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Abstract

A recognition of the surrounding environment is important for stable autonomous

driving. Various sensors are used to accurately recognize the driving environment of

the vehicle. Among them, the radar sensors have advantages that are cost effective

and that less affected by the environment. For this reason, various signal processing

techniques have been studied to assist autonomous driving, and some functions are

implemented on the chips to be attached to vehicles.

The mutual interference of radar can occur when the operating frequencies of two

radars overlap. Usually, the interference signal received through a direct path without

being reflected by other objects, resulting in strong signal power. The interference

signal can increase noise level in the frequency response or create ghost targets, which

do not exist. It causes low detection rates and high false alarm rates. This problem

could be worse when the number of radar-equipped autonomous vehicles increased.

Therefore, in this dissertation, I propose methods for controlling the interference signal

generated in the automotive FMCW radar system using the radar.

First, I propose a method for determining whether the interference signal exists in

the received signal. Because ghost targets can occur when the interference signal is

received, it is necessary to determine whether the interference signal is received before

target detection process. In addition, a method for recognizing the type of modulation

of the interference signal is proposed. First, an SVM classifier is used for the study and

several features are extracted from the time domain signal to train the SVM classifier.

Also, I propose a method utilizing the CNN model that takes frequency responses of

the received signals as input.

Next, I propose a method for detection of interval in which the interference signal

is received. Before canceling the strong interference signal, it is necessary to find the

interference interval. The interference interval is detected using the CNN model, and I
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confirmed that the performance is higher than previously proposed methods.

Finally, I propose a method for signal reconstruction in the detected interference

interval. The detected interference signal is usually replaced with 0 or newly restored.

If it is incorrectly generated, artifacts can be generated in the frequency responses. To

solve this problem, an approximation of the signal is performed by phase correction of

the received signal for the first step. Then, more precise reconstruction is performed

using the Doppler frequency of the received signal. With simulated data and measured

data, I verified that the proposed method mitigates the interference signal, while sup-

pressing residual frequency responses to be generated.

keywords: Automotive radar, FMCW radar, interference interval detection, interfer-

ence mitigation, interference modulation classification

student number: 2016-20881
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Chapter 1

Introduction

These days, interest in stable driving of autonomous vehicles is increasing. Advanced

driver assistant system (ADAS) supports lots of functions of autonomous driving.

To achieve safe driving condition, the recognition of surrounding environment is es-

sential. Several sensors are used for the recognition, including light detection and

ranging (LIDAR), ultrasound, vision, and radio detection and ranging (RADAR) sen-

sors [1]. Among them, radar has advantages because it is relatively least affected by

the surrounding environment including bad weather conditions or time of day, and

has a relatively longer detection range than the other sensors [2]. For these reasons,

radar is widely used as an automotive sensor and is being developed to operate in

the 24 GHz and 77 GHz frequency bands [3,4]. The frequency-modulated continuous

wave (FMCW) radar is widely used as an automotive radar [5]. Recently, the fast chirp

FMCW radar has been used for target estimation on the road [6].

In an automotive radar system, the antenna of a radar-equipped vehicle receives

signals reflected from targets, roadside clutter, or structures of iron tunnels. When

another radar-equipped vehicle is nearby, undesired signals emitted from that vehicle

can be received by the antenna. These signals are defined as interference signals in

our work. If the frequency bands of the interference signals overlap with those of the

target signals, several pulse-like signals are produced after low-pass filtering. These
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signals are distributed in a wide frequency band in the frequency-domain, therefore

causing the noise level to increase [7–9]. An increase in signal noise level can make

target estimation difficult or even impossible. Moreover, the interference signals can

create ghost targets, i.e., mean unwanted and non-existing targets, which may cause

false alarms [8, 10]. Furthermore, if the number of radar-equipped vehicles increases

in the future, these problems can become more significant.

There are studies on suppressing the interference signals [11–17]. These studies

employed several techniques including digital beamforming, signal processing, wave-

form design and frequency hopping for mitigating the interference signals. Among

these interference mitigation fields, I proposed several signal processing methods to

deal with the interference signals.

As the first step of signal processing flows for the interference mitigation, I pro-

posed two methods, which can be operated in the time domain and the frequency

domain, respectively. Each method identifies the existence of interference signals in

the received signals and classifies the types of modulation of signals. In the case of the

time-domain algorithm, several features that represent the received signal are extracted

from the time-domain signals. The support vector machine (SVM) model is employed

for study and the extracted features are used as inputs of the model. Also, I proposed

a convolutional neural network (CNN)-based identification and classification method.

The method used frequency responses of the received signals to train the network.

The performance of two models were analyzed and comparisons with conventional

methods were conducted.

Then, the detection of interval where the interference signals received is performed.

The signals emitted from other radars are sampled together with the desired target

signals. To mitigate the interference signals effectively, the detection of interference

interval is performed prior to the mitigation step. I used an CNN model to detect the

interference signals in time-domain samples. The detection performance of the CNN

model was verified.
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Finally, the interference mitigation method is proposed. The detected interference

signals were eliminated and I reconstructed the signals using target signals. I recovered

the signals using a phase compensation by velocity estimation. Also, I increased the

reconstruction performance increased by changing the axis, which the reconstruction

is performed.

In Chapter 2, the principle of target estimation in the fast chirp FMCW radar sys-

tem is discussed. Also, the modulation techniques of five different signals that are used

for modeling the interference signals are introduced. Next, mathematical expressions

of mixer output signals when the interference signal is received together with the target

signal are introduced. Furthermore, the corresponding influences of the interference

signals are discussed. In Chapter 3, the proposed identification of interference signal

and classification of modulation type methods are introduced. First, the time-domain

SVM-based method is analyzed in Section 3.2. An explanation of frequency-domain

CNN-based method follows in Section 3.3. In Chapter 4, the interference mitigation

techniques are proposed. In Section 4.2, the CNN based interference interval detec-

tion method is introduced. Then, interference signal mitigation method is suggested in

Section 4.3.
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Chapter 2

Automotive FMCW Radar Systems and Interference Sig-

nals

2.1 FMCW Radar Systems

I assume that the ego-vehicle transmits fast chirp FMCW radar signals for target detec-

tion. The fast chirp FMCW radar has an advantage over the conventional FMCW radar

in terms of efficiency of target estimation. In the case of conventional systems, a target

pairing process is necessary for target estimation. In multi-target situations, the pair-

ing process can be a time-consuming task. In contrast, in the fast chirp FMCW radar

system, the target estimation can be done without the target pairing process because

the peaks corresponding to the targets appear in the 2D range-Doppler response [18].

For this reason, the fast chirp FMCW is the most widely used automotive radar sys-

tem for autonomous driving. Fig. 1 shows this system, in which a transmitting antenna

transmits a chirp signal whose frequency increases linearly with time. The transmitter

repeatedly sends M chirps and the corresponding transmitted signal can be expressed
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as

STX(t, m) = AT exp

(
j2π

((
fc −

BW

2

)
t+

BW

2∆T
t2
)

+ jϕT

)
(0 ≤ t < ∆T, 0 ≤ m < M), (2.1)

where AT is the amplitude of the transmitted signal, fc is the carrier frequency of the

radar, BW is the bandwidth, ∆T is the sweep time of a chirp, t is the time value in

the fast-time axis, m is the chirp index, and ϕT is the initial phase of the transmitted

signal. A receiver receives these M chirps signals that are reflected from a target. The

corresponding phase of the received signal can be expressed as

ϕRX(t, m) =

(
fc −

BW

2
+ fD

)
(t− td) +

BW

2∆T
(t− td)

2

(td ≤ t < ∆T, 0 ≤ m < M). (2.2)

Compared to (2.1), there are phase differences in (2.2), which are caused by the target

motion. The first one is from the Doppler shift fD, which can be expressed as 2fcv
c .

This is caused by the relative velocity v between the radar and the target. The second

one is from the round-trip delay td = 2R(m)
c , where td is the time delay for the trans-

mitted signal to reach the target and return to the receiver and R(m) is the distance

between the radar and the target. Here, R(m) is the distance for the mth chirp which

can be expressed as R+mv∆T , where R is the initial range. This is because the radar

and the target move with relative velocity v, which causes the range offset from the

initial range R.

The received signals are then multiplied with the transmitted signal in a mixer

to obtain a signal at the intermediate frequency. Higher frequency components are

filtered with the low-pass filter. The corresponding phase of the mixer output signal
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can be expressed as

ϕMX(t, m) = −fDt+ fctd −
BW

2
td + fDtd

+
BW

∆T
ttd −

BW

2∆T
td

2

(td ≤ t < ∆T, 0 ≤ m < M). (2.3)

The first, third, fourth, and last terms, which are expressed as fDt, BW
2 td, fDtd, and

BW
2∆T td

2, respectively, can be neglected because they are relatively smaller than the

other terms. Considering that fD = 2fcv
c and td = 2(R+mv∆T )

c , ϕMX(t, m) can be

approximated as

ϕMX(t, m) ≈ 2fcR

c
+

2fcv∆T

c
m+

2BWR

∆Tc
t

+
2BWvm

c
t

(td ≤ t < ∆T, 0 ≤ m < M). (2.4)

Again, the last term 2BWvm
c t can be neglected because it is relatively smaller than the

other terms. Finally, ϕMX(t, m) can be approximated as

ϕMX(t, m) ≈ 2fcR

c
+

2fcv∆T

c
m+

2BWR

∆Tc
t

(td ≤ t < ∆T, 0 ≤ m < M). (2.5)

Each chirp signal is sampled by an analog-to-digital converter (ADC) and N is the

number of samples in a single chirp. Thus, the mixer output is defined in a N × M

matrix form as

S = [sc(1), sc(2), · · · , sc(M)] , (2.6)

where sc(m) = [s(1, m), · · · , s(N, m)]T and s(n, m) is defined as

s(n, m) = AM exp

(
j2π

(
2fcR

c
+

2fcv

c
∆Tm

+
2BWR

∆Tc

∆T

N
n

)
+ jϕs

)
. (2.7)
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In (2.7), AM is the amplitude of the mixer output signal and ϕs is the phase offset.

