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Abstract 
 

In this dissertation, I propose a new approach named tumor environment-associated 

context analysis using deep graph learning (TEA-graph) based on a memory-

efficient graph representation of WSIs and interpretable graph neural networks 

(GNNs) that considers the contextual features of the tumor environment in a semi-

supervised manner. Gigapixel resolution whole-slide image (WSI), which is a 

digitally scanned tumor section, has changed the approach of pathological analysis 

in a quantitative and data-driven manner. The combination of deep learning and WSI 

brought more synergetic effects and revolutionized pathological analysis in 

clinically important tasks. Although deep learning on WSIs shows revolutionary 

results as an assistive tool for computer-aided diagnosis (CAD) and automated 

analysis, it still cannot account for clinically important pathological features such as 

the tumor microenvironment (TME), which is a “contextual pathological feature”. 

The TEA-graph extracts the “contextual pathological features” of WSIs in a 

memory-efficient and semi-supervised manner. While similar concepts were 

introduced that using graph neural networks for contextual learning and compressed 

the whole-slide image (WSI) in various ways, none of them introduce geometry 

structure features (positional features) which are important features to differentiate 

the various tumor microenvironment. The proposed TEA-graph utilized the WSI at 

once without losing contextual information on the WSI through a network 

compression technology named superpatch. Therefore, the TEA-graph is scalable to 

massive WSIs without manual annotation of experts and interpretable to researchers 

and clinicians. I validated the prognosis prediction performance of TEA-graph using 

data from a total of 4,967 patients consisting of four different types of cancer. 
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Especially, TEA-graph captured heterogeneous contextual features of clear cell renal 

cell carcinoma (ccRCC) on a dataset from 1366 patients and reflected these features 

to predict the prognosis of ccRCC. Additionally, TEA-graph provided interpretable 

contextual features and enabled us to categorize the contextual features into several 

groups that had different prognostic effects. Proposed results indicated that TEA-

graph identified the complex interaction of histopathological features and therefore 

provided prognostic biomarkers in a data-driven manner. I showed the pathological 

features related to the favorable or unfavorable prognosis and suggested the 

angiogenetic pathological feature as a novel indicator of renal cell carcinoma. 

Furthermore, I checked which part of TEA-graph is critical for optimal performance 

with thorough hyperparameter screening and ablation studies, including 

performance comparison. Overall, the proposed method, including geometrical 

features, attention-based model, and the compressed network construction method, 

is critical in achieving optimal performance. Because contextual feature learning will 

introduce new insights to researchers and clinicians and overall performance 

increases to models, I believe that follow-up studies that incorporate other datasets, 

such as genetic materials or extend beyond pathology (radiology or MRI, CT), are 

possible. Overall, proposed TEA-graph can aid researchers from various fields that 

use deep-learning to the medical application.  

 

Keywords : Graph neural network, Histopathology, Survival analysis, Tumor 
microenvironment 
 
Student Number : 2016-23108 
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Chapter 1.  

 

 

 

 

Introduction 

 

 

 

 

Histopathological biomarkers have been used for standard diagnosis tool to guide 

the medical practitioners and patients for managing the disease specifically tumors 

for decades. Recently, histopathological studies are changed into the quantitative 

analysis and machine learning or deep learning based methodologies are actively 

developed for various purpose. In this chapter, the utility of histopathological 

biomarker for tumor prognosis is introduced. Especially, tumor architectural features 

of renal carcinoma are described as the example of pathological biomarker. And the 

advantage of computational pathology which is digitized pathology image and 

utilization of data-based pathology method will be discussed. Also, recent trend of 

deep learning for computational pathology is briefly introduced and detailed 

description of how to predict the prognosis of patients using pathology image will 

be discussed.  
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1.1. Histopathological biomarker for tumor prognosis 

1.1.1. Pathological evidence for prognosis 

Histopathology refers to the examination of tissue under a microscope to study signs 

of disease. Histopathology in clinical medicine refers to the biopsy or surgical 

examination of the specimen by a pathologist after processing the specimen and 

placing the histological section on a glass slide [1]. Even recently, histopathology 

remains a manual process in which pathologists examine glass slides using 

conventional brightfield microscopy. In particular, the histopathology of tumors 

reflects the heterogeneous nature of the tumor environment, which is an important 

prognostic biomarker to evaluate the status of the tumor and guide treatment options. 

Therefore, histopathological analysis of tumor tissue has traditionally been used as 

the basis for diagnosis and prognosis. For example, the International Society of 

Urological Pathology (ISUP) grading system for renal cell carcinoma (RCC) 

concluded that tumor morphology, tumor grade, fuhrman nuclear grade, and sarcoma 

structure are strong prognostic indicators informing patient management [2]. In 

addition, the Gleason grading of prostate adenocarcinoma is a widely used grading 

system based on the histological pattern of the carcinoma cell arrangement in 

hematoxylin and eosin (H&E) stained sections, recommended for routine reporting 

of prognostic factors [3]. 

1.1.2. Tumor architecture features at renal carcinoma 

Throughout the thesis, I focused on the pathological patterns of major subtype of 

renal cell carcinoma which is clear cell renal cell carcinoma (ccRCC). Renal cell 

carcinoma is well known for its histopathologic patterns related to prognosis, named 
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the World Health Organization/International Society of Urological Pathology 

(WHO/ISUP) or Fuhrman grade [4]. In addition, ccRCC has a heterogeneous 

morphological structure, which is suspected to be related to the genomic 

heterogeneity of ccRCC and its impact prognosis (Figure 1.1). Sarcomatous 

component, lymphatic invasion are important morphological structures in high-risk 

populations. The above-mentioned features can be measured via H&E stained tissue, 

a standard staining method for histopathological evaluation [5]. 

 

Figure 1.1 Example of pathological architecture patterns in ccRCC. Cystic change 
(blue); Papillary growth (green); Lymphocytic infiltration (red). Scale bar, 200µm. 

1.2. Computational pathology for decision making 

1.2.1. Computational pathology 

The advent of high-resolution whole slide images (WSI) using digital slide scanners 

has changed the way histological analysis is performed. The development of 

brightfield and fluorescence slide scanners has made possible the virtualization and 

digitization of whole glass slides. A variety of full slide scanners with brightfield and 

fluorescence capabilities have been shipped with various hardware and software 

specifications. When histological glass slides are digitized, they can be viewed 

remotely by a pathologist on a computer screen or analyzed digitally using image 

analysis techniques. WSI has several unique characteristics that make it different 
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from other biomedical imaging data. First, WSI is a very high resolution image. 

Typically, full slide scanners have resolutions of 0.5 µm/pixel (20x resolution) and 

0.25 µm/pixel (40x resolution). So, using a standard pathology slide (25 x 50 mm), 

the total pixel size is 100,000 x 200,000 pixels, which is 20 gigapixels. Second, WSI 

stands for multi-resolution image. A general configuration of the WSI of a full slide 

scanner, thought of as a pyramid of image data. WSI consists of multiple images of 

different resolutions. The basis of the pyramid is the highest resolution image data. 

And you can create a thumbnail image as a lower resolution version of the image so 

you can see the whole image at once [6]. 

1.2.2. Early attempt to apply machine learning for pathology 

Computational pathology has emerged that leverages the wealth of information in 

WSI to alleviate the labor-intensive efforts of pathologists or analytical tools that can 

intuit the pathological features of a specimen through automating the quantification 

of pathological domains. For example, early efforts relied on the sorting of individual 

cells inside tissues and quantification of those cells using supportive vector machines 

for systematic analysis of the tumor milieu for breast cancer with genomic 

characteristics [7]. Others have measured quantitative features, including relational 

and global image features, in breast cancer epithelium and stroma. They used simple 

linear regression to classify epithelial and stromal regions and performed further 

nuclear-level analysis. The quantified features predicted the patient's prognosis [8]. 

All these early attempts are pioneering and bring clinically meaningful results. 

However, they relied on the classic machine learning tools to classify the 

pathological features inside the WSI which can’t provide the sufficient performance. 
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1.3. Deep learning based computational pathology 

1.3.1. Deep learning based pathological analysis 

Recent developments in deep learning advanced computational pathology thanks to 

the superior performance of deep learning in image analysis. Initially, simple 

classification tasks such as classifying tumor tissue from normal tissue or subtyping 

within a single tumor were performed. Today, the classification and classification of 

different cell types in WSI is highly accurate and it is possible to predict the origin 

of oncogenic variants, gene expression, or metastases. In particular, deep-learning-

based computational pathology has shown promising results in predicting 

microsatellite instability, an important molecular marker for prognosis and therapy, 

resulting from genomic differences between tumors. Also, unlike traditional data-

driven pattern analysis, deep learning does not require manual feature extraction, so 

deep learning can extract useful features to maximize performance, and the extracted 

features can provide insight to pathologists. In that way, leveraging prognostic image 

markers from the vast amount of WSI possible with the collaboration of classical 

survival analysis and deep learning methods will allow pathologists to review 

existing biomarkers and provide intuition for prognosis-related pathological 

characterization. 

1.3.2. Deep learning based time-to-event analysis 

The purpose of survival analysis is to establish a link between covariates and event 

times. Survival analysis is a kind of regression problem, but it differs from traditional 

regression problems because only part of the training data is partially observable, 

which are censored. For censored subjects, no deaths can be observed, so the type of 
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censorship is called right censorship. The challenge in survival analysis is how to 

properly handle censored data. In general, survival time is modeled as a continuous 

non-negative random variable T from which I can derive the basic quantity, survival 

function, and hazard function for time-to-event analysis. The survival function 𝑆(𝑡) 

returns the probability of surviving after time t 𝑆(𝑡) = 𝑃(𝑇 > 𝑡) . The hazard 

function ℎ(𝑡) represents the approximate probability that an event will occur in 

small time intervals ∆𝑡.  

ℎ(𝑡) = lim
∆"→$

𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡	|	𝑇 ≥ 𝑡)
∆𝑡

	≥ 0 

There is a non-parametric survival analysis such as Kaplan-Meier analysis is also 

interesting method, however I will focus on the parametric analysis to estimate the 

analysis into deep learning method. By far the most popular model for learning from 

censored survival data is Cox's proportional hazards model. This method models the 

hazard function of the individual conditioned on the feature vector. 

