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Abstract

Image semantic segmentation, a task to classify each pixel among the interested

classes, is an important problem with a wide range of applications such as autonomous

driving, medical diagnosis, industrial automation, and aerial imaging. In recent years,

deep convolutional neural networks have shown outstanding performances in image

semantic segmentation. A main bottleneck of these approaches is that it requires

large amount of fully-annotated data for training such networks. Since the acquisition

of fully-annotated dataset is laborious and expensive, weakly supervised semantic

segmentation (WSSS) has been suggested as an promising approach for future research

direction. There are various types of weak labels for semantic segmentation, for instance,

image-level labels, points, scribbles, and bounding boxes. Among these weak labels,

image-level labels are popularly used in WSSS for its simplicity. In essence, image-level

label denotes the existence of objects in an image. In this dissertation, we consider the

problem of weakly supervised semantic segmentation using image-level label.

In the first part of dissertation, we introduce a new training strategy for weakly

supervised semantic segmentation. In the proposed approach, we apply image masking

technique inspired by human visual system that focuses on interesting vision field and

ignores irrelevant parts. By guiding the attention of classification network using the

outputs of the segmentation network, the classification network evaluates the qualities

of segmentation output and encourages the segmentation network to generate more

accurate output. To boost the segmentation performance, we also introduce simple yet

effective technique to train the classification and refine the saliency map. Our experiment

results demonstrate that our approach is effective in solving weakly supervised semantic

segmentation.

In the second part of dissertation, we introduce a superpixel discovery method that

generates semantic-aware superpixels. Our superpixels have new properties that the
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apart pixels can be grouped into a superpixel if they have similar semantic features.

Also, the number of superpixels depends on the complexity of images, not the pre-

defined number. Our superpixel expresses semantically similar group of pixels with a

very small number of superpixels. We train the segmentation network using superpixel-

guided seeded region growing technique which improves the qualities of initial seed.

Our extensive experiments show that our approach achieves competitive segmentation

performance with the state-of-the-arts in weakly supervised semantic segmentation.

keywords: Image Classification, Image Semantic Segmentation,

Weakly Supervised Semantic Segmentation, Deep Neural Network,

Visual Attention, Superpixel

student number: 2015-20897
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Chapter 1

Introduction

1.1 Backgrounds

Image semantic segmentation, a task to classify each pixel among the interested classes,

is an important problem with a wide range of applications such as autonomous driving

[1], medical diagnosis [2], industrial automation [3], and aerial imaging [4]. In recent

years, deep convolutional neural networks have shown outstanding performances in

image semantic segmentation [5, 6]. A main bottleneck of these approaches is that it

requires large amount of fully-annotated data for training such networks. Since the

acquisition of fully-annotated dataset is laborious and expensive, weakly supervised

semantic segmentation (WSSS) has been suggested as an promising approach to mitigate

the burden [7, 8]. There are various types of weak labels for semantic segmentation,

for instance, image-level labels [9], points [10], scribbles [11], and bounding boxes

[12]. Among these weak labels, image-level labels are popularly used in WSSS for its

simplicity [13, 14, 7]. In essence, image-level label denotes the existence of objects in

an image. In this dissertation, we consider the problem of weakly supervised semantic

segmentation using image-level label. Before going into details, we briefly review the

basics of image classification and semantic segmentation.
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Figure 1.1: The classification network for multi-label classification

1.1.1 Basics of Image Classification

Image classification is a task to predict the classes of input images. In recent years,

convolutional neural networks have enjoyed a great success in large-scale image recog-

nition challenge [15, 16]. Image classification task can be roughly categorized into two

types: single-label classification [17], multi-label classification [18]. In this dissertation,

we use the convolutional neural networks to solve the multi-label classification in which

multiple objects of multiple classes can exist in an input image. Fig. 1.1 shows our

desired classification network for multi-label classification.

A typical approach to solving this problem is to train a classification network using

the multi-label classification loss function. Let zc ∈ R and tc ∈ {0, 1} be the output of

classification network and the label for class c. One of the popularly used multi-label

classification losses is the binary cross-entropy `bce which can be expressed as

`bce =
1

C

∑
c

(−tc log(σ(zc)− (1− tc) log(1− σ(zc))) (1.1)

where C is the number of classes and σ(x) = 1/(1 + e−x) is the sigmoid function.

After training the classification network, we can predict the classes of input image by

2



Figure 1.2: Input images and ground truths for semantic segmentation

making decision as following: class c exists if σ(zc) > τ

class c does not exist if σ(zc) < τ
(1.2)

where τ is the pre-defined threshold.

1.1.2 Basics of Image Semantic Segmentation

Image semantic segmentation is a task to assign classes to all pixels in input image,

which can be seen as a pixel-level single-label classification (see Fig. 1.2 for examples

of images and labels). Since the amount of required outputs is much larger than the

outputs in classification, fully-convolutional networks are widely adopted to make dense

prediction [19, 5].

The semantic segmentation network can be constructed by making a small change

in the classification network. We first remove the global pooling layer of classification

network, which summarizes the feature map into the scalar, and then, we replace the

fully-connected layers with convolutional layers. By doing so, we can obtain the output

for class c in the form of a map, that is, Zc ∈ Rh×w where h and w are the height and

3



Figure 1.3: Training of the semantic segmentation network

width of output, respectively.

In general, the semantic segmentation network is trained using a pixel-level loss

function (see Fig. 1.3). Let Zu,c and Tu,c the output of segmentation network and

label at position u for class c. A popular choice for segmentation loss is the softmax

cross-entropy `sce which can be expressed as

`sce =
1

hw

∑
u

∑
c

−Tu,c log(softmax(Zu,c)) (1.3)

where softmax(xc) = exc/(
∑
c
exc) is the softmax function.

After the training process, we infer the segmentation output from input images to

assign the best class to each pixel. For input image I , let Ẑ ∈ Rh×w be the segmented

output. Then, the final output P is determined by finding the class that have the

maximum output value at each pixel, that is,

Pu,c = 1 if c = argmax
c
Zu,c (1.4)

where the class 0 denotes the background class.

The commonly used performance metric of semantic segmentation is the intersec-

tion over union (IOU). The IOU of class c is computed as

IOU(c) =

∑
u

1intersection(u,c)∑
u

1union(u,c)
(1.5)
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where

1intersection(u,c) =

1 if Pu,c = 1 and Tu,c = 1

0 otherwise
(1.6)

and

1union(u,c) =

1 if Pu,c = 1 or Tu,c = 1

0 otherwise.
(1.7)

After computing IOUs for all classes including the background class, we compute mean

IOU for the final performance metric as

mIOU =
1

1 + C

∑
c

IOU(c) (1.8)

1.1.3 Basics of Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation aims to train the segmentation network using

image-level label (see Fig. 1.4 for desired system). A main concern in this approach

is the fact that image-level label does not provide pixel-level information such as

object shapes and their classes, which are required to train the segmentation network.

In early work, the segmentation network is directly trained using image-level label

with constraints [20]. Recently, the class activation mapping technique [21] is widely

exploited to identify object regions from the classification network. We briefly review

the popular procedure for solving the problem of WSSS (see Fig. 1.5).

Suppose we have a trained the classification network which predicts the output

accurately. Then, although the classification network outputs a scalar probability that

objects of each class exist in image, this network might have knowledge about which

regions of image are important to make a prediction for each class. To extract these

regions, we use a technique called class activation mapping [21]. Specifically, for the

classification output z, let z−1 be the second last layer of classification network. The

relation between z and z−1 can be expressed as

z = f(GAP (z−1)) (1.9)
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Figure 1.4: A brief illustration for WSSS system

where f(·) is the last fully-connected layer and GAP (·) is the global average pooling

layer. The class activation map (CAM) is obtained as

M = f ′(z−1) (1.10)

where f ′(·) is the convolutional layer modified from f(·). If the weightW of f(·) is of

size C0 ×C where C0 is the input dimension of f(·), f ′(·) can be constructed by using

the convolutional weightW ′ of size C0 × 1× 1× C (i.e., 1× 1 convolution) which

has the same parameters asW .

After obtaining CAM, we generate the pseudo-label which will be used in training

of the segmentation network. Specifically, the CAM M is normalized for each class as

M ′c =
Mc

maxcMc
. (1.11)

Then, the pseudo-label is generated using the confident pixels in M ′c, that is,

Tu,c =

1 if M ′u,c > τ2 and c = argmax
c
M ′u,c

0 otherwise
(1.12)

where τ2 is the pre-defined threshold for confident foreground pixel. The background
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Figure 1.5: A general procedure for WSSS
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regions are found as

Tu,0 =

1 if max
c
M ′u,c < τ3

0 otherwise
(1.13)

where Tu,0 is the pseudo-label for background class at position u and τ3 is the pre-

defined threshold for confident background pixel. In the obtained pseudo-label, there

could be some pixels not labeled as any classes. These pixel are ignored in training of

the segmentation network. Using the psuedo-label, we train the segmentation network

as described in 1.1.2.

1.2 Contribution and Organization

In this dissertation, we introduce novel approaches to the problem of weakly supervised

semantic segmentation.

In Chapter 2, we propose a novel WSSS technique that can train the semantic seg-

mentation network without relying on the pseudo-label. Inspired by the visual attention

mechanism of the human visual system, we apply image masking technique to limit the

visible regions in image. By masking the input image using the masks predicted by the

segmentation network and delivering the masked image to the classification network,

we can evaluate the qualities of the segmented output and penalize the segmentation

network. To train the segmentation network, we adopt a novel combination of two

complementary losses: attention loss and saliency loss. The attention loss encourages

the segmentation network to predict correct class in object regions and the saliency

loss encourages the network to recognize which pixels belong to either background or

foreground regions. To boost the segmentation performance, we also propose a training

strategy for classification network and saliency map refining technique. We train the

classification network using the self-supervision provided by dilated convolutional

blocks so that the classification network can detect the objects and their parts better. We

refine the noisy saliency maps based on the CAM so that we can find missing object

8



regions or erase the false activations.

In Chapter 3, we propose a superpixel discovery method and the segmentation

network training technique using the superpixel. Recent WSSS approaches have been

relying on saliency map for additional pixel-level information that cannot be obtained

from image-level label. However, such saliency detection methods requires pixel-level

annotation for training process. To relieve the dependency on saliency maps, we propose

a superpixel discovery method that finds semantically similar pixels based on the feature

obtained from the self-supervised vision transformer, in particular, DINO [22]. The

proposed superpixel has two following properties: 1) the superpixel contains long-

range information even if the consisting pixels are not connected and 2) the number

of superpixel depends on the complexity of an input image. We introduce superpixel-

guided seeded region growing for training of the segmentation network. During the

training process of the segmentation network, the initial seed is refined based on the

segmented output and superpixel. Although the labeled regions in the initial seed are

very sparse, we can obtain dense and high-quality labels as the segmentation network is

trained.

In Chapter 4, we summarizes the contributions of the dissertation and discuss the

future research directions based on studies of this dissertation.