When applying 2D Fourier transform on S in (2.6), I can estimate the target’s ve-

locity and range simultaneously. The resulting frequency response is called the range-

Doppler response. The 2D Fourier transform can be performed step by step; for exam-

ple, a column-wise Fourier transform can be performed first, followed by a row-wise

Fourier transform. When column-wise Fourier transform is applied on the signal ma-

trix S, a peak appears at a specific frequency which corresponds to the last term in

(2.7), 2BWR
∆Tc . Therefore, this frequency implies the distance between the radar and the

target. The corresponding frequency responses can be expressed in a Nc ×M matrix

form, where Nc is the number of points in the column-wise Fourier transform, as

Xc = [xc(1), xc(2), · · · ,xc(M)] , (2.8)

here xc(m) = [x(1,m), · · · , x(Nc,m)]T and x(nc,m) is defined as

x(nc,m) =

N∑
n=1

s(n,m) exp

(
−j

2πn

Nc
nc

)
. (2.9)

Figure 2.1: Frequency responses of fast chirp FMCW radar system (a) after column-

wise Fourier transform (b) after row-wise Fourier transform
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Figure 2.2: Range-Doppler response of fast chirp FMCW radar system: a peak corre-

sponding to target appears at (R, v) = (20 m, 15 m/s)

Here, xc(m) is the frequency response of sc(m) and Xc is the frequency response

following the column-wise Fourier transform.

Next, in (2.8), I apply Fourier transform on each row vector xcr(nc) in Xc, where

xcr(nc) is defined as xcr(nc) = [x(nc, 1), · · · , x(nc,M)]. The range-Doppler re-

sponse can be expressed in a Nc ×Nr matrix form, where Nr is the number of points

in the row-wise Fourier transform, as

Xrv =


xrv(1)

xrv(2)
...

xrv(Nc)

 , (2.10)

where xrv(nc) = [xrv(nc, 1), · · · , xrv(nc, Nr)] is the frequency response of xcr(nc)

8



and xrv(nc, nr) is defined as

xrv(nc, nr) =
M∑

m=1

x(nc,m) exp

(
−j

2πm

Nr
nr

)
. (2.11)

Fig. 2.1(a) shows the result of the column-wise Fourier transform when a single

target moves at a speed of 20 m/s at a distance of 15 m. As shown in the figure, peaks

are generated at 15 m in every column. In addition, a relative velocity between radar

and target can be obtained when applying Fourier transforms on each row of S. As

shown in Fig. 2.1(b), peaks appear at the frequency of 2fcv
c , which is the second term

in (2.7). Therefore, I can estimate that the target moves at a speed of 15 m/s.

Fig. 2.1 shows a range-Doppler response of the signal received from the target I

set above. As shown in the figure, peaks appear at certain values on the range and

velocity axis, enabling the estimation of the target information as R = 20 m and v = 15

m/s. Furthermore, if two or more targets exist, the corresponding peaks appear at the

range-Doppler response. Therefore, I can simultaneously estimate both the range and

velocity of each target.

2.2 Interference Signals in FMCW Radar Systems

2.2.1 Other types of frequency-modulated signals

There are several modulation techniques for estimating target information [1], and I

selected five different modulations to model the incoming interference signals: the

unmodulated CW, slow chirp FMCW, fast chirp FMCW, pulsed CW, and frequency-

shift keying signals. In this section, each modulation technique is briefly introduced. A

description of the fast chirp FMCW signal will be skipped as I have already discussed

in Section 2.1.
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a

b

c

d

Figure 2.3: Time-frequency graph for four different modulated signals

(a) unmodulated CW, (b) slow chirp FMCW radar system, (c) pulsed CW, and (d)

frequency-shift keying signals
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Unmodulated CW Signal

In this modulation, the frequency of the signal is constant during the transmission

period, as shown in Fig. 2a. The frequency of an unmodulated CW signal and the

corresponding transmitted signal can be expressed as

f(t) = fc (0 ≤ t < Tperiod), (2.12)

St(t) = A exp (j2πfct) , (2.13)

where A is the amplitude of the signal, and Tperiod is the signal transmission period.

Only the velocity information can be obtained through conjugate mixing [1].

Slow Chirp FMCW Signal

A slow chirp FMCW radar system transmits chirp signals that consist of an up-chirp

and a down-chirp, as shown in Fig. 2b. In the up-chirp period, the frequency of the

signal increases linearly, and in the down-chirp period, the frequency of the signal

decreases linearly. The frequency of a slow chirp FMCW signal and the corresponding

transmitted signal can be expressed as

f(t) =

(
fc + (−1)nS

B

2

)
− (−1)nS

B

Ts
(t− nSTs) ,

nS =

⌊
t

Ts

⌋
(0 ≤ t < Tperiod), (2.14)

St(t) = A exp

(
j2π

((
fc + (−1)nS

B

2

+ (−1)nS nSB) t− (−1)nS
B

2Ts
t2
))

, (2.15)

where nS represents the index of the chirp and it can be obtained from the floor oper-

ator ⌊·⌋. The range and the velocity information can be obtained through pairing beat

frequencies of mixer outputs of the up-chirp signal and the down-chirp signal [1].
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Pulsed CW Signal

A pulsed CW signal transmits periodic pulses, and the duration of each pulse is rela-

tively smaller than the pulse period, as shown in Fig. 2c. The duration is defined as a

pulse duration time, TP , and the pulse period is defined as a pulse repetition interval

(PRI), TPRI . The frequency of a pulsed CW signal and the corresponding transmitted

signal can be expressed as

f(t) =

NP−1∑
nP=0

fcrect

(
t− nPTPRI

TP

)
(0 ≤ t < Tperiod), (2.16)

St(t) = A exp

(
j2π

(
NP−1∑
nP=0

fcrect

(
t− nPTPRI

TP

)
t

))
, (2.17)

where rect(·) is a rectangular function, and NP is the number of pulses. The range

and the velocity information can be obtained through a correlation method [1].

FSK Signal

The frequency of a FSK signal consists of M different frequency steps, and every two

adjacent steps have the same frequency difference, as shown in Fig. 2d. The frequency

of an FSK signal and the corresponding transmitted signal can be expressed as

f(t) = fc − fstep

(
M − 1− 2 (nF mod M)

2

)
,

nF =

⌊
t

Ts

⌋
(0 ≤ t < Tperiod), (2.18)

St(t) = A exp

(
j2π

(
fc

−fstep

(
M − 1− 2 (nF mod M)

2

))
t

)
, (2.19)

where nF represents the index of the pulse, and fstep is the difference between two

adjacent steps. The range and velocity information can be obtained through the inverse
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Fourier transform [1].

2.2.2 Analysis of Time-Domain Mixer Output Signals

In this section, the problems that arise when the desired target signal is received with

the interference signals will be discussed. Based on the expressions and analyses of

radar modulation techniques, I will investigate the time-domain mixer output signal

expressions when various kinds of interference signals exist. Then, the time-domain

and the frequency-domain signal graphs will be introduced.

Figure 2.4: Interference system diagram

As shown in Fig. 2.4, three vehicles are set up in our work. A detection vehicle,

VD, that is equipped with a fast chirp FMCW radar, a target vehicle, VT , that is driving

in front of the detection vehicle, and an interference vehicle, VI , that is driving towards

the detection vehicle and is transmitting various types of interference signals.

To investigate the effect of an interference signal, I will check the mixer output

signal. In Section 2.1, I multiplied the transmitted fast chirp FMCW signal and the

received fast chirp FMCW signal for target estimation, as in (5). However, in the case

when an interference signal exists, I replace Sr(t̂) in (5) with the signal transmitted

from other vehicles that use different modulations. Moreover, rather than constructing

a 2D matrix for target estimation, I used a 1D time-domain signal for analyzing the in-
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fluence of the interference signals. As shown in Fig. 1, the frequency of the transmitted

signal in the fast chirp FMCW system can be expressed as

f(t) =

(
fc −

B

2

)
+

B

Ts
(t− nTs) , n =

⌊
t

Ts

⌋
. (2.20)

The corresponding transmitted signal can be expressed as

St(t) = exp

(
j2π

((
fc −

B

2
− nB

)
t+

B

2Ts
t2
))

, (2.21)

where the amplitude of the signal is normalised to one for simplicity.

For the five different modulation techniques, each received signal expression, Sr(t),

is derived from its corresponding transmitted signal expressions, as in (15), (17), (19),

and (21). For the fast chirp FMCW signal, Sr(t) is derived from (23). Like in (4) and

(5), Sr(t) is derived from St(t) by taking into account the Doppler shift frequency fD

and the round-trip delay td. Furthermore, I added a variable, tdelay, which represents

the mismatched timing in signal transmission. To distinguish parameters of the radar-

equipped vehicle’s signal and those of the interference signals, I used the subscript I on

the parameters of the interference signals. For convenience, I used subscripts for nam-

ing modulation types as follows: “UC” for the unmodulated CW, “SC” for the slow

chirp FMCW, “FC” for the fast chirp FMCW, “PC” for the pulsed CW, and “FSK”

for the frequency-shift keying. The corresponding five mixer output signals of each

modulations can be expressed as

mUC(t) = exp

(
j2π

((
fc − fcI − fD − B

2
− nB

)
t

+(fcI + fD) (td + tdelay) +
B

2Ts
t2
))

, (2.22)
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mSC(t) = exp

(
j2π

((
fc − fcI − fD − B

2

+ (−1)nS
BI

2
− nB + (−1)nS nSBI+

(−1)nS
BI

TsI
(td + tdelay)

)
t

+
1

2

(
B

Ts
− (−1)nS

BI

TsI

)
t2

+

(
fcI + fD − (−1)nS

BI

2
− (−1)nS nSBI

)
(td + tdelay)

− (−1)nS
BI

2TsI
(td + tdelay)

2

))
, (2.23)

mFC(t) = exp

(
j2π

((
fc − fcI − fD − B

2
+

BI

2

−nB + nIBI +
BI

TsI
(td + tdelay)

)
t

+
1

2

(
B

Ts
− BI

TsI

)
t2

+

(
fcI + fD − BI

2
− nIBI

)
(td + tdelay)

− BI

2TsI
(td + tdelay)

2

))
, (2.24)

mPC(t) = exp

(
j2π

((
fc −

NP−1∑
nP=0

fcIrect

(
t− nPTPRI

TP

)
−fD − B

2
− nB

)
t+

B

2Ts
t2

+

(
NP−1∑
nP=0

fcrect

(
t− nPTPRI

TP

)
+ fD

)

(td + tdelay)

))
, (2.25)
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mFSK(t) = exp

(
j2π

((
fc − fcI − fD − B

2
− nB

+fstep

(
M − 1− 2 (n mod M)

2

))
t

+
B

2Ts
t2 +

(
fcI + fD

−fstep

(
M − 1− 2 (n mod M)

2

))
(td + tdelay)

))
. (2.26)

For simplicity, all signal amplitudes are normalised to 1.

The time-domain mixer output signals of the five different modulations are shown

in Fig. 4. Each modulation type is shown in the title of figures. In the time-domain

signal graphs, the desired target signals are densely distributed in the middle, and the

interference signals are sparsely distributed. The amplitudes of the interference signals

are usually larger than that of the desired target signal because the interference signals

are directly propagated from the interference vehicle to the receiving antenna, whereas

the desired target signals are reflected at the target vehicle, causing the signals to be

attenuated. The sparsely distributed strong interference signals distort the frequency

responses, making it difficult to estimate the target.