ℎ(𝑡%) = ℎ5𝑡6𝑥%&…𝑥%'9 = ℎ$(𝑡)	exp	(=𝑥%(𝛽(

'

()&

) 

Cox's proportional hazards model is fitted by maximizing a partial likelihood 

function based on probability. Let 𝑅% = {𝑗|𝑦( ≥ 𝑦%}  is the set of subjects who 

remained event-free before time point 𝑦%. If the subject experiences event at 𝑦%, that 

subject must have the higher probability than the others who does not experience the 

event, which mean event-free up to 𝑦%. It can be defined as follows 

𝑃(𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠	𝑒𝑣𝑒𝑛𝑡	𝑎𝑡	𝑦% 	|	𝑜𝑛𝑒	𝑒𝑣𝑒𝑛𝑡	𝑎𝑡	𝑦%)	

= 	
𝑃(𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑐𝑠	𝑒𝑣𝑒𝑛𝑡	𝑎𝑡	𝑦% 	|	𝑒𝑣𝑒𝑛𝑡 − 𝑓𝑟𝑒𝑒	𝑢𝑝	𝑡𝑜	𝑦%)

𝑃(𝑜𝑛𝑒	𝑒𝑣𝑒𝑛𝑡	𝑎𝑡	𝑦% 	|	𝑒𝑣𝑒𝑛𝑡 − 𝑓𝑟𝑒𝑒	𝑢𝑝	𝑡𝑜	𝑦%)
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=
ℎ(𝑦%|𝑥%)

∑ 𝐼5𝑦( ≥ 𝑦%9ℎ5𝑦(6𝑥(9*
()&

	= 	
ℎ$(𝑦%) exp5𝑥%+𝛽9

∑ 𝐼5𝑦( ≥ 𝑦%9ℎ$5𝑦(9 exp5𝑥(+𝛽9*
()&

	

=
exp	(𝑥%+𝛽)

∑ exp	(𝑥(+𝛽)(∈-!
 

By setting the loss function as a partial likelihood function, the neural network model 

can function as a nonlinear cox regression model, which was first proposed by 

Faraggi and Simon by a single hidden layer multilayer perceptron [9]. 

𝛽T = argmax
.

𝑙𝑜𝑔𝑃𝐿(𝛽) ==𝛿% \𝑥%+𝛽 − log^= exp5𝑥(+𝛽9
(∈-!

_`
*

%)&

 

For computational efficiency, cox partial likelihood is usually minimized with mini-

batch stochastic gradient descent (SGD), which is proved to be acceptable. Also, one 

of the disadvantage of traditional cox regression model is all patients shared the same 

baseline which does not depend on the time interval. To ease the limitation and 

integrate the time-related features, Kvamme et al introduce the time interval features 

into cox regression model [10]. Also, one model integrate the recurrent neural 

network (RNN) model to better represent the dependency between the sample and 

also used the censored patients for calculate the loss and back-propagation, which is 

more robust algorithms [11]. 

1.3.3. Pathology integrated with time-to-event analysis 

Deep learning model that can handle the pathology images to predict the prognosis 

of patient get the interest because of the characteristics of dataset. If we predict 

accurately enough to define the new biomarker in a data-driven manner, it can bring 

the advantage for both patient and clinical pratitioners.  Pioneering work combined 

the image features extracted using convolutional neural network (CNN) with 
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genomic features to predict the patient survival with cox partial likelihood function 

as the loss for the entire neural network model [12]. The proposed model can learn 

the visual patterns and molecular biomarkers associated with patient outcomes 

simultaneously. Also they provide insights into the prediction mechanisms of 

proposed method using heat map visualization to show that proposed method 

recognize important structures like microvascular proliferation that are related to 

prognosis and that are used by pathologists in grading. Abovementioned method 

used the pre-defined region of interest (ROI) to select the appropriate pathological 

patches from WSIs. Because the CNN has the limited receptive field with current 

graphical process units (GPUs), handling the entire WSI solely using the CNN is 

impossible. To tackle the above problems Stang et al used the pre-trained CNN to 

extract the features from several patches that randomly selected from whole slide 

image. And then, used the autoencoder to compress the features further with 

combined MLP and cox regression loss to predict the survival of patient [13]. 

All the abovementioned method showed great promises in terms of applying deep 

learning combined with cox regression to handle the pathological features. However, 

still the entire WSI cannot used for prognosis prediction and microenvironmental 

(context) features are not included in the analysis. There are still room for further 

improvement and in chapter 2, the remained technical challenges are discussed. 
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Chapter 2.  

 

 

 

 

Current challenges for time-to-event prediction in 

pathology 

 

 

 

 

Time-to-event prediction in pathology could bring new pathological biomarkers to 

help the patients and medical practitioners for better managing the disease. However, 

time-to-event prediction in pathology still have several challenges to achieve the 

advantages it can bring. In this chapter, difficulties to process the whole slide image 

as a semi-supervised learning because of patient-level label and large file size will 

be discussed. And difficulties to learn and interpret the context features which is 

important biomarkers in tumor microenvironment using graph neural network are 

introduced. Finally, the contribution of my works which is introduced in this 

dissertation in terms of tackling abovementioned challenges in detail. 
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2.1. Semi-supervised learning of whole slide image 

2.1.1. Multiple instance learning 

If the goal is to process a full slide image of each patient consisting of several 

small patches and classify patient-level features (staging, subtype) or predict the 

prognosis using only patient-level labels, then this case is interpreted in semi-

supervised learning and multi-instance learning (MIL) practices. In the standard 

supervised learning case, one class label is assigned to each observation or 

"instance". However, in MIL, class labels are assigned to collections of 

observations or "instance bags". Therefore, compared to standard supervised 

learning, an additional challenge is to discover which instances of each bag affect 

the class label [14]. Likewise, in the medical image, effectively select the related 

instance (small-patches) from the whole slide image is challenging problem. 

Researchers try to pick the important small patches from the bags of instance using 

the sampled patch from unsupervised clustering method [15]. Recently, attention-

based method, which is one-to-one measure of correlation with each combination 

of instances in bags and assign the appropriate weight to pick the important 

instances, can be integrated as the end-to-end manner with the neural-network and 

attention module naturally select the important instance in the bags of instances 

[16]. 

Lu et al used the pre-trained CNN to extract the compressed features from small 

patches that comes from WSI. And then, they apply the WSI-level attention 

module to classify the subtype of several cancers and showed promising results. 

Also, because attention score naturally represent the important rate of each patches 

they provide the attention score as the interpretation method.  
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Although we can handle the whole slide image in terms of MIL in end-to-end 

manner, it’s hard to process the entire WSI with deep learning model because of 

limitation in resources of GPU. I will discuss more methods to handle the entire 

WSI in an end-to-end manner integrated with deep learning model. 

2.1.2. Previous attempt to treat the whole slide image 

If the user can define the region of interest (ROI) based on the pathologist label or 

another algorithm that can detect the ROI, I don’t have to treat the WSI at once 

[17]. However, labeled dataset is both labor and cost intensive therefore it’s 

unrealistic to secure the well labeled dataset for entire WSI dataset. In terms of 

above point, analyzing WSI with deep learning models presents another technical 

challenge. As mentioned above, the entire slide image can be up to 200,000 pixels 

in total. Therefore, gigapixel images are too large to fit on the GPU at once and 

usually, WSI is broken down into smaller patches for training deep learning 

models. The simplest way to process a WSI image is to randomly sample a small 

patch from the entire slide image [18]. However, the above approach does not 

cover the full diversity of full slide images, an important aspect of pathology. 

Image patches can be clustered and then sampled to capture a more varied view of 

the tissue shape. This can be done by individually clustering the patches in each 

image, one patch sampled from each cluster. The alternative to subsampling image 

patches is to use the entire WSI but in a compressed representation. A CNN can be 

trained on another dataset, which is pre-trained for large dataset such as ImageNet 

and used to encode small histopathology patches. Usually histopathology patches 

have 256 × 256 × 3 ≈ 2 ∗ 10/ dimensions and encoded patches have 1024	 ≈

100 which is two-fold decrease of entire dimensions [19]. I then need to predict the 
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class by aggregating the feature encodings of multiple patches in the WSI. These 

aggregation methods can be used to train an end-to-end CNN, RNN, or attention-

based module using a subset of image patches, or used as a second-step model. 

Although the above methods suggest a promising way to treat WSI, it is a 

contextual feature that still has limitations in analyzing WSI like a pathologist. 

Describes the importance of contextual features and how to learn contextual 

features in a data-driven way. 

2.2. Learning context features 

2.2.1. Network representation of pathology image 

Although promising, computational pathology remains limited in its acceptance of 

contextual features to analyze complex histopathological features in the tumor 

environment, such as pathologists. The conventional method used Convolutional 

Neural Networks (CNN) to extract features of small patch images (256x256 pixels) 

by segmenting the WSI. These methods naturally focused on local features such as 

morphological changes of tumor cells, the presence of various growth patterns of 

tumor cells, and structural features, which are important prognostic marker. [20], 

[21]. However, since these features can be explained differently depending on the 

surrounding circumstances, the pathologist examines different areas of the WSI at 

different magnifications and simultaneously considers contextual and local features 

to determine the patient's prognostic features. 

For example, hemorrhage may be a clue of a poor prognosis if observed inside the 

tumor area, and may be a clue of a good prognosis if observed in normal cells. 

Immune cells may also have completely different roles depending on the tumor 
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microenvironment (TME), which is defined as the interaction of various cell types, 

such as tumor cells, lymphocytes, and stromal cells, present locally in the tumor [22]. 

Recent methods have attempted to solve the problem and hide contextual features 

by introducing a graph structure, which is an optimal data structure for analyzing 

contextual features by considering the interaction of different pathological features. 

To take full advantage of the rich contextual capabilities of WSI, I implemented 

classification, prognostic prediction, and more with graph neural networks (GNNs), 

a type of neural network that processes the dynamic structure of graphs and achieves 

state-of-the-art results in tasks such as tumor subtypes [23]–[26]. I will describe the 

more detailed explanation of GNN and advanced model of it to train the context 

features of pathology image. 

 

Figure 2.1 Advantage of network representation of pathology image 

 

2.2.2. Graph neural network for context feature learning 

Graph neural networks are deep learning-based methods that operate in the graph 
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domain. In recent years, the development of deep neural networks such as Multiple 

Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Convolutional 

Neural Network (CNN) is rapidly increasing. In particular, CNN can extract multi-

scale localized spatial features and construct them to construct highly expressive 

expressions. However, CNNs can only work with plain Euclidean data like images. 

In particular, it is difficult to define localized convolution filters and pooling 

operators in the graph region. Another motivation is learning graph representations, 

learning how to represent graph nodes, edges, or subgraphs as low-dimensional 

vectors like Deepwalk and Pagerank [27], [28]. Following the idea of representation 

learning and the success of word embedding, Deepwalk was considered the first 

graph embedding method based on representation learning. 

Standard deep learning toolkits such as CNNs, RNNs, and MLPs include methods 

with various forms of relational inductive bias, but there is no standard for arbitrary 

relational structures that are graph structures. To solve the above problems, neural 

networks that use operators in graphs have increased dramatically in scope and 

popularity in recent years. Here, we discuss generalized messages conveying neural 

networks, a widely used framework for processing graph-structured data. 