9



Chapter 2

Weakly Supervised Semantic Segmentation Using Image

Masking

Weakly-supervised semantic segmentation (WSSS) aims to train a semantic segmenta-

tion network using weak labels. Recent approaches generate the pseudo-label from the

image-level label and then exploit it as a pixel-level supervision in the segmentation

network training. A potential drawback of conventional WSSS approaches is that the

pseudo-label cannot accurately express the object regions and their classes, causing a

degradation of the segmentation performance. In this chapter, we propose a new WSSS

technique that trains the segmentation network without relying on the pseudo-label. Key

idea of the proposed approach is to train the segmentation network such that the object

erased by the segmentation map is not detected by the classification network. From

extensive experiments on the PASCAL VOC 2012 benchmark dataset, we demonstrate

that our approach is effective in solving the problem of WSSS.

2.1 Introduction

Image semantic segmentation, a task to classify each pixel among the interested classes,

is an important problem with a wide range of applications such as autonomous driving,

medical diagnosis, industrial automation, and aerial imaging [1, 2]. Recently, deep
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Figure 2.1: Problems of pseudo-labels obtained from CAM.

neural networks (DNN)-based semantic segmentation has received special attention

due to its excellent segmentation performance [19, 6]. A potential drawback of the

DNN-based approach is that a large number of fully-annotated data are needed to train

the networks. Since the generation of fully-annotated dataset is laborious, alternative

approaches such as unlabeled or weakly-labeled learning have been suggested in recent

years [7, 23]. There are various forms of weak labels such as image-level labels [9],

points [10], scribbles [11], and bounding boxes [12]. Among these, image-level label

is popularly used for its simplicity [13, 14, 8]. In essence, image-level label indicates

whether the foreground objects appear in an image or not (e.g., bird is in an image and

cat is not). We henceforth refer to the DNN-based semantic segmentation using the

image-level labels as weakly-supervised semantic segmentation (WSSS).

A central challenge of WSSS is that the image-level labels do not provide informa-

tion on object regions required to train the semantic segmentation networks. A simple

way to localize object regions is to use class activation mapping [21]. Basically, this

approach figures out what regions in the image are relevant to the semantic classes.

The localization map obtained from this technique, called class activation map (CAM),

indicates the discriminative object regions. In recent WSSS approaches, CAM is used
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to generate a pseudo-label for the training of semantic segmentation network [7, 24].

While the pseudo-label can well express the object region of interest, it might cause

some potential problems hindering the accurate image segmentation. First, the object

extent in the non-discriminative region is not accurately expressed (see Fig. 2.1-(a):

The labeled regions are focused on the most discriminative object regions (e.g., face of

person)). This is because the classification network focuses only on the existence of the

objects so that the network tends to ignore the non-discriminative regions which are

also parts of the objects. Second, the class assigned in each pixel of the pseudo-label

might not be correct when an image contains multiple objects with distinct classes

(see Fig. 2.1-(b): The labeled regions are misclassified) since the CAMs are spread to

unwanted regions outside the foreground objects. For these reasons, an approach that

trains the semantic segmentation network using the pseudo-label might not achieve the

satisfactory performance in many practical scenarios.

An aim of this chapter is to propose a novel WSSS technique that can train the

semantic segmentation network without relying on the pseudo-label. Basically, our

approach is inspired by the visual attention mechanism of the human visual system

(HVS) [25]. When HVS perceives the visual information, HVS focuses on the desired

object without being interfered by other objects. In order to mimic the human behavior

and thereby reduce the interference from irrelevant regions, we mask an input image

using an attention map that guides which pixels to attend or ignore. Specifically, a

segmentation network generates the segmentation map describing the discovered object

regions. Then, the attention map is generated by collecting the discovered regions in the

segmentation maps of interesting classes. We exploit the attention map in erasing the

discovered regions and therefore focus on the remaining regions in the masked image.

In order to check whether the objects are erased properly, we employ a classification

network trained for multi-class multi-label classification. In summary, in the training

process, the segmentation network tries to generate the segmentation map covering the

object regions. Then, for the image masked by the segmentation map, the classification
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network tries to find out the interesting objects. For example, when an image contains

bird and car, a segmentation network is guided to generate an accurate map of bird or

car. If the generated segmentation map contains the bird, then the bird is erased in the

masked image, helping the detection of a car in the classification network.

To train the segmentation network in the absence of the pseudo-label, we adopt a

novel combination of two complementary loss functions: attention loss and saliency

loss. The attention loss is used to penalize the segmentation network if the segmentation

map does not completely cover the objects of a target class. The saliency loss is used to

encourage the segmentation network to learn the accurate object extent which cannot

be identified by the classification network. By learning the object classes using the

attention loss and object extent using the saliency loss, the segmentation network can

segment the image without obtaining the class-specific knowledge from pixel-level

supervision.

As a means to enhance the segmentation performance, we propose a training strategy

for the classification network and a refining technique for the saliency map. First, for the

training of the classification network, we exploit the dilated convolutional blocks (see

Fig. 2.3). The dilated convolutional blocks are used to find out the object regions outside

the most discriminative regions. The regions discovered by dilated convolutional blocks

are then used as an additional supervision for the classification network in finding out

complete object regions. Second, we refine the saliency map using the CAM obtained

by the classification network (see Fig. 2.4). Note that the value in each pixel of the

CAM indicates the probability of an object being contained in that pixel. Using these

values, we can find out the missing objects and also remove the unwanted objects in the

saliency map.

The main contributions of this chapter are as follows:

• We propose a novel segmentation technique for weakly-supervised semantic

segmentation. In our work, instead of learning the class-specific knowledge

from the pseudo-label, the segmentation network learns the class-specific knowl-
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edge directly from the classification network by exploiting the image masking

technique.

• We propose a training strategy for the semantic segmentation network. In the

proposed approach, the segmentation network is trained using the combination of

the attention loss and the saliency loss to accomplish the semantic segmentation

task (see Section 2.3.3).

• From numerical experiments on val and test of the PASCAL VOC 2012 seman-

tic segmentation benchmark [18], we show that our approach achieves mean-

intersection-over union 65.5% and 65.4% using VGG16-based network and

67.9% and 68.2% using ResNet101-based network, respectively, which are com-

petitive with the state-of-the-arts.

2.2 Related Work

2.2.1 Weakly-Supervised Semantic Segmentation

Image-level label has been used in many WSSS approaches due to its simplicity.

Early works include multiple-instance learning [13], constrained optimization [20],

and expectation-maximization techniques [26]. Recently, the class activation mapping

technique that finds out the most discriminative object regions has been used to generate

a pixel-level pseudo-label from the image-level label [21]. The generated pseudo-

label depicting the reliable object regions is used as a supervision for the semantic

segmentation network. The segmentation performance of this approach depends strongly

on the accuracy of the generated pseudo-labels. Hence, it is of importance to find out

accurate object regions for the proper training of the semantic segmentation network.

In order to obtain a reliable pseudo-label, various segmentation techniques have

been proposed. In [7], fully-connected conditional random field (CRF) is applied to

the predicted segmentation maps to refine the object boundaries. In [8], seeded region
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growing technique is used to assign classes to unlabeled pixels. Recently, approaches

generating the reliable pseudo-labels without relying on the segmentation algorithms

have been proposed. In [27], for example, a large number of localization maps are

generated and then aggregated into a single localization map. In [28], the localization

maps are accumulated through the training process to collect the discriminative regions

of different parts in the objects. In [29], multiple dilated convolutional blocks are used

to enlarge the receptive fields and transfer the discriminative information to the non-

discriminative regions. In [30], adversarial manipulation technique is used to expand

the discriminative object regions.

In a nutshell, the proposed approach is a bit similar to the CAM-based approach in

the sense that we find out the object regions from the CAM. However, the key distinctive

point of the proposed approach is that the segmentation network learns the classes of

pixels by directly utilizing the classification network in the training of the segmentation

network. As a result, we can train the segmentation network without relying on the

pseudo-label.

2.2.2 Visual Attention

Visual attention, an approach to select the search regions and analyze their effects, has

been applied to various computer vision tasks such as image classification [31], object

detection [32], and image caption generation [33]. In the semantic segmentation, visual

attention is often implemented using the image masking, a technique to erase part of an

image. In many approaches, discovered object regions are erased to help the discovery of

new object regions [34, 35, 36, 37]. For example, in [34, 35], discovered object regions

are repetitively erased to find out new object regions. In [38], an approach to find out

the object regions using an adversarial network has been proposed. In [36], two-phase

learning strategy has been proposed to get a complete region of the foreground objects

from the attention maps of two networks. The drawback of these approaches is that it is

difficult to figure out whether the masked image still contains part of foreground objects
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or not. As a consequence, one might simultaneously find out unwanted background

objects and the main foreground objects (e.g., water with boat, rail with train). In [37],

discriminative object regions are erased to guide the network to find out new object

regions. In [39], discriminative object regions are suppressed to spread the attention of

the network to adjacent non-discriminative object regions.

In [40, 24], visual attention mechanism is applied to the adversarial learning. In

these approaches, an attention map obtained from the main network is used to mask

an input image and then the masked image is delivered to the adversarial network. By

training the network using the adversarial loss function, the main network is encouraged

to generate an attention map which makes the adversarial network output consistent

with the image-level label. In [40], an adversarial network is used to discriminate

whether the input map is ground truth or generated from the segmentation network. In

[24], an input image is masked by the self-attention map. The masked image is passed

to the adversarial network to check if the attention map covers regions contributing to

the classification output.

2.2.3 Saliency Detection

The main goal of the salient object detection is to identify the visually distinctive

objects (or regions) in an image and then segment them out from the background. Since

the image-level label does not contain any information on the background regions in

WSSS systems, one cannot directly find out the confident background regions using the

classification network. To overcome this limitation, the saliency map has been widely

used in many WSSS approaches [7, 24, 8, 27, 28]. Key idea of these schemes is to

identify the background regions using the pixels with low salient probabilities.

In [41, 42, 43, 44, 45], the saliency map is directly used in the training process of

the segmentation networks. For example, in [41], the segmentation network is trained

using the saliency maps of simple images to generate the pseudo-labels for complex

images. In [42], saliency maps are used to supplement non-discriminative object regions.
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Figure 2.2: The overview of the proposed method to train weakly-supervised semantic

segmentation network.

In [43], saliency maps are exploited to guide the seeded region growing method. In [44],

saliency-guided self-attention module is used to capture rich contextual information for

discovering the integral extent of objects and retrieving high-quality pseudo-label. In

[45], an approach that trains the network using pixel-level feedback from combination

of saliency maps and image-level labels has been proposed.

2.3 Proposed Weakly-Supervised Semantic Segmentation Net-

work

In this section, we discuss the proposed WSSS framework. We first discuss the clas-

sification network training using dilated convolutional blocks and then discuss the

refinement of the saliency maps using CAMs obtained from the classification network.

We also explain how to train the semantic segmentation network using the image

masking technique. The overall network architecture is illustrated in Fig. 2.2
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2.3.1 Training of Classification Network

A classification network is a key ingredient in our approach. Basically, the classification

network is trained using the multi-class multi-label classification loss. One well-known

problem in the conventional classification network is that the network cannot detect the

non-discriminative object regions. To address this issue, we use an extra supervision

on the non-discriminative object regions in the training of the classification network.

To find out the non-discriminative object regions, we use a dilated convolution which

enlarges the receptive field without changing the computational cost [5]. With the

increased receptive field, the information in the discriminative object regions can be

transferred to distant regions, helping the detection of the non-discriminative object

regions.

