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Abstract

Image semantic segmentation, a task to classify each pixel among the interested
classes, is an important problem with a wide range of applications such as autonomous
driving, medical diagnosis, industrial automation, and aerial imaging. In recent years,
deep convolutional neural networks have shown outstanding performances in image
semantic segmentation. A main bottleneck of these approaches is that it requires
large amount of fully-annotated data for training such networks. Since the acquisition
of fully-annotated dataset is laborious and expensive, weakly supervised semantic
segmentation (WSSS) has been suggested as an promising approach for future research
direction. There are various types of weak labels for semantic segmentation, for instance,
image-level labels, points, scribbles, and bounding boxes. Among these weak labels,
image-level labels are popularly used in WSSS for its simplicity. In essence, image-level
label denotes the existence of objects in an image. In this dissertation, we consider the
problem of weakly supervised semantic segmentation using image-level label.

In the first part of dissertation, we introduce a new training strategy for weakly
supervised semantic segmentation. In the proposed approach, we apply image masking
technique inspired by human visual system that focuses on interesting vision field and
ignores irrelevant parts. By guiding the attention of classification network using the
outputs of the segmentation network, the classification network evaluates the qualities
of segmentation output and encourages the segmentation network to generate more
accurate output. To boost the segmentation performance, we also introduce simple yet
effective technique to train the classification and refine the saliency map. Our experiment
results demonstrate that our approach is effective in solving weakly supervised semantic
segmentation.

In the second part of dissertation, we introduce a superpixel discovery method that

generates semantic-aware superpixels. Our superpixels have new properties that the



apart pixels can be grouped into a superpixel if they have similar semantic features.
Also, the number of superpixels depends on the complexity of images, not the pre-
defined number. Our superpixel expresses semantically similar group of pixels with a
very small number of superpixels. We train the segmentation network using superpixel-
guided seeded region growing technique which improves the qualities of initial seed.
Our extensive experiments show that our approach achieves competitive segmentation

performance with the state-of-the-arts in weakly supervised semantic segmentation.

keywords: Image Classification, Image Semantic Segmentation,
Weakly Supervised Semantic Segmentation, Deep Neural Network,
Visual Attention, Superpixel

student number: 2015-20897
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Chapter 1

Introduction

1.1 Backgrounds

Image semantic segmentation, a task to classify each pixel among the interested classes,
is an important problem with a wide range of applications such as autonomous driving
[1], medical diagnosis [2], industrial automation [3], and aerial imaging [4]. In recent
years, deep convolutional neural networks have shown outstanding performances in
image semantic segmentation [5, 6]. A main bottleneck of these approaches is that it
requires large amount of fully-annotated data for training such networks. Since the
acquisition of fully-annotated dataset is laborious and expensive, weakly supervised
semantic segmentation (WSSS) has been suggested as an promising approach to mitigate
the burden [7, 8]. There are various types of weak labels for semantic segmentation,
for instance, image-level labels [9], points [10], scribbles [11], and bounding boxes
[12]. Among these weak labels, image-level labels are popularly used in WSSS for its
simplicity [13, 14, 7]. In essence, image-level label denotes the existence of objects in
an image. In this dissertation, we consider the problem of weakly supervised semantic
segmentation using image-level label. Before going into details, we briefly review the

basics of image classification and semantic segmentation.
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Figure 1.1: The classification network for multi-label classification

1.1.1 Basics of Image Classification

Image classification is a task to predict the classes of input images. In recent years,
convolutional neural networks have enjoyed a great success in large-scale image recog-
nition challenge [15, 16]. Image classification task can be roughly categorized into two
types: single-label classification [17], multi-label classification [18]. In this dissertation,
we use the convolutional neural networks to solve the multi-label classification in which
multiple objects of multiple classes can exist in an input image. Fig. 1.1 shows our
desired classification network for multi-label classification.

A typical approach to solving this problem is to train a classification network using
the multi-label classification loss function. Let z, € R and ¢. € {0, 1} be the output of
classification network and the label for class c. One of the popularly used multi-label

classification losses is the binary cross-entropy .. which can be expressed as

fhee = 75 3 (~telog(o(z0) = (1 — t0) log(1 — (=) L.

where C'is the number of classes and o(x) = 1/(1 + e~ ) is the sigmoid function.

After training the classification network, we can predict the classes of input image by
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Figure 1.2: Input images and ground truths for semantic segmentation

making decision as following:

class c exists ifo(z.) >
(1.2)

class ¢ does not exist if o(z.) < 7

where 7 is the pre-defined threshold.

1.1.2 Basics of Image Semantic Segmentation

Image semantic segmentation is a task to assign classes to all pixels in input image,
which can be seen as a pixel-level single-label classification (see Fig. 1.2 for examples
of images and labels). Since the amount of required outputs is much larger than the
outputs in classification, fully-convolutional networks are widely adopted to make dense
prediction [19, 5].

The semantic segmentation network can be constructed by making a small change
in the classification network. We first remove the global pooling layer of classification
network, which summarizes the feature map into the scalar, and then, we replace the
fully-connected layers with convolutional layers. By doing so, we can obtain the output

thw

for class c in the form of a map, that is, Z. € where h and w are the height and

= A 2-T)] 8

]
I

TU
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Figure 1.3: Training of the semantic segmentation network

width of output, respectively.

In general, the semantic segmentation network is trained using a pixel-level loss
function (see Fig. 1.3). Let Z, . and T, . the output of segmentation network and
label at position u for class c. A popular choice for segmentation loss is the softmax

cross-entropy {s.. which can be expressed as
1
lsce = 7— zu: Z ~T,. log(softmax(Z,.)) (1.3)

where softmax(z.) = e®/(>_ e®¢) is the softmax function.

After the training procesg, we infer the segmentation output from input images to
assign the best class to each pixel. For input image I, let 7 € R be the segmented
output. Then, the final output P is determined by finding the class that have the

maximum output value at each pixel, that is,
P,.=1if c = argmax 7, . (1.4)
(&

where the class 0 denotes the background class.
The commonly used performance metric of semantic segmentation is the intersec-
tion over union (IOU). The IOU of class c is computed as

Z lintersection(u,c)
I0U(c) = =

; lunion(u,c)



where

1 if Pye=1land Ty, =1
lintersection(mc) = 0 0 . (1.6)
otherwise

and

1 if Pye=1lorT,. =1
fundon(u) = 0 otherwise (47
wise.

After computing IOUs for all classes including the background class, we compute mean

10U for the final performance metric as

1
mIOU = -— Z I0U(c) (1.8)

1.1.3 Basics of Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation aims to train the segmentation network using
image-level label (see Fig. 1.4 for desired system). A main concern in this approach
is the fact that image-level label does not provide pixel-level information such as
object shapes and their classes, which are required to train the segmentation network.
In early work, the segmentation network is directly trained using image-level label
with constraints [20]. Recently, the class activation mapping technique [21] is widely
exploited to identify object regions from the classification network. We briefly review
the popular procedure for solving the problem of WSSS (see Fig. 1.5).

Suppose we have a trained the classification network which predicts the output
accurately. Then, although the classification network outputs a scalar probability that
objects of each class exist in image, this network might have knowledge about which
regions of image are important to make a prediction for each class. To extract these
regions, we use a technique called class activation mapping [21]. Specifically, for the
classification output z, let z~! be the second last layer of classification network. The

relation between z and z_; can be expressed as

2= f(GAP(z™1)) (1.9)
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Figure 1.4: A brief illustration for WSSS system

where f(-) is the last fully-connected layer and GAP(-) is the global average pooling

layer. The class activation map (CAM) is obtained as
M= f'(z"1) (1.10)

where f/(-) is the convolutional layer modified from f(-). If the weight W of f(-) is of
size Cp x C where C is the input dimension of f(-), f’() can be constructed by using
the convolutional weight W’ of size Cy x 1 x 1 x C' (i.e., 1 x 1 convolution) which
has the same parameters as W.

After obtaining CAM, we generate the pseudo-label which will be used in training

of the segmentation network. Specifically, the CAM M is normalized for each class as

M,
M =—°_ 1.11
¢ max. M, (L.1D)

Then, the pseudo-label is generated using the confident pixels in M/, that is,

1 if M . > and ¢ = arg max M
Tye = o (1.12)
0 otherwise

where 73 is the pre-defined threshold for confident foreground pixel. The background

A T
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Figure 1.5: A general procedure for WSSS



regions are found as

1 if max M) . < 73
Tupo = ¢ 7

)

(1.13)
0 otherwise

where T, ¢ is the pseudo-label for background class at position u and 73 is the pre-
defined threshold for confident background pixel. In the obtained pseudo-label, there
could be some pixels not labeled as any classes. These pixel are ignored in training of
the segmentation network. Using the psuedo-label, we train the segmentation network

as described in 1.1.2.

1.2 Contribution and Organization

In this dissertation, we introduce novel approaches to the problem of weakly supervised
semantic segmentation.

In Chapter 2, we propose a novel WSSS technique that can train the semantic seg-
mentation network without relying on the pseudo-label. Inspired by the visual attention
mechanism of the human visual system, we apply image masking technique to limit the
visible regions in image. By masking the input image using the masks predicted by the
segmentation network and delivering the masked image to the classification network,
we can evaluate the qualities of the segmented output and penalize the segmentation
network. To train the segmentation network, we adopt a novel combination of two
complementary losses: attention loss and saliency loss. The attention loss encourages
the segmentation network to predict correct class in object regions and the saliency
loss encourages the network to recognize which pixels belong to either background or
foreground regions. To boost the segmentation performance, we also propose a training
strategy for classification network and saliency map refining technique. We train the
classification network using the self-supervision provided by dilated convolutional
blocks so that the classification network can detect the objects and their parts better. We

refine the noisy saliency maps based on the CAM so that we can find missing object



regions or erase the false activations.

In Chapter 3, we propose a superpixel discovery method and the segmentation
network training technique using the superpixel. Recent WSSS approaches have been
relying on saliency map for additional pixel-level information that cannot be obtained
from image-level label. However, such saliency detection methods requires pixel-level
annotation for training process. To relieve the dependency on saliency maps, we propose
a superpixel discovery method that finds semantically similar pixels based on the feature
obtained from the self-supervised vision transformer, in particular, DINO [22]. The
proposed superpixel has two following properties: 1) the superpixel contains long-
range information even if the consisting pixels are not connected and 2) the number
of superpixel depends on the complexity of an input image. We introduce superpixel-
guided seeded region growing for training of the segmentation network. During the
training process of the segmentation network, the initial seed is refined based on the
segmented output and superpixel. Although the labeled regions in the initial seed are
very sparse, we can obtain dense and high-quality labels as the segmentation network is
trained.