 

Figure 2.2 Principles of message passing neural network 

 
Generally, message passing neural network consist of two aggregation function and 
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three update functions. Graph data consist of edge, node, and global-level features 

and the adjacency matrix. Adjacency matrix is defined the how to aggregate the node 

level and edge level features throughout the connectivity. Edge-level update function 

(𝜙1) is applied for each edge and those messages (updated edge-feature) are passing 

through to the node that connected with each edge. And then, edge-level aggregation 

function (𝜌1→2) is used to aggregate the edge-level feature to incorporate into the 

node-level feature. With that concatenated node-level and edge-level feature, node-

level update function (𝜙2) is applied for each node and derive the updated node-

level feature. Finally, node-level features are aggregated, in other words readout to 

represent the entire global level graph feature through node-level aggregation 

function (𝜌2→3). If we go further with the graph-level prediction, we performed the 

graph-level update function (𝜙3) for graph-level decision [29]. For the aggregation 

function, we generally use the any pooling method such as max, min, average but 

we can also use the attention-mechanism or RNNs to secure more express power of 

model.  

We can use the attention-mechanism to the aggregation function. Attention-

mechanism is the special-case of the weighted sum where each weight is trained 

based on the correlation of each features. In the case of GNN, it calculate the 

attention-value (weight) based on the correlation with the connected neighborhood 

nodes after the edge-level and node-level feature update. 
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Figure 2.3 Schematic of attention mechanism of graph attention neural network 

 
The basic backbone GNN model that used the attention mechanism is the graph 

attention network (GAT). At the GAT model, simplified attention-mechanism is 

utilized to secure both express power and computational cost. It conduct the self-

attention mechanism within small subgraph (connected neighborhood nodes) and 

using the calculated attention value, it aggregates neighborhood node feature and 

updates target node feature. It can be applied to graph nodes having different degrees 

by specifying arbitrary weight to the neighbors. In the advanced form of GAT, we 

can use the edge features or also advanced form of self-attention. I will further 

discuss it in chapter 3. 

2.2.3. Previous approach to apply graph neural network for pathology 

Initially, graph neural network didn’t apply to the whole slide image at once. Instead, 

Li et al construct the graph with randomly sampled patches from whole slide image 

[30]. This approach loose the spatial relationship between the small patches, which 

is the important context features within tumor microenvironment, thus can’t extract 

meaningful context feature from tumor tissue. Recently, there are approaches that 
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based on graph neural network to tackle the whole slide image. First they transform 

pathological images into patch-based graph, where nodes are small patches and 

edges encode the relationships between the patches. Then, CNNs are used to extract 

features from these patches to generate a feature vector for the node embedding of 

the graph representation. Given the constructed graph, a graph deep learning model 

is used to conduct node or graph classification. Specifically, some methods handle 

the entire whole slide image at once for the graph deep learning model training. 

Lu et al introduced a pipeline to construct a graph from the entire WSI using the 

nuclei level information [31]. They segment and classify the individual nuclei and 

extract feature from them. Then, agglomerative clustering is used to group spatially 

neighboring nuclei into clusters which results in reduced computational cost for 

downstream analysis. They evaluate the proposed framework for the breast cancer 

tissue and predict the status of human epidermal growth factor 2 (HER2) and 

progesterone receptor (PT) expression from WSIs of H&E stained tissue, which is 

supervised learning method. 

Richard et al proposed semi-supervised based prognosis prediction method based on 

graph neural network [32]. Unlike Lu et al, they doesn’t include the clustering 

method to construct the graph. Instead, they use the low-level magnificent (20x) and 

use the small-patch as the node in the graph. Because prognosis-related label 

(survival day) is patient-level label and node or patch-level label doesn’t exist, Patch-

GCN is the semi-supervised learning method. One interesting point in Patch-GCN 

is they incorporate global attention pooling method, therefore use the attention score 

as the interpretation method to find the pathological features related to prognosis. 
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2.3. Interpretability of graph neural network 

2.3.1. Interpretation method for neural network 

Neural networks have shown great promise in a number of tasks in the medical field. 

Interpretation of neural networks is important in many fields, but one area where 

interpretation is important is the medical field. In the medical field, decisions made 

by deep learning models usually relate to whether or not a patient's health condition 

is serious. Therefore, it is important to provide humans with interpretable evidence 

to support their decisions in a rational way. Before discussing interpretation methods 

for graph neural networks, I first briefly discussed interpretation methods for deep 

neural networks. Although there are several descriptive techniques, they can be 

grouped into three techniques: local surrogate, occlusion analysis, and gradient-

based techniques. 

Interpretable local surrogates aim to replace decision-making functions with self-

explanatory ones, sometimes simpler models than target models for explanatory 

purposes. A popular method for this is the LIME algorithm [33]. The explanation 

can be achieved by first defining some local distribution around the data point x, 

learning the parameters v of the linear model that best match the function locally, 

and then extracting the local feature contributions. Occlusion analysis is a specific 

type of perturbation analysis that repeatedly tests the effect of occluded patches or 

individual features of an input image on the output of a neural network. A heatmap 

can be built from these scores highlighting the locations where functionality has 

decreased the most due to blocking. Shapley values can also be viewed in occlusion 

analysis. Instead of blocking features one at a time, a much broader set of blocking 

patterns is considered here. SHAP is a practical algorithm that approximates Shapley 
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values by sampling several occlusions according to the probability distribution used 

to compute the Shapley values and then fitting a linear surrogate model that correctly 

predicts the effects of these occlusions [34]. A unified gradient is described by 

incorporating a gradient along some trajectory in the input space that connects some 

root points to data points. In the case of graph neural networks, this method is of 

particular interest to the unified gradient method because it can easily be extended 

to any model. 

2.3.2. Appropriate interpretation method for graph neural network 

Interpreting graph neural networks is an important but difficult task. Graphs are not 

data like grids, unlike images or text. That is, there is no local information and each 

node has a different number of neighbors. Instead, graphs contain important 

topological information and are displayed as feature matrices and adjacency matrices. 

Also, graph data is less intuitive than images and text. For images and text, 

understanding the meaning of the input data is straightforward and straightforward. 

However, graphs can represent complex data, making it difficult for humans to 

understand the meaning of graphs. In addition, there are many unsolved mysteries 

among interdisciplinary fields such as chemistry and biology, and knowledge of the 

field is still lacking. Therefore, it is not easy to get a human comprehensible 

explanation of the graph model. The first approach is a perturbation-based method. 

Rex et al. proposed the pioneering work of graphing neural network interpretations 

called GNNExplainer [35]. The GNNexplainer takes a trained GNN and its 

predictions and returns an explanation in the form of a small subgraph of the input 

graph, along with a small subset of the node features that most influence the 

prediction. Given an input graph, I get a mask to represent the important input 



 20 

features. Next, the generated mask is combined with the input graph to obtain a new 

graph containing the important input information. Finally, the new graph is fed to 

the trained GNN to evaluate the mask and update the mask generation algorithm. 

Benjamin et al compared several interpretation methods that actually help in 

choosing an appropriate interpretation method for graph neural networks [36]. 

Quantitatively evaluate multiple interpretation methods based on the four axes of 

accuracy, stability, fidelity, and consistency. Accuracy indicates how well the method 

matches the group-truth credit allocation. stability. Fidelity indicates that the 

performance of the method should reflect the performance of the original model. In 

conclusion, the use of CAM is recommended. However, CAM is not compatible with 

GNN architectures because it requires a global pooling layer as the last layer in the 

architecture. In these cases, IG is the right choice. 

2.4. My works in this dissertation 

Proposed graph neural network based whole slide image analysis technologies in 

this dissertation is a new approach that tackle the abovementioned problems and 

refers to tumor environment-associated context analysis using deep graph learning. 

The proposed method extracts the “contextual pathological features” of WSIs in a 

memory-efficient and semi-supervised manner and demonstrate it for the survival 

risk prediction problem of various cancer types. 

The technologies in this dissertation address the following problems to analyze 

contextual pathological features which previous deep-learning models has 

difficulties. 

(1) Several studies claimed that “contextual pathological features” can be 

learned, but none of them fully utilized the complex interaction of the tumor 
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environment that exists on the gigapixel size of the WSI. Previous methods 

used the features extracted with pre-trained convolutional neural networks 

or try to reflect the relationship through the recurrent neural network. 

However, previous approach lost the spatial information of cells through 

randomly selected regions of interest (ROIs) or lost the other pathological 

features by segmenting the cell nuclei, which are important contextual 

features. 

(2) Other research used the pre-trained CNN feature and attention model to 

address the WSI at once and therefore did not lose any contextual features 

in the WSI. Although pioneering work, attention mechanisms have 

limitations in reflecting contextual features. The attention model did not 

reflect the structural context inside the tumor environment. The tumor 

environment is a complex graph of each cell type and pathological feature. 

Both features, such as which cells interact with other cells and where they 

interact, are important context features. However, the attention mechanisms 

are interconnected with each other, therefore mixing the whole graph 

structure. Therefore, we need to learn the appropriate contextual features 

that reflect the interaction of each cell in the tumor environment. 

(3) Early attempts to introduce the graph representation of pathological images 

and implement the GNN to learn the appropriate context features are exist. 

But none of them learn the rich contextual features that reflect the complex 

interaction inside the WSI. To address the “contextual pathological features” 

of WSI, there are several technical bottlenecks. 1) The gigapixel WSI is too 

large to be trained at once in graphical processing units (GPUs). 2) Graph 

neural networks (GNNs) are promising candidates to learn “contextual 
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pathological features”. However, as WSI has heterogenous pathological 

features, how to adapt the GNN appropriately to WSI is unknown. 3) It is 

hard to interpret the relationship among the pathological features that are 

learned through the GNN in the WSI.  

The proposed TEA-graph utilized the WSI at once without losing contextual 

information on the WSI through a network compression technology named 

superpatch. Therefore, the TEA-graph only requires single GPUs to train the 1,000 

WSIs in a day. I demonstrated the applying interpretable GNNs to WSIs. I 

approached the above difficulties through proposed unique solutions, which make it 

possible to mimic the “thinking” process of pathologists. 1) Memory-efficient 

network representation of the WSI that preserves the features in the original WSI. 2) 

Position-aware graph attention network (GAT) that reflects the heterogeneous tumor 

environment in the WSI. 3) Integrated gradients (IG) with attention score to 

simultaneously interpret the important pathological features and interaction of each 

pathological feature.  

I demonstrated the proposed method for the survival and metastasis risk prediction 

problem of clear cell renal cell carcinoma (ccRCC), which has well-known 

“contextual pathological features” for prognosis prediction. I used 831 WSIs 

collected from Seoul National University Hospital (SNUH) and 502 WSIs from The 

Cancer Genome Atlas (TCGA) datasets for training and validation of the TEA-graph. 

I showed that the TEA-graph differentiated the heterogeneous tumor environment in 

the WSI and outperformed the conventional pathological grade. In addition, I 

suggest that “contextual pathological features” are related to the risk of survival and 

metastasis through interpretable visualization of WSIs. To interpret the WSI, I 

applied both the external interpretation metric IG and attention score as the 
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intrinsically learned interpretation metric.  

Through this approach, I can measure the different importance of each contextual 

feature and introduce the interpretable pathological features with it. Overall, the 

TEA-graph is scalable to massive WSIs without manual annotation of experts and 

interpretable to researchers and clinicians. I expect TEA-graph to be easily 

accessible pathologists to analyze the pathological context.  