In the training of the classification network, we append dilated convolutional blocks

to the classification network (see Fig. 2.3). The dilated convolutional blocks are similar

to the standard convolutional block except that their first convolutional layers have

unique dilation rates d. Let M0 be the CAM obtained from the standard convolutional

block and M1, · · · ,MD be the CAMs obtained from D dilated convolutional blocks.

Then, the object regions found by multiple dilated convolutional blocks are added to

M0 using the max-fusion to supplement the non-discriminative object region. A dense

CAM, denoted as M , covering the discriminative and non-discriminative object regions

is obtained as M = max(M0, 1
D

∑D
i=1(M

i)).

The classification network is trained using the multi-class multi-label classification

loss and the CAM loss. First, the multi-class multi-label classification loss `sig is

`sig =
1

C

∑
i∈D

∑
c∈C

(
− tc log(σ(ẑic))− (1− tc) log(1− σ(ẑic))

)
, (2.1)

where C is the number of foreground classes, D is the set of indices of convolutional

blocks, C is the set of indices of foreground classes, tc is the image-level label for class

c, ẑic = GAP(M i
c) is the predicted class score for class c (GAP is the global average

pooling operation), and σ(x) = 1/(1+ e−x) is the sigmoid function. Second, the CAM

18



Figure 2.3: The architecture for the training of the classification network using dilated

convolutional blocks.
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loss `cam, used to match the CAM M0 to the dense CAM M , is the mean square error

(MSE) between M and M0:

`cam =
1

C|S|
∑
u∈S

∑
c∈Cp

(φ(Mu,c)− φ(M0
u,c))

2 (2.2)

where S is the set of all positions, Cp is the set of indices of the present classes, and

φ(x) = max(0, x) is the ReLU activation function. Also, Mu,c is the class score of

class c at position u of class activation map M .

The overall loss `cls for training the classification network is

`cls = `sig + λcls`cam (2.3)

where λcls is the weighting factor for balancing two losses.

2.3.2 Saliency Map Refinement

In the segmentation network training, the saliency map is used to learn which pixels

belong to either background or foreground regions. While the saliency detector (SD) can

find out the detailed shape of the objects, it might also find out unwanted background

objects or miss interesting foreground objects since SD is trained without the semantic

classes. To overcome this potential drawback, we correct the pixels in the saliency

map based on the CAM score. The score in each pixel indicates the probability of an

object being contained in that pixel. Since the object detection in the classification

network is fairly accurate, we can readily find out the missing foreground regions

from the high-scored pixels in the CAM. Note that this does not necessarily mean

that the low-scored pixels belong to the background regions since these pixels might

belong to the non-discriminative object regions. From our extensive experiments, we

observe that correcting these pixels to the background pixels causes a degradation of

the segmentation performances. In our work, we set pixels with low scores to unlabeled

pixels.

In Fig. 2.4, we illustrate the overall procedure of refining the saliency map. We

first obtain the CAM of an input image from the classification network. To improve
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Figure 2.4: Overall procedure to refine the saliency map using the CAM.

the reliability of the CAM, we merge the CAMs of multiple scaled input images. Let

M0(si) be the CAM of an input image scaled by a factor si (si ∈ {s0, · · · , sn}), then

the reliable CAM M∗ is obtained as

M∗u,c = max
i
scale(φ(M0

u,c(si))) (2.4)

where scale is the scaling operator that changes the size of map to the size of the input

image. To obtain a map expressing the foreground object regions, we merge the CAMs

of present classes, generating a class-agnostic activation map B whose pixels indicate

the probabilities of an object being contained in that pixel:

Bu = max
c∈Cp

M∗u,c
max
u

M∗u,c
. (2.5)

If Bu is larger than the pre-defined threshold τ1 and the pixel u belongs to the back-

ground regions in the saliency map O, we consider this pixel as a foreground pixel.

On the other hand, if Bu is smaller than the pre-defined threshold τ2 and the pixel u

belongs to the foreground regions, we consider this pixel as an unlabeled pixel. That is,
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the refined saliency map R is obtained as

Ru =


1, if Bu > τ1 and Ou = 0

unlabeled, if Bu < τ2 and Ou = 1

Ou, otherwise.

(2.6)

2.3.3 Training of Segmentation Network

For the training of the segmentation network, we use the saliency loss that encourages

the segmentation network to learn the object regions from the saliency map. While

the segmentation map has C + 1 classes, the saliency map has only two classes. To

connect the segmentation map to the saliency map, we design the background map Hb

and foreground map Hf from the segmentation map.

Let Hc be the segmentation map of class c (c = 0 denotes the background class).

Then, the background map is Hb = H0 and the foreground map is Hf =
∑

c∈Cp Hc.

Let Sb and Sf be the set of positions of background and foreground pixels in saliency

map, respectively. Then, the saliency loss is defined as a weighted cross-entropy with

only two classes (background and foreground):

`sal = −
∑
u∈Sb

1

|Sb|
logHb

u −
∑
u∈Sf

1

|Sf |
logHf

u , (2.7)

where u is the position of the pixels. The weights for background and foreground pixels

are set to 1
|Sb| and 1

|Sf | , respectively, to balance the losses for background and foreground

pixels. The first and second terms in (2.7) correspond to the loss for background and

foreground classes, respectively. Note that the losses on unlabeled pixels in the saliency

map are not computed during the training process. To improve reliability of the network

in various scales, we feed the multiple scaled input images to the network and compute

the losses individually. Thus, the resulting saliency loss is the sum of cross-entropy

losses for |S| scaled outputs (S is the set of input scales).

One potential weakness using the saliency loss is that the segmentation network

might predict the class of pixel incorrectly since the class of each pixel is unspecified
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Figure 2.5: Illustration for examples of the attention maps and masked images.

in the saliency map. In order to make sure that the segmentation network predicts the

correct class for each pixel, we exploit the image masking technique in the training

of the segmentation network. During the training process, an input image is masked

using an attention map F that designates which regions are erased. The attention map

is obtained from the predicted regions in the segmentation map:

F = 1−
∑
c∈Cp

Hcbc (2.8)

where bc is the binary random number that decides whether the segmentation map Hc is

erased in the attention map or not. Using the F , the masked image I ′ can be expressed

as the product of the input image I and the attention map F :

I ′ = F � (I − µ) (2.9)

where � is the element-wise multiplication and µ is the RGB mean of the training

images. For a given class c, when bc = 1, we expect that the objects of class c are

erased in I ′. Whereas, when bc = 0, we expect that the objects of class c remain in I ′.

Hence, it is natural to choose t′ = t(1− b) as the modified label corresponding to I ′.

We illustrate the attention maps and masked images corresponding to b in Fig. 2.5.
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Figure 2.6: Illustration for the attention loss computation

The segmentation network is trained to predict the correct object regions so that the

class score corresponding to I ′ matches t′. An associated loss, the attention loss `attn is

defined as the cross-entropy between the class score ẑ′ of I ′ and the target label t′:

`attn =
1

|Cp|
∑
c∈Cp

(
− t′c log(σ(ẑ′c))− (1− t′c) log(1− σ(ẑ′c))

)
. (2.10)

In contrast to the classification loss `sig, the attention loss only considers the present

classes. By generating multiple masked images using different attention maps, we

can investigate the effects of different combinations of the segmentation maps. As

illustrated in Fig. 2.6, we can add additional classification paths for other masked

images generated using different attention maps. In each path, the same classification

network is employed to compute the class score and the attention loss individually. The

total attention loss is computed as the average of the attention losses:

`total attn =
1

|N |
∑
n∈N

`
(n)
attn (2.11)

where N is the number of classification paths.

In summary, an overall loss for training the semantic segmentation network is

`seg = `sal + λseg`total attn (2.12)
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where λseg is the weighting factor for balancing two losses in the segmentation loss.

Note that during the training process of the segmentation network, we fix the parameters

of the classification network to keep its learned knowledge.

2.4 Experiments

2.4.1 Dataset and Experiment Settings

We evaluate the proposed approach on the PASCAL VOC 2012 segmentation benchmark

dataset [18] which has 20 foreground classes and one background class. This dataset

has 1,464 training images, 1,449 validation images, and 1,456 test images. As in many

practices [6, 34], we use augmented training dataset consisting of 10,582 images [46].

In our experiments, we only utilize image-level annotations for the network training. We

employ the saliency detector [47] to obtain saliency map that expresses class-agnostic

pixel-wise object scores. As a performance measure, we use mean intersection-over-

union (mIOU), average of IOUs over 21 categories. We obtain the result on the test set

by submitting the predicted results to the official PASCAL VOC evaluation server.

For classification network, we employ VGG16 [15] pre-trained on ImageNet classi-

fication dataset [17]. As illustrated in Fig. 2.3, we replace the last three fully-connected

(fc) layers in VGG16 with a standard convolutional block consisting of three convolu-

tional layers. The convolutional blocks consist of two 3×3 convolutional layers (fc6 and

fc7 both 1024 outputs) and one 1× 1 convolutional layer (fc8). We append three dilated

convolutional blocks to the classification network (see Fig. 2.3). The dilation rates

in three dilated convolutional blocks are set to d = {3, 6, 9, 12, 15, 18, 21, 24}. The

parameters of the standard and dilated convolutional blocks are initialized from the nor-

mal distribution. We apply the GAP layer after fc8 for the training of the classification

network.

For segmentation network, we employ DeepLab-ASPP [6] whose backbone archi-

tecture is either VGG16 [15] or ResNet101 [16]. We initialize the parameters of VGG16-
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and ResNet101-based DeepLab using the convolutionalized VGG16 and ResNet101

pre-trained on MS-COCO [48], respectively. For the last layer, the parameters are

initialized from the normal distribution. When training the segmentation network, we

use the classification network only with standard convolutional block (i.e., the dilated

convolutional blocks are removed). In the training of the ResNet101-based DeepLab,

we only update parameters of convolutional layers while fixing the parameters of batch

normalization layers. The softmax output of the segmentation network is post-processed

by CRF with default parameters [49].

To improve the robustness of the classification network and the segmentation

network, we apply data augmentation techniques. We randomly flip and scale (from 0.5

to 1.5) input images. The resulting images are cropped to 321× 321 at random location.

We also apply color augmentation techniques by randomly changing brightness, contrast,

saturation, and hue. We use multi-scale inputs with scales, S = {1, 0.75, 0.5} in both

training and test phases [50, 6]. We use stochastic gradient descent optimizer with the

momentum 0.9. We set the weight decay to 0.0005 and the batch size to 20. We employ

polynomial learning rate policy [51] with initial learning rate 10−3 and power 0.9,

i.e., learning rate = 10−3 × (1− iter
maxiter )

0.9. The learning rate for the last layers are

multiplied by 10. We set the two thresholds τ1 and τ2 in (2.6) used to refine the saliency

map to 0.8 and 0.3, respectively, which are found by grid search. The weighting factors

λcls in (2.3) and λseg in (2.12) are set to 0.1 and 2, respectively. The entries of the

binary random vectors b are drawn uniformly. We train the classification network and the

segmentation network for 50 and 30 epochs, respectively. Our approach is implemented

based on Tensorflow [52]. The classification network and the segmentation network are

trained on a single NVIDIA GeForce Titan Xp.

