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Abstract

With mobile applications’ ever-increasing demands for memory capacity, along with
a steady increase in the number of applications running concurrently, memory capacity is
becoming a scarce resource on mobile devices. When the memory pressure is high, cur-
rent mobile OSes often kill application processes that have not been used recently to re-
claim memory space. This leads to a long delay when a user relaunches the killed appli-
cation, which degrades the user experience. Even if this mechanism is disabled to utilize
a compression-based in-memory swap mechanism, relaunching the application still incurs
a substantial latency penalty as it requires the decompression of compressed anonymous
pages and a stream of disk accesses to retrieve file-backed pages into memory. We identifies
conventional demand paging as the primary source of this inefficiency and proposes ASAP,
application switch via adaptive prepaging on mobile devices. ASAP performs prepaging by
combining i) high-precision switch footprint estimators for both file-backed and anonymous
pages, and ii) efficient implementation of the prepaging mechanism to minimize resource
waste for CPU cycles and disk bandwidth during an application switch. Our evaluation us-
ing eight real-world applications on Google Pixel 4 and Pixel 3a demonstrates that ASAP
can reduce the switch time by 22.2% and 28.3% on average, respectively (with a maximum

of 33.3% and 35.7%, respectively), over the vanilla Android 10. .

keywords:Mobile System, Prefetching, Memory Management, Operating System
student number: 2020-23014
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Chapter 1

Introduction

With the broad capabilities and flexibility of mobile computing, mobile applications con-
tinue to tout rich features to meet users’ diverse demands. This entails a continuous increase
in both codes and data footprint [S,[31]]. This trend has resulted in a constant demand for
larger memory capacity on mobile devices to address memory pressure issues. However,
the cost of the device and the power/area budget often limit its size.

Modern mobile OSes support virtual memory with compression-based swap [4}/14] to
run multiple applications under limited memory size. The virtual memory system evicts
unused pages of processes from memory to provide an illusion of memory space larger than
the actual memory capacity, enabling multiple applications to run concurrently even under
high memory pressure. However, the benefits come with additional overhead, degrading
performance. Slow I/O accesses increase the latency of fetching non-resident file-backed
pages from storage. To fetch anonymous pages in the compressed swap space, they first
need to be decompressed by CPUs at a page fault. Allocating free pages also consumes
system resources. Fetching pages on-demand via demand paging may not efficiently utilize
available resources such as CPU cycles and I/O bandwidth.

Our empirical analysis shows that the application switch time can increase by a factor
of 4x (in the order of hundreds of milliseconds) when the system is experiencing memory
pressure, possibly when running many background applications. This slowdown is mainly
attributed to the long blocking time introduced by demand paging for both file-backed and
anonymous pages during the application switch rather than freeing allocated pages.

A recent study shows that today’s smartphone users often run more than 10 applica-



tions [25]], and thus it is likely that the system is often operating under memory pressure
unless the phone has a large main memory capacity. It is also known that users switch
between applications more than 100 times per day [10]. We speculate that such frequent,
long-latency events can potentially affect smartphone user experience negatively. In this
thesis, we aim to reduce the latency of the application switch by minimizing the demand-
paging related slowdown. To achieve this goal, we propose ASAP, a mechanism for fast

application switch via adaptive prepaging. ASAP builds on the following key observations:

» Hardware resources (CPU and disk) for fetching non-resident pages are underutilized
during the application switch when the system is under memory pressure. For eight
popular Android applications, CPU utilization is measured only 34.2% during the

switch. Also, only 19.4% of the maximum disk bandwidth is used on average.

* File-backed pages and anonymous pages have different characteristics in their switch
Sfootprint, a set of accessed pages during the application switch. In particular, the
switch footprint for file-backed pages is much more invariant—about 75% of all ac-
cessed file-backed pages are invariant across switches, while only 44% of anonymous
pages are invariant. This motivates us to use different prediction strategies for prepag-

ing them.

We capitalize on these empirical observations to develop an effective prepaging ap-
proach. The first observation suggests that it is promising to utilize available resources to
prepage pages likely to be accessed at the beginning of an application switch. The prepaging
is helpful to maximize the effective CPU and disk bandwidth utilization, which can trans-
late to performance gains (i.e., reduced switch time). The second observation suggests that
the target pages to fetch need to be adapted at runtime to capture the applications’ dynam-
ically changing page access patterns. This improves the prediction accuracy for the switch
footprint, hence making ASAP more effective.

At an application switch, ASAP wakes up multiple prepaging threads to start fetching

both file-backed pages and anonymous pages. These threads run in parallel with application



threads to overlap prepaging with application computation. To accurately predict switch
footprint pages, ASAP employs an adaptive prediction mechanism. Specifically, a single
predictor maintains two tables: a candidate table and a target table. The predictor promotes
or demotes pages between the two tables based on the runtime information of their access
patterns. The prepaging threads issue fetch requests only for the pages in the target table,
while pages having a smaller chance of being accessed are maintained in the candidate table.

We implemented ASAP in Android OS and evaluated it using a set of eight popular
mobile applications on Google Pixel 4 and Pixel 3a. The evaluation results show that ASAP
considerably reduces the application switch time under memory pressure. ASAP reduces the
switching time by 22.2% and 28.3% on average (33.3% and 35.7% at maximum) on Pixel 4
and Pixel 3a, respectively, over the vanilla Android 10. This improvement is attributed to an
average of 39.8% and 25.2% increase in CPU and disk bandwidth utilization, respectively,
as well as 79.3% and 68.4% prediction accuracy for file-backed and anonymous pages,
respectively.