 

In chapter 3, I will explain the overall concept of proposed method and showed the 

advanced graph attention network which is optimized structure for context features 

in tumor tissue. Lastly I will showed the performance in various tissue datasets 

which is evidence of proposed performance. 
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Chapter 3.  

 

 

 

 

Context features with whole slide image 

 

 

 

 

Incorporating context features within whole slide image to predict time-to-event is 

essential to reflect the tumor microenvironment appropriately. In this chapter, tumor 

environment-associated context analysis using deep graph learning (TEA-graph) is 

introduced which is a framework based on a memory-efficient graph representation 

of whole slide image and interpretable graph neural networks that considers the 

contextual features of the tumor environment in a semi-supervised manner. 

Performance of TEA-graph compared with conventional pathological marker and 

state-of-the-art deep learning model is presented to show the superiority of TEA-

graph. Also using the interpretable method, novel pathological marker is introduced 

through TEA-graph.  
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3.1. Tumor environment-associated context learning using graph deep 

learning 

3.1.1. Overall framework of proposed method 

 

Figure 3.1 Proposed method to analyze the enviromental feature in whole slide 
image 

 
I introduced contextual learning related to the tumor environment using graph deep 

learning (TEA-graph), a GNN-based method for semi-supervised analysis of the 

contextual histopathological features of gigapixel WSI. TEA-graph expresses WSI 

with superpatch, which is a memory-efficient WSI expression method that I propose. 

TEA-graph uses the full WSI to extract pathological context features through the 

GNN model while maintaining the spatial relationship of each local feature, and 

provides interpretability with intra-edge Attention Score and IG method. 
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Figure 3.2 How graph neural network extract environmental feature from whole 
slide image 

 
Although similar concepts of using graph neural networks for contextual learning 

and compressing whole slide images (WSIs) in various ways have been introduced, 

none of them introduces geometric features (positional features), which are 

important features that distinguish different tumor microenvironments.  

 

Figure 3.3 Schematic example of pathologist’s decision making considering 
context features 

 
In addition, I proposed an interpretation method of the context learning method, 

which is an essential aspect in the clinical application of deep learning. I demonstrate 

the use of the TEA-graph to predict the risk of an event (such as death or metastasis) 

and to analyze the pathological contextual features associated with the prognosis. 

TEA-Graph allows experts to train on the entire WSI without manually annotating 

the ROI and extract interpretable histopathological prognostic markers. I analyzed 
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risk-related characteristics and stratified the risk of patients more clearly than 

conventional histological grades. 

 

Figure 3.4 Proposed method mimic the pathologist’s decision making method by 
graph neural network 

 
I hope that the proposed TEA-graph method will be a useful tool for pathologists to 

find contextual pathological biomarkers. Therefore, I propose the analysis results of 

the prognosis-related pathological features extracted by TEA-graph. I showed the 

generality of the extracted pathologic features by finding similar pathologic features 

with high correlation with the pathological features extracted by TEA-graph in all 

patients. And patients with the pathological features suggested by the TEA-graph 

clearly showed adverse outcomes. In addition, I propose angiogenic pathological 

characteristics as an interesting biomarker for the adverse prognosis of renal cell 

carcinoma revealed by the proposed TEA-graph method. Overall, I propose a 

method to analyze TME for contextual features similar to that of a pathologist. 

3.1.2. Super-patch network as whole slide image representation 

One of the major bottlenecks for semi-supervised contextual feature learning in WSI 

is the limitation of the graphics processing unit (GPU) memory for processing 

gigapixel-sized WSIs. To address the memory issues associated with WSI while 
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accommodating contextual features, I use a super-patched approach to represent 

WSI as a graph structure. I apply the supernode method to WSI to compress 

gigapixel images and present them as memory-efficient graph structures. [37], [38]. 

Divide the WSI into smaller patches and extract the features of each patch using a 

pre-trained CNN model. A superpatch graph is constructed by repeatedly 

aggregating neighboring patches with similar characteristics in all WSIs. Therefore, 

the superpatch graph efficiently compressed the data size of the graph while 

preserving the spatial relationships between small patches.  

 

Figure 3.5 Superpatch network construction method 

 
I confirmed that the superpatch wells represented nearby aggregated patches. I also 

compared the proposed superpatch method with several other superpatch 

construction methods. It was confirmed that the proposed method compresses the 

WSI to 10-40% of the original WSI while maintaining the information and features 

appropriately. Therefore, the superfetch method can be used to process the entire 

WSI in a memory-efficient manner with minimal loss of context information. 

For superpatch generation, I first preprocess the WSI with an Otsu threshold to filter 

out artifacts in the WSI [39]. Only patches made up of 75% or more of Oats Mask 

are selected. I then divide the WSI into smaller patches of 256x256 pixels at 40x 

magnification [40]. Next, I define similar patches within the segmented smaller 

patches. First, I extracted the pathological features from the last MLP layer of the 
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ImageNet pre-trained EfficientNet. For WSI in ccRCC, I further optimized the 

pretrained EfficientNet for pathological applications through transfer learning of the 

entire network for cancer/normal classifiers without freezing the layers. For this 

purpose, 2,000 small patch images of 256 x 256 pixels were prepared for each tumor 

and normal class extracted from WSI, manually annotated by the pathologist. 

Transfer-learning is an optional step for better performance of TEA-graph. 

Comparable results can be obtained without transfer learning on TCGA datasets 

other than ccRCC types. To define similar patches, I consider the spatial distance 

(pixel-level L2-norm distance) and cosine similarity of features extracted from a 

pretrained EfficientNet that represents the similarity between images. To maximize 

compression of similar patches, patches within two patch distances are compared for 

spatial correlation (up to 24 patches in a 5x5 patch, 1 patch distance equals 256 

pixels). Then, I measure the cosine similarity of the patch features extracted from 

the last MLP layer of the pretrained EfficientNet and define similar patches if the 

cosine similarity is lower than a defined threshold. After similar patches are defined 

within the WSI, the patches are sorted by the number of similar patches in each patch. 

It then starts with the patch with the most similar patch and proceeds in order to 

remove similar patches belonging to that patch. This is called a super patch. After 

superpatches are created, I treat each superpatch as a single node in the graph. If the 

length of the 5 patch distance is less than the length, only the spatial distance between 

the patches is taken into account to generate the edges between the nodes. The node 

function of a superpatch is obtained by averaging the functions of the patches 

incorporated into the superpatch. Additionally, each edge has an edge feature that 

contains the geometry of the superpatch via patient-specific normalized spatial 

distance and angle between the two patches. 
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Figure 3.6 Example of representative superpatch and neighborhood aggreagted 
patches 

 
To compare the compression ratio and the impact of threshold on information, I 

perform additional experiments comparing the compression ratio, label accuracy, 

and normalized mutual information (NMI) of the original WSI and compressed 

superpatch graphs at various thresholds. In addition, to prove that the proposed 

existing method is suitable for expressing WSI in a compressed graph structure, I 

compared the above metrics with those of the other four superpatch generation 

methods: original, frequency, length, and random methods. 
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Table 1 Three different method to make the superpatch by aggregating 
neighborhood small patches 

 
The original method is proposed method, which generated super patches with small 

patches within a defined distance with cosine similarity values between super patch 

candidates higher than the threshold. The length model randomly samples small 

patches within a defined distance while maintaining the number of small patches 

grouped into super patches in the original method. The frequency model does not 

keep the number of small patches grouped into superpatches, but instead randomly 

selects the number of small patches while maintaining the overall frequency of a 

certain number of small patches aggregated by the original method. The random 

method randomly samples a random number of similar nodes and does not retain the 

conditions of the original method. 
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To quantitatively calculate the amount of compressed information, I calculated the 

similarity between the WSI and the compressed image with the NMI, compression 

ratio, and label accuracy. When the number of superpatches of the compressed image 

is N, I created an N×N matrix Q. Then, in the WSI, the superpatch is labeled 

according to the most common label of the patches included in the superpatch. After 

that, the (i,j)th component of the matrix indicates the number of superpatches where 

the WSI label of the superpatch is i and the label in the compressed image of the 

superpatch is j. The NMI between the WSI and the compressed superpatch graph is  

NMI = 	
−2∑ ∑ 𝑄%( log p
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where N5. and N.6 are the marginal sums over the corresponding rows and columns 

and N = ∑ 𝑁%.% =	∑ 𝑁.( = ∑ 𝑁%(%( .(   

I also checked the compression rate by calculating the ratio between the number of 

patches in WSI and the compressed superpatch graph. To calculate the label accuracy, 

I checked whether the dominant label of the aggregated patches is same as the 

superpatch’s label. Compared with random sampling, a threshold over 0.6 shows a 

significant difference. Therefore, for optimal performance, I set the cutoff as 0.75, 

and if I need to prioritize the compression ratio because of hardware limitations, I 

can choose a cutoff as 0.5, which performs better than the random selection method. 

Also, if multiple adjacent patches share the same number of similar patches, the 

superpatch can be randomly selected. However, even if the node selected as a 

superpatch changed, those alternatively selected superpatches were also positioned 

closely with the original selected superpatch, and those alternative superpatches also 

aggregated adjacent local patches, including the original patch selected as the 
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superpatch. Thus, whenever the selected superpatch node changed, the overall 

representation feature space was minimally affected. Therefore, in this revision 

round, I proved the rigidity of the superpatch network construction method. For that, 

I generated the randomized superpatch network on the same whole slide image.  

 

Figure 3.7 Validation of representative power of superpatch-network  

 
The difference of the selected superpatch node was ~25%. However, as I expected, 

alternative superpatches represent features similar to those of the original superpatch 

network. The mean of the correlation between the alternative superpatch feature and 

original superpatch feature was very high (0.965), and the variance was low. I further 

checked that the rigidity of superpatch construction was different between the 

different pathological features. Because histopathological images per stage have 

different characteristics, I measured the correlation mean according to the TNM 
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stage. I again confirmed the high correlation between the alternative and original 

superpatches; thus, superpatch method was not affected by pathological 

characteristics and compressed the whole slide image appropriately. 

 
Figure 3.8 Correlation plot between the predicted risk using the original 
superpatch-graph and newly defined graph 

 
To further confirm that alternately generated superpatches did not affect the risk 

prediction performance, I checked the predicted risk value’s correlation between the 

three differently generated superpatch networks of 75 patients. The correlation 

between the original predicted risk score and the differently generated superpatch 

network was close to 0.98, which means that the alternately generated superpatch 

does not affect the risk prediction. Overall, I thoroughly tested the super-patch 

network as a method to represent the whole slide image efficiently within graph 

structure. 