In Chapter 4, we summarizes the contributions of the dissertation and discuss the

future research directions based on studies of this dissertation.



Chapter 2

Weakly Supervised Semantic Segmentation Using Image

Masking

Weakly-supervised semantic segmentation (WSSS) aims to train a semantic segmenta-
tion network using weak labels. Recent approaches generate the pseudo-label from the
image-level label and then exploit it as a pixel-level supervision in the segmentation
network training. A potential drawback of conventional WSSS approaches is that the
pseudo-label cannot accurately express the object regions and their classes, causing a
degradation of the segmentation performance. In this chapter, we propose a new WSSS
technique that trains the segmentation network without relying on the pseudo-label. Key
idea of the proposed approach is to train the segmentation network such that the object
erased by the segmentation map is not detected by the classification network. From
extensive experiments on the PASCAL VOC 2012 benchmark dataset, we demonstrate

that our approach is effective in solving the problem of WSSS.

2.1 Introduction

Image semantic segmentation, a task to classify each pixel among the interested classes,
is an important problem with a wide range of applications such as autonomous driving,

medical diagnosis, industrial automation, and aerial imaging [1, 2]. Recently, deep

10



Pseudo-label

Figure 2.1: Problems of pseudo-labels obtained from CAM.

neural networks (DNN)-based semantic segmentation has received special attention
due to its excellent segmentation performance [19, 6]. A potential drawback of the
DNN-based approach is that a large number of fully-annotated data are needed to train
the networks. Since the generation of fully-annotated dataset is laborious, alternative
approaches such as unlabeled or weakly-labeled learning have been suggested in recent
years [7, 23]. There are various forms of weak labels such as image-level labels [9],
points [10], scribbles [11], and bounding boxes [12]. Among these, image-level label
is popularly used for its simplicity [13, 14, 8]. In essence, image-level label indicates
whether the foreground objects appear in an image or not (e.g., bird is in an image and
cat is not). We henceforth refer to the DNN-based semantic segmentation using the
image-level labels as weakly-supervised semantic segmentation (WSSS).

A central challenge of WSSS is that the image-level labels do not provide informa-
tion on object regions required to train the semantic segmentation networks. A simple
way to localize object regions is to use class activation mapping [21]. Basically, this
approach figures out what regions in the image are relevant to the semantic classes.
The localization map obtained from this technique, called class activation map (CAM),

indicates the discriminative object regions. In recent WSSS approaches, CAM is used

e g ke
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to generate a pseudo-label for the training of semantic segmentation network [7, 24].
While the pseudo-label can well express the object region of interest, it might cause
some potential problems hindering the accurate image segmentation. First, the object
extent in the non-discriminative region is not accurately expressed (see Fig. 2.1-(a):
The labeled regions are focused on the most discriminative object regions (e.g., face of
person)). This is because the classification network focuses only on the existence of the
objects so that the network tends to ignore the non-discriminative regions which are
also parts of the objects. Second, the class assigned in each pixel of the pseudo-label
might not be correct when an image contains multiple objects with distinct classes
(see Fig. 2.1-(b): The labeled regions are misclassified) since the CAMs are spread to
unwanted regions outside the foreground objects. For these reasons, an approach that
trains the semantic segmentation network using the pseudo-label might not achieve the
satisfactory performance in many practical scenarios.

An aim of this chapter is to propose a novel WSSS technique that can train the
semantic segmentation network without relying on the pseudo-label. Basically, our
approach is inspired by the visual attention mechanism of the human visual system
(HVS) [25]. When HVS perceives the visual information, HVS focuses on the desired
object without being interfered by other objects. In order to mimic the human behavior
and thereby reduce the interference from irrelevant regions, we mask an input image
using an attention map that guides which pixels to attend or ignore. Specifically, a
segmentation network generates the segmentation map describing the discovered object
regions. Then, the attention map is generated by collecting the discovered regions in the
segmentation maps of interesting classes. We exploit the attention map in erasing the
discovered regions and therefore focus on the remaining regions in the masked image.

In order to check whether the objects are erased properly, we employ a classification
network trained for multi-class multi-label classification. In summary, in the training
process, the segmentation network tries to generate the segmentation map covering the

object regions. Then, for the image masked by the segmentation map, the classification

12



network tries to find out the interesting objects. For example, when an image contains
bird and car, a segmentation network is guided to generate an accurate map of bird or
car. If the generated segmentation map contains the bird, then the bird is erased in the
masked image, helping the detection of a car in the classification network.

To train the segmentation network in the absence of the pseudo-label, we adopt a
novel combination of two complementary loss functions: attention loss and saliency
loss. The attention loss is used to penalize the segmentation network if the segmentation
map does not completely cover the objects of a target class. The saliency loss is used to
encourage the segmentation network to learn the accurate object extent which cannot
be identified by the classification network. By learning the object classes using the
attention loss and object extent using the saliency loss, the segmentation network can
segment the image without obtaining the class-specific knowledge from pixel-level
supervision.

As a means to enhance the segmentation performance, we propose a training strategy
for the classification network and a refining technique for the saliency map. First, for the
training of the classification network, we exploit the dilated convolutional blocks (see
Fig. 2.3). The dilated convolutional blocks are used to find out the object regions outside
the most discriminative regions. The regions discovered by dilated convolutional blocks
are then used as an additional supervision for the classification network in finding out
complete object regions. Second, we refine the saliency map using the CAM obtained
by the classification network (see Fig. 2.4). Note that the value in each pixel of the
CAM indicates the probability of an object being contained in that pixel. Using these
values, we can find out the missing objects and also remove the unwanted objects in the
saliency map.

The main contributions of this chapter are as follows:

* We propose a novel segmentation technique for weakly-supervised semantic
segmentation. In our work, instead of learning the class-specific knowledge

from the pseudo-label, the segmentation network learns the class-specific knowl-

13



edge directly from the classification network by exploiting the image masking

technique.

* We propose a training strategy for the semantic segmentation network. In the
proposed approach, the segmentation network is trained using the combination of
the attention loss and the saliency loss to accomplish the semantic segmentation

task (see Section 2.3.3).

* From numerical experiments on val and test of the PASCAL VOC 2012 seman-
tic segmentation benchmark [18], we show that our approach achieves mean-
intersection-over union 65.5% and 65.4% using VGG16-based network and
67.9% and 68.2% using ResNet101-based network, respectively, which are com-

petitive with the state-of-the-arts.

2.2 Related Work

2.2.1 Weakly-Supervised Semantic Segmentation

Image-level label has been used in many WSSS approaches due to its simplicity.
Early works include multiple-instance learning [13], constrained optimization [20],
and expectation-maximization techniques [26]. Recently, the class activation mapping
technique that finds out the most discriminative object regions has been used to generate
a pixel-level pseudo-label from the image-level label [21]. The generated pseudo-
label depicting the reliable object regions is used as a supervision for the semantic
segmentation network. The segmentation performance of this approach depends strongly
on the accuracy of the generated pseudo-labels. Hence, it is of importance to find out
accurate object regions for the proper training of the semantic segmentation network.
In order to obtain a reliable pseudo-label, various segmentation techniques have
been proposed. In [7], fully-connected conditional random field (CRF) is applied to

the predicted segmentation maps to refine the object boundaries. In [8], seeded region
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growing technique is used to assign classes to unlabeled pixels. Recently, approaches
generating the reliable pseudo-labels without relying on the segmentation algorithms
have been proposed. In [27], for example, a large number of localization maps are
generated and then aggregated into a single localization map. In [28], the localization
maps are accumulated through the training process to collect the discriminative regions
of different parts in the objects. In [29], multiple dilated convolutional blocks are used
to enlarge the receptive fields and transfer the discriminative information to the non-
discriminative regions. In [30], adversarial manipulation technique is used to expand
the discriminative object regions.

In a nutshell, the proposed approach is a bit similar to the CAM-based approach in
the sense that we find out the object regions from the CAM. However, the key distinctive
point of the proposed approach is that the segmentation network learns the classes of
pixels by directly utilizing the classification network in the training of the segmentation
network. As a result, we can train the segmentation network without relying on the

pseudo-label.

2.2.2 Visual Attention

Visual attention, an approach to select the search regions and analyze their effects, has
been applied to various computer vision tasks such as image classification [31], object
detection [32], and image caption generation [33]. In the semantic segmentation, visual
attention is often implemented using the image masking, a technique to erase part of an
image. In many approaches, discovered object regions are erased to help the discovery of
new object regions [34, 35, 36, 37]. For example, in [34, 35], discovered object regions
are repetitively erased to find out new object regions. In [38], an approach to find out
the object regions using an adversarial network has been proposed. In [36], two-phase
learning strategy has been proposed to get a complete region of the foreground objects
from the attention maps of two networks. The drawback of these approaches is that it is

difficult to figure out whether the masked image still contains part of foreground objects
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or not. As a consequence, one might simultaneously find out unwanted background
objects and the main foreground objects (e.g., water with boat, rail with train). In [37],
discriminative object regions are erased to guide the network to find out new object
regions. In [39], discriminative object regions are suppressed to spread the attention of
the network to adjacent non-discriminative object regions.

In [40, 24], visual attention mechanism is applied to the adversarial learning. In
these approaches, an attention map obtained from the main network is used to mask
an input image and then the masked image is delivered to the adversarial network. By
training the network using the adversarial loss function, the main network is encouraged
to generate an attention map which makes the adversarial network output consistent
with the image-level label. In [40], an adversarial network is used to discriminate
whether the input map is ground truth or generated from the segmentation network. In
[24], an input image is masked by the self-attention map. The masked image is passed
to the adversarial network to check if the attention map covers regions contributing to

the classification output.

2.2.3 Saliency Detection

The main goal of the salient object detection is to identify the visually distinctive
objects (or regions) in an image and then segment them out from the background. Since
the image-level label does not contain any information on the background regions in
WSSS systems, one cannot directly find out the confident background regions using the
classification network. To overcome this limitation, the saliency map has been widely
used in many WSSS approaches [7, 24, 8, 27, 28]. Key idea of these schemes is to
identify the background regions using the pixels with low salient probabilities.

In [41, 42, 43, 44, 45], the saliency map is directly used in the training process of
the segmentation networks. For example, in [41], the segmentation network is trained
using the saliency maps of simple images to generate the pseudo-labels for complex

images. In [42], saliency maps are used to supplement non-discriminative object regions.
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Figure 2.2: The overview of the proposed method to train weakly-supervised semantic

segmentation network.

