the problem of long-term dependencies.

Self-Attentive Fusion (SAF) Encoder

Next, to obtain the global representation of the patient’s history, considering the patient

characteristics, we applied the SAF encoder. As depicted in Figure 2, a previously

dominant method to incorporate patient characteristics was a simple concatenation of

the RNN features with the vector encoding the patient characteristics. However, this
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approach does not consider the complex relations between two heterogeneous patient

records. On the other hand, our proposed SAF encoder captures the relations between

patient characteristics and the RNN hidden states from different time steps by using

the self-attention after the feature-based gating. First, the patient characteristics x̃ is

fused with each of the visit representations hi during the feature-based gating. Here,

the hypernetwork is fed with the concatenation of x̃ and each hi, yielding an element-

wise gating that is applied to hi. A gate function fg with a sigmoid activation function

σ generates a mask vector for hi, conditioned on x̃. Formally:

si = fg(hi, x̃) = σ(W ⊺
g [hi, x̃] + bg)⊙ hi, (5.2)

whereWg and bg are learnable parameters. After the salient features of hi are selected

with respect to the patient characteristics, the self-attention mechanism is applied over

the updated visit representations si. Self-attention, also known as intra-sequence atten-

tion, computes the compositional relationships between visits within a sequence. Here,

we use a bilinear function fa to measure the alignment between the query input si and

the key input st. The alignment e(i,t) is computed with a learnable weight matrix Wa

as shown below:

e(i, t) = fa(si, st) = s⊺iWast (5.3)

Then we compute the normalized attention score α(1)
(i,t) across the inputs and obtain

each visit representation ci as a weighted sum:

α
(1)
(i,t) =

exp(ei,t)∑T
j=1 exp(ei,j)

(5.4)

ci =
T∑
t=1

α
(1)
(i,t)st (5.5)

Lastly, we apply logistic regression to the final visit representation cT . It produces

the scalar value ŷ, which estimates the patient-specific risk score for a disease diagno-

sis in the next visit.

ŷ = σ(W ⊺cT + b) (5.6)
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GNN-based Knowledge Graph Encoder

We use multi-relational R-GCN [76], a GNN-based method designed for modeling

multi-relational data, to obtain a subgraph-level representation. The embedding of a

node i in the kth layer is given by:

hki = ReLU(
∑
r∈R

∑
j∈Ni

αkijW
k
rh

k−1
j +Wk

selfh
k−1
i ), (5.7)

where the first term is the aggregated message from the neighbors Ni of node i. The

initial node representation h0
i is a skip-gram based medical code embeddings. Note

that we use the same code representations as the input of the SAF-RNN. αi,j denotes

an edge attention weight of the edge (i, j) and is given as a function of the source node

i, neighbor node j, relation type rij of the edge (i, j).

AfterL layers of message passing, we obtain a subgraph-level representation hG(h,r,t)

by concatenating the node representation of the source, target, and the average-pooled

representation of all the node:

hG =
1

|V|
∑
i∈V

hLi , (5.8)

where V denotes the set of vertices in G. To make the model’s performances robust to

the number of GNN layers, we adopt JK-connections [77].

Combining with KG representation

We combine the KG representation and the deep patient representation using two ap-

proaches: Concat and Attend. Concat simply concatenates two representation

vectors and input the concatenation to the prediction layer. Meanwhile, Attend con-

siders the deep patient representation in the process of neighborhood aggregation of

GNN by computing the attention weight conditioned on the deep patient representa-

tion.

Two different approach to combine the KG representation with the deep patient
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Figure 5.3: Concatentation-based KA-SAF.

representation are depicted in ?? and 5.4. If we use Concat approach, then the final

representation to be fed into the regression/classification layer is given as:

c = cT ⊕ hG (5.9)

However. if we use Attend approach for combining GNN and SAF-RNN rep-

resentations, we use the SAF-RNN’s context vector cT for computing the attention

weight αij .

s = ReLU(A1
k[hk−1

i ⊕ hk−1
j ⊕ cT ⊕ erij ] + b1

k),

αij = σ(A2
ks+ b2

k),
(5.10)

Finally, the average-pooled node representation hG is given as the input of the

regression/classification layer.
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Figure 5.4: Attention-based KA-SAF.

