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ABSTRACT

Neuromorphic computing systems have emerged as a novel artificial
intelligence paradigm to overcome the von Neumann bottleneck by mimicking the
biological nervous system. Synaptic devices for hardware-based neural networks
(HNNSs) in neuromorphic computing systems require parallel computability, high
scalability, low-power operation, and selective write operation. In this work, a SiO>
fin-based AND flash memory synaptic device for a HNN is proposed. The proposed
device having a round-shaped channel structure with a 6 nm-wide thin oxide fin
improves program performance compared to a flash synaptic device with planar-
type channel by locally enhancing electric fields. The AND flash cell shows a high
on/off current ratio over 10°, a low sup-pA off-current, and a high dynamic range
of synaptic weights over 10 with a low program voltage below 9 V. Selective write
operation is performed using program and erase inhibition pulse schemes in the
fabricated AND array based on SiO> fin, and weighted sum operation is

experimentally verified. In addition, a 3D AND flash synaptic array with round-



shaped poly-Si channel is designed and fabricated to improve scalability. Key

fabrication steps are proposed to address misalignment issues. The proposed 3D

AND array performs selective write operation using program and erase inhibition

pulse schemes.

A novel synaptic architecture with two AND flash memory cells for off-chip

learning is proposed. The novel synapse structure based on AND flash cells is used

to perform parallel XNOR operation and bit-counting for binary neural networks

(BNNs). Proposed BNN based on the AND flash array structure exhibits a

classification accuracy of 89.9% on CIFAR-10 dataset, comparable to that of an

ideal software-based BNN. Furthermore, differential synaptic architecture using

AND flash array is proposed to improve robustness against on-current retention loss.

Keywords: AND flash memory, synaptic device, fin-type flash device, 3D flash

memory, hardware-based neural network, binary neural network, neuromorphic

system.
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Chapter 1

Introduction

1.1 Neuromorphic computing

In the era of exponential data growth, current von Neumann based information
processing systems are dramatically challenged by issues of speed and power
consumption [1], [2]. In order to address the limitation of the classical computing
architecture as shown in Fig. 1.1(a), brain-inspired neuromorphic computing
system has been proposed to achieve low-power operation [3]—[8]. Neuro-inspired
computing architecture has shown outstanding performance in computationally
demanding tasks such as image or speech recognition and classification based on
deep learning algorithms (Fig. 1.1(b)) [9]-[13]. In this non-von Neumann
architecture, in-memory computing is performed, exhibiting fast processing speed
and low-power computing required for edge devices. With the help of software,
neuromorphic systems based on deep neural networks (DNNs) using the

backpropagation algorithm have been highlighted for its excellent computational



capability and simplicity of the simulation [15], [16]. The in-memory computing is
desirable to carry out real-time big data processing, which takes advantage of
massive parallel computations in DNNs. The basic computing in DNNs is the
vector-by-multiplication (VMM). In order to reduce power consumption of
neuromorphic systems, hardware-based crossbar arrays are exploited to perform

VMM operations by Ohm’s law and Kirchhoft’s current law.

(b)

Central Processing Unit
Control Unit (CU) Input layer Hidden layer 1 Hidden layer 2 OQutput layer

T
P

ISR )

7
‘_;.v A‘A’&n
éﬁ(‘gh 4‘01‘*'3('- :
~/ \\ \\

2 );‘

Arithmetic Logic Unit (ALU)

Registers

Fig. 1.1. Schematics of (a) von Neumann architecture and (b) deep neural networks.



1.2 Synaptic devices

Recently, hardware-based neural networks (HNNs) have been proposed to
support parallel computing using deep learning algorithms [17], [18]. In order to
implement HNN systems, emerging synaptic devices including resistive switching
random access memory (RRAM), phase change memory (PCM) have been
suggested to form energy efficient and scalable crossbar arrays which can be simply
adopted for parallel computations [19]-[32]. However, the crossbar array structure
of the 2-terminal passive devices suffers from a sneak-path current problem leading
to incorrect output results. Although 1-transistor/1-resistor structure or additional
selectors are used to address this problem, scalability or process complexity can be
other bottlenecks of the solutions. In addition these devices still have reliability
issues including device characteristic variation, which should be alleviated to create
massive synaptic arrays.

On the other hand, flash synaptic devices based on highly mature and CMOS
compatible technology [33]-[43], such as NOR and AND flash memory devices,

have been proposed to perform parallel processing. Although NOR flash-based



synaptic arrays can easily achieve a fast and selective program operation using a

hot carrier injection at the drain side, their high bit line (BL) current during program

operations is not desirable to implement a low power hardware neuromorphic

system. Unlike a NOR flash synaptic array showing a program operation using a

channel-hot-electron (CHE) injection, an AND flash memory synaptic array uses

Fowler-Nordheim (FN) tunneling-based programming, which performs a highly

energy-efficient program operation.

(@) (b)
BL SL BL
WL = == = =+ WL =X = X -
st R O L O L O L SIS SIS L L
- . - - == == == ==
== == = =+ o = - -
O L A O Le O L L L L 3 L

Fig. 1.2. Schematics of (a) NOR-type flash memory array and (b) AND-type flash

memory array.



1.3 Purpose of research

As aforementioned, an AND-type flash array has several advantages including
low power selective program/erase characteristics and parallel computation. AND
flash devices based on highly mature and CMOS compatible technology have been
suggested as reliable synaptic devices to form energy efficient and scalable synaptic
arrays in massive neural networks. In particular, 3D AND array models have been
recently reported to achieve high scalability for HNN.

In this work, we propose and fabricate a high-density SiO; fin-based AND flash
memory array. Compared to a planar-type flash cell, the proposed AND flash cell
with a fin-type round channel is shown to have a larger dynamic range and lower
program voltage using FN tunneling. Then selective program and erase schemes in
the SiO; fin-based AND flash array proposed are described and experimentally
carried out.

Additionally, anovel 3D stackable AND flash synaptic array with round-shaped
channel is proposed to improve scalability. We suggests efficient fabrication method

to alleviate misalignment issues. Memory characteristics of 3D AND array is also



investigated to verify synaptic properties. As in 2D AND array, selective program

and erase scheme is introduced and experimentally implemented.

Then a novel synapse design using two adjacent flash cells in AND synaptic

arrays is proposed and analyzed to implement XNOR behaviors and bit-counting

operation in a parallel fashion for BNNs. BNNs based on the proposed AND flash

cells with large dynamic range pave the way for low-power off-chip neuromorphic

devices that can achieve high classification performance comparable to the software

baseline. Furthermore, differential synaptic architecture for BNNs is proposed to

achieve stable off-chip learning performance against retention loss. Classification

performance of QNN based on AND array is investigated to verify applicability of

analog synaptic properties.



