

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

A Design and Implementation of SSDs
with Strong Plausible Deniability

2022년 8월

서울대학교대학원

컴퓨터공학부

조건희

A Design and Implementation of SSDs
with Strong Plausible Deniability

지도교수김지홍

이논문을공학석사학위논문으로제출함

2022년 8월

서울대학교대학원

컴퓨터공학부

조건희

조건희의공학석사학위논문을인준함

2022년 8월

위 원 장: 하 순 회 (인)

부위원장: 김 지 홍 (인)

위 원: 이 창 건 (인)

Abstract

While encryption can hide the contents of private data, it cannot hide the existence

of encrypted data. Thus, privacy is compromised from the adversary who coerces the

user to disclose the decryption key. To defend against such a coercive adversary, plau-

sible deniability (PD) solution, which supports data hiding have been proposed. To en-

hance plausibility, it is important to support strong PD, which makes it possible to fur-

ther deny the use of data hiding technique itself. Unfortunately, existing solutions sup-

porting strong PD are not practical to be implemented in modern flash-based storage

system due to their reliability penalty. In this paper, we propose a new access-centric

data hiding mechanism, Fidelius, which is practical in high-density 3D NAND flash

memory while supporting strong PD. By exploiting the on-chip resources, Fidelius

supports flash lock/unlock commands (bHide and bExpose) that can re-configure

the block-level data access permission. Because the adversary cannot inspect the data

insides locked block, Fidelius can deny the existence of private data by simply hiding it

in a locked block. Since the existence of locked blocks can be explained not as a result

of data hiding, but as a result of data sanitization, which control the accesses to stale

data, Fidelius can supports strong PD. To evaluate the proposed technique, we built

SafeSSD, an Fidelius-enabled emulated flash storage system that supports strong PD

with multiple-snapshot resistance. Our experimental results show that SafeSSD can

support strong PD with a negligible performance overhead and no reliability penalty.

keywords: solid-state drives (SSDs), 3D NAND flash memory, security, privacy,

plausible deniability, deniable storage

student number: 2019-21844

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 4

1.3 Thesis Structure . 6

2 Background 8

2.1 Flash Memory Overview . 8

2.1.1 Organization of Flash Memory 9

2.1.2 Flash Operations . 9

2.1.3 Multi-level Cell Technology 10

2.2 Flash Translation Layer . 11

2.2.1 Address Translation . 11

2.2.2 Garbage Collection . 12

2.2.3 Data Sanitization . 12

ii

3 Limitations of Existing PD Solutions 13

3.1 Lack of Deniability for Data-Hiding Mechanism 13

3.2 Lack of Practicality in High-Density Flash Memory 15

4 Threat Model 18

4.1 The Capability of Adversary . 18

4.2 Assumptions . 19

5 Access-Centric Data Hiding Technique 20

5.1 Approach Overview . 20

5.2 Flash Commands for Block Access Control 23

5.2.1 Organizational Overview . 23

5.2.2 Implementation . 24

6 SafeSSD: Fidelius-based PD Solution 28

6.1 Overview . 28

6.2 Fidelius-Aware FTL . 29

6.3 User Interfaces . 30

7 Evaluation Results 32

7.1 Experimental Settings . 32

7.2 Performance Evaluation . 33

7.3 Usability Evaluation . 34

8 Related Work 36

9 Conclusions 38

Bibliography 39

Abstract (In Korean) 48

iii

List of Tables

1 User-level steps τexp and τhid. 30

2 A summary of I/O characteristics of three traces. 32

iv

List of Figures

1 An overview of a NAND flash block. 9

2 Vth distributions of 2m-state NAND flash memory. 11

3 Operational overview of bHide and bExpose. 22

4 An overview of the Fidelius implementation. 23

5 Device-level experimental results for Fidelius 26

6 An organizational overview of SafeSSD 29

7 Performance of SafeSSD under three different workloads. 33

8 Operation latency of SafeSSD interfaces. 34

v

Chapter 1

Introduction

1.1 Motivation

As various security-sensitive data are commonly stored to mobile computing devices

(e.g., smartphones, tablets, and laptops), ensuring data security and privacy in such sys-

tems is one of the most critical design requirements. In order to manage sensitive data

in a secure and private fashion, these systems need to support a strong data-protection

capability so that sensitive data can be properly concealed from unauthorized accesses.

For example, data encryption techniques [1–3] are widely used to protect important

private data. Although encryption-based schemes are generally effective in avoiding

unauthorized data disclosure, they protect sensitive data with a clear hint that a storage

owner may hide some data. Such a hint, however, may lead to unwanted disclosure of

sensitive data when the storage owner is forced to reveal an encryption key by coercive

adversaries.

In order to hide data in an SSD without leaving any trace on data hiding itself, in

this paper, we investigate how to build SSDs with plausible deniability (PD). Infor-

mally, an SSD S is considered to support PD under a threat model TS if an owner can

claim that no data are hidden in the SSD S when data are actually hidden while an

adversary under the threat model TS cannot contradict this claim. When data are en-

1

crypted, for example, the adversary can easily disprove the claim of the storage owner

that no data is hidden in the SSD by decrypting the encrypted sensitive data. There-

fore, an SSD with data encryption does not support PD when the adversary is allowed

to acquire the secret key under the threat model.

Most early PD solutions [4–6] for supporting PD have focused on hiding the ex-

istence of encrypted sensitive data. For example, the encrypted sensitive data were

stored in the free space region of an SSD that was pre-filled with randomized dummy

data. Since the adversary cannot distinguish the encrypted sensitive data from random

dummy data of the free space region, the adversary cannot contradict the claim of the

storage owner.

Although those solutions are successful in hiding the existence of encrypted sensi-

tive data at a single point of time, they fail to conceal write operations to the encrypted

sensitive data if an adversary is allowed to take multiple snapshots of an SSD. For

example, even if the adversary could not distinguish encrypted sensitive data from

dummy data in the snapshot S0 captured at time T0, the adversary can detect some

questionable activities by comparing S0 with the snapshot S1 at time T1 (i.e., T1> T0)

if the sensitive data were modified within the interval [T0, T1]. In order to solve the

multi-snapshot problem, recent solutions [7–12] have proposed various schemes that

hide indications of write operations to encrypted sensitive data. A basic approach is

to generate extra dummy writes to the free space region so that an adversary cannot

identify questionable write operations to the free space region by comparing multiple

snapshots.

In order to better understand the pros and cons of existing PD solutions, we clas-

sify an SSD with PD support in two categories. When an SSD S is supported by a PD

mechanism ΜS , we call that the SSD S supports strong PD1 if S can plausibly deny

the existence of ΜS as well as the existence of hidden data. When the SSD S cannot

plausibly deny the existence of ΜS , S is defined to support weak PD. For example,

1Strong PD systems are called as invisible PD systems in [13].

2

most existing SW-centric techniques (such as ECD [11] or MDEFTL [12]) support

weak PD because they cannot plausibly deny the existence of its mechanism ΜS for

supporting PD. For example, it will be difficult to persuade an adversary why seem-

ingly random writes to the free space region are required for a normal SSD. Like the

existence of encrypted data in an SSD, the existence of a special PD mechanism (that

cannot be plausibly explained) can work as a strong hint to an adversary that some

data may be hidden. Therefore, it is essential to support strong PD under a powerful

adversary.

In this paper, our goal is to devise a PD mechanism M that can support strong

PD in modern high-density SSDs under a powerful threat model. (For a detailed threat

model, see Section 4.) Existing strong PD solutions (INFUSE [14] and PEARL [15]),

unfortunately, are difficult to put into practice in modern high-density SSDs. The key

data hiding techniques used in both INFUSE and PEARL are not applicable in mod-

ern high-density SSDs. For example, a voltage-based data-hiding scheme [16] used in

INFUSE [14], which relies on the reprogram operation that adjusts the voltage level of

the flash cells that were previously programmed, is very difficult to be reliably used in

modern high-density flash memory (e.g., TLC NAND flash memory) due to program

disturbance [17–19]. Likewise, WOM codes [20] that PEARL [15] depends on also

requires reprogram operations, so it shares the same limitation as INFUSE.

In order to support strong PD in modern high-density SSDs, we argue that data

hiding should not depend on either data conversions based on secret information (e.g.,

data encryption with a secret key) or data concealment based on data embedding within

other data (e.g., reprogram-based techniques at the flash cell level). Instead, data hiding

should focus on disabling accesses to sensitive hidden data. If such access control can

be supported by plausibly deniable interface functions, strong PD can be supported

without causing data reliability problems in modern high-density flash memory while

leaving no hint on the existence of a PD mechanism.

3

1.2 Contribution

In this paper, we propose Fidelius2, a new data hiding mechanism for modern SSDs

that achieves strong PD by employing an access-centric data hiding approach. Fidelius

hides sensitive data by disabling unauthorized access to the sensitive data using on-

chip access control. Since access control is managed within a flash chip, hidden data is

not accessible even with a very powerful adversary. Fidelius is based on a special flash

command, bLock, that was proposed to block unauthorized access to deleted files in

an SSD [22]. The bLock command is used to securely erase (i.e., sanitize) sensitive

private data in high-density 3D NAND flash memory. When a block is sanitized by

bLock, a read request to the sanitized block always returns zero-filled data (i.e., all

bits are ”0”).

In Fidelius, we use a simple variant of bLock, which we call bHide, that ex-

plicitly associates a secret password to a sanitized block. Once the block is locked

by bHide with a password p, a read request to the block returns a zero-filled page

(as with bLock). The locked block can be read normally again only after the block

was successfully unlocked by the bExpose command, which is a new flash command

proposed in Fidelius. The locked block can be unlocked by bExpose if bExpose

can verify the password p that was used by bHide when the block is locked. When

data in a block Bs need to be hidden, the block Bs is locked by bHide with a secret

password. As long as the secret password is unknown to an adversary, data in the block

Bs is safely hidden because a read request to Bs will return a zero-filled page, not a

hidden page in Bs. The hidden data in Bs can be accessed again only after bExpose

verifies the secret password of Bs.