2.2.3 Range-Doppler Response of the Interference Signal

In this section, the frequency responses of interference signals are introduced. First,

the impact of interference signal is analyzed. When the slopes of two radars are dif-

ferent, the noise floor increases. Fig. 2.7(a) shown the case when three targets are

detected. However, when the interference signal received, two peaks are masked due

to interference signals as shown in Fig. 2.7(b). On the other hand, when the slopes of

two radars are same, the ghost target can be generated. As shown in Fig. 2.8(b), the

ghost target is generated when the interference signal received. For these reasons, the

interference signals degrade target estimation performance. Therefore, the interference

signals should be suppressed for reliable target estimation.
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Next, the range-Doppler responses of interference signals according to the mod-

ulation types are introduced. As signals from (2.22) to (2.26) are given in the form

of a vector with a single time index, they must be converted into a matrix form of

size N ×M to check the range-Doppler responses, as shown in (2.6). The NM data

samples sampled in the ADC are converted to the matrix form of (2.6), and then the

range-Doppler response is obtained through the processes of (2.8)-(2.11). Analyzing

the magnitude of range-Doppler responses, as presented in Fig. 5, I observe that differ-

ent patterns are generated according to the modulation types. Fig. 5(a) and Fig. 5(b)-(f)

show the magnitude of range-Doppler responses when only the target exists and when

five different types of interference signals are received together, respectively. From the

expressions from (2.22) to (2.26), different frequency components of the interference

signals create specific patterns in range-Doppler responses. Therefore, I can expect

that a deep learning model trained with the magnitude of these frequency responses

can ensure the identification of the interference signals.
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Figure 2.5: Time-domain received signals of five different modulations
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Figure 2.6: Frequency-domain signal of five different modulations
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Figure 2.7: Range-Doppler responses when (a) 3 target exist and (b) interference signal

received

Figure 2.8: Range-Doppler responses when (a) 1 target exists and (b) interference sig-

nal received
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Figure 2.9: Range-Doppler responses of received signals when (a) only target signal,

(b) unmodulated CW signal, (c) slow chirp FMCW signal, (d) fast chirp FMCW signal,

(e) pulsed CW signal, and (f) FSK signal received
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Chapter 3

Identification of Existence of Interference Signal and

Classification of Modulation of Interference Signal

3.1 Motivation

For the first step of interference handling, the identification of the existence of interfer-

ence signal is processed. If the identified received signal is the desired target signal, I

can decide to perform a target estimation process. Otherwise, I can decide to suppress

the interference portion of the signal according to the modulation type of the signal,

as I have classified it. A few studies have suggested methods for the identification of

interference signals [19], [20]. In [19], a method for identifying the modulation type

of interference signals is proposed. The authors used a Gini’s coefficient, which rep-

resents the inequality of the observation values of the power spectral density of the

received signal, as a feature to classify the interference signals. However, the authors

assumed that the target signals were not reflected from the target, and did not consider

the case where an interference signal and the target signal are received together. This

assumption does not reflect driving conditions on the road. In [20], the authors con-

sidered the case where a signal of the ego-radar system was received together with a

signal of another radar. They suggested a classification model using a support vector
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machine (SVM). The frequency responses of received signals were used as input data

for the model. They used the entire frequency-domain interference signals and sliced it

to make training sets, rather extract features from the frequency responses. Therefore,

the complexity of learning and classification process was probably high.

In this chapter, I propose an identification and classification method in both the

time domain and the frequency domain. I classified 5 modulation type of interference

signal as listed in 2.2. For the time-domain interference classification method, five

features, i.e., the mean, variance, skewness, kurtosis, and peak-to-averaged power ra-

tio (PAPR), are extracted from the time-domain mixer output signal. First, I identify

whether an interference signal exists or not. If the received signal is verified as the

interference signal, then the classification is performed, and the signal is classified ac-

cording to modulation type. The SVM is used for training and validation. As I extract

features from the time-domain signals, rather than using the entire dataset, I expect

that this method has an advantage in computational load.

Next, I suggest the interference identification and classification method performed

in frequency domain. In the fast chirp FMCW radar system, mutual interference can

be effectively analyzed in two axes of slow-time and fast-time, which can be regarded

as two-dimensional (2D) data. These 2D data, radar signals with interference, were

transformed into a range-Doppler response by utilizing 2D Fourier transform. Thus,

I propose a model using a convolutional neural network (CNN) which is effective

for the 2D radar data. Recently, CNN’s have been actively used in combinations with

radar sensor data to classify target types [21–23] or specific actions [21, 24]. In this

chapter, I proposed a CNN model composed of convolutional layers, fully connected

layers, and an output layer, considering batch normalization and max pooling for better

performance.

In simulation results, the proposed CNN-based method can classify five different

interference signals with an accuracy of over 96% and it shows better classification

accuracy than SVM’s used in [20], [25]. Unlike feature-based machine learning tech-
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niques, our proposed method does not require hand-crafted features based on domain

knowledge. In addition, whereas the conventional method requires the entire chirp data

for classification, the proposed method allows classification using only a few chirps.

This is to make faster decisions by lowering the amount of computation in generating

input data of the CNN model. I took chirp data from the first column and transformed

it into 2D range-Doppler response. The proposed algorithm showed 96.5% accuracy

even when only 1% of the total chirps were used. I verified that the accuracy increased

as the number of chirps used increased.

The remainder of this chapter is organized as follows. In Section 3.2, the proposed

time-domain classification algorithm using SVM is introduced. First, the simulation

environment is introduced in Section 3.2.1. Then, features that I used in this study is

explained in Section 3.2.2. In Section 3.2.3, the classification model using SVM is

proposed. Finally, the classification results are analyzed in Section 3.2.4. In section

3.3, the proposed CNN-based classification method is presented. From Section 3.3 to

Section 3.3.3, the input type and the framework for the CNN are introduced. The sim-

ulation environment is described in Section 3.3.4. Then, the classification results using

the CNN are given in Section 3.3.5. Additionally, I also compare the performance of

the proposed method to other classification methods. Finally, I conclude this chapter

in Section 3.4.

3.2 Time-domain Classification Algorithm with Support Vec-

tor Machine

3.2.1 Simulation Environment

To verify the performance of the proposed method, I consider the worst possible situ-

ation and consider the case where the interference signal’s bandwidth overlaps with a

lot of frequency bands of the detection vehicle. If the frequency bands of the signals

are overlapped, several interference signals remain after passing the signal through a
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mixer. In this case, the interference signal’s effect will be significant even after the

mixer output signal has passed through an LPF. I set the parameters, including the

sweep time and pulse duration, to satisfy the requirements in 77/79 GHz automotive

radar systems [26] and [27]. Our main focus was to satisfy the range resolution and

velocity resolution conditions. Accordingly, the radar parameters are set as shown in

Table 3.1.

Table 3.1: Modulation types of interference signals and mixer output signals

When creating the signals, I considered a wide range of conditions to take into

account the diversity of driving environments. Considering the maximum detection

range Rmax in (10) and radar parameters of Table 1, the maximum detection range is

76.8m. Therefore, I set the range between the detection vehicle and target vehicle, Rt,

and the range between the detection vehicle and interference vehicle, RI , as values

from 10 to 70m. Furthermore, from (11), the maximum unambiguous velocity can be

calculated as 98.04m/s, and I can suppose that the velocity of each vehicle can vary

from 0 to 30m/s. Therefore, the relative velocity between the detection vehicle and the

target vehicle varies from −30 to 30m/s. Furthermore, the relative velocity between

the detection vehicle and interference vehicle varies from −60 to 0m/s. Also, I set

tdelay, which is the difference in transmission timing between the detection vehicle

and the interference vehicle, as a value from 0 to the sweep time Ts.
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3.2.2 Class Selection and Feature Selection

To classify the modulation techniques, I used MATLAB and created mixer output sig-

nals. I considered five different modulations: unmodulated CW, slow chirp FMCW,

fast chirp FMCW, pulsed CW, and FSK. To verify that I could identify the existence

of an interference signal, I also created a signal in which only the desired target signal

existed. For convenience, I named this non-interference signal as “NI”.

Furthermore, I selected the mean, variance, skewness, and kurtosis of the time-

domain signal as features when training and validating the SVM. These four features

are widely used when the classification uses signals from targets [28]. I also used

PAPR, which indicates the ratio of the peak power level to the time-averaged power

level. These five features are defined as follows.

Table 3.2: Averaged feature values

26



µ =
1

Nf

Nf∑
n=1

ℜ
(
m(n)

)
,

σ =
1

Nf − 1

Nf∑
n=1

(
ℜ
(
m(n)

)
− µ

)2
,

γ =

1

Nf

Nf∑
n=1

(
ℜ
(
m(n)

)
− µ

)3

√√√√ 1

Nf

Nf∑
n=1

(
ℜ
(
m(n)

)
− µ

)2
3 ,

k =

1

Nf

Nf∑
n=1

(
ℜ
(
m(n)

)
− µ

)4
 1

Nf

Nf∑
n=1

(
ℜ
(
m(n)

)
− µ

)2
2 ,

p =
max
n

[
m(n)m∗(n)

]
1

Nf

Nf∑
n=1

m(n)m∗(n)

, (3.1)

where ℜ(·) is an operator that takes real parts of the complex signals, m(n) is a

discrete-time mixer output signal, and Nf is the number of samples of m(n). The

parameters µ, σ, γ, k and p stand for mean, variance, skewness, kurtosis and PAPR,

respectively.

For each modulation, I made 1, 000 mixer output signals, and for each modeled sig-

nal, I extracted the five features above. Therefore, the dataset consisted of 6×1, 000×5

values. The average values of each feature according to modulation type are shown in

Table 3.2.

The scatter plots of feature values that were extracted from interference signals

are shown in Fig. 3.1. In Fig. 3.1(a), I can see that the values of the “NI” class are

distributed like a line in the 3D scatter plot graph. To show the feature distribution in
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detail, a 2D scatter plot with kurtosis and PAPR is shown in Fig. 3.1(b). Most of the

feature values of each classes are distributed in certain ares respectively, and some val-

ues are distributed along the curved line. Although some values from different classes

overlap, I can expect to classify the types of modulation used with classification meth-

ods.

3.2.3 Classification using Support Vector Machine

An SVM is an effective classifier for dividing data into two classes and is widely used

for classification in several academic fields. In automotive radar applications, the SVM

is used for target classification [29]. A linear SVM finds an optimal hyperplane and the

corresponding support vectors that maximize the margin between the hyperplane and

the data closest to the hyperplane [30]. The linear SVM can be extended to cases that

have non-linear boundaries between classes by exploiting kernel functions [31]. The

kernel functions include the Gaussian kernel, quadratic kernel and cubic kernel. These

kernels transform the original data space into a new data space, which can enable much

more effective classifications. As shown in Fig. 3.1(b), the 2D scatter plot has curved

lines; therefore, I selected a classifier that was more complicated than the linear SVM.

