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Abstract

Identifying the type and position of sound is one of the most important issues in

the field of acoustics. In particular, we have no choice but to rely on acoustic informa-

tion since visual information is strictly blocked within a real-world building structure

to identify sources that can cause critical problems, such as mechanical defections.

However, traditional approaches for sound source classification and localization utilize

classic array processing techniques which are not applicable to sounds from real-world

complex structures where sounds do not strictly follow the theory without carefully de-

signed experiments. Therefore, we propose a learning-based approach to identify the

type and position of sounds using a single microphone in a real-world building. We

attempt to treat this problem as a joint classification problem in which we predict the

exact positions of sounds while classifying the types that are assumed to be from pre-

defined types of sounds. The most problematic issue is that while the types are readily

classified under supervised learning frameworks with one-hot encoded labels, it is dif-

ficult to predict the exact positions of the sound from unseen positions during training.

In order to address this potential discrepancy, we formulate the position identification

problem as a zero-shot learning problem inspired by the human ability to perceive new

concepts from previously learned concepts. We extract feature representations from

audio data and vectorize the type and position of the sound source as ‘type/position-

aware attributes’, instead of labeling each class with a simple one-hot vector. We then

train a promising generative model to bridge the extracted features and the attributes

by learning the class-invariant mapping to transfer the knowledge from seen to unseen

classes through their attributes; generative adversarial networks are conditioned on the

class-embeddings. Our proposed methods are evaluated on an indoor noise dataset,

SNU-B36-EX, a real-world dataset collected inside a building.



keywords: sound classification, sound source localization, zero-shot learning, gener-

ative adversarial networks
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Chapter 1

Introduction

Unidentified sounds caused by people in a building are annoying to other res-

idents and what is more, caused by some machinery or anomalies in an industrial

factory should be identified and resolved where the sounds sometimes indicate crit-

ical mechanical defects. These sounds can be propagated along with the building

structure, including walls, floors, ceilings, and columns, resulting in the propagation

of this noise to all residents. Since there are complex structures with many rooms

and floors in the real building structure, the visual information of the source might

be blocked from their structure, while only annoying sounds are resonant. This often

makes it difficult for residents to identify the source of the annoying sounds in such a

real building. Therefore, an efficient system to identify the types and positions of the

source using auditory information is necessary to mitigate the annoying problems.

There are two main research areas related to this problem: sound classification

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] and sound source localiza-

tion (SSL) [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. As

our problem is the combined form of sound classification and sound source localiza-

tion, it can be loosely stated as the sound event localization and detection (SELD)

problem, which has emerged in recent years [37, 38, 39, 40, 41, 42, 43, 44, 45, 46,

47, 48]. Most existing studies on localizing a sound source from SSL or even SELD
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have been conducted using multiple sensor networks and microphone arrays. How-

ever, such equipment is expensive to install with carefully designed settings, and it

is not usual for a common person to have such equipment in a real-life building.

In addition, the experimental settings of that literature only considered the sounds

within the same environment [21, 22, 23, 26, 27, 28], whereas in a real building the

sounds also arise from other rooms or floors. This means that we cannot easily take

advantage of reverberation or multipath effects.

In recent years when collected data has been growing in size, neural networks

have recently begun to draw attention for working well on not only matching com-

plicated patterns from training data but also validation data from the similar data

distribution [49]. The expressiveness of neural networks with a huge amount of pa-

rameters has overwhelmed other traditional methods when a huge amount of data

and sufficient computing power are available, which leads to the great success of

modern deep learning in many fields, such as image processing [50, 51], signal pro-

cessing [52, 53], and natural language processing [54, 55]. For a practical approach

to our problem instead of the traditional approaches, we consider a learning-based

model for classifying the sounds based on their types and positions using a single

microphone that is built into a mobile device or portable audio recorder.

In [56], the annoying sounds were successfully classified based on their types

and positions using a supervised learning framework. However, in practice, the

sound source can potentially be located in a continuous space, which might require

the number of classes for training uncountable. Furthermore, significant effort is re-

quired to collect data to add new categories in real circumstances. Also, there are

places within a building, such as restricted areas, where the data collection is often

limited in real circumstances. Thus, the main focus of this study is to understand if

the positions of the sound sources can be robustly predicted even for the points that

were not seen during training.

These facts can be a notorious bottleneck to constructing an appropriate model
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with a conventional supervised learning approach. Therefore, efficient learning frame-

works are required to extract the transferable knowledge from previously available

data to make a model generalize well on new data from new positions which are even

very limited. One way to mitigate these problems is to use the zero-shot learning

(ZSL) framework [57, 58], which is inspired by the human ability to perceive new

semantics or concepts from what one has seen and learned previously. In general,

ZSL models focus on learning the mapping function between the feature represen-

tations of data and the corresponding class-embeddings [59, 60, 61, 63, 64, 62, 65].

Through the learning process, the models are expected to capture the class-invariant

mapping function between them. Therefore, the learned ZSL models can classify

new examples that were unseen during training.

Therefore, for learning-based sound source classification and localization, we

formulate the learning shared representation over the system inputs as a zero-shot

learning problem, training the model to be generalized well on novel data from a new

sound source. As the source localization problem can be considered as predicting the

position of new data from the new sound source even unseen during the training, we

apply the zero-shot learning framework to validate the methods on the real-world

datasets, SNU-B36-EX, for source localization and classification problems. In sum-

mary, our problem is one of resolving sound classification and localization problems

simultaneously, and this thesis has novelty in that it applied zero-shot learning tech-

niques for the first time in this field, as presented in Figure 1.1.

The rest of this thesis is organized as follows. In chapter 2, we provide some

background and related works. In chapter 3, we provide the learning-based approach

to identifying types and positions of the sound sources and details of our audio

datasets, SNU-B36-EX. Additionally, we verify that the datasets are classified in a

supervised manner with modern deep models. In chapter 4, we train a generative

model to learn a class-invariant mapping from seen classes and attempt to generate

synthetic data of unseen classes which can be used to make our classifier applicable

3



to unseen data. In chapter 5, the zero-shot learning frameworks are applied for veri-

fying the knowledge transferability from seen to unseen positions for several cases.

Finally, we conclude our thesis in Chapter 6.

Figure 1.1: Scope of my thesis.
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Chapter 2

Backgrounds

2.1 Sound Classification

Sound classification, especially environmental sound classification, has been

widely studied. In many studies, the conventional classification procedure is divided

into two steps: feature extraction and classification. Well-known features extracted

directly from raw audio include the zero-crossing rate,

zero-crossing rate =
1

T

T−1∑
n=0

1R<0 (s(n)s(n− 1)) , (2.1)

where s is a signal, T is length of the signal, and 1R<0 is an indicator function, and

time-averaged energy [2, 3],

time-averaged energy =
1

T

T−1∑
n=0

‖s(n)‖2. (2.2)

The zero-crossing rate roughly estimates the dominant frequency of the signal and

the time-averaged energy roughly indicates whether the signal of interest from back-

ground noise. Spectral features from the spectral domain related to frequencies of
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the signal include the spectral centroid,

spectral centroid = Ci =

∑W
k=1 kXi(k)∑W
k=1Xi(k)

, (2.3)

where X(k) is the weighted frequency coefficient of n-th bin, spectral spread,

spectral spread =

√∑W
k=1(k − Ci)2Xi(k)∑W

k=1Xi(k)
, (2.4)

which indicates the second central moment of the spectrum, and spectral flatness [8],

spectral flatness =

(∏N
k=1X(k)

)1/N

1
N

∑N
k=1X(k)

. (2.5)

Additionally, linear prediction coefficients are another popular feature values which

are estimated as a linear combination of previous samples [1, 3],

x̂(n) =

p∑
i=1

aix(n− i), (2.6)

where x̂(n) is the predicted signal value, x(n− i) is the previous observed samples,

and ai is the predictor coefficients. In recent years, Mel-frequency cepstral coeffi-

cients [1, 2, 3],

fmel = 2595 log10

(
1 +

f

700

)
(2.7)

and the time-frequency representations [4, 5, 6, 7],

STFT{x(n)}(m,ω) =

∞∑
n=−∞

x(n)w(n−m) exp−jωn, (2.8)
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wherew(n−m) is the window function, usually using a Hamming or Hann window,

and x(n) is the signal, have become the most used features applicable to the deep

architectures.

Extracted features are classified using conventional machine learning methods,

including dimension reduction methods, such as k-nearest neighbors algorithm [1,

2, 3, 8], hidden Markov models [2, 3], and matrix factorization [5, 6, 7],

minW,H‖V −WH‖22 s.t. W,H ≥ 0. (2.9)

and powerful traditional classifiers, such as support vector machine [4, 8],

[
1

n

n∑
i=1

max(0, 1− yi(wTxi − b))

]
+ λ‖w‖2. (2.10)

However, in the recent era of deep learning, remarkable progress has been made

using end-to-end learning, which enables the model to automatically learn repre-

sentations of data, such as deep neural networks (DNNs) [9], convolutional neural

networks (CNNs) [10, 11, 12, 13, 14], recurrent neural networks (RNNs) [15], and

convolutional recurrent neural networks (CRNNs) [16, 17, 18]. As the sounds con-

sidered in this study propagate inside a building, our work is relevant to environmen-

tal sound classification. However, we would like to identify the position and type of

sound.

2.2 Sound Source Localization

Sound source localization (SSL), especially for indoor sound or sound inside a

building, has been extensively reported in the literature. Many existing studies on

SSL obtain signals from multiple sensors or microphone arrays to utilize time/phase
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differences [19, 20], reverberation [21, 22, 23], and energy-based information [24,

25]. Recently, there have been many attempts to solve SSL problem using learning-

based methods in which the neural networks are trained with non-informative noise

sources [30], diverse sound events [31, 32], speech of speakers [33, 34, 35], or simu-

lated data [36]. However, they are not compatible with our problem, in which audio

signals are recorded using a single microphone.