1.4 Dissertation outline

The structure of this dissertation is as follows: Chapter 1 provides an overview

of neuromorphic computing and related synaptic devices. The purpose of the

research and outline of this dissertation are introduced. Chapter 2 describes the

proposed SiO» fin-based AND flash memory array. In this chapter, the device

structure, fabrication process, and characteristics of the synaptic device are

presented. Moreover, cell measurement results and array measurement results are

also presented. Chapter 3 describes the proposed 3D AND flash memory array with

round-shaped channel. This chapter includes the device structure, fabrication

process, and characteristics of the synaptic device. 3D AND array measurements

results are also presented in this chapter. Chapter 4 describes the hardware-based

BNN introducing novel two cell-based AND-type synaptic arrays. In addition,

differential synaptic architecture using AND flash array is proposed to show

advanced classification performance. Lastly, chapter 5 summarizes the dissertation.



Chapter 2
SiO; fin-based AND flash synaptic array

2.1 Device structure

A SiO; fin-based flash synaptic device in an AND array is designed to have a
round-shaped channel structure with high curvature by using a thin oxide fin with
a thickness ranging from a few to several tens of nanometers. Fig. 2.1 shows a 3D
schematic of proposed SiO; fin-based AND synaptic array and a schematic cross-
sectional view of a SiO> fin-based AND flash memory cell. A SiO; fin is used to
separate a drain line and a source line (SL), resulting in a fin-type round poly-Si
channel that crosses over between them. The major merits of the proposed synaptic
device are the following: (1) the rounded shape of the channel makes it possible to
do programming with low voltage due to its gate-all-around (GAA)-like structure;
the detailed analysis is shown in the next section. (2) The round-shaped poly-Si
channel device can exhibit a low synaptic current with increasing the oxide fin

height. (3) The SiO> fin-based AND flash memory device shows a smaller effective



cell size (~6F?) compared to a NOR flash device (~10F?) with the help of a small
footprint of the oxide fin in it. A bit-line (BL) linking drain nodes and a SL
connecting source nodes are laid out in parallel to form the AND flash array. (4)
Selective program/erase properties can be readily obtained by using FN tunneling
due to its parallel array design. Moreover, a SiO2/ Si3N4/AlO3 (O/N/A) gate stack
is located between a poly-silicon channel and a TiN metal gate to store synaptic

weights and improve programming/erasing window.

Si0,/S1,N/ALO,

(b)

TiN

SiO,/SizN,/Al,O4
n* poly-Si n* poly-Si
>

W
Sio,
Si

Fig. 2.1. (a) 3D schematic of proposed oxide fin-based AND array. (b) Cross-

sectional schematic of the single cell.
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2.2 Fabrication process

Fig. 2.2 depicts main fabrication steps for an AND flash memory cell based on
a SiO; fin. The AND-type synaptic cell and array are fabricated using six masks.
First, a 430 nm-thick SiO; buried oxide is grown on the Si substrate by wet
oxidation at 1000 °C for 80 min, followed by sequential formation of poly-Si and
Si0; layers. The 150 nm-poly-Si on the buried oxide layer is deposited by low
pressure chemical vapor deposition (LPCVD), and the 120 nm-SiO; layer is grown
on the poly-Si layer via wet oxidation at 1000 °C for 15 min. The SiO; layer on the
poly-Si layer is patterned and then a 60 nm-Si3Ny layer is formed by LPCVD (Fig.
2.2(a)). The Si13Ny layer is anisotropically etched to form a sidewall as a hard mask,
followed by an selective wet etching of remained Si02 on the poly-Si film using
buffered oxide etchant (NH4F:HF = 7:1). After the poly-Si patterning utilizing the
Si3N4 hard mask (Fig. 2.2(b)), the patterned poly-Si is used as a hard mask to etch
a section of the Si0; film, producing an oxide fin. (Fig. 2.2(c)). Isotropic etching is
then used to remove the poly-Si hard mask as shown in Fig. 2.2(d). A layer of in

situ n"-doped poly-Si, 150 nm in thickness, is deposited for SLs and BLs by LPCVD

10



(Fig. 2.2(e)). Then chemical mechanical polishing (CMP) is performed, as shown
in Fig. 2.2(f), then a chemical dry etch of the poly-Si surface is used to extrude a
fin-oxide onto the planarized n'-doped poly-Si surface (Fig. 2.2(g)). After an
amorphous silicon (a-Si) layer has been deposited by the LPCVD method, it is re-
crystallized at 600 °C for 24 hours to create an undoped poly-Si channel. A SiO»
/S13N4/AL,O3 (O/N/A: 2.8/4.5/6.0 nm) gate dielectric stack is deposited after the
poly-Si active layer is patterned. The tunneling oxide SiO> and the charge trapping
layer SizNy are deposited by LPCVD process and the blocking oxide of alumina is
formed by atomic layer deposition (ALD) process. A TiN metal gate is patterned by
isotropic etching of the conformal TiN layer deposited using metal-organic
chemical vapor deposition (MOCVD) process (Fig. 2.2(1)). Lastly, the back end of
line (BEOL) process is performed. Fig. 2.3 shows transmission electron microscope
(TEM) cross-sectional images of the fabricated SiO2 fin-based device. The fin oxide
width is 6 nm, channel thickness is 8 nm, and effective channel length is around 80
nm. Note that a further wet etching of the oxide fin with diluted HF (DHF, DIW:HF

= 100:1) can be used to modify the oxide fin's width before the poly-Si channel

11



formation.
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(h)
Si0,/SisN,/ALO,

Poly-Si
I n* poly n* poly I

(i)
()

@ Insulator (SiO,) formation @ Channel & S/D patterning
® Si;N, spacer formation (a) @ O/N/A stack deposition (h)
® SiO, fin formation (b-d) ® Metal gate formation (i)

® n* poly-Si deposition () @ BEOL

® CMP & poly-Si etch (f, 9)

Fig. 2.2. (a)-(1) Cross-sectional and 3D schematics of the main fabrication steps,

and (j) device fabrication flow.
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Fig. 2.3. (a) Cross-sectional TEM image of the fin-based synaptic device fabricated

and (b) magnified cross-sectional TEM image of a red dotted region in (a).
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2.3 Cell characteristics

In order to assess the synaptic properties of the suggested SiO; fin-based AND
synaptic cell, the program/erase properties of the manufactured cell are measured
and analyzed.