In order to plausibly deny data hiding in Fidelius, locking blocks by bHide should

not leave any suspicious trace to an adversary. To satisfy this requirement, we assume

that a target SSD is based on modern 3D flash NAND memory which requires a de-

2Fidelius, which means more trustworthy/faithful in Latin, comes from Harry Potter’s Fidelius

charm that is used to conceal a secret [21].

4

layed erasure scheme for meeting its data reliability requirement.3 Under the lazy era-

sure scheme, a block is not erased when it is selected as a victim block of garbage col-

lection (GC) but its erasure is delayed until data are programmed on the block. Since a

block should be lazily erased, the block may be exposed to unauthorized access while

its erasure is delayed. To avoid such a security loophole, when a block is selected

as a victim of GC, it should be locked by bHide so that its data become immediately

inaccessible although its erasure is postponed. In fact, all (future) free blocks are main-

tained as locked blocks by bHide because they should be erased right before they are

used for programming data. When sensitive data are hidden by bHide, therefore, it

is not possible to distinguish whether blocks are locked for hiding data or blocks are

locked before they are erased. Since a block to hide sensitive data is taken from locked

blocks and the block is locked again after sensitive data are programmed, no suspicious

trace can be found even when multiple snapshots of an SSD are inspected.

For Fidelius to support strong PD, we need to explain why the bHide/bExpose

commands are used in an SSD. Although the existence of bHide can be plausibly

explained for supporting data sanitization in SSD, the existence of bExpose might

be considered suspicious to an adversary because it is not an essential command for

data sanitization. In a strong PD scenario, however, we do not admit the existence of

bExpose. Rather, we claim that our SSD supports data sanitization. Even if an adver-

sary tries brute-force attack to find out the hidden command that potentially support

data hiding capability, the result of arbitrary command execution cannot indicate any

data hiding. For example, even if an adversary executes bExpose by chance during

a brute-force attack, when a wrong password is used, following read results will not

change.

To demonstrate the effectiveness of Fidelius, we built SafeSSD, a Fidelius-aware

3Due to structural characteristics of modern 3D NAND flash memory, the longer the interval between

the time the block is erased and the time the data is programmed to the block, the worse the reliability of

data stored in the block [23, 24].

5

SSD emulator that supports strong PD (with multiple-snapshot resistance) using bHide

and bExpose. SafeSSD supports two logical volumes, the public volume and private

volume. The private volume, which exists within the locked blocks, is revealed by un-

locking all the locked blocks by using a custom command through the existing NVMe

admin interface [25]. Using metadata of a file system (e.g., super block) that were hid-

den in the locked blocks, the file system is mounted on the private volume and hidden

files can be accessed using standard file interface functions (e.g., read() and write()

system calls). Note that when the private volume needs to be hidden again, the file

system is unmounted while saving metadata of the file system to the locked blocks.

We evaluated SafeSSD using various workloads collected from enterprise server.

Our experimental results show that SafeSSD supports strong PD with negligible per-

formance overhead over a normal SSD. In our evaluation, the IOPS degradation of

SafeSSD was at most 0.35% over common SSDs with no data sanitization. To un-

derstand the usability of SafeSSD, we measured the private volume exposing time,

which is the time spent for unlocking blocks and mounting an ext4 file system, and

private volume hiding time, which is the time spent for unmounting the file system

and re-locking blocks. On a PC with 2.1-GHz CPU and 8-GB memory, when a 6.4-

GB private volume was supported out of a 128-GB SafeSSD, it took about less than

0.3 seconds for private volume exposing and less than 0.2 seconds for private volume

hiding.

1.3 Thesis Structure

The rest of this paper is organized as follows. In Section 2, we review flash-based

storage systems. Section 3 briefly introduce the existing PD solutions and reports their

limitations. Before describing Fidelius, the threat model is presented in Section 4. We

describe the proposed Fidelius with its new flash commands, bHide and bExpose, in

Section 5. An overview of SafeSSD including its FTL and user interfaces is presented

6

in Section 6. Evaluation results follow in Section 7. Related work is summarized in

Section 8, and Section 9 concludes with a summary.

7

Chapter 2

Background

2.1 Flash Memory Overview

The NAND flash chip is organized by multiple flash cells and peripheral circuits. The

flash cells are used to store data and the peripheral circuits are responsible for support-

ing flash operations. Flash cells that are placed on the same wordline (WL) constitute

a flash page and a flash block is a unit composed with hundreds of flash pages (e.g.,

768 pages [26]). A typical organization of the flash block is illustrated in the Figure 1.

As shown in the Figure 1, m flash cells in each row (e.g., 8K or 16K) are grouped to

form a single WL and there are n WLs in a block. In addition, a bitline (BL) is a unit

that is formed with n flash cells in each column and the BLs are shared by all flash

blocks in a flash chip. Each flash block has two select transistors, source select line

(SSL) and ground select line (GSL). We can determine the target block for each flash

operation (among flash blocks existing in a flash chip) by applying selecting voltages

on the SSL and GSL. BLs are connected to the page buffer, which is used to store data

temporarily before transferring data to off-chip through the data-in/out circuit.

As illustrated in the Figure 1, the floating gate of each flash cell traps electrons

to represent the threshold voltage (Vth) states. In order to adjust the Vth, electrons are

injected or ejected from the floating gate of the flash cell. Under a given control gate

8

This is a guide for the horizontal width of a figure

BL
0

BL
1

BL
i

BL
m-1

SSL

GSL

CSL

…

…

…

…

… …R
o

w
 D

e
c

o
d

e
r/

C
h

a
rg

e
 P

u
m

p

Page Buffer … …

… …
Data In/Out

Column Decoder/Charge Pump

WL
n–1

… … … …WL
k

WL
0

… … … …

…

…

…

…

…

…

Control

Gate

Oxide

Oxide

Substrate

S De–

WL

CSL BL

Floating

Gate

Flash Cell

Figure 1: An overview of a NAND flash block.

voltage, the flash cell acts as an off-switch or an on-switch depending on the amount

of electrons in the floating gate. For example, we can store ’0’ bit when the flash cell

has a high Vth (i.e., off state), and ’1’ bit when the flash cell has a low Vth (i.e., on

state).

2.1.1 Organization of Flash Memory

2.1.2 Flash Operations

During a program operation, high voltage (> 20V) is applied to control gates to cause

FN tunneling [27]. As a result of FN tunneling, the electrons are transferred from

the substrate to the floating gates of the selected flash cells. As electrons are injected

and captured into the floating gate, Vth of the flash cells increases. As flash cells on

the same WL (i.e., a page) share the same signal from the row decoder module, they

are programmed (or read) together as a unit. Since the program operation can only

increase Vth of flash cells, to program new data on the page, all the flash cells of

a page should be erased (i.e., erase-before-program). In order to erase programmed

cells, a high voltage (> 20V) is applied to the substrate (while control gates are set

9

to 0V) to transfer electrons from floating gates to the substrate. Then, the Vth of the

flash cell returns to the lowest level, and it becomes a state that can be programmed

again later. Since the whole block shares the entire substrate, all the cells constituting

a block are erased together.

The read operation probe the Vth level of the flash cells on the selected WL by

using a read reference voltage Vref . If Vth of the i-th flash cell in WLk is higher than

Vref (signal from the row decoder module), the i-th flash cell act as an off-switch, then

the cell current of BLi is blocked. On the other hand, if the Vth of the i-th flash cell is

lower than Vref , the i-th flash cell acts as an on-switch, then the cell current can flow

through BLi. By sensing the current of BLs, the stored data (in WLk) can be identified

and read out to the page buffer. Note that if we can disconnect the data transfer path

(between the page buffer and data-in/out circuit), even if the data can be staged into

the page buffer, the data transfer to the off-chip can be disabled. On the other hand, if

we can re-connect the data transfer path, it will be possible to control (i.e., block or

unblock) the accesses to data in the block intentionally.

2.1.3 Multi-level Cell Technology

A multi-leveling techniques [28, 29], that stores multiple bits in one flash cell, have

been developed to implement a large capacity flash memory in cost-effective way.

Multi-level cell (MLC) technology is extended to triple-level cell (TLC) which sup-

ports storing 3 bits per cell, and even further developed to quad-level cell (QLC) that

supports storing 4 bits per cell. Figure 2 shows the Vth distributions of flash cells for

2m-state NAND flash memory, which stores m bits within a single flash cell (i.e., m

is 2 and 3 for MLC and TLC, respectively). As m increases, more Vth states should

be put into the limited Vth window. In consequences as shown in the Figure 2(a) and

2(b), each Vth state should become finer and a Vth margin, a gap between two neigh-

boring Vth states, becomes narrower. Due to the smaller Vth margin, various noise

conditions can result the two neighboring Vth states to be more likely to be overlapped

10

This is a guide for the horizontal width of a figure

N
u

m
b

e
r

 o
f

c
e

ll
s

Vth

111

E

110

P1

100

P2

000

P3

D
e

s
ig

n
 L

im
it

010

P4

011

P5

001

P6

101

P7

MSB LSB

CSB

Vth margin

electron

D
e

s
ig

n
 L

im
itFloating

Gate

N
u

m
b

e
r

 o
f

c
e

ll
s

Vth

–

MSB LSB

11

E

–
– –

–
– –

– – ––
–

–
– –

10

P1

00

P2

01

P3

Vth margin
�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

(a) m=2 : MLC flash memory.

This is a guide for the horizontal width of a figure
N

u
m

b
e

r
 o

f
c

e
ll

s

Vth

111

E

110

P1

100

P2

000

P3

D
e

s
ig

n
 L

im
it

010

P4

011

P5

001

P6

101

P7

MSB LSB

CSB

Vth margin

electron

D
e

s
ig

n
 L

im
itFloating

Gate

N
u

m
b

e
r

 o
f

c
e

ll
s

Vth

–

MSB LSB

11

E

–
– –

–
– –

– – ––
–

–
– –

10

P1

00

P2

01

P3

Vth margin
�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
�

(b) m=3 : TLC flash memory.