I used the quadratic kernel function for the classification. Also, a binary classification

in SVM can be extended to a multi-class classification with the one-against-all method,

one-against-one method, and directed acyclic graph SVM (DAGSVM) method [32]. I

used the one-against-one method for our classification.

In automotive radar systems, the hardware has limited resources when it comes

to computating data. Therefore, it is hard to use algorithms with high computational

loads in automotive radar systems. For classifying tasks in automotive systems, I com-

pared the SVM and other classification algorithms, artificial neural network (ANN), in

several aspects. First, I analyzed the computational complexity of SVM and recurrent

neural network (RNN), which is one of the ANN models and widely used for training

sequential data. The computational complexity of SVM is between O(n2) and O(n3),
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Figure 3.1: Scatter plots

(a) a 3D scatter plot of a six-class classification with three suggested features, and (b)

a 2D scatter plot of a five-class classification with kurtosis and PAPR
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where n is the number of training instances [33]. On the other hand, the complexity of

RNN is O(N2L) per epoch, where N is the number of units in a RNN layer and L is

the total number of time steps [34]. Because these two learning methods’ complexities

are expressed with different parameters, I cannot strictly conclude which method is

more complex. Second, a unique global minimum solution is guaranteed when I use

SVM, because I can formulate a convex optimization problem. However, when I use

ANN, one of the several local minimum solutions may be obtained. Additionally, the

SVM is less prone to overfitting than ANN [35]. Overfitting is a tendency to learn un-

wanted portions of data such as noise. Because it degrades the performance of models,

I thus have to consider several techniques to avoid overfitting. However, the SVM is

quite resistant to overfitting. Therefore, as the SVM has several advantages over ANN,

I selected the SVM for classifying the interference signals.

I verified the performance of the classification from a 5-fold cross-validation. I

randomly divided the entire dataset into five groups, and trained a classification model

with four groups. Then, I validated the trained model with the remaining one group.

The classification accuracy was averaged after performing classifications with four

different combinations of divided groups.

3.2.4 Classification Results

First, I verified the identification performance of whether the interference signals ex-

ist or not. The interference signals of five different modulations, “UC”, “SC”, “FC”,

“PC”, and “FSK” were grouped into the ‘INT’ class, which stands for interference.

Therefore, the dataset consisted of 5000 samples of the “INT” class and 1000 samples

of the “NI” class. The confusion matrix of the two-class classification is shown in Ta-

ble 3.3. Each row of the confusion matrix corresponds to a predicted class, and each

column corresponds to a true class. As shown in Table 3.3, the accuracy of identifica-

tion was calculated as over 99.8%. Therefore, I can say that, if the interference signals

are received with the target signal, I can notice it and decide to apply interference
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suppression techniques.

Table 3.3: Confusion matrix for the identification of presence of interference signals

using SVM

True class/predicted class Interference, % Non-interference, %

interference 99.8 0.2

non-interference 0 100

After identifying the presence of the interference signals, I classified the interfer-

ence signals into five classes: “UC”, “SC”, “FC”, “PC”, and “FSK”. Each class has

1000 samples of data, therefore the dataset consists of 5000 samples. The resulting

confusion matrix is shown in Table 3.4, and the accuracy of classification is over 96%.

Furthermore, the averaged accuracy of classification is calculated as 98.6%. Although

the classification accuracies of class “SC” and “FC” are slightly lower than those of the

other classes, the majority of the samples are classified well. I can conclude that five

features of time-domain mixer output signals are appropriate for the identification of

the presence of the interference signals and the classification of the modulation types

of the interference signals.

Table 3.4: Confusion matrix for the classification of interference signals using SVM

I compared the classification performance with another classification method, the

decision tree method. To predict input samples, binary decisions are made from a root

node down to a leaf node. Every leaf nodes represent one of the classes [36]. The

classification using the decision tree is shown in Table 3.5. The averaged accuracy

of classification was calculated as 93.2%, however, when compared to Table 3.4, the

accuracy of the decision tree method was lower than that of quadratic SVM.
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Table 3.5: Confusion matrix for the classification of interference signals using decision

tree method

I investigated which features are critical for classification. First, I used only one

feature for classification and the result is shown in Table 3.6. The table shows the ac-

curacy of the classification that each class is classified into its class when I change the

feature used. I identified that PAPR was the most important feature of the classifica-

tion, and it is followed in importance by kurtosis, variance, mean and skewness. Then,

I have conducted classifications with increasing the number of features used in order of

importance of the verified features, and the result is shown in Table 3.7. From Tables.

3.6 and Table 3.7, I verified that the skewness is the least important factor for classifi-

cation. Therefore, when I need to reduce the complexity of calculation for SVM, I can

choose the rest of the four features for classification.

Table 3.6: Classification accuracy when using one feature

Table 3.7: Classification accuracy when increasing the number of features used

I compared the classification performance of our work with that of [20]. Frequency-

domain signals were obtained by applying Fourier transform on the time-domain mixer

output signals. I divided the frequency-domain signals in order to make a training
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dataset and trained the data with linear SVM as the authors did. The results are shown

in Table 3.8. The table shows the classification accuracies of our work and [20]. The

right four columns correspond to the accuracies of [20] and each column represents

the number of features used in SVM training. As shown in Table 3.8, classification ac-

curacy improved as the number of used features increased. The method of [20] shows

better performance when classifying class “PC”, as the accuracy is 100% in every case.

However, even when the entire set of features are used for classification, the classifi-

cation accuracy is lower than our work’s accuracy.

Table 3.8: Classification accuracy of proposed method and method of [20]

3.3 Frequency-domain Classification Algorithm with Con-

volutional Neural Network

3.3.1 Input Format

To classify the modulation types of interference signals, I consider a CNN model.

Compared to an artificial neural network, the CNN employed convolution operations

for learning, resulting a reduction in the number of training parameters and effective

extraction of the local characteristics of the input image [37].

For the classification task, I use the magnitudes of range-Doppler responses Xrv.

First, these magnitudes are normalized to values from 0 to 1. When the maximum and

minimum values of xrv(nc, nr) in all data set are xmax
rv and xmin

rv , respectively, the

normalized value xnormrv (nc, nr) can be expressed as
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xnormrv (nc, nr) =
xrv(nc, nr)− xmin

rv

xmax
rv − xmin

rv

. (17)

Thus, the normalized range-Doppler magnitude responses are defined in a matrix

form as Xin
k , where k is the index for the modulations of interference signals and the

size of Xin
k is Nc ×Nr. I use Xin

k as the input of the CNN model for the interference

classification. In this study, I set the number of points in the Fourier transforms equal

to the number of time-domain data. Therefore, the size of the received signal matrix in

the time-domain remains the same after 2D Fourier transform.

Figure 3.2: The structure of the proposed CNN model
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Table 3.9: The detailed description of CNN model

Layer Size of Feature Map Size of Filters

Input image 256 × 256 × 1

Conv 128 × 128 × 32 5 × 5 × 32

Batch norm 128× 128 × 32

ReLU activation 128 × 128 × 32

Max pooling 64 × 64 × 32 2 × 2

Conv 32 × 32 × 64 5 × 5 × 64

Batch norm 32 × 32 × 64

ReLU activation 32 × 32 × 64

Max pooling 16 × 16 × 64 2 × 2

Conv 8 × 8 × 128 5 × 5 × 128

Batch norm 8 × 8 × 128

ReLU activation 8 × 8 × 128

Max pooling 4 × 4 × 128 2 × 2

Fully connected 1 × 1 × 2048

Dropout 1 × 1 × 2048

ReLU activation 1 × 1 × 2048

Fully connected 1 × 1 × 2048

Dropout 1 × 1 × 2048

ReLU activation 1 × 1 × 2048

Fully connected 1 × 1 × 6

Softmax 1 × 1 × 6

Output 1 × 1 × 6
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3.3.2 CNN model

Fig. 3.3.1 shows the structure of our CNN model, which consists of a combination of

convolutional layers, batch normalization layers, rectified linear unit (ReLU) activation

layers, max pooling layers, fully connected layers, dropout layers, and an output layer.

The detailed description of each layer is listed in Table 3.9. Each convolutional layer

performs 5× 5 convolution operations, and the number of filters increases as the layer

becomes deeper. Both the stride and padding size are set to 2 in each convolutional

layer. After convolution, the batch normalization is used to normalize the intermediate

results of the model. With the batch normalization, the training speed can be improved

because a gradient vanishing or gradient exploding can be prevented [38]. Then, I use

the ReLU activation function [39], which is defined as

f(zl) = max{0, zl} =

 zl, zl ≥ 0

0, else
(18)

where zl is an element of outputs in lth convolutional layer. The max pooling layer is

used to decrease the spatial size of features and parameters of the network [40]. The

units in the final max pooling layer are flattened into a single vector. This final max

pooling layer is followed by fully connected layers. Dropout layers are used after each

fully connected layer to prevent overfitting [41]. At the output layer, the output for K

classes is obtained using a softmax activation function, as follows:

z = [z1, · · · , zK ]T = σ(h), (19)

where zk is the predicted interference representing the kth category in the K classes,

h = [h1, · · · , hK ]T is the output of the last fully connected layer, and σ(h) is the

softmax function, which is defined as

zk = [σ(h)]k =
ehk∑K
i=1 e

hi
. (20)

The mini batch size is set to 256, the learning rate is set to 10−4, and the epoch is set

to 10 for training.
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Table 3.10: Parameter setting of simulation

Modulation type Parameter Value

Ego-

vehicle
Fast chirp FMCW

Center frequency 76.5 GHz

Bandwidth 500 MHz

Sweep time 10 µs

# of samples 256

Sampling frequency 25.6 MHz

# of chirps 256

Interference

vehicle

Unmodulated CW Center frequency 76.5 GHz

Slow chirp FMCW

Center frequency 76.5 GHz

Bandwidth 700 MHz

Sweep time 1 ms

Fast chirp FMCW

Center frequency 76.5 GHz

Bandwidth 800 MHz

Sweep time 11 µs

Pulsed CW

Center frequency 76.5 GHz

Pulse duration 5 µs

Pulse repitition time 15 µs

FSK

Center frequency 76.5 GHz

Bandwidth 600 MHz

# of steps 17

Frequency step 37.5 MHz

Step duration 6 µs
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3.3.3 Network Optimization

The parameters for the CNN model are learned through training dataset T to minimize

the loss function. Based on the cross-entropy, the loss function for the jth training

sample is calculated as

Loss(z(j)) = −
K∑
k=1

t
(j)
k log(z

(j)
k ), (21)

where t
(j)
k = 1 when k is the index for the ground truth of the jth training sample and

t
(j)
k = 0 otherwise. The total loss for the training set is calculated as

J (Θ) =
1

|T |
∑
j∈T

Loss(z(j)), (22)

where Θ represents all learnable parameters for the CNN model and | · | is the number

of elements in a set.