In [43], saliency maps are exploited to guide the seeded region growing method. In [44],
saliency-guided self-attention module is used to capture rich contextual information for
discovering the integral extent of objects and retrieving high-quality pseudo-label. In
[45], an approach that trains the network using pixel-level feedback from combination

of saliency maps and image-level labels has been proposed.

2.3 Proposed Weakly-Supervised Semantic Segmentation Net-

work

In this section, we discuss the proposed WSSS framework. We first discuss the clas-
sification network training using dilated convolutional blocks and then discuss the
refinement of the saliency maps using CAMs obtained from the classification network.
We also explain how to train the semantic segmentation network using the image

masking technique. The overall network architecture is illustrated in Fig. 2.2
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2.3.1 Training of Classification Network

A classification network is a key ingredient in our approach. Basically, the classification
network is trained using the multi-class multi-label classification loss. One well-known
problem in the conventional classification network is that the network cannot detect the
non-discriminative object regions. To address this issue, we use an extra supervision
on the non-discriminative object regions in the training of the classification network.
To find out the non-discriminative object regions, we use a dilated convolution which
enlarges the receptive field without changing the computational cost [5]. With the
increased receptive field, the information in the discriminative object regions can be
transferred to distant regions, helping the detection of the non-discriminative object
regions.

In the training of the classification network, we append dilated convolutional blocks
to the classification network (see Fig. 2.3). The dilated convolutional blocks are similar
to the standard convolutional block except that their first convolutional layers have
unique dilation rates d. Let M be the CAM obtained from the standard convolutional
block and M1, --- , MP be the CAMs obtained from D dilated convolutional blocks.
Then, the object regions found by multiple dilated convolutional blocks are added to
M? using the max-fusion to supplement the non-discriminative object region. A dense
CAM, denoted as M, covering the discriminative and non-discriminative object regions
is obtained as M = max(M°, 5 ?ZI(MZ))

The classification network is trained using the multi-class multi-label classification

loss and the CAM loss. First, the multi-class multi-label classification loss £ is

i = 3 (—telog(o(B) - (1 — t)log(1 — 0(5), 1)

zED ceC
where C is the number of foreground classes, D is the set of indices of convolutional
blocks, C is the set of indices of foreground classes, ¢. is the image-level label for class
¢, Zic = GAP(MY) is the predicted class score for class ¢ (GAP is the global average
pooling operation), and o(x) = 1/(1+ e~*) is the sigmoid function. Second, the CAM
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1088 £cqm., used to match the CAM MV to the dense CAM M, is the mean square error
(MSE) between M and M°:

Coam = C|13| S5 (B(Ma) — G(ME,))? 2.2)

ueS ceCp

where S is the set of all positions, C? is the set of indices of the present classes, and
¢(z) = max(0, z) is the ReLU activation function. Also, M,, .. is the class score of
class c at position w of class activation map M.

The overall loss £, for training the classification network is
gcls = gsig + Aclsgcam (23)

where ) is the weighting factor for balancing two losses.

2.3.2 Saliency Map Refinement

In the segmentation network training, the saliency map is used to learn which pixels
belong to either background or foreground regions. While the saliency detector (SD) can
find out the detailed shape of the objects, it might also find out unwanted background
objects or miss interesting foreground objects since SD is trained without the semantic
classes. To overcome this potential drawback, we correct the pixels in the saliency
map based on the CAM score. The score in each pixel indicates the probability of an
object being contained in that pixel. Since the object detection in the classification
network is fairly accurate, we can readily find out the missing foreground regions
from the high-scored pixels in the CAM. Note that this does not necessarily mean
that the low-scored pixels belong to the background regions since these pixels might
belong to the non-discriminative object regions. From our extensive experiments, we
observe that correcting these pixels to the background pixels causes a degradation of
the segmentation performances. In our work, we set pixels with low scores to unlabeled
pixels.

In Fig. 2.4, we illustrate the overall procedure of refining the saliency map. We

first obtain the CAM of an input image from the classification network. To improve
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Figure 2.4: Overall procedure to refine the saliency map using the CAM.

the reliability of the CAM, we merge the CAMs of multiple scaled input images. Let
MPY(s;) be the CAM of an input image scaled by a factor s; (s; € {so," -+ ,sn}), then
the reliable CAM M * is obtained as

M, . = max Scale(qﬁ(Mac(si))) 2.4)

where scale is the scaling operator that changes the size of map to the size of the input
image. To obtain a map expressing the foreground object regions, we merge the CAMs
of present classes, generating a class-agnostic activation map B whose pixels indicate

the probabilities of an object being contained in that pixel:

B, = max M (2.5)
Y cecr max M, '
u 7

If B, is larger than the pre-defined threshold 7; and the pixel u belongs to the back-
ground regions in the saliency map O, we consider this pixel as a foreground pixel.
On the other hand, if B,, is smaller than the pre-defined threshold 75 and the pixel u

belongs to the foreground regions, we consider this pixel as an unlabeled pixel. That is,

] 2-t) &) 3
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the refined saliency map R is obtained as

1, if B,>7mand O, =0
R, = { unlabeled, if B, < and O, =1 (2.6)
Oy, otherwise.

2.3.3 Training of Segmentation Network

For the training of the segmentation network, we use the saliency loss that encourages
the segmentation network to learn the object regions from the saliency map. While
the segmentation map has C' + 1 classes, the saliency map has only two classes. To
connect the segmentation map to the saliency map, we design the background map H?
and foreground map H7 from the segmentation map.

Let H. be the segmentation map of class ¢ (¢ = 0 denotes the background class).
Then, the background map is H? = Hy and the foreground map is H/ = = eccr He.
Let S® and S7 be the set of positions of background and foreground pixels in saliency
map, respectively. Then, the saliency loss is defined as a weighted cross-entropy with

only two classes (background and foreground):

b
oot = Z |Sb log H,, — Z |Sf\ log H 2.7

ues? uesSs
where w is the position of the pixels. The weights for background and foreground pixels
and

are set to respectively, to balance the losses for background and foreground

\Sbl ISf\’

pixels. The first and second terms in (2.7) correspond to the loss for background and
foreground classes, respectively. Note that the losses on unlabeled pixels in the saliency
map are not computed during the training process. To improve reliability of the network
in various scales, we feed the multiple scaled input images to the network and compute
the losses individually. Thus, the resulting saliency loss is the sum of cross-entropy
losses for |.S| scaled outputs (.S is the set of input scales).

One potential weakness using the saliency loss is that the segmentation network

might predict the class of pixel incorrectly since the class of each pixel is unspecified
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Figure 2.5: Illustration for examples of the attention maps and masked images.

in the saliency map. In order to make sure that the segmentation network predicts the
correct class for each pixel, we exploit the image masking technique in the training
of the segmentation network. During the training process, an input image is masked
using an attention map F’ that designates which regions are erased. The attention map
is obtained from the predicted regions in the segmentation map:

F=1-3" Hpb 2.8)

ceCp

where b, is the binary random number that decides whether the segmentation map H. is
erased in the attention map or not. Using the F', the masked image I’ can be expressed

as the product of the input image [ and the attention map F':
I'=Fo-p) 2.9

where © is the element-wise multiplication and p is the RGB mean of the training

images. For a given class ¢, when b, = 1, we expect that the objects of class c are

erased in I’. Whereas, when b. = 0, we expect that the objects of class ¢ remain in I’.

Hence, it is natural to choose ¢’ = (1 — b) as the modified label corresponding to I’.

We illustrate the attention maps and masked images corresponding to b in Fig. 2.5.
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Figure 2.6: Illustration for the attention loss computation

The segmentation network is trained to predict the correct object regions so that the
class score corresponding to I’ matches ¢'. An associated loss, the attention 10ss £y, 18
defined as the cross-entropy between the class score 2 of I and the target label ¢':

Cottn = ,Cl, S (~ tlog(o(2)) — (1~ ) log(1 ~ o). (2.10)

ceCp

In contrast to the classification loss /4, the attention loss only considers the present
classes. By generating multiple masked images using different attention maps, we
can investigate the effects of different combinations of the segmentation maps. As
illustrated in Fig. 2.6, we can add additional classification paths for other masked
images generated using different attention maps. In each path, the same classification
network is employed to compute the class score and the attention loss individually. The

total attention loss is computed as the average of the attention losses:

1 n
biotaattn = 737 >, @2.11)
neN

where [V is the number of classification paths.

In summary, an overall loss for training the semantic segmentation network is

gseg = gsal + Aseggtm‘/al,atz‘,n (212)
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where ), is the weighting factor for balancing two losses in the segmentation loss.
Note that during the training process of the segmentation network, we fix the parameters

of the classification network to keep its learned knowledge.

2.4 Experiments

2.4.1 Dataset and Experiment Settings

We evaluate the proposed approach on the PASCAL VOC 2012 segmentation benchmark
dataset [18] which has 20 foreground classes and one background class. This dataset
has 1,464 training images, 1,449 validation images, and 1,456 test images. As in many
practices [6, 34], we use augmented training dataset consisting of 10,582 images [46].
In our experiments, we only utilize image-level annotations for the network training. We
employ the saliency detector [47] to obtain saliency map that expresses class-agnostic
pixel-wise object scores. As a performance measure, we use mean intersection-over-
union (mIOU), average of IOUs over 21 categories. We obtain the result on the test set
by submitting the predicted results to the official PASCAL VOC evaluation server.

For classification network, we employ VGG16 [15] pre-trained on ImageNet classi-
fication dataset [17]. As illustrated in Fig. 2.3, we replace the last three fully-connected
(fc) layers in VGG16 with a standard convolutional block consisting of three convolu-
tional layers. The convolutional blocks consist of two 3 X 3 convolutional layers (fc6 and
fc7 both 1024 outputs) and one 1 x 1 convolutional layer (fc8). We append three dilated
convolutional blocks to the classification network (see Fig. 2.3). The dilation rates
in three dilated convolutional blocks are set to d = {3,6,9,12,15,18,21,24}. The
parameters of the standard and dilated convolutional blocks are initialized from the nor-
mal distribution. We apply the GAP layer after fc8 for the training of the classification
network.

For segmentation network, we employ DeepLab-ASPP [6] whose backbone archi-

tecture is either VGG16 [15] or ResNet101 [16]. We initialize the parameters of VGG16-
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and ResNet101-based DeepLab using the convolutionalized VGG16 and ResNet101
pre-trained on MS-COCO [48], respectively. For the last layer, the parameters are
initialized from the normal distribution. When training the segmentation network, we
use the classification network only with standard convolutional block (i.e., the dilated
convolutional blocks are removed). In the training of the ResNet101-based DeepLab,
we only update parameters of convolutional layers while fixing the parameters of batch
normalization layers. The softmax output of the segmentation network is post-processed
by CRF with default parameters [49].