Figure 2: Vth distributions of 2m-state NAND flash memory.

which results degraded flash reliability. For example, the number of program and erase

(P/E) cycles of the TLC flash memory is only allowed for about 1,000 counts whereas

MLC flash memory can endure until 3,000 P/E cycles. Due to the degraded reliability,

various effective optimization strategies that were introduced for smaller m’s can no

longer be effective or even cannot be applied as m increases.

2.2 Flash Translation Layer

2.2.1 Address Translation

To hide unique characteristics of flash memory and emulate it as a traditional block-

based storage device (e.g., HDDs), a flash translation layer (FTL), is adopted to flash-

based storage systems. Owing to the erase-before-program characteristics of the flash

memory, FTL uses out-of-place update mechanism which requires a logical-to-physical

(L2P) address mapping table, that translates from a logical sector address (of the host

system) to a physical page address (of the flash memory).

11

2.2.2 Garbage Collection

Out-of-place update mechanism results in lots of invalid pages, which contain the stale

data (i.e., updated or deleted). When invalid pages consume more than a certain amount

of space, the FTL triggers a a garbage collection (GC) process to prepare some free

blocks for future host write. During GC process, FTL selects a victim block, then

invalidates all the valid pages in the victim block after copying them to another block.

The related L2P mapping is also changed properly. The invalid block, which consists

of only invalid pages, are maintained in the free block pool until they are erased. When

there are no free pages to service host writes, FTL erases the block taken from the free

block pool.

2.2.3 Data Sanitization

Since the erasure of the block is triggered in an on-demand manner, there is a time gap

between when the victim block is logically invalidated and when the block is physi-

cally erased. As a result, there are always some amount of invalid blocks (that are not

yet erased) are maintained in the free block pool. However, remained invalid pages pro-

vide an opportunity for data recovery, which can be maliciously performed. To address

such a security loophole in a flash-based storage system, studies on data sanitization

(i.e., make deleted/stale data irrecoverable) have been actively conducted [22,30–38].

12

Chapter 3

Limitations of Existing PD Solutions

In this section, we briefly review existing PD solutions focusing on their key ideas and

limitations.

3.1 Lack of Deniability for Data-Hiding Mechanism

In general, a PD solution aims to hide the existence of hidden data from adversary by

making the system state (or behavior) with hidden data indistinguishable from usual

ones without any hidden data. There are many possible ways to achieve this goal, such

as leveraging ciphertext indistinguishability [39], exploiting device-specific proper-

ties (e.g., threshold-voltage level of a flash cell [16], aging characteristics of SRAM

cells [40]), and using special encoding scheme (e.g., a write-once memory (WOM)

code re-purposed to hide data [15]).

While existing PD solutions target various storage media (e.g., SRAM, magnetic

disk, and flash memory), many of them are designed to target NAND flash-based stor-

age systems to enjoy their ubiquity and high capacity. Considering the limited re-

sources of flash-memory controllers or mobile devices, most are based on ciphertext

indistinguishability which has low implementation complexity and minimum compu-

tational burden. For example, one of the flash-based PD solutions exploiting cipher-

13

text indistinguishability, DEFTL [41] hides encrypted private data among the random

noise (e.g., data generated by a cryptographically secure pseudorandom number gen-

erator [42]) pre-filled on the disk’s free space region. Since the ciphertext is indistin-

guishable from random noise, the adversary cannot tell if hidden data even exist, so

the device owner can plausibly deny the existence of the hidden data.

However, as such solutions cannot preserve PD if the adversary can examine the

device at multiple different time points. Since hidden data writes leave unexplain-

able changes on random noise, which is expected to remain static over time, the

adversary can detect indications of hidden data writes by comparing disk contents

(i.e., snapshots) before and after hidden data writes. To preserve PD against such

a multiple-snapshot adversary, for example, an advanced version of DEFTL, called

MDEFTL [12], occasionally (e.g., every minute) performs extra dummy writes to ob-

fuscate the hidden data writes. Thus, the device owner can attribute the questionable

changes in random noise to part of normal system behavior, making the adversary

cannot tell such changes are the results of hidden data writes.

Unfortunately, they result in suspicious system states or behaviors that are diffi-

cult to plausibly justify, making the adversary suspect that the device owner has an

intention to hide some data. For example, random noise needed to hide encrypted pri-

vate data consumes considerable amount of disk space, but there is no plausible reason

for random noise to be existed if the storage system is really normal one (with no

data-hiding mechanism). Moreover, the random noise changes observed across multi-

ple snapshot also makes a clear difference from normal storage systems (whether that

changes are due to dummy data writes or hidden data writes). Such differences makes

the adversary suspicious of the use of the special mechanism which potentially allows

the user to hide data. Even if the attacker cannot prove the existence of hidden data

through the disk snapshot investigation, the exposure of the existence of data-hiding

mechanism can lead the device owner to be placed in a dangerous situation (e.g., rub-

berhose attack).

14

To mitigate this problem, it is highly desirable to be able to plausibly deny not only

the existence of hidden data, but also the existence of the data-hiding mechanism. In

other words, even if the data-hiding mechanism is combined, system states (or behav-

iors) should be not different from that of the normal storage system with no data-hiding

mechanism. We will refer to such a data-hiding mechanism, which can also deny the

use of data-hiding mechanism itself, as a strong PD mechanism. Contrariwise, a data-

hiding mechanism which lacks of PD for data-hiding mechanism itself will be referred

to as a weak PD mechanism.

3.2 Lack of Practicality in High-Density Flash Memory

To our knowledge, there are two promising PD solutions, which have potential to pro-

vide strong PD. We will review their key data hiding mechanisms and discuss their

limitations in this subsection. The first solution, called INFUSE [14], uses a voltage-

based data-hiding technique called VT-HI [16] as a building block to provide strong

PD with multiple-snapshot resistance. VT-HI leverages threshold voltage side channel

to seamlessly hide private bits in flash cells. The key idea of VT-HI is to hide private

bits by transparently increasing the densities (i.e., the number of bits stored inside) of

already programmed flash cells without leaving detectable deviation in the overall Vth

distribution. For example, to hide a private bit ’0’ on a single-level cell, VT-HI slightly

increase the Vth of the target flash cell (while preserving the public bit value). On the

other hand, to hide a private bit ’1’, leave the Vth of the target flash cell as it is. The

private bits can be extracted later using MLC-style read reference voltage by the user

with the secret key (which determines the locations of hidden private bits). As there is

an enough variation in the range of Vth in flash cells, the Vth changes of some flash

cells can be obscured, the adversary cannot distinguish the storage system (with some

private bits hidden by VT-HI) from the typical SLC flash-based storage system.

The second solution, called PEARL [15], exploits properties of write-once mem-

15

ory (WOM) codes [20]. PEARL designs an WOM code (tailored for data hiding)

that makes a string of public bits with hidden private bits indistinguishable from a

string of only public bits. Like other WOM codes, PEARL reuses the invalidated flash

page (which is already programmed with the 1st codeword) by overwriting (i.e., re-

programming) it with the 2nd codeword. The difference is PEARL has two (rather than

one) 2nd codewords choices and it chooses the 2nd codeword according to the value

of the private bit to hide. For example, in PEARL, ‘11001’ or ‘10110’ can be used as

the 2nd codeword for representing the logical public bits ‘001’. Suppose we need to

re-program the flash cells of the target invalidated page to store the logical public bits

’001’. If we re-program the cells with the first option (i.e., ‘11001’), the cells logically

represent public bits ‘001’ and private bit ‘0’. Conversely, if we re-program the cells

with the second option (i.e., ‘10110’), the cells logically represent same public bits,

but different private bit (i.e., ‘1’). (When reusing the target flash page without hiding

the private bit, PEARL randomly choose one of the 2nd codewords.) As a result, since

the data-hiding mechanism is seamlessly combined to WOM code, seemingly it has

no difference with normal storage system using WOM code, thus make it possible to

deny the existence of data-hiding mechanism.

However, it is unclear whether they can be applied to high-density flash chips

that are mainstream in modern computing devices. To be deployed in practice, the

re-program operation, which is necessary to implement their data-hiding mechanism,

should be performed reliably. However, it is difficult to implement re-program oper-

ations in a reliable way. As multi-level cell technology advances, it becomes more

difficult to precisely shift the Vth of already programmed cells. Even if the Vth of the

target cells are shifted precisely, the Vth of another cells sharing the same wordline are

unintentionally increased due to the high program-voltage stress. Such an undesired

phenomenon is called program disturbance [17–19] and can cause uncorrectable er-

rors in valid pages that must be stored reliably [22]. Furthermore, even assuming that

16

the reliability issues of re-programs are handled4, they each additionally have their

own problems. In the case of VT-HI, it is difficult to deploy in real-world due to its

low usability. VT-HI has an encoding throughput of 4.3KB/s. For example, it will takes

about 4 minutes to hide a 1MB image, which is not practically usable. (The decoding

throughput is 0.3MB/s and is relatively high compared to the encoding throughput, but

it is still not practically usable.) In the case of PEARL, since WOM codes are rarely

(if ever) used in flash-based storage system, they can be viewed as the use of the spe-

cial mechanism by the adversary, which could potentially lead to weakening of the

deniability of the existence of a PD mechanism.

4For example, instead of encoding hidden bits into already programmed cells using re-programming

operations, combine hidden bits with public bits in a buffer and then program them on free cells at once.

17

Chapter 4

Threat Model

4.1 The Capability of Adversary

We consider computationally-bounded realistic adversary who can investigate snap-

shots of an SSD multiple times (i.e., multiple-snapshot adversary). For example, when-

ever the user crosses the border of a country, the officer collects snapshots of the SSD

and tries to detect the possibility of carrying sensitive data by analyzing and comparing

collected snapshots. All the suspicious system states (or behaviors) observed by exam-

ining snapshots can be seen as the possibility of carrying data and the adversary will

continue to suspect and maintain coercion. For example, if an adversary observes that

a mysterious dummy writes are being performed to the free space (through comparison

between snapshots), it can be suspected as an evidence of the data-hiding mechanism

and the adversary can perform further investigation or tortures the device owner to

admit the existence of hidden data. It is possible to obtain logical snapshots through

the host interfaces and it is also possible to obtain physical snapshots by de-soldering

flash chips and accessing the raw data through the known flash commands.