3.1.3. Position-aware graph neural network 

I use a graph attention network (GAT) that utilizes attention scores within a GNN to 

learn contextual features in a heterogeneous tumor environment [41]. For example, 

when local pathological features are indicative of immune cells, these features may 

represent an entirely different histopathological context, such as inflammation or 

infiltration (i.e., tumor-infiltrating lymphocytes). Similar to how pathologists define 
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the prognostic value of these immune cells along with their surroundings, the GAT 

aggregates the neighbor features of the target superpatch with different weights for 

each neighbor. GAT updates the target superpatch function to include peripheral 

pathological features and to properly discriminate contextual features. Specifically, 

we modify the GAT to include the relative positions of each superpatch as edge 

features. The modified GAT utilizes the edge function to compute the value of 

interest between each node, thus better discriminating the relationship between each 

superpatch and representing the WSI better. Overall, TEA-graph takes a WSI as 

input and generates a compressed superpatch graph to handle multiple WSIs on the 

GPU. It then uses the contextual information to evaluate the risk value in the 

location-aware GAT.  

 

Figure 3.9 Overall pipeline of TEA-graph with input features and feature 
dimensions 

 
  The overall structure of the TEA-graph is as follows. To process WSI with end-to-

end learning, I reduce the feature vector dimension to 200 using a three-layer 

multilayer perceptron (MLP) for preprocessing (800, 400, and 200 dimensions). I 

use GNN, an optimal neural network that processes graph structures for 

histopathological context learning. To ensure interpretability and maximize the 
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learning ability of GNNs, I choose GAT as  backbone model. The model learns the 

attention score for each edge, so it differentiates the weights of each node when 

aggregating neighboring features. These attention scores are also used to interpret 

the significance of each connection between superpatches. Specifically, I modified 

the attention scoring method to include the geometrical features of edge features and 

developed a three-layer GAT with two attention heads (100 dimensions per head) in 

each layer as a basic structure with sufficient receptive fields to capture. Use. 

Environmental characteristics of GNNs. To represent geometrical features as 

learnable parameters, I quantized normalized distances and angles to 0-10 numbers 

and generated lookup tables with learnable features for distances and angles. In 

addition, after using LayerNorm, I activate for each layer to prevent overfitting, and 

use a parametric rectified linear unit (PReLU) as an activation layer and residual 

connections between each layer to improve learning ability and stability [42]–[44]. 

To calculate the risk score, I concatenate the output of each GAT layer, add two-layer 

MLPs (800 and 400 dimensions) as post-processing, and add a final fully connected 

layer that produces a single risk score as the output of the WSI. I use PyTorch and 

PyTorch Geometric for  MLP and GAT implementation[45]. 
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Figure 3.10 Proposed position-aware graph attention network 

 
I suggest the detailed explanation of proposed position aware graph attention 

network. The input 𝒉 to  layer is a set of histopathological features ℎ% extracted from 

the last layer of the preprocessing MLP, where 𝑁 is the number of superpatches 

(nodes), and 𝐹*	 is the number of features in the last layer of the preprocessing MLP. 

𝒉 = {ℎ&, ℎ7, …	, ℎ8}, ℎ% ∈ ℝ9" 

I also embed the distance 𝒅 and angle 𝒂 as the edge features of the superpatch graph. 

I embed the distance and angle by the learnable parameters, where 𝐹1 is the number 

of learnable parameters for embedding the distance and angle features. 

𝒅 = {𝑑&&, 𝑑&7, …	, 𝑑88:&, 𝑑88}, 𝑑%( ∈ ℝ9# 

𝒂 = {𝑎&&, 𝑎&7, …	, 𝑎88:&, 𝑎88}, 𝑎%( ∈ ℝ9# 

To reflect the heterogeneous surrounding environment features in the context 

features, I calculate the self-attention score 𝛼%(  between adjacent neighborhood 
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superpatches. Additionally, the spatial location of each histopathological feature is 

important to consider. Thus, I include the distance and angle feature to calculate the 

attention score so that positional information is passed between each superpatch.   

𝑾𝒔,𝑾𝒓,𝑾𝒅,𝑾𝒂 are the initial linear transformations of the source node, receiver 

node, and distance and angle features shared in the layer, respectively. 𝒂𝒔, 𝒂𝒓, 𝒂𝒅, 𝒂𝒂 

represent a single-layer feedforward neural network for the attention coefficients for 

the source node, receiver node, distance, and angle features. 𝒩% is the neighborhood 

superpatches of superpatch 𝑖 in the graph.  

𝛼%( =
exp	(𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈(𝒂𝒔+𝑊?ℎ% + 𝑎@+𝑊@ℎ( + 𝑎A+𝑊A𝑑%( +	𝑎B+𝑊B𝑎%())

∑ exp	(𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈(𝒂𝒔+𝑊?ℎ% + 𝑎@+𝑊@ℎC + 𝑎A+𝑊A𝑑%C +	𝑎B+𝑊B𝑎%C 	))C∈𝒩! 			
	 

Once obtained, the normalized attention coefficients are used to compute a linear 

combination of the corresponding features. 𝜎 is the nonlinearity, and I used PReLU 

for sufficient expression. ℎ%E represents the final contextual features. 

ℎ%E = 𝜎(= (𝛼%(𝑊ℎ(
(∈𝒩!

)) 

I use the Cox regression loss as  objective to adapt the survival prediction into a GAT. 

The last fully-connected layer produces the predicted risk 𝑅 = 𝛽+𝑋 associated with 

the input graph. 𝛽 ∈ ℝ is the last layer weights, and 𝑋 ∈ ℝ is the inputs to the last 

layer. These risks are input to the negative partial log-likelihood of Cox proportional 

hazards regression, which is the loss function for the model. 𝑈 is the entire list of 

patients, and 𝜙% is the list of patients who have shorter survival times than patient 𝑖. 

𝐿(𝛽, 𝑋) = 	−=(𝛽+𝑋%
%∈F

− 	log	 = 𝑒.$G%
(∈H!

)	 

The model updates the parameters to minimize the loss through backpropagation 

using the Adam optimizer. I apply the default parameters for the Adam optimizer 
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with a weight decay factor = 0.0005. Additionally, to allow the model to converge 

faster, I implement a learning rate scheduler that decreases the learning rate by a 

factor of 0.95 every ten steps. 

3.1.4. Interpretable pathological context features 

Additionally, for a thorough explanation of histopathological contextual analysis, I 

utilize an interpretive method called the IG method to highlight the risk values of 

each patch [46]–[48]. The IG value represents the positive or negative impact of a 

particular feature on the model. Interpret the risk value of each context feature by 

calculating the IG value for each superpatch, which is a node in the graph. Therefore, 

if a well-trained TEA graph accurately predicts risk, then the IG value can be 

correlated with the risk value of context features included in the trained superpatch. 

TEA-graph also provides sub-graph-level interpretability through connected graphs 

of groups of similar IG value nodes. Consequently, the TEA-graph suggests the 

prognostic relevance of the tumor environment represented by the connected graph. 

The IG method is used to evaluate the influence of input nodes in a graph. In  case, 

each node has a node feature V of the pre-trained CNN model. For IG analysis, I 

need to define a baseline and interpolate the node features from the baseline feature 

V ̃ to the original input node feature V. Calculate the IG using the 

IntegratedGradients function in the captum(0.4.0) module. The function uses a node 

function that is zero for the baseline function. 

The IG value is calculated as follows: 

IG5V59 = =(𝑉C% −
I

C)&

𝑉�C5) 	×	=
𝜕𝐺𝑁𝑁[𝑉� + 𝑝

𝑚 × 5𝑉 − 𝑉�9]

𝜕𝑉C%

J

')&

	×
1
m

 

VC5  represents the i-th node, 𝑘 represents the k-th node feature, and 𝑚 represents the 
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interpolation step. After calculating the IG of each node for comparison, I normalize 

all IG values across the entire WSI using min-max normalization. A node with a 

large IG value means that the node has a large influence on the prediction output 

(risk). The sign of the IG value indicates the direction of influence, and if the sign of 

the IG value is negative, it means that the direction in which the node affects the risk 

is the direction of decreasing risk. For validation, I collect IG values from the entire 

data set and group the top 10% (high), middle 10% (medium), and bottom 10% (low) 

of IG values. Use this group to characterize the histopathological features of each 

group. Use the median number of patches in each patient as a threshold to divide the 

patients into two groups using the IG group. After dividing the groups, a Kaplan-

Meier survival analysis is performed to determine the prognostic characteristics of 

each IG group. 

  Also, to check the correlation between the attention value and interpretability, I 

extracted high (>0.9) and low attention (<0.1) superpatch pairs and measured the 

correlation between features of each node taken from a pre-trained CNN. I calculated 

the fraction of high-correlation (>0.8) and low-correlation (<0.2) pairs of 

superpatches across high-interest and low-interest pairs. In addition, I extracted high 

attention and low attention superpatch pairs for each of the previously defined high, 

mid, and low IG groups. At this time, I calculated the median feature correlation 

values within the overall high and low attention pairs for each IG group. 

3.2. Performance of TEA-graph 

3.2.1. Comparison with standard pathology score 

I used 5-fold cross-validation to evaluate the patient-level risk predictive 
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performance of the TEA-graph for three different events (survival, progression, and 

metastasis) in patients with ccRCC. I randomly split the WSI dataset of 831 ccRCC 

patients from Seoul National University Hospital into a training set (80%), validation 

set (10%), and test set (10%). The model was trained to predict patient risk values 

with all training set WSIs and evaluated with test set WSIs. The concordance index 

(C-index, method) of various histopathological data (WHO/ISUP grade, TNM 

staging and other metadata described in Methods) provided by the pathologist was 

compared with the predicted risk values obtained from the TEA-graph. TEA-graph 

showed limited performance compared to the TNM stage, which contains 

information that cannot be inferred from tissue images, such as tumor size, but TEA-

graph outperformed the WHO/ISUP rating for all three events, with predictive 

accuracy of 88%. In addition, when combined with histopathological data provided 

by a pathologist, the TEA-graph predicted risk value performed better than all other 

histopathological data, confirming the usefulness of the TEA-graph. enemy data. In 

addition, the TEA graph predicted risk values achieved the highest risk ratios, 

showing that the predicted risk scores better reflect each patient's probability of 

occurrence of an event compared to data provided by other pathologists for all events. 

We also evaluated the performance of the TEA-graph for patient risk stratification 

by quantifying the predicted risk values into four separate groups to generate 

predictive histopathological grades. Predicted histopathological grades showed 

better stratification of patient risk than WHO/ISUP grades, particularly early-stage 
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patients for both survival and metastatic events. 