To improve the robustness of the classification network and the segmentation
network, we apply data augmentation techniques. We randomly flip and scale (from 0.5
to 1.5) input images. The resulting images are cropped to 321 x 321 at random location.
We also apply color augmentation techniques by randomly changing brightness, contrast,
saturation, and hue. We use multi-scale inputs with scales, S = {1,0.75,0.5} in both
training and test phases [50, 6]. We use stochastic gradient descent optimizer with the
momentum 0.9. We set the weight decay to 0.0005 and the batch size to 20. We employ

polynomial learning rate policy [51] with initial learning rate 10~2 and power 0.9,

iter
maxiter

i.e., learning rate = 1073 x (1 — )99 The learning rate for the last layers are
multiplied by 10. We set the two thresholds 71 and 7> in (2.6) used to refine the saliency
map to 0.8 and 0.3, respectively, which are found by grid search. The weighting factors
Acs 10 (2.3) and Ageq in (2.12) are set to 0.1 and 2, respectively. The entries of the
binary random vectors b are drawn uniformly. We train the classification network and the
segmentation network for 50 and 30 epochs, respectively. Our approach is implemented

based on Tensorflow [52]. The classification network and the segmentation network are

trained on a single NVIDIA GeForce Titan Xp.

2.4.2 Comparisons with state-of-the-arts

We compare the performance of the proposed method with that of state-of-the-art WSSS
methods. In Tables 2.1 and 2.2, we summarize the mIOU obtained by VGG16- and
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Table 2.1: Comparison of VGG16-based weakly-supervised semantic segmentation

methods’ mean IOUs on PASCAL VOC 2012 val and test set

Use Need
Method Val  Test
saliency map pseudo-label?
SEC [7] v v 50.7 S51.1
TPL [36] 4 4 53.1 538
AE-PSL [34] v 4 55.0 55.7
DCSP[35] v v 58.6 59.2
GAIN[24] 4 4 553 56.8
MCOF[42] 4 4 56.2 57.6
AffinityNet [53] v 584 60.5
DSRGI8] 4 4 59.0 60.4
MDC [29] 4 4 60.4 60.8
FickleNet[27] v v 61.2 619
OAA [28] 4 4 63.1 62.8
RRM [54] 4 60.7 61.0
SGAN [44] v v 64.2 65.0
SAFN [55] 4 4 61.9 623
ICD [56] 4 4 64.0 639
DRS [39] 4 4 63.5 64.5
GSM [?] 4 4 63.3 63.6
NSR [57] 4 4 65.5 653
ESP [45] 4 4 67.0 673
ECS-Net [37] v 62.1 634
Ours v X 66.5 66.9
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Table 2.2: Comparison of ResNet-based weakly-supervised semantic segmentation

methods’ mean IOUs on PASCAL VOC 2012 val and test set

Use Need
Method Val  Test
saliency map pseudo-label?
DCSP [35] v v 60.8 619
MCOF [42] v v 60.3 61.2
AffinityNet [53] v 61.7 63.7
DSRG [8] v v 614 632
FickleNet [27] v v 64.9 653
OAA [28] v v 65.2 664
RRM [54] v 66.3 66.5
SGAN [44] v v 67.1 67.2
SAFN [55] v v 619 623
ICD [56] v v 67.8 68.0
DRS [39] v v 712 714
GSM [?] v v 68.2 68.5
LIID [58] v v 66.5 67.5
NSR [57] v v 704 70.2
ESP [45] v v 71.0 71.8
advCAM [30] v 68.1 68.0
GCN [59] v 68.7 69.3
AuxSegNet [60] v v 69.0 68.6
ECS-Net [37] 4 66.6 67.6
Ours v X 69.0 69.2
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ResNet-based WSSS approaches. From the results, we observe that our approach per-
forms competitive with the conventional WSSS approaches. Specifically, our approach
achieves mIOU of 66.5% and 69.0% for val set of PASCAL VOC 2012 segmentation
dataset with VGG16- and ResNet101-based DeepLab-ASPP, respectively. Using our
approach, we can train the segmentation network such that it learns the class-specific
knowledge directly from the classification network. Our results clearly demonstrate that
the generation of pseudo-labels is unnecessary for WSSS.

We compare the proposed approach with a few notable WSSS approaches. In GAIN
[24], since the main network and the adversarial network are sharing the parameters
and also trained simultaneously, the network might be confused when the object regions
are poorly discovered. Our approach can avoid this by training the adversarial network
in advance and fixing the parameters in the network. MDC uses the classification
network having multiple convolutional blocks to generate the pseudo-label [29] . In
our approach, the classification network trained to predict the dense CAM is used for
the training of the segmentation network directly. Similarly to the proposed approach,
MCOF trains the segmentation network using the classification network [42]. In MCOF,
the classification network is used to classify the superpixels of an input image. Whereas,
in our approach, the pre-trained classification network is used to classify the regions of

input image after applying image masking technique.

2.4.3 Ablation studies

In order to prove the effectiveness of each component, we conduct ablation experi-
ments with different settings of the proposed work. In Table 2.3, we summarize the
segmentation performance of the proposed approach in different settings. When we
say ‘standard’ classification network, it means that the network trained only using
multi-class multi-label classification loss function. The ‘dilation’ classification network
means the network trained using the classification loss and the CAM loss described in

Section 2.3.1.
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Table 2.3: Comparison of performances on val set with different settings of our approach.

GT indicates the ground truth saliency map.
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Table 2.4: Comparison of performances on val set with different settings of our approach.

GT indicates the ground truth saliency map.

Model mIOU

Al baseline 62.2
A2 Al+refined saliency map  63.8
A3 Al+attention loss 64.0
A4 A3+dilated convolution 64.7
A5 Al+ all techniques 66.5

Our baselines are the VGG16- and ResNet101-based segmentation networks trained
only using the saliency loss associated with the original saliency map obtained by SD
[47] (see Al and B1). From the results, we observe that the segmentation performance
can be improved by refining the saliency map. Specifically, the models using the refined
saliency map (A2 and B2) achieve about 3% improvement in mIOU over the baseline
models. By comparing the performance of Al and A3, we also observe that the seg-
mentation performance can be improved by exploiting the classification network in the
training of the segmentation network. Moreover, we can observe that the segmenta-
tion performance can be further improved by exploiting the dilated convolution-based
classification network (see A3 and A4). We also observe that the performances can
be enhanced by employing multiple classification paths (see A5 to A7 and B3 to BS).
We also conduct experiments when high-quality saliency map is available. For these
experiments, we use the ground truth saliency map obtained by binarized ground truth.
We can observe that the segmentation network trained using the ground truth saliency
map attains 67.5% and 70.9% with VGG16 and ResNet101 backbone, respectively. By
applying our image masking-based approach to these networks, we can further improve
the performance by 1.8% and 2.2% for the segmentation networks with each backbone.

To investigate the efficacy of refining saliency map, we conduct experiments using
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different saliency maps: 1) original saliency map obtained from saliency detector, 2)
refined saliency map in which low-scored foreground pixels are corrected to back-
ground pixels, and 3) refined saliency map in which low-scored foreground pixels
are considered as unlabeled pixels. From the results in Table 2.5, we observe that
the segmentation performance is degraded when the low-scored foreground pixels are
corrected to background pixels. We also observe that the segmentation performance
is significantly improved when the low-scored foreground pixels are considered as
unlabeled pixels.

To observe the effect of combination of input scale used for refining saliency maps,
we conduct experiments by varying the number of the input scales. The input scales
are chosen among the scales used in data augmentation {0.5,0.75,1,1.25,1.5}. From
the results, we see that the best segmentation performance is obtained when three input
scales are used (see S4 and S7 in Table 2.6).

We have conducted experiment using the MS-COCO dataset (see the results in
Table 2.8). In this dataset, our segmentation network performs slightly worse than the
conventional networks. The main reason for this is as follows; In our work, instead
of generating the pseudo-label, we exploit the classification network in the training
of the segmentation network. To train the segmentation network using the attention
loss, the classification network should detect the objects and then output high scores
for the corresponding classes for both input and masked images. Unfortunately, the
VGG16-based classification network we used in the segmentation network training
is not quite excellent in finding out small objects (i.e., fork, tie, and toothbrush) or
the objects of rare classes (i.e., carrot, toaster, and hair-drier) so that the performance
of the segmentation network for such objects is not so excellent. Nonetheless, the
segmentation network could find out normal objects (i.e., person, animals, and vehicles)
quite well.

We also test the performances for various number of dilated convolutional blocks

D. From the results shown in Table 2.7, we observe that the segmentation performance
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Table 2.5: Comparison of the segmentation performance using different saliency maps

Saliency map mlIOU on val
1 original saliency map 60.7
2 | refined saliency map without unlabeled pixels 59.9
3 | refined saliency map with unlabeled pixels 65.5

Table 2.6: Segmentation performances with respect to the combination of input scales

for refining saliency map.

Configuration Input scales mlIOU on val
S1 {0.5,0.75,1,1.25,1.5} 66.0
S2 {0.5,0.75,1,1.25} 66.0
S3 {0.75,1,1.25,1.5} 66.1
S4 {0.5,0.75,1} 66.5
S5 {0.75,1,1.25} 65.7
S6 {1,1.25,1.5} 64.8
S7 {0.5,1,1.5} 66.5

slightly improves with the number of dilated convolutional blocks at the expense of the

additional computations and training time.

2.4.4 Qualitative Results

In Fig. 2.7, we provide qualitative results obtained from ResNet101-based DeepLab-
ASPP. (a): the baseline network trained only using the saliency loss with the original
saliency map, (b): the network trained only using the saliency loss with the refined
saliency map, and (c): the network trained using the attention loss in addition to the
saliency loss with the refined saliency map. The bottom two rows show some failure

cases. From the results, we can observe that our saliency map refining strategy is
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Table 2.7: Segmentation performances with respect to different number of dilated

convolutional blocks.

# of dilated
Model Dilation rates mlIOU on val
conv. blocks
D1 D=8 {3,6,9,12,15,18,21,24} 65.8
D2 D=4 {6,12,18,24} 65.6
D3 D=3 {3,6,9} 65.5
D4 D=2 {3,6} 65.2

Table 2.8: Comparison of weakly-supervised semantic segmentation methods’ mean

IOUs on MS-COCO val set.