There have been few studies on SSL using a single microphone. In [26], a wide

range of sounds was localized using a single microphone with artificial structures

that mimic the outer ear of a human to modify the sound path depending on its in-

cident angle. In [27], an algorithm was applied to recover the controlling parameter

using diffusion kernels for SSL with a single microphone in a reverberant room. In

[28], the image source method was applied to utilize room reverberation, which en-

ables localization using a single microphone inside a known room. In [29], a voice

was localized using a hidden Markov model to estimate the acoustic transfer func-

tion using a single microphone. The experiments were conducted in a known room

or required a special setting to easily take advantage of reverberation or multipath ef-

fects. However, because the noise considered in this study comes from other rooms

or floors, it does not necessarily accompany reverberation or multipath effects. In

contrast to existing works, our approach considers the SSL problem as a position

classification problem with a ZSL framework using a single microphone. Its posi-

tion could be at any point in the building, even unseen during model training.

In recent years, the combined problem, called sound event localization and de-

tection (SELD), has emerged in recent years. In SELD, spatio-temporal character-

ization of the acoustic scene is obtained by combining the sound source event de-

tection (SED) and SSL [37]. Earlier studies on SELD separately treated the two

problems with off-the-shelf machine learning methods for detection, and classic ar-

ray processing methods for localization [38, 39, 40]. Recently, many attempts have

been made to use neural networks as learning-based methods for SELD problems.
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The joint probabilities for each type and position of the sound are predicted by a

CNN or CRNN as a multi-label classification problem [41, 42, 43, 44]. Because the

predicted output for positions is limited to the positions available in the training set,

the performance for unseen positions is unknown. Meanwhile, in another direction

of research, the predicted output consists of two branches: the output for the po-

sition is treated as a regression problem, while the output for types is treated as a

classification problem [45, 46, 47, 48]. Our problem is similar to SELD, in that we

are interested in both the identification of the type and position of sounds. However,

in terms of the output format, the types of sound are classified per signal, not SED,

which aims to detect the frame-wise occurrence of the sound events. In addition,

while the existing SELD uses multi-channel signals given as the data set, only a

single channel signal is given in our problem.

2.3 Supervised Learning

In supervised setting, train set is given as D = {(xi, yi)}Ni=1 where xi ∈ X and

yi ∈ Y are input and output pairs. The goal is training a model fθ parameterized by

θ, by solving

θ∗ = argmin
θ
L(D; θ), (2.11)

where the L(D; θ) is a loss function that measures the error between predictions by

the model θ and the true target values. There are two common loss functions that are

used for supervised classification and regression with deep neural networks (DNN).

For the supervised classification, the cross-entropy loss is usually used as

L(D; θ) =
∑

(x,y)∼D

(y log fθ(x) + (1− y) log (1− fθ(x))) , (2.12)
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and for the supervised regression, the mean-squared error (MSE) is used as

L(D; θ) =
∑

(x,y)∼D

‖y − fθ(x)‖22 . (2.13)

It is common sense that training a DNN requires a lot of data and expensive training

procedures. Also, if there are few data available, it shows overfit on the train set and

frequently loses their generalization ability on new tasks which is unseen during

training.

2.4 Zero-Shot Learning

A goal of zero-shot learning (ZSL) is to train a model that can work well on

the instances even unseen during training. In the ZSL setting, the target instance to

be identified is totally unavailable during training which seems an almost impos-

sible task to solve. The problem can be solved by what is inspired by the human

ability to perceive new concepts from what one has previously seen and learned

concepts [69]. An important assumption behind ZSL methods is that there is some

shared structure of mapping between different modalities across classes. For ex-

ample, for the image recognition domain which is one of the most active fields of

ZSL, such modalities are visual feature-embeddings and the concepts of classes usu-

ally expressed as human-annotated attributes [55, 51, 52], text descriptions [70], or

word-embeddings [54, 50]. The concepts of classes can be projected into some em-

bedding space, called semantic-embeddings or class-embeddings. These semantic-

embeddings can be used as side information to transfer knowledge from the seen

classes to unseen classes in the ZSL setting. Then, the shared mapping model be-

tween feature-embeddings and semantic-embeddings across the seen classes during

training can be expected to generalize on unseen classes, since the ZSL model aims
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to capture the class-invariant mapping between those modalities.

ZSL has been widely studied in many fields. In the image domain, which is

the most active field of ZSL, such modalities are represented as visual feature-

embeddings and semantic-embeddings. From [49], the mapping function could be

categorized by learning linear compatibility [50, 51, 52, 53], nonlinear compatibility

[54], intermediate attribute classifiers [55], and hybrid models [72]. During testing,

the learned model was evaluated to verify whether it could predict the unseen classes

with the knowledge transferred through the semantic-embeddings.

ZSL has also been studied for character recognition [56], video classification

[57], neural machine translation [58], and action recognition [59, 60]. Similar to our

study, the ZSL framework has been applied to audio classification [61] and music

classification problems [62]. In [61], audio feature-embeddings were extracted from

a VGGish [63] model pre-trained with YouTube-8M and Word2Vec [64], which

were used as class-embeddings. The mapping function was trained to maximize

the linear compatibility between the two modalities, similar to that in [51]. The

model is evaluated using the public audio dataset ESC-50 [65]. The researchers of

the study [62] used the output of their CNN model, which considers audio Mel-

spectrogram as input, as feature-embedding, and instrument attributes and GloVe

[66] as class-embedding. Their mapping function was trained using max-margin

hinge loss, which enforces a certain margin between the compatibility values from

positive and negative sampling, similar to [50]. The model was evaluated on the free

music archive (FMA) [67] and the million song dataset (MSD) [68]. These studies

are similar to those of our study in the incorporation of audio data. However, they

differ in terms of solely classifying the type of sound, while we focus on the type

and position of the sound source.

For the standard ZSL problems, we are given train set Ds = {(xsi , ysi )|xsi ∈

X s, ysi ∈ Ys}N
s

i=1 where xsi ∈ X s denotes an feature-embeddings from seen classes,

and ysi ∈ Ys denotes the corresponding label that is one of the seen classes Ys.
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The attributes of seen classes are As = {a(y)|y ∈ Ys}. Attribute a(y) explains

the semantic information of y as vector form. Using this side information, we can

model the relationship between all classes, and transfer the knowledge from the seen

to unseen classes. We are given classes that are assumed to be the unseen potential

target classes. We are given sets of unseen classes Yu and the corresponding unseen

attributes Au = {a(y)|y ∈ Yu}. Here, the unseen classes are disjoint from the seen

classes, i.e., Ys ∩ Yu = ∅. Unlike a set of seen data S, we cannot access features

from unseen classes, i.e., xui ∈ X u is not available during training, but is appear dur-

ing the testing phase. Thus, we have class-level information on the unseen classes

during the training phase. During the training, the following empirical risk

W ∗ = argmin
W

E(x,y)∼P (X s,Ys)L(f(x;W ), y), (2.14)

is minimized by using the train set S, where L, and f are the loss and mapping func-

tions parameterized by the W , respectively. We expect that the parameters trained

with data from seen classes further generalize well on unseen data from the unseen

classes, (x, y) ∼ P (X u,Yu). The empirical risk to evaluate the trained parameter

W for the ZSL setting can be defined as

E(x,y)∼P (Xu,Yu)L(f(x;W ∗), y), (2.15)

when the test set consists of data from only unseen classes. During testing, the

learned model is evaluated to verify whether it could predict the unseen classes

with the knowledge transferred through the semantic-embeddings. From [49], there

have been several ways to build the mapping functions categorized by learning lin-

ear compatibility [51, 52, 53], neural networks [54], intermediate attribute classifiers

[55], and hybrid models [72].

Although the ZSL setting assumes that the test examples are only from unseen
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classes, considering real scenarios, test examples could arise from all classes, includ-

ing seen and unseen classes. [49] established generalized zero-shot learning (GZSL)

where the test examples can be from, and expected to be classified as, either seen

or unseen classes. The empirical risk to evaluate the trained parameter W for the

GZSL setting can be defined as

E(x,y)∼P (X s+u,Ys+u)L(f(x;W ∗), y), (2.16)

when the test set consists of data from the seen and unseen classes. Here, X s+u =

X s ∪ X u,Ys+u = Ys ∪ Yu. However, existing methods have been reported to be

inefficient and easily susceptible under the GZSL setting [69, 49, 73], and efficient

methods utilizing the generative models, such as variational autoencoders (VAEs)

[74], or generative adversarial networks (GANs) [75] have drawn attention recently

[73, 76, 77, 78, 79, 80].

From [49, 71], the approaches for zero-shot learning are usually categorized by

projection-based methods [51, 52, 50] and generative model-based methods [73, 76,

77, 78, 79, 80].

First, the projection-based methods aim to learn the compatibility function be-

tween the pairs of embeddings of different modalities is measured the correspon-

dence between them [51, 52, 50, 53]. The compatibility function is defined as,

F (x, y;W ) = θ(x)TWφ(y), (2.17)

where θ(x) and φ(y) are feature-embeddings and semantic-embeddings, and W is

the learnable mapping function between those embeddings. From [51, 52, 50], the

pairwise ranking objective is defined to minimized,
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∑
y∈Ytr

[∆(yn, y) + F (xn, y;W )− F (xn, yn;W )], (2.18)

where ∆(yn, y) is equal to 1 if yn = y, otherwise 0. [53] also learns the projec-

tion from feature-embeddings to semantic-embeddings, but it further constrains that

the projection must be able to reconstruct the original embeddings. The objective to

minimize can be defined,

min
W
‖θ(x)−W Tφ(y)‖2 + λ‖Wθ(x)− φ(y)‖2, (2.19)

where λ is a hyperparameter to be balanced between two reconstruction losses.