In summary, our contribution are summrized as follows.

* We empirically analyze the performance bottleneck of the application switch to iden-

tify opportunities for prepaging as a solution to the problem.

* We propose ASAP, an adaptive prepaging technique to reduce the switch time, which
is a key user interaction on the mobile device. ASAP is application-agnostic without

requiring any change to application codes.

* We integrate ASAP into Android OS and evaluate its performance by using eight pop-
ular mobile applications on high-end and mid-end devices (Google Pixel 4 and Pixel
3a). The results demonstrate the effectiveness of ASAP for reducing the application
switch time by 22.2% and 28.3% on average, respectively, over the vanilla Android

10.



Chapter 2

Background and Motivation

2.1 Android Application Memory Management

Application Lifecycle and Memory Management. In Android OS, an application (specif-
ically the application activity) is either in the foreground (i.e., having focus) or in the back-
ground (e.g., not visible). In other words, the application that a user is actively using is
considered to be in the foreground, while the applications that have been launched but are
not currently being used are considered to be in the background. When the system has suf-
ficient DRAM, all application data are kept in memory. However, a user often utilizes many
different applications over time, and eventually, application data exceed the DRAM capac-
ity. In such a case, the Android firstly drops file-backed pages cached in the page cache. If
that does not secure enough free memory, the Android low memory killer daemon (/mkd)
identifies the least essential application (e.g., one in the background) and kills it so that the
memory space that it occupied is freed [[22}26]. Note that this does not necessarily result in
the complete loss of the application state since Android applications often store a minimal
set of its states when the application is moved to the background. With this mechanism,
Android OS only stores a small set of essential application data in memory. For this reason,
when a user starts an application that was moved to the background a long time ago and
hence killed by Imkd, the application data is not resident in memory. Instead, the applica-
tion needs to recreate all of its activities from scratch utilizing the saved state information.
On the other hand, when a user starts an application that was moved to the background very
recently, it is much more likely that this application’s data still resides in memory, and the

application will be ready-to-use in a much shorter period. The time Android OS requires



for the former case is called launch time and the latter is called switch time (sometimes also
called hot launch time).

Compression-based Swap. An alternative approach to secure the free memory space is
the swapping, which moves cold anonymous pages to other medium. Current mobile sys-
tems employ compression-based swap, which compresses the least essential memory pages
and stores them in a separate memory region. Later, when the application accesses the com-
pressed pages, they are decompressed back to memory via demand paging. Compared to the
traditional disk-based swap mechanism, the compression-based in-memory swap is faster
since it can avoid long-latency disk accesses. This approach’s drawback is that i) com-
pressed memory pages still consume memory capacity, and ii) compression/decompression
spends CPU cycles. This mechanism is enabled by default in many commercial mobile
OSes such as Android OS and Apple iOS [4,[14]]. However, in practice, Android OS by de-
fault does not actively utilize this mechanism since /mkd is often triggered first to reclaim

memory space before a swap happens [22125}2635].

2.2 Launch Time and Switch Time

When a user relaunches an application after a while since its last usage, the latency to
reload may differ depending on the system’s memory pressure. For example, if the system’s
memory pressure is low (e.g., the system has not used much memory since the application’s
last launch), the application’s data will still reside in memory. Thus the application could
reload quite quickly (i.e., ideal switch time). On the other hand, if the system’s memory
pressure is high (e.g., the user utilized many different apps during the time window), the
application will be killed by Imkd. The relaunch is highly likely to require recreating the
application’s activities, incurring a much longer delay (i.e., launch time). Finally, if Imkd
is disabled, the compression-based swap mechanism will come into play. The application’s
anonymous pages will be stored in memory in a compressed form, and the file-backed pages

will be discarded. In this case, relaunching an application requires decompressing some of
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Figure 2.1: Application switch latency across different scenarios. Ideal Switch Time rep-
resents a case where all of the applications’ anonymous and file-backed pages reside in
memory. Switch Time (file-backed pages in disk) represents a case where all of the applica-
tions’ anonymous pages are resident in memory, but almost all of file-backed pages do not
reside in memory. Switch Time (most pages not in memory) represents a case where most
of the applications’ anonymous pages are already swapped out, so they are compressed and
stored in the compressed memory pool based on the compression-based in-memory swap.
Finally, Launch Time indicates a case where an application needs to start from scratch. Re-

fer to Section [6.1]for the detailed methodology and table [6.2]for benchmark applications.

the application’s anonymous pages and reloading file-backed pages from the disk.

Figure [2.1] presents the application launch/switch time of eight real-world applications
(AB: Angry Bird, CC: Candy Crush Saga, NY: New York Times, YT: YouTube, FB: Face-
book, TW: Twitter, CH: Google Chrome, QR: Quora) on Google Pixel 4. The figure shows
that the switch time is lower than the launch time in all applications. This indicates that
reconstructing activities of an application from scratch requires more time than retrieving
the relevant anonymous pages and file-backed pages from memory and disks, respectively.
This implies that an aggressive setting of Android /mkd increases the time to relaunch the

application, which confirms the findings of the previous literature [[19121,[22]. To avoid this



unnecessary delay in relaunching the application, it is better to lower the /mkd threshold (or
even disable it) so that the system can utilize compression-based swap more actively.