5.2.3 KGC as a Pre-training Task

Additionally, we seek to harness pre-training for GNNs to further enhance the person-

alized KG representation. We perform KG completion (KGC) task as a pre-training

task, which is to predict the plausibility of a given triplet solely on the logical rules

inherent in the KGs. The SemMed KG expresses various relations between medical

entities, and these relations are strongly associated with other adjacent relations ac-

cording to specific logical rules as depicted in 5.1. To encode these logical rules, we

use GNN representation learning based on the enclosing subgraph.

To improve the performance of KGC task, we utilize the method, proposed in our

other research. In this work, we suggest a novel inductive link prediction model, called

Subgraph Infomax (SGI), where the relation embedding is trained to contain more

meaningful information about subgraphs via the mutual information (MI) maximiza-

tion objective. SGI consists of a GNN-based scoring network for computing the score

of a given triplet and a module for MI maximization. We trained SGI to maximize the
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MI between the relation embedding and the subgraph representation. After pre-training

the GNN encoder with the KGC training objective on SemMed KGs, the GNN encoder

is further fine-tuned via the supervision coming from clinical outcome prediction.

5.2.4 Subgraph Infomax: SGI

In this section, we provide an overview of our SGI model. The KGC task is to score a

triplet (h, r, t) to estimate the probability of a relation r between a head entity h and

a tail entity t. Similar to GraIL, we extract an enclosing subgraph G(h,r,t) around the

target nodes, h and t, and use the subgraph structure to score a triplet independently of

the node embeddings. In particular, the enclosing subgraph is extracted by intersecting

two subsets of k-hop neighboring nodes of the head or tail. The shortest distance of

the nodes to the head or tail is used as node features, known as double-radius vertex

labeling.

SGI first summarizes the subgraph through a GNN encoder and computes the

triplet’s score using the encoded-subgraph representation and relation embedding. At

the same time, the MI estimator estimates the MI between the relation embedding and

the subgraph representation.

GNN-based Scoring Network for Inductive KGC

We use multi-relational R-GCN [76], a GNN-based method designed for modeling

multi-relational data, to obtain a subgraph-level representation. The embedding of a

node i in the kth layer is given by:

hki = ReLU(
∑
r∈R

∑
j∈Ni

αkijW
k
rh

k−1
j +Wk

selfh
k−1
i ), (5.11)

where the first term is the aggregated message from the neighbors Ni of node i. The

initial node representation h0
i is a node feature labeled by aforementioned double-

radius vertex labeling. αi,j denotes an edge attention weight of the edge (i, j) and is
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given as a function of the source node i, neighbor node j, relation type rij of the edge

(i, j), and the target relation r.

s = ReLU(A1
k[hk−1

i ⊕ hk−1
j ⊕ er ⊕ erij ] + b1

k),

αij = σ(A2
ks+ b2

k),
(5.12)

where er and erij are relation embeddings for relation r and rij . Different from

GraIL that uses attention relation embeddings, separate from the relation embeddings,

we use the same relation embeddings during computing attention weights. This allows

the GNN encoder to learn a subgraph representation with enhanced connectivity be-

tween the subgraph representation and the input relation embedding through the MI

estimator that will be described later.

AfterL layers of message passing, we obtain a subgraph-level representation hG(h,r,t)

by concatenating the node representation of the source, target, and the average-pooled

representation of all the node:

hG(h,r,t)
= hLh ⊕ hLt ⊕ 1

|V|
∑
i∈V

hLi , (5.13)

where V denotes the set of vertices in G(h,r,t). To make the model’s performances ro-

bust to the number of GNN layers, we adopt JK-connections [77] as in GraIL. Finally,

we compute a score for (h, r, t) using the subgraph representation and the target rela-

tion embedding as follows:

score(h, r, t) = W[hG(h,r,t)
⊕ er] (5.14)

Subgraph-Relation MI Maximization

The key idea behind our approach is to strengthen the connectivity between the enclos-

ing subgraph around the target triplet and the target relation. Based on the assumption

that the enclosing subgraphs contain the logical rules related to the target triplet, we

implement the objective to maximize the MI between the subgraph representation en-

coded with an R-GCN model and the relation embedding.
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Motivated by previous works [78, 79] on using MI estimator for graph represen-

tation learning, we employ a discriminator Dψ(hG(h,r,t)
, er) that represents the feasi-

bility of the subgraph-relation pair. ψ refers to the parameters of D, which is a bi-

linear function in our study. Negative samples for subgraph-relation pair are given as

(hG(h,r,t)
, er′), where hG(h,r,t)

is the graph representation from the positive triplet and

er′ is the relation embedding for a random negative relation. We use a noise-contrastive

type objective with a binary-cross entropy loss suggested in [80] for MI maximization

so the estimated MI on subgraph-relation pairs over the training set Gtrain is given as

follows:

Iϕ,ψ :=
∑

(h,r,t)∈Gtrain

log[Dψ(er,hϕ,G(h,r,t)
)]+

∑
(h,r,t)∈Gtrain,r′∈R,r′ ̸=r

log[(1−Dψ(er′ ,hϕ,G(h,r,t)
))],

(5.15)

where Iϕ,ψ is the MI estimator modeled by discriminator Dψ and ϕ denotes the set of

parameters of a R-GCN encoder. By maximizing the above MI objective, we train the

whole networks to learn the subgraph representation that is strongly connected to the

target relation embedding.

We use binary-cross entropy (BCE) loss to discriminate the positive and negative

triplets as follows:

L =
∑

pi∈Gtrain

−log(score(pi))− log(1− score(ni)), (5.16)

where pi is the positive triplet and ni is the negative triplet extracted by using SANS

strategy. Combined with the MI objective in (5.15), the total loss function for pre-

training is defined by:

Lp.t. = L − Iϕ,ψ. (5.17)
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5.3 Dataset and Experimental Setup

5.3.1 Clinical Outcome Prediction

In this research, we extracted the visit data of 75,604 patients from the NHIS-NSC

data. Consequently, 7,981 cases and 67,623 controls were extracted with diagnosis

and prescription codes. The average visit length for each patient was approximately

57, and the total numbers of unique codes were 1,628 and 1,502 for diagnoses and

prescriptions, respectively. Then, we designed more tailored experimental settings as

follows. An immediate outpatient CVD diagnosis before CVD admission is not a cause

for CVD admission; rather, it should be considered as a point of the first contact in

the natural course of CVD detection. However, because our operational definition of

CVD was CVD with inpatient admission, cases very often had CVD outpatient visits

immediately prior to admission. With such highly-correlated cases, the model was in-

centivized to predict based on CVD outpatient diagnosis rather than looking at other

non-obvious factors. Thus, we cleaned our data by masking all medical data, including

CVD outpatient diagnosis codes, within the 7 days (and 14 days) prior to CVD admis-

sion on the diagnosis date. We defined this data as the MASKED 7 and MASKED 14

dataset, in contrast to the original RAW dataset. For each dataset, we used 80% of the

data for training, 10% for validation, and the remaining 10% for testing. For next di-

agnosis prediction task, we randomly sampled 82,311 patients from NHIS-NSC data.

We added the classification layer to predict the softmax probabilities to all 1,623 diag-

noses.

5.3.2 Next Diagnosis Prediction

For next diagnosis prediction task, we randomly sample 87,384 patients from the entire

NHIS-NSC. Our task is to predict the diagnosis codes given the clinical history and

the patient characteristics of a patient. We use 80% of the data for training, 10% for

validation, and the remaining 10% for testing. Top-k recall is used to evaluate the
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performance.

5.4 Experimental Results

5.4.1 Cardiovascular Disease Prediction

The experimental results are shown in Table 5.4. Compared to the previous state-of-

the-art method, which is SAF-RNN, the knowledge-aumented SAF-RNN shows im-

proved performances in both AUROC and AUPRC. We observe that KA-SAF using

Attend is more effective than KA-SAF with Concat. The performance of KA-

SAF with Concat is even more improved after pre-training GNN encoder with KGC

task. However, KA-SAF with Attend shows worsen results. We assume that different

schemes to compute the attention weights between pre-training and fine-tuning states

interferes with the prediction performances.

5.4.2 Next Diagnosis Prediction

The experimental results are shown in Figure 5.7. Top-k recall is evaluated for k = 10

and k = 30. For both different k values, SAF-RNN augmented with SemMed KG

shows the best performances. Here, we use the KA-SAF with Concat. As in CVD

prediction task, the performances are even more improved after pre-training GNN en-

coder with KGC task.