However, existing projection-based methods have been reported to be inefficient

and easily susceptible under GZSL setting [69, 49, 73], and efficient methods utiliz-

ing the generative models, such as variational autoencoders (VAEs) [74], or genera-

tive adversarial networks (GANs) [75]. The generative-based methods aim to learn

to obtain instances for the unseen classes by synthesizing some pseudo instances

[71]. Starting from the empirical risk of the classifier,

E(x,y)∼P (X s,Ys)L(f(x;W ), y), (2.20)

was minimized by training the training set S, where L, and f are the loss and map-

ping functions parameterized by W , respectively. During the training phase, data

from the seen classes can be used. We expect that the parameters from the aforemen-

tioned training process further minimize the following risks. The risks are defined

through the trainset domain, for the ZSL setting as,

E(x,y)∼P (Xu,Yu)L(f(x;W ), y), (2.21)
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when the test set consists of data from only unseen classes, and for the GZSL setting,

E(x,y)∼P (X s+u,Ys+u)L(f(x;W ), y), (2.22)

[73] uses the GANs as the generative model consisting of a conditional generator

G : Z×C → X parameterized by θG, and a conditional discriminatorD : X ×C →

[0, 1] parameterized by θD. Here, the generator G takes a random Gaussian noise

vector z ∈ Z ∼ N (0, 1) and class-embedding c(y) ∈ C, and yields fake features x̃

corresponding to class y. The simple version of the loss is as follows:

LGAN (θG, θD) = E[logD(x, c(ys); θD)] + E[log(1−D(x̃, c(ys); θD))], (2.23)

where x̃ = G(z, c(ys); θG) denotes fake features corresponding to the seen class-

embeddings c(ys).

θ∗G, θ
∗
D = arg min

θG
max
θD

LGAN (θG, θD), (2.24)

where θ∗G and θ∗D are the optimal parameters for the generator and discriminator of

the model trained by the seen classes, respectively; and β is a hyperparameter of

the classifier loss weight. The generative model can be replaced by every promising

generative model, such as VAEs [76, 77].

After training the generative model, we synthesize the same number (n) of un-

seen features for each unseen class using their class-embeddings, D̃u = {(x̃ui , yui ,

a(yui ))|x̃ui ∈ X ũ, yui ∈ Yu, a(yui ) ∈ Au}Nu

i=1 where x̃ui = G(z, c(yui ); θ∗G) and X ũ

denote the synthesized feature distribution from unseen classes. By training the new

training set, the following modified empirical risk can be minimized for the ZSL
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setting:

E(x,y)∼P (X ũ,Yu)L(f(x;W ), y), (2.25)

which denotes that the classifier f parametrized by W can be trained with the syn-

thesized features from unseen classes. For the GZSL setting, the synthesized features

can be combined with features from the seen classes as a new training set. The com-

bined set is utilized to train the classifier, f , to minimize the empirical risk for the

GZSL setting:

E(x,y)∼P (X s+ũ,Ys+u)L(f(x;W ), y), (2.26)

where a feature can be from either seen features xs or synthesized features x̃u from

unseen classes, that is, X s+ũ, and the corresponding class is one of all the classes,

including the seen and unseen classes Ys+u.
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Chapter 3

Identifying Type and Position of Sound Source as Su-

pervised Classification Problem

3.1 Introduction

3.1.1 Motivation

Sounds caused by people working in an office building or living in an apartment

such as footsteps, hammering, dragging of furniture, and noise from electrical ap-

pliances can be annoying. These sounds propagate along with the building structure,

including walls, floors, ceilings, and columns, resulting in the propagation of this

noise to all residents. It is often difficult to identify the source of the sound in such

a real building, and successfully identifying the annoying sounds by their types and

positions is necessary to mitigate the ensuing problem [1, 2, 3, 4, 5].

3.1.2 Related works

Clearly classifying such sounds by type and position can be one way to solve

conflicts. Classifying those sounds could be a subset of the acoustic scene classifi-

cation (ASC) problem. Remarkable progress has been made in recent years on ASC

problems with a wide variety of signal processing and machine learning techniques.
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There are papers including hidden Markov models [6], support vector machines [7],

non-negative matrix factorization [8, 9, 10], deep neural networks [11], and con-

volutional neural networks [12, 13, 14]. For those audio classification tasks, each

recorded sound is usually transformed into proper time-frequency representation

which has become normal in many related tasks, recently [8, 9, 10, 11, 12, 13, 14].

3.1.3 Contributions of this chapter

In this chapter, we propose a learning-based approach to identify the type and

position of sounds using a single microphone in a real-world building and verify that

our audio datasets are well classified with modern deep architectures. We attempt to

treat this problem as a joint classification problem in which each type and position

is jointly classified in a supervised manner. We use two modules for the joint clas-

sification problem where one is convolutional neural networks (CNN) trained from

scratch on our training dataset and the other is pre-trained CNN models trained with

a large open-sourced audio dataset [15]. While there are two differences between

ASC and our problem. ASC focuses solely on the type of a sound, our classification

problem not only classifies the type of a sound but also tries to classify the position

of the sound. We expect that even data of the same type of sound can be classified

depending on their different positions by our classification models.

Additionally, unlike ASC data [16, 17, 18], a large noise dataset for classification

does not exist and it is hard to obtain a large amount of the data especially when

people are living in the building. In order to construct our dataset, SNU-B36-EX

[19], using a single microphone, we collected 8,450 audio events that are generated

from 5 pre-defined source types at nearly 39 different positions in the building, i.e., a

classification problem with 169 classes. Then, we evaluate our deep architectures on

the dataset and verify that our deep architectures are sufficient to classify the audio

events.
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3.2 Approach

Figure 3.1: Overall procedures for identifying the type and position of the sound

source.

The overall procedures for identifying the type and position of the sound source

are as follows: (1) pre-processing: recorded audio signal data x is transformed into

time-frequency representation such as Mel-spectrograms, (2) training: the deep ar-

chitecture followed by softmax classifier is trained in an end-to-end manner with the

given train set, and (3) testing: the trained model is evaluated on test set where the

class of audio signal is predicted by the model. The overall procedures are described

in Figure 3.1.

3.2.1 Pre-processing

In pre-processing, the recorded audio signal data x is transformed into time-

frequency representation. First, the signal is sliced to an exact size long including

a fixed number of samples, and normalized by the maximum value of each signal.

Second, the signal is transformed by a short-time Fourier transform, and the trans-

formed value with frequency ω at mth time bin is

STFT{x(n)}(m,ω) =

∞∑
n=−∞

x(n)w(n−m) exp−jωn, (3.1)

wherew(n−m) is the window function, usually using a Hamming or Hann window.

Then, the Mel-filter bank is computed as a weighted matrix looking at the spectrum
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fine at frequencies sensitive to human auditory and coarse at the rest of the frequen-

cies,

m = 2595log10(1 +
f

700
),

f = 700(10
m

2595 − 1),

(3.2)

MBm(ω) =



0 ω < f(m− 1)

ω−f(m−1)
f(m)−f(m−1) f(m− 1) ≤ ω < f(m)

1 ω = f(m)

f(m+1)−ω
f(m+1)−f(m) f(m) < ω ≤ f(m+ 1)

0 ω > f(m+ 1)

(3.3)

Finally, the Mel-spectrogram is the multiplication of the Mel-filter bank and the

power-spectrogram, which is squared of the absolute value of the time-frequency

representation.

3.2.2 Training and testing

Our given training set Dtr = {(xi, yi)|xi ∈ X , yi ∈ Y}Ni=1 where xi ∈ X de-

notes an audio signal data, and yi ∈ Y denotes the corresponding label. M being

the number of classes belong to Y . During the training phase, a convolutional neural

networks Θ = {θcnn,W}, including convolutional module θcnn and the common

softmax classifier W minimizes the objective,

θ∗cnn,W
∗ = argmin

Θ
−E(x,y)∈Dtr

[logP (y|x; Θ)] , (3.4)

where Θ = {θcnn,W} are updated simultaneously during the training where W ∈

Rdx×M is the classifier weight matrix usually being a fully connected layer, and the
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probabilities of class y are

P (y|x; Θ) =
exp(W T

:,yf(x; θcnn))∑N
i=1 exp(W T

:,if(x; θcnn))
, (3.5)

where W T
:,i denotes the transpose of the ith column of the matrix W , and f(x; θcnn)

is output representation of x through the convolutional module θcnn. During the test-

ing phase, the predicted class of x is

argmax
y

P (y|x; θ∗cnn,W ). (3.6)

3.3 Dataset Construction

Figure 3.2: Five types of sound sources include dropping a medicine ball on the floor

(MB) for footstep sounds, dropping a hammer on the floor (HD), hitting with a hammer

on the floor (HH) for hammering sounds, dragging a chair on the floor (CD) for sounds

of dragging furniture, and operating a vacuum cleaner (VC) for electrical appliances

[5].

The dataset SNU-B36-EX is an extended version of the inter-floor noise dataset

(SNU-B36-50) from a previous study [5]. SNU-B36-EX consists of five types of

sound sources to emulate most complaints reported by the Floor Noise Management

Center [4]. These types were generated by dropping a medicine ball on the floor

(MB) for footstep sounds, dropping a hammer on the floor (HD), hitting with a

hammer on the floor (HH) for hammering sounds, dragging a chair on the floor
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(CD) for sounds of dragging furniture, and operating a vacuum cleaner (VC) for

electrical appliances as described in Figure 3.2. Each sound was from one of the 39

positions, as presented in Figure 3.3. The positions of the recorder and sound source

are represented by blue squares and red circles, respectively. Each point is on one

of the 1st, 2nd, and 3rd floors with a horizontal (x-axis) distance of 0 - 12 m at 1

m intervals from the recorder. The recorder was positioned at a height of 1.5 m on

the 2nd floor and 4 m away from any source in the z-axis direction. We acquired 50

recordings for each class that contained one combination of each type and position.

SNU-B36-EX was collected from Bldg. 36 at Seoul National University. The

sounds were recorded by a single smartphone at a sampling rate of 44.1 kHz. We

sliced each audio signal to equal lengths of 2.4 s, which sufficiently contained the

sound of the corresponding class. The VC for the 1st and 3rd floor data were ex-

cluded, as there was no significant signal recorded by the VC in the 1st and 3rd

floor data. In this study, we define each class as (sound type)(position value in the

x-axis)(floor). For example, a class called HD6M3F indicates that it contains sounds

of dropping a hammer from 6 m on the 3rd floor. In summary, there are 8450 record-

ings categorized by 169 different labels.
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Figure 3.3: Bldg. 36 at Seoul National University viewed from the side (above) and

from the top (bottom) with positions of the sound source (red circles) and receiver

(blue square) [19]. X,Y , and Z indicate the axes and are not related to the features

and class labels, respectively. For example, the class indicated by the arrow in the

upper figure is sound type 6M3F.
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3.4 Experiments

3.4.1 Experimental settings

We used two modules to extract audio feature-embeddings, VGGish [15] and

a one-dimensional CNN (1D-CNN), pre-trained on our training set. VGGish is a

pre-trained CNN model that uses the ‘YouTube-8M’ dataset [15]. Following [15],

each audio dataset is transformed into a log-Mel-spectrogram with 64 frequency

bins with a sampling rate of 16 kHz. As our audio data is 2.4 s long, the transformed

spectrogram has a size of 64× 242. The model has a fixed-size input of 64× 96 and

results in 128-dimension features. Because of the input size discrepancy, we extract

features through VGGish with a hop length of 23 frames and take the element-wise

average over them. As the module does not have access to the training set, it is used

as a task-general feature extractor to prevent the feature-embeddings from being

excessively biased toward our dataset.