2.4.2 Comparisons with state-of-the-arts

We compare the performance of the proposed method with that of state-of-the-art WSSS

methods. In Tables 2.1 and 2.2, we summarize the mIOU obtained by VGG16- and
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Table 2.1: Comparison of VGG16-based weakly-supervised semantic segmentation

methods’ mean IOUs on PASCAL VOC 2012 val and test set

Method
Use Need

Val Test
saliency map pseudo-label?

SEC [7] 3 3 50.7 51.1

TPL [36] 3 3 53.1 53.8

AE-PSL [34] 3 3 55.0 55.7

DCSP[35] 3 3 58.6 59.2

GAIN[24] 3 3 55.3 56.8

MCOF[42] 3 3 56.2 57.6

AffinityNet [53] 3 58.4 60.5

DSRG[8] 3 3 59.0 60.4

MDC [29] 3 3 60.4 60.8

FickleNet[27] 3 3 61.2 61.9

OAA [28] 3 3 63.1 62.8

RRM [54] 3 60.7 61.0

SGAN [44] 3 3 64.2 65.0

SAFN [55] 3 3 61.9 62.3

ICD [56] 3 3 64.0 63.9

DRS [39] 3 3 63.5 64.5

GSM [?] 3 3 63.3 63.6

NSR [57] 3 3 65.5 65.3

ESP [45] 3 3 67.0 67.3

ECS-Net [37] 3 62.1 63.4

Ours 3 7 66.5 66.9

27



Table 2.2: Comparison of ResNet-based weakly-supervised semantic segmentation

methods’ mean IOUs on PASCAL VOC 2012 val and test set

Method
Use Need

Val Test
saliency map pseudo-label?

DCSP [35] 3 3 60.8 61.9

MCOF [42] 3 3 60.3 61.2

AffinityNet [53] 3 61.7 63.7

DSRG [8] 3 3 61.4 63.2

FickleNet [27] 3 3 64.9 65.3

OAA [28] 3 3 65.2 66.4

RRM [54] 3 66.3 66.5

SGAN [44] 3 3 67.1 67.2

SAFN [55] 3 3 61.9 62.3

ICD [56] 3 3 67.8 68.0

DRS [39] 3 3 71.2 71.4

GSM [?] 3 3 68.2 68.5

LIID [58] 3 3 66.5 67.5

NSR [57] 3 3 70.4 70.2

ESP [45] 3 3 71.0 71.8

advCAM [30] 3 68.1 68.0

GCN [59] 3 68.7 69.3

AuxSegNet [60] 3 3 69.0 68.6

ECS-Net [37] 3 66.6 67.6

Ours 3 7 69.0 69.2
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ResNet-based WSSS approaches. From the results, we observe that our approach per-

forms competitive with the conventional WSSS approaches. Specifically, our approach

achieves mIOU of 66.5% and 69.0% for val set of PASCAL VOC 2012 segmentation

dataset with VGG16- and ResNet101-based DeepLab-ASPP, respectively. Using our

approach, we can train the segmentation network such that it learns the class-specific

knowledge directly from the classification network. Our results clearly demonstrate that

the generation of pseudo-labels is unnecessary for WSSS.

We compare the proposed approach with a few notable WSSS approaches. In GAIN

[24], since the main network and the adversarial network are sharing the parameters

and also trained simultaneously, the network might be confused when the object regions

are poorly discovered. Our approach can avoid this by training the adversarial network

in advance and fixing the parameters in the network. MDC uses the classification

network having multiple convolutional blocks to generate the pseudo-label [29] . In

our approach, the classification network trained to predict the dense CAM is used for

the training of the segmentation network directly. Similarly to the proposed approach,

MCOF trains the segmentation network using the classification network [42]. In MCOF,

the classification network is used to classify the superpixels of an input image. Whereas,

in our approach, the pre-trained classification network is used to classify the regions of

input image after applying image masking technique.

2.4.3 Ablation studies

In order to prove the effectiveness of each component, we conduct ablation experi-

ments with different settings of the proposed work. In Table 2.3, we summarize the

segmentation performance of the proposed approach in different settings. When we

say ‘standard’ classification network, it means that the network trained only using

multi-class multi-label classification loss function. The ‘dilation’ classification network

means the network trained using the classification loss and the CAM loss described in

Section 2.3.1.
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Table 2.3: Comparison of performances on val set with different settings of our approach.

GT indicates the ground truth saliency map.

M
od

el
Se

gm
en

ta
tio

n
ne

tw
or

k
Sa

lie
nc

y
m

ap
C

la
ss

ifi
ca

tio
n

T
he

nu
m

be
ro

f
va

lw
/o

cr
f

va
lw

/c
rf

ba
ck

bo
ne

re
fin

em
en

t
ne

tw
or

k
cl

as
si

fic
at

io
n

pa
th

s

A
1

V
G

G
16

7
no

ne
62

.0
62

.2

A
2

V
G

G
16

3
no

ne
61

.4
63

.8

A
3

V
G

G
16

7
st

an
da

rd
1

62
.4

64
.0

A
4

V
G

G
16

7
di

la
tio

n
1

62
.9

64
.7

A
5

V
G

G
16

3
di

la
tio

n
1

62
.4

66
.4

A
6

V
G

G
16

3
di

la
tio

n
2

62
.0

66
.5

A
7

V
G

G
16

3
di

la
tio

n
3

62
.2

66
.4

B
1

R
es

N
et

10
1

7
no

ne
64

.2
65

.1

B
2

R
es

N
et

10
1

3
no

ne
65

.7
66

.8

B
3

R
es

N
et

10
1

3
di

la
tio

n
1

66
.2

68
.8

B
4

R
es

N
et

10
1

3
di

la
tio

n
2

66
.1

68
.7

B
5

R
es

N
et

10
1

3
di

la
tio

n
3

66
.1

69
.0

C
1

V
G

G
16

G
T

66
.2

67
.5

C
2

V
G

G
16

G
T

di
la

tio
n

2
66

.6
69

.3

C
3

R
es

N
et

10
1

G
T

70
.2

70
.9

C
4

R
es

N
et

10
1

G
T

di
la

tio
n

2
70

.9
73

.1

30



Table 2.4: Comparison of performances on val set with different settings of our approach.

GT indicates the ground truth saliency map.

Model mIOU

A1 baseline 62.2

A2 A1+refined saliency map 63.8

A3 A1+attention loss 64.0

A4 A3+dilated convolution 64.7

A5 A1+ all techniques 66.5

Our baselines are the VGG16- and ResNet101-based segmentation networks trained

only using the saliency loss associated with the original saliency map obtained by SD

[47] (see A1 and B1). From the results, we observe that the segmentation performance

can be improved by refining the saliency map. Specifically, the models using the refined

saliency map (A2 and B2) achieve about 3% improvement in mIOU over the baseline

models. By comparing the performance of A1 and A3, we also observe that the seg-

mentation performance can be improved by exploiting the classification network in the

training of the segmentation network. Moreover, we can observe that the segmenta-

tion performance can be further improved by exploiting the dilated convolution-based

classification network (see A3 and A4). We also observe that the performances can

be enhanced by employing multiple classification paths (see A5 to A7 and B3 to B5).

We also conduct experiments when high-quality saliency map is available. For these

experiments, we use the ground truth saliency map obtained by binarized ground truth.

We can observe that the segmentation network trained using the ground truth saliency

map attains 67.5% and 70.9% with VGG16 and ResNet101 backbone, respectively. By

applying our image masking-based approach to these networks, we can further improve

the performance by 1.8% and 2.2% for the segmentation networks with each backbone.

To investigate the efficacy of refining saliency map, we conduct experiments using
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different saliency maps: 1) original saliency map obtained from saliency detector, 2)

refined saliency map in which low-scored foreground pixels are corrected to back-

ground pixels, and 3) refined saliency map in which low-scored foreground pixels

are considered as unlabeled pixels. From the results in Table 2.5, we observe that

the segmentation performance is degraded when the low-scored foreground pixels are

corrected to background pixels. We also observe that the segmentation performance

is significantly improved when the low-scored foreground pixels are considered as

unlabeled pixels.

To observe the effect of combination of input scale used for refining saliency maps,

we conduct experiments by varying the number of the input scales. The input scales

are chosen among the scales used in data augmentation {0.5, 0.75, 1, 1.25, 1.5}. From

the results, we see that the best segmentation performance is obtained when three input

scales are used (see S4 and S7 in Table 2.6).

We have conducted experiment using the MS-COCO dataset (see the results in

Table 2.8). In this dataset, our segmentation network performs slightly worse than the

conventional networks. The main reason for this is as follows; In our work, instead

of generating the pseudo-label, we exploit the classification network in the training

of the segmentation network. To train the segmentation network using the attention

loss, the classification network should detect the objects and then output high scores

for the corresponding classes for both input and masked images. Unfortunately, the

VGG16-based classification network we used in the segmentation network training

is not quite excellent in finding out small objects (i.e., fork, tie, and toothbrush) or

the objects of rare classes (i.e., carrot, toaster, and hair-drier) so that the performance

of the segmentation network for such objects is not so excellent. Nonetheless, the

segmentation network could find out normal objects (i.e., person, animals, and vehicles)

quite well.

We also test the performances for various number of dilated convolutional blocks

D. From the results shown in Table 2.7, we observe that the segmentation performance
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Table 2.5: Comparison of the segmentation performance using different saliency maps

Saliency map mIOU on val

1 original saliency map 60.7

2 refined saliency map without unlabeled pixels 59.9

3 refined saliency map with unlabeled pixels 65.5

Table 2.6: Segmentation performances with respect to the combination of input scales

for refining saliency map.

Configuration Input scales mIOU on val

S1 {0.5, 0.75, 1, 1.25, 1.5} 66.0

S2 {0.5, 0.75, 1, 1.25} 66.0

S3 {0.75, 1, 1.25, 1.5} 66.1

S4 {0.5, 0.75, 1} 66.5

S5 {0.75, 1, 1.25} 65.7

S6 {1, 1.25, 1.5} 64.8

S7 {0.5, 1, 1.5} 66.5

slightly improves with the number of dilated convolutional blocks at the expense of the

additional computations and training time.

2.4.4 Qualitative Results

In Fig. 2.7, we provide qualitative results obtained from ResNet101-based DeepLab-

ASPP. (a): the baseline network trained only using the saliency loss with the original

saliency map, (b): the network trained only using the saliency loss with the refined

saliency map, and (c): the network trained using the attention loss in addition to the

saliency loss with the refined saliency map. The bottom two rows show some failure

cases. From the results, we can observe that our saliency map refining strategy is
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Table 2.7: Segmentation performances with respect to different number of dilated

convolutional blocks.

Model
# of dilated

Dilation rates mIOU on val
conv. blocks

D1 D = 8 {3, 6, 9, 12, 15, 18, 21, 24} 65.8

D2 D = 4 {6, 12, 18, 24} 65.6

D3 D = 3 {3, 6, 9} 65.5

D4 D = 2 {3, 6} 65.2

Table 2.8: Comparison of weakly-supervised semantic segmentation methods’ mean

IOUs on MS-COCO val set.