18

4.2 Assumptions

We establish the adversary based on the following assumptions:

• The adversary only stop coercing when there is no suspicious thing (e.g., unex-

plainable system states or behavior) is observed.

• The adversary is an on-event adversary [7], who can access the SSD only after

the data-hiding process is done. Thus, the adversary cannot capture the run-time

state of the device during the data-hiding process.

• The SSD firmware cannot be reverse-engineered. As in modern SSDs, the firmware

is properly encrypted, so that the adversary cannot directly reason data-hiding

mechanism through firmware investigation.

• The vendor-specific flash commands are not disclosed, and the adversary cannot

find any vendor-specific flash commands for the flash chip. Since a flash chip

becomes a black box whose internal behavior cannot be observed after being

packaged, it is impossible to find out the existence of vendor-specific commands.

• It is impossible to inspect stored data by probing raw flash cells due to the struc-

tural characteristics of 3D NAND flash memory and technical limitations of

probing tools [22].

• All the system software including the operating system, bootloader, SSD firmware

are malware-free.

19

Chapter 5

Access-Centric Data Hiding Technique

5.1 Approach Overview

We take an access-centric data hiding approach, which is based on the following two

insights. First, if we can support access control mechanism, which can set access rights

to private data, we can simply hide the existence of the private data by disabling ac-

cesses to private data. It would be also possible to retrieve the hidden private data

whenever the user wants it back. Since the private data do not interfere with other

public data (e.g., change the Vth of public data cells), there will be no data reliability

issues. Moreover, since access to private data is blocked, the result of writing hidden

data is invisible. It leads to a lightweight multiple-snapshot resistant PD solution as no

exhausting system behavior (e.g., periodic dummy writes) is required to obfuscate hid-

den data writes. Second, if we can plausibly explain the existence of inaccessible data,

we can also deny the existence of a data hiding mechanism. In other words, strong

PD can be supported if we can explain that such inaccessible data are not the result of

intentional access control to hide private data.

For plausible explanation of the existence of the inaccessible data, we assume that

a target SSD is based on modern 3D flash memory which requires a delayed erasure

scheme for meeting its data reliability requirements [23, 24]. Under the lazy erasure

20

scheme, a block is not erased when it is selected as a victim block of GC but its era-

sure is delayed until data are programmed on the block. Since a block should be lazily

erased, the block may be exposed to unauthorized access while its erasure is delayed.

To avoid such a security loophole, it is reasonable to employ data sanitization tech-

niques to prevent unauthorized information access. Among the various sanitization

techniques [22, 30–38], the lock-based sanitization technique [22] has been success-

fully demonstrated that disabling access to data (not physically destroy data) through

on-chip access control can achieve the same effect with data sanitization. In Fidelius,

we adopt same data sanitization approach, thus we can attribute (i.e., plausibly ex-

plain) the existence of inaccessible data to a result of data sanitization, not the result

of intentional access control to hide private data.

In Fidelius, access control mechanism inside a flash chip is supported by two new

flash commands, blockHide (bHide) and blockExpose (bExpose). As with lock-

based sanitization, Fidelius disables access (i.e. lock) to data by controlling the on-

chip access permission (AP) flag. The difference is, Fidelius supports only block-level

AP (bAP) flag, not page-level. In addition, on-chip password storage is required to

future on-chip password-based authentication for re-enabling access (i.e. unlock). The

bHide<pwd><pbn> command associates a password <pwd> to the physical block

number <pbn> by setting the <pwd> to on-chip password storage. It also lock the

block by setting the bAP flag of <pbn> to the disabled state. On the other hand, The

bExpose <pwd><pbn> command checks whether <pwd> matches a password set

in the on-chip password storage. If the password matching fails, the bExpose com-

mand would be aborted, thus the bAP flag remains in the disable state. Conversely, if

matching is successful, the block is unlocked by resetting bAP flag to the enabled state.

Note that if we set the on-chip password storage to a one-time password (which is ran-

domly generated) and forget the password, the data in the block becomes inaccessible

21

Operational overview of bHide and bExpose

Flash Chip
Page Buffer

Block 0x08 bAP

❷

ppn(pbn): physical page(block) number, E: enabled, D: disabled

…

Dout

0x21

0x22

0x23

User Password

Data A

Flash Page

Data B
D?

Yes

Lock
❹

000…0
failed read

Data BPage BufferPage Buffer

❶

pbn

bHide 0x08

operation

2F5D

pwd D

❸

read

ppnoperation

0x22
❺

pwd storage

Flash Chip
Page Buffer

Block 0x08 bAP

…

Dout

0x21

0x22

0x23

Data A

Flash Page

Data B
D?

No

read success
Page BufferPage Buffer

E ③pbn

bExpose 0x08

operation

2F5D

pwd ①

read

ppnoperation

0x22
④

⑤②
011…0

ppn(pbn): physical page(block) number, E: enabled, D: disabled

Data B

pwd storage(a) bHide.

Operational overview of bHide and bExpose

Flash Chip
Page Buffer

Block 0x08 bAP

❷

ppn(pbn): physical page(block) number, E: enabled, D: disabled

…

Dout

0x21

0x22

0x23

User Password

Data A

Flash Page

Data B
D?

Yes

Lock
❹

000…0
failed read

Data BPage BufferPage Buffer

❶

pbn

bHide 0x08

operation

2F5D

pwd D

❸

read

ppnoperation

0x22
❺

pwd storage

Flash Chip
Page Buffer

Block 0x08 bAP

…

Dout

0x21

0x22

0x23

Data A

Flash Page

Data B
D?

No

read success
Page BufferPage Buffer

E ③pbn

bExpose 0x08

operation

2F5D

pwd ①

read

ppnoperation

0x22
④

⑤②
011…0

ppn(pbn): physical page(block) number, E: enabled, D: disabled

Data B

pwd storage

(b) bExpose.

Figure 3: Operational overview of bHide and bExpose.

until the entire block is erased, so it can have the same effect as data sanitization5.

Figures 3(a) and 3(b) illustrate an operational overview of bHide and bExpose,

respectively. To lock physical block 0x08 (denoted as PB#0x08), the bHide <2F5D><0x08>

command (1) sets the on-chip password storage to <2F5D> and bAP flag to disabled

(2). After the bAP flag is disabled, reads to any pages (e.g., reads to physical page

0x22 in 3) in PB#0x08 fail, because Fidelius-enabled logic inside the flash chip

checks if the bAP flag is enabled (4) before sending the page data out of the flash chip

(5). On the other hand, as shown in Figure 7(b), to unlock PB#0x08, the bExpose

5As private data cannot be recovered without the password, it has the same level of security as

the encryption-based sanitization techniques [36–38] that sanitizes data by forgetting (i.e., deleting) the

encryption key of encrypted private data.

22

<2F5D><0x08> command (1) reads password of the block (from the on-chip pass-

word storage) to check if it matches <2F5D> (2). When a match fails, the command is

aborted and no on-chip states (e.g., bAP flag, on-chip password storage) are changed.

When the match it successful, Fidelius-enhanced logic clear the on-chip password stor-

age and reset bAP flag to enabled (3). The read request to page 0x22 (4) is then

successfully performed and the data can be transferred out from a flash chip (5).

5.2 Flash Commands for Block Access Control

5.2.1 Organizational Overview

Figures 4 shows an organizational overview of our proposed bHide and bExpose

implementations. As shown in Figures 4 (a), Per-block on-chip password storage and

bAP flag are allocated on the main data area and spare area of SSL, respectively. Note

that it is possible to program (and erase) the SSL of a block as a normal WL because

SSL transistors are implemented with normal flash cells in 3D flash organization [28].

If the bAP flag is disabled, the bridge transistor is disconnected. Thus, even if data
Organizational overview A bH flag implementation

Our bHide implementation

0x18 0x1A 0x19 WL8

WL9

WL15

Dout

E?

Bridge

transistor
VCC

Data Area

MSB CSB LSB

0x1B 0x1D 0x1C

0x2D 0x2F 0x2E

…

…

…

…

E E…

D E…

D D…

…PasswordSSL

…

Spare Area

bAP

Page BufferPage BufferPage Buffers

XOR Counter

N: off
Y: on

0: off
1: on Dout

Turn-Off

bAP Flag Cells

SSL

0

Page Buffers

……

CSL

WLk

……

… …

…… ……

…… ……

…

Majority Circuit

0 0 0

VREADSSL

DE

No current

(a) Organizational overview.

Organizational overview A bH flag implementation

Our bHide implementation

0x18 0x1A 0x19 WL8

WL9

WL15

Dout

E?

Bridge

transistor
VCC

Data Area

MSB CSB LSB

0x1B 0x1D 0x1C

0x2D 0x2F 0x2E

…

…

…

…

E E…

D E…

D D…

…PasswordSSL

…

Spare Area

bAP

Page BufferPage BufferPage Buffers

XOR Counter

N: off
Y: on

0: off
1: on Dout

Turn-Off

bAP Flag Cells

SSL

0

Page Buffers

……

CSL

WLk

……

… …

…… ……

…… ……

…

Majority Circuit

0 0 0

VREADSSL

DE

No current

(b) A bAP implementation.

Figure 4: An overview of the Fidelius implementation.

23

(placed in the main data area) can be read into the page buffer, it cannot be transferred

out of the flash chip, instead, all-zero data are sent out of a flash chip. To implement

password matching logic inside the flash block, we use existing on-chip resources,

XOR gate and bit counter. In general, flash chips are equipped with an XOR gate and a

bit counter to control the Vth distribution of the flash cell 6. Thus, we can compute the

number of different bits between the input password (e.g., <2F5D> in Figures 3(b))

and the password set in the on-chip password storage by using an XOR gate and a

bit counter. If password matching is successful, bAP flag is reset to enabled state and

on-chip password storage is cleared by erasing the SSL. Then, the requested data can

be transferred from the page buffer to the data out circuit.