1D-CNN is used as a task-specific feature extractor trained using our training

set. All audio data were transformed into a Mel-spectrogram with 120 frequency

bins. We used a pre-emphasis [20] of 0.95, a Hamming window with a length of

2205, and a hop length of 441 for the transformation. After transforming into a Mel-

spectrogram, we trained the 1D-CNN with the training set at each data split scheme

without any pre-training, which makes the extractor task-specific. The architecture

of the 1D-CNN consists of two consecutive blocks with two convolutional layers, an

average pooling layer, and two fully connected layers. Batch normalization [21] is

located after each convolutional layer. The widths of the convolutional filters were

7, 5, 7, and 5, and the strides were all 1. We used zero-padding to match the lengths

of the inputs and outputs for the convolutional layers. The widths and strides of the

pooling layers were 3. The number of filters at each convolutional layer and hidden

unit in the fully connected layers was 128. All the activation functions are ELU [22].

All hyperparameters were selected by trial and error, and early stopping was used
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to obtain the best performance. Feature representations can be extracted using either

VGGish, 1D-CNN models, or both. Using only VGGish or 1D-CNN, the output

feature has 128-dimensions. When using both extractors, the output features are

concatenated and yield a 256-dimensional vector. The features are standardized with

zero mean and unit variance.

3.4.2 Experimental results

Table 3.1: Comparison of classification performance (%) for the feature representa-

tions under supervised learning.

Feature extractor VGGish[15] 1D-CNN VGGish [15] + 1D-CNN

Pre-trained on trainset No Yes No+Yes

Dimension 128 128 256

Classification accuracy (%) 74.15 92.96 96.96

Although the SNU-B36-EX dataset was originally collected for zero-shot re-

lated tasks, we compared the representations under the supervised settings. Table 3.1

compares the classification performance of the feature representations under the su-

pervised learning settings. Using both feature representations was the best choice in

all settings. The best performance is obtained by two combined modules as 96.96%

which can be considered that our datasets can be sufficient to classify by the 256-

dimensional vector representations learned from the end-to-end learning procedures.

Comparing the individual feature representations, as the 1D-CNN is trained on

the training set while the VGGish is not, the classification performance on the 1D-

CNN features is 92.96%, which is better than that of 74.15% of the VGGish features

under the supervised learning setting. VGGish is pre-trained with a much larger

dataset, which ensures generalizability, whereas the 1D-CNN is more biased toward
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the training set. These two extractors could be complementary to each other to ex-

tract meaningful features from our audio dataset. Therefore, we use the combined

feature representations for experiments in further chapters.

3.5 Conclusion

For identifying the type and position of indoor noise, we collected the indoor

noise data from a building and labeled it with its type and position simultaneously.

Then, we transformed the recordings into Mel-spectrograms utilizing several well-

known pre-processing techniques. After pre-processing, we exploit two modules

which are 1D-CNN from scratch as a task-specific feature extractor and pre-trained

vggish [15] as a task-general feature extractor. For selecting the best feature extrac-

tor for our classification problem and further zero-shot problems, we evaluate their

classification performance of them. The best performance is obtained when using

both modules, resulting in top-1 accuracy of 96.96 %. In the later chapter, we would

apply the feature extractor pre-trained with the corresponding given train set. Also,

we intend to see whether we could classify the type and position of indoor noise

from other situations such as some part of the data is not available during the train-

ing.
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Chapter 4

Zero-Shot Learning Approach for Identifying Type and

Position of Sound Source

4.1 Introduction

4.1.1 Motivation

From the previous chapter, the annoying sounds were successfully classified

based on their type and position under the supervised learning framework where

we predict not only predict the type but also the position of the sound sources. In

practice, the types are readily classified under the supervised learning frameworks

with one-hot encoded labels. However, in practice, the positions are not compatible

with those encoding schemes, since the sound source is positioned in a continuous

space, which makes the number of classes for training uncountable. Further, signif-

icant effort is required to collect data to add new categories. Some places within a

building are limited from collecting sufficient amounts of data, such as restricted

areas. Therefore, the main focus of this chapter is to understand whether the posi-

tions of the sound sources can be properly predicted even for the locations that were

not seen during training time. For this purpose, we introduce the zero-shot learning

(ZSL) framework [1] which is an efficient learning framework to transfer the knowl-
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Figure 4.1: Audio examples are assumed to be randomly sampled from latent distri-

butions that are conditioned on their class-embeddings [19]. Class-embeddings can be

projected onto attribute coordinates, which indicate the types and positions of sound

sources. For the ZSL setting, the classes are divided into seen (•) and unseen (◦)

classes. Learning a generative model conditioned on class-embeddings, unseen fea-

tures can be synthesized from the attributes of unseen classes (N).

edge from seen to unseen classes, and formulate the framework for our problem.

4.1.2 Related works

Zero-shot learning framework is inspired by the human ability to perceiver new

semantics or concepts from what one has experienced and learned previously. In ex-

isting ZSL literatures, the semantics of classes are projected into semantic-embeddings

or class-embeddings represented by human-annotated attributes [2, 3, 4], text de-

scriptions [5], and word-embeddings [6, 7]. These class-embeddings are used as

auxiliary information to transform information from the seen to unseen classes un-

der the ZSL setting. Therefore, existing ZSL models generally focus on learning the

mapping function between the feature representations of data and the corresponding
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class-embeddings [2, 3, 4, 5, 6, 7, 8]. However, although the ZSL setting assumes

that the test examples are restricted to unseen classes, considering the real world,

test examples could arise from all classes, including seen and unseen. Hence, [9] es-

tablished generalized zero-shot learning (GZSL) where the test examples can arise

from, and be classified as, either seen or unseen classes. For such an extended prob-

lem, existing methods have been identified as inefficient [1, 9, 10], and efficient

feature-generating approaches that have recently drawn attention [10, 11, 12, 13,

14, 15] with promising generative models, such as variational autoencoders (VAEs)

[16], and generative adversarial networks (GANs) [17].

4.1.3 Contributions of this chapter

In this chapter, we propose a ZSL approach for identifying the types and po-

sitions of sound. As shown in Figure 4.1, we assume that audio examples are ran-

domly generated from latent distributions conditioned on their corresponding class-

embeddings, which can be projected onto the attribute coordinates. Class-invariant

mapping between the attributes and audio examples should be learned from the

seen examples. As the target classes can be either seen or unseen, we should ver-

ify the model’s performance under the ZSL and GZSL settings. Thus, we focus

on feature generation using GANs conditioned on class-embeddings. The class-

embeddings are learned from the attributes in a higher-dimensional space along with

the generative model. As the existing work [9] evaluated the performance under the

ZSL and GZSL settings, our new indoor noise dataset, SNU-B36-EX, available at

https://github.com/7tl7qns7ch/SNU-B36-EX, is randomly split according to their la-

bels for the seen and unseen classes. Finally, we thoroughly evaluated the models on

SNU-B36-EX with standard ZSL/GZSL settings.
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Figure 4.2: Overview of training of our generative model. The red box represents fea-

ture extraction, the yellow box represents ‘type/position-aware attributes’ and their

projection on deep class-embedding at higher dimensions.
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4.2 Approach

4.2.1 Problem formulation

Our given training set S = {(xsi , ysi , a(ysi ))|xsi ∈ X s, ysi ∈ Ys, a(ysi ) ∈ As}N
s

i=1

where xsi ∈ X s denotes an audio feature representation from seen classes; ysi ∈ Ys

denotes the corresponding label that is one of the seen classes Ys; and a(ysi ) ∈ As

denotes the corresponding attribute that is one of the seen attributesAs = {a(y)|y ∈

Ys}. Attribute a(y) explains the semantic information of y in vector form. Using

this information, we can model the relationship between all classes, and transfer the

knowledge from the seen to unseen classes. For either ZSL or ZSSL, we are given

classes that are assumed to be the unseen potential target classes. We are given sets

of unseen classes Yu and the corresponding unseen attributesAu = {a(y)|y ∈ Yu}.

Here, the unseen classes are disjoint from the seen classes, that is, Ys ∩ Yu = ∅.

Unlike a set of seen data S, we cannot access features from unseen classes, i.e.,

xui ∈ X u is not available for the training set, but is available for the test set. Thus,

we have class-level information on the unseen classes during the training phase.

During the training phase, the following empirical risk

E(x,y)∼P (X s,Ys)L(f(x;W ), y), (4.1)

was minimized by training the training set S, where L, and f are the loss and map-

ping functions parameterized by W , respectively. During the training phase, data

from the seen classes can be used. We expect that the parameters from the aforemen-

tioned training process further minimize the following risks. The risks are defined

through the trainset domain, for the ZSL setting as,

E(x,y)∼P (Xu,Yu)L(f(x;W ), y), (4.2)
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when the test set consists of data from only unseen classes, and for the GZSL setting,

E(x,y)∼P (X s+u,Ys+u)L(f(x;W ), y), (4.3)

when the test set consist of data from the seen and unseen classes. Here, X s+u =

X s ∪ X u,Ys+u = Ys ∪ Yu.

Our goal is to model class-invariant mapping between classes and features using

these attributes. We assume that the data are created by the class-invariant transfor-

mation of the corresponding attribute, and our target is to learn the transformation

using a generative model. After training the generative model, it can synthesize the

unseen features, and they can be utilized for immunization of our classifier before

evaluating the test set. Figure 4.2 presents an overview of the training of our gener-

ative model.