This figure also shows a significant gap between the ideal switch time and the switch
times under memory pressure. The gap between the ideal switch time and the switch time
(file-backed pages in disk) quantifies the overhead of retrieving file-backed pages from the
disk. The gap between the switch time (file-backed pages in disk) and the switch time (most
pages not in memory) indicates the overhead of decompressing anonymous pages from the
compressed memory pool. In fact, this overhead increases the application switch time by
a factor of 4x relative to the ideal switch time on average. Unfortunately, the real-world
switch time is often closer to the switch time (most pages not in memory) than the ideal
switch time when we consider recent trends: i) an increase in an application’s memory
capacity requirements [5]] and ii) an increase in the number of apps that a user runs concur-
rently [25].

To the best of our knowledge, there are no concrete studies on the threshold of user
perception of the application switch. However, previous studies [[8,[27]] on related contexts
imply that the delay of hundreds of milliseconds in the application switch may degrade the
user experience. According to Card [8]], users feel that a system is reacting instantaneously
only when the response time is shorter than 100 ms. Olenski [27]] reports that a 100 ms delay
in web page loading can degrade the user experience, resulting in a 1% drop in a company’s
revenue. Thus, we are convinced that maintaining a lower switch time over a wide variety

of usage scenarios is critical for user experience.

2.3 Opportunities for Prepaging

Limitations of Demand-Paging. Figure[2.1|shows that the switch time under memory pres-
sure is substantially worse than the ideal switch time. We find that such a huge overhead
resulting from i) decompressing anonymous pages and ii) retrieving file-backed pages from

the disk is attributable to the inefficiencies of demand paging. Figure [2.2(a) shows the CPU
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Figure 2.2: CPU and disk bandwidth utilization of a high-end device (Pixel 4) during the

switch time. CPU utilization is the average of eight cores

utilization and Figure 2.2]b) shows the disk bandwidth utilization of Google Pixel 4 dur-
ing switch time of eight applications under memory pressure. Overall, the CPU utilization
remains relatively low (i.e., less than 50%) for all applications except AB. Similarly, disk
bandwidth utilization is also much lower than the sustainable peak bandwidth most of the
time. As shown in Figure [2.3]for Google Pixel 3a, its disk bandwidth utilization is higher
than that of the high-end device (Pixel 4) because Pixel 3a uses a cheaper disk with rela-
tively low bandwidth. However, the empirical results show that the resources are not still
fully utilized in both cases.

Ideally, the CPU should have been fully utilized to decompress compressed memory
pages, and disk bandwidth should have been saturated to retrieve file-backed pages from
the disk. However, since the default demand paging mechanism initiates the decompression

of memory pages and I/O accesses only at a page fault and the page fault is handled in
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Figure 2.3: CPU and disk bandwidth utilization of a mid-end device (Pixel 3a) during the

switch time. CPU utilization is the average of eight cores

a single thread, the system wastes available resources and spends more application switch
time than necessary.

Opportunities and Challenges of Prepaging. The key idea behind ASAP is that we can
significantly improve the switch time by letting prepaging threads aggressively decompress
memory pages and perform I/O accesses before the application codes demand them. By
doing so, ASAP can fully exploit the available system resources (i.e., CPU cycles and disk
bandwidth), making the switch time under memory pressure much closer to the ideal switch
time. There are two main challenges in this approach. First, the system should effectively
identify the switch footprint, a set of pages to be accessed during the switch. Second, the
prepaging threads should be efficiently implemented to fully exploit available resources
while minimizing their interference with application threads. The following sections de-

scribe how ASAP addresses these two challenges.



Chapter 3

Design Overview

The empirical observations in the previous section suggest that it is promising to design
an adaptive prepaging. We first set two key requirements to design a practical prepaging

mechanism:

1. The proposed design should be able to accurately predict a set of pages that are likely

to be accessed during an application’s switch time (i.e., switch footprint).

2. The proposed design should be able to maximize the efficiency of prepaging by
achieving high system resource utilization (i.e., CPU cycles and disk bandwidth)

without interfering with the execution of application threads.

ASAP satisfies these requirements with Switch Footprint Estimator (SFE) and Prepag-
ing Manager. We have integrated them into the application switching process in Linux
kernel. Thus, ASAP is application-agnostic without requiring any changes to application
codes.

Figure[3.1]illustrates the overall structure of ASAP with key components shaded in gray
and its interaction with other systems. SFE consists of two estimators: one for anonymous
pages and the other for file-backed pages. Based on the analysis on the switch footprint, SFE
for file-backed pages utilizes offline profiling results as well as a lightweight runtime module
to estimate the mostly invariant switch footprint of file-backed pages. On the other hand,
SFE for anonymous pages is designed to track a dynamic switch footprint of anonymous
pages by gradually promoting pages that are likely to be fetched again during the next

switch.

10
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Figure 3.1: ASAP design overview.

These estimators generate a set of target pages for prepaging, which are retrieved from
kernel’s page fault handler and read/write system calls at the beginning of an application
switch. It is possible that page information in the prepaging target table becomes obso-
lete due to inconsistent memory reuse patterns of applications (e.g., application update,
post-installation optimization with dexopt). Based on the hit/miss history of prepaging, the
information is updated over time to ensure high prediction accuracy.

Prepaging Manager is responsible for prepaging threads that are used to fetch target
pages from a prepaging target table. It monitors a timing signal that notifies the start and
the end of the application switch event from the Android framework. Prepaging Manager
promptly wakes up inactive prepaging threads for the switched application when it receives
a start signal for application switch, and then it initiates prepaging. Multiple prepaging
threads are created according to the number of available CPU cores and run in parallel with

application threads to fully utilize the available system resources such as CPU cycles and

11



disk bandwidth. Once they finish issuing fetch requests for all the pages from the prepaging
target table, the prepaging manager makes them sleep again until the next switch. Note
that ASAP does not speculate the order of application usage. Prepaging manager initiates

prepaging only when an application actually switches in.