5.2.2 Implementation

To implement bHide and bExpose with an organization shown in Figures 4 (a), two

requirements should be guaranteed. First, the bAP flag must reliably perform the role

of an off switch under various error sources (e.g., retention times). For example, if

the bAP flag value is mistakenly turned to enabled state after a long retention time,

the data in locked block can be accessed again and the hidden private data can be

accidentally exposed. Second, the on-chip password storage must stably store the user

password under various error sources, so that no false positive or false negative are

occurred during the password matching process. For example, if some password bits

(stored in the on-chip password storage) are flipped, bExpose with wrong password

may succeed and private data may be accidentally exposed, or bExpose with correct

password may fail and private data may be accidentally lost.

We first distinguish between enabled and disabled states according to the Vth of

flash cells for the bAP flag, and employ a majority circuit to satisfy the first require-
6To program a flash cell to a target state, the incremental step pulse programming (ISPP) scheme [43],

which gradually increases a program voltage until all the flash cells in a page are shifted to their target

Vth range, is commonly used. In ISPP, after each program step, flash cells are checked if they have been

correctly programmed using XOR gate and bit counter.

24

ment. If the Vth of bAP flag cells are shifted higher than VREADSSL (i.e., disabled),

voltage applied to SSL to activate the corresponding block during page read opera-

tions, no current can flow through BLs and the page buffer is disconnected from the

data out circuit. As a result, it is possible to block all read requests to the block. As

with a lock-based data sanitization technique [22], we allocate 9 flash cells for bAP

flag and employ a 9-bit majority circuit to implement error-tolerant bAP flag. When

we program bAP flag cells with a sufficiently high Vth (> VREADSSL), the bAP flag

can reliably turned off for a sufficient period of time (e.g., 1-year) with the help of the

majority circuit.

In order to determine the design parameter of the bAP implementation, we con-

ducted reliability evaluations using a total of 160 state-of-the-art 3D flash chips. We

evenly selected 64 test blocks from each flash chip at different physical block locations,

and tested the SSL in each selected block. Using an in-house custom test board, we

evaluated reliability metrics while varying the number of P/E cycles (from 0 to 10K)

and data retention requirements (up to 1-year). Our results are measured under worst-

case reliability condition7. As shown in Figures 5 (a), we evaluated how the number

of retention errors changes under various target Vth of bAP flag cells (under 10K P/E

cycles). For example, the pair (3.2V, 310us) means that the target Vth of bAP flag cells

is 3.2V, and the program time required to move their Vth to 3.2V is 310us. While (3.8V,

470us) pair and (4.1V, 600us) pair satisfy the bAP flag implementation requirements,

we conservatively select (4.1V, 600us) pair as our bHide design parameter.

It is more challenging to implement reliable on-chip password storage. The on-chip

password storage is also made up of flash cells and potentially there can be unavoidable

bit errors. However, since there is no ECC module inside the flash chip, password

matching logic cannot be helped by ECC, and simply employing a majority circuit

(like implementation of bAP flag) is also not feasible due to space (and cost) overhead.

7Our test procedure followed the JEDEC standard [44] recommended for commercial-grade flash

products

25

CARES LAB @ SNU 25/20Fidelius: An Integrated Approach for Supporting Strong Plausible Deniability in SSDs

Password Storage and Password Matching Logic

0

2

4

6

8

10

30 60 90 180 360

#
 o

f
b

A
P

fl
a

g
 c

e
ll

s

Time [day]

(3.2V, 310us)

(3.5V, 380us)

(3.8V, 470us)

(4.1V, 600us)

0

5

10

15

20

0K 0.1K 1K 3K 5K 10K

#
 o

f
ra

w
 e

r
ro

r
 b

it
s

P/E cycles of SSL

+ 1-yr retention

Majority (16-bits)

(a) Retention error bits of the bAP flag.

CARES LAB @ SNU 25/20Fidelius: An Integrated Approach for Supporting Strong Plausible Deniability in SSDs

Password Storage and Password Matching Logic

0

2

4

6

8

10

30 60 90 180 360

#
 o

f
b

A
P

fl
a

g
 c

e
ll

s

Time [day]

(3.2V, 310us)

(3.5V, 380us)

(3.8V, 470us)

(4.1V, 600us)

0

5

10

15

20

0K 0.1K 1K 3K 5K 10K

#
 o

f
ra

w
 e

r
ro

r
 b

it
s

P/E cycles of SSL

+ 1-yr retention

Majority (16-bits)

(b) Raw bit errors of the password cells.

Figure 5: Device-level experimental results for Fidelius

For example, for a password of 256-bits length, if we assign 9-redundancy for each

password bit, we need 256 9-bit majority circuits, which is 256 times the bAP flag

implementation overhead.

We satisfy the second requirement with no additional hardware resources by im-

plementing simple majority checking mechanism using only on-chip resources (e.g.,

page buffers, XOR gate, bit counter). Using an XOR gate and a bit counter, we can

find how many bits are different between the expected value (stored in the page buffer)

and the actually value (in the flash cells of on-chip password storage). We allocate k

flash cells for each bit of the password when performing bHide command and check

that the majority of each bit of password matches the expected value (i.e., input pass-

word from bExpose) by exploiting on-chip resources when performing bExpose

command. For each bit of a password (programmed in k flash cells), if majority (i.e.,

> k/2) are equal to the expected bit value, password matching logic determines that

the input password is correct. We set the password length to 256-bits, which is equiva-

lent to the longest key length supported by the advanced encryption algorithm [45]. To

determine k, we measured the changes in the maximum number of raw bit errors (per

1-KB in SSL) as shown in Figures 5 (b). Since the maximum raw bit error is 13-bits

26

under high P/E cycles with 1-year retention time, if the password (with redundancy)

fits within 1-KB and the majority of each bit of the password exceeds 13, we can guar-

antee error-tolerant on-chip password storage for 1-year. We set k to be 32, so that the

256-bits password (with 32 redundancy for each bit) fits into 1-KB while the majority

of each bit of the password (i.e., > 16) is greater than the maximum bit errors (i.e.,

13). Since the size of the main data area of SSL is usually 8K or 16K and only 1K

is dedicated for on-chip password storage, there is a remaining capacity (e.g., 7K or

15K). The remaining main data area of SSL will be used to store metadata for hidden

data management (see Section 6). Note that metadata is programmed together with

password and bAP when bHide is performed.

27

Chapter 6

SafeSSD: Fidelius-based PD Solution

6.1 Overview

We design a Fidelius-enabled flash-based storage system, called SafeSSD, a strong PD

solution with multiple-snapshot resistance. SafeSSD operates the same as a normal

SSD, except that it supports data sanitization. SafeSSD supports two logical volumes,

the public volume, which is placed across the entire blocks, and the private volume,

which is placed within the subset of free blocks. The free blocks constituting the private

volume are locked with the bHide set with the user’s secret password. Multiple private

volumes can exist in a SafeSSD, each is set with a different secret password, and can

be managed separately using the password as an identifier.

The user can manage the private volume through the existing NVMe admin inter-

face [25]. As NVMe admin interface provides passthru [46, 47] feature, which allows

users to submit an arbitrary command, the user can pass hidden commands with pass-

word. When receiving the hidden command, SafeSSD succeed the command only if

the password matches, and if the password is wrong, it reacts as if it does not sup-

port such a command (e.g., return invalid command opcode). Therefore, without the

password, the adversary cannot detect the existence of an interface for the PD.

28

An organizational overview of SafeSSD

SafeSSD

Fidelius-Aware FTL

ALLOC, EXPOSE, HIDE

Private Volume Manager (PVM)

Private L2P

Mapping Table

Private

Block List

Public L2P

Mapping Table

Garbage

Collector

NAND Array

Free

Block

List

Disk Admin Interface

Data

Sanitizer

bHidebHide,bExpose

Figure 6: An organizational overview of SafeSSD

6.2 Fidelius-Aware FTL

Figure 6 depicts an overall organization of SafeSSD. The private volume manager

(PVM) consists of a list of private blocks constituting a private volume and a private

L2P mapping table that links private data’s logical page address to physical page ad-

dress. All the private blocks are taken from the free blocks, which is garbage collected

and sanitized (i.e., locked with randomly generated one-time password) by garbage

collector (GC) and data sanitizer, respectively. Since private blocks are also managed

as free blocks, they can be erased to service writes to the public volume. When the GC

needs to erase a free block to service public writes, it checks the private block list of

PVM. If the free block is not part of the private volume, GC simply erases the block

and the block is used for servicing public writes. On the other hand, if the free block

is a private block constituting the private volume, the private data stored in the block

is migrated to a new private block (which is selected from the free block list). Note

that PVM manages only private volume in exposed state, and if no private volume is

exposed, that is, if all private volumes are in hidden state, private block list of PVM

29

Table 1: User-level steps τexp and τhid.

Tasks User-level steps

Exposing (τexp) EXPOSE(p) → re-scan → create a partition → mount

Hiding (τhid) umount → delete a partition → HIDE(p) → re-scan

is empty. The device owner can avoid unintentional erasure of private data by leaving

the private volume in an exposed state, while hiding the existence of private data by

changing the private volume to hidden state under the attacks.