Method Segmentation network mIOU on val

SEC [7] DeepLab-LargeFOV 22.4

DSRG [8] DeepLab-ASPP 26.0

GSM [61] DeepLab-ASPP 28.4

SGAN [44] DeepLab-ASPP 33.6

EPS [45] DeepLab-ASPP 35.7

Ours DeepLab-ASPP 30.2
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Figure 2.7: Qualitative results obtained from ResNet101-based DeepLab-ASPP.

effective in finding out the objects which might not be detected by SD and removing

the falsely activated background objects. Also, we can observe that our image masking-

based training strategy enables the segmentation network to learn the object classes

precisely even when the objects are very small. Also, we would like to mention some

failure cases. One of the most frequent failure scenarios is that there is an object which

covers a large portion of the image. For example, sofa or table can be confused as

background.

In Fig. 2.8, we provide qualitative results for the proposed approach and conven-

tional approaches ((a): input image, (b): ground truth, (c): DRS [39], (d): GSM [?], (e):

NSR [57], (f): ours). From the results, we observe that the proposed approach predicts

the detailed object region (see the first three columns in Fig. 8) while the conventional

approaches make false activation (see the last two columns in Fig. 2.8).

2.5 Summary of Chapter 2

In this chapter, we proposed a new WSSS technique that can train the segmentation

network without pixel-level pseudo-labels. To prevent the performance degradation

caused by inaccurate pseudo-label in conventional WSSS approaches, we have exploited

the image masking technique in the training of the segmentation network. We also
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Figure 2.8: Qualitative results obtained from various WSSS approaches.
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introduced an approach to refine the saliency map, which significantly improves the

segmentation performance. Extensive experiments demonstrate that our approach is

effective in solving the problem of WSSS.
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Chapter 3

Weakly Supervised Semantic Segmentation Using Image

Clustering

Weakly-supervised semantic segmentation aims to train a semantic segmentation net-

work using weak labels. Among weak labels, image-level label has been the most

popular choice due to its simplicity. However, since the information contained in image-

level label is deficient in identifying accurate object regions, additional modules such

as saliency detector have been exploited in weakly supervised semantic segmentation,

which requires pixel-level label for training. In this chapter, we explore a self-supervised

vision transformer to mitigate the heavy efforts on generation of pixel-level annota-

tions. By exploiting the features obtained from self-supervised vision transformer, our

superpixel discovery method finds out the semantic-aware superpixels based on the

feature similarity in unsupervised manner. Once we obtain the superpixels, we train

the semantic segmentation network using superpixel-guided seeded region growing

method. Despite its simplicity, our approach achieves the competitive result with the

state-of-the-arts on PASCAL VOC 2012 and MS-COCO 2014 semantic segmentation

dataset for weakly supervised semantic segmentation.
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3.1 Introduction

Image semantic segmentation, a task to assign a semantic label to every pixel, has

received much attention due to its wide range of applications such as autonomous

driving and medical diagnosis [1, 2]. Recently, deep neural networks (DNN)-based

semantic segmentation has received special attention due to its excellent segmentation

performance [19, 6]. A main bottleneck of the DNN-based approach is that it requires

large-scale data with dense annotation for training of the networks. Since the generation

of fully-annotated dataset is laborious, one of the alternative approaches, weakly-labeled

learning have been broadly studied [7, 8]. There are various forms of weak labels such

as image-level labels [9], points [10], scribbles [11], and bounding boxes [12]. Among

these, image-level label, indicating the existence of the objects, is popularly used due to

its simplicity [13, 14, 8]. We henceforth refer to the DNN-based semantic segmentation

using the image-level labels as weakly-supervised semantic segmentation (WSSS).

A main challenge of WSSS is to discover object locations and extent from image-

level label. In recent WSSS approaches, class activation mapping method [21] is

popularly used to locate the object regions for the training of semantic segmentation

network [7, 24]. However, since the pseudo-label generated using this approach is

sparse, there exist a performance gap between fully-supervised and weakly-supervised

semantic segmentation. To bridge the performance gap, many recent WSSS approaches

exploit the extra supervisions. One of the popular choice is the saliency map obtained

by the saliency detectors. Although many WSSS approaches take the saliency map for

granted from saliency detectors, it fundamentally requires massive effort on annotating

detailed pixel-level label.

An aim of this chapter is to relieve the thirst for pixel-level information for WSSS.

To this end, we approach WSSS problem by exploiting a vision transformer which is

trained using only self-supervision. The vision transformer trained by distillation with

no labels, DINO [22], have shown the performance comparable with the state-of-the-

arts convolutional neural network models. In particular, the feature obtained by DINO
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Figure 3.1: Examples for superpixels obtained by conventional and our method.

appear to contain explicit information about the semantic segmentation of objects in

an image. Recently, this DINO-based feature has been exploited in the challenging

computer vision tasks such as unsupervised object detection [62] or unsupervised

saliency detection [63].

In this chapter, we propose a semantic-aware superpixel discovery method to resolve

the problem of WSSS. In our approach, we use off-the-shelf ViT trained by DINO to

obtain the feature without any fine-tuning. By iteratively identifying a seed pixel of

an input image and discovering the pixels having similar feature to the seed pixel, we

obtain the groups of pixels sharing semantic similarities in a unsupervised manner. In

generating the superpixels, we only consider the pair-wise feature similarities between

pixels. The generated superpixels have two following properties: 1) the superpixel

contains long-range information even if the consisting pixels are not connected, meaning

that the semantically similar but apart pixels can be grouped together, 2) the number of

superpixels depends on the complexity of an input image, meaning that the number of

superpixels is not pre-defined so that we can avoid oversegmentation. In Fig. 3.1, we

show some examples for conventional (SLIC [64]) and our superpixels. Note that the

colors are only used to illustrate the different superpixels.

After obtaining semantic-aware superpixels, we train the semantic segmentation

network using superpixel-guided seeded region growing method. Using the rough initial

seed as a main supervision to the segmentation network, the seeded regions are expanded
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to the neighboring superpixels. Unlike the conventional seeded regions growing method

that gradually expand the seeded region to adjacent pixels [8], our method expands the

seeded region to group of pixels if a criterion is satisfied. Moreover, since the superpixel

keeps the shape of objects (or their parts), we can obtain high-quality seed that depicts

the detailed object boundaries.

The contributions of this chapter are as follows:

• We propose a simple method to group the similar pixels using the self-supervised

vision transformer in a unsupervised manner. Our method produces superpixels

containing semantically similar pixels which are friendly to semantic segmenta-

tion task.

• In our approach, we train the semantic segmentation network using the initial

seed labeled on confident pixels while refining the seed using superpixel-guided

seeded region growing method. The refined seed becomes dense during the

training process and significantly boosts the segmentation performance.

• Our approach outperforms the state-of-the-arts methods on PASCAL VOC 2012

and MS-COCO 2014 semantic segmentation dataset with only using image-level

labels.

3.2 Related Work

3.2.1 Weakly Supervised Semantic Segmentation

The goal of WSSS is to train semantic segmentation network from coarse labels such as

points, scribbles, or image-level label. Due to the simplicity, WSSS using image-level

label is widely studied. A typical approach is to train a classification network and obtain

initial seed using class activation mapping technique. Since the initial seed obtained by

this approach is sparse, there have been many efforts to improve the qualities of seed.

For examples, in [65], self-supervision based on equivariant attention mechanism is
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exploited to discover object regions. In [30], advCAM method is proposed to find out

non-discriminative object regions in an anti-adversarial manner. In [66], an approach

that encourages the network to perceive non-discriminative object region by reducing

information bottleneck is proposed.

3.2.2 Superpixel

Superpixel is a set of homogeneous pixels based on features such as bright, color, or

texture. To perform superpixel segmentation, graph-based method [64] or clustering-

based methods [67] have been popularly exploited. The superpixels obtained from these

methods are used in many WSSS approaches to recover smooth object boundaries

[68, 69, 56, 70]. However, since the superpixels used in these approaches are quite

over-segmented, having a few hundreds of segmented regions, it is difficult to obtain

long-range information from these superpixels and discover the meaningful information

for WSSS.

3.2.3 Seeded Region Growing

The seeded region growing [71] is an unsupervised approach to segmentation that exam-

ines neighboring pixels of initial seed points and determines whether the neighboring

pixels should be added to the region depending on a region similarity criterion. To

successfully accomplish segmentation of an image, it is important to locate the initial

seed to proper pixels and use a criterion that can characterize the image regions. In [8],

an approach that utilizes initial seed generated by classification network in training of

semantic segmentation network and computes pixel similarity using high-level semantic

features is proposed.

3.2.4 Transformer

Transformer and self-attention models have revolutionized machine translation and

NLP fields. Recently, its adoption to computer vision, the vision transformer (ViT) [72],
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has shown great performance beyond convolutional neural network (CNN) models.

However, in order to achieve such performance, the datasets containing enormous

number of training images are required (e.g., JFT-300M dataset). As a way to alleviate

this burden, self-supervision-based training technique is proposed [73]. In particular,

in [22], it is demonstrated that self-supervised ViTs can automatically segment the

background pixels of an image, even though they are not trained using pixel-level

supervision.

3.3 Superpixel-guided Weakly Supervised Semantic Segmen-

tation

In this section, we discuss the proposed WSSS framework. We first introduce how to

discover semantic-aware superpixels from self-supervised vision transformer-based

features. Then, we discuss how to generate the initial seed for training of the semantic

segmentation network. We also explain how to train the semantic segmentation network

using superpixel-guided seeded region growing method.

3.3.1 Superpixel Generation

In our perspective, an appropriate superpixels for semantic segmentation should satisfy

two following properties: 1) each superpixel is as large set as possible consisting of

homogeneous pixels so that all pixels have the same semantic class. 2) the number of

superpixels depends on the number of the sets of semantically similar pixels, not the

pre-defined number. To obtain such superpixels, we first identify a pixel which will

be seed of a superpixel and find out the pixels sharing similar semantic features to the

seed pixel. In our approach, we vision transformer-based feature to perform superpixel

discovery method. Before going into details, we briefly review the vision transformer

and its components.

Vision transformers take a sequence of patches of fixed size P × P as input. For a
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color image I of spatial size H ×W , we have N = HW/P 2 patches. Each patch is

first embedded in a d-dimensional latent space via a trained convolutional projection

layer and delivered to the series of transformer blocks.

The main part of vision transformer consists of multiple blocks including multi-head

self-attention layers and multi-layer perceptrons. In the front part of each block, there

are three parallel linear layers taking an input X ∈ R(N+1)×d to produce a query Q,

a key K and a value V , all in R(N+1)×d. The resulting output for each head is given

by Y = softmax(QKT /d1/2)V , where softmax is applied row-wise. In our work, we

concatenate the keys from all heads in self-attention layer of the last transformer block

to obtain final features which are the main ingredient in discovering the superpixels.

Let fp ∈ Rd×1 be the feature vector corresponding to pixel p of input image I and

P = {1, 2, · · · , N} be the set of indices of candidate pixels. We compute the pair-wise

feature similarity matrix A and binary adjacency matrix B denoting positive similarities

between two pixels as

Apq =
fTp fq

‖fp‖2‖fq‖2
, Bpq =

1 if Apq > 0

0 otherwise.
(3.1)

where ‖ · ‖2 is `2 norm.

The sum of p-th row of B is defined as the degree of pixel p, dp, which indicates the

number of pixels having semantically similar features to p. Based on dp, we can notice

how large the group of pixels having similar semantic features to p is. If the features of

objects of different class are clearly distinguishable, we may conclude that semantically

similar pixels have the same class. Accordingly, we can guess whether p belongs to

large object (e.g., sky, car, or building) or small object (e.g., bottle, eyes, or wheel). One

of the ways to identify a group of pixels representing an object can be to select a pixel

p∗, a seed pixel, and find out the pixels having similar semantic features to p∗.