Fig. 2.4 shows measured /p-VG curves of a single cell in program (Vg = 5~8 V,
Vs=Vp=0YV,t=100 ps) and erase operation (Vs=Vp=7V, V=0V, t =10 ms).
Due to a parallel BLs and SLs of AND-type arrays, FN-programming and erasing
are carried out by applying same P/E voltage to a source and a drain while applying
high or low voltage to a gate node. Note that only positive program or erase voltages
are applied to the gate or the source and drain in program and erase operation,
respectively. The fabricated fin-type flash synaptic device shows a high on-off
current ratio over 10° as well as sub-pA off-current. As shown in Fig. 2.4(a), a high
maximum-minimum synaptic conductance ratio over 10° is also obtained by using
a low incremental-step-pulse programming (ISPP) voltage under 9 V. High on-off
current ratio over 10° is provided, and a low program and erase voltages below 7 V

can be exploited to control analog synaptic weights using the proposed synaptic
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device.

Fig. 2.5 (a) illustrates that simulated Ip-V curves of a proposed device in ISPP
operations (Vg =5~8V, V's=Vp=0V, t =100 ps) are well fitted with measurement
results using Sentaurus TCAD simulation tool. In order to consider the grain
boundary properties in the poly-Si channel, simulation parameters such as the
mobility, lifetime of the electron and hole in the poly-Si channel are calibrated to
40 cm?V!s7! and 25 cm?V!s™!, 1 ns and 0.3 ns, respectively [44]-[46]. Work
function of the TiN metal gate, effective tunneling mass of electron and hole in SiO»
tunneling oxide layer are also calibrated to 4.11 eV, 0.35 mo and 0.38 mo [47]. The
poly-Si/SiO; interface trap density is also calibrated to 4.5x10'> cm? [44].

Using the simulation parameters of the device fabricated, the programming
characteristics of a planar-type device are compared to those of a fin-type device.
Both simulated and measured program characteristics in Fig. 2.5(b) indicate that
the fin-type flash device shows higher programming efficiency than the planar-type
flash device. Therefore, the proposed fin-based flash device efficiently reduces a

required program voltage to obtain the necessary memory window. This decrease
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in program voltage derives from the GAA structure's local electric field

enhancement effect, as illustrated in Fig. 2.5(c) [48]. Note that a lower local electric

field across a blocking oxide in the fin-type device as compared to the planar-type

device reduces electron back-tunneling in an initial erase operation even more. Fig.

2.5(d) exhibits that reducing the oxide fin width improves the programming

efficiency of the proposed device as a result of the increased local field across the

tunneling oxide. As shown in Fig. 2.3(b), in order to maximize program efficiency,

a thin oxide fin with a thickness of 6 nm was used to incorporate process conditions

into the fabricated device.

Fig. 2.6 shows measured synaptic characteristics of the fabricated single

synaptic cell obtained by applying identical erase and program pulses one hundred

times respectively. By checking the number of applied program or erase pulses,

multi-level analog synaptic conductance can be obtained. >1 order of magnitude of

maximum-minimum synaptic conductance ratio is obtained at <7 V low program

(Vpom = 6.5V, t = 100 ps) and erase voltages (Vers =7V, t = 10 ms).

Furthermore, retention characteristics of the proposed fin-based AND flash

18



have been investigated to evaluate fin oxide-based flash as a synaptic device for

off-chip learning. In off-chip training, only the read operation occurs in the

inference process after weight update of synaptic devices, the synaptic weight's

maintenance feature is the most essential characteristic. Fig. 2.7 (a) and (b) show

room temperature (RT, 25°C) and 85°C retention performances of the oxide fin-

based AND flash synaptic cell with different dynamic ranges. Long RT retention

time over 10k seconds in both erased and programmed memory state and >2k

conductance ratio over the retention time at room temperature are obtained [44].

Even at high temperatures, independent of the dynamic range, the current level in

the erase state was well preserved, but the retention characteristic in the program

state was not maintained for more than 1k seconds. This degradation can be

attributed to the fact that the tunneling oxide of the AND memory device proposed

1s composed of a rather thin LPCVD medium temperature oxide (MTO) of less than

3 nm. Therefore, the retention characteristics can be improved by employing a

thicker tunneling oxide than 3 nm grown by dry or N>O oxidation [49]. Cycling

characteristics were also measured to evaluate memory performances. Using low
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program and erase bias, memory window is well maintained over 10* programming

cycles.
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Fig. 2.4. (a) Measured program and (b) erase properties of the fabricated SiO> fin-

based AND flash memory.
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2.4 Array characteristics

To implement hardware-based deep neural networks in which a significant
amount of program or erase operations are carried out during training, selective
program and erase characteristics of massive parallel synaptic arrays with low
disturbance are required. As aforementioned, an AND flash memory array exhibits
selective program and erase operations, which provides various directions to update
synaptic weights. Inputs are applied to WLs in the AND array architecture, and each
BL current indicates weighted sum of each output neuron, which represents a VMM
result. Fig. 2.8 shows a fabricated 2x2 SiO> fin-based AND flash synaptic array. A
single cell in the proposed AND-type array occupies only 6F?, which is 40% smaller
compared to that in a NOR-type array. FN tunneling-based selective program and
erase are conducted in AND arrays. With the help of parallel crossbar AND-type
array configuration, program and erase inhibit operation can be easily conducted by
applying appropriate program and erase inhibit voltages to other unselected cells,
respectively.

As depicted in Fig. 2.9, program inhibition bias schemes are designed to
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achieve selectable program performance for parallel in-memory computing. For

cell programming, a program voltage (Vpgm) is applied to WL of selected cell (cell

A), while other unselected neighbor cells are inhibited by applying a program

inhibit voltage (¥mn) to unselected BLs and SLs. Adopting the program inhibition

scheme in Fig. 2.9(a), a positive program voltage (Veom = 7 V, 100 ps) is applied

one hundred times to a WL of selected cell A and program inhibition voltage of 3.5

V is applied to BL and SL of unselected cells as the program voltage is applied. As

a result of programming using half program voltage for program inhibition, the

current flowing in cell A decreased by 131 nA, while currents flowing in other cells

changed by less than 5 nA as shown in Fig.2.9(b). Note that the cell to which the

program inhibition voltage is applied is not erased while preventing FN-

programming of neighbor cells sharing the WL of the selected cell. For selective

cell erasing, a positive erase voltage (Vers) 1s applied to BL and SL of selected cell

(cell A) after programming, while other unselected neighbor cells are inhibited by

applying an erase inhibit voltage (Vinn) to unselected WLs. Adopting the erase

inhibition scheme in Fig. 2.10(a), a positive erase voltage (Vers = 7 V, 10 ms) is
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applied one hundred times to BL and SL of selected cell A and erase inhibit voltage

of 3.5 V is applied to WLs of unselected cells as the erase voltage is applied. As a

result of erasing using half erase voltage for erase inhibition, the current flowing in

cell A increased by 29.8 nA at a read voltage of 2.15 V, while currents flowing in

the other cells changed by less than 0.7 nA at the same read voltage as shown in Fig.