To minimize the loss function, several variants of the gradient-descent method have

been studied in the literature, such as AdaGrad, AdaDelta, Adam, and momentum [42].

These optimizers adaptively change the learning rate to properly minimize the loss

function. Here, I used the momentum optimizer in our experiments.

3.3.4 Simulation Environment

I evaluated the performance of the proposed method through simulation. As mentioned

in Section 2.2.2, the ego-vehicle transmits radar signals to detect the target vehicle in

front. The interference vehicle drives in the opposite lane and transmits the interference

signals. The distance between the detection and target vehicles varied from 10 m to 70

m. The distance between the detection and interference vehicles was also set to vary

from 10 m to 70 m. The range of the relative velocity between the detection and target

vehicles was set to vary from -30 m/s to 30 m/s. In the case of relative velocity between

the detection and interference vehicles, the velocity was set from -60 m/s to 0 m/s.

The parameters of the detection and interference vehicles are presented in Table

3.10. These system parameters are determined to meet the radar specifications that
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vary depending on the environment in which the radar is used. For example, the maxi-

mum detectable range is expressed as cN
4BW and the velocity resolution is expressed as

c
2fcM∆T . The values of N and M are usually determined as a power of 2 with a value

ranging from 128 to 512, which are set to 256 in this paper.

I set K = 6 classes for classification: one class for the case when only the target

signal was received and five classes for the five different modulations. For convenience,

I set each class name as follows: “TS” for target signal, “UC” for unmodulated CW

radar signal, “SC” for slow chirp FMCW radar signal, “FC” for fast chirp FMCW

radar signal, “PC” for pulsed CW radar signal, and “FSK” for FSK radar signal. I

generated 10,000 received signals per class and transformed them into Xin
k . 70% of

the data was used for training, 15% was used for validation, and 15% was used for

test. There are several causes of noise in the radar systems, but the most dominant

noise is the thermal noise generated by the radar antenna [19]. Thus, to model the

noise of the signal, I assumed the noise to be additive white Gaussian noise (awgn)

and set signal-to-noise ratio to 10 dB.

In addition, as all signal post-processing should be performed within a signal pe-

riod of several tens of milliseconds, an efficient and fast signal processing algorithm is

required [43]. Therefore, I also trained the CNN model using a small amount of data

to reduce the amount of computation. The conceptual diagram is shown in Fig. 7. I

selected chirps to be used from the first column of the time-domain signal matrix S.

At this time, if the chirp is taken less, the computational operations in the conversion

to 2D range-Doppler response get reduced. I analyzed the accuracy of the model by

reducing the number of chirps used and attached the corresponding results.

3.3.5 Classification Results

I first verified the performance of the CNN model by varying the number of chirps

used. The horizontal axis of Fig. 8 represents the number of chirps used for classifi-

cation. With the proposed method, I can classify the modulation of interference signal
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Figure 3.3: Concept diagram showing the use of a small number of chirps

with an accuracy over 96%. The use of only 1% of data for the algorithm enables the

classification by the CNN model with an accuracy of 96.8%. This is because even if

the number of chirps used is reduced, the characteristics of the signal can be seen in the

frequency-domain. Therefore, considering a saving of data storage and fast decision,

the task can be performed with considerably less chirps. However, for the selection of

the number of chirps used, there is a trade-off between the computational cost and the

classification accuracy. Using less chirps results in poor performance because the char-

acteristics in frequency-domain get lost. As the number of chirps used increases, the

frequency characteristics become more obvious, so the performance increases. When

using 8% of the total data (20 chirps), the performance converges to 100%, which can

be interpreted as sufficient to represent the frequency characteristics of the interference

signal. Therefore, I can conclude that it is better to use at least 8% of the data to ensure

classification performance. Less chirps may be used depending on the purpose.

A training progress when using 20 chirps is shown in Fig. 9. The training accuracy,

validation accuracy, training loss and validation loss over epoch number are plotted.

As the learning progressed, the accuracy increased and the loss decreased. Finally, the

training accuracy and the validation accuracy converged to 100%. Also, because the

training loss and the validation loss showed similar tendency, I can say that the model

was prevented from over-fitting. Therefore, the model was well trained to classify the
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Figure 3.5: Training and validation accuracy and loss when using 20 chirps
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interference signals.

Furthermore, I compared the performance of the model with the methods sug-

gested in [20], [25], which used an SVM for classification. The results are shown in

Table 3.11. For comparison, I selected the percentage of chirp used as 8% (20 chirps),

which provided a classification performance of 100% for the first time. Compared to

two conventional interference classification methods, our proposed method had a bet-

ter performance. Summarizing the results of Fig. 8 and Table 3.11, our model is more

suitable for interference classification than the conventional methods even when the

number of chirps used is small.

I also compared the computational complexities of the three methods in quantita-

tive way. Because the three methods used different classification model, it is hard to

strictly compare the complexity. I analyzed the relative complexities through the exe-

cution times of them. These times are measured with a MATLAB 2019a program on

a computer with an AMD Ryzen Threadripper 2990WX 32-Core Processor running at

3.0 GHz. As shown in Table 3.11, our proposed method took longer time to train than

the SVM method in [20] using a linear kernel. However, the training was completed in

less time than the method of [25] using a quadratic kernel. When comparing the test

time, the results of the three methods are similar in tens of milliseconds.

Table 3.11: Performance comparison when 20 chirps used

In addition, I verified the performance of the proposed model using 3% of entire

chirps (7 chirps), and the result is shown in Fig. 10. As shown in the figure, most

of the test samples were well classified, but some data in classes “TS” and “SC” were

misclassified. As shown in Fig. 5, the data in class “SC” do not have dominant patterns
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of vertical stripes unlike other interference signals. I observed that when the number

of chirps used is small, part of the samples in class “SC” is similar to those of class

“TS” with noise. I also found that this tendency gradually disappeared as the number

of chirps used for classification increased.
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Figure 3.6: Confusion matrix when 7 chirps used

Fig. 11 represents data visualization using t-stochastic neighbor embedding (t-

SNE), which uses stochastic probability to achieve dimensionality reduction. The al-

gorithm preserves the characteristics of the original data even after the dimension of

data is reduced to two or three [44]. Figs. 11(a) and (b) show the results of the input

and the feature vector, respectively. As shown in Fig. 11(a), some data of each class

are located close to each other, but many are mixed and distributed. When the features

extracted through the CNN model are used as inputs to the t-SNE algorithm, as shown

in the Fig. 11(b), the data of each class are distributed in clusters. Therefore, it is evi-
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dent that the proposed CNN model appropriately changed the phenotype of the input

image for classification.

Figure 3.7: Scatter plots of t-SNE algorithm (a) with input data (b) with feature vector

3.4 Summary

In this chapter, I propose methods for identifying the existence of interference signals

and classifying their modulation type in the time domain and the frequency domain.

For the time-domain method, I first formulated a mathematical signal model in which

the target and the interference signals were received together. I extracted five features

from time-domain signals using five different modulations. Through an SVM classi-

fication, I identified the existence of interference signals and classified the types of

modulation. I verified the performance of the proposed method through simulations.

The simulation results verified that the identification of the existence of interference

signals is possible. Then, I classified the identified received signals into five different

types of modulations with an accuracy of over 96%. I also compared the performance

of the SVM method with that of the decision tree method. I then verified which feature

is the most important for classification among the proposed features.
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In the case of frequency-domain method, I used the CNN model to classify five dif-

ferent modulation types of radar interference signals. Using the 2D Fourier transform,

the received signals were converted to range-Doppler responses and stored as a set of

image data. I proposed the interference signal classifier using the CNN model based on

the generated image data set. I verified that the model identified the modulation type of

interference signal with an accuracy of over 96%. In addition, the classification perfor-

mance of the proposed method was also evaluated using a small number of chirps and

it showed more than 5.6%p better performance than the conventional SVM’s. Through

the proposed method, the modulation types of interference signals from various auto-

motive radar sensors are accurately identified in a short time, so it can be effectively

applied to the interference mitigation or interference avoidance. I expect increasing di-

versity in automotive radar systems will lead to a rise in the importance of techniques

for identifying and classifying interference signals in the future.
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Chapter 4

Interference Mitigation Algorithm in Time-domain Sig-

nals

4.1 Introduction

In this section, I will introduce an interference mitigation method. As mentioned in

Section 2.2.3, the interference signals increase the noise floor, resulting in degrada-

tion of target detection performance. Therefore, interference mitigation is required for

target detection, and several mitigation methods have been proposed [45–48]. These

mitigation methods can be performed in either the time domain or frequency domain.

In the case of time-domain algorithms, the interference signal is mitigated or the tar-

get signal is restored with information of nearby target signal. The interval in which

an interference signal is received is first detected, and then interference suppression is

performed.

In general, the CFAR algorithm is used for target estimation in radar systems [49].

In target estimation, it becomes a problem of distinguishing the target signal from the

ambient noise. In a situation where the target signal and the interference signal exist

together, it can be changed to the problem of distinguishing the strong interference

signal from the target signal, as described in Chapter 2. I used a CNN model to distin-
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guish the interference signal from the target signal. I trained the CNN model to extract

strong interference signals, and through this step, I can identify the interval where the

interference signal was received.

After recognizing the interval, interference mitigation is conducted. Conventional

interference mitigation schemes significantly lower the noise level of the frequency

response, making it possible to detect a target signal that is obscured by an interference

signal. However, these methods create residual signal components while suppressing

interference signals. I proposed a method that suppresses the residual component while

reducing the noise level caused by the interference. The method is based on phase

compensation obtained from velocity estimation.

Also, most time-domain interference mitigation methods reconstruct signals using

time samples. In the FMCW radar systems, the interference signal is generated when

the frequency of the interference signal overlaps within the linearly increasing trans-

mission frequency band. Therefore, several consecutive time samples are affected by

the interference signal. This results a substantial loss of data. However, when changing

the signal processing domain from fast time axis to slow time axis, the data loss be-

came non-consecutive and sparse. Based on this concept, I suggested an interference

mitigation method.

The remainder of this section is organized as follows. In Section 4.2, a CNN model

that estimates the interference interval is introduced. Then, I propose the interference

mitigation scheme in Section 4.3. Also, the conventional interference mitigation meth-

ods are introduced. In Section 4.4, I compared the results of interference interval es-

timation and interference mitigation using simulation-based data and measured data.