Method Segmentation network | mIOU on val
SEC [7] DeepLab-LargeFOV 22.4
DSRG [8] DeepLab-ASPP 26.0
GSM [61] DeepLab-ASPP 28.4
SGAN [44] DeepLab-ASPP 33.6
EPS [45] DeepLab-ASPP 35.7
Ours DeepLab-ASPP 30.2
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Figure 2.7: Qualitative results obtained from ResNetl101-based DeepLab-ASPP.

effective in finding out the objects which might not be detected by SD and removing
the falsely activated background objects. Also, we can observe that our image masking-
based training strategy enables the segmentation network to learn the object classes
precisely even when the objects are very small. Also, we would like to mention some
failure cases. One of the most frequent failure scenarios is that there is an object which
covers a large portion of the image. For example, sofa or table can be confused as
background.

In Fig. 2.8, we provide qualitative results for the proposed approach and conven-
tional approaches ((a): input image, (b): ground truth, (c): DRS [39], (d): GSM [?], (e):
NSR [57], (f): ours). From the results, we observe that the proposed approach predicts
the detailed object region (see the first three columns in Fig. 8) while the conventional

approaches make false activation (see the last two columns in Fig. 2.8).

2.5 Summary of Chapter 2

In this chapter, we proposed a new WSSS technique that can train the segmentation
network without pixel-level pseudo-labels. To prevent the performance degradation
caused by inaccurate pseudo-label in conventional WSSS approaches, we have exploited

the image masking technique in the training of the segmentation network. We also
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Figure 2.8: Qualitative results obtained from various WSSS approaches.
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introduced an approach to refine the saliency map, which significantly improves the
segmentation performance. Extensive experiments demonstrate that our approach is

effective in solving the problem of WSSS.
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Chapter 3

Weakly Supervised Semantic Segmentation Using Image

Clustering

Weakly-supervised semantic segmentation aims to train a semantic segmentation net-
work using weak labels. Among weak labels, image-level label has been the most
popular choice due to its simplicity. However, since the information contained in image-
level label is deficient in identifying accurate object regions, additional modules such
as saliency detector have been exploited in weakly supervised semantic segmentation,
which requires pixel-level label for training. In this chapter, we explore a self-supervised
vision transformer to mitigate the heavy efforts on generation of pixel-level annota-
tions. By exploiting the features obtained from self-supervised vision transformer, our
superpixel discovery method finds out the semantic-aware superpixels based on the
feature similarity in unsupervised manner. Once we obtain the superpixels, we train
the semantic segmentation network using superpixel-guided seeded region growing
method. Despite its simplicity, our approach achieves the competitive result with the
state-of-the-arts on PASCAL VOC 2012 and MS-COCO 2014 semantic segmentation

dataset for weakly supervised semantic segmentation.
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3.1 Introduction

Image semantic segmentation, a task to assign a semantic label to every pixel, has
received much attention due to its wide range of applications such as autonomous
driving and medical diagnosis [1, 2]. Recently, deep neural networks (DNN)-based
semantic segmentation has received special attention due to its excellent segmentation
performance [19, 6]. A main bottleneck of the DNN-based approach is that it requires
large-scale data with dense annotation for training of the networks. Since the generation
of fully-annotated dataset is laborious, one of the alternative approaches, weakly-labeled
learning have been broadly studied [7, 8]. There are various forms of weak labels such
as image-level labels [9], points [10], scribbles [11], and bounding boxes [12]. Among
these, image-level label, indicating the existence of the objects, is popularly used due to
its simplicity [13, 14, 8]. We henceforth refer to the DNN-based semantic segmentation
using the image-level labels as weakly-supervised semantic segmentation (WSSS).

A main challenge of WSSS is to discover object locations and extent from image-
level label. In recent WSSS approaches, class activation mapping method [21] is
popularly used to locate the object regions for the training of semantic segmentation
network [7, 24]. However, since the pseudo-label generated using this approach is
sparse, there exist a performance gap between fully-supervised and weakly-supervised
semantic segmentation. To bridge the performance gap, many recent WSSS approaches
exploit the extra supervisions. One of the popular choice is the saliency map obtained
by the saliency detectors. Although many WSSS approaches take the saliency map for
granted from saliency detectors, it fundamentally requires massive effort on annotating
detailed pixel-level label.

An aim of this chapter is to relieve the thirst for pixel-level information for WSSS.
To this end, we approach WSSS problem by exploiting a vision transformer which is
trained using only self-supervision. The vision transformer trained by distillation with
no labels, DINO [22], have shown the performance comparable with the state-of-the-

arts convolutional neural network models. In particular, the feature obtained by DINO
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Figure 3.1: Examples for superpixels obtained by conventional and our method.

appear to contain explicit information about the semantic segmentation of objects in
an image. Recently, this DINO-based feature has been exploited in the challenging
computer vision tasks such as unsupervised object detection [62] or unsupervised
saliency detection [63].

In this chapter, we propose a semantic-aware superpixel discovery method to resolve
the problem of WSSS. In our approach, we use off-the-shelf ViT trained by DINO to
obtain the feature without any fine-tuning. By iteratively identifying a seed pixel of
an input image and discovering the pixels having similar feature to the seed pixel, we
obtain the groups of pixels sharing semantic similarities in a unsupervised manner. In
generating the superpixels, we only consider the pair-wise feature similarities between
pixels. The generated superpixels have two following properties: 1) the superpixel
contains long-range information even if the consisting pixels are not connected, meaning
that the semantically similar but apart pixels can be grouped together, 2) the number of
superpixels depends on the complexity of an input image, meaning that the number of
superpixels is not pre-defined so that we can avoid oversegmentation. In Fig. 3.1, we
show some examples for conventional (SLIC [64]) and our superpixels. Note that the
colors are only used to illustrate the different superpixels.

After obtaining semantic-aware superpixels, we train the semantic segmentation
network using superpixel-guided seeded region growing method. Using the rough initial
seed as a main supervision to the segmentation network, the seeded regions are expanded

-] 8w

W% ,»ﬂ <
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to the neighboring superpixels. Unlike the conventional seeded regions growing method
that gradually expand the seeded region to adjacent pixels [8], our method expands the
seeded region to group of pixels if a criterion is satisfied. Moreover, since the superpixel
keeps the shape of objects (or their parts), we can obtain high-quality seed that depicts
the detailed object boundaries.

The contributions of this chapter are as follows:

* We propose a simple method to group the similar pixels using the self-supervised
vision transformer in a unsupervised manner. Our method produces superpixels
containing semantically similar pixels which are friendly to semantic segmenta-

tion task.

* In our approach, we train the semantic segmentation network using the initial
seed labeled on confident pixels while refining the seed using superpixel-guided
seeded region growing method. The refined seed becomes dense during the

training process and significantly boosts the segmentation performance.

* QOur approach outperforms the state-of-the-arts methods on PASCAL VOC 2012
and MS-COCO 2014 semantic segmentation dataset with only using image-level

labels.

3.2 Related Work

3.2.1 Weakly Supervised Semantic Segmentation

The goal of WSSS is to train semantic segmentation network from coarse labels such as
points, scribbles, or image-level label. Due to the simplicity, WSSS using image-level
label is widely studied. A typical approach is to train a classification network and obtain
initial seed using class activation mapping technique. Since the initial seed obtained by
this approach is sparse, there have been many efforts to improve the qualities of seed.

For examples, in [65], self-supervision based on equivariant attention mechanism is
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exploited to discover object regions. In [30], advCAM method is proposed to find out
non-discriminative object regions in an anti-adversarial manner. In [66], an approach
that encourages the network to perceive non-discriminative object region by reducing

information bottleneck is proposed.

3.2.2 Superpixel

Superpixel is a set of homogeneous pixels based on features such as bright, color, or
texture. To perform superpixel segmentation, graph-based method [64] or clustering-
based methods [67] have been popularly exploited. The superpixels obtained from these
methods are used in many WSSS approaches to recover smooth object boundaries
[68, 69, 56, 70]. However, since the superpixels used in these approaches are quite
over-segmented, having a few hundreds of segmented regions, it is difficult to obtain
long-range information from these superpixels and discover the meaningful information

for WSSS.

3.2.3 Seeded Region Growing

The seeded region growing [71] is an unsupervised approach to segmentation that exam-
ines neighboring pixels of initial seed points and determines whether the neighboring
pixels should be added to the region depending on a region similarity criterion. To
successfully accomplish segmentation of an image, it is important to locate the initial
seed to proper pixels and use a criterion that can characterize the image regions. In [8],
an approach that utilizes initial seed generated by classification network in training of
semantic segmentation network and computes pixel similarity using high-level semantic

features is proposed.

3.2.4 Transformer

Transformer and self-attention models have revolutionized machine translation and

NLP fields. Recently, its adoption to computer vision, the vision transformer (ViT) [72],
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has shown great performance beyond convolutional neural network (CNN) models.
However, in order to achieve such performance, the datasets containing enormous
number of training images are required (e.g., JFT-300M dataset). As a way to alleviate
this burden, self-supervision-based training technique is proposed [73]. In particular,
in [22], it is demonstrated that self-supervised ViTs can automatically segment the
background pixels of an image, even though they are not trained using pixel-level

supervision.

3.3 Superpixel-guided Weakly Supervised Semantic Segmen-

tation

In this section, we discuss the proposed WSSS framework. We first introduce how to
discover semantic-aware superpixels from self-supervised vision transformer-based
features. Then, we discuss how to generate the initial seed for training of the semantic
segmentation network. We also explain how to train the semantic segmentation network

using superpixel-guided seeded region growing method.

3.3.1 Superpixel Generation

In our perspective, an appropriate superpixels for semantic segmentation should satisfy
two following properties: 1) each superpixel is as large set as possible consisting of
homogeneous pixels so that all pixels have the same semantic class. 2) the number of
superpixels depends on the number of the sets of semantically similar pixels, not the
pre-defined number. To obtain such superpixels, we first identify a pixel which will
be seed of a superpixel and find out the pixels sharing similar semantic features to the
seed pixel. In our approach, we vision transformer-based feature to perform superpixel
discovery method. Before going into details, we briefly review the vision transformer
and its components.

Vision transformers take a sequence of patches of fixed size P x P as input. For a
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color image I of spatial size H x W, we have N = HW/P? patches. Each patch is
first embedded in a d-dimensional latent space via a trained convolutional projection
layer and delivered to the series of transformer blocks.