2.10(b). Note that the cell to which the erase inhibition voltage is applied is not

programmed while preventing FN-erasing of neighbor cells sharing the BL or SL

of the selected cell.

As illustrated in Fig. 2.11(a), a 10x10 AND flash synaptic array is designed and

has been fabricated to investigate synaptic characteristics in the array. Fig. 2.11(b)

shows the weighted sum current along a BL as a parameter of input WL gate bias.

To measure the current of each cell connected to the BL, read bias is applied to the

WL of the cell to be measured, and the other cells are turned off. Note that the

weighted sum current flowing along BL 3 is measured 0.7 % lower than the sum of

cell currents in each of the ten at read voltage of 2 V.

In order to investigate current sum accuracy in more massive array, a 24x8
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AND flash synaptic array was fabricated as shown in Fig. 2.12(a). Fig. 2.12(b)

shows weighted sum current and the sum of each cell current along BL 3 of 24x8§

synaptic array at Vread =2 V. The measured current sum error reached about 5%. Fig.
ynap y g

2.12(c) shows current sum error as a function of the number of inputs. The larger

the input size, the greater current sum error. This tendency is due to the IR drop

along the BL or SL, which can be further improved by reducing BL/SL resistance.
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Fig. 2.8. (a) Top SEM image of the fabricated 2x2 AND flash synaptic array. (b)
3D schematic view of the fabricated SiO> fin-based AND flash synaptic array. (¢)

Schematic of the 2x2 AND flash synaptic array.
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Fig. 2.12. (a) Top SEM image of the fabricated 24x8 AND flash synaptic array. (b)
Comparison between weighted sum current and the sum of each cell current along

BL 3 of 24x8 synaptic array at Viead =2 V. (c) Current sum error as a function of the

number of inputs.
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Chapter 3
3D AND flash synaptic array with rounded

channel

3.1 Device structure

In order to achieve high scalability for massive synaptic array, 3D AND flash
synaptic array with rounded channel has been proposed. As aforementioned, round-
shaped channel structure wrapped by a metal gate exhibits superior memory
performance to reduce programming voltage for low-power synaptic update
operation in HNNs. Fig. 3.1 shows proposed 3D AND flash synaptic device
structure. It can be seen as a structure in which Si0; fin-based flash synaptic cells
are stacked in a vertical direction. A BL and a SL are arranged in vertical direction
to connect memory cells in parallel by forming BL and SL plugs. A thin poly-Si
channel of each cell stacked vertically is located around a channel hole in which
oxide insulator material is filled. A high-k gate insulator stack, consisting of SiO»,

Si3N4, and AlLOs3 layers, is deposited conformally outside the thin channel by
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LPCVD and ALD process. The charge stored in charge trap layer of SizNa
determines the cell current representing synaptic weight. TiN metal WLs are formed
through gate last process. In each trench, two parallel WLs surround both sides of
rounded channel in channel hole, showing a GAA-like structure. Note that thin
poly-Si round-shaped channels of each cell connected to the BL plug are separated
from each other inside the channel hole in vertical direction. The proposed synaptic
cell exhibits an effective unit cell area of 11F?, as shown in Fig. 3.1(c), which is
smaller than the previously reported 3D AND-type GAA-like device [42]. It also
shows smaller the radius of curvature to improve programming efficiency based on
local field enhancement effects compared to the previous proposed 3D AND-type
device with the round channel. In the proposed 3D stackable AND array, BL and
SL resistance can be enhanced by thinning the thickness of WL space compared to

that in 2D AND array.
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Fib. 3.1 (a) 3D schematic of 3D AND flash synaptic array and cell structure. (b)
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3.2 Fabrication process

As aforementioned, the proposed 3D AND array with rounded channel can be
fabricated by etching BL/SL holes, channel hole and WL trench. When channel
holes, SL/BL holes, and WL trenches are all patterned independently, device
variation can occur owing to photomask misalignment. Therefore, we propose a
process in which three masks are combined into one mask and only the parts that
need processing after patterning are opened separately. As can be seen from
patterning experiment results in Fig. 3.2, misalignment could be reduced from 100
nm to 40 nm or less by integrating three masks into one. Schematics and key steps
of a fabrication process for 3D AND flash array with round-shaped channel are
shown in Fig. 3.3. The detailed fabrication steps are described in the following

section.
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Fig. 3.2. Misalignment improvements using one-shot patterning compared to three-
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3.2.1 Cell process steps

Most of the fabrication steps were carried out using the equipment of Inter-
university Semiconductor Research Center (ISRC) located in Seoul National
University (SNU), Seoul, Republic of Korea, and ON stack formation by plasma
enhanced chemical vapor deposition (PECVD) was implemented by using the
equipment of Electronics and Telecommunications Research Institute located in

Daejeon, Republic of Korea.
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The proposed 3D AND synaptic devices are fabricated with ten masks. First,

multi-layer ON (100 nm SiO2/ 60 nm Si3N4) stack on a 300 nm-thick thermally

grown SiO> layer is deposited by PECVD process as shown in Fig. 3.4. The multi-

layer ON stack includes three nitride layers to form 3-layer 3D AND device. The

highly selective etching of Si3N4 over SiO: is required to fabricate 3D flash device.

Using hot phosphoric acid at 160°C, ON stack deposited by PECVD process shows

higher wet-etch selectivity between SizNs and SiO; of 22:1 compared to rather poor

etch selectivity of 10:1 with ON stack formed by LPCVD process. Before

patterning SL/BL plug, channel plug and WL trench simultaneously, WL cut

process is carried out by etching ON stack in a part of the region where the WL is

to be formed and filling with 500 nm-thick PECVD oxide. Note that the top oxide

thickness is maintained at 200 nm through etch-back process after filling the WL

cut region with oxide.