 

Figure 3.11 Comparison of the performance between the TEA-graph and other 
prognostic biomarkers. a, C-index of various prognostic biomarkers with TEA-
graph-predicted risk value for three different events (survival, progression, and 
metastasis). All includes age, sex, WHO/ISUP grade, and TNM stage. Interquartile 
range (IQR) of box plot is between Q1 – Q3 and centre line indicates median 
value. Maxima is Q3 + 1.5*IQR and minima is Q1 – 1.5*IQR. b, Log hazard ratio 
of several biomarkers with TEA-graph-predicted risk value in relation to survival, 
progression, and metastasis events. TNM stage and WHO/ISUP grade are the 
conventional prognostic markers that have been defined previously. All hazard 
ratio values were measured with SNUH dataset (n=831). Confidence interval was 
calculated by sandwich variance estimator. c, Kaplan–Meier survival analysis of 
survival and metastasis events using WHO/ISUP grade (left). Kaplan–Meier 
survival analysis of survival and metastasis events using the TEA-graph-predicted 
risk value (right). The TEA-graph grade was calculated by dividing the TEA-
graph-predicted risk value into four groups using quartiles of predicted risk value. 
P-values were calculated through two-sided log-rank test. 
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3.2.2. Comparison with state-of-the-art model 

I validated TEA graphs with external data sets and compared their performance with 

other multi-instance or contextual feature learning models [30], [49]–[51]. I trained 

and evaluated on WSI datasets of patients with kidney (KIRC), breast (BRCA), lung 

(LUAD and NLST), and uterus (UCEC), and found usefulness of TEA graph 

predictive risk scores compared to conventional risk scores. 

 

Table 2 Performance comparison with other contextual and multi-instance learning 
(MIL) models 

 
For each prognostic task (survival, progression, metastasis), calculate the calculated 

risk using multiple biomarkers (age, sex, WHO/ISUP grade, TNM stage) and 

concordance index (C-index) and TEA-graph. The C-index measures whether the 

sample is correctly aligned. Here, if one sample is predicted to have a higher risk 

than the other, then that sample should have a shorter survival time than the other. 

For example, two samples a and b match if the estimated risk and survival times t_a 

and t_b of each sample r_a and r_b satisfy (r_a>r_b AND t_a<t_b). Otherwise, the 

C-index measures the ratio of concordance between two sample pairs to comparable 

sample pairs. Thus, a C-index of 1.0 means that all predicted risk values are correctly 

aligned with the survival time of each sample, and a C-index of 0.5 represents a 

completely random condition. Cox regression analysis was also performed to 
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calculate the risk ratio and calculated risk for each biomarker (age, sex, WHO/ISUP 

grade, TNM stage, lymph node metastasis, tumor size). A Kaplan-Meier survival 

analysis was performed using conventional histological grades and calculated risks. 

Quantize the patients into four groups using the quartiles of the calculated risk to 

combine the rating with the calculated risk. We selected the Lifeline (0.26.0) package 

in Python for survival analysis [52]. 

 
Table 3 Entire tumor datasets used for training and testing 

 
TEA-graph outperforms contextual feature learning models that do not utilize 

relative positions as edge features. We found that TEA-graphs in the KIRC dataset 

showed better prognostic performance than cancer staging and other 

histopathological data. The results were consistent with the SNUH data set. 
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Figure 3.12 Validation of the TEA-graph on the external TCGA dataset. a, Log 
hazard ratio of several biomarkers with the TEA-graph-predicted risk value in 
relation to survival. All hazard ratio values were measured with TCGA dataset 
(n=502). Confidence interval was calculated by sandwich estimator.  b, 
Concordance index (C-index) of various prognostic biomarkers with the TEA-
graph-predicted risk in relation to survival. All includes age, sex, and TNM stage. 
IQR of box plot is between Q1 – Q3 and centre line indicates median value. 
Maxima is Q3 + 1.5*IQR and minima is Q1 – 1.5*IQR. c, Kaplan–Meier survival 
analysis of survival using the TEA-graph predicted-risk value (right) and the 
original stage (left). P-values were calculated through two-sided log-rank test. 

3.3. Interpretation of TEA-graph related to pathology 

3.3.1. Integrated gradients value as the valid tool for interpretation 

Using the TEA-graph, I evaluated whether the calculated IG values adequately 

describe the risk-related characteristics. Superpatches with IG values of top 10%, 
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middle 10%, and bottom 10% were grouped into high IG group, medium IG group, 

and low IG group, respectively. In terms of prognosis, the low IG group and the high 

IG group have a good prognosis and a poor prognosis, respectively. The mid IG 

group represents a prognostic or prognostic-independent function between the low 

and high IG groups. First, it was confirmed whether the TEA-graph reflects local 

features related to prognosis by checking the superpatches of the high, medium, and 

low IG groups. I observed correlations between each IG group and WHO/ISUP 

ratings, indicating well-known prognostic features. 

 

Figure 3.13 Risk-related histopathological characteristics predicted by TEA-graph. 
a, Histogram plot of the overall IG value that is correlated with predicted risk. b, 
Histopathological characteristics of small patches, which TEA-graph predicts as 
low risk (low IG), no risk (mid IG), and high risk (high IG). Scale bar, 30µm. c, 
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Kaplan–Meier survival analysis of each IG group (high, mid, and low) by dividing 
the patient into high-count/low-count groups for each IG group. P-values were 
calculated through two-sided log-rank test. 

For example, I identified small, transparent tumor cells in the low IG group and 

polymorphic tumor cells or tumor cells with rhabdomayosarcomatous differentiation 

in the high IG group. In the mid IG group, I observed tumor cells with a clear or 

eosinophilic cytoplasm, and normal areas such as glomeruli or glomerular tubules. 

Second, it was checked whether the TEA-graph reflects the contextual features by 

considering the interaction with the surrounding local features. I extracted 3-hop 

subgraphs of each superpatch from the high-, mid-, and low IG groups. The three-

hop is a subgraph boundary that the proposed GNN model can learn to describe 

contextual features. I observed cystic changes and stromal change in the low IG 

group, which are well-known contextual features for a favorable prognosis. In the 

mid IG group, I observed alveolar or papillary growths and stromal hemorrhage in 

the tumor and around normal component such as tubules and stroma, which are 

normal architectural contextual features. On the other hand, I identified hemorrhage, 

necrosis and lymphocyte infiltration as high-risk contextual features in the high IG 

group. 

In order to prove that each superpatch IG value appropriately and quantitatively 

reflects the prognostic factors, the correlation between the average of the IG values 

and the predicted risk of the TEA graph was measured. IG values clearly correlated 

with predicted risk values and, as expected, each group of IG values was enriched in 

the sorted risk groups. Additionally, for each patient, I counted the number of 

superpatches in 3 different IG groups and stratified these patients into two groups: 

high-count patients and low-count patients in 3 different IG groups. I clearly 

observed that patients had high counts in the high IG group and vice versa, low 
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survival in the low IG group. In addition, I subdivided the quantized IG groups by 

10% of the total IG values and then performed Kaplan-Meier analyzes of the high- 

and low-count groups in the subdivided IG groups according to the prognostic 

characteristics of the matched risk groups. 

 

Figure 3.14 Correlation measurement between the risk and IG value. a, Numbers 
of patches in the low, mid, and high IG groups for each risk group. IQR of box plot 
is between Q1 – Q3 and centre line indicates median value. Maxima is Q3 + 
1.5*IQR and minima is Q1 – 1.5*IQR. b, Scatter plot between the risk and IG 
values. c, Merged scatter plot between the risk values and numbers of patches in 
each IG group. d-f, Scatter plots between the risk values and numbers of patches 
for each IG group. 

3.3.2. Validation of interpretability in two different tumor tissue 

It is important to adequately predict risk values to reflect the heterogeneous tumor 

environment. Therefore, I examined whether the TEA-graph distinguishes two 

different contexts and reflects the risk prediction context through attention scores 

and IG values between each superpatch. I demonstrated that TEA-graphs 

discriminate histopathological features, with similar local features but different 
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surrounding environments using attention mechanisms. I observed that the TEA-

graph could identify the various roles of immune cells according to the context of 

the tumor environment and adequately reflect it in risk prediction. 

 

Figure 3.15 Heterogeneous context feature extracted by TEA-graph. First column 
shows patches that have similar local features and second column shows different 
pathological context. The color of each node indicates the node IG value and the 
color of each edge indicates the attention score. High attention score between two 
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nodes points out connected nodes affect each other significantly a, Peritumoral 
lymphocytic infiltration and compressed tubules and glomeruli (top). Interstitial 
inflammation and fibrosis related to chronic kidney disease (bottom). Scale bar, 
100µm (left), 400µm (right). b, Intratumoral lymphocytic infiltration (top). 
Lymphocytic infiltration at fibrotic tumor stroma (bottom). Scale bar, 100µm (left), 
400µm (right). c, Ischemic tumor necrosis (top). Stromal hyalinization (bottom). 
Scale bar, 100µm(left), 400µm(right). 

For example, although interstitial inflammation was observed as a local feature, 

TEA-graphs identified other prognostic features between peritumoral lymphocyte 

infiltration and inflammation associated with chronic kidney disease. Furthermore, 

I observed that the TEA-graph differentiated prognostic effects when lymphocytes 

showed infiltration into tumor cells or were predominantly present in the tumor 

stroma with little association with tumor cells. In addition, TEA-graph showed a 

difference between ischemic tumor necrosis and stroma vitrification with similar 

local features, but with different prognostic effects. 

 Similarly, the TEA-graph imposed a different prognostic effect for each bleeding 

feature. I also investigated the role of attention values by observing feature 

correlations between two connected patches with low (< 0.1) and high (> 0.9) 

attention values. Interestingly, I found that the TEA-graph favored paying high 

attention between two patches with different (low correlation) features. This trend is 

more pronounced in the low IG group and the high IG group than in the mid IG 

group. In other words, the TEA-graph aggregates heterogeneous characteristics 

relevant to a patient's prognosis to generate contextual features. Overall, I 

demonstrated that TEA-graphs well reflect the contextual features of the tumor 

environment through IG values and attention scores, even in difficult cases. 
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Figure 3.16 Validation of the TEA-graph on the external NLST dataset. a, Kaplan-
Meier survival analysis of survival using the TEA-graph predicted-risk value 
(right) and the original stage (left). P-values were calculated through two-sided 
log-rank test. b, Predicted risk heatmap of NLST patients. c, Risk-related 
contextual features predicted by the TEA-graph. 

 
I further strengthened the validity of IG values as risk interpretation values by 

examining external data sets with different tissue types. I demonstrated the validity 

of TEA-graph and IG values in lung tissue in the NLST data set. As expected, the 

TEA-graph showed better risk stratification performance than the TNM step, and 

each IG value group was enriched in the sorted risk group. And I found well-known 

pathological features such as low-grade tumor cell proliferation with a lepidic or 

acinar pattern in the low IG group of lung cancer and polymorphic tumor cell 

proliferation with a solid pattern and necrosis in the high IG group. All these results 
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showed that the IG values were well indicative of the risk-related significance of the 

trait and that the TEA-graph adequately extracted the prognostic-related contextual 

trait. 

3.3.3. Validation of interpretability for different event 

 

Figure 3.17 Differences between the predicted prognostic features of survival and 
metastasis.  

 
Since TEA-graph requires only WSI-level annotation in a semi-supervised manner, 

various prognostic characteristics of survival and metastasis events can be compared. 