The main part of vision transformer consists of multiple blocks including multi-head
self-attention layers and multi-layer perceptrons. In the front part of each block, there
are three parallel linear layers taking an input X € R4 ¢ produce a query Q,
akey K and a value V, all in R(N*+1*d_ The resulting output for each head is given
by Y = softmax(QK”/d'/?)V, where softmax is applied row-wise. In our work, we
concatenate the keys from all heads in self-attention layer of the last transformer block
to obtain final features which are the main ingredient in discovering the superpixels.

Let f, € R%*! be the feature vector corresponding to pixel p of input image I and
P ={1,2,---, N} be the set of indices of candidate pixels. We compute the pair-wise
feature similarity matrix A and binary adjacency matrix B denoting positive similarities

between two pixels as

T 1 ifAy,, >0
M By = Pq (3.1)

A, =
w ||fp”2||fq||2’ 0 otherwise.

where || - ||2 is ¢2 norm.

The sum of p-th row of B is defined as the degree of pixel p, d;,, which indicates the
number of pixels having semantically similar features to p. Based on d,,, we can notice
how large the group of pixels having similar semantic features to p is. If the features of
objects of different class are clearly distinguishable, we may conclude that semantically
similar pixels have the same class. Accordingly, we can guess whether p belongs to
large object (e.g., sky, car, or building) or small object (e.g., bottle, eyes, or wheel). One
of the ways to identify a group of pixels representing an object can be to select a pixel
p*, a seed pixel, and find out the pixels having similar semantic features to p*.

We may wonder how to select a good seed pixel to find out a group of pixel, a
superpixel. Here, we use simple rule based on the degree of pixels. We can consider to

select p with either the highest or the lowest degree to find out large or small object,
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Figure 3.2: A procedure of the proposed superpixel discovery method.

respectively. From our extensive experiments, we observe that it is better to identify
small objects than large objects since there could be a pixel having an overwhelming
degree, resulting in grouping the most of pixels. Hence, our strategy to partition an
image into multiple superpixels is to find out a superpixel corresponding to smallest
object and repeat this process after excluding the pixels of the discovered superpixel
from the candidates.

To sum up, in each iterative step ¢, the seed pixel p; of a superpixel S; is selected
by finding the pixel with lowest degree as p; = argmin, ) ¢ Bpq- Then, the pixels to
be included to superpixel S; are determined by following criterion: S; = {q|Apzq > 7}
where 7 is the pre-defined threshold for feature similarity. We exclude the pixels of S;
from P and repeat this procedure until P becomes empty set. In Fig. 3.2, we illustrate

the procedure of the proposed superpixel method.

3.3.2 Initial Seed Generation

To generate the initial seed which will be used for training of the semantic segmentation
network, we first train a classification network. We follow the common practices to

train the classification network using multi-label classification loss:

C
czs—az ~yelog(a(Te)) — (1 —ye) log(1 — (%)) (32)
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Table 3.1: Pseudocode for the proposed superpixel discovery method

Algorithm: Superpixel discovery method

Input

fp € RP>1L: feature at position p in image 1

7 € [0, 1]: pre-defined threshold

Initialize
fp = S/l fpll2 forall p normalize feature
Apg fg fq compute similarity matrix
By < Lif g > 0 compute adjacency matrix
0 otherwise

P+ {1,---,N} set of all positions
140
While P # ()

1 i+1

d, < Z;D By, forp € P compute degree

q€

p* < arg n;in d,

Si «+ {q|Apq > Tand g € P}

find seed pixel

find superpixel according to p*

P+« P\S; exclude currently found pixels
End While
n <1 the number of superpixels
Output

S, fori € {1,--- ,n}: superpixels
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where C'is the number of foreground classes, ¥, is the image-level label for class ¢, .
is the predicted class score for class ¢, and o(z) = 1/(1 + e~ *) is the sigmoid function.

Then, we obtain the class activation map M of class c as

wlz! ifei |
—<2r— if cis present class
M. = C | (33)
0 otherwise

where x’ is the output of the second last layer and w is the weight of the last layer of the
classification network. Using the CAM, we assign the class for confident foreground

pixels to initial seed L by taking threshold as

argmax M, . if M, . > «
L,= e P e (3.4)
unlabeled otherwise.

On the other hand, background regions are not directly identified from CAM since
the classification network does not learn the background class explicitly. A common
approach to identify background regions is to set the low-activated foreground regions
in the CAM to the background region. However, the discovered regions using this
approach may contain the foreground regions which are not expressed in the CAM. To
identify the background regions better, we find out the superpixel which is the least
likely to be foreground regions. Here, we assume that there are background regions in
every input image.

Specifically, we compute class-agnostic foreground activation map F' by taking the
maximum pixels for present foreground classes as F' = max.c¢c M, where C is the set
of present classes in /. Then, the foreground score z(S;) is computed as the average of
F over §;, that is, 2(S;) = ﬁ >_pes; Fp where |S;| is the number of pixels contained
in S;. We select the S; with the lowest z(S;) as background pixels:

L,=0forpeS; st S =arg H}gl,n 2(S)) (3.5)

k3

where 0 indicates the background class. Although there exist very few images not
containing background regions, we can construct reliable seed for background class for

the most images.
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Figure 3.3: The architecture for training of the semantic segmentation network.

3.3.3 Segmentation Network Training

The semantic segmentation network basically learns the object regions from sparse
initial seed constructed above. During the training process, the superpixel-guided seeded
region growing is performed to assign the classes to the promising superpixels. We
briefly illustrate the architecture for training the segmentation network in Fig. 3.3.
Specifically, let H be the softmax output of segmentation network. We apply a
simple probability threshold for each superpixel. To preserve the confident pixels in
initial seed, we slightly modify the superpixel by excluding the pixels labeled in the
initial seed. That is to say, we modify the superpixel S} as S; = S; \ {p|L, is labeled}.
Using the segmentation probability H, the average of probability of class c over S is

computed as

. 1
5(Si)e = & > Hye. (3.6)

pESi

Then, the class c is assigned to L,, if the two following criteria are satisfied:

5(Si)e = max 5(Si)e and s(S;). > 5. 3.7

5 2T 8
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Figure 3.4: Examples for initial seed refined by superpixel-guided seeded region grow-

ing during the training process

That is, the class c is assigned to the superpixel S; if S; is the most likely to be class ¢
and the average of probability if greater than threshold 5. Although the initial seed is
sparse, the labeled regions are expanding to neighboring superpixels by region growing
as the segmentation network is trained. In Fig. 3.4, we show some examples illustrating
the refined seed obtained by superpixel-guided seeded regions growing during the
training process of the segmentation network.

We train the semantic segmentation network using the balanced seed loss [8] that

balances the losses between background and foreground classes:
£ = Ll H, L1 H, 3.8
seed — — Z ’£b| 0og p,0 — Z ‘ﬁf’ 0og ,C ( . )
peELD peLlf ceC

where H,,  is the probability of background class at position p, £* = {p|L,, = 0} is the
set of background pixels, and £/ = {p|1 < L, < C} is the set of foreground pixels. In

the loss computation, the unlabeled pixels are ignored.
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3.4 Experiments

3.4.1 Dataset and Experiment Settings

We evaluate the proposed approach on the PASCAL VOC 2012 segmentation benchmark
dataset [18] which has 20 foreground classes and one background class and MS-COCO
segmentation dataset [48] which has 80 foreground classes and one background class.
PASCAL VOC dataset has 1,464 training images, 1,449 validation images, and 1,456
test images. As in many practices [6, 34], additional dataset is augmented to training
dataset, resulting 10,582 training images in total [46]. MS-COCO dataset has 82,783
training images and 40,504 validation images. In our experiments, we only utilize image-
level annotations for the training of semantic segmentation network. As a performance
measure, we use mean intersection-over-union (mlOU), average of IOUs over 21 (for
PASCAL VOC) or 81 (for MS-COCO) categories. We obtain the result on the test set
by submitting the predicted results to the official PASCAL VOC evaluation server.

For vision transformer, we employ off-the-shelf ViT-Base/8 [72] trained using DINO
[22]. Without fine tuning the ViT, we use the key K of the last (12th) transformer block
as the features for generating superpixels following [62]. For classification network
and segmentation network, we employ ResNet50 and ResNet101 [16] as the backbone
network. Both networks are pre-trained on ImageNet classification dataset [17]. For the
segmentation network architecture, we use deeplab-ASPP module [6] appended to the
ResNet101 backbone network. For the last layer, the parameters are initialized from the
normal distribution. In the training of the ResNet101-based DeepLab, we only update
parameters of convolutional layers while fixing the parameters of batch normalization
layers. The obtained superpixels and the softmax output of the segmentation network is
post-processed by CRF [49].

To improve the robustness of the segmentation network, we apply data augmentation
techniques. We randomly flip and scale ({0.5,1,1.5}) input images. The resulting

images are cropped to 448 x 448 at random location. We also apply color augmentation

50



techniques by randomly changing brightness, contrast, saturation, and hue. For the
segmentation network, we use multi-scale inputs with scales, S = {1,0.75,0.5} in
both training and test phases [50, 6]. We set 7 to 0.3 in superpixel discovery method.
We set o = 0.5 in identifying foreground pixels and S = 0.7 for the criterion in seeded
region growing. We use stochastic gradient descent optimizer with the momentum 0.9.
We set the weight decay to 0.0005 and the batch size to 20. We employ polynomial
learning rate policy [51] with initial learning rate 10~3 and power 0.9, i.e., L =
1073 x (1 — iter /maxiter)®?. In early training iterations, we gradually increase the
learning rate from 1076 to 10~ through the first three epochs. The learning rate for the
last layers are multiplied by 10. We train the segmentation network for 15 epochs. Our
approach is implemented based on Tensorflow [52]. The classification network and the

segmentation network are trained on a single NVIDIA GeForce Titan Xp.

3.4.2 Comparisons with state-of-the-arts

We compare the performance of the proposed method with that of state-of-the-art
WSSS methods. In Table 3.2, we summarize the mIOU obtained by WSSS approaches
on PASCAL VOC 2012. All method use only image-level labels without additional
saliency supervision. From the results, we observe that our approach outperforms the
conventional WSSS approaches. Specifically, our approach achieves mIOU of 69.5%
and 70.1% for val and test set, respectively. In Table 3.3, we summarize the mIOU
obtained by WSSS approaches on MS-COCO 2014. From the results, we also observe
that our approach outperforms the conventional WSSS approaches. Specifically, our
approach achieves mIOU of 44.8% for val set.