After WL cut process, channel hole, SL/BL hole, and WL trench are etched

using second photo mask as illustrated in Fig. 3.5(a). In order to reduce cell

variation resulted from via hole etch process, 600 nm-thick ON stack is etched
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keeping chuck temperature at 60°C in inductively coupled plasma oxide/nitride

etcher to produce steep etch slope. The next step is to fill all open holes and trenches

with poly-Si material using LPCVD process. 400 nm-thick poly-Si layer is

deposited to fill via holes and etch-back process follows as shown in Fig. 3.5(b).

Using dummy poly-Si to fill the inside of holes and WL trench, it is possible to use

a process method that open a specific hole using a photo mask and SizN4 exposed

inside the hole or trench can be selectively etched.

Then dummy poly-Si inside channel hole is removed by isotropic etching using

channel hole open mask to form channel poly-Si. The isotropic etching of dummy

poly-Si filled inside channel hole is carried out using SF¢ etchant gas. After that,

nitride layers inside channel hole exposed to the outside are partially etched to form

the interlayer channel region using selective nitride wet etching process as shown

in Fig. 3.6. Phosphoric acid (H3PO4, 160°C) is used to etch nitride layer selectively,

which has a high etch selectivity between Si3N4 and Si02 of 22:1. 30 nm of Si3N4

layers are partially etched in the process.

After nitride layers are partially inside the channel plug and an a-Si layer has
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been deposited by the LPCVD method, the a-Si layer is re-crystallized at 600 °C
for 24 hours to create an undoped poly-Si channel. To separate poly-Si channels by
layer, reactive ion etching (RIE) process is carried out using channel hole open
mask as shown in Fig. 3.7(a). Then plasma-enhanced tetraethyl-orthosilicate (PE-
TEOS) is deposited for passivation of poly-Si channels and etch-back process
follows (Fig. 3.7(b)). Fig. 3.7(c) shows a cell structure after channel passivation.

Similar to the case of the channel formation process, dummy poly-Si inside
SL/BL holes is removed by isotropic etching using SL/BL plug open mask to form
doped poly-Si SL/BL. The isotropic etching of dummy poly-Si filled inside SL/BL
holes is carried out using SFe etchant gas. After that, Si3N4 layers inside SL/BL
plugs exposed to the outside is partially etched using hot H3PO4 at 160°C to create
the space in which SL and BL are formed. Note that selective nitride wet etching
process should be carried out until the undoped poly-Si channel is exposed as shown
in Fig. 3.8(a). In this process step, 500 nm of SizNy layers are partially etched as
shown in Fig. 3.8(b).

Then a layer of in situ n"-doped poly-Si, 430 nm in thickness, is deposited for
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SLs and BLs by LPCVD. Etch-back process follows to remove doped poly-Si on

other region except SL and BL holes by dry etching poly-Si in this work as shown

in Fig. 3.9. In order to form flat profile of doped SLs and BLs, poly-Si CMP can be

utilized with following dry etching of poly-Si.

After the BL and SL formation, WL pad formation process is carried out to form

WL contact pad area. The detailed process steps for WL pad are described the next

section.

Then dummy poly-Si inside WL trench is removed by isotropic etching using

WL trench open mask to form metal WLs by layer. The isotropic etching of dummy

poly-Si filled inside WL trench is carried out using SFs etchant gas. After that, Si3Ny4

layers inside WL trench exposed to the outside is partially etched using hot H3PO4

at 160°C to create the space in which WLs are formed as shown in Fig. 3.10. Note

that selective nitride wet etching process should be carried out until all parts of the

channel are revealed so that the WL covers around the entire poly-Si channel as

shown in Fig. 3.10.

After WL space is provided, a gate dielectric stack are formed before WL
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formation. The gate dielectric stack consisting of SiO2/Si3N4/Al,O3 (O/N/A: 3/5/6

nm) layer is deposited as shown in Fig. 3.11. The tunneling oxide SiO> and the

charge trapping layer SizNs are deposited by LPCVD process and the blocking

oxide of alumina is formed by ALD process. Then WL formation is carried out.

Conformal TiN metal is deposited to fill WL space by MOCVD process. In order

to separate WLs by layer, isotropic wet-etching of TiN layer is performed using

diluted hydrogen peroxide solution (DIW:H20> = 3:1, 60°C). Fig. 3.11 shows

separated WLs in the cell region.

The next step is to deposit an insulating material to fill within the WL trench

and planarize the surface using CMP process as shown in Fig.3.12. A 750 nm-thick

PE-TEOS oxide layer is deposited for filling WL trench and insulating staircase

shaped WL contact area. CMP is carried out to polish all deposited 750 nm-thick

PE-TEOS oxide layer. Stopping point of CMP is shown in Fig. 3.12(b)

Lastly, the back end of line (BEOL) process is executed. A 300 nm-thick PE-

TEOS oxide is deposited as an inter-layer dielectric (ILD). Contact hole patterning

process is divided into two parts; WL contact holes patterning and SL/BL contact
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holes patterning. Because the WL and SL/BL contact holes have different etch
amounts due to the ON stack thickness of 400 nm, two masks are used to etch PE-
TEOS oxide in the WL and SL/BL contact holes. Then Ti/TiN/AL/TiN layers,

deposited by sputtering and MOCVD process, are patterned to form metal lines.

22750 Cell area

X cut X cut X cut
Y&
[ sio,

N sisN, WL cut

z

P

Fig. 3.4. Schematics of multi-layer ON stack and filled oxide in WL cut area.
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Fig. 3.5. Schematics of (a) via holes and trench patterning, and (b) dummy poly-Si
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filling in holes and trench patterned.
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Fig. 3.6. (a) Schematics of partial nitride wet etching. (b) X-cut and (b) Y-cut cross-
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sectional SEM image after partial nitride wet etch process.
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Fig. 3.7. Schematics of (a) separated channel formation by layer and (b) following

passivation process. (¢) Y-cut cross-sectional SEM image after the passivation

Process.
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Fig. 3.8. (a) Schematics of dummy poly-Si etching inside BL/SL holes and

following nitride partial etching process. (b) X-cut cross-sectional SEM image after

the Si3N4 partial etching process.
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Fig. 3.10. Schematics of dummy poly-Si etching inside WL trench and partial

nitride wet-etching inside WL trench.
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Fig. 3.11. Schematics of O/N/A gate insulator stack deposition and WL formation.
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Fig. 3.12. (a) Schematics of CMP process. (b) Y-cut cross-sectional SEM image

after the CMP process.
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3.4.2 WL contact pad process steps

Fig. 3.13 shows WL contact pad process flow. Contact pads to the WLs are
created using controlled edges that produce the distinctive staircase-shaped
structure. The staircase-shaped structure is defined using three masks including the
WL trench open mask. As aforementioned, before removal of dummy poly-Si inside
WL trench, 3F WL edge is patterned using a 3F open mask. After 3F WL edge is
defined, 2F WL edge is patterned using a 2F open mask by etch stopping until all
second nitride layer is etched. Fig. 3.14 shows the plane and cross-sectional views
of contact pad region after the back-end process is done. As aforementioned, the
oxide via in WL cut area separates WLs into two parallel WLs surrounding both
sides of rounded channel in channel hole.