Finally, I conclude this chapter in Section 4.5.
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4.2 Detection of Interference Interval in Time-Domain Sam-

ples

In this section, I will introduce the forementioned interference signal detection method.

For mitigating interference signals in time the domain, it is necessary to find out the

interval where the interference signal is received in advance. In particular, because the

interference mitigation performance is highly dependent on the interval detection re-

sult, this step is important. When conducting target estimation in common automotive

radar systems, noise signal and target signal are distinguished in the frequency domain

for target estimation. Likewise, one can detect interference signal by distinguishing the

interference signal from the target signal in time domain.

4.2.1 Detection with Constant False Alarm Rate

CFAR is one example of a square-law detector. It decides the detection threshold by

estimating the noise level using reference cells while keeping constant false alarm rate.

The CFAR algorithm needs to adjust the parameters including the size of the reference

cells and the size of the guard cells to achieve good performance. The size of the ref-

erence cell is determined according to the spacing between adjacent signals. Also, the

size of the guard cell is determined considering how many bins the signal to be de-

tected are distributed over. In automotive radar systems, the CFAR algorithm is used

in the frequency domain for target estimation. The parameters of the algorithm are set

according to the driving environment of the vehicle. In the case of the interference sig-

nal, the distribution of the signal may vary greatly according to the system parameters

of the interference vehicle, even in the same driving environment.

4.2.2 Detection with Advanced Weighted-Envelope Normalization

An advance weighted-envelope normalization (AWEN) algorithm is proposed in [46].

The algorithm calculates the envelope of the signal using a forward-sliding window
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and a backward-sliding window. Then, threshold values for distinguishing between

interference signals and target signals are calculated.

4.2.3 Detection with CNN Model

Unlike early machine learning models, deep learning models are characterized by hav-

ing multiple layers, and lots of models are designed so that the size of the transmitted

information vector or matrix become smaller as the layers become deeper. In contrast

to this, an autoencoder model consists of a symmetrical structure with inner layers,

which make the dimension of the output value equal to that of the input value. Layers

from the input layer to the middle layer are called the encoder, and layers from the

middle layer to the output layer are called the decoder. The encoder efficiently reduces

the dimension so that the input value can be expressed well, and decoder restores the

output value from the reduced dimensional information to represent the input value

similarly.

Passing through the encoder and decoder in sequence, the autoencoder model can

extract meaningful representations of the input. Depending on the learning strategy, the

autoencoder model can perform anomaly detection that finds outliers of the data [50],

or can be a denoising autoencoder that eliminates noise from the data [51], [52]. The

autoencoder models are classified into unsupervised learning. For detecting outliers in

time-domain signals, I proposed a bottleneck structured CNN by taking the structure

of the autoencoder model, and trained the network with supervised learning.

The structure of the proposed network is shown in Fig. 4.1. I checked the detection

performance for various models by changing the hyperparameters of the model, and

selected the best model. The performances of various models are shown in Section

4.4.1. The detailed description of each layer is listed in Table 4.1. The dimension of

the input data is 32768 x 3 which is the value of the number of chirps multiplied by

the number of samples per chirp and 3 channels of data. The real part, the imaginary

part, and the power of the signal are used as the 3 channels of data. Examples of
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Figure 4.1: Structure of proposed CNN model

input data and output data are shown in Fig.4.2. 3 channels of one signal frame in

which the target signal and the interference signal are received together are used as the

input. In the case of the output of model, I used a sequence in which the interference

interval is replaced by 1. By setting the input and output values in this way, the model

is trained to detect the interval where the interference signal was received. Because

the interference signals are only observed in a partial portion of the entire sequence, I

used the convolutional layers, which are suitable for extracting local characteristics of

the signal, rather than using fully connected layers. Binary cross entropy is selected as

the loss function of the model, and the ADAM optimizer is used for gradient descent

method.

4.3 Interference Signal Mitigation with Velocity Estimation-

based Phase Correction

In this section, I will introduce interference mitigation techniques that suppress the

detected interference signal or restore them using target signals.
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Table 4.1: The detailed description of CNN model

Layer Size of Feature Map Size of Filters

Input data 32768 x 3

1D Conv 32768 x 32 16 x 32

ReLU activation 32768 x 32

Maxpooling 16384 x 32 2

1D Conv 16384 x 64 16 x 64

ReLU activation 16384 x 64

Maxpooling 8162 x 64 2

1D Transposed Conv 16384 x 64 16 x 64, stride 2

ReLU activation 16384 x 64

1D Transposed Conv 32768 x 32 16 x 32, stride 2

ReLU activation 32768 x 32

1D Conv 32768 x 1 16 x 1

Sigmoid activation 32768 x 1

Output 32768 x 1

4.3.1 Conventional Interference Mitigation Methods

Zeroing

This method is the simplest method, replacing the detected interference signal with

zeros. Also, it often become a baseline for other restoration methods [45].

Ramp filtering

Ramp filtering was first introduced in [47]. This method performs interference miti-

gation in the frequency domain by manipulating the magnitude of the frequency re-

sponse. A nonlinear operator is applied to each range bin over every chirp. The nonlin-

ear operator could be the lower envelope or some sliding window statistics, and many
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Figure 4.2: Input and output signals used for training CNN model

studies chose the minimum operator for interference mitigation [45, 47].

Iterative method with adaptive thresholding

Interference mitigation method using iterative method with adaptive thresholding (IMAT)

algorithm was introduced in [48]. The basic idea comes from iteratively reconstructing

sparse signals with domain transformation.

These conventional methods produce residual frequency components around the

target signal when lowering the entire frequency responses of the interference signal.

This phenomenon is shown in Fig. 4.3. As shown in the figure, both methods lower the

level of the noise floor, but introduce artifacts along the velocity axis. These remainders

53



could be mistaken as targets in the target detection step and cause false alarms. A more

detailed analysis will be dealt with in the Section 4.4.1.

Figure 4.3: Frequency responses of interference signal and mitigated signals

4.3.2 Proposed Velocity Estimation-based Signal Reconstruction

In this section, I will propose a method that reduces the residual frequency components

while lowering the noise floor caused by interference signals. The algorithm proceeds

in two steps. First, to reconstruct signals in the interference interval, phase compensa-

tion based on velocity estimation is conducted. This is a rough approximation of the

target signal. Then, more precise reconstruction based on dominant Doppler frequen-

cies is conducted.

Most conventional time-domain signal reconstruction methods have been applied

to sampled data in the time axis. In other words, methods including IMAT treats data
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according to the fast time axis. Fig. 4.4 shows the positions of samples where the

interference signal is received in one frame data matrix. When I try to restore the data

of the chirp index near number 120, I have to create more than 80% of the data with the

remaining data. This makes it difficult to expect proper generation of data. Therefore,

rather than using the data from each column of the matrix, I suggest using data from

each row of the matrix. The data sequence to be processed becomes data sequence

sampled with chirp time ∆T . By changing the axis of signal processing, I can increase

the number of known data that can be used for data reconstruction and reduce the

number of unknown data to be generated.

Figure 4.4: Interference intervals masked with 1

The algorithm assumes that the interference signal has been correctly identified

in the previous step. Then, the detected interference signals are replaced with zeros.

With, indicator matrix I, the resulting signal matrix Z can be expressed as

Z = S • I, (4.1)

where S is received signal matrix in Eq. (2.6), • is Hadamard product which computes

element-wise multiplication, and I is N ×M matrix where i(n,m) is 0 if s(n,m) has

interference signal, otherwise 1. Then, the remaining signal Z becomes interference-
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free target signal. Therefore, the velocities of targets can be estimated by taking row-

wise Fourier transforms. The corresponding frequency responses can be expressed in

a N × Mr matrix form, where Mr is the number of points in the row-wise Fourier

transform, as

Xr =


xr(1)

xr(2)
...

xr(N)


, (4.2)

where xr(n) = [xr(n, 1), · · · , xr(n,Nr)] is the frequency response of zr(n), which

is nth row vector of Z and xr(n, nr) is defined as

xr(n, nr) =

M∑
m=1

z(n,m) exp

(
−j

2πm

Nr
nr

)
. (4.3)

The resulting frequency response xr implies the Doppler frequency of targets. How-

ever, as shown in Fig. 4.3, signals containing several zeros have unwanted frequency

components according to velocity axis. For releasing these phenomenon, I suggested

that the phase compensation method using velocity estimation to fill the zero signals.

The signals of chirp which has zero signals can be expressed as

zc(mzero) = sc(mzero) · ic(mzero), (4.4)

where zc(m), sc(m), ic(m) are mth column vectors of Z, S, I, respectively, and

mzero is the index of the chirp, which contains zeros because the interference sig-

nals received. Then, find the nearest chirp index mone, of which ic(mone) is all one

vector. As shown in (2.5), the phase difference between two adjacent chirps is 2fcv∆T
c .

Therefore, If I took a maximum value of frequency response xr, I can estimate the

velocity v̂. Then, the phase difference ∆ϕ between two chirps, mzero and mone, can

be expressed as

∆ϕ =
2fcv̂∆T

c
(mzero −mone). (4.5)
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Therefore, using (4.4) and (4.5), a reconstructed signal z̄c(mzero) for step one can be

expressed as

z̄c(mzero) = zc(mzero) + sc(mone) exp (j2π∆ϕ) · (1c − ic(mzero)), (4.6)

where z̄c(mzero) is column vector of reconstructed signal matrix Z̄, and 1c is all-ones

vector in RN×1. Signal process from (4.2) to (4.6) are repeated for each chirp index m

which contains interference signals.

If there is only one ideal point-source target which produces a single narrow peak

Doppler-domain, the processes up to this point is sufficient for reconstruction. How-

ever, in the real world scenario, the frequency response by one target can be spread

out. Also, if there are multiple targets, multiple Doppler frequencies will appear, so it

is not enough to reconstruct signal with only one maximum value of xr. Therefore, a

second step is required for more accurate signal reconstruction.