12



Chapter 4

Switch Footprint Estimator

4.1 Switch Footprint Analysis

To effectively estimate the targets for prepaging, it is important to understand the charac-
teristics of the switch footprint: a set of pages that are accessed during the switch time. For
this purpose, we perform an experiment that exhaustively records all pages accessed across
10 switches for each application (experimental details are available in Section [6.T). For this
we cleared the access bit of all present PTE in the address space of each application just
before the switch and then checked them right after the switch is completed.

File-backed Pages. Figure shows the switch footprint composition for file-backed
pages. The stacked bar shows how many times pages are accessed over the 10 different
switches. The switch footprint is largely invariant in this case. On average, about 75% of
pages are accessed 9 or 10 times and only 10% are accessed fewer than five times. This
highly invariant access pattern of the file-backed pages is due to the fact that a similar part
of codes and shared library files keep being loaded for the execution of an application.
Anonymous Pages. Figure shows the switch footprint composition for anonymous
pages. The access pattern is not as invariant as file-backed pages. About 44% of the anony-
mous pages are accessed 9 or 10 times across 10 switches. The portion of the invariant
(i.e., always accessed) pages is much smaller as the set of accessed anonymous pages easily
changes when the application context changes. Anonymous pages that an Android applica-
tion uses are categorized as one of two different heaps: Java heap and C native heap. The
large variation in anonymous pages can be attributed to how these heap pages are managed

in Android applications. First, Android applications rely on concurrent copying garbage

13
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Figure 4.1: Switch locality analysis for file-backed pages.
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Figure 4.2: Switch locality analysis for anonymous pages.

collection [3|] for the management of Java heap. This algorithm periodically identifies live
objects in the Java heap area, then copies them to an empty area for the compaction of the
live objects. The address of objects in the Java heap is changed over time in this process.
Second, pages in C native heap are managed by a pair of standard allocation (e.g. malloc,
realloc) and deallocation (e.g. free) functions. Some pages in the native heap are deal-
located when an application is switched out to background and reallocated when it is back.
This process also changes the address of the anonymous objects.

Implications. As the characteristics of the switch footprint for anonymous pages and file-
backed pages differ, so should their switch footprint estimators. Estimation for file-backed
pages can exploit the fact that file-backed pages are highly invariant to minimize the run-
time overhead. On the other hand, estimation for anonymous pages needs to rely more on the
runtime information so that it can correctly track dynamically changing switch footprints
across switch events. Still, the runtime overhead of tracking the switch footprint for anony-
mous pages is relatively low as the number of anonymous pages in the switch footprint is

much smaller than that of the file-backed pages, as shown in Figure 3] The rest of this

14
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Figure 4.4: Switch footprint estimator for file-backed pages.

section discusses the SFE design for both file-backed pages (Section 4.2) and anonymous
pages (Section |4.3)).

4.2 Estimator for File-Backed Pages

As shown in Figure[d.1] a major portion of file-backed pages accessed during the application
switch are invariant across switches regardless of the application context. To exploit this
characteristic, SFE for file-backed pages first performs offline profiling to identify the set of
potential candidates for prepaging, pages invariantly accessed across the different contexts,

and then later utilizes minimal runtime information to maintain a concise set of prepaging

15



targets, as shown in Figure 4.4

Offline Profiling. The estimator performs offline profiling to obtain a set of prepaging can-
didates. For this purpose, we measure the file-backed pages that are accessed during ten
switch events for each app, as in Figure Then, pages accessed more than eight times
(out of ten trials) are considered to be frequently accessed. The resulting set of pages is
stored as a file (Offline Candidate Table). Specifically, as shown in Figure 4.4] the profiled
result is stored as a map, where a filename is a key and a list of pairs (offset, len) is a value.
Each pair represents [offset, offset + len) pages within a file that are accessed during an
application switch (we call it an extent in the rest of this paper). Later, the profiled result is
reloaded at the launch time of this application.

Fault Logging. Fault logging happens at every switch event. Specifically, SFE logs the
inode and page indices of all faulted extents received from the kernel until the end of the
switch time. This is stored in a fault buffer, which is later utilized by the estimator after the
end of the switch time to update its prepaging targets.

Prepaging Target Management - Insertion. Once the switch finishes, a background thread
performs prepaging target management, exploiting the information from the offline profiling
and the fault logging. Prepaging Target Table stores information for extents that are to be
fetched by the prepaging threads. Ideally, we should insert only those extents that are likely
to be fetched in the near future. To identify such an extent, the estimator first inspects an
extent in the fault buffer and checks if the extent is also found in the Offline Candidate
Table. If so, the estimator inserts the corresponding entries into the Prepaging Target Table.
Prepaging Target Management - Extent Merging. The Prepaging Target Table may have
multiple extents on the same file. In such a case, if two extents are close to each other (e.g.,
the end of one extent is less than 16 pages apart from the start of the other extent), we
merge those two extents and create a larger extent that covers both. This is to avoid issuing
multiple fragmented 1/O requests and instead issue a single, sequential large I/O request,
which is often handled much more efficiently.

Prepaging Target Management - Eviction. Eviction from a Prepaging Target Table hap-
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Figure 4.5: Switch footprint estimator for anonymous pages.

pens when the fetched page turns out to be not utilized during a switch time. Specifically,
the estimator checks the mapcount, a kernel counter that counts the number of page table
mapping to a physical page, of each fetched page after the switch, and removes the page
from the Prepaging Target Table if the mapcount is zero. When a page is part of an extent,

the extent is divided into two smaller extents.