In particular, we use the same classification network as used in [74], which is also
exploited in [30, 66]. In [56], the superpixels are used to recover the object boundaries.
In [70], superpixel is exploited in partitioning the input image into complementary
patch. Compared to these superpixel-based methods which are benefited from local

information about the object boundaries, our approach can take advantage of local and
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methods’ mean IOUs on PASCAL VOC 2012 val and test set

Table 3.2: Comparison of ResNet-based weakly-supervised semantic segmentation

Method Publication = Backbone  Val Test
AffinityNet [S3] CVPR’18  ResNet38 61.7 63.7
IRN [74] CVPR’19  ResNet50 63.5 64.8
RRM [54] AAAT20 ResNetl01 66.3 66.5
ICD [56] CVPR’20  ResNetl01 64.1 64.3
SAEM [65] CVPR’20  ResNet38 64.5 65.7
SC-CAM [75] CVPR’20  ResNetl01 66.1 65.9
BES [76] ECCV’20 ResNetlO1 65.7 66.6
CONTA [77] NeurIPS’20  ResNet38 66.1 66.7
ECSNet [37] ICCV’21 ResNet38 66.6 67.6
CDA [78] ICccv’21 ResNet38 66.1 66.8
CPN [70] ICCcv’21 ResNet38 67.8 68.5
CGnet [79] ICCV’21 ResNet38 68.4 68.2
advCAM [30] CVPR’21  ResNetl01 68.1 68.0
RIB [66] NeurIPS’21 ResNetl01 68.3 68.6
ResNet50 67.3 66.9

Ours ResNet38 68.3 68.4
ResNet101 69.5 70.1
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Table 3.3: Comparison of weakly-supervised semantic segmentation methods’ mean

IOUs on MS-COCO 2014 val set

Method Publication = Backbone  Val
SEC [7] ECCV’16 VGGl16 224
DSRG [8] CVPR’18 VGG16  26.0
ADL [80] TPAMI’20 VGG16  30.8
GSM [61] AAAT21 VGG16 284

CONTA [77] NeurIPS’20 ResNet50 334
SGAN [44] Access’20 VGGI16 33.6

IRN [74] CVPR’19 ResNetl01 41.4
RIB [66] NeurIPS’21 ResNetl101 43.8
Ours ResNet101 44.8

global information contained in our semantic-aware superpixels.
We show the semantic segmentation performances in Table 3.4. Our segmentation

network architecture is ResNet101-based DeepLab-ASPP [6].

3.4.3 Comparison of Superpixels
Comparison of Superpixels generated using different methods

We compare the qualities of our superpixels with the conventional methods: SLIC [64],
SEEDS [81], and LSC [67]. We set the parameters of methods to adjust the number of
superpixels similarly. Specifically, for SLIC and LSC, we set the sizes of superpixels to
{50, 80, 100, 130}. For SEEDS, we set the number of superpixels to {30, 50,80, 100}.
We set the number of iteration to 30 for all methods. For all other parameters, we follow
the default settings.

The qualities of superpixels are measured using the undersegmentation error (UE),
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Table 3.4: Mean IOUs on PASCAL VOC val and test set

Class Val  Test Class Val  Test Class Val  Test

background 91.2 91.3 car 78.1 81.0 motorbike 76.4 81.8
aeroplane  80.4 82.7 cat 89.3 87.0 person 7777 804
bicycle 40.6 39.2 chair 32.0 32.1 pottedplant 55.3 68.1
bird 78.5 75.6 cow 83.2 80.8 sheep 83.6 86.4
boat 63.4 527 diningtable 28.3 33.2 sofa 41.8 464
bottle 72.8 70.2 dog 852 85.1 train 76.8 73.3
bus 87.5 89.2 horse 82.1 82.9 tvmonitor 54.6 52.0

mlIOU 69.5 70.1

the boundary recall (BR), the boundary precision (BP), and the achievable segmentation

accuracy (ASA). Let Sy, be the set of pixels in superpixel k& and G; be the set of pixels in

segmentation ground truth of class ¢. The UE measures leakages of superpixels across

the ground truth:

_ 5 min{|Se N Gil, Sk~ Gil)
> 1Gil '

The BR measures the percentage of the ground truth boundaries recovered by superpixel

UE(S,G) (3.9

boundaries:

> pesg Hmingess [lp — gl <€)

5G (3.10)

BR(S,G) =

where 0S and 63 are the sets of pixels in all boundaries of S and G, respectively, and e
is the limit distance. We use ¢ = 2. The BP measures the percentage of the superpixel

boundaries covering the ground truth boundaries:

> gess Lmingesg [lp — gl <€)

5S (3.11)

BP(S,G) =
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Figure 3.5: Comparison of undersegmentation errors of superpixel methods

The ASA measures the segmentation performance upperbound of the superpixels:

ASA(S,G) = 2 2% | Sk 01 G (3.12)

2. 194l

We summarize the superpixel measures in Table 3.5 (also see Fig. 3.5 for UE,

Fig. 3.6 for PR curve, and Fig. 3.7 for ASA). To compute BP and BR, we use contour
finding method provided by opencv. We observe that the qualities of our superpixels are
better than others when the number of superpixels are small and large. We also show
some examples for superpixels when the number of superpixels is small (see Fig. 3.8)

and large (see Fig. 3.19).

Comparison of Superpixels generated from different features

In the proposed method, we use the feature obtained from the DINO. To investigate
the effects of different features, we compare the superpixels generated using various
A & Tl 8} 3

I
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Table 3.5: Comparison of UE, BP, BR, and ASA on PASCAL VOC train set for

conventional superpixel methods and ours

Method # of superpixels UE] BP{ BRfT ASA1

11.72 0.246 0.057 0.635 0.879
18.22 0.199 0.057 0.636 0.902
SLIC [64]

27.67 0.164 0.055 0.644 092
75.04 0.105 0.051 0.675 0.949
13.10 0.199 0.074 0366 0.902
31.03 0.127 0.062 0.463 0.938

SEEDS [81]
47.98 0.102 0.06 0511 0951
59.90 0.092 0.058 0.532 0.956
9.00 0.285 0.052 0.689 0.859
16.06 0.218 0.050 0.718 0.893

LSC [67]

24.47 0.181 0.049 0.733 0911
67.42 0.113 0.046 0.763 0.945
Ours, 7 =0 8.14 0.159 0.104 0.515 0.922
Ours, 7 = 0.1 10.89 0.110 0.103 0.564 0.947
Ours, 7 = 0.2 17.74 0.093 0.099 0.591 0.955
Ours, 7 = 0.3 28.57 0.083 0.094 0.615 0.960
Ours, 7 =04 49.35 0.074 0.087 0.652 0.965
Ours, 7 = 0.5 83.39 0.068 0.079 0.678 0.968
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Figure 3.6: Comparison of boundary precision-recall curves of superpixel methods
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Input image SLIC SEED LSC Ours Ground truth

Figure 3.8: Examples of superpixels with the number of superpixels ranging from 10 to

15.

Input image SLIC SEED LSC Ours Ground truth

Figure 3.9: Examples of superpixels with the number of superpixels ranging from 50 to

80.
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Input image RGB CNN CNN-MOCOV3 ViT ViT-DINO VIiT-MAE
7=09 =09 =09 =06 =03 T=0.6

Figure 3.10: Superpixels generated using different features

features and discuss the qualities of the obtained superpixels. In this experiment, the
features we use are: 1) the RGB values of image itself, the most basic feature of pixels,
2) the CNN features obtained from supervised CNN (ResNet [16]), and self-supervised
CNN (MoCov3 [82]), 3) transformer features obtained from supervised transformer
(ViT [72]), and self-supervised transformers (DINO [22] and MAE [83] which is known
to outperform DINO in down-stream tasks). The backbones of CNNs and transformers
are ResNet50 and ViT-Base/16, respectively. The features of CNNs and transformers
are the output of the last layer and the key of the last transformer block, respectively.
We discuss the superpixels obtained from different features. We show the examples
of superpixels generated using different features in Fig. 3.10. In this experiment, we first
generate the superpixels using the DINO feature with setting 7 = 0.3. The 7 for other
features are adjusted so that the number of superpixels are similar to that of superpixels

generated from the DINO feature.

* RGB feature: We observe that we can find superpixels using RGB values, how-
ever, since the RGB values are low-level features, we cannot clearly partition the

image.

* CNN features: We observe that we cannot properly generate the superpixels

LR L
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using CNN features of both supervised and self-supervised networks. This is
because the CNN feature of each pixel depends heavily on the neighboring pixels,
resulting in very high similarities between almost all pairs of pixels. Hence, we
could not partition the image when 7 < 0.8. By setting 7 to high value (e.g., 0.9),

we can obtain the partitioned images with poor qualities.

 Transformer features: We observe that we can obtain the superpixels with reason-
able qualities using the features of ViTs. One notable point is that we need to set
7 to high value when we use the features of ViT and MAE. This is because the
ViT is trained to classify images which forces the network to recognize the object
itself and MAE is trained to predict the masked regions which forces the network
to understand overall context of images. Hence, the ViT and MAE may not pay
much attention to the details of images, generating highly similar features on
objects. On the other hand, DINO is trained to extract diverse features for each
image patch. In fact, the features of DINO represents not only the objects but

also their parts in detail so we used them in the generation of superpixels.

Comparison of Superpixels generated using different bipartition rules

In the proposed method, we select the seed pixel by finding a pixel having the lowest
degree in each iteration step. Hence, we can identify superpixels representing the small-
est object or its part among the remaining pixels. We compare the superpixels obtained
using the proposed methods which identify the pixel with lowest or highest degree in
each iteration, which are denoted as low first (LF) or high first (HF), respectively. We
show some examples in Fig. 3.11. The brightness of superpixel indicates the order the
superpixel is discovered (bright first, dark last). As we can observe, we fail to partition
the image using HF with low 7. If we set 7 to high value, we can obtain good partitions
of images using HF but there are still more undersegmented regions than LF.

To compare the superpixels generated using different bipartitioning rule, we apply

normalized cut (Ncut [84]) to obtain superpixels and compare the proposed superpixel
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Figure 3.11: Examples of superpixels generated using different rule for seed pixel
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with Ncut-based superpixel. We first compute the similarity matrix A as (3.1). Then,

the adjacency matrix W is obtained as

——_— 1 ifAy, > 313
g = , (3.13)
€ otherwise

where € is the small constant. Also, the diagonal matrix D is obtained as
Dpp=> Wy (3.14)
q
By solving the eigenvalue system
(D = W)y = ADy (3.15)

and finding the second smallest eigenvector, we can obtain the vector representing
bipartition of image. Since the eigenvector is real valued, we set the indices greater than
the average of elements of eigenvector to partition A and the rest indices to partition B.
As in the proposed approach, we choose the small partition as the currently discovered
superpixel and repeat the procedure.