4.2.2 Type/position-aware attributes

This section describes the annotations for the attributes a(y), called “type/position-

aware attributes”. These attributes express the types and positions of the sound

source in vector form. We assume that the distributions of the type and position

are independent of each other. Thus, we can formulate a vector of attributes by split-

ting the components of the type and position of the sound source as follows:

a(y) = [t(y), p(y)] ∈ Rnt+np , (4.4)

where t(y) ∈ Rnt and p(y) ∈ Rnp indicate the attributes of the source type and

position between the source and receiver with dimensions nt and np, respectively.

Throughout this study, because the source types are assumed to be from pre-

defined types of sounds, the attributes of the source type are encoded by one-hot
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vectors. Therefore, we define the attribute of the ith source type as

t(y) = 1nt(i) ∈ Rnt , (4.5)

which denotes an nt dimensional one-hot vector with only 1 for the ith element, and

0 for the others.

For the position of the sound source, we assume that the relative position be-

tween the source and receiver, p(y), is present in k dimensional Euclidean space, as

shown in Figure 4.1. Note that Figure 4.1 represents the case where k = 2. We can

split p(y) into k components, which indicate the corresponding spatial components.

p(y) = [p1(y), p2(y), ..., pk(y)] ∈ Rnp ,

pm(y) ∈ Rnpm , m ∈ {1, 2, ..., k},
k∑

m=1

npm = np,
(4.6)

where p1(y), p2(y), ..., pk(y) indicates the positional attribute for each spatial com-

ponent with dimensions of np1 , np2 , ..., npk , the sum of which is np. Furthermore,

we describe two different annotations for positional attributes.

Multi-hot annotation

First, we can define the positional attribute for the mth spatial components as

one-hot vector,

pm(y) = 1npm
(jm), m ∈ {1, 2, ..., k}, (4.7)

which denotes an npm dimensional one-hot vector with 1 for the jthm element and 0

for the others; and jm denotes one of the possible npm positions in the mth spatial

component. The annotation implies that the attributes make every position in each
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spatial component orthogonal to each other. Thus, the whole attribute in this case is

a(y) = [1nt(i),1np1
(j1),1np2

(j2), ...,1npk
(jk)], (4.8)

which is called a ‘multi-hot’ annotation. Annotation is considered as one of the

multi-label schemes [18].

Linear annotation

We can provide a linear relationship between each positional attribute as,

pm(y) = jm = rsm − rrm, m ∈ {1, 2, ..., k}, (4.9)

where rsm, and rrm denote the positions of the source and receiver projected on the

mth spatial component, respectively. Unlike multi-hot annotation, it can provide the

relative position between the source and receiver as a real number. Thus, the total

dimension of the positional attribute np is equal to k. This annotation provides a spa-

tially linear relationship between the positional attributes that are in the same spatial

component. Thus, the whole attribute in this case is

a(y) = [1nt(i), j1, j2, ..., jk], (4.10)

which is called a ‘linear’ annotation.

4.2.3 Zero-shot learning procedure

Deep class-embedding

The aforementioned attributes can be used as class-embeddings; however, class-

embeddings can be projected on a more complex and higher dimension. Thus, deeper
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class-embedding should be included in the end-to-end learning process using learn-

able networks from the attributes as input.

First, attributes are used as the following class-embedding [10]:

c(y) = a(y), (4.11)

which is the baseline for further implementation. In this setting, the model is ex-

pected to learn the structure of class-embedding directly from the attributes. Second,

we add an adaptive layer, A, parametrized by θA, which yields,

c(y) = A(a(y); θA), (4.12)

which is called an ‘adaptive’ layer. In this setting, the model is expected to learn the

structure of the class-embedding in a higher-dimensional space from the attributes.

Third, we replace the adaptive layer with separate parallel layers to learn each sub-

concept, A0, A1, ..., Ak, parametrized by θA0 , θA1 , ..., θAk
for each type and posi-

tional component, respectively. The outputs are then concatenated as,

c(y) = [A0(t(y); θA0), A1(p1(y); θA1), ..., Ak(pk(y); θAk
)], (4.13)

which is called a ‘separative’ layer. In this setting, the class-embedding is also

learned in a high-dimensional space from the attributes, but each corresponding part

of the class-embeddings is learned independently, and is then concatenated.

Feature generative model

Originally, a GAN consists of a generator G and a discriminator D, which are

alternately trained as a minimax two-player game [17]. Following [10], the class-
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invariant structure of the seen classes c(ys) can be learned through GANs condi-

tioned with class-embeddings, as shown in Figure 4.2. The generative model can

generate features of unseen classes through learned GANs conditioned on given un-

seen class-embeddings c(yu).

The model consists of a conditional generator G : Z × C → X parameterized

by θG, and a conditional discriminator D : X × C → [0, 1] parameterized by θD.

Here, the generator G takes a random Gaussian noise vector z ∈ Z ∼ N (0, 1)

and class-embedding c(y) ∈ C, and yields fake features x̃ corresponding to class

y. A feature representation x is then verified as real or fake by D conditioned on

c(y) ∈ C, yielding a value ranging from 0 to 1. The parameters of the generator and

discriminator of GANs, that is, θG and θD, are alternately trained by minimizing

the Wasserstein distance [19]. To train the model using the Wasserstein distance, the

Lipschitz constraint of the solution should hold. Thus, we add the gradient penalty

term to enforce the Lipschitz constraint, called WGAN-GP, which is a well-known

method for stably training GANs [20]. The loss of the WGAN-GP is as follows:

LWGAN (θG, θD) = E[D(x, c(ys); θD)]− E[D(x̃, c(ys); θD)]

−λE[(‖∇x̂D(x̂, c(ys); θD)‖2 − 1)2],
(4.14)

where x̃ = G(z, c(ys); θG) denotes fake features corresponding to the seen class-

embeddings c(ys), x̂ = αx+ (1− α)x̃ with α ∼ U(0, 1) denotes features sampled

uniformly along straight lines between the real and fake feature distribution, and

λ is the gradient penalty coefficient. Further, a classification loss is used to guar-

antee that the generated feature can be classified into the right class by a classifier

parametrized by θC . The classification loss is expressed as follows:

LCLS(θG) = −Ex̃∼px̃ [logP (ys|x̃; θ∗C)], (4.15)

where θ∗C is pretrained by minimizing the classification loss using features from the
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seen classes as supervised. Thus, the learning parameters of GAN, θG and θD, are

estimated by optimizing the entire loss as a minimax game:

θ∗G, θ
∗
D = arg min

θG
max
θD

LWGAN (θG, θD) + βLCLS(θG), (4.16)

where θ∗G and θ∗D are the optimal parameters for the generator and discriminator of

the model trained by the seen classes, respectively; and β is a hyperparameter of the

classifier loss weight.

Feature synthesis and classification

After training the generative model, we synthesize the same number (n) of un-

seen features for each unseen class using their class-embeddings, Ũ = {(x̃ui , yui ,

a(yui ))|x̃ui ∈ X ũ, yui ∈ Yu, a(yui ) ∈ Au}Nu

i=1 where x̃ui = G(z, c(yui ); θ∗G) and X ũ

denotes the synthesized feature distribution from unseen classes. By training the new

training set, the following modified empirical risk can be minimized for the ZSL set-

ting:

E(x,y)∼P (X ũ,Yu)L(f(x;W ), y), (4.17)

which denotes that the classifier f parametrized by W can be trained with the syn-

thesized features from unseen classes. For the GZSL setting, the synthesized features

can be combined with features from the seen classes as a new training set. The com-

bined set is utilized to train the classifier, f , to minimize the empirical risk for the

GZSL setting:

E(x,y)∼P (X s+ũ,Ys+u)L(f(x;W ), y), (4.18)

where a feature can be from either seen features xs or synthesized features x̃u from
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unseen classes, that is, X s+ũ, and the corresponding class is one of all the classes,

including the seen and unseen classes Ys+u. Instead of optimizing Equation (4.1),

we expect that optimizing this modified objective is more effective in addressing the

distribution discrepancy between the training and test set. In this study, we consider

a softmax classifier with cross-entropy loss as the classifier.
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4.3 Experimental Settings

4.3.1 Dataset preparation

Annotation

We annotate the ‘type/position-aware attribute’ on the dataset. We set the type

attribute t(y) = 1nt with nt = 5 and each element indicates dropping a medicine

ball on the floor (MB) for footstep sounds, dropping a hammer on the floor (HD),

hitting with a hammer on the floor (HH) for hammering sounds, dragging a chair

on the floor (CD) for sounds of dragging furniture, and operating a vacuum cleaner

(VC) for electrical appliances as described in chapter 3, respectively. We set the

positional attribute with k = 2 axes with p1(y) and p2(y) indicating the range (x-

axis in Figure 3.3) and floor (y-axis in Figure 3.3), respectively. For example, when

the sound source is ith type generated at j1 meter on the j2th floor, the ‘multi-

hot’ annotation is a(y) = [15(i),113(j1),13(j2), ] ∈ R21 and ‘linear’ annotation is

a(y) = [15(i), j1, j2 − 2] ∈ R7.

Comparison with other ZSL datasets in the audio domain

As introduced in chapter 2, there are certain datasets for ZSL in the audio do-

main, including ESC-50 [22], FMA [23], and MSD [24]. We would like to compare

our dataset with certain properties of ZSL settings. First, ESC-50 contains 2000

audio recordings of 50 classes, and Word2Vec is a 300-dimensional vector. The re-

searchers of [25] split the dataset into 40 seen and 10 unseen classes. FMA contains

19,466 audio recordings of 157 classes and has 40-dimensional instrument vectors

as attributes. MSD contains 406,409 audio recordings and 1126 classes, and GloVe

is a 300-dimensional vector. In [26], FMA was split into 125 seen and 32 unseen

classes, and MSD was split into 900 seen and 226 unseen classes. Table 4.1 sum-

marizes the statistics of our dataset and comparisons. The primary difference is that

SNU-B36-EX is for ZSL and ZSSL, while the others are for the ZSL task.