We may wonder how to select a good seed pixel to find out a group of pixel, a

superpixel. Here, we use simple rule based on the degree of pixels. We can consider to

select p with either the highest or the lowest degree to find out large or small object,
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Figure 3.2: A procedure of the proposed superpixel discovery method.

respectively. From our extensive experiments, we observe that it is better to identify

small objects than large objects since there could be a pixel having an overwhelming

degree, resulting in grouping the most of pixels. Hence, our strategy to partition an

image into multiple superpixels is to find out a superpixel corresponding to smallest

object and repeat this process after excluding the pixels of the discovered superpixel

from the candidates.

To sum up, in each iterative step i, the seed pixel p∗i of a superpixel Si is selected

by finding the pixel with lowest degree as p∗i = argminp
∑

q Bpq. Then, the pixels to

be included to superpixel Si are determined by following criterion: Si = {q|Ap∗i q > τ}

where τ is the pre-defined threshold for feature similarity. We exclude the pixels of Si

from P and repeat this procedure until P becomes empty set. In Fig. 3.2, we illustrate

the procedure of the proposed superpixel method.

3.3.2 Initial Seed Generation

To generate the initial seed which will be used for training of the semantic segmentation

network, we first train a classification network. We follow the common practices to

train the classification network using multi-label classification loss:

`cls =
1

C

C∑
c=1

(−yc log(σ(x̂c))− (1− yc) log(1− σ(x̂c))) (3.2)
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Table 3.1: Pseudocode for the proposed superpixel discovery method

Algorithm: Superpixel discovery method

Input

fp ∈ RD×1: feature at position p in image I

τ ∈ [0, 1]: pre-defined threshold

Initialize

fp ← fp/‖fp‖2 for all p normalize feature

Apq ← fTp fq compute similarity matrix

Bpq ←

1 if Apq > 0

0 otherwise
compute adjacency matrix

P ← {1, · · · , N} set of all positions

i← 0

While P 6= ∅

i← i+ 1

dp ←
∑
q∈P

Bpq for p ∈ P compute degree

p∗ ← argmin
p
dp find seed pixel

Si ← {q|Ap∗q > τ and q ∈ P} find superpixel according to p∗

P ← P \ Si exclude currently found pixels

End While

n← i the number of superpixels

Output

Si for i ∈ {1, · · · , n}: superpixels
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where C is the number of foreground classes, yc is the image-level label for class c, x̂c

is the predicted class score for class c, and σ(x) = 1/(1+ e−x) is the sigmoid function.

Then, we obtain the class activation map M of class c as

Mc =


wT

c x
′

maxwT
c x
′ if c is present class

0 otherwise
(3.3)

where x′ is the output of the second last layer and w is the weight of the last layer of the

classification network. Using the CAM, we assign the class for confident foreground

pixels to initial seed L by taking threshold as

Lp =

argmax
c
Mp,c if Mp,c > α

unlabeled otherwise.
(3.4)

On the other hand, background regions are not directly identified from CAM since

the classification network does not learn the background class explicitly. A common

approach to identify background regions is to set the low-activated foreground regions

in the CAM to the background region. However, the discovered regions using this

approach may contain the foreground regions which are not expressed in the CAM. To

identify the background regions better, we find out the superpixel which is the least

likely to be foreground regions. Here, we assume that there are background regions in

every input image.

Specifically, we compute class-agnostic foreground activation map F by taking the

maximum pixels for present foreground classes as F = maxc∈CMc where C is the set

of present classes in I . Then, the foreground score z(Si) is computed as the average of

F over Si, that is, z(Si) = 1
|Si|
∑

p∈Si Fp where |Si| is the number of pixels contained

in Si. We select the Si with the lowest z(Si) as background pixels:

Lp = 0 for p ∈ Si s.t. Si = argmin
S′i

z(S ′i) (3.5)

where 0 indicates the background class. Although there exist very few images not

containing background regions, we can construct reliable seed for background class for

the most images.
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Figure 3.3: The architecture for training of the semantic segmentation network.

3.3.3 Segmentation Network Training

The semantic segmentation network basically learns the object regions from sparse

initial seed constructed above. During the training process, the superpixel-guided seeded

region growing is performed to assign the classes to the promising superpixels. We

briefly illustrate the architecture for training the segmentation network in Fig. 3.3.

Specifically, let H be the softmax output of segmentation network. We apply a

simple probability threshold for each superpixel. To preserve the confident pixels in

initial seed, we slightly modify the superpixel by excluding the pixels labeled in the

initial seed. That is to say, we modify the superpixel S ′i as S̃i = Si \ {p|Lp is labeled}.

Using the segmentation probability H , the average of probability of class c over S̃i is

computed as

s(S̃i)c =
1

|S̃i|

∑
p∈S̃i

Hp,c. (3.6)

Then, the class c is assigned to Lp if the two following criteria are satisfied:

s(S̃i)c = max
c′

s(S̃i)c′ and s(S̃i)c > β. (3.7)
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Figure 3.4: Examples for initial seed refined by superpixel-guided seeded region grow-

ing during the training process

That is, the class c is assigned to the superpixel S̃i if S̃i is the most likely to be class c

and the average of probability if greater than threshold β. Although the initial seed is

sparse, the labeled regions are expanding to neighboring superpixels by region growing

as the segmentation network is trained. In Fig. 3.4, we show some examples illustrating

the refined seed obtained by superpixel-guided seeded regions growing during the

training process of the segmentation network.

We train the semantic segmentation network using the balanced seed loss [8] that

balances the losses between background and foreground classes:

`seed = −
∑
p∈Lb

1

|Lb|
logHp,0 −

∑
p∈Lf ,c∈C

1

|Lf |
logHp,c (3.8)

where Hp,0 is the probability of background class at position p, Lb = {p|Lp = 0} is the

set of background pixels, and Lf = {p|1 ≤ Lp ≤ C} is the set of foreground pixels. In

the loss computation, the unlabeled pixels are ignored.
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3.4 Experiments

3.4.1 Dataset and Experiment Settings

We evaluate the proposed approach on the PASCAL VOC 2012 segmentation benchmark

dataset [18] which has 20 foreground classes and one background class and MS-COCO

segmentation dataset [48] which has 80 foreground classes and one background class.

PASCAL VOC dataset has 1,464 training images, 1,449 validation images, and 1,456

test images. As in many practices [6, 34], additional dataset is augmented to training

dataset, resulting 10,582 training images in total [46]. MS-COCO dataset has 82,783

training images and 40,504 validation images. In our experiments, we only utilize image-

level annotations for the training of semantic segmentation network. As a performance

measure, we use mean intersection-over-union (mIOU), average of IOUs over 21 (for

PASCAL VOC) or 81 (for MS-COCO) categories. We obtain the result on the test set

by submitting the predicted results to the official PASCAL VOC evaluation server.

For vision transformer, we employ off-the-shelf ViT-Base/8 [72] trained using DINO

[22]. Without fine tuning the ViT, we use the key K of the last (12th) transformer block

as the features for generating superpixels following [62]. For classification network

and segmentation network, we employ ResNet50 and ResNet101 [16] as the backbone

network. Both networks are pre-trained on ImageNet classification dataset [17]. For the

segmentation network architecture, we use deeplab-ASPP module [6] appended to the

ResNet101 backbone network. For the last layer, the parameters are initialized from the

normal distribution. In the training of the ResNet101-based DeepLab, we only update

parameters of convolutional layers while fixing the parameters of batch normalization

layers. The obtained superpixels and the softmax output of the segmentation network is

post-processed by CRF [49].

To improve the robustness of the segmentation network, we apply data augmentation

techniques. We randomly flip and scale ({0.5, 1, 1.5}) input images. The resulting

images are cropped to 448× 448 at random location. We also apply color augmentation
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techniques by randomly changing brightness, contrast, saturation, and hue. For the

segmentation network, we use multi-scale inputs with scales, S = {1, 0.75, 0.5} in

both training and test phases [50, 6]. We set τ to 0.3 in superpixel discovery method.

We set α = 0.5 in identifying foreground pixels and β = 0.7 for the criterion in seeded

region growing. We use stochastic gradient descent optimizer with the momentum 0.9.

We set the weight decay to 0.0005 and the batch size to 20. We employ polynomial

learning rate policy [51] with initial learning rate 10−3 and power 0.9, i.e., L =

10−3 × (1− iter/maxiter)0.9. In early training iterations, we gradually increase the

learning rate from 10−6 to 10−3 through the first three epochs. The learning rate for the

last layers are multiplied by 10. We train the segmentation network for 15 epochs. Our

approach is implemented based on Tensorflow [52]. The classification network and the

segmentation network are trained on a single NVIDIA GeForce Titan Xp.

3.4.2 Comparisons with state-of-the-arts

We compare the performance of the proposed method with that of state-of-the-art

WSSS methods. In Table 3.2, we summarize the mIOU obtained by WSSS approaches

on PASCAL VOC 2012. All method use only image-level labels without additional

saliency supervision. From the results, we observe that our approach outperforms the

conventional WSSS approaches. Specifically, our approach achieves mIOU of 69.5%

and 70.1% for val and test set, respectively. In Table 3.3, we summarize the mIOU

obtained by WSSS approaches on MS-COCO 2014. From the results, we also observe

that our approach outperforms the conventional WSSS approaches. Specifically, our

approach achieves mIOU of 44.8% for val set.

In particular, we use the same classification network as used in [74], which is also

exploited in [30, 66]. In [56], the superpixels are used to recover the object boundaries.

In [70], superpixel is exploited in partitioning the input image into complementary

patch. Compared to these superpixel-based methods which are benefited from local

information about the object boundaries, our approach can take advantage of local and
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Table 3.2: Comparison of ResNet-based weakly-supervised semantic segmentation

methods’ mean IOUs on PASCAL VOC 2012 val and test set

Method Publication Backbone Val Test

AffinityNet [53] CVPR’18 ResNet38 61.7 63.7

IRN [74] CVPR’19 ResNet50 63.5 64.8

RRM [54] AAAI’20 ResNet101 66.3 66.5

ICD [56] CVPR’20 ResNet101 64.1 64.3

SAEM [65] CVPR’20 ResNet38 64.5 65.7

SC-CAM [75] CVPR’20 ResNet101 66.1 65.9

BES [76] ECCV’20 ResNet101 65.7 66.6

CONTA [77] NeurIPS’20 ResNet38 66.1 66.7

ECSNet [37] ICCV’21 ResNet38 66.6 67.6

CDA [78] ICCV’21 ResNet38 66.1 66.8

CPN [70] ICCV’21 ResNet38 67.8 68.5

CGnet [79] ICCV’21 ResNet38 68.4 68.2

advCAM [30] CVPR’21 ResNet101 68.1 68.0

RIB [66] NeurIPS’21 ResNet101 68.3 68.6

ResNet50 67.3 66.9

Ours ResNet38 68.3 68.4

ResNet101 69.5 70.1
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Table 3.3: Comparison of weakly-supervised semantic segmentation methods’ mean

IOUs on MS-COCO 2014 val set

Method Publication Backbone Val

SEC [7] ECCV’16 VGG16 22.4

DSRG [8] CVPR’18 VGG16 26.0

ADL [80] TPAMI’20 VGG16 30.8

GSM [61] AAAI’21 VGG16 28.4

CONTA [77] NeurIPS’20 ResNet50 33.4

SGAN [44] Access’20 VGG16 33.6

IRN [74] CVPR’19 ResNet101 41.4

RIB [66] NeurIPS’21 ResNet101 43.8

Ours ResNet101 44.8

global information contained in our semantic-aware superpixels.