As mentioned before, the reconstruction method uses the row vectors of signal

matrix. Row-wise Fourier transforms are applied to each row of barZ as

X̄r =


x̄r(1)

x̄r(2)
...

x̄r(N)


, (4.7)

where x̄r(n) = [x̄r(n, 1), · · · , x̄r(n,Nr)] is the frequency response of z̄r(n), which

is nth row vector of Z̄ and x̄r(n, nr) is defined as

x̄r(n, nr) =

M∑
m=1

z̄(n,m) exp

(
−j

2πm

Nr
nr

)
. (4.8)

Then, velocity estimation can be performed with operator f(·) and it can be expressed

as

d = f
(
x̄r(n)

)
(4.9)

= [d(1), d(2), · · · , d(Nr)],
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where d is a vector representing detected results, and d(nr) is 1 if frequency response

x̄r(n, nr) is detected as target signal, otherwise 0. I chose one-dimensional detector

f(·) as the CFAR detector in this study. With Hadamard product, the detected fre-

quency signals x̄d can be expressed as

x̄d = x̄r • d. (4.10)

(Nonzero components of frequency response xd represent the Doppler shifts caused by

the movements of targets.???) Then, an inverse Fourier transform is applied to x̄d(n)

to fill the empty bins of zr(n). The corresponding time-domain inverse Fourier trans-

formed signal zd(n) can be expressed as

zd(n,m) =
1

Nr

Nr∑
nr=1

x̄d(nr) exp

(
j
2πnr

Nr
m

)
. (4.11)

Finally, the reconstructed signal zmit(n) can be expressed as

zmit(n) = zr(n) + zd(n) • (1r − ir(n)), (4.12)

where 1r is all-ones vector in R1×M , and ir(n) is nth row vector of indicator matrix I

in Eq. (4.1). Signal processes from (4.7) to (4.12) are repeated for all rows of Xr.

4.4 Results

For validating the performance of the interference interval detection and mitigation, a

simulation-based verification and the real data-based verification are conducted.

Two evaluation metrics are used for validating the performance of algorithm. First,

a signal-to-interference-plus-noise ratio (SINR) represents a relative power of signal

to noise floor, which is related to detectability of target signals. SINR can be expressed

as

SINR =

1
NO

∑
(n,m)∈O

|Xrv(n,m)|2

1
NN

∑
(n,m)∈N

|Xrv(n,m)|2
, (4.13)
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where O is a set of objects, N is a set of noise signals including interference signals,

NO is the number of objects in the set O, NO is the number of elements in the set N,

and Xrv is the range Doppler response. The SINR is related to a detection probability

because it indicates how strong the target’s response is relative to ambient noise and

interference signals.

Also, an error vector magnitude (EVM) was employed to measure how well the

values of the target peaks were reconstructed. The EVM can be expressed as

EVM =
1

NO

∑
(n,m)∈O

|X̃rv(n,m)| − |Xrv(n,m)|
|X̃rv(n,m)|

. (4.14)

The magnitude and phase of the target signal are necessary to estimate the distance,

velocity, and angle of the target, and through EVM, it is possible to determine whether

the complex values are well preserved.

4.4.1 Simulated Data

In this subsection, I verified the performance of the proposed method by simulated

data. The parameters of one ego-vehicle and two interference vehicles set in the sim-

ulation is shown in Table 4.2. By overlapping the operating frequency bands of three

radars, the interference signals remain after passing the mixer and the low pass filter.

Also, to generate more interference signals, I set the chirp slopes of both radars to

similar values.

Detection of Interference Interval

First, the detection performance was verified for various models by changing the hy-

perparameters as shown in Table. 4.3. I compared detection probabilities of models

while keeping false alarm rates as 0.0005. When the model consisted of one layer or

three layers, the performance dropped significantly below 90%. Among the various

models, the 3rd model was selected as the optimal model.
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Table 4.2: Parameters of ego-vehicle and interference vehicle

Vehicle Parameter Value

Ego-vehicle

Carrier frequency 77 GHz

Bandwidth 384 MHz

Sampling frequency 10 MHz

Number of samples 256

Sweep time 25.6 µs

Number of chirps 128

Interference vehicle 1

Carrier frequency 77 GHz

Bandwidth 400 MHz

Sweep time 30 µs

Interference vehicle 2

Carrier frequency 77 GHz

Bandwidth 380 MHz

Sweep time 25 µs

Table 4.3: Detection probability and false alarm rate of various CNN models

Number of

layers

Size of

first filter

Size of

second filter

Maxpooling

size

Detection

probability

1 2 4 x 32 4 x 64 2 0.9530

2 2 8 x 32 8 x 64 2 0.9580

3 2 16 x 32 16 x 64 2 0.9644

4 2 32 x 32 32 x 64 2 0.9132

5 2 4 x 16 4 x 32 2 0.9540

6 2 16 x 32 16 x 64 4 0.9591

7 2 32 x 32 32 x 64 4 0.9449

8 2 16 x 32 16 x 64 8 0.9475

9 2 32 x 32 32 x 64 8 0.9641
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Then, the performance of detection of interference interval is analyzed. The result

of the detection is shown in Fig. 4.5(a). The CFAR detector and AWEN method cal-

culated appropriate thresholds for detecting interference signals. Also, the proposed

CNN-based detector detected interference signals well.
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Figure 4.5: Interference interval results

Fig. 4.5(a) is the case when the signal powers of the interference signals and target

signals have large difference. As shown in Fig. 4.5(b) when the difference in power

between the interference signals and the target signals is reduced, it can be observed

that the performances of the CFAR detector and AWEN methods are degraded. This is

because even if the interference signal is generated, not all samples of the interference

signal have high instantaneous power. The CFAR detector and the AWEN algorithm

are vulnerable to this situation because they use the power and envelope respectively to

calculate the threshold. However, even in this case, the proposed CNN-based detector

detects the interference interval with good performance.

Next, the weakness of CFAR detector is analyzed. As mentioned in Sec. 4.2.1,

CFAR detector needs to set the values of the sizes of reference cell and guard cell to

achieve good performance. The length of the interference interval is determined by

the slopes of two radars. However, the slope of the interference radar can vary by the

manufacturers, it is hard to determine the size of guard cell as a specific value. Fig. 4.6

shows the detection result CFAR detector of which the guard cell size is 120. As shown
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in the Fig. 4.6(a), for a signal having an interference signal length of 60, the interfer-

ence interval was accurately estimated by the CFAR detector. However, for the case of

Fig. 4.6(b), the interference interval was not detected because the signal had long inter-

ference interval compared to the size of the guard cell. It could be worse when multiple

interference signals income, making the interference interval even larger. Therefore, I

conclude that the CFAR detector is not appropriate for detecting the interference inter-

val in the time domain.
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Figure 4.6: Detection results with CFAR detector

The AWEN method and the proposed CNN-based detector relieve this problem.

As shown in the Fig. 4.7, which is the same signal of 4.6(b), the AWEN method and

the proposed method performed better than the CFAR detector. The results imply that

two methods had little influence of parameters of radars.

Finally, the ECDF of the detection probability and false alarm rate is shown in

Fig. 4.8. As shown in Fig. 4.8(a), the detection probability of the proposed method

showed the best performance. Also, the false alarm rate kept low value as shown in

Fig. 4.8(b). Table 4.4 shows average values of the detection probability and false alarm

rate of 3 methods. The CFAR detector showed poor performance because there were

various length of interference interval and the method depended on the signal power.

Compared to the AWEN method, the proposed CNN-based detection method showed
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better detection probability and lower false alarm rate.
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Figure 4.7: Detection results with AWEN method and proposed method

(a) (b)

Figure 4.8: Empirical cumulative distribution function of (a) detection probability and

(b) false alarm rate

63



Table 4.4: Detection probability and false alarm rate of 3 methods

CFAR AWEN proposed

detection probability 0.6661 0.8950 0.9644

false alarm rate 0.1109 0.0062 0.0050

Signal Reconstruction

Fig. 4.9 shows the range-Doppler responses when one target is at (Rt, vt) = (38.4 m,

20.8 m/s), the first interference radar at (R1, v1) = (20.6 m,−21.7 m/s), and the

second interference radar at (R2, v2) = (5.0 m,−4.4 m/s). Fig. 4.9(a) is the range-

Doppler response when the interference signals were not received. When two interfer-

ence radars emitted radar signals, the noise floor increased, making target peaks to be

obscured as shown in Fig. 4.9(b).

(a) (b)

Figure 4.9: Range-Doppler response of target signal and interference signal

First, a qualitative analysis of interference mitigation performance is introduced.

As shown in Fig. 4.10, the target peaks can be observed, which were not detected

because of being masked by the response of the interference signals. However, the

interference mitigation methods created residual frequency responses. These artifacts

were detected by target detectors. As shown in the right column of Fig. 4.10, the CFAR
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detector detected the residual frequency responses as targets. For example, the resid-

ual frequency responses of RFmin method were sufficient to be detected by the CFAR

detector because it had a power 30dB higher than the noise floor. The zeroing method

and the IMAT method also generated ghost targets. In the case of the proposed method,

it can be seen that the residual components was generated the least. Also, only 3 tar-

get peaks were detected by CFAR detector. Furthermore, the frequency response of

the proposed method was most similar to the frequency response of the original tar-

get signal, especially when comparing the frequency responses generated by target at

(R2, v2) = (5.0 m,−4.4 m/s). This means the proposed method had reconstructed

the target signal properly.

For validating the results in quantitative way, the ECDF of SINR is investigated.

As shown in Fig. 4.11, the proposed reconstruction method reached the highest SINR

value except the RFmin method. In the case of RFmin method, because it mitigated

the interference signals by substituting the magnitudes of every rows of frequency re-

sponses with the minimum values of the frequency responses of each row. For this rea-

son, the RFmin method showed high gain in terms of SINR. The statistical results for

the SINR are summarized in Table. 4.5. Except RFmin method, the proposed method

showed the best performance.

Table 4.5: Interference mitigation performance evaluated by SINR

Mitigation Method
SINR (dB)

50%-tile 90%-tile Mean

Zeroing 40.1266 45.0952 40.6407

RFmin 41.6797 48.0967 42.3060

IMAT 40.3529 45.5957 40.9164

Proposed 40.5442 45.9376 41.1707

Fig. 4.12 shows the ECDF of EVM of each mitigation method. The RFmin method
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Figure 4.10: Range-Doppler responses after applying 4 interference mitigation meth-

ods on simulated data
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Figure 4.11: Empirical cumulative distribution function of SINR

showed the highest EVM value. This is caused by manipulating the magnitudes of fre-

quency responses. As the intensity of the interference signal was lowered, the intensity

of the target signal was also lowered, resulting in a lot of distortion. The statistical

results are shown in Table 4.6. When compared to other mitigation methods, the pro-

posed method showed the least EVM error. Low EVM value can lead to a small error

in the angle estimation performed after the range-velocity estimation. Table 4.6 shows

the statistical values of each mitigation methods. Among the entire methods, the pro-

posed method shows the best performance.

Table 4.6: Interference mitigation performance evaluated by EVM

Mitigation Method
EVM

50%-tile 90%-tile Mean

Zeroing 0.0466 0.0721 0.0547

RFmin 0.5441 0.7950 0.5639

IMAT 0.0289 0.0616 0.0392

Proposed 0.0169 0.0545 0.0292
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Figure 4.12: Empirical cumulative distribution function of EVM

Angle Estimation

With multiple receiving antennas, the angle of the target can be estimated. Phase differ-

ences between adjacent receiving antennas are induced and angle estimators estimate

the direction of arrival (DoA) using these phase differences. Therefore, it is important

to verify that the phase differences between the antennas are preserved even after in-

terference mitigation. I supposed that the radar system had 8 receiving antennas, and

the angle of the targets were varying between (−30◦, 30◦).