However, in this process, the ON etch amount was insufficient when forming
the 2F WL edge, resulting in the connection of 1F and 2F WL through the 1F contact

hole. In a follow-up study, the etch amount control should be fine-tuned.
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Fig. 3.13. WL contact pad fabrication steps.
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Fig. 3.14. Schematic plane views of WL of each floor and cross-sectional view of

the contact pad area.
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3.3 Cell characteristics

TEM images of a fabricated 3D AND flash cell with round-shaped channel
shows the 3-layer 3D AND device as depicted in Fig. 3.15(a). The gate insulator
stack consisting of SiO2 /Si3N4/Al2O3 and a 10 nm-thick poly-Si channel are well
identified in magnified TEM image of Fig. 3.15(b). The channel width and length
of a stackable AND flash cell are 60 nm and 800 nm, respectively. However, some
WLs are shown to be finely connected to one another, implying that the amount of
wet etch required to properly separate the WLs was inadequate in the WL separation
procedure. Therefore, in this chapter, cell characteristic analysis is performed by
grouping six cells connected to one BL.

In order to evaluate synaptic characteristics on the fabricated 3D synaptic cell,
programming and erasing characteristics of the fabricated stacked cell were
measured and analyzed. Fig. 3.16 shows measured /Ip-V transfer curves of a 3D
AND synaptic device in program (Vg =5~8 V, Vs=Vp =0V, ¢ = 100 us) and erase
operation (Vs =Vp =5~8V, Vg =0V, ¢t = 10 ms). The fabricated 3D AND device

shows a high on-off current ratio (>10%) as well as sub-pA off current. ISPP and
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incremental-step-pulse erasing (ISPE) using 5~8 V program and erase bias were

carried out to exhibit over 1 V memory window. Due to parallel and vertical BLs

and SLs in 3D AND-type arrays, FN-programming and erasing are carried out by

applying same voltage to SL/BL while applying high or low voltage to the WL.

Here, only positive program or erase voltages are applied to grouping WLs or the

SL/BL in program and erase operation, respectively.

Fig. 3.17 shows synaptic properties of the fabricated 3D AND synaptic cell.

Multi-level analog synaptic conductance can be obtained by using erase and

program pulses eighty times respectively, showing >1 order of magnitude of

maximum-minimum synaptic conductance ratio as shown in Fig. 3.17(b). These

synaptic characteristics are measured at 7 V program (¢ = 100 ps) and erase voltages

(t=1ms).
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Fig. 3.15. (a) Cross-sectional TEM image of the proposed 3D AND flash device. (b)

Magnified cross-sectional TEM image of a red dashed box in (a).
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Fig. 3.16. (a) ISPP and (b) ISPE characteristics of the fabricated 3D AND flash

device with round-shaped channel.
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Fig. 3.17. (a), (b) Program and erase characteristics of 3D AND synaptic device

obtained by identical write pulses. (c) Potentiation and depression characteristics of

the 3D AND device.
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3.4 Array characteristics

In order to evaluate memory operations in a 3D AND array, selective program
and erase characteristics based on FN-tunneling are analyzed. In a 3D AND device,
unlike a 2D AND device, neighboring cells are spread out in three different
directions, and the characteristics of selective synaptic updates are analyzed based
on the directions.

Fig. 3.18(a) and (b) show a 3D schematic diagram and top SEM image of the 2
x 1 x 3 AND array. As aforementioned, because the WL of the first and second layer
were connected together due to the WL pad formation issue, the two WLs were
expressed as one terminal. Therefore, it can be seen that there are four measurable
cells in the 2 X 1 x 3 AND flash array. As depicted in Fig. 3.18(c) and (d), erase and
program inhibition bias schemes are designed to achieve selectable erase/program
performance in Z-direction in the 3D array. For selective cell erasing, a positive
erase voltage (Vers) is applied to BL and SL of selected cell (cell A) after
programming, while other unselected neighbor cells are inhibited by applying a

erase inhibit voltage (Viu) to unselected WLs. Adopting the erase inhibition
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scheme in Fig. 3.18(c), a positive erase voltage (Vers =8 V, 10 ms) is applied to BL

and SL of selected cell A and erase inhibit voltage of 4 V is applied to WLs of

unselected cells as the erase voltage is applied. As a result of erasing using half

erase voltage for erase inhibition, the current flowing in cell A increased by 6.49 nA

at a read voltage of 1 V, while currents flowing in the other cells changed by less

than 250 pA at the same read voltage as shown in Fig. 3.19(a). Note that all cells to

which the erase inhibition voltage is applied are program-inhibited as shown in Fig.

3.19(b). For cell programming, a positive program voltage (Vpgm) is applied only

to a WL of selected cell (cell A), while other WLs are set to ground. Adopting the

program inhibition scheme in Fig. 3.18(d), a positive program voltage (Vprgm =8V,

100 ps) is applied to the WL of selected cell A. The current flowing in cell A

decreased by 5.57 nA at a read voltage of 1 V, while currents flowing in other cells

changed by less than 30.1 pA at the same read voltage as shown in Fig. 3.20(a).

As depicted in Fig. 3.21(a), a 4 x 2 x 3 AND flash array is designed and has

been fabricated to evaluate selective erase/program characteristics in XY-plane in

the 3D array. Fig. 3.21(b) shows a 3D schematic of the 4 x 2 x 3 AND array. Note
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that six cells connected to one vertical BL are grouped to measure /} characteristics.