62



Table 4.1: Comparison of SNU-B36-EX with other ZSL datasets in the audio domain

Dataset SNU-B36-EX ESC-50 FMA MSD

Audio 8,450 2,000 19,466 406,409

Class 169 50 157 1,126

Audio per class 50 40 ≈ 124 ≈ 361

Attribute 7 or 21 300 40 300

Task ZSL, ZSSL ZSL ZSL ZSL

Data split

For the standard ZSL and GZSL tasks, we split our 169 classes into 135 seen

and 34 unseen classes with a data split scheme similar to [9], and the ratio between

them was approximately 4 : 1. The seen/unseen were randomly split by their labels,

and 80% of the examples from each seen class are used as the training set. The

remaining 20% of the examples from each seen class and all examples from unseen

classes were used as the test set. Therefore, the number of data-points from the

training and test sets were 5400 and 3050, respectively.

4.3.2 Evaluation metrics

We follow the evaluation metric proposed in [9] for our ZSL and GZSL settings.

Under the ZSL setting, the classifier can predict audio examples of the test set to

one of the unseen classes. Thus, the averaged per-class top-1 accuracy is computed

only for unseen classes, denoted by u )u. In the GZSL setting, the averaged per-

class top-1 accuracy is computed for the seen classes, s )s+u, and unseen classes,

u )s+u. Under this setting, the classifier can predict audio examples of the test set

to any class, which is more challenging than for the ZSL setting. We also calculated

the harmonic mean of s )s+u and u )u, which is denoted by h.
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4.3.3 Implementation details

We have two options for annotations: ‘multi-hot’ or ‘linear’, and two options for

the deep class-embedding layer, ‘adaptive’ or ‘separative’, and the case where the

attribute vector is used as the class-embeddings. For all the tasks, the architecture

of the generator and discriminator was a single hidden layer with 1024 hidden units

throughout this study. A single hidden layer with 512 hidden units consists of an

‘adaptive’ layer and 3 hidden layers with 170 hidden units as ‘separative’ layers. All

the activation functions for GANs are ELU [27]. The noise vector z is sampled from

a unit Gaussian distribution with 20 elements. We consider λ = 10 for the gradi-

ent penalty coefficient and β = 0.5 for the weight loss of the classifier. For every

iteration of the generator, we consider five updates for the discriminator. All hyper-

parameters were selected by trial and error, and early stopping was used to obtain

the best performance. After training the GANs, to construct Ũ , we synthesized the

same number (n) of unseen features for each unseen class. We increased the number

of n from 10 to 1000 during the experiments. To evaluate the classification perfor-

mance of classifier W on the test set, the following statement should be clarified:

Under the supervised learning setting (SUP), W is trained only on S and tested on

the seen class examples from the test set. Under the ZSL setting, W is trained only

on Ũ and tested on unseen class examples from the test set. Under the GZSL setting,

W is trained on the combined set S + Ũ and tested on the entire test set.

4.3.4 Comparison of zero-shot learning methods

As mentioned in [1, 9, 10], traditional ZSL models, which usually learn the com-

patibility between different modalities, are significantly degraded under the GZSL

setting. Thus, we compare our feature-generating methods with several non-generative

methods under the ZSL/GZSL settings to verify the effectiveness of our models.

ALE [3], ESZSL [4], SAE [8], and CMT [6] were selected for comparison.
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4.4 Experimental Results

Table 4.2: Comparison of classification performance (%) for the feature representa-

tions under zero-shot learning.

Feature extractor VGGish[28] 1D-CNN VGGish [28] + 1D-CNN

Pre-trained on trainset No Yes No+Yes

Dimension 128 128 256

ZSL u )u 50.23 51.18 62.94

GZSL

u )s+u 37.00 40.26 56.76

s )s+u 43.33 58.15 67.26

h 39.91 47.56 61.57

4.4.1 Audio feature representations

Although the SNU-B36-EX dataset was originally collected for zero-shot re-

lated tasks, we compared the representations under the ZSL/GZSL and supervised

settings. In this case, ‘linear’ annotation for the attributes and ‘adaptive’ layer for the

class-embedding were used to train the GANs. Table 4.2 compares the classification

performance of the feature representations under the SUP/ZSL/GZSL settings. Us-

ing both feature representations was the best choice in all settings.

Comparing the individual feature representations, as the 1D-CNN is trained on

the training set while the VGGish is not, the classification performance on the 1D-

CNN features is 92.96%, which is better than that of 74.15% of the VGGish features

under SUP. Despite the significant gap between the SUP performance results on the

VGGish features and 1D-CNN features, the ZSL performance results for the two

features (50.23% and 51.18%) are relatively close to each other. VGGish is pre-
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trained with a much larger dataset, which ensures generalizability, whereas the 1D-

CNN is more biased toward the training set. Under the GZSL setting, although the

classification performance on both feature representations significantly dropped, the

case of 1D-CNN, which has been accessed for seen classes, yields better results

than VGGish. Considering that Ũ is constructed by the GANs trained with features

from these extractors, these two extractors could be complementary to each other to

extract meaningful features from our audio dataset.

Figure 4.3: Comparison between two-annotation results (%) with ‘adaptive’ class-

embedding under different tasks under the ZSL and GZSL settings.

4.4.2 Standard zero-shot/generalized zero-shot learning tasks

The results of the standard ZSL/GZSL tasks for our feature-generating mod-

els and other traditional ZSL models using two annotations are summarized in Ta-

ble 4.3. For traditional methods, the performance of averaged top-1 accuracy u )u,

ranging from 14.47% to 45.12% under the ZSL setting and those on the harmonic

mean, h, ranges from 3.94% to 25.19% under the GZSL setting. With our feature
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Table 4.3: Performances (%) under the standard ZSL/GZSL settings.

Attribute Model
ZSL GZSL

u )u u )s+u s )s+u h

Multi-hot

ALE [3] 45.12 15.47 67.70 25.19

ESZSL [4] 34.06 6.51 7.01 6.75

SAE [8] 26.00 2.76 13.56 4.59

CMT [6] 38.24 8.65 64.59 15.25

FCLSGAN [10] 60.47 51.94 65.19 57.81

+Adaptive 50.94 40.76 68.00 50.97

+Separative 61.41 47.24 67.56 55.60

Linear

ALE [3] 27.06 3.59 7.78 4.91

ESZSL [4] 34.12 5.92 7.21 6.50

SAE [8] 14.47 3.88 4.00 3.94

CMT [6] 30.59 11.41 31.33 16.73

FCLSGAN [10] 56.47 48.12 63.85 54.88

+Adaptive 62.53 56.76 67.26 61.57

+Separative 61.12 52.47 68.15 59.29
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generative model, the performance of the averaged top-1 accuracy u )u, ranging

from 50.94% to 62.53% under the ZSL setting, and that of the harmonic mean h

ranges from 50.97% to 61.57% under the GZSL setting. The feature generative

model with ‘linear’ annotation and ‘adaptive’ class-embedding results in the best

performance on averaged top-1 accuracy of u )u, under the ZSL setting and the

harmonic mean h, under the GZSL setting.

Comparing the two annotations for our feature-generating methods, ‘linear’ an-

notation results in relatively better performance when compared with the ‘multi-hot’

annotation when the deep class-embeddings are modeled by the ‘adaptive’ layer to

classify unseen classes under both ZSL and GZSL settings. Hence, ‘linear’ annota-

tion would be more beneficial for transferring the knowledge on the attribute coordi-

nates in these tasks. With ‘multi-hot’ annotation, each subcomponent of the attribute

is designed as a one-hot vector, which is less informative for understanding the rela-

tions of the classes at latent space. The traditional methods tend to show better per-

formance when the attributes are given by ‘multi-hot’ annotations and significantly

lose their generalization ability under the GZSL settings for both annotations when

compared with our feature-generating methods. In particular, in the case of ALE [3]

and CMT [6] with ‘multi-hot’ annotations, the performance on seen classes s )s+u

(67.70% and 64.59%) was comparable to that of our feature-generating methods.

However, the performance of the unseen classes u )s+u of the cases is significantly

degraded compared to that of our feature-generating methods. Comparing the three

deep class-embeddings in this task, while the results of the deep class-embeddings

vary depending on the annotations, the ‘adaptive’ layer is the best choice to compre-

hend the information of the ‘linear’ annotated attribute in deep embedding space.

4.4.3 Effects of the number of unseen features per class

Under the GZSL settings, to appropriately combine the training set and syn-

thesized unseen set Ũ , we examine the performance sensitivity to the size of Ũ .
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Figure 4.4: Effects of the number of unseen features per class under standard GZSL.

Figure 4.4 shows examples of the results of the averaged top-1 accuracies of the

seen (s )s+ u) and unseen classes (u )s+ u), and their harmonic means h as a

function of the number of synthesized unseen features per class n, varying from

10 to 1000 for each task. The x-axis of the plot is log-scaled. The harmonic mean

h increases from n = 10 to n = 100 and becomes relatively flat until approxi-

mately n = 400 or 500 and decreases. As n increases, the averaged top-1 accuracy

of the seen classes (s )s+ u) tends to decrease from approximately 96%, whereas

that of the unseen classes (u )s+ u) tends to increase, starting from approximately

0%. When the number of synthesized unseen features is small, the classifier has

the capability of seen features with similar performance under SUP, but not that

of classifying the unseen features. By increasing the number of synthesized unseen

features, the classifiers would gradually shift their classification ability, which is

overfitted to the observed features, to classify unseen features. That is, as the size

of Ũ increases, the classifiers gain the ability to classify unseen features and lose

the ability to classify seen features for generalization to all classes. However, if the
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number of synthesized unseen features exceeds a certain value, the classifiers lose

their classification ability on the seen classes, whereas the ability on unseen classes

is saturated. Therefore, to classify both classes generally, the appropriate number of

unseen features that should be synthesized is n = 200− 500.