To this end, I trained two separate models on cancer-specific survival and metastasis-

free survival data. I used two separate models to obtain risk-related contextual 

features important for survival and metastatic events. To compare risk-related 

contextual features between two events, I observed risk-related areas of mortality 

and metastasis in the same patient using IG values from two separate models. In 

particular, by extracting the connection graph of the super patch with the top 10% 

IG value, the prognostic characteristics according to the situation are indicated. I 

then explored unique and shared contextual features for survival and metastasis 

events. In both cases, the high IG area showed advanced pathological features, such 

as striated muscle. In addition, I observed sarcoma and intratumoral lymphocyte 

infiltration.  
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Figure 3.18 Pathological features of the connected graph that had a high IG value 
and appeared in both survival and metastasis events. Scale bar, 400µm.  

 
Although pathologic features were shared in survival and metastasis, regions that 

appeared predominantly in the survival events showed tumor necrosis, infiltrative 

growth or discohesive tumor cells. The difference in the pathological features 

between the two events means that the TEA-graph learned the different context 

features according to the target events. Although minimal information about the 

contextual features of metastasis is available, the high-risk features that appeared in 

metastasis events can be candidates for metastasis-specific pathological biomarkers. 
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Figure 3.19 Pathological features of the connected graph that had a high IG value 
and appeared in both survival and metastasis events. Scale bar, 400µm.  

3.4. Contextual pathological biomarker 

3.4.1. Biomarker discovery 

 

Figure 3.20 Overall workflow to discover the pathological biomarkers that have 
prognostic power 

 
I investigated whether TEA-graphs extracted useful contextual features to define 

prognostic biomarkers in a data-driven manner. The IG values of all ccRCC patients 

were calculated and a subgraph of each IG group, a linked graph (top 10% for top 

group, bottom 10% for subgroup) was extracted to represent situational features 

relevant to prognosis. To cluster the subgraphs with specific pathological features, 

cluster features with 8 different marker groups in the subgraphs of each IG group 
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using the k-means clustering method and use t-stochastic neighbor embeddings (t-

SNE). to visualize the cluster. Then, a Kaplan-Meier survival analysis was 

performed to measure the difference in the area under the Kaplan-Meier plot between 

large and small groups that could reflect the risk of that subgraph-level cluster. I 

observed that the area under the plot was biased towards negative values in the low 

IG group and biased towards positive values in the high IG group. 

Choose the number of graph clusters that represent the statistically strongest patient 

stratification performance (p-value of the log-rank test) and clustering performance. 

I first calculated the number of pathologic features corresponding to each graph 

cluster per patient for the entire data set. High and low IG graph clusters were 

associated with adverse and favorable pathological features, respectively. Therefore, 

groups of patients with a number of High and Low IG graph cluster pathological 

features above the median of the count values for the entire patient group should be 

able to distinguish those who do not. The Mid IG cluster, on the other hand, is 

associated with moderate or unrelated pathologic features, so the patient group 

should be indistinguishable no matter how many or few pathological features each 

patient has. Based on the above hypothesis, I measured the fraction of well-

segmented High and Low IG clusters with p-values lower than 0.01 in the log-rank 

test of patient stratification. 
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Figure 3.21 Kaplan-Meier plot of the distinguishable and indistinguishable graph 
cluster 

 
I measured the ratio of the number of distinguishable cluster number, which means 

the proportion of clusters with a p-value lower than 0.01 in the high group and the 

low group. As a result, I decided eight as the graph cluster number which showed 

the highest statistically meaningful cluster ratio in original manuscript. 

 
Figure 3.22 a, Sum of square error (SSE) of each cluster in high IG (left) and low 
IG (right) with different graph cluster number b, t-SNE plot of subgraph clustered 
by k-means clustering method of high IG. c, t-SNE plot of subgraph clustered by k-
means clustering method of low IG. d, Matched portion of subgraph between 
various randomly initialized clustering results with original clustering result. 
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I first used the K-means clustering method to cluster the graph features and then used 

the t-SNE method as the visualization and validation method of proposed clustering 

results. I used the hyperparameters of t-SNE as [number of components = 2, 

perplexity = 30, iteration number = 1000, learning_rate = 200] and it can clearly 

visualize K-means clustering results. The clustering method is purely unsupervised 

method so the different initialization can affect the clustering result. I tested whether 

different initialization affect a clustering result and confirmed the components that 

originally included in each graph cluster were preserved even though different 

initialization. Because the cluster index of randomly initialized clustering can be 

changed, I first found the appropriate cluster index that the original cluster index is 

included the most. And then I measured the accuracy of how many components are 

preserved in the randomly initialized clustering in total of seven different random 

state. I found that approximately 98.8% of original components were preserved even 

after multiple randomly initialized clustering, therefore proposed graph clustering 

method is robust against effect of randomness of unsupervised clustering method. 

Although the prognostic characteristics of the graph cluster were maintained so that 

the contextual pathological features could be found on every clustering analysis, the 

user might obtain slightly different results on every clustering analysis. This is the 

limitation of unsupervised, clustering-based analysis, and I can optimize the 

consistency and reliability of the clustering results further for each application, for 

example, long iterations for high convergence. 
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Figure 3.23 a, Sum of square error (SSE) of each cluster in high IG with different 
patch cluster number. b, Pathological features of each cluster in high IG. c, Sum of 
square error (SSE) of each cluster in low IG with different patch cluster number. d, 
Pathological features of each cluster in low IG. 

 
In the patch level clustering, I selected the number of clusters based on the elbow 

point of the SSE of each patch cluster to better decide the number of clusters. I 

choose the ten as the number of cluster for the patch level clustering because that is 

the point where the difference of SSE is linear. However, since the purpose of patch 

clustering is to interpret the relationship between patches in a contextual pathological 

feature, there are various options to choose the appropriate patch cluster number if 

the number satisfies the certain statistical criteria. Therefore, I also discussed the 

number of patch cluster to represent the pathological features I measured in the 

subgraph features. Likewise, each user can determine the appropriate patch cluster 

number according to the level of pathological details that the user wants to measure.  

  After calculating the IG values for the entire data set, group the top 10%, middle 

10%, and bottom 10% IG values as targets for context graph biomarker extraction. 

A connected graph is defined as a graph with 5 or more nodes among the largest 
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graphs connected to the same group (high, medium, low). 

Defines a connected graph feature by averaging all node features in the connected 

graph. For node features, I connect two features: morphological features from the 

pre-trained CNN model and graphical features from the trained TEA graph. Choose 

the graph cluster that represents the most distinguishable clusters. All associated 

graph features were normalized to the same group (high, medium, low) and k-means 

clustering was performed to extract each pathological environment biomarker from 

each group. A t-SNE plot was used to visualize the clustering results. I then counted 

the number of subgraphs in each graph cluster for each patient and performed a 

Kaplan-Meier analysis with high and low groups. Higher count groups represent 

more patients in the subgraphs of the selected graph cluster than the median count 

values of the selected graph clusters, and the lower count groups represent the 

opposite. I obtain the Kaplan-Meier plot of each cluster and measure the difference 

between the areas under the Kaplan-Meier plot of the high and low count groups to 

rank the importance of each subgroup as prognostic biomarkers (The p-value is 

Calculated by log-rank test). All survival analysis is performed using Python's 

Lifeline package. I define clusters with p-values less than 0.01 as distinguishable 

clusters in the high/low group. Choose the graph cluster number with the highest 

number of distinguishable clusters in the high/low group. 

  For patch-by-patch analysis, I first sampled 100 subgraphs from each graph cluster. 

Then, patch-level indices were created with k-means clustering using the 

morphological features of the patches in the sampled subgraphs. In the selected 

subgraph cluster, I assigned a patch-level cluster index to each node in the subgraph. 

I then counted each pair of patch-level cluster indices connected by the edges of the 

subgraph and normalized to the total number of edges in the subgraph. From the 
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subgraph clusters, patch clusters exhibiting high connectivity were selected and the 

pathological features of pairs of patch-level clusters were interpreted based on the 

pathological features of each patch-level cluster. I labeled nodes with superpatch 

labels to visualize each connected graph using networkx and to characterize the label 

connection patterns of each connected graph. 

  To determine whether the selected graph features had prognostic features, I 

extracted all linked graph features that were in the same cluster and exhibited high 

correlation (> 0.9) with the selected graph features. Then, using the count matrix of 

the highly correlated subgraph, a Kaplan-Meier plot was obtained and the p-value 

was calculated. 

Graphical analysis was performed to extract the contextual characteristics of each 

cluster. To this end, I define patch-level pathologic features grouped into 10 different 

pathological features from the high IG group and the low IG group, respectively. 

Each patch-level cluster exhibits different morphological features depending on the 

IG group, such as necrosis and intratumoral lymphocyte infiltration for the high IG 

group, vitrification and cystic changes in the low IG group. Second, I identified patch 

connectivity patterns in each subgraph cluster. Each subgraph cluster has its own 

patch connection pattern, and the cluster pattern can be determined by a heatmap. 

For example, cluster 6 of the high-risk graph in the high IG group shows patterns of 

abscess formation and intratumoral lymphocyte infiltration (patch cluster 3). 
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Figure 3.24 Risk-related environmental markers predicted by TEA-graph. a, 
Example of the subgraph features that is the input data for the t-SNE analysis (left), 
subgraph-level clustering using t-SNE and kNN (right). Scale bar, 256µm. b, Plot 
of the difference of area under plot betIen low count and high count Kaplan–Meier 
plot which reflects the risk of the clusters. c, Patch level cluster characteristic of the 
high IG group. d, e, Kaplan–Meier plot and edge distribution (connectivity) of 
subgraph-level cluster 3, 6. Connectivity shows which patch clusters are interacted 
with each other more frequently (top). Example of the subgraph in subgraph-level 
cluster 3, 6. Each node color indicate the corresponding patch cluster (bottom). 
Scale bar, 200µm. 
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Figure 3.25 More examples of risk-related environmental markers predicted by 
TEA-graph. a, b, t-SNE and the difference of area under plot of mid IG group and 
low IG group. c, Kaplan–Meier plot and connectivity of subgraph cluster 13, 2 
from top IG group (left, right). Connectivity shows inter-connected frequency of 
each patch cluster. 

 
This contextual feature was well captured because, unlike other tumor types, 

lymphocyte infiltration presents an adverse prognostic marker that is a unique 

feature of ccRCC and TEA-graph [53]–[55]. To further indicate that each graph 

cluster exhibits a specific contextual function, a subgraph well representing the 

pathological features of graph cluster 6 mentioned above was chosen. I then 

identified other subgraphs that were well clustered in the same 6 graph clusters with 

pathologically similar features. In graph cluster 6, I found several subgraphs with 

similar pathological features and identified an unfavorable prognosis in those 

subgraphs..  

Additionally, graph cluster 3 of the low IG group shows stroma vitrification (patch 

cluster 4) associated with low-grade tumor cells (patch cluster 2) and chicken wire 

vasculature (patch cluster 7). As with the group with high IG, a representative 

subgraph was selected from graph cluster 3, and a good prognosis was confirmed 
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with a subgraph with similar pathological characteristics in graph cluster 3.  