5.4.3 KGC on SemMed KG

In KGC on SemMed KG, we aim to predict the other entity given another entity and

the relation type, i.e., predicting the tail given (h, r, ?) or predicting the head given

(?, r, t). We evaluate the models on Mean Reciprocal Rank (MRR), Hits at 1 (H@1),

and H@10, by ranking each validation triplet among 50 other negative candidates as

reported in Table 5.3. The evaluated models are GraIL, SGI, and SGI f.t., which are the

models for inductive KGC. SGI f.t. is a SGI model where further fine-tuning technique

73



Table 5.3: KGC results evaluated on SemMed KG with uniform negative triplets
Datasets SemMed KG

Models MRR Hits@1 Hits@10

GraIL 49.64 41.12 56.88

SGI 55.35 48.28 61.33

SGI f.t. 57.02 51.75 62.89

Table 5.4: CVD prediction results evaluated on three datasets
Datasets RAW MASKED 7 MASKED 14

Models AUROC AUPRC AUROC AUPRC AUROC AUPRC

SAF-RNN 0.839± 0.000 0.661± 0.001 0.784±0.001 0.540± 0.001 0.760± 0.001 0.501± 0.002

KA-SAF (Concat) 0.842± 0.001 0.683± 0.003 0.809± 0.001 0.565± 0.003 0.784± 0.004 0.532± 0.005

KA-SAF (Attend) 0.849± 0.001 0.695± 0.002 0.816± 0.002 0.572± 0.002 0.791± 0.003 0.543± 0.005

KA-SAF (Concat) + p.t. 0.855± 0.002 0.697± 0.003 0.818± 0.001 0.581± 0.002 0.799± 0.003 0.550± 0.003

KA-SAF (Attend) + p.t. 0.848 ±0.003 0.692± 0.003 0.810 ±0.002 0.570± 0.002 0.784± 0.003 0.537± 0.004

is applied. As a result, SGI f.t. showed the best inductive link prediction performances

as in Table 5.3.

5.5 Conclusion

We utilize Semantic Medline Knowledge Graph (SemMed KG) to augment the deep

patient representation with prior medical knowledge. A personalized knowledge graph

is made by extracting the subgraph of the SemMed KG consisting of the medical codes

in each patient’s record. Based on the personalized KG, we build the deep patient rep-

resentations upon the personalized medical knowledge using GNNs. Along with the

deep patient representation learned by SAF-RNN, the KG representation is used to pre-

dict some clinical outcomes. Specifically, we evaluated the performances of our model

on two tasks, i.e., the next diagnosis prediction and the CVD prediction as in the first

study. The knowledge-augmented SAF (KA-SAF) showed improved performances in

both two tasks, compared to the previous state-of-the-art method. The performances

are further improved when we pre-train the GNN encoder with KGC training objective

using SGI, showing the enhanced KG representation.

74



3RVLWLYH�7ULSOHW

(QWLW\��
5HSODFHPHQW

5HODWLRQ��
5HSODFHPHQW

HU
 HU

*11�EDVHG�
6FRULQJ�1HWZRUN

7\SH�,�
1HJDWLYH�7ULSOHW

7\SH�,,�
1HJDWLYH�7ULSOHW

K

W


K W

7DUJHW��
5HODWLRQ�(PEHGGLQJ�(QFORVLQJ�6XEJUDSK

1HJDWLYH�
5HODWLRQ�(PEHGGLQJ� &RUUXSWHG�6XEJUDSK

Figure 5.5: GNN-based Scoring Network.

75



HU �

5�*&15�*&1

������

� � �� � �

'LVFULPLQDWRU

7\SH�,�16

HU HU

�

�3UH�WUDLQLQJ�6WDJH!

(QFORVLQJ�VXEJUDSK

6XEJDUSK�5HODWLRQ�
0,�0D[LPL]DWLRQ

7\SH�,,�16�

������

� � �� � �

'LVFULPLQDWRU

Figure 5.6: Architecture of Subgraph Infomax(SGI).

0

10

20

30

40

50

60

70

80

90

Recall @ 10 Recall @ 30

SAF-RNN SAF-RNN + SemMed SAF-RNN + SemMed (After KGC p.t.)

Figure 5.7: Top-k recall results for next diagnosis prediction task.

76



Chapter 6

Conclusion

This dissertation proposes a deep neural network-based medical concept and patient

representation learning methods using National Health Insurance Service-National

Sample Cohort (NHIS-NSC) to solve two healthcare tasks, i.e., clinical outcome pre-

diction and post-marketing ADR signal detection.

First, we proposed a Recurrent Neural Network (RNN) model that learns patient

representations based on the clinical sequences along with the fixed patient charac-

teristics, and predicts the risk probability of a cardiovascular disease onset. Our pro-

posed model efficiently fuses different types of information using feature-based gating

and self-attention. We demonstrated that high-level associations between two hetero-

geneous patient records are effectively extracted during the process of feature-based

gating and the computation of self-attention.