4.4.4 Visualization of the classifier’s prediction

Figure 4.5 and 4.6 show examples of the averaged per-class softmax outputs of

the classifier under the standard GZSL setting. The sounds of ‘dropping a medicine

ball at 8 m on the 1st floor’, ‘hitting with a hammer at 0m on the 3rd floor’, ‘dragging

a chair at 5 m on the 2nd floor’, and ‘operating a VC at 12 m on the 2nd floor’ are

from seen classes, and ‘dropping a medicine ball at 8 m on the 3rd floor’, ‘dropping a

hammer at 9 m on the 2nd floor’, ‘hitting with a hammer at 1m on the 2nd floor’, and

‘dragging a chair at 9 m on the 1st floor’ are from unseen classes, respectively. Thus,

our method predicts values close to the ground truth values for the seen and unseen

classes. However, the targets from the seen classes have sharp probabilities, whereas

those from the unseen classes have relatively smooth probabilities. This means that

the classifier can identify examples from seen classes with higher confidence than

those from unseen classes. Probability values of non-target classes are similar to the

target class.
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(a) MB8M1F - seen class (b) HH0M3F - seen class

(c) CD5M2F - seen class (d) VC12M2F - seen class

Figure 4.5: Seen examples of the averaged per-class softmax outputs of the zero-shot

classifier.
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(a) MB8M3F - unseen class (b) HD9M2F - unseen class

(c) HH1M2F - unseen class (d) CD9M1F - unseen class

Figure 4.6: Unseen examples of the averaged per-class softmax outputs of the zero-

shot classifier.
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4.5 Conclusion

We attempted to simultaneously estimate the type and position of an indoor

sound source using a zero-shot learning framework. Vectorizing the concepts of

classes with ‘type/position-aware attributes’ and capturing them with deep class-

embeddings were proposed to encourage our generative models to learn a more rea-

sonable class-invariant mapping from attributes to features. Thus, our generative

models trained with seen examples can be used to synthesize unseen features from

attributes of unseen classes that are the potential target positions that are not acces-

sible during training. The synthesized unseen features were used to train classifiers

that have the capability of classifying features from the seen and unseen classes.

Comprehensive experiments, including the comparison of feature extractors, differ-

ent encoding methods of the ‘type/position-aware attributes’ and class-embeddings,

various configurations of seen/unseen data, and other zero-shot learning methods,

are conducted using the new indoor noise dataset, SNU-B36-EX. The best perfor-

mance is about 62.53 % under the ZSL setting and 61.57 % under the GZSL setting,

when some parts of classes are not available during the training. In the later chapter,

we would like to apply the zero-shot learning frameworks for thoroughly verifying

the knowledge transferability from seen to unseen positions in several cases.
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Chapter 5

Knowledge Transferability Through Positions of Sound

Source

5.1 Introduction

5.1.1 Motivation

From the previous chapters, the annoying sounds were successfully classified

based on their type and position under both supervised and zero-shot learning frame-

works where we predict not only predict the seen classes during the training but also

the unseen classes during the training. Meanwhile, because the sounds are assumed

to come from pre-defined types, the seen and unseen classes have similar type distri-

bution. Therefore, the discrepancy between the seen and unseen classes is dominated

by the position of the sounds. A simple random data split according to their classes

could not completely separate the positions into seen and unseen classes. Thus, we

should further validate the model with another seen/unseen data split scheme to de-

termine the knowledge transferability of the methods from seen positions to unseen

positions, called a zero-shot source localization (ZSSL) setting.
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5.1.2 Related works

Sound source localization (SSL), especially for indoor sound or sound inside

a building, has been widely studied in the literatures. Most existing works on SSL

obtain signals of indoor sounds from multiple sensors or microphone arrays with

known geometry to utilize time/phase delays [1, 2], reverberation [3, 4, 5], and

energy-based information [6, 7]. Recently, there have been many attempts to solve

SSL problem using learning-based approaches in which the neural networks are

trained with non -informative noise sources [8], diverse sound events [9, 10], speech

of speakers [11, 12, 13], or simulated data [14]. However, they are not compatible

with our problem, in which audio signals are recorded using a single microphone.

Additionally, in sound event localization and detection (SELD), a spatio-temporal

characterization of the acoustic scene is obtained by combining the sound event de-

tection (SED) and SSL [15]. In earlier works on SELD, two problems are separately

treated with off-the-shelf module for detection, and classic array processing meth-

ods for localization [16, 17, 18]. In recent years, many attempts have been made to

utilize neural networks as learning based approaches for the SELD problems. The

joint probabilities for each type and position of the sound are predicted by a convo-

lutional neural networks (CNN) or convolutional recurrent neural networks (CRNN)

as a multi-label classification problem [19, 20, 21, 22].

5.1.3 Contributions of this chapter

Our problem is similar to SELD, in which we are interested in both the iden-

tification of the type and position of sounds. However, in terms of the output for-

mat, the types of sound are classified per signal, not SED, which aims to detect the

frame-wise occurrence of the sound events. In addition, while the existing SELD

uses multi-channel signals as the dataset, signals are given as a single channel in

our problem. In this chapter, we propose extended tasks, called zero-shot source lo-

calization, to validate the knowledge transferability through positions of the sound
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with the learned models. Under the ZSSL setting, the seen/unseen classes were ran-

domly split according to their positions. The sole difference between ZSL and ZSSL

is the data split scheme, as the ZSSL setting is expected to thoroughly validate the

knowledge transferability along with the distributed positions. Further, the general-

ized zero-shot sound source localization (GZSSL) test set of ZSSL contains seen and

unseen classes. In the ZSSL/GZSSL settings, three different cases are considered to

be our testbed, which is described in Figure 5.1.

5.2 Approach

(a) Case 1 (b) Case 2 (c) Case 3

Figure 5.1: Schematic elevation view of three different cases for the ZSSL tasks. The

classes are randomly split into seen (•) and unseen (◦) classes according to (a) position,

(b) range, and (c) floor.

As mentioned in the introduction of this chapter, since the only difference be-

tween ZSL and ZSSL is the data split scheme, the training procedures of architec-

ture including GANs and classifiers are the same as in the previous chapter. Like

the standard ZSL and GZSL tasks, the seen/unseen were randomly split by their

labels, similar to [23]. Also, 80% of the examples from each seen class is used as

the training set and the remaining 20% of the examples from each seen class and all

examples from unseen classes were used as the test set.

For the ZSSL and GZSSL tasks, we consider three different cases as follows.

1. Case 1: All classes are randomly split by their position (Figure 5.1 (a)). There
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are 39 possible positions in SNU-B36-EX, which are split into 31 seen classes

and 8 unseen classes. Therefore, a total of 169 classes are divided into 135 seen

and 34 unseen classes.

2. Case 2: All classes are randomly split by their range Figure 5.1 (b)). There are

13 possible range values, and we split them into 10 seen and 3 unseen classes.

Therefore, a total of 169 classes are divided into 130 seen and 39 unseen classes.

3. Case 3: All classes are randomly split by their floor (Figure 5.1 (c)). Sound

sources can be present on three possible floors. We choose the 3rd floor as un-

seen classes and the others as seen classes. Therefore, a total of 169 classes were

divided into 117 seen and 52 unseen classes.

Case 1 is the verification of the knowledge transferability of the methods from seen

positions to unseen positions when the seen positions are randomly distributed in

the building. Cases 2 and 3 verify the knowledge transferability along the x-axis

and y-axis, respectively.
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5.3 Experiments

5.3.1 Experimental settings

We follow the evaluation metric proposed in [23] for our ZSSL and GZSSL

settings. In this study, as the only difference between ZSL and ZSSL (and GZSL

and GZSSL) is the data split scheme, we consider the same evaluation metric for

the ZSSL and GZSSL tasks. Therefore, the averaged per-class top-1 accuracy is

computed only for unseen classes under the ZSSL settings, denoted u )u. In the

GZSSL setting, the averaged per-class top-1 accuracy is computed for the seen

classes, s )s+u, and unseen classes, u )s+u. Additionally, the harmonic mean of

s )s+u and u )s+u is computed as h.

All the implementation details and hyperparameters are the same as ZSL/GZSL

settings, the only difference is the feature extractors of each case are pretrained by

the corresponding seen classes. Therefore, after training the corresponding genera-

tive models, to construct Ũ , we synthesized the same number (n) of unseen features

for each unseen classes. We increased the number of n from 10 to 1000 during the

experiments. In order to evaluate the classification performance of classifiers on the

respective test set, each classifiers is trained only on seen classes and tested on the

seen class examples from test set. Under the ZSSL setting, each classifier is trained

only on synthetic unseen data Ũ and tested on unseen class examples from the test

set. Under the GZSSL setting, each classifiers is trained on the combined set S + Ũ

and tested on the entire test set.

5.3.2 Experimental results

Table 5.1, 5.2, and 5.3 summarize the results under the ZSSL/GZSSL settings

with three data split schemes for our models using two annotations as side infor-

mation. The ‘adaptive’ layer for the deep class-embeddings yields the best results

on the averaged top-1 accuracy of u )u and the harmonic mean h, when ‘multi-hot’
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(a) ZSSL settings (b) GZSSL settings

Figure 5.2: Comparison between two-annotation results (%) with ‘adaptive’ class-

embedding under different tasks with (a) ZSSL settings, and (b) GZSSL settings.

annotation is given under cases 1 and 3, and ‘linear’ annotation is given in case 2.

Figure 5.2 compares the performance of annotations with an ‘adaptive’ layer for the

deep class-embeddings under different tasks.

In case 1, where the seen/unseen classes are randomly split by their positions, the

performance of averaged top-1 accuracy u )u ranges from 38.82% to 50.88% under

the ZSSL setting, and for the harmonic mean, h, ranges from 34.91% to 49.33%

under the GZSSL setting. Compared with standard ZSL/GZSL settings, the perfor-

mance dropped for both annotations, even though the ratios of seen/unseen classes

were the same. This is because the positional attributes of unseen classes in case 1

are totally blocked during training, while the positional attributes of unseen classes

under standard ZSL/GZSL can be learned implicitly by another seen class with dif-

ferent types and at the same position. In particular, the performance of ‘linear’ anno-

tation is more significantly degraded and worse than that of ‘multi-hot’ annotation.

This means that it is beneficial to transfer the knowledge from the seen position to

the unseen position with ‘multi-hot’ annotation in this case.

In case 2, where the seen/unseen classes are randomly split by their range, the
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Table 5.1: ZSSL/GZSSL performances (%) under case 1 data split scheme.