Fig. 4.13 shows an example of angle estimation when one target is at (Rt, θt) =

(10.2 m,−24.5◦), the first interference radar at (R1, θ1) = (16.4 m, 18.5◦), and the

second interference radar at (R2, v2) = (21.7 m,−4.0◦). It can be seen that DoAs

were properly estimated.

RMSE values of angle estimation of 4 different mitigation methods are shown in

Table. 4.7. Although the RMSE of the RFmin method is slightly bigger than the other

methods, all the four algorithms can estimate the DoA well.
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Figure 4.13: MUSIC DoA estimation result when 1 target and 2 interference radar are

in the FoV of radar

Table 4.7: RMSE of angle estimation

Method Zeroing RFmin IMAT Proposed

RMSE (°) 0.17 0.23 0.17 0.17
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4.4.2 Measured Data

I conducted data measurement for validating the proposed method. Fig. 4.14 shows the

measurement environment. Two TI AWR1642 radars were used, one for performing

target estimation and the other for generating an interference signal. The victim radar

was mounted on a cart and moved back and forth. The interference generating radar

was at fixed point. Two pedestrians moved within the field of view of the detection

radar. Two radars share the frequency bands to generate the interference signals. Other

parameters are listed in Table 4.8.

Figure 4.14: Experimental environment

Detection of Interference Interval

First, I investigated the performance of interference interval detection. As shown in the

Fig. 4.15, interference signals were received at sample indices that were approximately

from 18000 to 19920. Although the signal power near the sample index around 19920

was weak, there was no guarantee that the interference signal was not received, so it

is better to detect it as the interference interval. From this point of view, the CFAR de-

tector and the AWEN method made false decision, as the threshold was low. However,

in the case of the proposed CNN-based detector, when setting the decision threshold

as 0.5, the detector found the interference interval as intended.
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Table 4.8: Parameters of radars used in measurement
Radar Parameter Value

Victim radar

Carrier frequency 77 GHz

Bandwidth 384.4 MHz

Sampling frequency 10 MHz

Number of samples 256

Sweep time 25.6 us

Number of chirps 128

Interference radar

Carrier frequency 77 GHz

Bandwidth 639.2 MHz

Sweep time 40 us
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Figure 4.15: Results of interference interval detection
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Signal Reconstruction

After identifying the interference interval, the interference mitigation was performed.

As shown in the Fig. 4.16, when the interference signals received, the noise floor in-

creased, resulting the targets cannot be detected. Even straight lines in the frequency

response can be detected as targets.
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Figure 4.16: Range-Doppler response of interference signal

Fig. 4.17 shows the range-Doppler responses of 4 interference mitigation methods.

As shown in the figure, the RFmin method created the residual frequency responses

the most. Even, the target near 15 m was disappeared while mitigation. The zeroing

method and IMAT method showed similar results. Both methods created peak-like

responses, which can be detected as ghost targets. Those peak-like responses were

detected by the CFAR detector. In the case of the proposed method, the residual fre-

quency responses were hardly found, while lowering the noise floor caused by the

interference signal. Also, the ghost targets which were generated in conventional cases

were not detected by CFAR detector.

The ECDF of SINR is shown in Fig. 4.18. Similar to the result of the simulated

data, the RFmin method showed the best performance in this aspect. However, the

RFmin method created the artifacts the most, resulting high false alarm rate. Among

the remaining methods, the proposed method showed the best performance. The statis-

tical results are shown in Table 4.9. The proposed method improved the SINR in 8 dB
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compared to the interference signal. Also, the proposed method increased the SINR

more than 0.5 dB compared to the IMAT method.

Table 4.9: Interference mitigation results evaluated by SINR

Mitigation Method
SINR (dB)

50%-tile 90%-tile Mean

Interference signal 28.5497 37.1026 29.8233

Zeroing 36.5526 38.2744 36.6435

RFmin 49.3905 52.4543 49.3303

IMAT 37.0172 38.5211 37.0189

Proposed 37.8624 39.0938 37.8315

Angle Estimation

Finally, plausibility of angle estimation in measurement data is verified. As shown in

the Fig. 4.14, 2 targets and 1 interference radar is in the field of view (FoV) of the

victim radar. An angle of the first target θ1 was set to be smaller than an angle of the

second target θ2. Fig. 4.19 shows the MUSIC estimation results of three objects. As

shown in the figure, the estimated angle of the interference radar θ̂I is 0.71°, which is

close to 0°. Also, θ̂2 has larger value than θ̂1. In conclusion, it was verified that target

estimation is possible after interference mitigation in the measured data.

4.5 Summary

In this chapter, I proposed the interference interval detection method and interference

mitigation method. First, I concluded that the CFAR detector is not appropriate for

interference interval detection as the intervals vary a lot. I proposed a CNN model to

detect anomalies in signals. The model can detect intervals which have strong interfer-

ence signals. Compared to AWEN method, the proposed method showed 5% higher

73



detection probability, while keeping lower false alarm rate. Then, I suggested an in-

terference mitigation method which is done at slow time axis. This makes the loss of

data become decrease, resulting an improvement in signal reconstruction performance.

Furthermore, because some zero signals make the frequency response have distortion,

I approximated the missing data by phase compensation. As a result, in both the sim-

ulated data and the measurement data, the proposed method lowered the noise floor

caused by the interference signal, while suppressing the residual frequency signals to

be created. Especially, the proposed method has more than 0.5 dB gain of SINR over

the conventional IMAT method.
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Figure 4.17: Range-Doppler response after applying 4 interference mitigation methods
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Figure 4.19: DoA estimation results of three objects
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Chapter 5

Conclusion

In this dissertation, I proposed a sequence of the interference handling methods. First,

I proposed methods for identifying the existence of interference signals and classi-

fying their modulation type in the time domain and the frequency domain. For the

time-domain method, I first formulated a mathematical signal model in which the tar-

get and the interference signals were received together. I extracted five features from

time-domain signals using five different modulations. Through an SVM classification,

I identified the existence of interference signals and classified the types of modulation.

I verified the performance of the proposed method through simulations. The simulation

results verified that the identification of the existence of interference signals is possible.

Then, I classified the identified received signals into five different types of modulations

with an accuracy of over 96%. I also compared the performance of the SVM method

with that of the decision tree method. I then verified which feature is the most impor-

tant for classification among the proposed features. In the case of frequency-domain

method, I used the CNN model to classify five different modulation types of radar

interference signals. Using the 2D Fourier transform, the received signals were con-

verted to range-Doppler responses and stored as a set of image data. I proposed the

interference signal classifier using the CNN model based on the generated image data

set. I verified that the model identified the modulation type of interference signal with
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an accuracy of over 96%. In addition, the classification performance of the proposed

method was also evaluated using a small number of chirps and it showed more than

5.6%p better performance than the conventional SVM’s.

Then, I proposed the interference interval detection method. First, I concluded that

the CFAR detector is not appropriate for interference interval detection as the intervals

vary a lot. I proposed a CNN model to detect anomalies in signals. The model can

detect intervals which have strong interference signals. Compared to AWEN method,

the proposed method showed 5% higher detection probability, while keeping lower

false alarm rate.

Finally, I proposed an interference mitigation method which is done at slow time

axis. This makes the loss of data become decrease, resulting an improvement in signal

reconstruction performance. Furthermore, because some zero signals make the fre-

quency response have distortion, I approximated the missing data by phase compen-

sation. As a result, in both the simulated data and the measurement data, the proposed

method lowered the noise floor caused by the interference signal, while suppressing

the residual frequency signals to be created. Especially, the proposed method has more

than 0.5 dB gain of SINR over the conventional IMAT method.
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초록

안정적인자율주행을위해서주변환경인지는아주중요하다.차량의주행환

경을정확하게인지하기위해다양한센서들이사용되고있는데,그중레이더센서

는단가가낮고,사용환경에영향을덜받는다는장점이있다.이러한이유로자율

주행을보조하기위한다양한신호처리기법이연구되어왔고,일부기능은칩으로

구현되어현재차량에부착되어동작하고있다.

레이더간 간섭 현상은 두 레이더의 동작 주파수가 겹치면 발생할 수 있다. 간

섭 신호는 다른 물체에 반사되지 않고 직접 경로로 수신될 수 있어 그 세기가 클

수있다.또한주파수응답에서노이즈레벨을증가시키거나존재하지않는고스트

타깃을생성할수있어탐지율을낮추고오경보율을높이게된다.이러한문제는레

이더센서가장착된자율주행차량이많아진다면더욱심각해질수있다.따라서본

학위 논문에서는 FMCW 레이더를 사용하는 차량용 레이더 시스템에서 발생하는

간섭신호를제어하는기법을제안한다.

먼저수신된신호에간섭신호가존재하는지파악하는기법을제안한다.간섭신

호가수신되면고스트타깃이발생할수있기때문에처리하는신호에간섭신호가

함께 수신되었는지 파악해야한다. 또한 수신되는 간섭 신호의 변조 기법을 알아내

는 기법을 제안한다. 먼저 시간 영역 신호에서 특징들을 추출하고 SVM 모델을 활

용하여간섭신호의존재유무와변조기법을파악하였다.또한주파수영역신호를

입력으로하는 CNN모델을활용하는연구를제안한다.

다음으로 수신된 시간 영역 신호 중 간섭 신호가 수신된 구간을 파악하는 기법

을 제안한다. 수신된 강한 간섭 신호를 제거하기 이전에 간섭 신호가 수신된 시간

샘플을찾아야한다. CNN모델을활용하여간섭구간을탐지하였고,기존에제안된
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기법보다성능이높음을확인하였다.

마지막으로탐지된간섭구간의신호를타깃신호로복원하는기법을제안한다.

탐지된 간섭 신호는 0으로 치환되거나 새롭게 복원되는데, 잘못 생성되면 주파수

성분에원치않는성분을생성하게된다.이를해결하기위해수신신호의위상을보

정하여 신호 1차적인 근사를 진행하였다. 이 이후에 수신 신호의 도플러 주파수를

이용하여 더 정교한 복원을 진행하였다. 시뮬레이션 데이터와 실측 데이터를 사용

하여 제안한 기법이 잔여 주파수 성분을 남기지 않으면서 간섭 신호를 효과적으로

낮추는것을확인하였다.

주요어: FMCW레이더,간섭구간탐지,간섭신호분류,간섭완화,차량용레이더
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