As shown in Fig. 3. 22(a), erase inhibition bias scheme is designed to exhibit

selective program performance in the XY-plane in the 3D array. For selective cell

erasing as in a 2D AND array, a positive erase voltage (Vers) is applied to BL and

SL of selected cell (cell A) after all cells are programmed, while other unselected

neighbor cells are inhibited by applying an erase inhibit voltage (Vn) to unselected

WLs. Adopting the erase inhibition scheme in Fig. 3. 22(a), a positive erase voltage

(Vers = 8 V, 10 ms) is applied to BL and SL of selected cell A and erase inhibit

voltage of 4 V is applied to WLs of unselected cells as the erase voltage is applied.

As a result of erasing using half erase voltage for erase inhibition, the current

flowing in cell A increased by 24.4 nA, while currents flowing in the other cells

changed by less than 16.3 pA as shown in Fig. 3. 22(c). Note that cells to which the

erase inhibition voltage is applied are not programmed while preventing erase of

cells sharing the BL or SL of the selected cell as shown in Fig. 3. 22(b). For selective

cell programming, a program inhibition bias scheme is designed in the 3D AND

array as in a 2D AND array (Fig. 3.23(a)). A program voltage (VpGm) is applied to
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WL of selected cell (cell A), while other unselected neighbor cells are inhibited by

applying a program inhibit voltage (¥nn) to unselected BLs and SLs. Adopting the

program inhibition scheme in Fig. 3.23(a), a program voltage of 8 V (100 pus) and a

program inhibition voltage of 4 V are used. As a result of programming using half

program voltage for program inhibition, the current flowing in cell A decreased by

23.2 nA, while currents flowing in other cells changed by less than 0.67 nA as

shown in Fig. 3.23(c). Note that the cell to which the program inhibition voltage is

applied is erase-inhibited while preventing program of cells sharing the WL of the

selected cell as depicted in Fig. 3.23(b).
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Fig. 3.18. (a) 3D schematic diagram and (b) top SEM image of the fabricated 2 x 1
x 3 AND flash array. Bias condition for selective (c) erase and (d) program

operations.
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Fig. 3.19. (a) Measured selective erase properties of a 3D AND synaptic array in Z-
direction. (b) Change of threshold voltages of cells in 2 x 1 x 3 AND flash array

when selective erase is carried out.
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Fig. 3.20. (a) Measured selective program properties of a 3D AND synaptic array
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array when selective program is carried out.
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Fig. 3.21. (a) Top SEM image of the 4 x 2 x 3 AND array. (b) 3D schematic of the

4 x 2 x 3 AND array.
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Fig. 3.22. (a) Bias condition for selective erase operation in the 4 x 2 x 3 AND array.

(b) Selective erase properties of the 3D AND array in the XY-plane. (¢) Change of

threshold voltages of cells in the 3D AND array in selective erase operation.
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Fig. 3.23. (a) Bias condition for selective program operation in the 4 x 2 x 3 AND
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Chapter 4
Off-chip learning based on AND flash
synaptic Array

4.1 Binary neural networks based on AND flash

synaptic array
4.1.1 AND flash synaptic architecture

In order to utilize the proposed SiO> fin-based AND array as a synaptic array,
a novel synapse structure with two AND flash memory cells for BNNs is proposed
to perform parallel XNOR operations and bit-counting [44]. AND-type flash-based
synaptic arrays provide parallel processing thanks to their crossbar topology where
each BL current is utilized to represent VMM. To realize XNOR operations in
BNNS, a novel synaptic architecture with two AND flash memory cells is shown in
Fig. 4.1. A synapse is made up of two neighboring AND flash cells that decide
memory states in a complimentary manner; the top and bottom cells in the bit-cell

design are in the erase and program states, respectively, representing a synaptic
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weight of +1, and vice versa, representing a synaptic weight of —1. The AND flash-

based synapse's WLs receive input voltages in its complementary configuration to

represent the input value of =1 as illustrated in Fig. 4.1(a). Note that when a read

bias (Vread) is sent to the WL of an erased cell only then does the large BL current

of the bit-cell flow, allowing the XNOR operation to be carried out as shown in Fig.

4.1(a) and Fib. 4.1(b). Not only are inputs transmitted concurrently into all WLs in

the proposed AND flash synaptic array, but also a source-select line (SSL) and a

bit-select line (BSL) are provided to minimize leakage current as shown in Fig.

4.2(a). Therefore, both the idle power consumption and the current sensing errors

are diminished, allowing for fast event-driven parallel processing. By setting the

reference current value of the current sensing amplifier (CSA, Fig. 4.2(b)) to half

of the maximum BL current when maximal synaptic current flows to all bit-cells in

the column line, it is possible to implement the 1-bit activation of each output

neuron.

A VGG-9 binary convolutional neural network (CNN) based on binary synaptic

properties of the measured AND flash memory is proposed to classify the CIFAR-
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10 datasets in an effort to examine and assess the feasibility of the AND flash-based

BNNs proposed as shown in Fig. 4.3(a). The VGG-9 binary CNN is used for off-

chip learning; it has six convolution layers (CONV) and three fully connected layers

(FC). The number of input and output channels needed for the weighted sum

operation determines the size of the corresponding synaptic array in each layer. For

example, a 27x128 synaptic array is used to perform a single convolution

computation in the CONV 1 layer with 3x3 kernels. The FC 1 layer, which has 8192

inputs and 1024 outputs, also exhibits an 8192x1024 synaptic array, indicating that

it has the largest input size of the proposed binary CNN. The details for each layer

of the binary CNN are shown in Table 4.1, which can also be obtained from Fig.

4.3(a). The size of each layer's synaptic array is determined by how many input and

output channels are needed for the weighted sum processing. Synaptic weights

determined in a software-based binary CNN are then transmitted to the cells in

synaptic arrays, taking into consideration the dynamic range and sub-pA off leakage

current properties of the cells. After input activations are sent to memory array WLs,

the CSA of each output neuron compares the reference current to the BL current to
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determine the binary activation outcome during the inference simulation.