4.3 Estimator for Anonymous Pages

As shown in Figure 4.2} the set of anonymous pages accessed during the application switch
changes much more frequently than files. Moreover, anonymous pages are allocated when-
ever the application is launched, and thus offline profiling is not helpful for identifying
prepaging candidates. To effectively track the switch footprint for anonymous pages, we
focus on run time analysis, unlike the case of file-backed pages (Section {.2). Policies of
the estimator are depicted in Figure [d.5]

Fault Logging. During the application switch time, like the estimator for file-backed pages,
the Switch Footprint estimator for anonymous pages logs all anonymous page faults. Fault
information is logged at a fault buffer for later usage.

Access Logging. To track access information during switch time, this estimator clears the
access bit of every PTE represented by each page identifier in both the Prepaging Target

Table and the Online Candidate Table before every application switch time. Then, right
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before the end of the switch time, the access bits of all pages in both tables are again checked
to identify a set of pages that are accessed during switch time.

Prepaging Target Management - Check & Insertion. After the application switch time,
this estimator first checks if each page in the fault buffer is not already present in the Online
Candidate Table nor the Prepaging Target Table. If there are pages that are not already
present in the tables, they are inserted into the Online Candidate Table.

Prepaging Target Management - Promotion. Also, the estimator checks if each page in
Online Candidate Table has been accessed during the switch time by inspecting the access
log. If a page has been accessed during the last switch time, the page in the Online Candidate
Table is then promoted to the Prepaging Target Table.

Prepaging Target Management - Eviction. Every page in both the Online Candidate Table
and the Prepaging Target Table has its own timeout counter, which is the number of switch
events a page can experience before getting evicted from a table. The timeout counter (e.g.,
5) of a page is decremented after every switch time. If a specific page is not accessed until
the timeout counter reaches zero, it is evicted from the table that it belongs to. But, whenever
a page is accessed, the timeout counter of an identifier is reset to the default timeout counter

value (e.g., 5).
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Chapter 5

Prepaging Manager

Whenever an application switch event occurs, ASAP’s Prepaging Manager wakes up
prepaging threads that prefetch pages in the Prepaging Target Table, which eventually con-
structs corresponding PTEs. To maximize the prepaging throughput, we apply different

prepaging policies to anonymous pages and file-backed pages as follows.

5.1 Prepaging Anonymous Pages

Prepaging of anonymous pages requires decompressing swapped out pages in the com-
pressed in-memory swap space. Hence the task is CPU-intensive and should be carefully
scheduled not to incur the CPU contention between application threads and prepaging
threads. Although the default CPU utilization in switch time is low, as we reported in Sec-
tion[2.3] the application threads can demand more CPU resources when ASAP is applied as
the prepaging operations reduce page fault events, reducing application I/O time.

To this end, the prepaging manager maintains a set of threads for the prepaging of
anonymous pages. We pinned a thread on each core and assigned the lowest priority (i.e.,
SCHED_IDLE [18]]) to them, so they are scheduled only when there is no thread to sched-
ule. This allows the threads to opportunistically utilize the surplus CPU resources for the
prepaging of anonymous pages without incurring any CPU contention with the application
threads. The prepaging threads may not receive enough CPU time to decompress all the tar-
get pages if the application threads excessively use CPU, however that case is not observed
in any of the benchmark applications.

The distribution of prepaging work is done in a work sharing manner. Each thread re-
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trieves a batch (16 pages) from the Prepaging Target Table, and then conducts the prepaging
operations for pages in the batch. Specifically, for each virtual page in the batch, each thread
checks whether the virtual page is present in the application process’s address space. If not
present, it issues a swap-in operation for the virtual page to the swap subsystem (i.e., the
swap cache). The swap-in operation eventually becomes the decompression operation in
the in-memory compressed swap device. After the target page is decompressed, the thread
finally makes the corresponding PTE point to the swapped-in page. Once the thread finishes

these operations for every page in the batch, it moves to the next batch.

5.2 Prepaging File-backed Pages

The prepaging manager maintains another set of threads for the prepaging of file-backed
pages. File-backed pages impose a higher miss penalty than anonymous pages due to long
disk I/O time, and the threads need to hold multiple file system-related locks to read pages
from disk. Therefore, we take a different prepaging policy for file-backed pages as follows.

First, we select a file as a unit of prepaging work distribution to avoid lock contentions
related to file operations. Each thread selects a file from the Prepaging Target Table and
takes on prefetching all the target pages in that file. This policy prevents the different threads
from holding per-file locks. For the prepaging operation, each thread issues asynchronous
page cache read operations for the corresponding extents in the Prepaging Target Table.

Note that the ASAP takes pages not only accessed through page faults but also accessed
via read/write system calls into account. Hence not all prefetched pages need to be mapped
in the process’s virtual address space. So prepaging threads only places the fetched file-
backed pages on the page cache but does not make their page table mapping. However, their
fault handling cost is light (i.e., minor faults in Linux).

Second, we dedicate at least one thread for the prepaging of large files. Figure[5.1|shows
the cumulative distribution of accessed pages of files in the switch footprint of the appli-

cations. The figure shows that about 90% of the total number of accessed pages is part of
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Figure 5.1: Cumulative number of accessed pages CDF of files across the various appli-
cations during switch from one application to another one. Files are sorted by size. 100%

indicates the largest file.

the top 15% of large files. Thus we can expect that the prepaging threads spend most of
their time in the prepaging of pages in a small number of large files. If the large files are
assigned to a thread with the SCHED_IDLE priority, pages in those files are not likely to be
prefetched on time. To avoid this problem, we designate one thread with SCHED_NORMAL
priority and to be in charge of the large files. Considering the big-LITTLE heterogeneity of
the CPU cores in mobile systems, we assign that thread to run on a big core to maximize
the prefetching performance. We assign SCHED_IDLE to the other threads. We have empir-
ically found that this configuration is effective in reducing the miss ratio as well as the CPU
contention with application threads.