3.4.2. Proposed new pathological marker 

Interestingly, I found angiogenesis-related pathological features in cluster 0 of the 

high IG graph, called active granulation and angiogenic focus (AGAF). I found that 

patch clusters 6 with active granular and angiogenic functions were correlated with 

patch clusters 3 and 5, respectively, which were associated with intratumoral 

lymphocyte infiltration and eosinophilic/transformation functions.  

 

Figure 3.26 Angiogenesis-related environmental markers predicted by the TEA-
graph 

 
Cancer progression alters the tumor microenvironment towards more vascularization, 

and fibroblast proliferation and immune cell infiltration can reveal granulation tissue 

formation and form cancer-prone niches (Patch cluster 6) [56]–[58]. In this case, 

cancer cells can interact closely with fibroblasts, immune cells and blood vessels 
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(patch cluster 5), which can lead to intratumoral lymphocyte infiltration (patch 

cluster 3). Thus, constellation of AGAF, eosinophilic/transformation characteristics, 

and intratumoral lymphocyte infiltration have been associated with disease 

progression and poor prognosis. I selected representative subgraphs of AGAF and, 

as expected, found several subgraphs with AGAF features in graph cluster 0. Overall, 

I confirmed that TEA-graphs identified histopathological prognostic features in a 

semi-supervised and data-driven manner using substantial WSI data sets. 

 

In chapter 4, I will discuss the limitation of proposed method and room for 

improvement that combined with recently developed method. 
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Chapter 4.  

 

 

 

 

Conclusion and discussion 

 

 

 

 

TEA-graph show promising results to predict the patient’s prognosis incorporating 

context features. Because TEA-graph is end-to-end framework consist of multiple 

components, it’s important to find out which component is critical for improved 

performance of TEA-graph. Also, though TEA-graph show promising results with 

incorporating context features, there is still a room for improvement. In this chapter, 

There are multiple components within TEA-graph there is still a room for 

improvement. In this chapter, hyperparameter screening and ablation study of TEA-

graph is proposed and also discussed recent development of graph neural network 

that could further improve the TEA-graph.  
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I showed that TEA-graphs represent contextual features of WSI and can learn 

prognostic features, including complex interactions with the tumor environment. 

TEA-Graph has demonstrated improved risk prediction and stratification 

performance that can help both patients and clinicians in clinical settings. In 

particular, I used the interpretive method to address the meaningful histopathological 

features that the TEA-graph has learned to discriminate among patients' risk values. 

By using the contextual features extracted through TEA-graph, I can cover several 

contextual features related to the prognosis of ccRCC. I have demonstrated that 

findings are consistent with previously reported contextual features of ccRCC. The 

TEA-graph consists of various hyperparameters optimized to adequately predict 

prognostic characteristics. I found that utilizing edge features to represent the 

relative positions (distance and angle) between superpatches had a decisive effect on 

the performance of the TEA-graph.  

 
Table 4 Ablation study of different edge features used for TEA-graph 

 
Simple multiplications on node features also benefit performance, but you can 

achieve better performance by including distance and angle features as learnable 

parameters. These results are consistent with the results of other studies that utilize 

location information to better discriminate neighboring features during aggregation 

via GNN [59], [60]. In addition, in order to secure optimal performance, the method 

of constructing a graph is important. Unlike typical Euclidean space-by-patch graphs 

where the distances between each patch are the same, the super patch graph can have 

different edge states because the distances between each patch are different. I 
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achieved better performance when I allowed intersections between edges, which 

means that the constructed graph is not planar. A ~2% performance improvement 

over planar graphs was obtained when edges were created between all patches at less 

than 3 patch distances. 

 
Table 5 Hyperparameter screening of TEA-graph 

 
TEA-graph also introduces a superpatch approach to compress WSI without loss of 

context function, alleviating the hardware requirements of multiple GPUs due to the 

gigapixel size of WSI. Collectively, proposed approach proposes to use modified 

GATs to learn contextual features of WSIs in a semi-supervised manner while 

processing all WSIs more efficiently. There is a trade-off between accuracy and 

compression ratios that change based on the correlation threshold used to construct 
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the superpatch. The best accuracy was achieved with a correlation threshold of 0.75 

and a compression ratio of about 50%, but similar results were achieved with a 

correlation threshold of 0.5 and a compression ratio of about 10%. Thus, researchers 

and clinicians can easily analyze interpretable contextual features with their own 

GPUs and WSIs using TEA graphs by selecting the optimal parameters for their 

hardware setup. 

I also thoroughly investigated the sensitivity of the TEA-graph to several 

hyperparameters. Similar results can be achieved by extracting important features 

from small patches using ImageNet pretrained CNNs, but transfer-training the CNN 

model to tumor and normal classification can increase performance by ~2%. Also, 

choosing an appropriate regularization method had a significant impact on the 

performance of the TEA graph. GNNs are well-known for the problem of over-

smoothing, as they easily overfit to data sets due to the nature of the way messages 

are passed. Due to the large size of the WSI, I could not test deeper GNNs due to out 

of memory issues, but I achieved better performance when I increased the GNN 

layers using dropout, dropedge, and node/edge feature dropout (Dropfeature) to 

alleviate overfitting [61], [62]. Overall, these parameters are critical to achieving the 

optimal performance with TEA-graph. 

Although TEA-graphs can be used to find meaningful contextual biomarkers, there 

is still room for improvement to more accurately reflect pathological features in 

contextual features. I selected the most robust graph clusters of the low and high IG 

groups and found that the TEA-graph confuses homogeneous pathological features 

with detailed cellular-level features occupying large areas. For example, low-level 

tumors and lymphocytes sometimes have very similar pathological appearances that 

are indistinguishable from patch-level features. When vitrification features are too 
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large to be covered by a three-layer TEA-graph, the TEA-graph sometimes does not 

match the features with a similar pattern, such as ischemic necrosis features. These 

limitations can be improved by combining cellular and patch level features [63], [64].  

 
Figure 4.1 Pathological features of each IG group misclassified by TEA-graph.  

 
Additionally, recent GNN models were further developed with attention models that 

consider the entire WSI correlation without limitation in the stacked layer [65], [66]. 

Therefore, the risk prediction and contextual biomarker detection performance of the 

TEA-graph can be further improved through the application of the above-mentioned 

methods. In addition, a methodology for finding graphic biomarkers with TEA-

graph was proposed. I used unsupervised clustering methods such as k-means 

clustering and t-SNE with subgraph features of GNN. Due to the nature of the 

Unsupervised Clustering method, an optimization process is required according to 

the purpose or characteristics of the organization. 

Deep learning has facilitated innovation in pathology representing heterogeneous 



 70 

image data with different interactions of different tumor cells and microenviron-

ments. Numerous studies have demonstrated the utility of deep learning for 

pathological imaging, but the clinical deployment of these techniques remains an 

open question [67]. Currently, several clinical studies are being performed that will 

show the utility of deep learning in aiding pathologists in actual clinical settings 

[68]–[70]. I believe that proposed study can also contribute to the realization of the 

clinical benefits of deep learning through contextual feature-based biomarker 

retrieval in the near future. 
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국문 초록 

 

본 연구는 WSI의 (WSI, Whole slide image) 메모리 효율적인 그래프 표현

과 맥락적 (Contextual) 특징을 고려하는 해석 가능한 그래프 신경망 (GNN, 

Graph neural network)을 기반으로 반 감독 방식 (Semi-supervised 

learning)의 그래프 학습을 사용하는 종양 환경 관련 맥락 분석이라는 새로

운 접근 방식인 TEA-graph를 제안합니다. 디지털 스캔한 종양 단면인 기

가픽셀 해상도의 WSI는 양적 및 데이터 기반 방식으로 병리학 분석의 접근 

방식을 변경했습니다. 딥 러닝과 WSI의 결합은 임상적으로 중요한 작업에

서 더 많은 시너지 효과를 가져오는 동시에 병리학적 분석의 패러다임을 바

꾸었습니다. WSI에 대한 딥 러닝은 CAD (Computer-Aided diagnosis) 및 

자동화된 분석을 위한 보조 도구로서 유례없는 결과를 보여주었지만 여전히 

"환경적 병리학적 특징"인 종양 미세 환경 (TME, tumor microenvironment)

과 같은 임상적으로 중요한 병리학적 특징을 설명할 수 없었습니다. 

본 연구에서 제안하는 TEA-graph는 메모리 효율적이고 반 감독 방식으로 

WSI의 "환경적 병리학적 특징"을 학습하는 방식입니다. 기존에도 맥락 학습

을 위해 그래프 신경망을 사용하고 다양한 방식으로 전체 슬라이드 이미지 

(WSI)를 압축한다는 유사한 개념이 도입된 바 있지만, 다양한 종양 미세 환

경을 구별하는 중요한 특징인 기하 구조적 특징을 그래프 신경망에 도입한 

연구는 없었습니다. 본 연구는 제안한 슈퍼패치 (Superpatch)라는 네트워크 

압축 기술을 통해 WSI에 대한 맥락적 정보를 잃지 않고 한번에 WSI를 활용

하였습니다. 따라서 TEA-graph는 전문가의 모니터링이 없어도 대규모 WSI 
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데이터셋으로 확장이 가능하고 연구자와 임상의가 해석할 수 있는 정보까지 

제공할 수 있습니다. 제안한 기술의 검증을 위해 4가지 다른 유형의 암으로 

구성된 총 4,967명의 환자로부터 얻은 WSI 데이터를 사용하여 TEA-graph

의 예후 예측 성능을 확인했습니다. 특히, TEA-graph는 1366명의 환자로

부터 얻은 데이터 세트에서 투명 세포 신세포 암종(Clear cell renal cell 

carcinoma, ccRCC)의 이질적 맥락 특징을 포착하고 이러한 특징을 반영하

여 ccRCC의 예후를 예측했습니다. 또한 TEA-graph는 해석 가능한 맥락적 

특징을 제공하고 이를 서로 다른 예후 효과를 갖는 여러 그룹으로 분류할 수 

있게 해주었습니다. 이와 같은 결과는 TEA-graph가 조직병리학적 특징의 

복잡한 상호작용을 식별하여 데이터 기반 방식으로 예후 바이오마커를 제공

했음을 나타냅니다. 또한, ccRCC의 새로운 예후 바이오마커적 특징을 제안

하였으며 성능 비교를 포함한 하이퍼파라미터 스크리닝 (Hyperparameter 

screening)을 통해 최적의 성능을 위해 TEA-graph의 파이프라인 상에서 

중요한 부분을 확인했습니다. 본 연구는 병리학적 조직에 맥락적 특징 학습

을 활용하였지만, 이는 MRI, CT 등 다양한 데이터 종류에 활용될 수 있습니

다. 맥락적 특징 학습은 임상의에게 새로운 통찰력을 제공하고 병리학 분석 

모델의 전반적인 성능을 향상시킬 것이기 때문에 향후 딥러닝을 의료 응용

에 활용하는 다양한 분야의 연구자에게 도움이 되고 활용 될 것으로 기대됩

니다. 

 

주요어 : 그래프 신경망, 병리학, 생존 분석, 암 미세환경 

학번 : 2016-23108 
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