The influence of dynamic range on the classification rate of CIFAR-10 pictures

is shown in Fig. 4.3(b). In order for BNNs to attain the software baseline accuracy,

a synaptic conductance ratio of three orders of magnitude or greater is necessary in

the hardware-based BNNs using CSA with reference current. In comparison to the

baseline accuracy, the proposed BNN employing the SiO; fin-based synapse model

with observed dynamic range and retention property degrades classification

accuracy by just 0.5%. However, it is analyzed that the recognition rate decreases

significantly when the 1% on-current retention loss of the proposed fin-type device

is utilized as shown in Fig. 4.3(c).
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Layer type Kernel size Input size Output size Mem;)irzyearray
CONV 1 3x3 3x32x32 128x32x32 27x128
CONV 2 3x3 128x32x32 128x32x32 1152x128
Max Pool 2x2 128x32x32 128x16x16 -
CONV 3 3x3 128x16x16 256x16x16 1152x256
CONV 4 3x3 256x16x16 256x16x16 2304 x256
Max Pool 2x2 256x16x16 256x8x8 -
CONV 5 3x3 256x8x8 512x8x8 2304 x256
CONV 6 3x3 512x8x8 512x8x8 4608x256
Max Pool 2x2 512x8x8 512x4x4 -

FC1 1x1 1x8192 1x1024 8192x1024
FC 2 1x1 1x1024 1x1024 1024x1024
FC3 1x1 1x1024 1x10 1024x10

Table. 4.1. VGG-9 for CIFAR-10.
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4.1.2 Differential synaptic architecture

To improve the robustness of AND flash-based BNNs against on-current
retention loss, differential synaptic architecture using AND flash array has been
proposed. Fig. 4.4 shows differential structure using two AND flash cells for XNOR
operations in BNNs. Synapse consists of two AND flash cells adjacent in a direction
parallel to WLs where memory states are determined in a complementary fashion;
the left cell and the right cell in the bit-cell structure are in the erase state and the
program state, respectively, representing a synaptic weight of +1, and vice versa,
representing a synaptic weight of —1 as shown in Fig. 4.4(a). In this BNN scheme,
input or output activation are used as unsigned values of 0 or 1 depending on
whether or not a read bias is applied to the WL. The main difference from the
previous model is that the output is determined using differential current sense
amplifier (DSA, Fig. 4.4(b)). When the input read bias is applied to the WL, the
odd-numbered or even-numbered BL current flows depending on the weight, and
the DSA senses the difference between the two currents to obtain an output result.

Fig. 4.4(c) shows AND flash memory-based array using the DSA for BNN. In the
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AND flash-based BNN using DSAs as shown in Fig. 4.4(d), once inputs are

transmitted to WLs of memory arrays in parallel, a DSA of each output neuron

shows the unsigned activation result by comparing the odd-numbered BL current

with even-numbered BL current.

Fig. 4.5 shows classification performance of an AND flash-based BNN using

DSAs as function of dynamic range, on-current retention loss, and cell variation.

Based on measured characteristics of SiOz fin-based AND flash cells, AND flash-

based BNN using DSAs of the same VGG-9 networks in Fig. 4.3 exhibits <0.1 %

degradation of classification accuracy compared to the baseline accuracy assuming

1% on-current retention loss of the device and >50 dynamic range. As shown in Fig.

4.5(c), considering 10% device variation analyzed, there is only 0.2 % degradation

of recognition rate compared to the baseline accuracy.
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4.2 Quantized neural networks based on AND flash
synaptic array

Since the proposed SiO; fin-based synaptic device can implement analog
weights, it can be utilized to quantized neural networks (QNNs). As shown in Fig.
2.6, over 16-level analog synaptic weights can be implemented by using identical
write pulses as updating. The same VGG-9 binary CNN as mentioned in Fig. 4.3
using quantized AND flash synaptic weight behaviors is used to classify the
CIFAR-10 image datasets. The ideal ReLU activation function was used, and the
recognition rate during CIFAR-10 inference was analyzed with different synaptic
weight levels as shown in Fig. 4.6. As a result, it can be confirmed that a high
recognition rate of 92% at the 4-weight level or higher. Also, in the case of 8 weight
levels which can be implemented, as a result of evaluating the performance
according to the weight variation, it was confirmed that the accuracy loss hardly

appeared in the measured variation of about 10%.

84



90 B w
eQ/SO -f
| b
S 70 ciFar10 < i 2 a0t 1
8 #of G Levels§ esl
o —a—2-Level S ﬂ mm
<60F o 4level 3 ;_ﬂ, N Al T
4 glevel T 50 60 70 8 90 100
50 b 16-Level IEp(?ch o
0 20 40 60 80 100
Epoch
(b) 94 T T T T T T
CIFAR-10
92 -

Accuracy (%)
00}
(e}

86| §91_0 ] #of Glevels T
<90_5 | —8— 4-level 1
84} —0— 8-level l .
00T 0 20 30 —A—16-level
82 1 .O'/H.(%) 1 A 1 A 1 A 1
0 10 20 30 40 50
o/p (%)

Fig. 4.6. (a) Recognition accuracy on CIFAR-10 using a QNN based on fin-type

AND synaptic array. (b) Effect of device variation in QNNs on classification rates

of CIFAR-10.

85



Chapter 5

Conclusion

In this work, we have proposed and fabricated a high-density synaptic device
using a SiO> fin-based AND flash memory. The device's rounded-shape channel
structure with a thin oxide fin of 6 nm in width allows for a reduction in program
voltage caused by local field enhancement effect. The narrow oxide fin can be
processed using a spacer patterning technology. The proposed device shows a high
dynamic range (>10°) and sub-pA off current with a low program voltage below 9
V, and achieves a larger memory window compared to the planar-type flash
memory device. With the help of the introduction of a high-k Al,O3 blocking layer
and a TiN metal gate, the proposed array achieves improved memory window,
which offers low program/erase voltage to update multi-level synaptic weights. The
fabricated AND array based on SiO» fin efficiently performs selective program and
erase by using program and erase inhibition pulse schemes. Compared to the NOR-

type flash memory array, FN tunneling can be used for selective program operation,
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which serves as low-power programming. Weighted sum operation was also

successfully performed by measuring BL currents when input signals are applied to

multiple WLs simultaneously. In addition, a 3D AND flash synaptic array with

round-shaped poly-Si channel has been designed and fabricated to improve

scalability. Memory window of the 3D AND flash device with rounded channel was

also ensured using ISPP and ISPE operation with a low program/erase voltage

below 9 V. Selective program and erase operation in Z-direction and XY-plane of

the fabricated 3-layer AND flash synaptic array was experimentally verified. A

hardware-based BNN using novel two cell-based synaptic devices arranged in AND

array architecture has been proposed to implement parallel XNOR operation and

bit-counting, for the first time. The proposed Hardware-based BNNs require a

synaptic conductance ratio greater than three orders of magnitude in order to reach

the software baseline error rate. Furthermore, differential synaptic architecture

using AND flash array was proposed and showed robustness against on-current

retention loss using >50 dynamic range of synaptic weights. Classification

performance of QNN based on AND array has also analyzed to verify applicability
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of analog synaptic properties.
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