6.3 User Interfaces

SafeSSD supports several hidden commands to managing private volumes. PVM re-

ceives hidden commands from the host system and directly perform flash operations

on the blocks. Assume that a private volume σ set with user’s secret password p exists

on SafeSSD. For 1) ALLOC(p, c), PVM selects and erases blocks as much as capac-

ity c (in MB) from free (i.e. locked) blocks. Then those blocks are allocated to σ and

construct private L2P mapping table entries. For 2) EXPOSE(p), PVM tries bExpose

with p on all locked blocks and makes a list of unlocked blocks. For unlocked blocks,

PVM retrieves the L2P mapping table of σ, which was stored within the SSL, and

reconstruct it. The PVM then increases the usable disk capacity of the SafeSSD by

the capacity of σ, making the σ visible to the host system as an additional disk space

(i.e., the increment of the number of sectors). Lastly, for 3) HIDE(p), PVM store the

σ’s L2P mapping table and the user password p on the SSL by performing bHide on

all blocks constituting σ. Then PVM decrease SafeSSD’s usable disk capacity by the

capacity of σ, making the σ invisible to the host system again.

In addition to the help of the NVMe admin interface, the host system exploits the

existing disk utilities (e.g., fdisk [48], mkfs [49], etc.) to access private volume through

30

common file interface. After the EXPOSE(p) command is executed successfully, the

host system can detect the increased usable disk capacity through the existing disk re-

scan feature [50,51]. After the private volume is visible to the host system as additional

sectors, the host system can create a partition and mount the file system through the

existing disk utilities. (If it is first private volume use, ALLOC(p, c) command should

be performed to allocate blocks for the private volume and a file system should be

formatted on private volume.) When hiding the private volume, it is necessary to make

the private volume invisible again. The host system must unmount the file system

mounted on private volume, delete its partition, and re-lock the unlocked blocks by

passing the HIDE(p) command to SafeSSD. Lastly, disk re-scan should be performed

to restore the original SafeSSD capacity. We divide the above steps to be performed in

the host system into exposing task (τexp) and hiding task (τhid) and summarized them

in Table 1.

31

Chapter 7

Evaluation Results

7.1 Experimental Settings

We implement SafeSSD on FEMU [52], a state-of-the-art SSD emulator, with an Fi-

delius-enabled emulated flash model. In the performance evaluation, we limited the

SSD capacity to 16-GB for fast evaluation while we set the SSD capacity to a maxi-

mum of 128-GB to reflect the actual user-perceived latency in usability test. We set op-

eration timing parameters of flash commands for tREAD, tPROG and tBERS to 70µs,

660µs and 3.5ms, respectively. In addition, based on our device-level experiment re-

sults (in Section 5), we set operation timing parameters of tBHIDE and tBEXPOSE to

600µs and 3.5ms, respectively.

For the performance evaluation, we use three different benchmark traces, Var-

Table 2: A summary of I/O characteristics of three traces.

Benchmark read:write File access pattern Write size

Varmail 3:7 create/append/delete e-mails 16–32 KB

OLTP 2:8 overwrite data files and log files 4–256 KB

Fileserver 4:6 create/append/delete files 16–128 KB

32

mail, OLTP and Fileserver, from the Filebench benchmark tool [53]. Table 2 summa-

rized I/O characteristics of the benchmarks: the read to write ratio, the access pattern,

and the write size. For a stable evaluation result, each trace initially fills 75% of the

SafeSSD capacity and continues I/O until 4 drive writes are performed. We evaluated

our SafeSSD against a conventional SSD, which does not support no data sanitization.

Since the public volume and the private volume are managed in the same way, only the

capacity is different, there is no difference in performance. Thus, we will only show

the performance of the public volume.

For the usability test, we measured the time spent performing 1) τexp and 2) τhid.

Since the time consumed by SafeSSD’s hidden command is correlated with the capac-

ity of the disk and private volume, we vary the entire disk capacity and the capacity of

the private volume. We set the disk capacity to 64-GB and 128-GB, and measure the

latency when the private volume capacity was 2.5% and 5% of the disk capacity.

7.2 Performance Evaluation

To evaluate the performance of SafeSSD, we measure IOPS under the three work-

loads. SafeSSD’s IOPS is normalized over one from an SSD which does not support

data sanitization. Figure 7 shows normalized IOPS of SafeSSD under each workload.

CARES LAB @ SNU 23/20Fidelius: An Integrated Approach for Supporting Strong Plausible Deniability in SSDs

4. Evaluation

0.99

0.992

0.994

0.996

0.998

1

MailServer DBServer FileServer Average

N
o

r
m

a
li

z
e

d
 I

O
P

S

Varmail OLTP AverageFileserver

Figure 7: Performance of SafeSSD under three different workloads.

33

Since most of the time taken for GC is spent copying valid pages within a victim

block, data sanitization (i.e., performing bHide) impose only negligible performance

overhead. As a result, SafeSSD shows almost the same performance as a normal SSD.

Note that SafeSSD supports only block-level data sanitization (which is the minimum

requirement for strong PD), not page-level data sanitization. If SafeSSD additionally

performs page-level data sanitization, the performance overhead will increase slightly,

but still be comparable with a normal SSD [22].

7.3 Usability Evaluation

In order to evaluate the usability of the private volume, we evaluated the operation

latency of each task in Table 1 as shown in Figure 8. Because some steps composing

each task are affected by the size of the private volume, the operation latency of tasks

increases as the capacity of the private volume increases. For example, in the case of

the HIDE(p, c) command, the larger the size of the private volume is requested, the

more blocks that need to be locked and it takes longer time. In both τexp and τhid,

each operation latency does not exceed 0.3 seconds even in the case of (5%, 128-

GB). Therefore, considering the trend of increasing operation latency compared to

capacity increase, SafeSSD can achieve high usability even the disk capacity is large.

CARES LAB @ SNU 24/20

Usability of SafeSSD

Fidelius: An Integrated Approach for Supporting Strong Plausible Deniability in SSDs

The data-hiding interface functions have

enough low operational latency.

4. Evaluation

0

100

200

300

400

(2.5%, 64GB) (5%, 64GB) (2.5%, 128GB) (5%, 128GB)

L
a

te
n

c
y

 (
m

s
)

(2.5%, 64GB) (5%, 64GB) (5%, 128GB)(2.5%, 128GB)

Exposing Task (����) Hiding Task (����)

Figure 8: Operation latency of SafeSSD interfaces.

34

For example, in the case of (5%, 1-TB), we expect that τexp takes less than 0.8 seconds

and τhid takes less than 0.4 seconds.

35

Chapter 8

Related Work

In order to protect private data, studies have been actively conducted to hide the exis-

tence of private data. We briefly discuss closely related prior work that aims to provide

plausible deniability for hidden private data.

Plausibly Deniable Encryption Plausibly deniable encryption (PDE) allows a given

ciphertext to be decrypted as original private data (using secret key) or plausible public

data (using decoy key). The user can hide the existence of private data by disclosing

only the decoy key under the coercion. However, it is hard to implement special en-

cryption scheme in which ciphertext can be decrypted into a number of plausible plain-

text, and existing implementation results in an increase in ciphertext size, potentially

allowing an adversary to notice that PDE is in use [54].

Steganography Classical steganography conceals private data by embedding it in

other cover data [55–58]. As cover data, media data such as image, audio, and video

files are mainly used, and private data is hidden by applying unobtrusive distortion to

the cover data. However, since media data is generally expected to be immutable, it is

difficult to hide data from the multiple-snapshot adversary when the contents of private

data are updated. On-chip steganography is similar to classical steganography, with the

difference that private data is embedded in the analog domain of storage medium (e.g.,

flash cell’s programming time [59] or threshold voltage level [16]) rather than digital

36

domain (such as media data). They are suitable for providing strong PD because it

is almost impossible to detect the existence of data hiding mechanism. Unfortunately,

however, they are difficult to be put into practical use because they degrade the lifetime

of the flash memory, or degrade the reliability of the data stored in the flash memory. In

addition, like classical steganography, it is difficult to defend against multiple-snapshot

adversary.

Deniable Storage System The deniable storage system is the PD solution for the stor-

age system. Many of them exploit ciphertext indistinguishability [39] to hide encrypted

private data between random data [4–6]. However, as random data is located in an area

where the file system is inaccessible (e.g., free space of the disk), if changes occurs,

it can be seen as potentially signs of data-hiding. Thus, to defend against multiple-

snapshot adversary, several studies have employed the dummy writes as part of the

storage system’s normal behavior [7–12] to obscure the cause of random data changes.

However, as discussed in Section 3, such a mysterious behavior can be potential sign

of data-hiding, so the PD is weakened. Recently, new PD solutions have been proposed

that can hide the fact that the storage system is supporting data hiding. Chen et al. pro-

posed a strong PD solution by exploiting on-chip steganography technique [16] as a

building block [14] and a deniable storage with re-purposed WOM code that supports

data hiding [15]. However, as both were discussed in Section 3, the applicability to

modern high-density 3D NAND flash memory is unclear due to data reliability issues.

37

Chapter 9

Conclusions

We have presented Fidelius, a plausibly deniable data hiding technique for modern

flash-based storage systems. Fidelius supports per-block access control with two new

flash commands, bHide and bExpose, that disable accesses to blocks and re-enable

accesses to blocks, respectively. By exploiting existing lock-based data sanitization as

a cloak for access control, Fidelius can plausibly deny the existence of the data hiding

mechanism. Using state-of-the-art 3D flash chips, we validate that bHide can guaran-

tee that accesses to a target block are disabled and bExpose can reliably re-enable the

accesses to the block. We designed a Fidelius-enabled flash storage system, SafeSSD,

that abstracts the management of private volume and provides high-level private vol-

ume management interfaces to a host system for ease of use. Our experimental results

show that SafeSSD can provide strong plausible deniability with negligible perfor-

mance overhead and high usability.

38

Bibliography

[1] Apple. Filevault. https://support.apple.com/en-us/HT204837,

2015.

[2] Source. Android full disk encryption. https://source.android.com/s

ecurity/encryption/, 2016.

[3] Microsoft. Bitlocker. https://technet.microsoft.com/en-us/li

brary/hh831713, 2013.

[4] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file sys-

tem. In International Workshop on Information Hiding, pages 73–82. Springer,

1998.

[5] TrueCrypt. Free open source on-the-fly disk encryption software. http://ww

w.truecrypt.org/, 2012.

[6] Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryp-

tionfor mobile devices. IEEE Transactions on Dependable and Secure Comput-

ing, 11(3):224–237, 2013.