Secondly, based on the observation that the distributed representation of medical

code contains temporal information, we introduced a graph structure in to enhance the

code embedding with such temporal information. We constructed a graph using the

similarity between the distributed vectors of medical code and the statistical informa-

tion between medical codes. We then proposed the Graph Neural Networks(GNN)-

based representation learning approach for post-marketing ADR detection. Our model

showed competitive performance in predicting drug-ADR pairs. It especially predicted
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ADR candidates that do not exist in the existing ADR database, showing its capability

to supplement the ADR database.

The suggest graph construction method only requires simple data processing and

well-established medical terminologies. Therefore, our work does not demand case-

by-case feature engineering that requires expertise, and thereby the detection for the

whole drug candidates can be fully automated.

Finally, rather than just learning patient representations using patient records alone,

we utilized Semantic Medline Knowledge Graph (SemMed KG) that specifies relation-

ships between medical entities to augment the deep patient representation with prior

medical knowledge. Here, the personalized KG was created by extracting the subgraph

consisting of only the medical codes of each patient. Based on the personalized KG, we

built the KG representation using GNN-encoder. We combined the KG representation

and the deep patient representation using two approaches: Concat and Attend.

We additionally seek to harness pre-training for GNNs to further enhance the per-

sonalized KG representation. We perform KG completion (KGC) task as a pre-training

task using the method, proposed in our other research. In this work, the relation em-

bedding is trained to contain more meaningful information about subgraphs via the

mutual information (MI) maximization objective. After pre-training the GNN encoder

with the KGC training objective on SemMed KGs, the GNN encoder is further fine-

tuned via the supervision coming from clinical outcome prediction. We evaluated the

performances of our model on two tasks, i.e., the next diagnosis prediction and the

CVD prediction. As a result, it showed improved prediction performances compared

to the case of using SAF-RNN alone. The performances are further improved when

we pre-train the GNN encoder with KGC training objective using SGI, showing the

enhanced KG representation.

78



Bibliography

[1] E. Jeong, N. Park, Y. Choi, R. W. Park, and D. Yoon, “Machine learning model

combining features from algorithms with different analytical methodologies to

detect laboratory-event-related adverse drug reaction signals,” PloS one, vol. 13,

no. 11, 2018.

[2] J. Lee, J. S. Lee, S.-H. Park, S. A. Shin, and K. Kim, “Cohort profile: the na-

tional health insurance service–national sample cohort (nhis-nsc), south korea,”

International journal of epidemiology, vol. 46, no. 2, pp. e15–e15, 2016.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-

tional networks,” arXiv preprint arXiv:1609.02907, 2016.
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초록

본 학위 논문은 전국민 의료 보험데이터인 표본코호트DB를 활용하여 딥 뉴럴

네트워크 기반의 의학 개념 및 환자 표현 학습 방법과 의료 문제 해결 방법을 제안

한다.먼저순차적인환자의료기록과개인프로파일정보를기반으로환자표현을

학습하고 향후 질병 진단 가능성을 예측하는 재귀신경망 모델을 제안하였다. 우리

는다양한성격의환자정보를효율적으로혼합하는구조를도입하여큰성능향상

을 얻었다. 또한 환자의 의료 기록을 이루는 의료 코드들을 분산 표현으로 나타내

추가 성능 개선을 이루었다. 이를 통해 의료 코드의 분산 표현이 중요한 시간적 정

보를 담고 있음을 확인하였고, 이어지는 연구에서는 이러한 시간적 정보가 강화될

수있도록그래프구조를도입하였다.우리는의료코드의분산표현간의유사도와

통계적정보를가지고그래프를구축하였고그래프뉴럴네트워크를활용,시간·통

계적정보가강화된의료코드의표현벡터를얻었다.획득한의료코드벡터를통해

시판약물의잠재적인부작용신호를탐지하는모델을제안한결과,기존의부작용

데이터베이스에 존재하지 않는 사례까지도 예측할 수 있음을 보였다. 마지막으로

분량에 비해 주요 정보가 희소하다는 의료 기록의 한계를 극복하기 위해 지식그래

프를 활용하여 사전 의학 지식을 보강하였다. 이때 환자의 의료 기록을 구성하는

지식그래프의부분만을추출하여개인화된지식그래프를만들고그래프뉴럴네트

워크를 통해 그래프의 표현 벡터를 획득하였다. 최종적으로 순차적인 의료 기록을

함축한환자표현과더불어개인화된의학지식을함축한표현을함께사용하여향

후질병및진단예측문제에활용하였다.
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