We compare the superpixel measures of the proposed superpixels and Ncut-based
superpixel. As illustrated in Fig. 3.12, we observe that the qualities of the proposed
superpixel are better than the qualities of the Ncut-based superpixel. We show some
qualitative results for both superpixels. As illustrated in Fig. 3.13, Ncut-based approach
can group the all pixels of an object (see the first four columns in 3.13) whereas
may undersegment images(see the last two columns in 3.13). On the other hand, the
proposed approach may oversegment the objects but can segment the image properly
by increasing the threshold 7. One notable point is the inference time of superpixel
algorithms. In the proposed approach, we need to simply take threshold to similarity
matrix to discover superpixel in each iteration. On the other hand, in Ncut-based
approach, we need to solve large eigenvalue system of size > 2, 000 in each iteration.
As a result, the proposed approach processes 1,000 images in 8 ~ 100 minutes whereas
the Ncut-based approach requires 24 ~ 60 hours to process the same amount of images.

Note that the processing time depends on 7.
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Figure 3.13: Comparison of superpixels generated from various bipartition methods

3.4.4 Effects of Hyperparameters
The Effect of 7

In the proposed superpixel method, we use threshold 7 in grouping the similar pixels.
Before we examine the effect of different 7, we investigate the characteristics of the
adjacency matrix indicating the positiveness of pixel pair. We may wonder if the
pixels belonging to the objects of our interest have positive similarities to each other.
Also, we may wonder if there is any pair of pixels in the object having negative
similarity. To observe this, we compute the number of pixels in objects having positive
or negative similarity and visualize in Fig. 3.14. The brightness of ’positiveness’ and
’negativeness’ indicate the number of pixels in object having positive and negative
similarities, respectively. From the results in the upper row of Fig. 3.14, we observe

that the most of pixels belonging to the object are positively similar to each other. On

s g kg
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Input image ™

Positiveness

Negativeness

Figure 3.14: Examples of positiveness and negativeness maps indicating the number of

positive and negative pixels in an object.
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the other hand, from the results in the lower row of Fig. 3.14, we observe that the pixels
belonging to some parts of objects or different object of same class may have negative
similarities to others. Based on this observation, we notice that we may not find a group
of pixels only using the adjacency matrix B.

In order to find out good partition of image, we can use threshold 7. For seed pixel
p*, we find the pixels satisfying A,,« > 7.

lemma 1 For normalized vectors a € RP*1, b € RP*! and c € RPX1ifa”b > 7
and aZc > 7, then bLc > 272 — 1.

Proof: From the assumption that a”b > 7 and a”'c > T, there exist a, 3 satisfying
cosa > 7 and cos 3 > 7. Then, b’ ¢ has the relation with o and 3 as b” ¢ > cos(a + f3)
or bT'c > cos(a — f3).

case i) When b”'¢ = cos(a + f3), this is minimized when sin asin 8 > 0.

b'e > cos(a+B) (3.16)
= cosacosf —sinasinfj (3.17)
> cosqacosf — %(sin2 a + sin? 3) (3.18)
= cosacosfl — %(1—COS2CM—|—1—COSQ B) (3.19)
= %(2 cos acos 3 + cos? a 4 cos® B — 2) (3.20)
= %((cosa—i—cos,@)2 -2) (3.21)
> %((27)2 —2) (3.22)
= 2r°—1 (3.23)

(11) is because 22 + y? > 2zy when xy > 0.
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case ii) When b’ ¢ = cos(a — 3), this is minimized when sin o sin 3 < 0.

b'e > cos(a—B) (3.24)
= cosacosf + sinasin 8 (3.25)
= cosacos S — |sinasin g (3.26)
> cosacosf — %(sin2 o + sin? B) (3.27)
> 272 — 1. (3.28)

We have (21) as in (11)-(16).

Based on lemma 1, if we set Ttobe 272 — 1 = Qor 7 = 1/\@ ~ 0.71, we can
guarantee that all pixels in a superpixel have positive similarity to others. However, this
setting results in oversegmentation of image (see Fig. 3.15).

In our superpixel discovery method, the seed pixel is the pixel with lowest degree
so that the seed pixel might fall in the smallest objects or their parts. By varying 7, we
can decide how many pixels will be grouped with the seed pixel. In Fig. 3.16, we show
some examples for our superpixel for different threshold. The brightness indicates the
order of discovered superpixels, that is, the bright one is discovered first and dark one
is discovered later. When 7 is small, we obtain the superpixels containing whole object
of semantic class but may suffer from bad segmentation particularly for small objects.
When 7 is large, we can obtain the superpixels whose pixels are highly likely to have
the same semantic class but may suffer from the oversegmentation.

To investigate the effect of 7 in the segmentation performance, we generate various
superpixels using different 7 and use them to train the segmentation network. We
summarize the results in Table 3.6. We can observe that the segmentation performance

degrades when we use oversegmented superpixel.

The Effect of «

To examine the effect of « in generating the initial seed, we conduct some experiments

using different initial seeds. We summarize the results in Table 3.7. From the results,
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Figure 3.15: Examples of superpixels generated when 7 = 0.7
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Table 3.6: Comparison of mean IOUs on PASCAL VOC val and test set using different

superpixels

Figure 3.16: Superpixels according to different thresholds 7

7 Valw/ocrf Val withcerf Test
0 64.8 69.3 -
0.1 65.0 69.5 69.3

0.2 64.6 69.1 -
0.3 65.1 69.5 70.1
0.4 63.8 68.4 -
0.5 62.9 67.5 -
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Table 3.7: Comparison of mean IOUs on PASCAL VOC val set using different o for

generating initial seed

o Val  Val + crf
03 59.7 66.0
04 628 68.6
0.5 65.0 69.2
0.6 66.3 69.4
0.7 66.7 69.0
0.8 655 67.6

Input image

‘l“l."“"l.

| lg‘lg‘“é;l "Jl ‘-‘ M

B . K K _ B Ok

Figure 3.17: Examples for initial seeds generated by varying o
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Table 3.8: Comparison of mean I0Us for different 3, and 37, on PASCAL VOC 2012

val set.

/Bbg
0.5 0.6 0.7 0.8

0.5 60.3/64.3 59.3/62.7 56.5/59.7 51.5/53.9
0.6 62.1/66.5 62.3/66.5 61.0/65.2 57.5/61.4
0.7 58.0/61.8 61.3/65.7 62.3/66.8 61.3/66.2
0.8 51.9/53.6 55.5/58.5 60.3/64.8 61.2/66.6

Bfg

we see that the best performance is obtained when oo = 0.6 is used. A notable point is
that our initial seeds are generated in a different way from the conventional approaches,
in which there are many efforts on obtaining the dense initial seeds. Interestingly, we
can achieve good segmentation performance when the initial seed is very sparse (i.e., &
is high). We illustrate the initial seeds in Fig. 3.17 to compare how the initial seeds are

sparse.

The Effect of 3

We study the effects of (3 in superpixel-guided seeded regions growing. As done in [8],
we apply different 3 for background and foreground classes, 3y, and 3y, respectively.
We summarize the segmentation performance using various combinations of 3;, and
Bfq in Table 3.8. From the results, we see that we can achieve good segmentation
performance when we choose the two parameters similarly. The best result is obtained
using By, = 0.7 and B¢, = 0.7. If 3 is too low, the classes can be easily assigned to
superpixel, leading incorrect segmentation. In contrast, if 3 is too high, only highly-

confident classes can be assigned to superpixel so some superpixels could never be

labeled.
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3.4.5 Qualitative Results

In Fig. 3.18, we provide qualitative results obtained from our segmentation network on
PASCAL VOC 2012. Although we do not use external saliency map in the training of the
segmentation network, our approach can predict the objects with accurate boundaries.

In Fig. 3.19, we also provide qualitative results obtained from our segmentation
network on MS-COCO 2014.

In Fig. 3.20, we provide some failure cases for refined seed in the training process
(Fig. 3.20 (a)) and wrong prediction for similar images in val set (Fig. 3.20 (b)). In
particular, for the classes known to be difficult such as table or sofa, the seeded regions

in the initial seed rarely expand to the other superpixels.

3.5 Summary of Chapter 3

In this chapter, we have proposed a simple superpixel discovery method that finds out
the semantic-aware superpixels in a unsupervised manner. Without relying on external
pixel-level labels, we can exploit the pixel-level information on object boundaries
contained in our superpixels. We also have shown that our semantic segmentation
network training strategy using superpixel-guided seeded region growing method out-
performs the conventional WSSS approaches. Extensive experiments demonstrates that

our approach is effective in solving WSSS problem.
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Figure 3.18: Examples of our segmentation outputs for PASCAL VOC 2012 val set.
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Figure 3.19: Examples of our segmentation outputs for PASCAL VOC 2012 val set.
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Input image Prediction ~ Ground truth

(b)

Figure 3.20: Examples for failure cases of the refined seeds in training process and

wrong predictions for similar images in val images.
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Chapter 4

Conclusion and Future Research

In this dissertation, we studied the problem of weakly supervised semantic segmentation
when the image-level label is given. Although the recently developed deep neural
network outperforms the conventional network, I focused on the fundamental techniques
which can improve the segmentation performances of any semantic segmentation
networks. In specific, I made the following contributions:

In Chapter 2, we proposed a new WSSS technique that can train the segmentation
network without pixel-level pseudo-labels. To prevent the performance degradation
caused by inaccurate pseudo-label in conventional WSSS approaches, we have exploited
the image masking technique in the training of the segmentation network. We also
introduced an approach to refine the saliency map, which significantly improves the
segmentation performance. Extensive experiments demonstrate that our approach is
effective in solving the problem of WSSS. As an extension of this work, a new training
strategy for segmentation network aided by more powerful classification network having
different recognition mechanism from CNN could be a desirable direction for the future
work.

In Chapter 3, we proposed a simple superpixel discovery method that finds out
the semantic-aware superpixels in a unsupervised manner. Without relying on external

pixel-level labels, we can exploit the pixel-level information on object boundaries
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contained in our superpixels. We also showed that our semantic segmentation network
training strategy using superpixel-guided seeded region growing method outperforms
the conventional WSSS approaches. Extensive experiments demonstrates that our
approach is effective in solving WSSS problem. Using the superpixels obtained from the
self-supervised vision transformers, to perform the unsupervised semantic segmentation

could be a promising future direction of research.
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