[7] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. To-

ward robust hidden volumes using write-only oblivious ram. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 203–214, 2014.

39

https://support.apple.com/en-us/HT204837
https://source.android.com/security/encryption/
https://source.android.com/security/encryption/
https://technet.microsoft.com/en-us/library/hh831713
https://technet.microsoft.com/en-us/library/hh831713
http://www.truecrypt.org/
http://www.truecrypt.org/

[8] Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block storage

with plausible deniability against multi-snapshot adversaries. Proceedings on

Privacy Enhancing Technologies, 2017(3):179–197, 2017.

[9] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang

Tian, Zhan Wang, and Albert Ching. Mobiceal: Towards secure and practical

plausibly deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN), pages

454–465. IEEE, 2018.

[10] Chen Chen, Anrin Chakraborti, and Radu Sion. Pd-dm: an efficient locality-

preserving block device mapper with plausible deniability. Proceedings on Pri-

vacy Enhancing Technologies, 2019(1):153–171, 2019.

[11] Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan Tsafrir. Preserving hidden

data with an ever-changing disk. In Proceedings of the 16th Workshop on Hot

Topics in Operating Systems, HotOS ’17, pages 50–55, New York, NY, USA,

2017. ACM.

[12] Shijie Jia, Qionglu Zhang, Luning Xia, Jiwu Jing, and Peng Liu. Mdeftl: Incor-

porating multi-snapshot plausible deniability into flash translation layer. IEEE

Transactions on Dependable and Secure Computing, 2021.

[13] Chen Chen, Xiao Liang, Bogdan Carbunar, and Radu Sion. Sok: Plausibly deni-

able storage. arXiv preprint arXiv:2111.12809, 2021.

[14] Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible plausibly-

deniable file system for nand flash. Proc. Priv. Enhancing Technol., 2020(4):239–

254, 2020.

[15] Chen Chen, Anrin Chakraborti, and Radu Sion. PEARL: Plausibly deniable

flash translation layer using WOM coding. In 30th USENIX Security Symposium

(USENIX Security 21), Vancouver, B.C., August 2021. USENIX Association.

40

[16] Aviad Zuck, Yue Li, Jehoshua Bruck, Donald E. Porter, and Dan Tsafrir. Stash

in a flash. In 16th USENIX Conference on File and Storage Technologies (FAST

18), pages 169–188, Oakland, CA, February 2018. USENIX Association.

[17] Rino Micheloni, Luca Crippa, and Alessia Marelli. Inside NAND flash memories.

Springer Science & Business Media, 2010.

[18] Seiichi Aritome. NAND flash memory technologies. John Wiley & Sons, 2015.

[19] Alessandro Torsi, Yijie Zhao, Haitao Liu, Toru Tanzawa, Akira Goda, Pranav

Kalavade, and Krishna Parat. A program disturb model and channel leakage

current study for sub-20 nm nand flash cells. IEEE Transactions on Electron

Devices, 58(1):11–16, 2010.

[20] Ronald L Rivest and Adi Shamir. How to reuse a “write-once memory. Informa-

tion and control, 55(1-3):1–19, 1982.

[21] Fidelius charm. https://harrypotter.fandom.com/wiki/Fideli

us Charm#.

[22] Myungsuk Kim, Jisung Park, Genhee Cho, Yoona Kim, Lois Orosa, Onur Mutlu,

and Jihong Kim. Evanesco: Architectural support for efficient data sanitization

in modern flash-based storage systems. In Proceedings of the Twenty-Fifth Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’20, pages 1311–1326, New York, NY, USA, 2020.

ACM.

[23] Christian Monzio Compagnoni, Andrea Ghetti, Michele Ghidotti, Alessandro S.

Spinelli, and Angelo Visconti. Data retention and program/erase sensitivity to

the array background pattern in deca-nanometer nand flash memories. IEEE

Transactions on Electron Devices, 57(1):321–327, 2009.

41

https://harrypotter.fandom.com/wiki/Fidelius_Charm#
https://harrypotter.fandom.com/wiki/Fidelius_Charm#

[24] Chulbum Kim, Doo-Hyun Kim, Woopyo Jeong, Hyun-Jin Kim, Il Han Park,

Hyun-Wook Park, JongHoon Lee, JiYoon Park, Yang-Lo Ahn, Ji Young Lee,

Seung-Bum Kim, Hyunjun Yoon, Jae Doeg Yu, Nayoung Choi, NaHyun Kim,

Hwajun Jang, JongHoon Park, Seunghwan Song, YongHa Park, Jinbae Bang,

Sanggi Hong, Youngdon Choi, Moo-Sung Kim, Hyunggon Kim, Pansuk Kwak,

Jeong-Don Ihm, Dae Seok Byeon, Jin-Yub Lee, Ki-Tae Park, and Kye-Hyun

Kyung. A 512-gb 3-b/cell 64-stacked wl 3-d-nand flash memory. IEEE Jour-

nal of Solid-State Circuits, 53(1):124–133, 2017.

[25] Linux-Nvme. linux-nvme/nvme-cli: Nvme management command line interface.

https://github.com/linux-nvme/nvme-cli.

[26] Ryuji Yamashita, Sagar Magia, Tsutomu Higuchi, Kazuhide Yoneya, Toshio Ya-

mamura, Hiroyuki Mizukoshi, Shingo Zaitsu, et al. A 512gb 3b/cell flash mem-

ory on 64-word-linelayer bics technology. In Proceedings of International Solid-

State Circuits Conference, 2017.

[27] J. Maserjian and N. Zamani. Behavior of the si/sio2 interface observed by fowler-

nordheim tunneling. Journal of Applied Physics, 53(1):559–567, 1982.

[28] Kazushige Kanda, Noboru Shibata, Toshiki Hisada, Katsuaki Isobe, Manabu

Sato, Yui Shimizu, Takahiro Shimizu, Takahiro Sugimoto, Tomohiro Kobayashi,

Naoaki Kanagawa, Yasuyuki Kajitani, Takeshi Ogawa, Kiyoaki Iwasa, Masat-

sugu Kojima, Toshihiro Suzuki, Yuya Suzuki, Shintaro Sakai, Tomofumi Fu-

jimura, Yuko Utsunomiya, Toshifumi Hashimoto, Naoki Kobayashi, Yuuki

Matsumoto, Satoshi Inoue, Yoshinao Suzuki, Yasuhiko Honda, Yosuke Kato,

Shingo Zaitsu, Hardwell Chibvongodze, Mitsuyuki Watanabe, Hong Ding, Naoki

Ookuma, and Ryuji Yamashita. A 19 nm 112.8 mm2 64 gb multi-level flash

memory with 400 mbit/sec/pin 1.8 v toggle mode interface. IEEE Journal of

Solid-State Circuits, 48(1):159–167, 2012.

42

https://github.com/linux-nvme/nvme-cli

[29] Ki-Tae Park, Sangwan Nam, Daehan Kim, Pansuk Kwak, Doosub Lee, Yoon-

He Choi, Myung-Hoon Choi, Dong-Hun Kwak, Doo-Hyun Kim, Min-Su Kim,

Hyun-Wook Park, Sang-Won Shim, Kyung-Min Kang, Sang-Won Park, Kangbin

Lee, Hyun-Jun Yoon, Kuihan Ko, Dong-Kyo Shim, Yang-Lo Ahn, Jinho Ryu,

Donghyun Kim, Kyunghwa Yun, Joonsoo Kwon, Seunghoon Shin, Dae-Seok

Byeon, Kihwan Choi, Jin-Man Han, Kye-Hyun Kyung, Jeong-Hyuk Choi, and

Kinam Kim. Three-dimensional 128 gb mlc vertical nand flash memory with

24-wl stacked layers and 50 mb/s high-speed programming. IEEE Journal of

Solid-State Circuits, 50(1):204–213, 2014.

[30] Sarah Diesburg, Christopher Meyers, Mark Stanovich, Michael Mitchell, Justin

Marshall, Julia Gould, and An-I Andy Wang. Trueerase: Per-file secure dele-

tion for the storage data path. In Proceedings of the Annual Computer Security

Applications Conference, 2012.

[31] Kyungmoon Sun, Jongmoo Choi, and Sam H. Noh. Models and design of an

adaptive hybrid scheme for secure deletion of data in consumer electronics. IEEE

Transactions on Consumer Electronics, 54(1):100–104, 2008.

[32] Wei-Chen Wang, Chien-Chung Ho, Yuan-Hao Chang, Tei-Wei Kim, Kuo, and

Ping-Hsien Lin. Scrubbing-aware secure deletion for 3-d NAND flash. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

37(11):2790–2801, 2018.

[33] Michael Yung Chung Wei, Laura M. Grupp, Frederick E. Spada, and Steven

Swanson. Reliably erasing data from flash-based solid state drives. In Proceed-

ings of the USENIX Conference on File and Storage Technologies, 2011.

[34] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Nfps: Adding undetectable secure

deletion to flash translation layer. In Proceedings of the ACM on Asia Conference

on Computer and Communications Security, 2016.

43

[35] Ping-Hesien Lin, Yu-Ming Chang, Yung-Chun Li, Chien-Chung Ho, and Yuan-

Hao Chang. Achieving fast sanitization with zero live data copy for MLC flash

memory. In Proceedings of the International Conference on Computer-Aided

Design, 2018.

[36] Junghee Lee, Kalidas Ganesh, Hyuk-Jun Lee, and Youngjae Kim. Fessd: A fast

encrypted ssd employing on-chip access-control memory. IEEE Computer Ar-

chitecture Letters, 16(2):115–118, 2017.

[37] Joel Reardon, Srdjan Capkun, and David Basin. Data node encrypted file system:

Efficient secure deletion for flash memory. In 21st USENIX Security Symposium

(USENIX Security 12), pages 333–348, 2012.

[38] Jaeheung Lee, Junyoung Heo, Yookun Cho, Jiman Hong, and Sung Y Shin. Se-

cure deletion for nand flash file system. In Proceedings of the 2008 ACM sympo-

sium on Applied computing, pages 1710–1714, 2008.