Lastly, we carefully handle the fetch of file metadata for high throughput. If file metadata
(e.g., logical block addresses of data blocks) is not in memory, a prepaging thread cannot
perform any further file system operations, incurring additional delay in prefetching. Our
extent-based prefetching exacerbates this problem. A small I/O request for the metadata
of the extent ready to be fetched can fall far behind a large prefetching I/O requests for
a previous extent, thereby blocking the prefetching threads from requesting asynchronous

I/0 requests even when CPU is idle. To avoid this problem, we let the prepaging threads
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to reorder the I/O requests, reading all required metadata blocks first before initiating the
prefetching of data pages. The metadata block reads are done by accessing file pages with
a file system-specific stride in file offset, 512 pages in our case, because a direct block

contains LBAs of 512 data blocks in F2FS [23]].
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Chapter 6

Evaluation

In this section, we evaluate the effectiveness of ASAP. Section [6.1] describes the evaluation
methodology and workloads. Then, we evaluate the latency improvements of our proposal in
Section[6.2] Section[6.3]analyzes the accuracy of the switch footprint estimator. We evaluate
the efficacy of the prepaging manager by considering improvement of the effective disk

bandwidth and CPU utilization in the remaining sections.

6.1 Methodology

Switching Latency Measurement. To measure the application switching latency, we used
the am command in the Android debug bridge (adb) [2]]. This command starts a selected
application and reports two types of switching latency. One is latency from a user’s touch to
the first rendering, and the other one is latency from a user’s touch to the full rendering [6].

The latter is reported only when the application developer implements the debug callback.

Table 6.1: Device Specifications

Device Google Pixel 4 Google Pixel 3a
CPU Octa-core Qualcomm Snapdragon 855 Octa-core Qualcomm Snapdragon 670
DRAM 6GB LPDDRA4x (eff. 4GB) 4GB LPDDR4x
Storage 64GB UFS 2.1 64GB eMMC 5.1
oS Android 10.0.0 (r41) with Linux kernel 4.14 | Android 10.0.0 (r41) with Linux kernel 4.9
zram 2GB (default) 2GB (default)
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Table 6.2: Applications and automated interactions to change contexts.

Application Automated Usage Patterns
Angry Bird (AB) Play a stage
Candy Crush (CC) Play a stage

New York Times (NY) | Browse and read articles

Youtube (YT) Watch videos

Facebook (FB) Browse and read posts

Twitter (TW) Browse and read posts
Chrome (CH) Browse keywords

Quora (QR) Browse questions and answers

Table 6.3: Chosen 3 application test sequences.

Sequence 1 | YT-CH-CC-AB-NY-QR-FB-TW

Sequence 2 | QR-NY-CH-CC-YT-TW-FB-AB

Sequence 3 | AB-FB-QR-TW-CC-CH-YT-NY

The information is reported only by the YT application among eight benchmark applica-
tions. Thus, we use the time to the initial rendering as a metric. For the YT application,
we observe that the additional latency overhead of the full rendering is less than 5% of the
switch latency (10-20 ms). Users could also start to interact with applications in the middle
of the rendering [17]. The actual latency overhead is expected to be insignificant when the
performance benefits of ASAP are considered. This justifies our usage of the time to the
initial rendering as the metric for evaluation.

System Configuration. For our evaluation, we use Google Pixel 4 and Pixel 3a, which
represent high-end and mid-end smartphones, respectively. Table describes their spec-
ifications. We implement ASAP in Android 10. When measuring the application switch

overhead under memory pressure, we consider two aspects for our experimental methodol-

ogy.
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First, we favor the compression-based swap approach over the /mkd, which often acts
first to secure free memory and prevents the system from being under memory pressure.
Note that Android currently enables both features by default. We disable the Imkd for our
evaluation to solely analyze the performance impact on application switch under memory
pressure.

Second, users show different application usage patterns such as a spectrum of day-to-
day use applications and the use of multitasking features. These lead to different memory
usage patterns even among smartphone users who have the same devices.

In this work, thus, we focus on evaluating the memory pressure impact of the applica-
tion switch for a fixed set of a wide spectrum of top rated applications (refer to Table[6.2).
We enable memory ballooning by considering the entire footprint of the target applications
instead of enabling numerous applications to cause memory pressure for the target devices.
The effective memory size of both Pixel 4 and Pixel 3a is 4GB. Throughout our evalu-

ation, we refer to the switch time measured on this configuration as the baseline switch time.

Workloads and Automation of Tests. In order to reduce the run-to-run variation in the
experimental results, we carefully devise an automation program that closely mimics a set
of pre-determined user interactions with adb. For example, the Facebook (FB) usage pat-
tern contains scrolling down the main news feed, searching for user profiles, and watching
their timelines. Another example would be YouTube (YT), where our program searches and
watches different video clips. The details of the usage patterns are listed in Table[6.2]

After execution of a certain application, e.g., Candy Crush (CC), we switch to the next
application, e.g., TW, by following a pre-determined sequence of applications. As there are
8! available application sequences for eight applications, we chose three random sequences
to evaluate ASAP (Table [6.3). The start and end time of the application switching operation
are informed by the Android activity manager [1}/13]. We iterate the selected sequence
10 times and measure the application switch time. With this user interaction automation

program, we repetitively conduct the same evaluation process.
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Figure 6.1: Normalized speedup of application switching latency on Pixel 4. Numbers in
parentheses indicate absolute switching latency of the baseline system in ms. Error bar

shows standard deviation over different sequences.