Attribute Model
ZSSL GZSSL

u )u u )s+u s )s+u h

Multi-hot

FCLSGAN 39.47 33.24 70.44 45.16

+Adaptive 50.88 38.47 68.74 49.33

+Separative 43.94 35.18 68.07 46.38

Linear

FCLSGAN 38.82 31.76 38.74 34.91

+Adaptive 44.41 37.47 64.44 47.39

+Separative 45.18 37.12 61.04 46.16

performance of averaged top-1 accuracy u )u ranges from 28.51% to 58.67% under

the ZSL setting, and for the harmonic mean, h, ranges from 29.89% to 55.24% un-

der the GZSL setting. The performance with ‘linear’ annotation is better than that

with ‘multi-hot’ annotation. Compared with standard ZSL/GZSL settings, the per-

formance with ‘multi-hot’ is significantly degraded, while that with ‘linear’ drops

slightly. Regarding the seen/unseen classes being split by their range in this case,

‘linear’ annotation is more appropriate than ‘multi-hot’ annotation to model the

range components (x-axis in Figure 3.3) of the positional attributes for transferring

knowledge from seen to unseen classes.

In case 3, where the seen/unseen classes are randomly split by their floor, the

performance of the averaged top-1 accuracy u )u ranges from 9.77% to 18.62% un-

der the ZSL setting, and those on harmonic mean, h, ranges from 13.28% to 24.78%

under the GZSL setting. The performance with both annotations is significantly de-

graded compared with the standard ZSL/GZSL settings. A reason for this signifi-

cant performance degradation is the proportion of unseen to whole classes split. In

this case, the proportion of unseen classes is approximately 30.8%(52/169), while
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Table 5.2: ZSSL/GZSSL performances (%) under case 2 data split scheme.

Attribute Model
ZSSL GZSSL

u )u u )s+u s )s+u h

Multi-hot

FCLSGAN 35.18 28.62 56.46 37.98

+Adaptive 28.51 22.05 46.38 29.89

+Separative 31.85 23.64 51.08 32.32

Linear

FCLSGAN 57.33 47.08 65.54 54.79

+Adaptive 58.67 48.77 63.69 55.24

+Separative 58.05 44.67 69.85 54.49

the others are approximately 20.1%(34/169) and 23.1%(39/169). Furthermore, the

sounds on the 3rd floor, which are from unseen classes, have fairly different distribu-

tions from those on the 1st and 2nd floors, which are trained as seen classes. Despite

the significant drop in both annotations, the performance with ‘linear’ annotation is

more degraded compared with that having ‘multi-hot’ annotation. Hence, the floor

components (y-axis in Figure 3.3) of the positional attribute are more likely to be

independent of each other in the attribute space.

Under the GZSSL settings, to appropriately combine the training set and syn-

thesized unseen set Ũ , we examine the performance sensitivity to the size of Ũ . Fig-

ure 5.3 shows examples of the results of the averaged top-1 accuracies of the seen

(s )s+ u) and unseen classes (u )s+ u), and their harmonic means h as a function

of the number of synthesized unseen features per class n, varying from 10 to 1000

for each task. The x-axis of the plot is log-scaled. The harmonic mean h increases

from n = 10 to n = 100 and becomes relatively flat until approximately n = 400

or 500 and decreases, except for GZSSL case 3. As n increases, the averaged top-1

accuracy of the seen classes (s )s+ u) tends to decrease from approximately 96%,
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Table 5.3: ZSSL/GZSSL performances (%) under case 3 data split scheme.

Attribute Model
ZSSL GZSSL

u )u u )s+u s )s+u h

Multi-hot

FCLSGAN 16.35 15.15 61.88 24.35

+Adaptive 18.62 16.23 52.39 24.78

+Separative 16.23 15.31 58.89 24.30

Linear

FCLSGAN 13.42 11.69 38.80 17.97

+Adaptive 9.77 8.81 35.98 14.15

+Separative 9.77 7.88 42.05 13.28

whereas that of the unseen classes (u )s+ u) tends to increase, starting from approx-

imately 0%. When the number of synthesized unseen features is small, the classifier

has the capability of seen features with similar performance under SUP, but not that

of classifying the unseen features. By increasing the number of synthesized unseen

features, the classifiers would gradually shift their classification ability, which is

overfitted to the observed features, to classify unseen features. That is, as the size

of Ũ increases, the classifiers gain the ability to classify unseen features and lose

the ability to classify seen features for generalization to all classes. However, if the

number of synthesized unseen features exceeds a certain value, the classifiers lose

their classification ability on the seen classes, whereas the ability on unseen classes

is saturated. Therefore, to classify both classes generally, the appropriate number of

unseen features that should be synthesized is n = 200− 500.
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(a) GZSSL case 1

(b) GZSSL case 2

(c) GZSSL case 3

Figure 5.3: Effects of the number of unseen features per class under different tasks.

87



5.4 Conclusion

We attempted to validate the model with extended tasks when the seen/unseen

classes are separated by their positions, which is called zero-shot source localiza-

tion (ZSSL). We proposed three different data split cases under the ZSSL/GZSSL

tasks. The results indicate that the knowledge transferability of the model is effective

through the range direction (x-axis), but not effective through the floor direction (y-

axis). The results can be interpreted that there can be a huge gap in the data from the

different floors. The results could be more established by the further future works

with more audio data from other floors.
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Chapter 6

Conclusion

Contributions of this dissertation are as follows:

• First, we propose a learning-based approach to the type and position of sounds

and introduce our new dataset, SNU-B36-EX, collected in a real-world building

using a single microphone. Then, the experiment shows that the datasets can

be well classified with modern deep architectures, such as convolutional neural

networks.

• Second, we raise potential issues on the generalization ability of the existing

learning-based methods for sound classification and localization when the part

of data is limited. Then, we attempt to improve the generalization ability of the

model with efficient learning frameworks, called zero-shot learning, pursuing

data efficiency which can make the model robust on unseen data during the

training.

• Third, we observe that the types of sounds are assumed to be pre-defined types,

the most discrepancies between the seen and unseen classes are caused by the

position of the sounds. Therefore, we attempted to validate the model with ex-

tended experiments where the seen and unseen classes are separated by their

positions, which is called zero-shot source localization.
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We apply the supervised learning framework with two convolutional modules,

such as task-specific and task-general, to identify the type and position of the sound

source as a joint classification problem. The experimental results show that (1) our

datasets are successfully classified by the model, which further can be used as feature

extractors for transfer-learning, and (2) the task-specific and task-general feature

extractors are complementary to each other.

We apply the zero-shot learning framework to learn shared representations be-

tween audio signals and the corresponding classes as evaluating the methods on

the real-world datasets for source localization and classification problems. The ex-

perimental results show that (1) feature representation of new data can be synthe-

sized from previously accessible data with the attributes of the system inputs and

promising generative model, and (2) the synthesized unseen features contain suffi-

cient information to classify the seen and unseen classes of the test set, which can be

interpreted as some information are transferable from seen to unseen classes through

the proposed methods.

We proposed three different data split settings for the zero-shot source localiza-

tion tasks. The experimental results indicate that (1) knowledge transferability of the

model is effective through the range direction (x-axis), but not effective through the

floor direction (y-axis), which can be interpreted that there can be a huge gap in the

data from the different floors, and (2) therefore, the proposed methods are robust to

learn totally new data from a novel combination of positions and type, which makes

it possible to treat source localization and classification problem in a data-driven

way.

We expect that these procedures could be extended to general SELD problems

where the potential target position is not restricted to grid-like points, as in our prob-

lem. Furthermore, the system would have the versatility to robustly classify uniden-

tified sounds for other buildings by extending the dataset by collecting the sounds

from more than one building.

94



The superficial meaning of zero-shot learning frameworks is merely to pursue

sampling efficiency and reduce the time complexity of training the neural networks,

but the frameworks truly seek to the way of construct the global pattern beyond a

single instance of the system. From the perspective of establishing the patterns of

the sound propagation along with the complex building structure, these directions

of studies should be encouraged for the sound classification and localization as pure

data-driven methods rather than naive supervised learning which inconsiderately re-

quires massive data and expensive training procedures leading to a susceptible model

on the novel environments. We expect that the proposed learning-based methods can

potentially be more practical by not only just fitting well on the given data but also

having the generalization ability.
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초록

소리의 종류 및 위치를 파악하는 것은 음향학 분야에서 가장 중요한 문제 중

하나이다.특히복잡한건물구조에서기계적결함등으로인한소음원을식별해

야 할 경우 시각적 정보는 엄격히 차단되기 때문에 음향 정보에 의존 할 수 밖에

없다.그러나실제복잡한구조물은철저히계획된실험이아니기때문에소리의

전파가 이론을 따르기 않는다. 따라서 이 경우 음원의 종류 및 위치를 추정 하기

위해고전적인배열처리기술을이용하는기존의접근방식은제한될수밖에없

다.따라서,우리는실제건물에서단일마이크를사용하여음원의종류및위치를

추정하는학습기반접근법을제안한다.우리는이문제를우리가소리의정확한

위치를예측하는동시에미리정의된종류중하나로분류하는복합분류문제로

다루려고한다.음원의종류는원핫인코딩레이블로지도학습프레임워크에서

쉽게 분류 되지만, 가장 문제가 되는 부분은 훈련 중 보이지 않는 위치에서 나는

음원의정확한위치를예측하는것이다.이러한훈련집합과검증집합의잠재적

불일치를 해결하기 위해, 우리는 음원의 위치 추정 문제를 이전에 학습한 개념

에서 새로운 개념을 지각하는 인간의 능력에서 영감을 받은 제로샷 학습 문제로

해결하려한다.우리는각분류군을단순한원핫벡터로레이블링하는대신음성

데이터에서 특징 표현을 추출하고 음원의 종류 및 위치를 ‘종류/위치를 나타내

는속성’으로벡터화한다.이후,우리는음성에서추출된특징과속성을연결하기

위해 분류군에 따라 불변하는 함수를 검증된 생성 모델로 학습하여 해당 속성을

통해훈련중보이는클래서에서보이지않는분류군으로정보를전이한다.이때

생성모델로분류군조건부생성적적대적신경망을이용한다.우리가제안한방
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법은건물내에서수집된실제데이터셋인소음데이터셋, SNU-B36-EX에서평가

된다.

주요어:음원분류,음원위치추정,제로샷학습,생성적적대신경망

학번: 2017-28959
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