We show the semantic segmentation performances in Table 3.4. Our segmentation

network architecture is ResNet101-based DeepLab-ASPP [6].

3.4.3 Comparison of Superpixels

Comparison of Superpixels generated using different methods

We compare the qualities of our superpixels with the conventional methods: SLIC [64],

SEEDS [81], and LSC [67]. We set the parameters of methods to adjust the number of

superpixels similarly. Specifically, for SLIC and LSC, we set the sizes of superpixels to

{50, 80, 100, 130}. For SEEDS, we set the number of superpixels to {30, 50, 80, 100}.

We set the number of iteration to 30 for all methods. For all other parameters, we follow

the default settings.

The qualities of superpixels are measured using the undersegmentation error (UE),
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Table 3.4: Mean IOUs on PASCAL VOC val and test set

Class Val Test Class Val Test Class Val Test

background 91.2 91.3 car 78.1 81.0 motorbike 76.4 81.8

aeroplane 80.4 82.7 cat 89.3 87.0 person 77.7 80.4

bicycle 40.6 39.2 chair 32.0 32.1 pottedplant 55.3 68.1

bird 78.5 75.6 cow 83.2 80.8 sheep 83.6 86.4

boat 63.4 52.7 diningtable 28.3 33.2 sofa 41.8 46.4

bottle 72.8 70.2 dog 85.2 85.1 train 76.8 73.3

bus 87.5 89.2 horse 82.1 82.9 tvmonitor 54.6 52.0

mIOU 69.5 70.1

the boundary recall (BR), the boundary precision (BP), and the achievable segmentation

accuracy (ASA). Let Sk be the set of pixels in superpixel k and Gi be the set of pixels in

segmentation ground truth of class i. The UE measures leakages of superpixels across

the ground truth:

UE(S,G) =
∑

i

∑
kmin{|Sk ∩ Gi|, |Sk − Gi|}∑

i |Gi|
. (3.9)

The BR measures the percentage of the ground truth boundaries recovered by superpixel

boundaries:

BR(S,G) =
∑

p∈δG 1(minq∈δS ‖p− q‖ < ε)

δG
(3.10)

where δS and δG are the sets of pixels in all boundaries of S and G, respectively, and ε

is the limit distance. We use ε = 2. The BP measures the percentage of the superpixel

boundaries covering the ground truth boundaries:

BP (S,G) =
∑

q∈δS 1(minp∈δG ‖p− q‖ < ε)

δS
. (3.11)
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Figure 3.5: Comparison of undersegmentation errors of superpixel methods

The ASA measures the segmentation performance upperbound of the superpixels:

ASA(S,G) =
∑

kmaxi |Sk ∩ Gi|∑
i |Gi|

. (3.12)

We summarize the superpixel measures in Table 3.5 (also see Fig. 3.5 for UE,

Fig. 3.6 for PR curve, and Fig. 3.7 for ASA). To compute BP and BR, we use contour

finding method provided by opencv. We observe that the qualities of our superpixels are

better than others when the number of superpixels are small and large. We also show

some examples for superpixels when the number of superpixels is small (see Fig. 3.8)

and large (see Fig. 3.19).

Comparison of Superpixels generated from different features

In the proposed method, we use the feature obtained from the DINO. To investigate

the effects of different features, we compare the superpixels generated using various
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Table 3.5: Comparison of UE, BP, BR, and ASA on PASCAL VOC train set for

conventional superpixel methods and ours

Method # of superpixels UE ↓ BP↑ BR↑ ASA ↑

SLIC [64]

11.72 0.246 0.057 0.635 0.879

18.22 0.199 0.057 0.636 0.902

27.67 0.164 0.055 0.644 0.92

75.04 0.105 0.051 0.675 0.949

SEEDS [81]

13.10 0.199 0.074 0.366 0.902

31.03 0.127 0.062 0.463 0.938

47.98 0.102 0.06 0.511 0.951

59.90 0.092 0.058 0.532 0.956

LSC [67]

9.00 0.285 0.052 0.689 0.859

16.06 0.218 0.050 0.718 0.893

24.47 0.181 0.049 0.733 0.911

67.42 0.113 0.046 0.763 0.945

Ours, τ = 0 8.14 0.159 0.104 0.515 0.922

Ours, τ = 0.1 10.89 0.110 0.103 0.564 0.947

Ours, τ = 0.2 17.74 0.093 0.099 0.591 0.955

Ours, τ = 0.3 28.57 0.083 0.094 0.615 0.960

Ours, τ = 0.4 49.35 0.074 0.087 0.652 0.965

Ours, τ = 0.5 83.39 0.068 0.079 0.678 0.968
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Figure 3.6: Comparison of boundary precision-recall curves of superpixel methods

Figure 3.7: Comparison of achievable segmentation accuracies of superpixel methods
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Figure 3.8: Examples of superpixels with the number of superpixels ranging from 10 to

15.

Figure 3.9: Examples of superpixels with the number of superpixels ranging from 50 to

80.

58



Figure 3.10: Superpixels generated using different features

features and discuss the qualities of the obtained superpixels. In this experiment, the

features we use are: 1) the RGB values of image itself, the most basic feature of pixels,

2) the CNN features obtained from supervised CNN (ResNet [16]), and self-supervised

CNN (MoCov3 [82]), 3) transformer features obtained from supervised transformer

(ViT [72]), and self-supervised transformers (DINO [22] and MAE [83] which is known

to outperform DINO in down-stream tasks). The backbones of CNNs and transformers

are ResNet50 and ViT-Base/16, respectively. The features of CNNs and transformers

are the output of the last layer and the key of the last transformer block, respectively.

We discuss the superpixels obtained from different features. We show the examples

of superpixels generated using different features in Fig. 3.10. In this experiment, we first

generate the superpixels using the DINO feature with setting τ = 0.3. The τ for other

features are adjusted so that the number of superpixels are similar to that of superpixels

generated from the DINO feature.

• RGB feature: We observe that we can find superpixels using RGB values, how-

ever, since the RGB values are low-level features, we cannot clearly partition the

image.

• CNN features: We observe that we cannot properly generate the superpixels
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using CNN features of both supervised and self-supervised networks. This is

because the CNN feature of each pixel depends heavily on the neighboring pixels,

resulting in very high similarities between almost all pairs of pixels. Hence, we

could not partition the image when τ < 0.8. By setting τ to high value (e.g., 0.9),

we can obtain the partitioned images with poor qualities.

• Transformer features: We observe that we can obtain the superpixels with reason-

able qualities using the features of ViTs. One notable point is that we need to set

τ to high value when we use the features of ViT and MAE. This is because the

ViT is trained to classify images which forces the network to recognize the object

itself and MAE is trained to predict the masked regions which forces the network

to understand overall context of images. Hence, the ViT and MAE may not pay

much attention to the details of images, generating highly similar features on

objects. On the other hand, DINO is trained to extract diverse features for each

image patch. In fact, the features of DINO represents not only the objects but

also their parts in detail so we used them in the generation of superpixels.

Comparison of Superpixels generated using different bipartition rules

In the proposed method, we select the seed pixel by finding a pixel having the lowest

degree in each iteration step. Hence, we can identify superpixels representing the small-

est object or its part among the remaining pixels. We compare the superpixels obtained

using the proposed methods which identify the pixel with lowest or highest degree in

each iteration, which are denoted as low first (LF) or high first (HF), respectively. We

show some examples in Fig. 3.11. The brightness of superpixel indicates the order the

superpixel is discovered (bright first, dark last). As we can observe, we fail to partition

the image using HF with low τ . If we set τ to high value, we can obtain good partitions

of images using HF but there are still more undersegmented regions than LF.

To compare the superpixels generated using different bipartitioning rule, we apply

normalized cut (Ncut [84]) to obtain superpixels and compare the proposed superpixel
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Figure 3.11: Examples of superpixels generated using different rule for seed pixel
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with Ncut-based superpixel. We first compute the similarity matrix A as (3.1). Then,

the adjacency matrix W is obtained as

Wpq =

1 if Apq > τ

ε otherwise
(3.13)

where ε is the small constant. Also, the diagonal matrix D is obtained as

Dpp =
∑
q

Wpq. (3.14)

By solving the eigenvalue system

(D −W )y = λDy (3.15)

and finding the second smallest eigenvector, we can obtain the vector representing

bipartition of image. Since the eigenvector is real valued, we set the indices greater than

the average of elements of eigenvector to partition A and the rest indices to partition B.

As in the proposed approach, we choose the small partition as the currently discovered

superpixel and repeat the procedure.

We compare the superpixel measures of the proposed superpixels and Ncut-based

superpixel. As illustrated in Fig. 3.12, we observe that the qualities of the proposed

superpixel are better than the qualities of the Ncut-based superpixel. We show some

qualitative results for both superpixels. As illustrated in Fig. 3.13, Ncut-based approach

can group the all pixels of an object (see the first four columns in 3.13) whereas

may undersegment images(see the last two columns in 3.13). On the other hand, the

proposed approach may oversegment the objects but can segment the image properly

by increasing the threshold τ . One notable point is the inference time of superpixel

algorithms. In the proposed approach, we need to simply take threshold to similarity

matrix to discover superpixel in each iteration. On the other hand, in Ncut-based

approach, we need to solve large eigenvalue system of size > 2, 000 in each iteration.

As a result, the proposed approach processes 1,000 images in 8 ∼ 100 minutes whereas

the Ncut-based approach requires 24 ∼ 60 hours to process the same amount of images.

Note that the processing time depends on τ .
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Figure 3.12: Comparison of ASA and UE of superpixels generated from various biparti-

tion methods
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Figure 3.13: Comparison of superpixels generated from various bipartition methods

3.4.4 Effects of Hyperparameters

The Effect of τ

In the proposed superpixel method, we use threshold τ in grouping the similar pixels.

Before we examine the effect of different τ , we investigate the characteristics of the

adjacency matrix indicating the positiveness of pixel pair. We may wonder if the

pixels belonging to the objects of our interest have positive similarities to each other.

Also, we may wonder if there is any pair of pixels in the object having negative

similarity. To observe this, we compute the number of pixels in objects having positive

or negative similarity and visualize in Fig. 3.14. The brightness of ’positiveness’ and

’negativeness’ indicate the number of pixels in object having positive and negative

similarities, respectively. From the results in the upper row of Fig. 3.14, we observe

that the most of pixels belonging to the object are positively similar to each other. On
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Figure 3.14: Examples of positiveness and negativeness maps indicating the number of

positive and negative pixels in an object.
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the other hand, from the results in the lower row of Fig. 3.14, we observe that the pixels

belonging to some parts of objects or different object of same class may have negative

similarities to others. Based on this observation, we notice that we may not find a group

of pixels only using the adjacency matrix B.