6.2 Application Switch Latency

Figure [6.1] and [6.2] present the speedup of ASAP over baseline switch time measured on
Pixel 4 and Pixel 3a, respectively, for 8 applications. We also evaluate the speedup by se-
lectively enabling prepaging for either anonymous pages or file-backed pages. Compared
to the baseline, ASAP shows an average of 22.2% and 28.3% performance improvement,
and a maximum of 33.3% (YT) and 35.7% (TW) on Pixel 4 and Pixel 3a, respectively.
We observe 6.8% and 14.6% performance improvement on each device on average when
ASAP performs prepaging only for anonymous pages (Anon-only). Among the eight appli-
cations, YT and TW show the most noticeable latency reduction on Pixel 4 and Pixel 3a,
respectively. With prepaging for file-backed page only (File-only), the latency is reduced by
18.3% and 14.4% on average. Here, YT and CH show a substantial latency reduction on
each device.

When both SFEs are enabled (ASAP), we observe additional performance benefits for

most cases as expected. However, in NY and QR on Pixel 4, integrating both SFEs does not
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Figure 6.2: Normalized speedup of application switching latency on Pixel 3a. Numbers
in parentheses indicate absolute switching latency of the baseline system in ms. Error bar

shows standard deviation over different sequences.

further reduce their switch latency.

6.3 Estimator Efficiency

Figure [6.3] presents the efficiency of the proposed switch footprint estimators for both
Anonymous SFE and File-backed SFE. Since we observe similar performance trends on
both devices, we will only present the results on Pixel 4 in the rest of this section. Precision
is defined as a fraction of correctly prepaged pages among entire prepaged pages. Recall
is defined as a fraction of correctly prepaged pages among all faulting pages during the
switch time when the baseline system is considered. Anonymous SFE shows an average of
68.4% precision and 60.4% recall. File-backed SFE shows an average of 79.3% precision
and 52.2% recall. The Switch Footprint Estimator for file-backed pages shows better preci-
sion relative to that of the Switch Footprint Estimator for anonymous pages. The difference
comes from the fact that the switch footprint of file-backed pages is more static, as described
in Figure [4.1]

The gap between precision and recall comes from the coverage of the prepaging tar-
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Figure 6.3: Switch footprint estimator performance.

get tables. Note that both precision and recall have the same numerator value while the
denominator of recall can cover more pages that have not been fetched by the proposed
prepaging scheme. We see a larger gap between the precision and the recall of file-backed
page prepaging relative to the gap of anonymous page prepaging. This could result from
the limited coverage of the candidate pages that is based on the static profiling. The static
profiling approach may not capture the entire set of pages that are likely to cause faults at

runtime.
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Figure 6.5: Disk bandwidth utilization. X-axis is a timeline normalized to baseline’s switch

time.
6.4 Resource Utilization

To show the efficacy of ASAP on prepaging, we evaluated the changes in CPU and mem-
ory bandwidth utilization on Pixel 4. The bandwidth utilization is computed as the ratio of
achieved file read throughput to the maximum sequential throughput measured in fio [[11]].
As depicted in Figure [6.4] ASAP eagerly allocates threads for decompression, which in-
creases the CPU utilization to 1.18 X on average over the total switch time, compared to the
baseline switch. We also notice the maximum of 1.35X utilization increase. The CPU has
been under utilized at the beginning of the application switch. In most cases, the anony-
mous prepaging threads have a large window of opportunity to fully exploit the available
CPU resources. Therefore, when ASAP is enabled, the CPU utilization improves at the

early stages of switching. Because the throughput of zram actually scales depending on the
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number of CPU cores, the anonymous prepaging threads can prepage anonymous pages at
great speed. For most applications, prepaging threads finish at around the first 30% of nor-
malized switching time. After that, the CPU utilization follows the CPU utilization pattern
of the baseline. On the same page as the CPU, ASAP also improves the I/O bandwidth by
25.2% on average, as shown in Figure[6.5] In most cases, we observe a noticeable increase
in the I/O bandwidth at the early stages of switching and the maximum achieved bandwidth
is also higher than that of the baseline. ASAP does not induce significant improvement over
the baseline in the case of AB. This is because AB is a highly parallel application with
high I/O utilization. Therefore, the I/O bandwidth improvement from our asynchronous I/O
threads is limited. The empirical analysis substantiates that ASAP efficaciously exploits
the resources at the beginning of the switch to considerably reduce the application switch

latency.

6.5 Efficiency of Core Scheduling

To quantify the effect of core scheduling of the file prepaging threads (Section [5.2)), we
compare our policy on Pixel 4 with four other static policies: big 1-core, big 4-core, LITTLE
1-core, and LITTLE 4-core. For example, in LITTLE 4-core, four file prepaging threads are
scheduled on the four LITTLE cores, and the threads are assigned the SCHED _NORMAL
priority. And we enabled only file prepaging to reduce performance deviation. Figure [6.6]
shows the delta of application switch latency (the latency of the four naive policies minus
the latency of our scheme). Each naive policy shows 1.06x, 1.05x, 1.02x, 1.04x times
slower than ours on average. Hence, our performance advantage comes from the fact that
our policy is versatile to different situations. For example, the big 4-core policy showed
14% and 13% better performance than our policy on YT and QR, however its performance
falls dramatically on AB since AB utilizes both CPU and disk bandwidth intensively, so
file prepaging threads contended a lot with AB’s application threads. On the other hand, the

LITTLE 4-core policy is better than ours in QR and AB, but it is vulnerable to applications
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Figure 6.6: Switching latency changes depending on different core scheduling policy com-
pared to ASAP’s core scheduling policies. Positive latency change means that the static

policy is worse than ASAP’s policy.

requiring heavy file I/O because of the slow prepaging speed.