[39] Ciphertext indistinguishability. https://en.wikipedia.org/wiki/Ci

phertext indistinguishability#Indistinguishable from r

andom noise.

[40] Jubayer Mahmod and Matthew Hicks. Invisible bits: hiding secret messages in

sram’s analog domain. In Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 1086–1098, 2022.

[41] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausi-

bly deniable encryption in flash translation layer. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,

pages 2217–2229, New York, NY, USA, 2017. ACM.

[42] Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G Edward Suh, and Ed-

win C Kan. Flash memory for ubiquitous hardware security functions: True

44

https://en.wikipedia.org/wiki/Ciphertext_indistinguishability#Indistinguishable_from_random_noise
https://en.wikipedia.org/wiki/Ciphertext_indistinguishability#Indistinguishable_from_random_noise
https://en.wikipedia.org/wiki/Ciphertext_indistinguishability#Indistinguishable_from_random_noise

random number generation and device fingerprints. In 2012 IEEE Symposium on

Security and Privacy, pages 33–47. IEEE, 2012.

[43] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon

Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-

Sun Yum, et al. A 3.3 v 32 mb nand flash memory with incremental step pulse

programming scheme. IEEE Journal of Solid-State Circuits, 30(11):1149–1156,

1995.

[44] JEDEC. JEDEC Solid State Technology Assn., Method for Developing Ac-

celeration Models for Electronic Component Failure Mechanisms. https:

//www.jedec.org, 2003. [JESD91A].

[45] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced

encryption standard. Springer Science & Business Media, 2013.

[46] Nvme-io-passthru(1). https://manpages.debian.org/testing/nv

me-cli/nvme-io-passthru.1.en.html. Accessed: 2022-01-24.

[47] Nvme-io-passthru(1). https://manpages.debian.org/testing/nv

me-cli/nvme-admin-passthru.1.en.html. Accessed: 2022-01-24.

[48] fdisk(8) — linux manual page. https://man7.org/linux/man-pages

/man8/fdisk.8.html. Accessed: 2022-01-25.

[49] mkfs(8) — linux manual page. https://man7.org/linux/man-pages

/man8/mkfs.8.html. Accessed: 2022-02-26.

[50] [resend v1 0/5] add support for block disk resize notification. https://lwn.

net/ml/linux-kernel/20200102075315.22652-1-sblbir@ama

zon.com/. Accessed: 2022-01-24.

[51] detect online disk resize. https://lwn.net/Articles/296401/.

Accessed: 2022-01-24.

45

https://www.jedec.org
https://www.jedec.org
https://manpages.debian.org/testing/nvme-cli/nvme-io-passthru.1.en.html
https://manpages.debian.org/testing/nvme-cli/nvme-io-passthru.1.en.html
https://manpages.debian.org/testing/nvme-cli/nvme-admin-passthru.1.en.html
https://manpages.debian.org/testing/nvme-cli/nvme-admin-passthru.1.en.html
https://man7.org/linux/man-pages/man8/fdisk.8.html
https://man7.org/linux/man-pages/man8/fdisk.8.html
https://man7.org/linux/man-pages/man8/mkfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.8.html
https://lwn.net/ml/linux-kernel/20200102075315.22652-1-sblbir@amazon.com/
https://lwn.net/ml/linux-kernel/20200102075315.22652-1-sblbir@amazon.com/
https://lwn.net/ml/linux-kernel/20200102075315.22652-1-sblbir@amazon.com/
https://lwn.net/Articles/296401/

[52] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman,

Matias Bjørling, and Haryadi S Gunawi. The case of femu: Cheap, accurate,

scalable and extensible flash emulator. In 16th USENIX Conference on File and

Storage Technologies, pages 83–90, 2018.

[53] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible frame-

work for file system benchmarking. login: The USENIX Magazine, 41(1):6–12,

2016.

[54] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable

encryption. In Annual International Cryptology Conference, pages 90–104.

Springer, 1997.

[55] Shikha Sharma and Devendra Somwanshi. A dwt based attack resistant video

steganography. In Proceedings of the Second International Conference on Infor-

mation and Communication Technology for Competitive Strategies, pages 1–5,

2016.

[56] Xintao Duan, Liu Nao, Gou Mengxiao, Dongli Yue, Zimei Xie, Yuanyuan Ma,

and Chuan Qin. High-capacity image steganography based on improved fc-

densenet. IEEE Access, 8:170174–170182, 2020.

[57] Dipti Watni and Sonal Chawla. A comparative evaluation of jpeg steganogra-

phy. In 2019 5th International Conference on Signal Processing, Computing and

Control (ISPCC), pages 36–40. IEEE, 2019.

[58] Yunzhao Yang, Yuntao Wang, Xiaowei Yi, Xianfeng Zhao, and Yi Ma. Defining

joint embedding distortion for adaptive mp3 steganography. In Proceedings of

the ACM Workshop on Information Hiding and Multimedia Security, pages 14–

24, 2019.

46

[59] Yinglei Wang, Wing-kei Yu, Sarah Q Xu, Edwin Kan, and G Edward Suh. Hiding

information in flash memory. In 2013 IEEE Symposium on Security and Privacy,

pages 271–285. IEEE, 2013.

47

초록

암호화는개인데이터의내용을숨길수있으나,그존재자체를숨길수는없다.

따라서사용자에게암호해독키를공개하도록강요하는공격자로부터프라이버시

가손상된다.이러한강압적공격자에대항하기위해,데이터숨김기능을지원하는

합리적 부정기능 솔루션이 제안되어왔다. 합리성을 향상시키기 위해, 데이터 숨김

기능 자체의 사용까지 부정할 수 있게끔 강력한 합리적 부정기능을 지원하는 것이

중요하다. 불행하게도, 기존에 강력한 합리적 부정기능을 지원하는 솔루션들은 신

뢰성문제로인하여현대의플래시기반저장장치시스템에구현되기에실용적이지

못하다.본연구에서는,강력한합리적부정기능을지원하면서도고집적 3D낸드플

래시메모리에서실용가능한,새로운접근중점적데이터숨김메커니즘인 Fidelius

를 제안한다. Fidelius 는 칩 내부 자원을 활용하여, 블록 수준에서의 데이터 접근

권한을 재설정할 수 있는 플래시 잠금 (bHide) 및 잠금해제 (bExpose) 커맨드를

지원한다.공격자는잠긴블록내부를조사할수없으므로, Fidelius는단순히잠긴

블록에개인데이터를저장함으로써그존재를부정할수있다.잠긴블록들의존재

는데이터숨김기능의결과가아닌,과거데이터에대한접근을제어하는데이터세

니타이제이션의 결과로써 설명될 수 있기에 Fidelius 는 강력한 합리적 부정기능을

제공할 수 있다. 제안한 기술을 평가하기 위해, 에뮬레이터를 기반으로, (멀티스냅

샷저항력과더불어강력한합리적부정기능을지원하는) Fidelius를적용한플래시

스토리지시스템인 SafeSSD를구축하였다.평가결과를통해, SafeSSD는신뢰성

문제 없이, 경미한 성능 오버헤드만을 가지면서 강력한 합리적 부정기능을 지원할

수있음을보였다.

48

주요어: 솔리드 스테이트 드라이브, 3D 낸드 플래시 메모리, 보안, 프라이버시,

합리적부정기능,부정가능저장장치

학번: 2019-21844

49

	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Thesis Structure

	2 Background
	2.1 Flash Memory Overview
	2.1.1 Organization of Flash Memory
	2.1.2 Flash Operations
	2.1.3 Multi-level Cell Technology

	2.2 Flash Translation Layer
	2.2.1 Address Translation
	2.2.2 Garbage Collection
	2.2.3 Data Sanitization

	3 Limitations of Existing PD Solutions
	3.1 Lack of Deniability for Data-Hiding Mechanism
	3.2 Lack of Practicality in High-Density Flash Memory

	4 Threat Model
	4.1 The Capability of Adversary
	4.2 Assumptions

	5 Access-Centric Data Hiding Technique
	5.1 Approach Overview
	5.2 Flash Commands for Block Access Control
	5.2.1 Organizational Overview
	5.2.2 Implementation

	6 SafeSSD: Fidelius-based PD Solution
	6.1 Overview
	6.2 Fidelius-Aware FTL
	6.3 User Interfaces

	7 Evaluation Results
	7.1 Experimental Settings
	7.2 Performance Evaluation
	7.3 Usability Evaluation

	8 Related Work
	9 Conclusions
	Bibliography
	Abstract (In Korean)

<startpage>9
1 Introduction 1
 1.1 Motivation 1
 1.2 Contribution 4
 1.3 Thesis Structure 6
2 Background 8
 2.1 Flash Memory Overview 8
 2.1.1 Organization of Flash Memory 9
 2.1.2 Flash Operations 9
 2.1.3 Multi-level Cell Technology 10
 2.2 Flash Translation Layer 11
 2.2.1 Address Translation 11
 2.2.2 Garbage Collection 12
 2.2.3 Data Sanitization 12
3 Limitations of Existing PD Solutions 13
 3.1 Lack of Deniability for Data-Hiding Mechanism 13
 3.2 Lack of Practicality in High-Density Flash Memory 15
4 Threat Model 18
 4.1 The Capability of Adversary 18
 4.2 Assumptions 19
5 Access-Centric Data Hiding Technique 20
 5.1 Approach Overview 20
 5.2 Flash Commands for Block Access Control 23
 5.2.1 Organizational Overview 23
 5.2.2 Implementation 24
6 SafeSSD: Fidelius-based PD Solution 28
 6.1 Overview 28
 6.2 Fidelius-Aware FTL 29
 6.3 User Interfaces 30
7 Evaluation Results 32
 7.1 Experimental Settings 32
 7.2 Performance Evaluation 33
 7.3 Usability Evaluation 34
8 Related Work 36
9 Conclusions 38
Bibliography 39
Abstract (In Korean) 48
</body>