In order to find out good partition of image, we can use threshold τ . For seed pixel

p∗, we find the pixels satisfying App∗ > τ .

lemma 1 For normalized vectors a ∈ RD×1, b ∈ RD×1, and c ∈ RD×1, if aT b > τ

and aT c > τ , then bT c > 2τ2 − 1.

Proof: From the assumption that aT b > τ and aT c > τ , there exist α, β satisfying

cosα > τ and cosβ > τ . Then, bT c has the relation with α and β as bT c > cos(α+β)

or bT c > cos(α− β).

case i) When bT c = cos(α+ β), this is minimized when sinα sinβ > 0.

bT c ≥ cos(α+ β) (3.16)

= cosα cosβ − sinα sinβ (3.17)

> cosα cosβ − 1

2
(sin2 α+ sin2 β) (3.18)

= cosα cosβ − 1

2
(1− cos2 α+ 1− cos2 β) (3.19)

=
1

2
(2 cosα cosβ + cos2 α+ cos2 β − 2) (3.20)

=
1

2
((cosα+ cosβ)2 − 2) (3.21)

>
1

2
((2τ)2 − 2) (3.22)

= 2τ2 − 1 (3.23)

(11) is because x2 + y2 > 2xy when xy > 0.
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case ii) When bT c = cos(α− β), this is minimized when sinα sinβ < 0.

bT c ≥ cos(α− β) (3.24)

= cosα cosβ + sinα sinβ (3.25)

= cosα cosβ − | sinα sinβ| (3.26)

> cosα cosβ − 1

2
(sin2 α+ sin2 β) (3.27)

> 2τ2 − 1. (3.28)

We have (21) as in (11)-(16).

Based on lemma 1, if we set τ to be 2τ2 − 1 = 0 or τ = 1/
√
2 ≈ 0.71, we can

guarantee that all pixels in a superpixel have positive similarity to others. However, this

setting results in oversegmentation of image (see Fig. 3.15).

In our superpixel discovery method, the seed pixel is the pixel with lowest degree

so that the seed pixel might fall in the smallest objects or their parts. By varying τ , we

can decide how many pixels will be grouped with the seed pixel. In Fig. 3.16, we show

some examples for our superpixel for different threshold. The brightness indicates the

order of discovered superpixels, that is, the bright one is discovered first and dark one

is discovered later. When τ is small, we obtain the superpixels containing whole object

of semantic class but may suffer from bad segmentation particularly for small objects.

When τ is large, we can obtain the superpixels whose pixels are highly likely to have

the same semantic class but may suffer from the oversegmentation.

To investigate the effect of τ in the segmentation performance, we generate various

superpixels using different τ and use them to train the segmentation network. We

summarize the results in Table 3.6. We can observe that the segmentation performance

degrades when we use oversegmented superpixel.

The Effect of α

To examine the effect of α in generating the initial seed, we conduct some experiments

using different initial seeds. We summarize the results in Table 3.7. From the results,

67



Figure 3.15: Examples of superpixels generated when τ = 0.7
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Figure 3.16: Superpixels according to different thresholds τ

Table 3.6: Comparison of mean IOUs on PASCAL VOC val and test set using different

superpixels

τ Val w/o crf Val with crf Test

0 64.8 69.3 -

0.1 65.0 69.5 69.3

0.2 64.6 69.1 -

0.3 65.1 69.5 70.1

0.4 63.8 68.4 -

0.5 62.9 67.5 -
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Table 3.7: Comparison of mean IOUs on PASCAL VOC val set using different α for

generating initial seed

α Val Val + crf

0.3 59.7 66.0

0.4 62.8 68.6

0.5 65.0 69.2

0.6 66.3 69.4

0.7 66.7 69.0

0.8 65.5 67.6

Figure 3.17: Examples for initial seeds generated by varying α
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Table 3.8: Comparison of mean IOUs for different βbg and βfg on PASCAL VOC 2012

val set.

βbg

0.5 0.6 0.7 0.8

βfg

0.5 60.3/64.3 59.3/62.7 56.5/59.7 51.5/53.9

0.6 62.1/66.5 62.3/66.5 61.0/65.2 57.5/61.4

0.7 58.0/61.8 61.3/65.7 62.3/66.8 61.3/66.2

0.8 51.9/53.6 55.5/58.5 60.3/64.8 61.2/66.6

we see that the best performance is obtained when α = 0.6 is used. A notable point is

that our initial seeds are generated in a different way from the conventional approaches,

in which there are many efforts on obtaining the dense initial seeds. Interestingly, we

can achieve good segmentation performance when the initial seed is very sparse (i.e., α

is high). We illustrate the initial seeds in Fig. 3.17 to compare how the initial seeds are

sparse.

The Effect of β

We study the effects of β in superpixel-guided seeded regions growing. As done in [8],

we apply different β for background and foreground classes, βbg and βfg, respectively.

We summarize the segmentation performance using various combinations of βbg and

βfg in Table 3.8. From the results, we see that we can achieve good segmentation

performance when we choose the two parameters similarly. The best result is obtained

using βbg = 0.7 and βfg = 0.7. If β is too low, the classes can be easily assigned to

superpixel, leading incorrect segmentation. In contrast, if β is too high, only highly-

confident classes can be assigned to superpixel so some superpixels could never be

labeled.
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3.4.5 Qualitative Results

In Fig. 3.18, we provide qualitative results obtained from our segmentation network on

PASCAL VOC 2012. Although we do not use external saliency map in the training of the

segmentation network, our approach can predict the objects with accurate boundaries.

In Fig. 3.19, we also provide qualitative results obtained from our segmentation

network on MS-COCO 2014.

In Fig. 3.20, we provide some failure cases for refined seed in the training process

(Fig. 3.20 (a)) and wrong prediction for similar images in val set (Fig. 3.20 (b)). In

particular, for the classes known to be difficult such as table or sofa, the seeded regions

in the initial seed rarely expand to the other superpixels.

3.5 Summary of Chapter 3

In this chapter, we have proposed a simple superpixel discovery method that finds out

the semantic-aware superpixels in a unsupervised manner. Without relying on external

pixel-level labels, we can exploit the pixel-level information on object boundaries

contained in our superpixels. We also have shown that our semantic segmentation

network training strategy using superpixel-guided seeded region growing method out-

performs the conventional WSSS approaches. Extensive experiments demonstrates that

our approach is effective in solving WSSS problem.
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Figure 3.18: Examples of our segmentation outputs for PASCAL VOC 2012 val set.
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Figure 3.19: Examples of our segmentation outputs for PASCAL VOC 2012 val set.
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Figure 3.20: Examples for failure cases of the refined seeds in training process and

wrong predictions for similar images in val images.
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Chapter 4

Conclusion and Future Research

In this dissertation, we studied the problem of weakly supervised semantic segmentation

when the image-level label is given. Although the recently developed deep neural

network outperforms the conventional network, I focused on the fundamental techniques

which can improve the segmentation performances of any semantic segmentation

networks. In specific, I made the following contributions:

In Chapter 2, we proposed a new WSSS technique that can train the segmentation

network without pixel-level pseudo-labels. To prevent the performance degradation

caused by inaccurate pseudo-label in conventional WSSS approaches, we have exploited

the image masking technique in the training of the segmentation network. We also

introduced an approach to refine the saliency map, which significantly improves the

segmentation performance. Extensive experiments demonstrate that our approach is

effective in solving the problem of WSSS. As an extension of this work, a new training

strategy for segmentation network aided by more powerful classification network having

different recognition mechanism from CNN could be a desirable direction for the future

work.

In Chapter 3, we proposed a simple superpixel discovery method that finds out

the semantic-aware superpixels in a unsupervised manner. Without relying on external

pixel-level labels, we can exploit the pixel-level information on object boundaries
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contained in our superpixels. We also showed that our semantic segmentation network

training strategy using superpixel-guided seeded region growing method outperforms

the conventional WSSS approaches. Extensive experiments demonstrates that our

approach is effective in solving WSSS problem. Using the superpixels obtained from the

self-supervised vision transformers, to perform the unsupervised semantic segmentation

could be a promising future direction of research.
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초록

영상 분할은 영상 속 모든 픽셀을 관심있는 클래스로 분류하는 작업으로, 자율

주행,의료진단,산업자동화,위성영상등에널리활용될수있는중요한문제이다.

최근에는딥컨볼루셔널뉴럴네트워크를사용하여영상분할을해결하는방법이그

우수한성능으로주목받고있다.이접근방법의어려운점은네트워크를학습시키

기 위해서 대량의 정교하게 제작된 레이블이 필요하다는 점이다. 이러한 데이터로

구성된 데이터셋을 얻는것기에는 시간과 비용이 많이 소모되기 때문에 미래의 연

구 방향으로 약지도 상황에서 영상 분할을 수행하는 것이 유망한 접근 방법으로써

다루어지고 있다. 영상 분할에 사용 할만한 약지도를 위한 레이블의 종류에는 영

상 단위의 레이블 또는 점, 낙서, 경계 사각형 등이 있다. 이 중 영상 속에 존재하는

물체의 종류를 나타내는 영상 단위의 레이블이 가장 단순하고 제작이 쉽기 때문에

대부분의연구에서이레이블이활용되고있다.이논문에서는영상단위의레이블

을사용한약지도영상분할문제를다룬다.

논문의첫번째부분에서는양지도영상분할을위한새로운학습기법을소개한

다.제안하는방법에서는관심있는시각영역에집중하고관련없는부분을무시하

는인간의시각계로부터영감을얻은이미지마스킹기법을활용한다.분할네트워

크로부터얻은출력으로분류네트워크가집중할영역을제한하여분류네트워크가

분할네트워크의출력의질을평가하도록하며,분할네트워크가더욱정확하게출

력할 수 있도록 한다. 분할 성능을 향상시키기 위하여 간단하지만 효과적인 분류

네트워크학습방법과특징지도개선방법을제안한다.다양한실험을통하여제안

하는방법으로약지도영상분할을효과적으로해결할수있음을보인다.
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논문의 두번째 부분에서는 의미 인지 슈퍼픽셀을 생성하는 알고리즘을 제안한

다. 제안하는 알고리즘으로 얻은 슈퍼픽셀은 멀리 떨어져 있더라도 비슷한 성징을

가질 경우에 하나의 묶음으로 합쳐질 수 있다는 새로운 특징이 있다. 또한, 슈퍼픽

셀의 수는 미리 정해놓은 개수로 정해지는 것이 아닌 영상의 복잡도에 의해 정해

진다는 특징이 있다. 제안하는 방법으로 얻은 슈퍼픽셀은 의미가 비슷한 픽셀들을

아주 적은 수의 슈퍼픽셀들로 표현해 낼 수 있으며 제안하는 슈퍼픽셀을 사용하여

기존의슈퍼픽셀로는달성하기어려운높은정확도의약지도영상분할성능을얻을

수 있다. 제안하는 분할 네트워크를 학습시키기 위하여 슈퍼픽셀에 의해 제한되는

시드 영역 확장 방법을 통해 밀도가 낮은 레이블의 질을 향상시키고 이것을 새로

운 레이블로 사용한다. 다양한 실험을 통해 제안하는 방법이 약지도 영상 분할에

효과적임을보인다.

주요어:영상분류,영상분할,약지도학습,딥러닝,시각적어텐션,슈퍼픽셀

학번: 2015-20897
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