6.6 Overhead

Anonymous SFE maintains an Online Candidate Table, Prepaging Target Table, and anony-
mous fault buffer. Their peak size for 8 applications is 1IMB, 2.5MB, and 0.5MB, respec-
tively. The size of the Offline Candidate Table, Prepaging Target Table and file fault buffer
used by File-backed SFE is 1.5MB, 0.2MB, and 0.5MB, respectively, at their peak respec-
tively. On average ASAP uses about 800KB per application.

Access bit logging (clearing access bits at the beginning and inspecting them at the
end of the switch time) extends the switch time by up to 14ms. Also, prepaging target
management operations which opportunistically runs between the switch events takes 40ms
CPU time in the worst case.

Finally, mis-prediction events result in extra fetch overhead, which could increase the
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energy consumption. On average, ASAP fetches an extra 10MB for anonymous pages and
file-backed pages, respectively. Also the peak throughput of decompression and the disk
bandwidth are 2GB/s and 600MB/s on Pixel 4, respectively. Therefore, each extra fetch
takes tens of milliseconds. When the peak power of UFS 2.1 [33]] and TDP of Snapdragon
855 [|32]] are considered, these extra fetches require negligible overhead. Actually, we expect
ASAP to save the energy consumption of the entire device including other components
(e.g., display) because ASAP reduces the total switch latency. Thus, this marginal energy

overhead can be easily offset.
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Chapter 7

Related Work

Efficient Memory Management in Mobile Systems. Modern mobile systems reclaim free
pages by killing the least essential applications (e.g., low memory killer in Android [26]).
The traditional low memory killer selects a victim process by considering the priority and
the number of pages of application only. SmartLMK [20]] proposes to kill an application
to minimize the expected user-perceived application performance by carefully considering
application usage statistics and application launch times. However, killing an application
process is the most aggressive policy in memory reclamation [7], and whenever a killed
application is launched again, it takes a large amount of computation and I/O operations,
which can increase the user-perceived launch latency and the energy consumption of mobile
devices [22,[24]

To end this senseless killing, Marvin [22]] swaps out predicted unlikely-to-be-used
pages to disks using ahead-of-time swap by modifying Android runtime (ART). Similarly,
SmartSwap [35] includes process-level early page swap based on the prediction result but
by addressing kernel codes. A2S [19] combines the low memory killer and the compressed
swap together by carefully selecting the victim pages for swap-out and the victim process to
kill. Acclaim [25]] prioritizes pages of foreground processes over those of background pro-
cesses during swapping. Kwon et al. [21]] propose to swap-out GPU buffers of background
processes to relieve memory pressure on mobile devices. Chae et al. [9]] propose to extend
the swap space of mobile systems to the cloud.

Accelerating Application Launch. Numerous studies have been conducted to shorten the

application launch time, and most have tried to prefetch data effectively [13,|16}28},30L(34]].
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FAST [16] profiles I/O sequences during application launches and uses the profiled se-
quences for data prefetching. FALCON [34] adopts machine learning to predict the users’
application usage pattern. It predicts the next application a user is going to use and preloads
the contents of the predicted applications. Nagarajan et al. [28]] uses collaborative filter-
ing to predict the impending applications while PREPP [30] uses prediction by the partial
matching technique. In contrast to them, ASAP does not speculate what application will
be executed. ASAP comes into play when an application actually switches in, avoiding un-
necessary prefetching. IORap [[13]] in Android 11 profiles the required I/O during several
cold-runs of an application and predicts which I/O will be required and does it in advance.
These works only focus on predicting applications or I/O patterns during application launch
events. However, our work predicts I/O patterns or memory access footprint during appli-
cation switch events.

Efficiently Utilizing Disk I/0 Bandwidth. The disk I/O performance is important to the
user-perceived application performance. Accordingly, the efficient use of disk I/O is impor-
tant. SmartlO [29]] discovers that read I/O operations are penalized by write I/O operations
and proposes to prioritize read 1/O operations over write ones. Joo et al. [[15] finds that
swap /O patterns for page faults are not efficient due to their small and random I/O re-
quest patterns. To overcome these inefficiencies, they insert pads to build large sequential
I/0 requests, which is more efficient in flash-based disks. FastTrack [12] prioritizes I/O re-
quests from foreground applications over those from background ones throughout the entire
I/0O stack. These approaches are complementary to our work in terms of improving the I/O

efficiency during disk access.
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Chapter 8

Conclusion

The goal of ASAP is to improve user experience on mobile devices, focusing on the applica-
tion switch, which is one of the most important user interactions. We proposed (ASAP), an
adaptive prepaging scheme that accurately retrieves pages ahead of time that are expected
to be accessed during application switch by fully exploiting the available system resources.
Our experimental results based on real-world Android OS applications show that ASAP can
reduce the application switch latency under memory pressure by 22.2% and 28.3% on rep-
resentative high-end and mid-end smartphones, respectively. While ASAP was evaluated in
the context of the application switch, we believe that it can easily be extended to reducing

application launch time as well.
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